pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
reinforcement-learning
null
# PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'jinghuanHuggingface/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
{"tags": ["LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "-198.34 +/- 85.75", "name": "mean_reward", "verified": false}]}]}]}
jinghuanHuggingface/ppo-CartPole-v1
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
null
2024-04-12T03:26:05+00:00
[]
[]
TAGS #tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us
# PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
[ "# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n \n # Hyperparameters" ]
[ "TAGS\n#tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us \n", "# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n \n # Hyperparameters" ]
null
null
# DavidAU/EE-Silicon-Maid-7B-Q6_K-GGUF This model was converted to GGUF format from [`ND911/EE-Silicon-Maid-7B`](https://huggingface.co/ND911/EE-Silicon-Maid-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ND911/EE-Silicon-Maid-7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/EE-Silicon-Maid-7B-Q6_K-GGUF --model ee-silicon-maid-7b.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/EE-Silicon-Maid-7B-Q6_K-GGUF --model ee-silicon-maid-7b.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m ee-silicon-maid-7b.Q6_K.gguf -n 128 ```
{"tags": ["merge", "mergekit", "lazymergekit", "SanjiWatsuki/Silicon-Maid-7B", "SanjiWatsuki/Loyal-Macaroni-Maid-7B", "llama-cpp", "gguf-my-repo"], "base_model": ["SanjiWatsuki/Silicon-Maid-7B", "SanjiWatsuki/Loyal-Macaroni-Maid-7B"]}
DavidAU/EE-Silicon-Maid-7B-Q6_K-GGUF
null
[ "gguf", "merge", "mergekit", "lazymergekit", "SanjiWatsuki/Silicon-Maid-7B", "SanjiWatsuki/Loyal-Macaroni-Maid-7B", "llama-cpp", "gguf-my-repo", "base_model:SanjiWatsuki/Silicon-Maid-7B", "base_model:SanjiWatsuki/Loyal-Macaroni-Maid-7B", "region:us" ]
null
2024-04-12T03:27:32+00:00
[]
[]
TAGS #gguf #merge #mergekit #lazymergekit #SanjiWatsuki/Silicon-Maid-7B #SanjiWatsuki/Loyal-Macaroni-Maid-7B #llama-cpp #gguf-my-repo #base_model-SanjiWatsuki/Silicon-Maid-7B #base_model-SanjiWatsuki/Loyal-Macaroni-Maid-7B #region-us
# DavidAU/EE-Silicon-Maid-7B-Q6_K-GGUF This model was converted to GGUF format from 'ND911/EE-Silicon-Maid-7B' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/EE-Silicon-Maid-7B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/EE-Silicon-Maid-7B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #merge #mergekit #lazymergekit #SanjiWatsuki/Silicon-Maid-7B #SanjiWatsuki/Loyal-Macaroni-Maid-7B #llama-cpp #gguf-my-repo #base_model-SanjiWatsuki/Silicon-Maid-7B #base_model-SanjiWatsuki/Loyal-Macaroni-Maid-7B #region-us \n", "# DavidAU/EE-Silicon-Maid-7B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/EE-Silicon-Maid-7B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
null
transformers
## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/Sao10K/Sensualize-Mixtral-bf16 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.Q2_K.gguf) | Q2_K | 17.4 | | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.IQ3_XS.gguf) | IQ3_XS | 19.5 | | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.IQ3_S.gguf) | IQ3_S | 20.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.Q3_K_S.gguf) | Q3_K_S | 20.5 | | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.IQ3_M.gguf) | IQ3_M | 21.5 | | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.Q3_K_M.gguf) | Q3_K_M | 22.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.Q3_K_L.gguf) | Q3_K_L | 24.3 | | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.IQ4_XS.gguf) | IQ4_XS | 25.5 | | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.Q4_K_S.gguf) | Q4_K_S | 26.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.Q4_K_M.gguf) | Q4_K_M | 28.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.Q5_K_S.gguf) | Q5_K_S | 32.3 | | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.Q5_K_M.gguf) | Q5_K_M | 33.3 | | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.Q6_K.gguf) | Q6_K | 38.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Sensualize-Mixtral-bf16-GGUF/resolve/main/Sensualize-Mixtral-bf16.Q8_0.gguf) | Q8_0 | 49.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "cc-by-nc-4.0", "library_name": "transformers", "datasets": ["NobodyExistsOnTheInternet/full120k"], "base_model": "Sao10K/Sensualize-Mixtral-bf16", "quantized_by": "mradermacher"}
mradermacher/Sensualize-Mixtral-bf16-GGUF
null
[ "transformers", "gguf", "en", "dataset:NobodyExistsOnTheInternet/full120k", "base_model:Sao10K/Sensualize-Mixtral-bf16", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:27:41+00:00
[]
[ "en" ]
TAGS #transformers #gguf #en #dataset-NobodyExistsOnTheInternet/full120k #base_model-Sao10K/Sensualize-Mixtral-bf16 #license-cc-by-nc-4.0 #endpoints_compatible #region-us
About ----- static quants of URL weighted/imatrix quants are available at URL Usage ----- If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files. Provided Quants --------------- (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): !URL And here are Artefact2's thoughts on the matter: URL FAQ / Model Request ------------------- See URL for some answers to questions you might have and/or if you want some other model quantized. Thanks ------ I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.
[]
[ "TAGS\n#transformers #gguf #en #dataset-NobodyExistsOnTheInternet/full120k #base_model-Sao10K/Sensualize-Mixtral-bf16 #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n" ]
null
adapter-transformers
# Adapter `BigTMiami/adapter_seq_bn_classification_no_pretraining_100_percent` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [BigTMiami/amazon_helpfulness](https://huggingface.co/datasets/BigTMiami/amazon_helpfulness/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library. ## Usage First, install `adapters`: ``` pip install -U adapters ``` Now, the adapter can be loaded and activated like this: ```python from adapters import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("BigTMiami/adapter_seq_bn_classification_no_pretraining_100_percent", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["roberta", "adapter-transformers"], "datasets": ["BigTMiami/amazon_helpfulness"]}
BigTMiami/adapter_seq_bn_classification_no_pretraining_100_percent
null
[ "adapter-transformers", "roberta", "dataset:BigTMiami/amazon_helpfulness", "region:us" ]
null
2024-04-12T03:27:51+00:00
[]
[]
TAGS #adapter-transformers #roberta #dataset-BigTMiami/amazon_helpfulness #region-us
# Adapter 'BigTMiami/adapter_seq_bn_classification_no_pretraining_100_percent' for roberta-base An adapter for the 'roberta-base' model that was trained on the BigTMiami/amazon_helpfulness dataset and includes a prediction head for classification. This adapter was created for usage with the Adapters library. ## Usage First, install 'adapters': Now, the adapter can be loaded and activated like this: ## Architecture & Training ## Evaluation results
[ "# Adapter 'BigTMiami/adapter_seq_bn_classification_no_pretraining_100_percent' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the BigTMiami/amazon_helpfulness dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the Adapters library.", "## Usage\n\nFirst, install 'adapters':\n\n\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ "TAGS\n#adapter-transformers #roberta #dataset-BigTMiami/amazon_helpfulness #region-us \n", "# Adapter 'BigTMiami/adapter_seq_bn_classification_no_pretraining_100_percent' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the BigTMiami/amazon_helpfulness dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the Adapters library.", "## Usage\n\nFirst, install 'adapters':\n\n\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4 This model is a fine-tuned version of [ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_3](https://huggingface.co/ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_3) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_3", "model-index": [{"name": "0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4", "results": []}]}
ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4
null
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:updated", "dataset:original", "base_model:ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_3", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T03:27:53+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# 0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4 This model is a fine-tuned version of ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_3 on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
[ "# 0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4\n\nThis model is a fine-tuned version of ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_3 on the updated and the original datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 128\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# 0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4\n\nThis model is a fine-tuned version of ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_3 on the updated and the original datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 128\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
null
transformers
# DavidAU/Eclectic-Maid-10B-v2-1-Q6_K-GGUF This model was converted to GGUF format from [`ND911/Eclectic-Maid-10B-v2-1`](https://huggingface.co/ND911/Eclectic-Maid-10B-v2-1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ND911/Eclectic-Maid-10B-v2-1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Eclectic-Maid-10B-v2-1-Q6_K-GGUF --model eclectic-maid-10b-v2-1.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Eclectic-Maid-10B-v2-1-Q6_K-GGUF --model eclectic-maid-10b-v2-1.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m eclectic-maid-10b-v2-1.Q6_K.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo"], "base_model": []}
DavidAU/Eclectic-Maid-10B-v2-1-Q6_K-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:28:52+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #endpoints_compatible #region-us
# DavidAU/Eclectic-Maid-10B-v2-1-Q6_K-GGUF This model was converted to GGUF format from 'ND911/Eclectic-Maid-10B-v2-1' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Eclectic-Maid-10B-v2-1-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Eclectic-Maid-10B-v2-1' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #endpoints_compatible #region-us \n", "# DavidAU/Eclectic-Maid-10B-v2-1-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Eclectic-Maid-10B-v2-1' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
null
transformers
# DavidAU/Eclectic-Maid-10B-v2-Q6_K-GGUF This model was converted to GGUF format from [`ND911/Eclectic-Maid-10B-v2`](https://huggingface.co/ND911/Eclectic-Maid-10B-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ND911/Eclectic-Maid-10B-v2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Eclectic-Maid-10B-v2-Q6_K-GGUF --model eclectic-maid-10b-v2.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Eclectic-Maid-10B-v2-Q6_K-GGUF --model eclectic-maid-10b-v2.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m eclectic-maid-10b-v2.Q6_K.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo"], "base_model": []}
DavidAU/Eclectic-Maid-10B-v2-Q6_K-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:30:17+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #endpoints_compatible #region-us
# DavidAU/Eclectic-Maid-10B-v2-Q6_K-GGUF This model was converted to GGUF format from 'ND911/Eclectic-Maid-10B-v2' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Eclectic-Maid-10B-v2-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Eclectic-Maid-10B-v2' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #endpoints_compatible #region-us \n", "# DavidAU/Eclectic-Maid-10B-v2-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Eclectic-Maid-10B-v2' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
null
transformers
# Uploaded model - **Developed by:** peterface - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"}
peterface/lora_model_v4
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:31:28+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: peterface - License: apache-2.0 - Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: peterface\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: peterface\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-generation
transformers
# yatharth-gemma-2b-it-10k Model Card **Reference Model Page**: [Gemma](https://ai.google.dev/gemma/docs) This model card pertains to the version of the Gemma model that has been fine-tuned on a dataset of 10K reports, specifically to enhance performance on tasks related to answering questions about these reports **Authors**: Yatharth Mahesh Sant ## Model Information Summary description and brief definition of inputs and outputs. ### Description The model presented here is an advanced adaptation of the Gemma 2B-IT, a member of the Gemma family of lightweight yet state-of-the-art models developed by Google. Leveraging the breakthrough research and technology that brought forth the Gemini models, our fine-tuned iteration specializes in parsing and understanding financial texts, particularly those found in 10-K reports. Dubbed the "yatharth-gemma-2B-it-10k" this model retains the text-to-text, decoder-only architecture of its progenitors, functioning optimally in English. What sets it apart is its refined focus on question-answering tasks specific to the intricate domain of 10-K reports — an invaluable resource for financial analysts, investors, and regulatory professionals seeking AI-driven insights. Preserving the open-weights philosophy of the original Gemma models, this variant has been instruction-tuned with a curated dataset of 10-K reports. It not only demonstrates an enhanced proficiency in generating accurate, context-aware responses to user queries but also maintains the flexibility and efficiency that allow deployment in various settings, from personal computers to cloud-based environments. The "yatharth-gemma-2B-it-10k" upholds the Gemma tradition of facilitating text generation tasks such as summarization and complex reasoning. Its unique optimization for financial reports exemplifies our commitment to pushing the boundaries of specialized AI, providing an unparalleled tool for dissecting and interpreting one of the business world's most information-dense documents. By marrying the accessibility of the Gemma models with the niche expertise required to navigate 10-K reports, we extend the frontiers of what's possible with AI, democratizing cutting-edge technology to empower financial analysis and decision-making. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Fine-tuning the model You can find fine-tuning scripts and notebook under the [`examples/` directory](https://huggingface.co/google/gemma-2b/tree/main/examples) of [`google/gemma-2b`](https://huggingface.co/google/gemma-2b) repository. To adapt it to this model, simply change the model-id to `yatharth97/yatharth-gemma-2b-it-10k`. In that repository, we provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset #### Running the model on a CPU As explained below, we recommend `torch.bfloat16` as the default dtype. You can use [a different precision](#precisions) if necessary. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("yatharth97/yatharth-gemma-2b-it-10k") model = AutoModelForCausalLM.from_pretrained( "yatharth97/yatharth-gemma-2b-it-10k", torch_dtype=torch.bfloat16 ) input_text = 'Can you tell me what the Total Debt was in 2023?' input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("yatharth97/yatharth-gemma-2b-it-10k") model = AutoModelForCausalLM.from_pretrained( "yatharth97/yatharth-gemma-2b-it-10k", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = 'Can you tell me what the Total Debt was in 2023?' input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in `bfloat16` precision. You can use `float16`, which may be faster on certain hardware, indicating the `torch_dtype` when loading the model. For convenience, the `float16` revision of the repo contains a copy of the weights already converted to that precision. You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below. * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("yatharth97/yatharth-gemma-2b-it-10k") model = AutoModelForCausalLM.from_pretrained( "yatharth97/yatharth-gemma-2b-it-10k", device_map="auto", torch_dtype=torch.float16, revision="float16", ) input_text = 'Can you tell me what the Total Debt was in 2023?' input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("yatharth97/yatharth-gemma-2b-it-10k") model = AutoModelForCausalLM.from_pretrained("yatharth97/yatharth-gemma-2b-it-10k", device_map="auto", torch_dtype=torch.bfloat16) input_text = 'Can you tell me what the Total Debt was in 2023?' input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Upcasting to `torch.float32`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("yatharth97/yatharth-gemma-2b-it-10k") model = AutoModelForCausalLM.from_pretrained( "yatharth97/yatharth-gemma-2b-it-10k", device_map="auto" ) input_text = 'Can you tell me what the Total Debt was in 2023?' input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("yatharth97/yatharth-gemma-2b-it-10k") model = AutoModelForCausalLM.from_pretrained("yatharth97/yatharth-gemma-2b-it-10k", quantization_config=quantization_config) input_text = 'Can you tell me what the Total Debt was in 2023?' input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("yatharth97/yatharth-gemma-2b-it-10k") model = AutoModelForCausalLM.from_pretrained("yatharth97/yatharth-gemma-2b-it-10k", quantization_config=quantization_config) input_text = 'Can you tell me what the Total Debt was in 2023?' input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "yatharth97/yatharth-gemma-2b-it-10k" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ { "role": "user", "content": "Can you tell me what the Total Debt was in 2023?" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Can you tell me what the Total Debt was in 2023?<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) print(tokenizer.decode(outputs[0])) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a 10K document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of uploaded 10K document. For summarization currently a separate model is being used. ## Model Data Data used for model training and how the data was processed. ### Training Dataset This model is fine tuned on the dataset: "yatharth97/10k_reports_gemma" which has a conversational based format allowing the user to ask questions about the uploaded 10K report
{"library_name": "transformers", "datasets": ["yatharth97/10k_reports_gemma"], "widget": [{"messages": [{"role": "user", "content": "How does the brain work?"}]}], "inference": {"parameters": {"max_new_tokens": 200}}, "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged-in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license"}
yatharth97/yatharth-gemma-2b-it-10k
null
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "dataset:yatharth97/10k_reports_gemma", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T03:38:37+00:00
[]
[]
TAGS #transformers #safetensors #gemma #text-generation #conversational #dataset-yatharth97/10k_reports_gemma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# yatharth-gemma-2b-it-10k Model Card Reference Model Page: Gemma This model card pertains to the version of the Gemma model that has been fine-tuned on a dataset of 10K reports, specifically to enhance performance on tasks related to answering questions about these reports Authors: Yatharth Mahesh Sant ## Model Information Summary description and brief definition of inputs and outputs. ### Description The model presented here is an advanced adaptation of the Gemma 2B-IT, a member of the Gemma family of lightweight yet state-of-the-art models developed by Google. Leveraging the breakthrough research and technology that brought forth the Gemini models, our fine-tuned iteration specializes in parsing and understanding financial texts, particularly those found in 10-K reports. Dubbed the "yatharth-gemma-2B-it-10k" this model retains the text-to-text, decoder-only architecture of its progenitors, functioning optimally in English. What sets it apart is its refined focus on question-answering tasks specific to the intricate domain of 10-K reports — an invaluable resource for financial analysts, investors, and regulatory professionals seeking AI-driven insights. Preserving the open-weights philosophy of the original Gemma models, this variant has been instruction-tuned with a curated dataset of 10-K reports. It not only demonstrates an enhanced proficiency in generating accurate, context-aware responses to user queries but also maintains the flexibility and efficiency that allow deployment in various settings, from personal computers to cloud-based environments. The "yatharth-gemma-2B-it-10k" upholds the Gemma tradition of facilitating text generation tasks such as summarization and complex reasoning. Its unique optimization for financial reports exemplifies our commitment to pushing the boundaries of specialized AI, providing an unparalleled tool for dissecting and interpreting one of the business world's most information-dense documents. By marrying the accessibility of the Gemma models with the niche expertise required to navigate 10-K reports, we extend the frontiers of what's possible with AI, democratizing cutting-edge technology to empower financial analysis and decision-making. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to 'pip install -U transformers', then copy the snippet from the section that is relevant for your usecase. #### Fine-tuning the model You can find fine-tuning scripts and notebook under the 'examples/' directory of 'google/gemma-2b' repository. To adapt it to this model, simply change the model-id to 'yatharth97/yatharth-gemma-2b-it-10k'. In that repository, we provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset #### Running the model on a CPU As explained below, we recommend 'torch.bfloat16' as the default dtype. You can use a different precision if necessary. #### Running the model on a single / multi GPU <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in 'bfloat16' precision. You can use 'float16', which may be faster on certain hardware, indicating the 'torch_dtype' when loading the model. For convenience, the 'float16' revision of the repo contains a copy of the weights already converted to that precision. You can also use 'float32' if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to 'float32'). See examples below. * _Using 'torch.float16'_ * _Using 'torch.bfloat16'_ * _Upcasting to 'torch.float32'_ #### Quantized Versions through 'bitsandbytes' * _Using 8-bit precision (int8)_ * _Using 4-bit precision_ #### Other optimizations * _Flash Attention 2_ First make sure to install 'flash-attn' in your environment 'pip install flash-attn' ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: At this point, the prompt contains the following text: As you can see, each turn is preceded by a '<start_of_turn>' delimiter and then the role of the entity (either 'user', for content supplied by the user, or 'model' for LLM responses). Turns finish with the '<end_of_turn>' token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ### Inputs and outputs * Input: Text string, such as a question, a prompt, or a 10K document to be summarized. * Output: Generated English-language text in response to the input, such as an answer to a question, or a summary of uploaded 10K document. For summarization currently a separate model is being used. ## Model Data Data used for model training and how the data was processed. ### Training Dataset This model is fine tuned on the dataset: "yatharth97/10k_reports_gemma" which has a conversational based format allowing the user to ask questions about the uploaded 10K report
[ "# yatharth-gemma-2b-it-10k Model Card\n\nReference Model Page: Gemma\n\nThis model card pertains to the version of the Gemma model that has been fine-tuned on a dataset of 10K reports, specifically to enhance performance on tasks related to answering questions about these reports\n\n\nAuthors: Yatharth Mahesh Sant", "## Model Information\n\nSummary description and brief definition of inputs and outputs.", "### Description\n\nThe model presented here is an advanced adaptation of the Gemma 2B-IT, a member of the Gemma family of lightweight yet state-of-the-art models developed by Google. Leveraging the breakthrough research and technology that brought forth the Gemini models, our fine-tuned iteration specializes in parsing and understanding financial texts, particularly those found in 10-K reports.\n\nDubbed the \"yatharth-gemma-2B-it-10k\" this model retains the text-to-text, decoder-only architecture of its progenitors, functioning optimally in English. What sets it apart is its refined focus on question-answering tasks specific to the intricate domain of 10-K reports — an invaluable resource for financial analysts, investors, and regulatory professionals seeking AI-driven insights.\n\nPreserving the open-weights philosophy of the original Gemma models, this variant has been instruction-tuned with a curated dataset of 10-K reports. It not only demonstrates an enhanced proficiency in generating accurate, context-aware responses to user queries but also maintains the flexibility and efficiency that allow deployment in various settings, from personal computers to cloud-based environments.\n\nThe \"yatharth-gemma-2B-it-10k\" upholds the Gemma tradition of facilitating text generation tasks such as summarization and complex reasoning. Its unique optimization for financial reports exemplifies our commitment to pushing the boundaries of specialized AI, providing an unparalleled tool for dissecting and interpreting one of the business world's most information-dense documents.\n\nBy marrying the accessibility of the Gemma models with the niche expertise required to navigate 10-K reports, we extend the frontiers of what's possible with AI, democratizing cutting-edge technology to empower financial analysis and decision-making.", "### Usage\n\nBelow we share some code snippets on how to get quickly started with running the model. First make sure to 'pip install -U transformers', then copy the snippet from the section that is relevant for your usecase.", "#### Fine-tuning the model\n\nYou can find fine-tuning scripts and notebook under the 'examples/' directory of 'google/gemma-2b' repository. To adapt it to this model, simply change the model-id to 'yatharth97/yatharth-gemma-2b-it-10k'.\nIn that repository, we provide:\n\n* A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA\n* A script to perform SFT using FSDP on TPU devices\n* A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset", "#### Running the model on a CPU\n\nAs explained below, we recommend 'torch.bfloat16' as the default dtype. You can use a different precision if necessary.", "#### Running the model on a single / multi GPU\n\n\n\n\n<a name=\"precisions\"></a>", "#### Running the model on a GPU using different precisions\n\nThe native weights of this model were exported in 'bfloat16' precision. You can use 'float16', which may be faster on certain hardware, indicating the 'torch_dtype' when loading the model. For convenience, the 'float16' revision of the repo contains a copy of the weights already converted to that precision.\n\nYou can also use 'float32' if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to 'float32'). See examples below.\n\n* _Using 'torch.float16'_\n\n\n\n* _Using 'torch.bfloat16'_\n\n\n\n* _Upcasting to 'torch.float32'_", "#### Quantized Versions through 'bitsandbytes'\n\n* _Using 8-bit precision (int8)_\n\n\n\n* _Using 4-bit precision_", "#### Other optimizations\n\n* _Flash Attention 2_\n\nFirst make sure to install 'flash-attn' in your environment 'pip install flash-attn'", "### Chat Template\n\nThe instruction-tuned models use a chat template that must be adhered to for conversational use.\nThe easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.\n\nLet's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:\n\n\n\nAt this point, the prompt contains the following text:\n\n\n\nAs you can see, each turn is preceded by a '<start_of_turn>' delimiter and then the role of the entity\n(either 'user', for content supplied by the user, or 'model' for LLM responses). Turns finish with\nthe '<end_of_turn>' token.\n\nYou can follow this format to build the prompt manually, if you need to do it without the tokenizer's\nchat template.\n\nAfter the prompt is ready, generation can be performed like this:", "### Inputs and outputs\n\n* Input: Text string, such as a question, a prompt, or a 10K document to be\n summarized.\n* Output: Generated English-language text in response to the input, such\n as an answer to a question, or a summary of uploaded 10K document. For summarization currently a separate model is being used.", "## Model Data\n\nData used for model training and how the data was processed.", "### Training Dataset\n\nThis model is fine tuned on the dataset: \"yatharth97/10k_reports_gemma\" which has a conversational based format allowing the user to ask questions about the uploaded 10K report" ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #conversational #dataset-yatharth97/10k_reports_gemma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# yatharth-gemma-2b-it-10k Model Card\n\nReference Model Page: Gemma\n\nThis model card pertains to the version of the Gemma model that has been fine-tuned on a dataset of 10K reports, specifically to enhance performance on tasks related to answering questions about these reports\n\n\nAuthors: Yatharth Mahesh Sant", "## Model Information\n\nSummary description and brief definition of inputs and outputs.", "### Description\n\nThe model presented here is an advanced adaptation of the Gemma 2B-IT, a member of the Gemma family of lightweight yet state-of-the-art models developed by Google. Leveraging the breakthrough research and technology that brought forth the Gemini models, our fine-tuned iteration specializes in parsing and understanding financial texts, particularly those found in 10-K reports.\n\nDubbed the \"yatharth-gemma-2B-it-10k\" this model retains the text-to-text, decoder-only architecture of its progenitors, functioning optimally in English. What sets it apart is its refined focus on question-answering tasks specific to the intricate domain of 10-K reports — an invaluable resource for financial analysts, investors, and regulatory professionals seeking AI-driven insights.\n\nPreserving the open-weights philosophy of the original Gemma models, this variant has been instruction-tuned with a curated dataset of 10-K reports. It not only demonstrates an enhanced proficiency in generating accurate, context-aware responses to user queries but also maintains the flexibility and efficiency that allow deployment in various settings, from personal computers to cloud-based environments.\n\nThe \"yatharth-gemma-2B-it-10k\" upholds the Gemma tradition of facilitating text generation tasks such as summarization and complex reasoning. Its unique optimization for financial reports exemplifies our commitment to pushing the boundaries of specialized AI, providing an unparalleled tool for dissecting and interpreting one of the business world's most information-dense documents.\n\nBy marrying the accessibility of the Gemma models with the niche expertise required to navigate 10-K reports, we extend the frontiers of what's possible with AI, democratizing cutting-edge technology to empower financial analysis and decision-making.", "### Usage\n\nBelow we share some code snippets on how to get quickly started with running the model. First make sure to 'pip install -U transformers', then copy the snippet from the section that is relevant for your usecase.", "#### Fine-tuning the model\n\nYou can find fine-tuning scripts and notebook under the 'examples/' directory of 'google/gemma-2b' repository. To adapt it to this model, simply change the model-id to 'yatharth97/yatharth-gemma-2b-it-10k'.\nIn that repository, we provide:\n\n* A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA\n* A script to perform SFT using FSDP on TPU devices\n* A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset", "#### Running the model on a CPU\n\nAs explained below, we recommend 'torch.bfloat16' as the default dtype. You can use a different precision if necessary.", "#### Running the model on a single / multi GPU\n\n\n\n\n<a name=\"precisions\"></a>", "#### Running the model on a GPU using different precisions\n\nThe native weights of this model were exported in 'bfloat16' precision. You can use 'float16', which may be faster on certain hardware, indicating the 'torch_dtype' when loading the model. For convenience, the 'float16' revision of the repo contains a copy of the weights already converted to that precision.\n\nYou can also use 'float32' if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to 'float32'). See examples below.\n\n* _Using 'torch.float16'_\n\n\n\n* _Using 'torch.bfloat16'_\n\n\n\n* _Upcasting to 'torch.float32'_", "#### Quantized Versions through 'bitsandbytes'\n\n* _Using 8-bit precision (int8)_\n\n\n\n* _Using 4-bit precision_", "#### Other optimizations\n\n* _Flash Attention 2_\n\nFirst make sure to install 'flash-attn' in your environment 'pip install flash-attn'", "### Chat Template\n\nThe instruction-tuned models use a chat template that must be adhered to for conversational use.\nThe easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.\n\nLet's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:\n\n\n\nAt this point, the prompt contains the following text:\n\n\n\nAs you can see, each turn is preceded by a '<start_of_turn>' delimiter and then the role of the entity\n(either 'user', for content supplied by the user, or 'model' for LLM responses). Turns finish with\nthe '<end_of_turn>' token.\n\nYou can follow this format to build the prompt manually, if you need to do it without the tokenizer's\nchat template.\n\nAfter the prompt is ready, generation can be performed like this:", "### Inputs and outputs\n\n* Input: Text string, such as a question, a prompt, or a 10K document to be\n summarized.\n* Output: Generated English-language text in response to the input, such\n as an answer to a question, or a summary of uploaded 10K document. For summarization currently a separate model is being used.", "## Model Data\n\nData used for model training and how the data was processed.", "### Training Dataset\n\nThis model is fine tuned on the dataset: \"yatharth97/10k_reports_gemma\" which has a conversational based format allowing the user to ask questions about the uploaded 10K report" ]
null
transformers
# DavidAU/Eclectic-Maid-10B-Q6_K-GGUF This model was converted to GGUF format from [`ND911/Eclectic-Maid-10B`](https://huggingface.co/ND911/Eclectic-Maid-10B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ND911/Eclectic-Maid-10B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Eclectic-Maid-10B-Q6_K-GGUF --model eclectic-maid-10b.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Eclectic-Maid-10B-Q6_K-GGUF --model eclectic-maid-10b.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m eclectic-maid-10b.Q6_K.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo"], "base_model": []}
DavidAU/Eclectic-Maid-10B-Q6_K-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:39:05+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #endpoints_compatible #region-us
# DavidAU/Eclectic-Maid-10B-Q6_K-GGUF This model was converted to GGUF format from 'ND911/Eclectic-Maid-10B' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Eclectic-Maid-10B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Eclectic-Maid-10B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #endpoints_compatible #region-us \n", "# DavidAU/Eclectic-Maid-10B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Eclectic-Maid-10B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
reinforcement-learning
null
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="izaznov/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
izaznov/q-FrozenLake-v1-4x4-noSlippery
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
null
2024-04-12T03:40:53+00:00
[]
[]
TAGS #FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
# Q-Learning Agent playing1 FrozenLake-v1 This is a trained model of a Q-Learning agent playing FrozenLake-v1 . ## Usage
[ "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ "TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n", "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Textual inversion text2image fine-tuning - ChuRuaNho2001/textual_inversion_sweet_girl These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "creativeml-openrail-m", "library_name": "diffusers", "tags": ["stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers", "textual_inversion", "diffusers-training"], "base_model": "runwayml/stable-diffusion-v1-5", "inference": true}
ChuRuaNho2001/textual_inversion_sweet_girl
null
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "diffusers-training", "base_model:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-04-12T03:41:17+00:00
[]
[]
TAGS #diffusers #tensorboard #safetensors #stable-diffusion #stable-diffusion-diffusers #text-to-image #textual_inversion #diffusers-training #base_model-runwayml/stable-diffusion-v1-5 #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
# Textual inversion text2image fine-tuning - ChuRuaNho2001/textual_inversion_sweet_girl These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# Textual inversion text2image fine-tuning - ChuRuaNho2001/textual_inversion_sweet_girl\nThese are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #safetensors #stable-diffusion #stable-diffusion-diffusers #text-to-image #textual_inversion #diffusers-training #base_model-runwayml/stable-diffusion-v1-5 #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "# Textual inversion text2image fine-tuning - ChuRuaNho2001/textual_inversion_sweet_girl\nThese are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
null
transformers
# DavidAU/Mistralv0.2-StarlingLM-FrankenMaid-10.5B-Q6_K-GGUF This model was converted to GGUF format from [`ND911/Mistralv0.2-StarlingLM-FrankenMaid-10.5B`](https://huggingface.co/ND911/Mistralv0.2-StarlingLM-FrankenMaid-10.5B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ND911/Mistralv0.2-StarlingLM-FrankenMaid-10.5B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Mistralv0.2-StarlingLM-FrankenMaid-10.5B-Q6_K-GGUF --model mistralv0.2-starlinglm-frankenmaid-10.5b.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Mistralv0.2-StarlingLM-FrankenMaid-10.5B-Q6_K-GGUF --model mistralv0.2-starlinglm-frankenmaid-10.5b.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m mistralv0.2-starlinglm-frankenmaid-10.5b.Q6_K.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo"], "base_model": ["mistralai/Mistral-7B-Instruct-v0.2", "Nexusflow/Starling-LM-7B-beta"]}
DavidAU/Mistralv0.2-StarlingLM-FrankenMaid-10.5B-Q6_K-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:Nexusflow/Starling-LM-7B-beta", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:42:18+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-mistralai/Mistral-7B-Instruct-v0.2 #base_model-Nexusflow/Starling-LM-7B-beta #endpoints_compatible #region-us
# DavidAU/Mistralv0.2-StarlingLM-FrankenMaid-10.5B-Q6_K-GGUF This model was converted to GGUF format from 'ND911/Mistralv0.2-StarlingLM-FrankenMaid-10.5B' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Mistralv0.2-StarlingLM-FrankenMaid-10.5B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Mistralv0.2-StarlingLM-FrankenMaid-10.5B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-mistralai/Mistral-7B-Instruct-v0.2 #base_model-Nexusflow/Starling-LM-7B-beta #endpoints_compatible #region-us \n", "# DavidAU/Mistralv0.2-StarlingLM-FrankenMaid-10.5B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Mistralv0.2-StarlingLM-FrankenMaid-10.5B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
null
null
This research (paper) used datasets from 'The Open AI Dataset Project (AI-Hub, S. Korea)'. All data information can be accessed through 'AI-Hub (www.aihub.or.kr)
{"language": ["ko", "ja", "en"], "tags": ["TTS"]}
seastar105/pflow-encodec-ejk
null
[ "TTS", "ko", "ja", "en", "region:us" ]
null
2024-04-12T03:42:28+00:00
[]
[ "ko", "ja", "en" ]
TAGS #TTS #ko #ja #en #region-us
This research (paper) used datasets from 'The Open AI Dataset Project (AI-Hub, S. Korea)'. All data information can be accessed through 'AI-Hub (URL)
[]
[ "TAGS\n#TTS #ko #ja #en #region-us \n" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: KolaGang/privacy_sumsum type: alpaca dataset_prepared_path: val_set_size: 0.05 sequence_len: 8192 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false output_dir: ./out lisa_n_layers: 4 lisa_step_interval: 20 lisa_layers_attribute: model.layers wandb_project: mistral_law wandb_entity: wandb_watch: wandb_name: mistral_law wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 10 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true flash_attn_cross_entropy: false flash_attn_rms_norm: true flash_attn_fuse_qkv: false flash_attn_fuse_mlp: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` </details><br> # out This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 160 - total_eval_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4237 | 0.02 | 1 | 2.8640 | | 0.9506 | 0.26 | 13 | 1.5696 | | 0.5752 | 0.53 | 26 | 1.0073 | | 0.5111 | 0.79 | 39 | 0.9301 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.1.1 - Datasets 2.18.0 - Tokenizers 0.15.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "out", "results": []}]}
YoungPanda/Legal_Kola
null
[ "transformers", "pytorch", "mistral", "text-generation", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T03:42:43+00:00
[]
[]
TAGS #transformers #pytorch #mistral #text-generation #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<img src="URL alt="Built with Axolotl" width="200" height="32"/> See axolotl config axolotl version: '0.4.0' out === This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.9301 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-06 * train\_batch\_size: 10 * eval\_batch\_size: 10 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 8 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 160 * total\_eval\_batch\_size: 80 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_steps: 10 * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.40.0.dev0 * Pytorch 2.1.1 * Datasets 2.18.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 8\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 160\n* total\\_eval\\_batch\\_size: 80\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.1\n* Datasets 2.18.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #pytorch #mistral #text-generation #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 8\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 160\n* total\\_eval\\_batch\\_size: 80\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.1\n* Datasets 2.18.0\n* Tokenizers 0.15.0" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Equall's Saul LM trained on construction contracts. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["legal"]}
model-man/saul-finetuned-v1
null
[ "transformers", "safetensors", "legal", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:43:13+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #legal #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID Equall's Saul LM trained on construction contracts. ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID\n\n\nEquall's Saul LM trained on construction contracts.", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #legal #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID\n\n\nEquall's Saul LM trained on construction contracts.", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/sambanovasystems/SambaLingo-Hungarian-Chat <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.IQ3_XS.gguf) | IQ3_XS | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.IQ3_S.gguf) | IQ3_S | 3.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.Q3_K_S.gguf) | Q3_K_S | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.IQ3_M.gguf) | IQ3_M | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.Q3_K_M.gguf) | Q3_K_M | 3.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.Q3_K_L.gguf) | Q3_K_L | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.IQ4_XS.gguf) | IQ4_XS | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.Q4_K_S.gguf) | Q4_K_S | 4.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.Q4_K_M.gguf) | Q4_K_M | 4.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.Q5_K_S.gguf) | Q5_K_S | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.Q5_K_M.gguf) | Q5_K_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.Q6_K.gguf) | Q6_K | 5.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/SambaLingo-Hungarian-Chat-GGUF/resolve/main/SambaLingo-Hungarian-Chat.Q8_0.gguf) | Q8_0 | 7.5 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "llama2", "library_name": "transformers", "datasets": ["HuggingFaceH4/ultrachat_200k", "HuggingFaceH4/ultrafeedback_binarized", "HuggingFaceH4/cai-conversation-harmless"], "base_model": "sambanovasystems/SambaLingo-Hungarian-Chat", "quantized_by": "mradermacher"}
mradermacher/SambaLingo-Hungarian-Chat-GGUF
null
[ "transformers", "gguf", "en", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:HuggingFaceH4/ultrafeedback_binarized", "dataset:HuggingFaceH4/cai-conversation-harmless", "base_model:sambanovasystems/SambaLingo-Hungarian-Chat", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:44:37+00:00
[]
[ "en" ]
TAGS #transformers #gguf #en #dataset-HuggingFaceH4/ultrachat_200k #dataset-HuggingFaceH4/ultrafeedback_binarized #dataset-HuggingFaceH4/cai-conversation-harmless #base_model-sambanovasystems/SambaLingo-Hungarian-Chat #license-llama2 #endpoints_compatible #region-us
About ----- static quants of URL weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. Usage ----- If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files. Provided Quants --------------- (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): !URL And here are Artefact2's thoughts on the matter: URL FAQ / Model Request ------------------- See URL for some answers to questions you might have and/or if you want some other model quantized. Thanks ------ I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.
[]
[ "TAGS\n#transformers #gguf #en #dataset-HuggingFaceH4/ultrachat_200k #dataset-HuggingFaceH4/ultrafeedback_binarized #dataset-HuggingFaceH4/cai-conversation-harmless #base_model-sambanovasystems/SambaLingo-Hungarian-Chat #license-llama2 #endpoints_compatible #region-us \n" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
heyllm234/sc14
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:45:53+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
KaggleMasterX/mistral_1204
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:51:57+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# DavidAU/Mistral0.2-Merlinite-Franken-Sonya-10.5B-Q6_K-GGUF This model was converted to GGUF format from [`ND911/Mistral0.2-Merlinite-Franken-Sonya-10.5B`](https://huggingface.co/ND911/Mistral0.2-Merlinite-Franken-Sonya-10.5B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ND911/Mistral0.2-Merlinite-Franken-Sonya-10.5B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Mistral0.2-Merlinite-Franken-Sonya-10.5B-Q6_K-GGUF --model mistral0.2-merlinite-franken-sonya-10.5b.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Mistral0.2-Merlinite-Franken-Sonya-10.5B-Q6_K-GGUF --model mistral0.2-merlinite-franken-sonya-10.5b.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m mistral0.2-merlinite-franken-sonya-10.5b.Q6_K.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "llama-cpp", "gguf-my-repo"], "base_model": ["ND911/Franken-Merlinite-Maid"]}
DavidAU/Mistral0.2-Merlinite-Franken-Sonya-10.5B-Q6_K-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:ND911/Franken-Merlinite-Maid", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:52:14+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #llama-cpp #gguf-my-repo #base_model-ND911/Franken-Merlinite-Maid #endpoints_compatible #region-us
# DavidAU/Mistral0.2-Merlinite-Franken-Sonya-10.5B-Q6_K-GGUF This model was converted to GGUF format from 'ND911/Mistral0.2-Merlinite-Franken-Sonya-10.5B' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Mistral0.2-Merlinite-Franken-Sonya-10.5B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Mistral0.2-Merlinite-Franken-Sonya-10.5B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #llama-cpp #gguf-my-repo #base_model-ND911/Franken-Merlinite-Maid #endpoints_compatible #region-us \n", "# DavidAU/Mistral0.2-Merlinite-Franken-Sonya-10.5B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Mistral0.2-Merlinite-Franken-Sonya-10.5B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
text-generation
transformers
## Llamacpp Quantizations of SlimHercules-4.0-Mistral-7B-v0.2 Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2636">b2636</a> for quantization. Original model: https://huggingface.co/Locutusque/SlimHercules-4.0-Mistral-7B-v0.2 All quants made using imatrix option with dataset provided by Kalomaze [here](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384) ## Prompt format ``` <|im_start|>system {message}<|im_end|> <|im_start|>user {user message}<|im_end|> <|im_start|>call {function call message}<|im_end|> <|im_start|>function {function response message}<|im_end|> <|im_start|>assistant {assistant message}</s> ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [SlimHercules-4.0-Mistral-7B-v0.2-Q8_0.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-Q8_0.gguf) | Q8_0 | 7.69GB | Extremely high quality, generally unneeded but max available quant. | | [SlimHercules-4.0-Mistral-7B-v0.2-Q6_K.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-Q6_K.gguf) | Q6_K | 5.94GB | Very high quality, near perfect, *recommended*. | | [SlimHercules-4.0-Mistral-7B-v0.2-Q5_K_M.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-Q5_K_M.gguf) | Q5_K_M | 5.13GB | High quality, *recommended*. | | [SlimHercules-4.0-Mistral-7B-v0.2-Q5_K_S.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-Q5_K_S.gguf) | Q5_K_S | 4.99GB | High quality, *recommended*. | | [SlimHercules-4.0-Mistral-7B-v0.2-Q4_K_M.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-Q4_K_M.gguf) | Q4_K_M | 4.36GB | Good quality, uses about 4.83 bits per weight, *recommended*. | | [SlimHercules-4.0-Mistral-7B-v0.2-Q4_K_S.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-Q4_K_S.gguf) | Q4_K_S | 4.14GB | Slightly lower quality with more space savings, *recommended*. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ4_NL.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ4_NL.gguf) | IQ4_NL | 4.12GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ4_XS.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ4_XS.gguf) | IQ4_XS | 3.90GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [SlimHercules-4.0-Mistral-7B-v0.2-Q3_K_L.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-Q3_K_L.gguf) | Q3_K_L | 3.82GB | Lower quality but usable, good for low RAM availability. | | [SlimHercules-4.0-Mistral-7B-v0.2-Q3_K_M.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-Q3_K_M.gguf) | Q3_K_M | 3.51GB | Even lower quality. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ3_M.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ3_M.gguf) | IQ3_M | 3.28GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ3_S.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ3_S.gguf) | IQ3_S | 3.18GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. | | [SlimHercules-4.0-Mistral-7B-v0.2-Q3_K_S.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-Q3_K_S.gguf) | Q3_K_S | 3.16GB | Low quality, not recommended. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ3_XS.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ3_XS.gguf) | IQ3_XS | 3.01GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ3_XXS.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ3_XXS.gguf) | IQ3_XXS | 2.82GB | Lower quality, new method with decent performance, comparable to Q3 quants. | | [SlimHercules-4.0-Mistral-7B-v0.2-Q2_K.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-Q2_K.gguf) | Q2_K | 2.71GB | Very low quality but surprisingly usable. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ2_M.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ2_M.gguf) | IQ2_M | 2.50GB | Very low quality, uses SOTA techniques to also be surprisingly usable. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ2_S.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ2_S.gguf) | IQ2_S | 2.31GB | Very low quality, uses SOTA techniques to be usable. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ2_XS.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ2_XS.gguf) | IQ2_XS | 2.19GB | Very low quality, uses SOTA techniques to be usable. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ2_XXS.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ2_XXS.gguf) | IQ2_XXS | 1.99GB | Lower quality, uses SOTA techniques to be usable. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ1_M.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ1_M.gguf) | IQ1_M | 1.75GB | Extremely low quality, *not* recommended. | | [SlimHercules-4.0-Mistral-7B-v0.2-IQ1_S.gguf](https://huggingface.co/bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF/blob/main/SlimHercules-4.0-Mistral-7B-v0.2-IQ1_S.gguf) | IQ1_S | 1.61GB | Extremely low quality, *not* recommended. | ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["medical", "science", "biology", "chemistry", "not-for-all-audiences"], "datasets": ["Locutusque/hercules-v4.0"], "base_model": "alpindale/Mistral-7B-v0.2-hf", "quantized_by": "bartowski", "pipeline_tag": "text-generation"}
bartowski/SlimHercules-4.0-Mistral-7B-v0.2-GGUF
null
[ "transformers", "gguf", "medical", "science", "biology", "chemistry", "not-for-all-audiences", "text-generation", "en", "dataset:Locutusque/hercules-v4.0", "base_model:alpindale/Mistral-7B-v0.2-hf", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:52:15+00:00
[]
[ "en" ]
TAGS #transformers #gguf #medical #science #biology #chemistry #not-for-all-audiences #text-generation #en #dataset-Locutusque/hercules-v4.0 #base_model-alpindale/Mistral-7B-v0.2-hf #license-apache-2.0 #endpoints_compatible #region-us
Llamacpp Quantizations of SlimHercules-4.0-Mistral-7B-v0.2 ---------------------------------------------------------- Using <a href="URL release <a href="URL for quantization. Original model: URL All quants made using imatrix option with dataset provided by Kalomaze here Prompt format ------------- Download a file (not the whole branch) from below: -------------------------------------------------- Which file should I choose? --------------------------- A great write up with charts showing various performances is provided by Artefact2 here The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX\_K\_X', like Q5\_K\_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: URL feature matrix But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX\_X, like IQ3\_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. Want to support my work? Visit my ko-fi page here: URL
[]
[ "TAGS\n#transformers #gguf #medical #science #biology #chemistry #not-for-all-audiences #text-generation #en #dataset-Locutusque/hercules-v4.0 #base_model-alpindale/Mistral-7B-v0.2-hf #license-apache-2.0 #endpoints_compatible #region-us \n" ]
null
transformers
# DavidAU/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B-Q6_K-GGUF This model was converted to GGUF format from [`ND911/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B`](https://huggingface.co/ND911/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ND911/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B-Q6_K-GGUF --model mistralv0.2-erosumikav2-franken-sonya-10.5b.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B-Q6_K-GGUF --model mistralv0.2-erosumikav2-franken-sonya-10.5b.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m mistralv0.2-erosumikav2-franken-sonya-10.5b.Q6_K.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo"], "base_model": []}
DavidAU/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B-Q6_K-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:53:43+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #endpoints_compatible #region-us
# DavidAU/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B-Q6_K-GGUF This model was converted to GGUF format from 'ND911/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #endpoints_compatible #region-us \n", "# DavidAU/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Mistralv0.2-Erosumikav2-Franken-Sonya-10.5B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
text-generation
transformers
<p align="center"> </p> <p align="center"><a href="https://github.com/UT-LM/UT-LM">[🏠Homepage]</a> | <a href="https://github.com/UT-LM/UT-LM">[🤖 UniTest using UT-LM]</a></p> <hr> ### 1. Introduction of UT-LM-33B - **Repository:** [UT-LM/UT-LM](https://github.com/UT-LM/UT-LM) ### 2. Evaluation Results ### 3. License This code repository is licensed under the MIT License. The use of UT-LM models is subject to the Model License. UT-LM supports commercial use. ### 5. Contact If you have any questions, please raise an issue or contact us at [[email protected]].
{"license": "apache-2.0"}
Arain/UT-LM-33B
null
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T03:55:52+00:00
[]
[]
TAGS #transformers #pytorch #llama #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<p align="center"> </p> <p align="center"><a href="URL | <a href="URL UniTest using UT-LM]</a></p> <hr> ### 1. Introduction of UT-LM-33B - Repository: UT-LM/UT-LM ### 2. Evaluation Results ### 3. License This code repository is licensed under the MIT License. The use of UT-LM models is subject to the Model License. UT-LM supports commercial use. ### 5. Contact If you have any questions, please raise an issue or contact us at [cuizhe@URL].
[ "### 1. Introduction of UT-LM-33B\n\n\n- Repository: UT-LM/UT-LM", "### 2. Evaluation Results", "### 3. License\nThis code repository is licensed under the MIT License. \nThe use of UT-LM models is subject to the Model License. UT-LM supports commercial use.", "### 5. Contact\n\nIf you have any questions, please raise an issue or contact us at [cuizhe@URL]." ]
[ "TAGS\n#transformers #pytorch #llama #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### 1. Introduction of UT-LM-33B\n\n\n- Repository: UT-LM/UT-LM", "### 2. Evaluation Results", "### 3. License\nThis code repository is licensed under the MIT License. \nThe use of UT-LM models is subject to the Model License. UT-LM supports commercial use.", "### 5. Contact\n\nIf you have any questions, please raise an issue or contact us at [cuizhe@URL]." ]
null
transformers
# DavidAU/Franken-MistressMaid-10.5B-v2-Q6_K-GGUF This model was converted to GGUF format from [`ND911/Franken-MistressMaid-10.5B-v2`](https://huggingface.co/ND911/Franken-MistressMaid-10.5B-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ND911/Franken-MistressMaid-10.5B-v2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Franken-MistressMaid-10.5B-v2-Q6_K-GGUF --model franken-mistressmaid-10.5b-v2.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Franken-MistressMaid-10.5B-v2-Q6_K-GGUF --model franken-mistressmaid-10.5b-v2.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m franken-mistressmaid-10.5b-v2.Q6_K.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "llama-cpp", "gguf-my-repo"], "base_model": []}
DavidAU/Franken-MistressMaid-10.5B-v2-Q6_K-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "endpoints_compatible", "region:us" ]
null
2024-04-12T03:57:15+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #llama-cpp #gguf-my-repo #endpoints_compatible #region-us
# DavidAU/Franken-MistressMaid-10.5B-v2-Q6_K-GGUF This model was converted to GGUF format from 'ND911/Franken-MistressMaid-10.5B-v2' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Franken-MistressMaid-10.5B-v2-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Franken-MistressMaid-10.5B-v2' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #llama-cpp #gguf-my-repo #endpoints_compatible #region-us \n", "# DavidAU/Franken-MistressMaid-10.5B-v2-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Franken-MistressMaid-10.5B-v2' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
text-generation
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: NousResearch/Hermes-2-Pro-Mistral-7B - model: WizardLM/WizardMath-7B-V1.1 merge_method: slerp base_model: NousResearch/Hermes-2-Pro-Mistral-7B dtype: bfloat16 parameters: t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["NousResearch/Hermes-2-Pro-Mistral-7B", "WizardLM/WizardMath-7B-V1.1"]}
mergekit-community/mergekit-slerp-qzxjuip
null
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:NousResearch/Hermes-2-Pro-Mistral-7B", "base_model:WizardLM/WizardMath-7B-V1.1", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T03:59:22+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-NousResearch/Hermes-2-Pro-Mistral-7B #base_model-WizardLM/WizardMath-7B-V1.1 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# merge This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * NousResearch/Hermes-2-Pro-Mistral-7B * WizardLM/WizardMath-7B-V1.1 ### Configuration The following YAML configuration was used to produce this model:
[ "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* NousResearch/Hermes-2-Pro-Mistral-7B\n* WizardLM/WizardMath-7B-V1.1", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-NousResearch/Hermes-2-Pro-Mistral-7B #base_model-WizardLM/WizardMath-7B-V1.1 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* NousResearch/Hermes-2-Pro-Mistral-7B\n* WizardLM/WizardMath-7B-V1.1", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # models This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "cc-by-sa-4.0", "tags": ["generated_from_trainer"], "base_model": "klue/bert-base", "model-index": [{"name": "models", "results": []}]}
madsci/models
null
[ "transformers", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:klue/bert-base", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:00:21+00:00
[]
[]
TAGS #transformers #safetensors #bert #question-answering #generated_from_trainer #base_model-klue/bert-base #license-cc-by-sa-4.0 #endpoints_compatible #region-us
# models This model is a fine-tuned version of klue/bert-base on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# models\n\nThis model is a fine-tuned version of klue/bert-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #bert #question-answering #generated_from_trainer #base_model-klue/bert-base #license-cc-by-sa-4.0 #endpoints_compatible #region-us \n", "# models\n\nThis model is a fine-tuned version of klue/bert-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Uploaded model - **Developed by:** chatty123 - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "sft"], "base_model": "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"}
chatty123/mistral_rank8_invert
null
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:01:28+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Uploaded model - Developed by: chatty123 - License: apache-2.0 - Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: chatty123\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #pytorch #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: chatty123\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ayman56/mistral7b_finetuned_50_stackoverflow_test
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:02:12+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-to-image
diffusers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "diffusers"}
damian0815/sd2-finetuned-te-laion-pop-6144-ep05-gs05160
null
[ "diffusers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-04-12T04:02:23+00:00
[ "1910.09700" ]
[]
TAGS #diffusers #safetensors #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#diffusers #safetensors #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-to-image
null
<style> .title-container { display: flex; justify-content: center; align-items: center; height: 100vh; /* Adjust this value to position the title vertically */ } .title { font-size: 2.5em; text-align: center; color: #333; font-family: 'Helvetica Neue', sans-serif; text-transform: uppercase; letter-spacing: 0.1em; padding: 0.5em 0; background: transparent; } .title span { background: -webkit-linear-gradient(45deg, #7ed56f, #28b485); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .custom-table { table-layout: fixed; width: 100%; border-collapse: collapse; margin-top: 2em; } .custom-table td { width: 50%; vertical-align: top; padding: 10px; box-shadow: 0px 0px 0px 0px rgba(0, 0, 0, 0.15); } .custom-image-container { position: relative; width: 100%; margin-bottom: 0em; overflow: hidden; border-radius: 10px; transition: transform .7s; /* Smooth transition for the container */ } .custom-image-container:hover { transform: scale(1.05); /* Scale the container on hover */ } .custom-image { width: 100%; height: auto; object-fit: cover; border-radius: 10px; transition: transform .7s; margin-bottom: 0em; } .nsfw-filter { filter: blur(8px); /* Apply a blur effect */ transition: filter 0.3s ease; /* Smooth transition for the blur effect */ } .custom-image-container:hover .nsfw-filter { filter: none; /* Remove the blur effect on hover */ } .overlay { position: absolute; bottom: 0; left: 0; right: 0; color: white; width: 100%; height: 40%; display: flex; flex-direction: column; justify-content: center; align-items: center; font-size: 1vw; font-style: bold; text-align: center; opacity: 0; /* Keep the text fully opaque */ background: linear-gradient(0deg, rgba(0, 0, 0, 0.8) 60%, rgba(0, 0, 0, 0) 100%); transition: opacity .5s; } .custom-image-container:hover .overlay { opacity: 1; } .overlay-text { background: linear-gradient(45deg, #7ed56f, #28b485); -webkit-background-clip: text; color: transparent; text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7); .overlay-subtext { font-size: 0.75em; margin-top: 0.5em; font-style: italic; } .overlay, .overlay-subtext { text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.5); } </style> <h1 class="title"> <span>Animagine XL 3.1</span> </h1> <h1 class="title"> <span>ONNX Edition</span> </h1> <table class="custom-table"> <tr> <td> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/6365c8dbf31ef76df4042821/yq_5AWegnLsGyCYyqJ-1G.png" alt="sample1"> </div> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/6365c8dbf31ef76df4042821/sp6w1elvXVTbckkU74v3o.png" alt="sample4"> </div> </td> <td> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/6365c8dbf31ef76df4042821/OYBuX1XzffN7Pxi4c75JV.png" alt="sample2"> </div> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/6365c8dbf31ef76df4042821/ytT3Oaf-atbqrnPIqz_dq.png" alt="sample3"> </td> <td> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/6365c8dbf31ef76df4042821/0oRq204okFxRGECmrIK6d.png" alt="sample1"> </div> <div class="custom-image-container"> <img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/6365c8dbf31ef76df4042821/DW51m0HlDuAlXwu8H8bIS.png" alt="sample4"> </div> </td> </tr> </table> **Animagine XL 3.1** is an update in the Animagine XL V3 series, enhancing the previous version, Animagine XL 3.0. This open-source, anime-themed text-to-image model has been improved for generating anime-style images with higher quality. It includes a broader range of characters from well-known anime series, an optimized dataset, and new aesthetic tags for better image creation. Built on Stable Diffusion XL, Animagine XL 3.1 aims to be a valuable resource for anime fans, artists, and content creators by producing accurate and detailed representations of anime characters. **What is the difference between [cagliostrolab/animagine-xl-3.1](https://huggingface.co/cagliostrolab/animagine-xl-3.1) and this repo?** This repo is contains ONNX checkpoints version of the model. ## Model Details - **Developed by**: [Cagliostro Research Lab](https://huggingface.co/cagliostrolab) - **In collaboration with**: [SeaArt.ai](https://www.seaart.ai/) - **Model type**: Diffusion-based text-to-image generative model - **Model Description**: Animagine XL 3.1 generates high-quality anime images from textual prompts. It boasts enhanced hand anatomy, improved concept understanding, and advanced prompt interpretation. - **License**: [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) - **Fine-tuned from**: [Animagine XL 3.0](https://huggingface.co/cagliostrolab/animagine-xl-3.0) ## Jupyter Notebooks **Note**: Both Colab and Sagemaker Studio Lab does not have enough VRAM or RAM to run the inference. Open the demo in Kaggle: [![Open In Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/code/ecyht2/animagine-xl-onnx-demo) Open the demo in Google Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/#fileId=https%3A//storage.googleapis.com/kaggle-colab-exported-notebooks/animagine-xl-onnx-demo-d5438574-4c5e-4a6b-8a1b-46c111a13e4d.ipynb%3FX-Goog-Algorithm%3DGOOG4-RSA-SHA256%26X-Goog-Credential%3Dgcp-kaggle-com%2540kaggle-161607.iam.gserviceaccount.com/20240413/auto/storage/goog4_request%26X-Goog-Date%3D20240413T140328Z%26X-Goog-Expires%3D259200%26X-Goog-SignedHeaders%3Dhost%26X-Goog-Signature%3D6262d18ddace3586153ef4f84b7b5486a7f868e3f2e32732510f4c3f0f470f1b544a6c7a9d839dac3ed9e9697bf8f0830821c30df76d66d06ac779554c30b814629b4d077acdb278e610b887c5ea443e2dd362fb52f796da876ffba8fc9de9e720aab0e1833cfb7dca9cc557c282a7aef8a2f21b174351cfb9a79ae0dd1b9ac24fca9d7854d4e45929fe31c861ee9a017d4dc9d859420493d897ff7ecb44b703013df1f7dd2699bb735ec5e2fd4838b12cd77ce68474772508f1e025b1e0037aea29fe0e9d79e1fb9d531933fc1c75c57d00f3d0cf3eb15851b7704be53116511d420d73e0d24e7d74f8f7df59a52c2614bd6cc915d2250c7b64e714dab6f8d5) ## 🧨 Diffusers Installation ### CPU Inference First install the required libraries: ```bash pip install iffusers "optimum[onnxruntime]" --upgrade ``` Then run image generation with the following example code: ```python from optimum.onnxruntime import ORTStableDiffusionXLPipeline base = "ecyht2/animagine-xl-3.1-onnx" pipe = ORTStableDiffusionXLPipeline.from_pretrained(base) pipe.to("cpu") prompt = "1girl, souryuu asuka langley, neon genesis evangelion, solo, upper body, v, smile, looking at viewer, outdoors, night" negative_prompt = "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]" image = pipe( prompt, negative_prompt=negative_prompt, width=832, height=1216, guidance_scale=7, num_inference_steps=28 ).images[0] image.save("./output/asuka_test.png") ``` ### GPU Inference First install the required libraries: ```bash pip install iffusers "optimum[onnxruntime-gpu]" --upgrade ``` Then run image generation with the following example code: ```python from optimum.onnxruntime import ORTStableDiffusionXLPipeline base = "ecyht2/animagine-xl-3.1-onnx" pipe = ORTStableDiffusionXLPipeline.from_pretrained(base) pipe.to("cuda") prompt = "1girl, souryuu asuka langley, neon genesis evangelion, solo, upper body, v, smile, looking at viewer, outdoors, night" negative_prompt = "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]" image = pipe( prompt, negative_prompt=negative_prompt, width=832, height=1216, guidance_scale=7, num_inference_steps=28 ).images[0] image.save("./output/asuka_test.png") ``` ## Usage Guidelines ### Tag Ordering For optimal results, it's recommended to follow the structured prompt template because we train the model like this: ``` 1girl/1boy, character name, from what series, everything else in any order. ``` ## Special Tags Animagine XL 3.1 utilizes special tags to steer the result toward quality, rating, creation date and aesthetic. While the model can generate images without these tags, using them can help achieve better results. ### Quality Modifiers Quality tags now consider both scores and post ratings to ensure a balanced quality distribution. We've refined labels for greater clarity, such as changing 'high quality' to 'great quality'. | Quality Modifier | Score Criterion | |------------------|-------------------| | `masterpiece` | > 95% | | `best quality` | > 85% & ≤ 95% | | `great quality` | > 75% & ≤ 85% | | `good quality` | > 50% & ≤ 75% | | `normal quality` | > 25% & ≤ 50% | | `low quality` | > 10% & ≤ 25% | | `worst quality` | ≤ 10% | ### Rating Modifiers We've also streamlined our rating tags for simplicity and clarity, aiming to establish global rules that can be applied across different models. For example, the tag 'rating: general' is now simply 'general', and 'rating: sensitive' has been condensed to 'sensitive'. | Rating Modifier | Rating Criterion | |-------------------|------------------| | `safe` | General | | `sensitive` | Sensitive | | `nsfw` | Questionable | | `explicit, nsfw` | Explicit | ### Year Modifier We've also redefined the year range to steer results towards specific modern or vintage anime art styles more accurately. This update simplifies the range, focusing on relevance to current and past eras. | Year Tag | Year Range | |----------|------------------| | `newest` | 2021 to 2024 | | `recent` | 2018 to 2020 | | `mid` | 2015 to 2017 | | `early` | 2011 to 2014 | | `oldest` | 2005 to 2010 | ### Aesthetic Tags We've enhanced our tagging system with aesthetic tags to refine content categorization based on visual appeal. These tags are derived from evaluations made by a specialized ViT (Vision Transformer) image classification model, specifically trained on anime data. For this purpose, we utilized the model [shadowlilac/aesthetic-shadow-v2](https://huggingface.co/shadowlilac/aesthetic-shadow-v2), which assesses the aesthetic value of content before it undergoes training. This ensures that each piece of content is not only relevant and accurate but also visually appealing. | Aesthetic Tag | Score Range | |-------------------|-------------------| | `very aesthetic` | > 0.71 | | `aesthetic` | > 0.45 & < 0.71 | | `displeasing` | > 0.27 & < 0.45 | | `very displeasing`| ≤ 0.27 | ## Recommended settings To guide the model towards generating high-aesthetic images, use negative prompts like: ``` nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract] ``` For higher quality outcomes, prepend prompts with: ``` masterpiece, best quality, very aesthetic, absurdres ``` it’s recommended to use a lower classifier-free guidance (CFG Scale) of around 5-7, sampling steps below 30, and to use Euler Ancestral (Euler a) as a sampler. ### Multi Aspect Resolution This model supports generating images at the following dimensions: | Dimensions | Aspect Ratio | |-------------------|-----------------| | `1024 x 1024` | 1:1 Square | | `1152 x 896` | 9:7 | | `896 x 1152` | 7:9 | | `1216 x 832` | 19:13 | | `832 x 1216` | 13:19 | | `1344 x 768` | 7:4 Horizontal | | `768 x 1344` | 4:7 Vertical | | `1536 x 640` | 12:5 Horizontal | | `640 x 1536` | 5:12 Vertical | ## Training and Hyperparameters **Animagine XL 3.1** was trained on 2x A100 80GB GPUs for approximately 15 days, totaling over 350 GPU hours. The training process consisted of three stages: - **Pretraining**: Utilized a data-rich collection of 870k ordered and tagged images to increase Animagine XL 3.0's model knowledge. - **Finetuning - First Stage**: Employed labeled and curated aesthetic datasets to refine the broken U-Net after pretraining. - **Finetuning - Second Stage**: Utilized labeled and curated aesthetic datasets to refine the model's art style and improve hand and anatomy rendering. ### Hyperparameters | Stage | Epochs | UNet lr | Train Text Encoder | Batch Size | Noise Offset | Optimizer | LR Scheduler | Grad Acc Steps | GPUs | |--------------------------|--------|---------|--------------------|------------|--------------|------------|-------------------------------|----------------|------| | **Pretraining** | 10 | 1e-5 | True | 16 | N/A | AdamW | Cosine Annealing Warm Restart | 3 | 2 | | **Finetuning 1st Stage** | 10 | 2e-6 | False | 48 | 0.0357 | Adafactor | Constant with Warmup | 1 | 1 | | **Finetuning 2nd Stage** | 15 | 1e-6 | False | 48 | 0.0357 | Adafactor | Constant with Warmup | 1 | 1 | ## Model Comparison (Pretraining only) ### Training Config | Configuration Item | Animagine XL 3.0 | Animagine XL 3.1 | |---------------------------------|------------------------------------------|------------------------------------------------| | **GPU** | 2 x A100 80G | 2 x A100 80G | | **Dataset** | 1,271,990 | 873,504 | | **Shuffle Separator** | True | True | | **Num Epochs** | 10 | 10 | | **Learning Rate** | 7.5e-6 | 1e-5 | | **Text Encoder Learning Rate** | 3.75e-6 | 1e-5 | | **Effective Batch Size** | 48 x 1 x 2 | 16 x 3 x 2 | | **Optimizer** | Adafactor | AdamW | | **Optimizer Args** | Scale Parameter: False, Relative Step: False, Warmup Init: False | Weight Decay: 0.1, Betas: (0.9, 0.99) | | **LR Scheduler** | Constant with Warmup | Cosine Annealing Warm Restart | | **LR Scheduler Args** | Warmup Steps: 100 | Num Cycles: 10, Min LR: 1e-6, LR Decay: 0.9, First Cycle Steps: 9,099 | Source code and training config are available here: https://github.com/cagliostrolab/sd-scripts/tree/main/notebook ### Acknowledgements The development and release of Animagine XL 3.1 would not have been possible without the invaluable contributions and support from the following individuals and organizations: - **[SeaArt.ai](https://www.seaart.ai/)**: Our collaboration partner and sponsor. - **[Shadow Lilac](https://huggingface.co/shadowlilac)**: For providing the aesthetic classification model, [aesthetic-shadow-v2](https://huggingface.co/shadowlilac/aesthetic-shadow-v2). - **[Derrian Distro](https://github.com/derrian-distro)**: For their custom learning rate scheduler, adapted from [LoRA Easy Training Scripts](https://github.com/derrian-distro/LoRA_Easy_Training_Scripts/blob/main/custom_scheduler/LoraEasyCustomOptimizer/CustomOptimizers.py). - **[Kohya SS](https://github.com/kohya-ss)**: For their comprehensive training scripts. - **Cagliostrolab Collaborators**: For their dedication to model training, project management, and data curation. - **Early Testers**: For their valuable feedback and quality assurance efforts. - **NovelAI**: For their innovative approach to aesthetic tagging, which served as an inspiration for our implementation. - **KBlueLeaf**: For providing inspiration in balancing quality tags distribution and managing tags based on [Hakubooru Metainfo](https://github.com/KohakuBlueleaf/HakuBooru/blob/main/hakubooru/metainfo.py) Thank you all for your support and expertise in pushing the boundaries of anime-style image generation. ## Collaborators - [Linaqruf](https://huggingface.co/Linaqruf) - [ItsMeBell](https://huggingface.co/ItsMeBell) - [Asahina2K](https://huggingface.co/Asahina2K) - [DamarJati](https://huggingface.co/DamarJati) - [Zwicky18](https://huggingface.co/Zwicky18) - [Scipius2121](https://huggingface.co/Scipius2121) - [Raelina](https://huggingface.co/Raelina) - [Kayfahaarukku](https://huggingface.co/kayfahaarukku) - [Kriz](https://huggingface.co/Kr1SsSzz) ## Limitations While Animagine XL 3.1 represents a significant advancement in anime-style image generation, it is important to acknowledge its limitations: 1. **Anime-Focused**: This model is specifically designed for generating anime-style images and is not suitable for creating realistic photos. 2. **Prompt Complexity**: This model may not be suitable for users who expect high-quality results from short or simple prompts. The training focus was on concept understanding rather than aesthetic refinement, which may require more detailed and specific prompts to achieve the desired output. 3. **Prompt Format**: Animagine XL 3.1 is optimized for Danbooru-style tags rather than natural language prompts. For best results, users are encouraged to format their prompts using the appropriate tags and syntax. 4. **Anatomy and Hand Rendering**: Despite the improvements made in anatomy and hand rendering, there may still be instances where the model produces suboptimal results in these areas. 5. **Dataset Size**: The dataset used for training Animagine XL 3.1 consists of approximately 870,000 images. When combined with the previous iteration's dataset (1.2 million), the total training data amounts to around 2.1 million images. While substantial, this dataset size may still be considered limited in scope for an "ultimate" anime model. 6. **NSFW Content**: Animagine XL 3.1 has been designed to generate more balanced NSFW content. However, it is important to note that the model may still produce NSFW results, even if not explicitly prompted. By acknowledging these limitations, we aim to provide transparency and set realistic expectations for users of Animagine XL 3.1. Despite these constraints, we believe that the model represents a significant step forward in anime-style image generation and offers a powerful tool for artists, designers, and enthusiasts alike. ## License Based on Animagine XL 3.0, Animagine XL 3.1 falls under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) license, which is compatible with Stable Diffusion models’ license. Key points: 1. **Modification Sharing:** If you modify Animagine XL 3.1, you must share both your changes and the original license. 2. **Source Code Accessibility:** If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too. 3. **Distribution Terms:** Any distribution must be under this license or another with similar rules. 4. **Compliance:** Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values. The choice of this license aims to keep Animagine XL 3.1 open and modifiable, aligning with open source community spirit. It protects contributors and users, encouraging a collaborative, ethical open-source community. This ensures the model not only benefits from communal input but also respects open-source development freedoms. ## Cagliostro Lab Discord Server Finally Cagliostro Lab Server open to public https://discord.gg/cqh9tZgbGc Feel free to join our discord server
{"language": ["en"], "license": "other", "tags": ["text-to-image", "stable-diffusion", "stable-diffusion-xl"], "license_name": "faipl-1.0-sd", "license_link": "https://freedevproject.org/faipl-1.0-sd/", "base_model": "cagliostrolab/animagine-xl-3.0", "widget": [{"text": "1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck, masterpiece, best quality, very aesthetic, absurdes", "parameter": {"negative_prompt": "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"}, "example_title": "1girl"}, {"text": "1boy, male focus, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck, masterpiece, best quality, very aesthetic, absurdes", "parameter": {"negative_prompt": "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"}, "example_title": "1boy"}], "pipeline_tag": "text-to-image"}
ecyht2/animagine-xl-3.1-onnx
null
[ "onnx", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "en", "base_model:cagliostrolab/animagine-xl-3.0", "license:other", "region:us" ]
null
2024-04-12T04:04:05+00:00
[]
[ "en" ]
TAGS #onnx #text-to-image #stable-diffusion #stable-diffusion-xl #en #base_model-cagliostrolab/animagine-xl-3.0 #license-other #region-us
.title-container { display: flex; justify-content: center; align-items: center; height: 100vh; /\* Adjust this value to position the title vertically \*/ } .title { font-size: 2.5em; text-align: center; color: #333; font-family: 'Helvetica Neue', sans-serif; text-transform: uppercase; letter-spacing: 0.1em; padding: 0.5em 0; background: transparent; } .title span { background: -webkit-linear-gradient(45deg, #7ed56f, #28b485); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .custom-table { table-layout: fixed; width: 100%; border-collapse: collapse; margin-top: 2em; } .custom-table td { width: 50%; vertical-align: top; padding: 10px; box-shadow: 0px 0px 0px 0px rgba(0, 0, 0, 0.15); } .custom-image-container { position: relative; width: 100%; margin-bottom: 0em; overflow: hidden; border-radius: 10px; transition: transform .7s; /\* Smooth transition for the container \*/ } .custom-image-container:hover { transform: scale(1.05); /\* Scale the container on hover \*/ } .custom-image { width: 100%; height: auto; object-fit: cover; border-radius: 10px; transition: transform .7s; margin-bottom: 0em; } .nsfw-filter { filter: blur(8px); /\* Apply a blur effect \*/ transition: filter 0.3s ease; /\* Smooth transition for the blur effect \*/ } .custom-image-container:hover .nsfw-filter { filter: none; /\* Remove the blur effect on hover \*/ } .overlay { position: absolute; bottom: 0; left: 0; right: 0; color: white; width: 100%; height: 40%; display: flex; flex-direction: column; justify-content: center; align-items: center; font-size: 1vw; font-style: bold; text-align: center; opacity: 0; /\* Keep the text fully opaque \*/ background: linear-gradient(0deg, rgba(0, 0, 0, 0.8) 60%, rgba(0, 0, 0, 0) 100%); transition: opacity .5s; } .custom-image-container:hover .overlay { opacity: 1; } .overlay-text { background: linear-gradient(45deg, #7ed56f, #28b485); -webkit-background-clip: text; color: transparent; text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7); .overlay-subtext { font-size: 0.75em; margin-top: 0.5em; font-style: italic; } .overlay, .overlay-subtext { text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.5); } Animagine XL 3.1 ================= ONNX Edition ============= | | | | | --- | --- | --- | | | | | Animagine XL 3.1 is an update in the Animagine XL V3 series, enhancing the previous version, Animagine XL 3.0. This open-source, anime-themed text-to-image model has been improved for generating anime-style images with higher quality. It includes a broader range of characters from well-known anime series, an optimized dataset, and new aesthetic tags for better image creation. Built on Stable Diffusion XL, Animagine XL 3.1 aims to be a valuable resource for anime fans, artists, and content creators by producing accurate and detailed representations of anime characters. What is the difference between cagliostrolab/animagine-xl-3.1 and this repo? This repo is contains ONNX checkpoints version of the model. Model Details ------------- * Developed by: Cagliostro Research Lab * In collaboration with: URL * Model type: Diffusion-based text-to-image generative model * Model Description: Animagine XL 3.1 generates high-quality anime images from textual prompts. It boasts enhanced hand anatomy, improved concept understanding, and advanced prompt interpretation. * License: Fair AI Public License 1.0-SD * Fine-tuned from: Animagine XL 3.0 Jupyter Notebooks ----------------- Note: Both Colab and Sagemaker Studio Lab does not have enough VRAM or RAM to run the inference. Open the demo in Kaggle: ![Open In Kaggle](URL Open the demo in Google Colab: ![Open In Colab](URL/URL Diffusers Installation ---------------------- ### CPU Inference First install the required libraries: Then run image generation with the following example code: ### GPU Inference First install the required libraries: Then run image generation with the following example code: Usage Guidelines ---------------- ### Tag Ordering For optimal results, it's recommended to follow the structured prompt template because we train the model like this: Special Tags ------------ Animagine XL 3.1 utilizes special tags to steer the result toward quality, rating, creation date and aesthetic. While the model can generate images without these tags, using them can help achieve better results. ### Quality Modifiers Quality tags now consider both scores and post ratings to ensure a balanced quality distribution. We've refined labels for greater clarity, such as changing 'high quality' to 'great quality'. ### Rating Modifiers We've also streamlined our rating tags for simplicity and clarity, aiming to establish global rules that can be applied across different models. For example, the tag 'rating: general' is now simply 'general', and 'rating: sensitive' has been condensed to 'sensitive'. ### Year Modifier We've also redefined the year range to steer results towards specific modern or vintage anime art styles more accurately. This update simplifies the range, focusing on relevance to current and past eras. ### Aesthetic Tags We've enhanced our tagging system with aesthetic tags to refine content categorization based on visual appeal. These tags are derived from evaluations made by a specialized ViT (Vision Transformer) image classification model, specifically trained on anime data. For this purpose, we utilized the model shadowlilac/aesthetic-shadow-v2, which assesses the aesthetic value of content before it undergoes training. This ensures that each piece of content is not only relevant and accurate but also visually appealing. Recommended settings -------------------- To guide the model towards generating high-aesthetic images, use negative prompts like: For higher quality outcomes, prepend prompts with: it’s recommended to use a lower classifier-free guidance (CFG Scale) of around 5-7, sampling steps below 30, and to use Euler Ancestral (Euler a) as a sampler. ### Multi Aspect Resolution This model supports generating images at the following dimensions: Training and Hyperparameters ---------------------------- Animagine XL 3.1 was trained on 2x A100 80GB GPUs for approximately 15 days, totaling over 350 GPU hours. The training process consisted of three stages: * Pretraining: Utilized a data-rich collection of 870k ordered and tagged images to increase Animagine XL 3.0's model knowledge. * Finetuning - First Stage: Employed labeled and curated aesthetic datasets to refine the broken U-Net after pretraining. * Finetuning - Second Stage: Utilized labeled and curated aesthetic datasets to refine the model's art style and improve hand and anatomy rendering. ### Hyperparameters Model Comparison (Pretraining only) ----------------------------------- ### Training Config Configuration Item: GPU, Animagine XL 3.0: 2 x A100 80G, Animagine XL 3.1: 2 x A100 80G Configuration Item: Dataset, Animagine XL 3.0: 1,271,990, Animagine XL 3.1: 873,504 Configuration Item: Shuffle Separator, Animagine XL 3.0: True, Animagine XL 3.1: True Configuration Item: Num Epochs, Animagine XL 3.0: 10, Animagine XL 3.1: 10 Configuration Item: Learning Rate, Animagine XL 3.0: 7.5e-6, Animagine XL 3.1: 1e-5 Configuration Item: Text Encoder Learning Rate, Animagine XL 3.0: 3.75e-6, Animagine XL 3.1: 1e-5 Configuration Item: Effective Batch Size, Animagine XL 3.0: 48 x 1 x 2, Animagine XL 3.1: 16 x 3 x 2 Configuration Item: Optimizer, Animagine XL 3.0: Adafactor, Animagine XL 3.1: AdamW Configuration Item: Optimizer Args, Animagine XL 3.0: Scale Parameter: False, Relative Step: False, Warmup Init: False, Animagine XL 3.1: Weight Decay: 0.1, Betas: (0.9, 0.99) Configuration Item: LR Scheduler, Animagine XL 3.0: Constant with Warmup, Animagine XL 3.1: Cosine Annealing Warm Restart Configuration Item: LR Scheduler Args, Animagine XL 3.0: Warmup Steps: 100, Animagine XL 3.1: Num Cycles: 10, Min LR: 1e-6, LR Decay: 0.9, First Cycle Steps: 9,099 Source code and training config are available here: URL ### Acknowledgements The development and release of Animagine XL 3.1 would not have been possible without the invaluable contributions and support from the following individuals and organizations: * URL: Our collaboration partner and sponsor. * Shadow Lilac: For providing the aesthetic classification model, aesthetic-shadow-v2. * Derrian Distro: For their custom learning rate scheduler, adapted from LoRA Easy Training Scripts. * Kohya SS: For their comprehensive training scripts. * Cagliostrolab Collaborators: For their dedication to model training, project management, and data curation. * Early Testers: For their valuable feedback and quality assurance efforts. * NovelAI: For their innovative approach to aesthetic tagging, which served as an inspiration for our implementation. * KBlueLeaf: For providing inspiration in balancing quality tags distribution and managing tags based on Hakubooru Metainfo Thank you all for your support and expertise in pushing the boundaries of anime-style image generation. Collaborators ------------- * Linaqruf * ItsMeBell * Asahina2K * DamarJati * Zwicky18 * Scipius2121 * Raelina * Kayfahaarukku * Kriz Limitations ----------- While Animagine XL 3.1 represents a significant advancement in anime-style image generation, it is important to acknowledge its limitations: 1. Anime-Focused: This model is specifically designed for generating anime-style images and is not suitable for creating realistic photos. 2. Prompt Complexity: This model may not be suitable for users who expect high-quality results from short or simple prompts. The training focus was on concept understanding rather than aesthetic refinement, which may require more detailed and specific prompts to achieve the desired output. 3. Prompt Format: Animagine XL 3.1 is optimized for Danbooru-style tags rather than natural language prompts. For best results, users are encouraged to format their prompts using the appropriate tags and syntax. 4. Anatomy and Hand Rendering: Despite the improvements made in anatomy and hand rendering, there may still be instances where the model produces suboptimal results in these areas. 5. Dataset Size: The dataset used for training Animagine XL 3.1 consists of approximately 870,000 images. When combined with the previous iteration's dataset (1.2 million), the total training data amounts to around 2.1 million images. While substantial, this dataset size may still be considered limited in scope for an "ultimate" anime model. 6. NSFW Content: Animagine XL 3.1 has been designed to generate more balanced NSFW content. However, it is important to note that the model may still produce NSFW results, even if not explicitly prompted. By acknowledging these limitations, we aim to provide transparency and set realistic expectations for users of Animagine XL 3.1. Despite these constraints, we believe that the model represents a significant step forward in anime-style image generation and offers a powerful tool for artists, designers, and enthusiasts alike. License ------- Based on Animagine XL 3.0, Animagine XL 3.1 falls under Fair AI Public License 1.0-SD license, which is compatible with Stable Diffusion models’ license. Key points: 1. Modification Sharing: If you modify Animagine XL 3.1, you must share both your changes and the original license. 2. Source Code Accessibility: If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too. 3. Distribution Terms: Any distribution must be under this license or another with similar rules. 4. Compliance: Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values. The choice of this license aims to keep Animagine XL 3.1 open and modifiable, aligning with open source community spirit. It protects contributors and users, encouraging a collaborative, ethical open-source community. This ensures the model not only benefits from communal input but also respects open-source development freedoms. Cagliostro Lab Discord Server ----------------------------- Finally Cagliostro Lab Server open to public URL Feel free to join our discord server
[ "### CPU Inference\n\n\nFirst install the required libraries:\n\n\nThen run image generation with the following example code:", "### GPU Inference\n\n\nFirst install the required libraries:\n\n\nThen run image generation with the following example code:\n\n\nUsage Guidelines\n----------------", "### Tag Ordering\n\n\nFor optimal results, it's recommended to follow the structured prompt template because we train the model like this:\n\n\nSpecial Tags\n------------\n\n\nAnimagine XL 3.1 utilizes special tags to steer the result toward quality, rating, creation date and aesthetic. While the model can generate images without these tags, using them can help achieve better results.", "### Quality Modifiers\n\n\nQuality tags now consider both scores and post ratings to ensure a balanced quality distribution. We've refined labels for greater clarity, such as changing 'high quality' to 'great quality'.", "### Rating Modifiers\n\n\nWe've also streamlined our rating tags for simplicity and clarity, aiming to establish global rules that can be applied across different models. For example, the tag 'rating: general' is now simply 'general', and 'rating: sensitive' has been condensed to 'sensitive'.", "### Year Modifier\n\n\nWe've also redefined the year range to steer results towards specific modern or vintage anime art styles more accurately. This update simplifies the range, focusing on relevance to current and past eras.", "### Aesthetic Tags\n\n\nWe've enhanced our tagging system with aesthetic tags to refine content categorization based on visual appeal. These tags are derived from evaluations made by a specialized ViT (Vision Transformer) image classification model, specifically trained on anime data. For this purpose, we utilized the model shadowlilac/aesthetic-shadow-v2, which assesses the aesthetic value of content before it undergoes training. This ensures that each piece of content is not only relevant and accurate but also visually appealing.\n\n\n\nRecommended settings\n--------------------\n\n\nTo guide the model towards generating high-aesthetic images, use negative prompts like:\n\n\nFor higher quality outcomes, prepend prompts with:\n\n\nit’s recommended to use a lower classifier-free guidance (CFG Scale) of around 5-7, sampling steps below 30, and to use Euler Ancestral (Euler a) as a sampler.", "### Multi Aspect Resolution\n\n\nThis model supports generating images at the following dimensions:\n\n\n\nTraining and Hyperparameters\n----------------------------\n\n\nAnimagine XL 3.1 was trained on 2x A100 80GB GPUs for approximately 15 days, totaling over 350 GPU hours. The training process consisted of three stages:\n\n\n* Pretraining: Utilized a data-rich collection of 870k ordered and tagged images to increase Animagine XL 3.0's model knowledge.\n* Finetuning - First Stage: Employed labeled and curated aesthetic datasets to refine the broken U-Net after pretraining.\n* Finetuning - Second Stage: Utilized labeled and curated aesthetic datasets to refine the model's art style and improve hand and anatomy rendering.", "### Hyperparameters\n\n\n\nModel Comparison (Pretraining only)\n-----------------------------------", "### Training Config\n\n\nConfiguration Item: GPU, Animagine XL 3.0: 2 x A100 80G, Animagine XL 3.1: 2 x A100 80G\nConfiguration Item: Dataset, Animagine XL 3.0: 1,271,990, Animagine XL 3.1: 873,504\nConfiguration Item: Shuffle Separator, Animagine XL 3.0: True, Animagine XL 3.1: True\nConfiguration Item: Num Epochs, Animagine XL 3.0: 10, Animagine XL 3.1: 10\nConfiguration Item: Learning Rate, Animagine XL 3.0: 7.5e-6, Animagine XL 3.1: 1e-5\nConfiguration Item: Text Encoder Learning Rate, Animagine XL 3.0: 3.75e-6, Animagine XL 3.1: 1e-5\nConfiguration Item: Effective Batch Size, Animagine XL 3.0: 48 x 1 x 2, Animagine XL 3.1: 16 x 3 x 2\nConfiguration Item: Optimizer, Animagine XL 3.0: Adafactor, Animagine XL 3.1: AdamW\nConfiguration Item: Optimizer Args, Animagine XL 3.0: Scale Parameter: False, Relative Step: False, Warmup Init: False, Animagine XL 3.1: Weight Decay: 0.1, Betas: (0.9, 0.99)\nConfiguration Item: LR Scheduler, Animagine XL 3.0: Constant with Warmup, Animagine XL 3.1: Cosine Annealing Warm Restart\nConfiguration Item: LR Scheduler Args, Animagine XL 3.0: Warmup Steps: 100, Animagine XL 3.1: Num Cycles: 10, Min LR: 1e-6, LR Decay: 0.9, First Cycle Steps: 9,099\n\n\nSource code and training config are available here: URL", "### Acknowledgements\n\n\nThe development and release of Animagine XL 3.1 would not have been possible without the invaluable contributions and support from the following individuals and organizations:\n\n\n* URL: Our collaboration partner and sponsor.\n* Shadow Lilac: For providing the aesthetic classification model, aesthetic-shadow-v2.\n* Derrian Distro: For their custom learning rate scheduler, adapted from LoRA Easy Training Scripts.\n* Kohya SS: For their comprehensive training scripts.\n* Cagliostrolab Collaborators: For their dedication to model training, project management, and data curation.\n* Early Testers: For their valuable feedback and quality assurance efforts.\n* NovelAI: For their innovative approach to aesthetic tagging, which served as an inspiration for our implementation.\n* KBlueLeaf: For providing inspiration in balancing quality tags distribution and managing tags based on Hakubooru Metainfo\n\n\nThank you all for your support and expertise in pushing the boundaries of anime-style image generation.\n\n\nCollaborators\n-------------\n\n\n* Linaqruf\n* ItsMeBell\n* Asahina2K\n* DamarJati\n* Zwicky18\n* Scipius2121\n* Raelina\n* Kayfahaarukku\n* Kriz\n\n\nLimitations\n-----------\n\n\nWhile Animagine XL 3.1 represents a significant advancement in anime-style image generation, it is important to acknowledge its limitations:\n\n\n1. Anime-Focused: This model is specifically designed for generating anime-style images and is not suitable for creating realistic photos.\n2. Prompt Complexity: This model may not be suitable for users who expect high-quality results from short or simple prompts. The training focus was on concept understanding rather than aesthetic refinement, which may require more detailed and specific prompts to achieve the desired output.\n3. Prompt Format: Animagine XL 3.1 is optimized for Danbooru-style tags rather than natural language prompts. For best results, users are encouraged to format their prompts using the appropriate tags and syntax.\n4. Anatomy and Hand Rendering: Despite the improvements made in anatomy and hand rendering, there may still be instances where the model produces suboptimal results in these areas.\n5. Dataset Size: The dataset used for training Animagine XL 3.1 consists of approximately 870,000 images. When combined with the previous iteration's dataset (1.2 million), the total training data amounts to around 2.1 million images. While substantial, this dataset size may still be considered limited in scope for an \"ultimate\" anime model.\n6. NSFW Content: Animagine XL 3.1 has been designed to generate more balanced NSFW content. However, it is important to note that the model may still produce NSFW results, even if not explicitly prompted.\n\n\nBy acknowledging these limitations, we aim to provide transparency and set realistic expectations for users of Animagine XL 3.1. Despite these constraints, we believe that the model represents a significant step forward in anime-style image generation and offers a powerful tool for artists, designers, and enthusiasts alike.\n\n\nLicense\n-------\n\n\nBased on Animagine XL 3.0, Animagine XL 3.1 falls under Fair AI Public License 1.0-SD license, which is compatible with Stable Diffusion models’ license. Key points:\n\n\n1. Modification Sharing: If you modify Animagine XL 3.1, you must share both your changes and the original license.\n2. Source Code Accessibility: If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.\n3. Distribution Terms: Any distribution must be under this license or another with similar rules.\n4. Compliance: Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.\n\n\nThe choice of this license aims to keep Animagine XL 3.1 open and modifiable, aligning with open source community spirit. It protects contributors and users, encouraging a collaborative, ethical open-source community. This ensures the model not only benefits from communal input but also respects open-source development freedoms.\n\n\nCagliostro Lab Discord Server\n-----------------------------\n\n\nFinally Cagliostro Lab Server open to public\nURL\n\n\nFeel free to join our discord server" ]
[ "TAGS\n#onnx #text-to-image #stable-diffusion #stable-diffusion-xl #en #base_model-cagliostrolab/animagine-xl-3.0 #license-other #region-us \n", "### CPU Inference\n\n\nFirst install the required libraries:\n\n\nThen run image generation with the following example code:", "### GPU Inference\n\n\nFirst install the required libraries:\n\n\nThen run image generation with the following example code:\n\n\nUsage Guidelines\n----------------", "### Tag Ordering\n\n\nFor optimal results, it's recommended to follow the structured prompt template because we train the model like this:\n\n\nSpecial Tags\n------------\n\n\nAnimagine XL 3.1 utilizes special tags to steer the result toward quality, rating, creation date and aesthetic. While the model can generate images without these tags, using them can help achieve better results.", "### Quality Modifiers\n\n\nQuality tags now consider both scores and post ratings to ensure a balanced quality distribution. We've refined labels for greater clarity, such as changing 'high quality' to 'great quality'.", "### Rating Modifiers\n\n\nWe've also streamlined our rating tags for simplicity and clarity, aiming to establish global rules that can be applied across different models. For example, the tag 'rating: general' is now simply 'general', and 'rating: sensitive' has been condensed to 'sensitive'.", "### Year Modifier\n\n\nWe've also redefined the year range to steer results towards specific modern or vintage anime art styles more accurately. This update simplifies the range, focusing on relevance to current and past eras.", "### Aesthetic Tags\n\n\nWe've enhanced our tagging system with aesthetic tags to refine content categorization based on visual appeal. These tags are derived from evaluations made by a specialized ViT (Vision Transformer) image classification model, specifically trained on anime data. For this purpose, we utilized the model shadowlilac/aesthetic-shadow-v2, which assesses the aesthetic value of content before it undergoes training. This ensures that each piece of content is not only relevant and accurate but also visually appealing.\n\n\n\nRecommended settings\n--------------------\n\n\nTo guide the model towards generating high-aesthetic images, use negative prompts like:\n\n\nFor higher quality outcomes, prepend prompts with:\n\n\nit’s recommended to use a lower classifier-free guidance (CFG Scale) of around 5-7, sampling steps below 30, and to use Euler Ancestral (Euler a) as a sampler.", "### Multi Aspect Resolution\n\n\nThis model supports generating images at the following dimensions:\n\n\n\nTraining and Hyperparameters\n----------------------------\n\n\nAnimagine XL 3.1 was trained on 2x A100 80GB GPUs for approximately 15 days, totaling over 350 GPU hours. The training process consisted of three stages:\n\n\n* Pretraining: Utilized a data-rich collection of 870k ordered and tagged images to increase Animagine XL 3.0's model knowledge.\n* Finetuning - First Stage: Employed labeled and curated aesthetic datasets to refine the broken U-Net after pretraining.\n* Finetuning - Second Stage: Utilized labeled and curated aesthetic datasets to refine the model's art style and improve hand and anatomy rendering.", "### Hyperparameters\n\n\n\nModel Comparison (Pretraining only)\n-----------------------------------", "### Training Config\n\n\nConfiguration Item: GPU, Animagine XL 3.0: 2 x A100 80G, Animagine XL 3.1: 2 x A100 80G\nConfiguration Item: Dataset, Animagine XL 3.0: 1,271,990, Animagine XL 3.1: 873,504\nConfiguration Item: Shuffle Separator, Animagine XL 3.0: True, Animagine XL 3.1: True\nConfiguration Item: Num Epochs, Animagine XL 3.0: 10, Animagine XL 3.1: 10\nConfiguration Item: Learning Rate, Animagine XL 3.0: 7.5e-6, Animagine XL 3.1: 1e-5\nConfiguration Item: Text Encoder Learning Rate, Animagine XL 3.0: 3.75e-6, Animagine XL 3.1: 1e-5\nConfiguration Item: Effective Batch Size, Animagine XL 3.0: 48 x 1 x 2, Animagine XL 3.1: 16 x 3 x 2\nConfiguration Item: Optimizer, Animagine XL 3.0: Adafactor, Animagine XL 3.1: AdamW\nConfiguration Item: Optimizer Args, Animagine XL 3.0: Scale Parameter: False, Relative Step: False, Warmup Init: False, Animagine XL 3.1: Weight Decay: 0.1, Betas: (0.9, 0.99)\nConfiguration Item: LR Scheduler, Animagine XL 3.0: Constant with Warmup, Animagine XL 3.1: Cosine Annealing Warm Restart\nConfiguration Item: LR Scheduler Args, Animagine XL 3.0: Warmup Steps: 100, Animagine XL 3.1: Num Cycles: 10, Min LR: 1e-6, LR Decay: 0.9, First Cycle Steps: 9,099\n\n\nSource code and training config are available here: URL", "### Acknowledgements\n\n\nThe development and release of Animagine XL 3.1 would not have been possible without the invaluable contributions and support from the following individuals and organizations:\n\n\n* URL: Our collaboration partner and sponsor.\n* Shadow Lilac: For providing the aesthetic classification model, aesthetic-shadow-v2.\n* Derrian Distro: For their custom learning rate scheduler, adapted from LoRA Easy Training Scripts.\n* Kohya SS: For their comprehensive training scripts.\n* Cagliostrolab Collaborators: For their dedication to model training, project management, and data curation.\n* Early Testers: For their valuable feedback and quality assurance efforts.\n* NovelAI: For their innovative approach to aesthetic tagging, which served as an inspiration for our implementation.\n* KBlueLeaf: For providing inspiration in balancing quality tags distribution and managing tags based on Hakubooru Metainfo\n\n\nThank you all for your support and expertise in pushing the boundaries of anime-style image generation.\n\n\nCollaborators\n-------------\n\n\n* Linaqruf\n* ItsMeBell\n* Asahina2K\n* DamarJati\n* Zwicky18\n* Scipius2121\n* Raelina\n* Kayfahaarukku\n* Kriz\n\n\nLimitations\n-----------\n\n\nWhile Animagine XL 3.1 represents a significant advancement in anime-style image generation, it is important to acknowledge its limitations:\n\n\n1. Anime-Focused: This model is specifically designed for generating anime-style images and is not suitable for creating realistic photos.\n2. Prompt Complexity: This model may not be suitable for users who expect high-quality results from short or simple prompts. The training focus was on concept understanding rather than aesthetic refinement, which may require more detailed and specific prompts to achieve the desired output.\n3. Prompt Format: Animagine XL 3.1 is optimized for Danbooru-style tags rather than natural language prompts. For best results, users are encouraged to format their prompts using the appropriate tags and syntax.\n4. Anatomy and Hand Rendering: Despite the improvements made in anatomy and hand rendering, there may still be instances where the model produces suboptimal results in these areas.\n5. Dataset Size: The dataset used for training Animagine XL 3.1 consists of approximately 870,000 images. When combined with the previous iteration's dataset (1.2 million), the total training data amounts to around 2.1 million images. While substantial, this dataset size may still be considered limited in scope for an \"ultimate\" anime model.\n6. NSFW Content: Animagine XL 3.1 has been designed to generate more balanced NSFW content. However, it is important to note that the model may still produce NSFW results, even if not explicitly prompted.\n\n\nBy acknowledging these limitations, we aim to provide transparency and set realistic expectations for users of Animagine XL 3.1. Despite these constraints, we believe that the model represents a significant step forward in anime-style image generation and offers a powerful tool for artists, designers, and enthusiasts alike.\n\n\nLicense\n-------\n\n\nBased on Animagine XL 3.0, Animagine XL 3.1 falls under Fair AI Public License 1.0-SD license, which is compatible with Stable Diffusion models’ license. Key points:\n\n\n1. Modification Sharing: If you modify Animagine XL 3.1, you must share both your changes and the original license.\n2. Source Code Accessibility: If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.\n3. Distribution Terms: Any distribution must be under this license or another with similar rules.\n4. Compliance: Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.\n\n\nThe choice of this license aims to keep Animagine XL 3.1 open and modifiable, aligning with open source community spirit. It protects contributors and users, encouraging a collaborative, ethical open-source community. This ensures the model not only benefits from communal input but also respects open-source development freedoms.\n\n\nCagliostro Lab Discord Server\n-----------------------------\n\n\nFinally Cagliostro Lab Server open to public\nURL\n\n\nFeel free to join our discord server" ]
null
transformers
This model has been pushed to the Hub using ****: - Repo: [More Information Needed] - Docs: [More Information Needed]
{"tags": ["pytorch_model_hub_mixin", "model_hub_mixin"]}
tjl223/artist-coherency-ensemble
null
[ "transformers", "pytorch", "safetensors", "pytorch_model_hub_mixin", "model_hub_mixin", "endpoints_compatible", "has_space", "region:us" ]
null
2024-04-12T04:04:10+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #pytorch_model_hub_mixin #model_hub_mixin #endpoints_compatible #has_space #region-us
This model has been pushed to the Hub using : - Repo: - Docs:
[]
[ "TAGS\n#transformers #pytorch #safetensors #pytorch_model_hub_mixin #model_hub_mixin #endpoints_compatible #has_space #region-us \n" ]
text-to-image
diffusers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "diffusers"}
damian0815/sd2-original-te-laion-pop-6144-ep05-gs05160
null
[ "diffusers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-04-12T04:04:17+00:00
[ "1910.09700" ]
[]
TAGS #diffusers #safetensors #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#diffusers #safetensors #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [arcee-ai/sec-mistral-7b-instruct-1.6-epoch](https://huggingface.co/arcee-ai/sec-mistral-7b-instruct-1.6-epoch) * [cognitivecomputations/dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: arcee-ai/sec-mistral-7b-instruct-1.6-epoch layer_range: [0, 32] - model: cognitivecomputations/dolphin-2.8-mistral-7b-v02 layer_range: [0, 32] merge_method: slerp base_model: cognitivecomputations/dolphin-2.8-mistral-7b-v02 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["arcee-ai/sec-mistral-7b-instruct-1.6-epoch", "cognitivecomputations/dolphin-2.8-mistral-7b-v02"]}
mergekit-community/mergekit-slerp-adolxhj
null
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:arcee-ai/sec-mistral-7b-instruct-1.6-epoch", "base_model:cognitivecomputations/dolphin-2.8-mistral-7b-v02", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T04:07:04+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-arcee-ai/sec-mistral-7b-instruct-1.6-epoch #base_model-cognitivecomputations/dolphin-2.8-mistral-7b-v02 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# merge This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * arcee-ai/sec-mistral-7b-instruct-1.6-epoch * cognitivecomputations/dolphin-2.8-mistral-7b-v02 ### Configuration The following YAML configuration was used to produce this model:
[ "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* arcee-ai/sec-mistral-7b-instruct-1.6-epoch\n* cognitivecomputations/dolphin-2.8-mistral-7b-v02", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-arcee-ai/sec-mistral-7b-instruct-1.6-epoch #base_model-cognitivecomputations/dolphin-2.8-mistral-7b-v02 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* arcee-ai/sec-mistral-7b-instruct-1.6-epoch\n* cognitivecomputations/dolphin-2.8-mistral-7b-v02", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Aroma-classifier-with-ratings This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4821 - Accuracy: 0.3905 - Recall: 0.3905 - Precision: 0.3905 - F1: 0.3905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.5528 | 1.0 | 5000 | 1.5584 | 0.3617 | 0.3617 | 0.3617 | 0.3617 | | 1.4383 | 2.0 | 10000 | 1.4596 | 0.3883 | 0.3883 | 0.3883 | 0.3883 | | 1.302 | 3.0 | 15000 | 1.4821 | 0.3905 | 0.3905 | 0.3905 | 0.3905 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "recall", "precision", "f1"], "base_model": "google-bert/bert-base-uncased", "model-index": [{"name": "Aroma-classifier-with-ratings", "results": []}]}
lengocquangLAB/Aroma-classifier-with-ratings
null
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:07:04+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-google-bert/bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Aroma-classifier-with-ratings ============================= This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.4821 * Accuracy: 0.3905 * Recall: 0.3905 * Precision: 0.3905 * F1: 0.3905 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.39.3 * Pytorch 2.1.2 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-google-bert/bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
automatic-speech-recognition
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
spsither/wav2vec2_run10.1465
null
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:07:09+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #wav2vec2 #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #wav2vec2 #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
{"license": "other", "library_name": "transformers", "tags": ["autotrain", "text-generation-inference", "text-generation", "peft"], "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]}
calvinchaochao/agent-zephyr1
null
[ "transformers", "tensorboard", "safetensors", "autotrain", "text-generation-inference", "text-generation", "peft", "conversational", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:08:12+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #autotrain #text-generation-inference #text-generation #peft #conversational #license-other #endpoints_compatible #region-us
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit AutoTrain. # Usage
[ "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
[ "TAGS\n#transformers #tensorboard #safetensors #autotrain #text-generation-inference #text-generation #peft #conversational #license-other #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
GBaker/flan-t5-ecr-summ-128tok-19epoch
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T04:11:45+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-to-image
diffusers
# SDXL LoRA DreamBooth - jonknownothing/sdxl-lora-advanced <Gallery /> ## Model description ### These are jonknownothing/sdxl-lora-advanced LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`sdxl-lora-advanced.safetensors` here 💾](/jonknownothing/sdxl-lora-advanced/blob/main/sdxl-lora-advanced.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:sdxl-lora-advanced:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`sdxl-lora-advanced_emb.safetensors` here 💾](/jonknownothing/sdxl-lora-advanced/blob/main/sdxl-lora-advanced_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `sdxl-lora-advanced_emb` to your prompt. For example, `Photo of a sdxl-lora-advanced_emb person,` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jonknownothing/sdxl-lora-advanced', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='jonknownothing/sdxl-lora-advanced', filename='sdxl-lora-advanced_emb.safetensors', repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('Photo of a <s0><s1> person,riding a horse').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/jonknownothing/sdxl-lora-advanced/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
{"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "diffusers-training", "text-to-image", "diffusers", "lora", "template:sd-lora"], "widget": [{"text": "Photo of a <s0><s1> person,riding a horse", "output": {"url": "image_0.png"}}, {"text": "Photo of a <s0><s1> person,riding a horse", "output": {"url": "image_1.png"}}, {"text": "Photo of a <s0><s1> person,riding a horse", "output": {"url": "image_2.png"}}, {"text": "Photo of a <s0><s1> person,riding a horse", "output": {"url": "image_3.png"}}], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Photo of a <s0><s1> person,"}
jonknownothing/sdxl-lora-advanced
null
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "diffusers-training", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-04-12T04:17:36+00:00
[]
[]
TAGS #diffusers #tensorboard #stable-diffusion-xl #stable-diffusion-xl-diffusers #diffusers-training #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - jonknownothing/sdxl-lora-advanced <Gallery /> ## Model description ### These are jonknownothing/sdxl-lora-advanced LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - LoRA: download 'sdxl-lora-advanced.safetensors' here . - Place it on your 'models/Lora' folder. - On AUTOMATIC1111, load the LoRA by adding '<lora:sdxl-lora-advanced:1>' to your prompt. On ComfyUI just load it as a regular LoRA. - *Embeddings*: download 'sdxl-lora-advanced_emb.safetensors' here . - Place it on it on your 'embeddings' folder - Use it by adding 'sdxl-lora-advanced_emb' to your prompt. For example, 'Photo of a sdxl-lora-advanced_emb person,' (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept 'TOK' → use '<s0><s1>' in your prompt ## Details All Files & versions. The weights were trained using diffusers Advanced Dreambooth Training Script. LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
[ "# SDXL LoRA DreamBooth - jonknownothing/sdxl-lora-advanced\n\n<Gallery />", "## Model description", "### These are jonknownothing/sdxl-lora-advanced LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.", "## Download model", "### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke\n\n- LoRA: download 'sdxl-lora-advanced.safetensors' here .\n - Place it on your 'models/Lora' folder.\n - On AUTOMATIC1111, load the LoRA by adding '<lora:sdxl-lora-advanced:1>' to your prompt. On ComfyUI just load it as a regular LoRA.\n- *Embeddings*: download 'sdxl-lora-advanced_emb.safetensors' here .\n - Place it on it on your 'embeddings' folder\n - Use it by adding 'sdxl-lora-advanced_emb' to your prompt. For example, 'Photo of a sdxl-lora-advanced_emb person,'\n (you need both the LoRA and the embeddings as they were trained together for this LoRA)", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers", "## Trigger words\n\nTo trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:\n\nto trigger concept 'TOK' → use '<s0><s1>' in your prompt", "## Details\nAll Files & versions.\n\nThe weights were trained using diffusers Advanced Dreambooth Training Script.\n\nLoRA for the text encoder was enabled. False.\n\nPivotal tuning was enabled: True.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix." ]
[ "TAGS\n#diffusers #tensorboard #stable-diffusion-xl #stable-diffusion-xl-diffusers #diffusers-training #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - jonknownothing/sdxl-lora-advanced\n\n<Gallery />", "## Model description", "### These are jonknownothing/sdxl-lora-advanced LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.", "## Download model", "### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke\n\n- LoRA: download 'sdxl-lora-advanced.safetensors' here .\n - Place it on your 'models/Lora' folder.\n - On AUTOMATIC1111, load the LoRA by adding '<lora:sdxl-lora-advanced:1>' to your prompt. On ComfyUI just load it as a regular LoRA.\n- *Embeddings*: download 'sdxl-lora-advanced_emb.safetensors' here .\n - Place it on it on your 'embeddings' folder\n - Use it by adding 'sdxl-lora-advanced_emb' to your prompt. For example, 'Photo of a sdxl-lora-advanced_emb person,'\n (you need both the LoRA and the embeddings as they were trained together for this LoRA)", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers", "## Trigger words\n\nTo trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:\n\nto trigger concept 'TOK' → use '<s0><s1>' in your prompt", "## Details\nAll Files & versions.\n\nThe weights were trained using diffusers Advanced Dreambooth Training Script.\n\nLoRA for the text encoder was enabled. False.\n\nPivotal tuning was enabled: True.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix." ]
text-generation
transformers
# Vezora/Mistral-22B-v0.1 AWQ - Model creator: [Vezora](https://huggingface.co/Vezora) - Original model: [Mistral-22B-v0.1](https://huggingface.co/Vezora/Mistral-22B-v0.1) ## Model Summary This model is not an moe, it is infact a 22B parameter dense model! Just one day after the release of **Mixtral-8x-22b**, we are excited to introduce our handcrafted experimental model, **Mistral-22b-V.01**. This model is a culmination of equal knowledge distilled from all experts into a single, dense 22b model. This model is not a single trained expert, rather its a compressed MOE model, turning it into a dense 22b mode. This is the first working MOE to Dense model conversion. ## How to use **GUANACO PROMPT FORMAT** YOU MUST USE THE GUANACO PROMPT FORMAT SHOWN BELOW. Not using this prompt format will lead to sub optimal results. - This model requires a specific chat template, as the training format was Guanaco this is what it looks like: - "### System: You are a helpful assistant. ### Human###: Give me the best chili recipe you can ###Assistant: Here is the best chili recipe..."
{"language": ["en"], "license": "apache-2.0", "tags": ["quantized", "4-bit", "AWQ", "autotrain_compatible", "endpoints_compatible", "text-generation-inference"], "model_name": "Mistral-22B-v0.1", "base_model": "mistral-community/Mixtral-8x22B-v0.1", "model_creator": "Vezora", "model_type": "mistral", "pipeline_tag": "text-generation", "inference": false}
solidrust/Mistral-22B-v0.1-AWQ
null
[ "transformers", "safetensors", "mistral", "text-generation", "quantized", "4-bit", "AWQ", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "en", "base_model:mistral-community/Mixtral-8x22B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-04-12T04:20:30+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #quantized #4-bit #AWQ #autotrain_compatible #endpoints_compatible #text-generation-inference #en #base_model-mistral-community/Mixtral-8x22B-v0.1 #license-apache-2.0 #region-us
# Vezora/Mistral-22B-v0.1 AWQ - Model creator: Vezora - Original model: Mistral-22B-v0.1 ## Model Summary This model is not an moe, it is infact a 22B parameter dense model! Just one day after the release of Mixtral-8x-22b, we are excited to introduce our handcrafted experimental model, Mistral-22b-V.01. This model is a culmination of equal knowledge distilled from all experts into a single, dense 22b model. This model is not a single trained expert, rather its a compressed MOE model, turning it into a dense 22b mode. This is the first working MOE to Dense model conversion. ## How to use GUANACO PROMPT FORMAT YOU MUST USE THE GUANACO PROMPT FORMAT SHOWN BELOW. Not using this prompt format will lead to sub optimal results. - This model requires a specific chat template, as the training format was Guanaco this is what it looks like: - "### System: You are a helpful assistant. ### Human###: Give me the best chili recipe you can ###Assistant: Here is the best chili recipe..."
[ "# Vezora/Mistral-22B-v0.1 AWQ\n\n- Model creator: Vezora\n- Original model: Mistral-22B-v0.1", "## Model Summary\n\nThis model is not an moe, it is infact a 22B parameter dense model!\n\nJust one day after the release of Mixtral-8x-22b, we are excited to introduce our handcrafted experimental model, Mistral-22b-V.01. This model is a culmination of equal knowledge distilled from all experts into a single, dense 22b model. This model is not a single trained expert, rather its a compressed MOE model, turning it into a dense 22b mode. This is the first working MOE to Dense model conversion.", "## How to use\n\nGUANACO PROMPT FORMAT YOU MUST USE THE GUANACO PROMPT FORMAT SHOWN BELOW. Not using this prompt format will lead to sub optimal results.\n\n- This model requires a specific chat template, as the training format was Guanaco this is what it looks like:\n- \"### System: You are a helpful assistant. ### Human###: Give me the best chili recipe you can ###Assistant: Here is the best chili recipe...\"" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #quantized #4-bit #AWQ #autotrain_compatible #endpoints_compatible #text-generation-inference #en #base_model-mistral-community/Mixtral-8x22B-v0.1 #license-apache-2.0 #region-us \n", "# Vezora/Mistral-22B-v0.1 AWQ\n\n- Model creator: Vezora\n- Original model: Mistral-22B-v0.1", "## Model Summary\n\nThis model is not an moe, it is infact a 22B parameter dense model!\n\nJust one day after the release of Mixtral-8x-22b, we are excited to introduce our handcrafted experimental model, Mistral-22b-V.01. This model is a culmination of equal knowledge distilled from all experts into a single, dense 22b model. This model is not a single trained expert, rather its a compressed MOE model, turning it into a dense 22b mode. This is the first working MOE to Dense model conversion.", "## How to use\n\nGUANACO PROMPT FORMAT YOU MUST USE THE GUANACO PROMPT FORMAT SHOWN BELOW. Not using this prompt format will lead to sub optimal results.\n\n- This model requires a specific chat template, as the training format was Guanaco this is what it looks like:\n- \"### System: You are a helpful assistant. ### Human###: Give me the best chili recipe you can ###Assistant: Here is the best chili recipe...\"" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # classification_final This model is a fine-tuned version of [yhavinga/t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0695 - F1: 0.9782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 110 | 0.2572 | 0.2326 | | No log | 2.0 | 220 | 0.0883 | 0.9652 | | No log | 3.0 | 330 | 0.0744 | 0.9694 | | No log | 4.0 | 440 | 0.1080 | 0.9614 | | 0.1321 | 5.0 | 550 | 0.0685 | 0.9782 | | 0.1321 | 6.0 | 660 | 0.0695 | 0.9782 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["f1"], "base_model": "yhavinga/t5-small-24L-ccmatrix-multi", "model-index": [{"name": "classification_final", "results": []}]}
nizarh1999/final_test_classification
null
[ "transformers", "tensorboard", "safetensors", "t5", "text-classification", "generated_from_trainer", "base_model:yhavinga/t5-small-24L-ccmatrix-multi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T04:20:53+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text-classification #generated_from_trainer #base_model-yhavinga/t5-small-24L-ccmatrix-multi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
classification\_final ===================== This model is a fine-tuned version of yhavinga/t5-small-24L-ccmatrix-multi on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0695 * F1: 0.9782 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 6 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 6", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text-classification #generated_from_trainer #base_model-yhavinga/t5-small-24L-ccmatrix-multi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 6", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MistralAI_iwslt15_en_vi_manual This model is a fine-tuned version of [unsloth/mistral-7b-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-bnb-4bit) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4269 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["unsloth", "trl", "sft", "generated_from_trainer"], "base_model": "unsloth/mistral-7b-bnb-4bit", "model-index": [{"name": "MistralAI_iwslt15_en_vi_manual", "results": []}]}
Tohrumi/MistralAI_iwslt15_en_vi_manual
null
[ "peft", "tensorboard", "safetensors", "unsloth", "trl", "sft", "generated_from_trainer", "base_model:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "region:us" ]
null
2024-04-12T04:22:10+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #unsloth #trl #sft #generated_from_trainer #base_model-unsloth/mistral-7b-bnb-4bit #license-apache-2.0 #region-us
# MistralAI_iwslt15_en_vi_manual This model is a fine-tuned version of unsloth/mistral-7b-bnb-4bit on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4269 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
[ "# MistralAI_iwslt15_en_vi_manual\n\nThis model is a fine-tuned version of unsloth/mistral-7b-bnb-4bit on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 4269\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #unsloth #trl #sft #generated_from_trainer #base_model-unsloth/mistral-7b-bnb-4bit #license-apache-2.0 #region-us \n", "# MistralAI_iwslt15_en_vi_manual\n\nThis model is a fine-tuned version of unsloth/mistral-7b-bnb-4bit on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 4269\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BioGPT_NCBI This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1730 - Precision: 0.4537 - Recall: 0.5406 - F1: 0.4933 - Accuracy: 0.9493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2343 | 1.0 | 1358 | 0.1908 | 0.3555 | 0.4292 | 0.3889 | 0.9392 | | 0.1311 | 2.0 | 2716 | 0.1792 | 0.3994 | 0.5563 | 0.4650 | 0.9429 | | 0.081 | 3.0 | 4074 | 0.1730 | 0.4537 | 0.5406 | 0.4933 | 0.9493 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "microsoft/biogpt", "model-index": [{"name": "BioGPT_NCBI", "results": []}]}
nik548/BioGPT_NCBI
null
[ "transformers", "tensorboard", "safetensors", "gpt2", "token-classification", "generated_from_trainer", "base_model:microsoft/biogpt", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T04:22:34+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt2 #token-classification #generated_from_trainer #base_model-microsoft/biogpt #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
BioGPT\_NCBI ============ This model is a fine-tuned version of microsoft/biogpt on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.1730 * Precision: 0.4537 * Recall: 0.5406 * F1: 0.4933 * Accuracy: 0.9493 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt2 #token-classification #generated_from_trainer #base_model-microsoft/biogpt #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"language": ["ko", "en"], "license": "other", "library_name": "transformers", "tags": ["korean", "gemma", "pytorch"], "license_name": "gemma-terms-of-use", "license_link": "https://ai.google.dev/gemma/terms", "pipeline_tag": "text-generation", "base_model": "google/gemma-7b-it"}
yhkim9362/gemma-en-ko-7b-v0.1
null
[ "transformers", "safetensors", "gemma", "text-generation", "korean", "pytorch", "conversational", "ko", "en", "arxiv:1910.09700", "base_model:google/gemma-7b-it", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T04:23:19+00:00
[ "1910.09700" ]
[ "ko", "en" ]
TAGS #transformers #safetensors #gemma #text-generation #korean #pytorch #conversational #ko #en #arxiv-1910.09700 #base_model-google/gemma-7b-it #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #korean #pytorch #conversational #ko #en #arxiv-1910.09700 #base_model-google/gemma-7b-it #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-to-image
diffusers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "diffusers"}
streamize/white_v10
null
[ "diffusers", "arxiv:1910.09700", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-04-12T04:24:29+00:00
[ "1910.09700" ]
[]
TAGS #diffusers #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#diffusers #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-chat-hf_fictional_v2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.0
{"tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "meta-llama/Llama-2-7b-chat-hf", "model-index": [{"name": "Llama-2-7b-chat-hf_fictional_v2", "results": []}]}
yzhuang/Llama-2-7b-chat-hf_fictional_v2
null
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "dataset:generator", "base_model:meta-llama/Llama-2-7b-chat-hf", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T04:31:42+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #trl #sft #generated_from_trainer #conversational #dataset-generator #base_model-meta-llama/Llama-2-7b-chat-hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Llama-2-7b-chat-hf_fictional_v2 This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "# Llama-2-7b-chat-hf_fictional_v2\n\nThis model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 2\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 30", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2\n- Datasets 2.16.0\n- Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #trl #sft #generated_from_trainer #conversational #dataset-generator #base_model-meta-llama/Llama-2-7b-chat-hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Llama-2-7b-chat-hf_fictional_v2\n\nThis model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 2\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 30", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2\n- Datasets 2.16.0\n- Tokenizers 0.15.0" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
weqweasdas/raft_baseline_openchat_30k_n32
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T04:32:24+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
HeydarS/mistral_EQ_peft_v47
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:32:40+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-dpo-timedial-selfgen-mix2 This model is a fine-tuned version of [EllieS/zephyr-dpo-timedial-selfgen](https://huggingface.co/EllieS/zephyr-dpo-timedial-selfgen) on the EllieS/timedial_dpo dataset. It achieves the following results on the evaluation set: - Logits/chosen: -2.8807 - Logits/rejected: -2.8679 - Logps/chosen: -6.8403 - Logps/rejected: -132.2824 - Loss: 0.2588 - Rewards/accuracies: 1.0 - Rewards/chosen: 0.2087 - Rewards/margins: 1.2287 - Rewards/rejected: -1.0200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected | |:-------------:|:-----:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:| | 0.4825 | 0.35 | 100 | -2.9715 | -2.9751 | -4.6766 | -60.5070 | 0.4632 | 1.0 | 0.2303 | 0.5325 | -0.3022 | | 0.2786 | 0.69 | 200 | -2.8807 | -2.8679 | -6.8403 | -132.2824 | 0.2588 | 1.0 | 0.2087 | 1.2287 | -1.0200 | ### Framework versions - PEFT 0.7.1 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["alignment-handbook", "trl", "dpo", "generated_from_trainer"], "datasets": ["EllieS/timedial_dpo"], "base_model": "alignment-handbook/zephyr-7b-sft-full", "model-index": [{"name": "zephyr-dpo-timedial-selfgen-mix2", "results": []}]}
EllieS/zephyr-dpo-timedial-selfgen-mix2
null
[ "peft", "tensorboard", "safetensors", "mistral", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "dataset:EllieS/timedial_dpo", "base_model:alignment-handbook/zephyr-7b-sft-full", "license:apache-2.0", "region:us" ]
null
2024-04-12T04:35:23+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #mistral #alignment-handbook #trl #dpo #generated_from_trainer #dataset-EllieS/timedial_dpo #base_model-alignment-handbook/zephyr-7b-sft-full #license-apache-2.0 #region-us
zephyr-dpo-timedial-selfgen-mix2 ================================ This model is a fine-tuned version of EllieS/zephyr-dpo-timedial-selfgen on the EllieS/timedial\_dpo dataset. It achieves the following results on the evaluation set: * Logits/chosen: -2.8807 * Logits/rejected: -2.8679 * Logps/chosen: -6.8403 * Logps/rejected: -132.2824 * Loss: 0.2588 * Rewards/accuracies: 1.0 * Rewards/chosen: 0.2087 * Rewards/margins: 1.2287 * Rewards/rejected: -1.0200 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-06 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * distributed\_type: multi-GPU * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 4 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 1 ### Training results ### Framework versions * PEFT 0.7.1 * Transformers 4.39.0.dev0 * Pytorch 2.1.2+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.39.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #mistral #alignment-handbook #trl #dpo #generated_from_trainer #dataset-EllieS/timedial_dpo #base_model-alignment-handbook/zephyr-7b-sft-full #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.39.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
null
transformers
# DavidAU/StarDust_20B_v0.2-Q6_K-GGUF This model was converted to GGUF format from [`Evillain/StarDust_20B_v0.2`](https://huggingface.co/Evillain/StarDust_20B_v0.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Evillain/StarDust_20B_v0.2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/StarDust_20B_v0.2-Q6_K-GGUF --model stardust_20b_v0.2.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/StarDust_20B_v0.2-Q6_K-GGUF --model stardust_20b_v0.2.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m stardust_20b_v0.2.Q6_K.gguf -n 128 ```
{"license": "other", "library_name": "transformers", "tags": ["mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo"], "base_model": ["Kooten/DaringMaid-20B", "TeeZee/DarkForest-20B-v2.0", "athirdpath/Iambe-RP-v3-20b"], "license_name": "microsoft-research-license", "model-index": [{"name": "StarDust_20B_v0.2", "results": [{"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "AI2 Reasoning Challenge (25-Shot)", "type": "ai2_arc", "config": "ARC-Challenge", "split": "test", "args": {"num_few_shot": 25}}, "metrics": [{"type": "acc_norm", "value": 61.01, "name": "normalized accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "HellaSwag (10-Shot)", "type": "hellaswag", "split": "validation", "args": {"num_few_shot": 10}}, "metrics": [{"type": "acc_norm", "value": 83.76, "name": "normalized accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "MMLU (5-Shot)", "type": "cais/mmlu", "config": "all", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 59.29, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "TruthfulQA (0-shot)", "type": "truthful_qa", "config": "multiple_choice", "split": "validation", "args": {"num_few_shot": 0}}, "metrics": [{"type": "mc2", "value": 51.43}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "Winogrande (5-shot)", "type": "winogrande", "config": "winogrande_xl", "split": "validation", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 77.27, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "GSM8k (5-shot)", "type": "gsm8k", "config": "main", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 24.03, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}]}]}
DavidAU/StarDust_20B_v0.2-Q6_K-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo", "base_model:Kooten/DaringMaid-20B", "base_model:TeeZee/DarkForest-20B-v2.0", "base_model:athirdpath/Iambe-RP-v3-20b", "license:other", "model-index", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:38:23+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-Kooten/DaringMaid-20B #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Iambe-RP-v3-20b #license-other #model-index #endpoints_compatible #region-us
# DavidAU/StarDust_20B_v0.2-Q6_K-GGUF This model was converted to GGUF format from 'Evillain/StarDust_20B_v0.2' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/StarDust_20B_v0.2-Q6_K-GGUF\nThis model was converted to GGUF format from 'Evillain/StarDust_20B_v0.2' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-Kooten/DaringMaid-20B #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Iambe-RP-v3-20b #license-other #model-index #endpoints_compatible #region-us \n", "# DavidAU/StarDust_20B_v0.2-Q6_K-GGUF\nThis model was converted to GGUF format from 'Evillain/StarDust_20B_v0.2' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
adediu25/distilbert-base-uncased-binary-classification
null
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:40:39+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #distilbert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #distilbert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trainer This model is a fine-tuned version of [GroNLP/hateBERT](https://huggingface.co/GroNLP/hateBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5228 - Accuracy: {'accuracy': 0.7989466452942523} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:| | 0.4295 | 1.0 | 2217 | 0.6655 | {'accuracy': 0.7348294023356996} | | 0.3365 | 2.0 | 4434 | 0.5471 | {'accuracy': 0.7874971376230822} | | 0.2882 | 3.0 | 6651 | 0.5133 | {'accuracy': 0.8014655369819098} | | 0.2574 | 4.0 | 8868 | 0.5228 | {'accuracy': 0.7989466452942523} | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "GroNLP/hateBERT", "model-index": [{"name": "trainer", "results": []}]}
adediu25/trainer
null
[ "peft", "tensorboard", "safetensors", "distilbert", "generated_from_trainer", "base_model:GroNLP/hateBERT", "region:us" ]
null
2024-04-12T04:40:55+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #distilbert #generated_from_trainer #base_model-GroNLP/hateBERT #region-us
trainer ======= This model is a fine-tuned version of GroNLP/hateBERT on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.5228 * Accuracy: {'accuracy': 0.7989466452942523} Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.001 * train\_batch\_size: 10 * eval\_batch\_size: 10 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 20 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * PEFT 0.10.0 * Transformers 4.39.3 * Pytorch 2.2.2+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 20\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.39.3\n* Pytorch 2.2.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #distilbert #generated_from_trainer #base_model-GroNLP/hateBERT #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 20\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.39.3\n* Pytorch 2.2.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetunedN-facebook-bart-samsum This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "facebook/bart-large-cnn", "model-index": [{"name": "finetunedN-facebook-bart-samsum", "results": []}]}
codebasics/finetunedN-facebook-bart-samsum
null
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large-cnn", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:43:06+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bart #text2text-generation #generated_from_trainer #base_model-facebook/bart-large-cnn #license-mit #autotrain_compatible #endpoints_compatible #region-us
# finetunedN-facebook-bart-samsum This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# finetunedN-facebook-bart-samsum\n\nThis model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bart #text2text-generation #generated_from_trainer #base_model-facebook/bart-large-cnn #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# finetunedN-facebook-bart-samsum\n\nThis model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistralv1_spectral_r24_1e4 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "mistralai/Mistral-7B-v0.1", "model-index": [{"name": "mistralv1_spectral_r24_1e4", "results": []}]}
fangzhaoz/mistralv1_spectral_r24_1e4
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-04-12T04:45:09+00:00
[]
[]
TAGS #peft #safetensors #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us
# mistralv1_spectral_r24_1e4 This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# mistralv1_spectral_r24_1e4\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- PEFT 0.9.0\n- Transformers 4.39.3\n- Pytorch 2.2.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #safetensors #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us \n", "# mistralv1_spectral_r24_1e4\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- PEFT 0.9.0\n- Transformers 4.39.3\n- Pytorch 2.2.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
HeydarS/zephyr_EQ_peft_v46
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:46:04+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
null
Check G-reen/EXPERIMENT-SFT-m7b2-3-merged (https://huggingface.co/G-reen/EXPERIMENT-SFT-m7b2-3-merged) for details.
{}
G-reen/EXPERIMENT-SFT-m7b2-3-lora
null
[ "safetensors", "region:us" ]
null
2024-04-12T04:46:54+00:00
[]
[]
TAGS #safetensors #region-us
Check G-reen/EXPERIMENT-SFT-m7b2-3-merged (URL for details.
[]
[ "TAGS\n#safetensors #region-us \n" ]
text-generation
transformers
*This model was trained as part of a series of experiments testing the performance of pure DPO vs SFT vs ORPO, all supported by Unsloth/Huggingface TRL.* **Benchmarks** Average 59.55 ARC 59.56 HellaSwag 82.39 MMLU 62.3 TruthfulQA 40.04 Winogrande 78.45 GSM8K 34.57 **Training Details** Duration: ~6-8 hours on one Kaggle T4 with Unsloth Model: https://huggingface.co/unsloth/mistral-7b-v0.2-bnb-4bit Dataset: https://huggingface.co/datasets/argilla/dpo-mix-7k Rank: 8 Alpha: 16 Learning rate: 5e-6 Batch size: 8 Epochs: 1 Learning rate scheduler: Linear Prompt Format: ChatML ``` <|im_start|>system You are a helpful assistant.<|im_end|> <|im_start|>user Why is the sky blue?<|im_end|> <|im_start|>assistant ``` **WanDB Reports** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65a5c0e82823ba72ed2cee7d/cwGwS49tqUlv78rWCYEup.png) [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"license": "apache-2.0"}
G-reen/EXPERIMENT-SFT-m7b2-3-merged
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-12T04:47:14+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
*This model was trained as part of a series of experiments testing the performance of pure DPO vs SFT vs ORPO, all supported by Unsloth/Huggingface TRL.* Benchmarks Average 59.55 ARC 59.56 HellaSwag 82.39 MMLU 62.3 TruthfulQA 40.04 Winogrande 78.45 GSM8K 34.57 Training Details Duration: ~6-8 hours on one Kaggle T4 with Unsloth Model: URL Dataset: URL Rank: 8 Alpha: 16 Learning rate: 5e-6 Batch size: 8 Epochs: 1 Learning rate scheduler: Linear Prompt Format: ChatML WanDB Reports !image/png <img src="URL width="200"/>
[]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_llama2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the outputdata dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.39.1 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "other", "library_name": "peft", "tags": ["llama-factory", "lora", "generated_from_trainer"], "base_model": "meta-llama/Llama-2-7b-chat-hf", "model-index": [{"name": "train_llama2", "results": []}]}
totorolee27/train_llama2
null
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "license:other", "region:us" ]
null
2024-04-12T04:47:15+00:00
[]
[]
TAGS #peft #safetensors #llama-factory #lora #generated_from_trainer #base_model-meta-llama/Llama-2-7b-chat-hf #license-other #region-us
# train_llama2 This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the outputdata dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.39.1 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# train_llama2\n\nThis model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the outputdata dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.39.1\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #safetensors #llama-factory #lora #generated_from_trainer #base_model-meta-llama/Llama-2-7b-chat-hf #license-other #region-us \n", "# train_llama2\n\nThis model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the outputdata dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.39.1\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bloomz-1b1-vn-chat This model is a fine-tuned version of [bigscience/bloomz-1b1](https://huggingface.co/bigscience/bloomz-1b1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 20 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.2
{"license": "bigscience-bloom-rail-1.0", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "bigscience/bloomz-1b1", "model-index": [{"name": "bloomz-1b1-vn-chat", "results": []}]}
Femboyuwu2000/bloomz-1b1-vn-chat
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:bigscience/bloomz-1b1", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2024-04-12T04:49:46+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-bigscience/bloomz-1b1 #license-bigscience-bloom-rail-1.0 #region-us
# bloomz-1b1-vn-chat This model is a fine-tuned version of bigscience/bloomz-1b1 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 20 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.2
[ "# bloomz-1b1-vn-chat\n\nThis model is a fine-tuned version of bigscience/bloomz-1b1 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.03\n- training_steps: 20", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.16.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-bigscience/bloomz-1b1 #license-bigscience-bloom-rail-1.0 #region-us \n", "# bloomz-1b1-vn-chat\n\nThis model is a fine-tuned version of bigscience/bloomz-1b1 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.03\n- training_steps: 20", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.16.0\n- Tokenizers 0.15.2" ]
null
transformers
# Uploaded model - **Developed by:** arvnoodle - **License:** apache-2.0 - **Finetuned from model :** unsloth/codegemma-7b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "gemma", "trl"], "base_model": "unsloth/codegemma-7b-bnb-4bit"}
arvnoodle/hclcodegemma-7b-it-javascript-lotuscript
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:unsloth/codegemma-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:50:52+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #gemma #trl #en #base_model-unsloth/codegemma-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: arvnoodle - License: apache-2.0 - Finetuned from model : unsloth/codegemma-7b-bnb-4bit This gemma model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: arvnoodle\n- License: apache-2.0\n- Finetuned from model : unsloth/codegemma-7b-bnb-4bit\n\nThis gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #gemma #trl #en #base_model-unsloth/codegemma-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: arvnoodle\n- License: apache-2.0\n- Finetuned from model : unsloth/codegemma-7b-bnb-4bit\n\nThis gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
changyeop2/llama-2-7b-cloudformation-v3
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T04:50:56+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# DavidAU/StarDust_20B_v0.1_slerp-Q6_K-GGUF This model was converted to GGUF format from [`Evillain/StarDust_20B_v0.1_slerp`](https://huggingface.co/Evillain/StarDust_20B_v0.1_slerp) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Evillain/StarDust_20B_v0.1_slerp) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/StarDust_20B_v0.1_slerp-Q6_K-GGUF --model stardust_20b_v0.1_slerp.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/StarDust_20B_v0.1_slerp-Q6_K-GGUF --model stardust_20b_v0.1_slerp.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m stardust_20b_v0.1_slerp.Q6_K.gguf -n 128 ```
{"license": "other", "library_name": "transformers", "tags": ["mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo"], "base_model": ["Kooten/DaringMaid-20B-V1.1", "TeeZee/DarkForest-20B-v2.0", "athirdpath/Iambe-RP-v3-20b"], "license_name": "microsoft-research-license"}
DavidAU/StarDust_20B_v0.1_slerp-Q6_K-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo", "base_model:Kooten/DaringMaid-20B-V1.1", "base_model:TeeZee/DarkForest-20B-v2.0", "base_model:athirdpath/Iambe-RP-v3-20b", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-12T04:51:55+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-Kooten/DaringMaid-20B-V1.1 #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Iambe-RP-v3-20b #license-other #endpoints_compatible #region-us
# DavidAU/StarDust_20B_v0.1_slerp-Q6_K-GGUF This model was converted to GGUF format from 'Evillain/StarDust_20B_v0.1_slerp' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/StarDust_20B_v0.1_slerp-Q6_K-GGUF\nThis model was converted to GGUF format from 'Evillain/StarDust_20B_v0.1_slerp' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-Kooten/DaringMaid-20B-V1.1 #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Iambe-RP-v3-20b #license-other #endpoints_compatible #region-us \n", "# DavidAU/StarDust_20B_v0.1_slerp-Q6_K-GGUF\nThis model was converted to GGUF format from 'Evillain/StarDust_20B_v0.1_slerp' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
text-generation
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: NousResearch/Hermes-2-Pro-Mistral-7B - model: WizardLM/WizardMath-7B-V1.1 merge_method: slerp base_model: NousResearch/Hermes-2-Pro-Mistral-7B dtype: bfloat16 parameters: t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["NousResearch/Hermes-2-Pro-Mistral-7B", "WizardLM/WizardMath-7B-V1.1"]}
mergekit-community/mergekit-slerp-sictdhe
null
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:NousResearch/Hermes-2-Pro-Mistral-7B", "base_model:WizardLM/WizardMath-7B-V1.1", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T04:51:58+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-NousResearch/Hermes-2-Pro-Mistral-7B #base_model-WizardLM/WizardMath-7B-V1.1 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# merge This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * NousResearch/Hermes-2-Pro-Mistral-7B * WizardLM/WizardMath-7B-V1.1 ### Configuration The following YAML configuration was used to produce this model:
[ "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* NousResearch/Hermes-2-Pro-Mistral-7B\n* WizardLM/WizardMath-7B-V1.1", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-NousResearch/Hermes-2-Pro-Mistral-7B #base_model-WizardLM/WizardMath-7B-V1.1 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* NousResearch/Hermes-2-Pro-Mistral-7B\n* WizardLM/WizardMath-7B-V1.1", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
text-generation
transformers
# kunoichi-squared-model_stock-7B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). The base model used is literally the base model. While the result is syntactically stable, there was something about the resulting narrative generation that seemed off. Perhaps more than 2 models are required for successful model stock merges. Tested primarily with temperature 1-1.1 and minP 1.01-1.03 using ChatML prompts. ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base. ### Models Merged The following models were included in the merge: * [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) * [SanjiWatsuki/Kunoichi-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: mistralai/Mistral-7B-v0.1 dtype: float16 merge_method: model_stock slices: - sources: - layer_range: [0, 32] model: mistralai/Mistral-7B-v0.1 - layer_range: [0, 32] model: SanjiWatsuki/Kunoichi-7B - layer_range: [0, 32] model: SanjiWatsuki/Kunoichi-DPO-v2-7B ```
{"license": "cc-by-nc-4.0", "library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["mistralai/Mistral-7B-v0.1", "SanjiWatsuki/Kunoichi-DPO-v2-7B", "SanjiWatsuki/Kunoichi-7B"], "pipeline_tag": "text-generation"}
grimjim/kunoichi-squared-model_stock-7B
null
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2403.19522", "base_model:mistralai/Mistral-7B-v0.1", "base_model:SanjiWatsuki/Kunoichi-DPO-v2-7B", "base_model:SanjiWatsuki/Kunoichi-7B", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T04:54:01+00:00
[ "2403.19522" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #mergekit #merge #arxiv-2403.19522 #base_model-mistralai/Mistral-7B-v0.1 #base_model-SanjiWatsuki/Kunoichi-DPO-v2-7B #base_model-SanjiWatsuki/Kunoichi-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# kunoichi-squared-model_stock-7B This is a merge of pre-trained language models created using mergekit. The base model used is literally the base model. While the result is syntactically stable, there was something about the resulting narrative generation that seemed off. Perhaps more than 2 models are required for successful model stock merges. Tested primarily with temperature 1-1.1 and minP 1.01-1.03 using ChatML prompts. ## Merge Details ### Merge Method This model was merged using the Model Stock merge method using mistralai/Mistral-7B-v0.1 as a base. ### Models Merged The following models were included in the merge: * SanjiWatsuki/Kunoichi-DPO-v2-7B * SanjiWatsuki/Kunoichi-7B ### Configuration The following YAML configuration was used to produce this model:
[ "# kunoichi-squared-model_stock-7B\n\nThis is a merge of pre-trained language models created using mergekit. The base model used is literally the base model. While the result is syntactically stable, there was something about the resulting narrative generation that seemed off. Perhaps more than 2 models are required for successful model stock merges. Tested primarily with temperature 1-1.1 and minP 1.01-1.03 using ChatML prompts.", "## Merge Details", "### Merge Method\n\nThis model was merged using the Model Stock merge method using mistralai/Mistral-7B-v0.1 as a base.", "### Models Merged\n\nThe following models were included in the merge:\n* SanjiWatsuki/Kunoichi-DPO-v2-7B\n* SanjiWatsuki/Kunoichi-7B", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #arxiv-2403.19522 #base_model-mistralai/Mistral-7B-v0.1 #base_model-SanjiWatsuki/Kunoichi-DPO-v2-7B #base_model-SanjiWatsuki/Kunoichi-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# kunoichi-squared-model_stock-7B\n\nThis is a merge of pre-trained language models created using mergekit. The base model used is literally the base model. While the result is syntactically stable, there was something about the resulting narrative generation that seemed off. Perhaps more than 2 models are required for successful model stock merges. Tested primarily with temperature 1-1.1 and minP 1.01-1.03 using ChatML prompts.", "## Merge Details", "### Merge Method\n\nThis model was merged using the Model Stock merge method using mistralai/Mistral-7B-v0.1 as a base.", "### Models Merged\n\nThe following models were included in the merge:\n* SanjiWatsuki/Kunoichi-DPO-v2-7B\n* SanjiWatsuki/Kunoichi-7B", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-7b-chat-25000-50-50-L This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2200 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4400 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.33.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.13.3
{"tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "meta-llama/Llama-2-7b-chat-hf", "model-index": [{"name": "llama-7b-chat-25000-50-50-L", "results": []}]}
Niyantha23M/llama-7b-chat-25000-50-50-L
null
[ "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-04-12T04:54:25+00:00
[]
[]
TAGS #trl #sft #generated_from_trainer #dataset-generator #base_model-meta-llama/Llama-2-7b-chat-hf #region-us
# llama-7b-chat-25000-50-50-L This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2200 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4400 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.33.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.13.3
[ "# llama-7b-chat-25000-50-50-L\n\nThis model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2200\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 4400\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.33.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.13.3" ]
[ "TAGS\n#trl #sft #generated_from_trainer #dataset-generator #base_model-meta-llama/Llama-2-7b-chat-hf #region-us \n", "# llama-7b-chat-25000-50-50-L\n\nThis model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2200\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 4400\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.33.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.13.3" ]
null
peft
# Saiga 7B finetuned for function calling Based on [IlyaGusev/saiga_7b_lora](https://huggingface.co/IlyaGusev/saiga_7b_lora). This is an adapter-only version. # Usage [Google Colab notebook with example usage](https://colab.research.google.com/drive/1Uagjh6utTUD0s0crqVuhi8mPSwbP1rof?usp=sharing)
{"language": ["ru"], "library_name": "peft", "datasets": ["korotkov/glaive-function-calling-v2-ru-parsed"], "base_model": "huggyllama/llama-7b"}
korotkov/saiga-7b-function-calling
null
[ "peft", "safetensors", "ru", "dataset:korotkov/glaive-function-calling-v2-ru-parsed", "base_model:huggyllama/llama-7b", "region:us" ]
null
2024-04-12T04:58:03+00:00
[]
[ "ru" ]
TAGS #peft #safetensors #ru #dataset-korotkov/glaive-function-calling-v2-ru-parsed #base_model-huggyllama/llama-7b #region-us
# Saiga 7B finetuned for function calling Based on IlyaGusev/saiga_7b_lora. This is an adapter-only version. # Usage Google Colab notebook with example usage
[ "# Saiga 7B finetuned for function calling\n\nBased on IlyaGusev/saiga_7b_lora.\n\nThis is an adapter-only version.", "# Usage\n\nGoogle Colab notebook with example usage" ]
[ "TAGS\n#peft #safetensors #ru #dataset-korotkov/glaive-function-calling-v2-ru-parsed #base_model-huggyllama/llama-7b #region-us \n", "# Saiga 7B finetuned for function calling\n\nBased on IlyaGusev/saiga_7b_lora.\n\nThis is an adapter-only version.", "# Usage\n\nGoogle Colab notebook with example usage" ]
null
transformers
# DavidAU/Maiden-Unquirked-20B-Q6_K-GGUF This model was converted to GGUF format from [`ND911/Maiden-Unquirked-20B`](https://huggingface.co/ND911/Maiden-Unquirked-20B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ND911/Maiden-Unquirked-20B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Maiden-Unquirked-20B-Q6_K-GGUF --model maiden-unquirked-20b.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Maiden-Unquirked-20B-Q6_K-GGUF --model maiden-unquirked-20b.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m maiden-unquirked-20b.Q6_K.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo"], "base_model": ["TeeZee/BigMaid-20B-v1.0", "TeeZee/DarkForest-20B-v2.0", "athirdpath/Harmonia-20B"]}
DavidAU/Maiden-Unquirked-20B-Q6_K-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo", "base_model:TeeZee/BigMaid-20B-v1.0", "base_model:TeeZee/DarkForest-20B-v2.0", "base_model:athirdpath/Harmonia-20B", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:02:29+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-TeeZee/BigMaid-20B-v1.0 #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Harmonia-20B #endpoints_compatible #region-us
# DavidAU/Maiden-Unquirked-20B-Q6_K-GGUF This model was converted to GGUF format from 'ND911/Maiden-Unquirked-20B' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Maiden-Unquirked-20B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Maiden-Unquirked-20B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-TeeZee/BigMaid-20B-v1.0 #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Harmonia-20B #endpoints_compatible #region-us \n", "# DavidAU/Maiden-Unquirked-20B-Q6_K-GGUF\nThis model was converted to GGUF format from 'ND911/Maiden-Unquirked-20B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # art-bert-base-cased This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.6432 | 3.23 | 100 | 5.8478 | | 5.651 | 6.45 | 200 | 5.5368 | | 5.1511 | 9.68 | 300 | 5.2206 | | 4.77 | 12.9 | 400 | 4.9162 | | 4.449 | 16.13 | 500 | 4.8133 | | 4.18 | 19.35 | 600 | 4.5716 | | 3.9485 | 22.58 | 700 | 4.3972 | | 3.6496 | 25.81 | 800 | 4.2725 | | 3.4384 | 29.03 | 900 | 4.1514 | | 3.2557 | 32.26 | 1000 | 4.1532 | | 3.0924 | 35.48 | 1100 | 3.9699 | | 2.8789 | 38.71 | 1200 | 3.8153 | | 2.7001 | 41.94 | 1300 | 3.8936 | | 2.5654 | 45.16 | 1400 | 3.8185 | | 2.4543 | 48.39 | 1500 | 3.9040 | | 2.2817 | 51.61 | 1600 | 3.7283 | | 2.2239 | 54.84 | 1700 | 3.6337 | | 2.1119 | 58.06 | 1800 | 3.7746 | | 1.9952 | 61.29 | 1900 | 3.5909 | | 1.9466 | 64.52 | 2000 | 3.5679 | | 1.8244 | 67.74 | 2100 | 3.6370 | | 1.7837 | 70.97 | 2200 | 3.6295 | | 1.6972 | 74.19 | 2300 | 3.6373 | | 1.6845 | 77.42 | 2400 | 3.4213 | | 1.6453 | 80.65 | 2500 | 3.5497 | | 1.5759 | 83.87 | 2600 | 3.5886 | | 1.5506 | 87.1 | 2700 | 3.4016 | | 1.5294 | 90.32 | 2800 | 3.3665 | | 1.4915 | 93.55 | 2900 | 3.3038 | | 1.5035 | 96.77 | 3000 | 3.3139 | | 1.4601 | 100.0 | 3100 | 3.5202 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "bert-base-cased", "model-index": [{"name": "art-bert-base-cased", "results": []}]}
bencyc1129/art-bert-base-cased
null
[ "transformers", "tensorboard", "safetensors", "bert", "fill-mask", "generated_from_trainer", "base_model:bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:03:48+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #fill-mask #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
art-bert-base-cased =================== This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 3.5202 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 100 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #fill-mask #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_5 This model is a fine-tuned version of [ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4](https://huggingface.co/ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4", "model-index": [{"name": "0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_5", "results": []}]}
ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_5
null
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:updated", "dataset:original", "base_model:ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T05:07:27+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# 0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_5 This model is a fine-tuned version of ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4 on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
[ "# 0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_5\n\nThis model is a fine-tuned version of ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4 on the updated and the original datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 128\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# 0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_5\n\nThis model is a fine-tuned version of ZhangShenao/0.0001_idpo_same_nodpo_noreplacerej_6iters_iter_4 on the updated and the original datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 128\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # art-gpt2-base This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.0920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.6246 | 3.23 | 100 | 6.0652 | | 5.5673 | 6.45 | 200 | 5.5941 | | 4.8544 | 9.68 | 300 | 5.2210 | | 4.1301 | 12.9 | 400 | 4.9281 | | 3.4252 | 16.13 | 500 | 4.8584 | | 2.8133 | 19.35 | 600 | 4.8369 | | 2.2897 | 22.58 | 700 | 4.8968 | | 1.8635 | 25.81 | 800 | 5.0623 | | 1.4989 | 29.03 | 900 | 5.1647 | | 1.1677 | 32.26 | 1000 | 5.3719 | | 0.9198 | 35.48 | 1100 | 5.4282 | | 0.7353 | 38.71 | 1200 | 5.6292 | | 0.6025 | 41.94 | 1300 | 5.6874 | | 0.5122 | 45.16 | 1400 | 5.7219 | | 0.432 | 48.39 | 1500 | 5.8266 | | 0.3801 | 51.61 | 1600 | 5.8598 | | 0.3457 | 54.84 | 1700 | 5.9109 | | 0.3131 | 58.06 | 1800 | 5.9386 | | 0.2904 | 61.29 | 1900 | 5.9634 | | 0.265 | 64.52 | 2000 | 5.9652 | | 0.2526 | 67.74 | 2100 | 5.9944 | | 0.2363 | 70.97 | 2200 | 6.0083 | | 0.2276 | 74.19 | 2300 | 6.0417 | | 0.2155 | 77.42 | 2400 | 6.0281 | | 0.2083 | 80.65 | 2500 | 6.0560 | | 0.2056 | 83.87 | 2600 | 6.0612 | | 0.2008 | 87.1 | 2700 | 6.0770 | | 0.1958 | 90.32 | 2800 | 6.0843 | | 0.192 | 93.55 | 2900 | 6.0831 | | 0.1889 | 96.77 | 3000 | 6.0930 | | 0.1881 | 100.0 | 3100 | 6.0920 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "gpt2", "model-index": [{"name": "art-gpt2-base", "results": []}]}
bencyc1129/art-gpt2-base
null
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T05:08:30+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-gpt2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
art-gpt2-base ============= This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 6.0920 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 100 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-gpt2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
null
null
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) gemma-2b - GGUF - Model creator: https://huggingface.co/google/ - Original model: https://huggingface.co/google/gemma-2b/ | Name | Quant method | Size | | ---- | ---- | ---- | | [gemma-2b.Q2_K.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q2_K.gguf) | Q2_K | 1.08GB | | [gemma-2b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.IQ3_XS.gguf) | IQ3_XS | 1.16GB | | [gemma-2b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.IQ3_S.gguf) | IQ3_S | 1.2GB | | [gemma-2b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q3_K_S.gguf) | Q3_K_S | 1.2GB | | [gemma-2b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.IQ3_M.gguf) | IQ3_M | 1.22GB | | [gemma-2b.Q3_K.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q3_K.gguf) | Q3_K | 1.29GB | | [gemma-2b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q3_K_M.gguf) | Q3_K_M | 1.29GB | | [gemma-2b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q3_K_L.gguf) | Q3_K_L | 1.36GB | | [gemma-2b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.IQ4_XS.gguf) | IQ4_XS | 1.4GB | | [gemma-2b.Q4_0.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q4_0.gguf) | Q4_0 | 1.44GB | | [gemma-2b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.IQ4_NL.gguf) | IQ4_NL | 1.45GB | | [gemma-2b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q4_K_S.gguf) | Q4_K_S | 1.45GB | | [gemma-2b.Q4_K.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q4_K.gguf) | Q4_K | 1.52GB | | [gemma-2b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q4_K_M.gguf) | Q4_K_M | 1.52GB | | [gemma-2b.Q4_1.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q4_1.gguf) | Q4_1 | 1.56GB | | [gemma-2b.Q5_0.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q5_0.gguf) | Q5_0 | 1.68GB | | [gemma-2b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q5_K_S.gguf) | Q5_K_S | 1.68GB | | [gemma-2b.Q5_K.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q5_K.gguf) | Q5_K | 1.71GB | | [gemma-2b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q5_K_M.gguf) | Q5_K_M | 1.71GB | | [gemma-2b.Q5_1.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q5_1.gguf) | Q5_1 | 1.79GB | | [gemma-2b.Q6_K.gguf](https://huggingface.co/RichardErkhov/google_-_gemma-2b-gguf/blob/main/gemma-2b.Q6_K.gguf) | Q6_K | 1.92GB | Original model description: --- library_name: transformers extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma --- # Gemma Model Card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) This model card corresponds to the 2B base version of the Gemma model. You can also visit the model card of the [7B base model](https://huggingface.co/google/gemma-7b), [7B instruct model](https://huggingface.co/google/gemma-7b-it), and [2B instruct model](https://huggingface.co/google/gemma-2b-it). **Resources and Technical Documentation**: * [Gemma Technical Report](https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf) * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma) * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-2b-gg-hf) **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Context Length Models are trained on a context length of 8192 tokens. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Fine-tuning the model You can find fine-tuning scripts and notebook under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples) of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) repository. To adapt it to this model, simply change the model-id to `google/gemma-2b`. In that repository, we provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset #### Running the model on a CPU ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a GPU using different precisions * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", revision="float16") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.bfloat16) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources, totaling 6 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safely in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ml-pathways). JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models](https://ai.google/discover/foundation-models/), including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 | | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 | | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 49.7 | 51.8 | | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 | | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 | | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 | | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 | | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 | | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 | | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | 12.5 | 23 | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 | | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 | | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 | | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 | | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 | | ------------------------------ | ------------- | ----------- | --------- | | **Average** | | **45.0** | **56.9** | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2). * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. **Update**: These numbers reflect the new numbers from the updated v1.1 IT models. For the original v1 numbers, please consult the technical report's appendix for the results. | Benchmark | Metric | Gemma v1.1 IT 2B | Gemma v1.1 IT 7B | | ------------------------------ | ------------- | ----------- | --------- | | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 | | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 | | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 | | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 | | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 | | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 31.81 | 44.84 | | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 | | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 | | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 | | ------------------------------ | ------------- | ----------- | --------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible). * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy). * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
{}
RichardErkhov/google_-_gemma-2b-gguf
null
[ "gguf", "arxiv:2312.11805", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:1804.06876", "arxiv:2110.08193", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:2203.09509", "region:us" ]
null
2024-04-12T05:10:45+00:00
[ "2312.11805", "2009.03300", "1905.07830", "1911.11641", "1904.09728", "1905.10044", "1907.10641", "1811.00937", "1809.02789", "1911.01547", "1705.03551", "2107.03374", "2108.07732", "2110.14168", "2304.06364", "2206.04615", "1804.06876", "2110.08193", "2009.11462", "2101.11718", "1804.09301", "2109.07958", "2203.09509" ]
[]
TAGS #gguf #arxiv-2312.11805 #arxiv-2009.03300 #arxiv-1905.07830 #arxiv-1911.11641 #arxiv-1904.09728 #arxiv-1905.10044 #arxiv-1907.10641 #arxiv-1811.00937 #arxiv-1809.02789 #arxiv-1911.01547 #arxiv-1705.03551 #arxiv-2107.03374 #arxiv-2108.07732 #arxiv-2110.14168 #arxiv-2304.06364 #arxiv-2206.04615 #arxiv-1804.06876 #arxiv-2110.08193 #arxiv-2009.11462 #arxiv-2101.11718 #arxiv-1804.09301 #arxiv-2109.07958 #arxiv-2203.09509 #region-us
Quantization made by Richard Erkhov. Github Discord Request more models gemma-2b - GGUF * Model creator: URL * Original model: URL Name: gemma-2b.Q2\_K.gguf, Quant method: Q2\_K, Size: 1.08GB Name: gemma-2b.IQ3\_XS.gguf, Quant method: IQ3\_XS, Size: 1.16GB Name: gemma-2b.IQ3\_S.gguf, Quant method: IQ3\_S, Size: 1.2GB Name: gemma-2b.Q3\_K\_S.gguf, Quant method: Q3\_K\_S, Size: 1.2GB Name: gemma-2b.IQ3\_M.gguf, Quant method: IQ3\_M, Size: 1.22GB Name: gemma-2b.Q3\_K.gguf, Quant method: Q3\_K, Size: 1.29GB Name: gemma-2b.Q3\_K\_M.gguf, Quant method: Q3\_K\_M, Size: 1.29GB Name: gemma-2b.Q3\_K\_L.gguf, Quant method: Q3\_K\_L, Size: 1.36GB Name: gemma-2b.IQ4\_XS.gguf, Quant method: IQ4\_XS, Size: 1.4GB Name: gemma-2b.Q4\_0.gguf, Quant method: Q4\_0, Size: 1.44GB Name: gemma-2b.IQ4\_NL.gguf, Quant method: IQ4\_NL, Size: 1.45GB Name: gemma-2b.Q4\_K\_S.gguf, Quant method: Q4\_K\_S, Size: 1.45GB Name: gemma-2b.Q4\_K.gguf, Quant method: Q4\_K, Size: 1.52GB Name: gemma-2b.Q4\_K\_M.gguf, Quant method: Q4\_K\_M, Size: 1.52GB Name: gemma-2b.Q4\_1.gguf, Quant method: Q4\_1, Size: 1.56GB Name: gemma-2b.Q5\_0.gguf, Quant method: Q5\_0, Size: 1.68GB Name: gemma-2b.Q5\_K\_S.gguf, Quant method: Q5\_K\_S, Size: 1.68GB Name: gemma-2b.Q5\_K.gguf, Quant method: Q5\_K, Size: 1.71GB Name: gemma-2b.Q5\_K\_M.gguf, Quant method: Q5\_K\_M, Size: 1.71GB Name: gemma-2b.Q5\_1.gguf, Quant method: Q5\_1, Size: 1.79GB Name: gemma-2b.Q6\_K.gguf, Quant method: Q6\_K, Size: 1.92GB Original model description: --------------------------- library\_name: transformers extra\_gated\_heading: Access Gemma on Hugging Face extra\_gated\_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra\_gated\_button\_content: Acknowledge license license: gemma ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Gemma Model Card ================ Model Page: Gemma This model card corresponds to the 2B base version of the Gemma model. You can also visit the model card of the 7B base model, 7B instruct model, and 2B instruct model. Resources and Technical Documentation: * Gemma Technical Report * Responsible Generative AI Toolkit * Gemma on Kaggle * Gemma on Vertex Model Garden Terms of Use: Terms Authors: Google Model Information ----------------- Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Context Length Models are trained on a context length of 8192 tokens. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to 'pip install -U transformers', then copy the snippet from the section that is relevant for your usecase. #### Fine-tuning the model You can find fine-tuning scripts and notebook under the 'examples/' directory of 'google/gemma-7b' repository. To adapt it to this model, simply change the model-id to 'google/gemma-2b'. In that repository, we provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset #### Running the model on a CPU #### Running the model on a single / multi GPU #### Running the model on a GPU using different precisions * *Using 'torch.float16'* * *Using 'torch.bfloat16'* #### Quantized Versions through 'bitsandbytes' * *Using 8-bit precision (int8)* * *Using 4-bit precision* #### Other optimizations * *Flash Attention 2* First make sure to install 'flash-attn' in your environment 'pip install flash-attn' ### Inputs and outputs * Input: Text string, such as a question, a prompt, or a document to be summarized. * Output: Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. Model Data ---------- Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources, totaling 6 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safely in line with our policies. Implementation Information -------------------------- Details about the model internals. ### Hardware Gemma was trained using the latest generation of Tensor Processing Unit (TPU) hardware (TPUv5e). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with Google's commitments to operate sustainably. ### Software Training was done using JAX and ML Pathways. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for foundation models, including large language models like these ones. Together, JAX and ML Pathways are used as described in the paper about the Gemini family of models; "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." Evaluation ---------- Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: Ethics and Safety ----------------- Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as WinoBias and BBQ Dataset. * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting internal policies for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. Update: These numbers reflect the new numbers from the updated v1.1 IT models. For the original v1 numbers, please consult the technical report's appendix for the results. Usage and Limitations --------------------- These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication + Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. + Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. + Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education + Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. + Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. + Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data + The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. + The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity + LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. + A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance + Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy + LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense + LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness + LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse + LLMs can be misused to generate text that is false, misleading, or harmful. + Guidelines are provided for responsible use with the model, see the Responsible Generative AI Toolkit. * Transparency and Accountability: + This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. + A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the Gemma Prohibited Use Policy. * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
[ "### Description\n\n\nGemma is a family of lightweight, state-of-the-art open models from Google,\nbuilt from the same research and technology used to create the Gemini models.\nThey are text-to-text, decoder-only large language models, available in English,\nwith open weights, pre-trained variants, and instruction-tuned variants. Gemma\nmodels are well-suited for a variety of text generation tasks, including\nquestion answering, summarization, and reasoning. Their relatively small size\nmakes it possible to deploy them in environments with limited resources such as\na laptop, desktop or your own cloud infrastructure, democratizing access to\nstate of the art AI models and helping foster innovation for everyone.", "### Context Length\n\n\nModels are trained on a context length of 8192 tokens.", "### Usage\n\n\nBelow we share some code snippets on how to get quickly started with running the model. First make sure to 'pip install -U transformers', then copy the snippet from the section that is relevant for your usecase.", "#### Fine-tuning the model\n\n\nYou can find fine-tuning scripts and notebook under the 'examples/' directory of 'google/gemma-7b' repository. To adapt it to this model, simply change the model-id to 'google/gemma-2b'.\nIn that repository, we provide:\n\n\n* A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA\n* A script to perform SFT using FSDP on TPU devices\n* A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset", "#### Running the model on a CPU", "#### Running the model on a single / multi GPU", "#### Running the model on a GPU using different precisions\n\n\n* *Using 'torch.float16'*\n* *Using 'torch.bfloat16'*", "#### Quantized Versions through 'bitsandbytes'\n\n\n* *Using 8-bit precision (int8)*\n* *Using 4-bit precision*", "#### Other optimizations\n\n\n* *Flash Attention 2*\n\n\nFirst make sure to install 'flash-attn' in your environment 'pip install flash-attn'", "### Inputs and outputs\n\n\n* Input: Text string, such as a question, a prompt, or a document to be\nsummarized.\n* Output: Generated English-language text in response to the input, such\nas an answer to a question, or a summary of a document.\n\n\nModel Data\n----------\n\n\nData used for model training and how the data was processed.", "### Training Dataset\n\n\nThese models were trained on a dataset of text data that includes a wide variety\nof sources, totaling 6 trillion tokens. Here are the key components:\n\n\n* Web Documents: A diverse collection of web text ensures the model is exposed\nto a broad range of linguistic styles, topics, and vocabulary. Primarily\nEnglish-language content.\n* Code: Exposing the model to code helps it to learn the syntax and patterns of\nprogramming languages, which improves its ability to generate code or\nunderstand code-related questions.\n* Mathematics: Training on mathematical text helps the model learn logical\nreasoning, symbolic representation, and to address mathematical queries.\n\n\nThe combination of these diverse data sources is crucial for training a powerful\nlanguage model that can handle a wide variety of different tasks and text\nformats.", "### Data Preprocessing\n\n\nHere are the key data cleaning and filtering methods applied to the training\ndata:\n\n\n* CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was\napplied at multiple stages in the data preparation process to ensure the\nexclusion of harmful and illegal content\n* Sensitive Data Filtering: As part of making Gemma pre-trained models safe and\nreliable, automated techniques were used to filter out certain personal\ninformation and other sensitive data from training sets.\n* Additional methods: Filtering based on content quality and safely in line with\nour policies.\n\n\nImplementation Information\n--------------------------\n\n\nDetails about the model internals.", "### Hardware\n\n\nGemma was trained using the latest generation of\nTensor Processing Unit (TPU) hardware (TPUv5e).\n\n\nTraining large language models requires significant computational power. TPUs,\ndesigned specifically for matrix operations common in machine learning, offer\nseveral advantages in this domain:\n\n\n* Performance: TPUs are specifically designed to handle the massive computations\ninvolved in training LLMs. They can speed up training considerably compared to\nCPUs.\n* Memory: TPUs often come with large amounts of high-bandwidth memory, allowing\nfor the handling of large models and batch sizes during training. This can\nlead to better model quality.\n* Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for\nhandling the growing complexity of large foundation models. You can distribute\ntraining across multiple TPU devices for faster and more efficient processing.\n* Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective\nsolution for training large models compared to CPU-based infrastructure,\nespecially when considering the time and resources saved due to faster\ntraining.\n* These advantages are aligned with\nGoogle's commitments to operate sustainably.", "### Software\n\n\nTraining was done using JAX and ML Pathways.\n\n\nJAX allows researchers to take advantage of the latest generation of hardware,\nincluding TPUs, for faster and more efficient training of large models.\n\n\nML Pathways is Google's latest effort to build artificially intelligent systems\ncapable of generalizing across multiple tasks. This is specially suitable for\nfoundation models, including large language models like\nthese ones.\n\n\nTogether, JAX and ML Pathways are used as described in the\npaper about the Gemini family of models; \"the 'single\ncontroller' programming model of Jax and Pathways allows a single Python\nprocess to orchestrate the entire training run, dramatically simplifying the\ndevelopment workflow.\"\n\n\nEvaluation\n----------\n\n\nModel evaluation metrics and results.", "### Benchmark Results\n\n\nThese models were evaluated against a large collection of different datasets and\nmetrics to cover different aspects of text generation:\n\n\n\nEthics and Safety\n-----------------\n\n\nEthics and safety evaluation approach and results.", "### Evaluation Approach\n\n\nOur evaluation methods include structured evaluations and internal red-teaming\ntesting of relevant content policies. Red-teaming was conducted by a number of\ndifferent teams, each with different goals and human evaluation metrics. These\nmodels were evaluated against a number of different categories relevant to\nethics and safety, including:\n\n\n* Text-to-Text Content Safety: Human evaluation on prompts covering safety\npolicies including child sexual abuse and exploitation, harassment, violence\nand gore, and hate speech.\n* Text-to-Text Representational Harms: Benchmark against relevant academic\ndatasets such as WinoBias and BBQ Dataset.\n* Memorization: Automated evaluation of memorization of training data, including\nthe risk of personally identifiable information exposure.\n* Large-scale harm: Tests for \"dangerous capabilities,\" such as chemical,\nbiological, radiological, and nuclear (CBRN) risks.", "### Evaluation Results\n\n\nThe results of ethics and safety evaluations are within acceptable thresholds\nfor meeting internal policies for categories such as child\nsafety, content safety, representational harms, memorization, large-scale harms.\nOn top of robust internal evaluations, the results of well known safety\nbenchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA\nare shown here.\n\n\nUpdate: These numbers reflect the new numbers from the updated v1.1 IT models. For the original v1 numbers, please consult the technical report's appendix for the results.\n\n\n\nUsage and Limitations\n---------------------\n\n\nThese models have certain limitations that users should be aware of.", "### Intended Usage\n\n\nOpen Large Language Models (LLMs) have a wide range of applications across\nvarious industries and domains. The following list of potential uses is not\ncomprehensive. The purpose of this list is to provide contextual information\nabout the possible use-cases that the model creators considered as part of model\ntraining and development.\n\n\n* Content Creation and Communication\n\t+ Text Generation: These models can be used to generate creative text formats\n\tsuch as poems, scripts, code, marketing copy, and email drafts.\n\t+ Chatbots and Conversational AI: Power conversational interfaces for customer\n\tservice, virtual assistants, or interactive applications.\n\t+ Text Summarization: Generate concise summaries of a text corpus, research\n\tpapers, or reports.\n* Research and Education\n\t+ Natural Language Processing (NLP) Research: These models can serve as a\n\tfoundation for researchers to experiment with NLP techniques, develop\n\talgorithms, and contribute to the advancement of the field.\n\t+ Language Learning Tools: Support interactive language learning experiences,\n\taiding in grammar correction or providing writing practice.\n\t+ Knowledge Exploration: Assist researchers in exploring large bodies of text\n\tby generating summaries or answering questions about specific topics.", "### Limitations\n\n\n* Training Data\n\t+ The quality and diversity of the training data significantly influence the\n\tmodel's capabilities. Biases or gaps in the training data can lead to\n\tlimitations in the model's responses.\n\t+ The scope of the training dataset determines the subject areas the model can\n\thandle effectively.\n* Context and Task Complexity\n\t+ LLMs are better at tasks that can be framed with clear prompts and\n\tinstructions. Open-ended or highly complex tasks might be challenging.\n\t+ A model's performance can be influenced by the amount of context provided\n\t(longer context generally leads to better outputs, up to a certain point).\n* Language Ambiguity and Nuance\n\t+ Natural language is inherently complex. LLMs might struggle to grasp subtle\n\tnuances, sarcasm, or figurative language.\n* Factual Accuracy\n\t+ LLMs generate responses based on information they learned from their\n\ttraining datasets, but they are not knowledge bases. They may generate\n\tincorrect or outdated factual statements.\n* Common Sense\n\t+ LLMs rely on statistical patterns in language. They might lack the ability\n\tto apply common sense reasoning in certain situations.", "### Ethical Considerations and Risks\n\n\nThe development of large language models (LLMs) raises several ethical concerns.\nIn creating an open model, we have carefully considered the following:\n\n\n* Bias and Fairness\n\t+ LLMs trained on large-scale, real-world text data can reflect socio-cultural\n\tbiases embedded in the training material. These models underwent careful\n\tscrutiny, input data pre-processing described and posterior evaluations\n\treported in this card.\n* Misinformation and Misuse\n\t+ LLMs can be misused to generate text that is false, misleading, or harmful.\n\t+ Guidelines are provided for responsible use with the model, see the\n\tResponsible Generative AI Toolkit.\n* Transparency and Accountability:\n\t+ This model card summarizes details on the models' architecture,\n\tcapabilities, limitations, and evaluation processes.\n\t+ A responsibly developed open model offers the opportunity to share\n\tinnovation by making LLM technology accessible to developers and researchers\n\tacross the AI ecosystem.\n\n\nRisks identified and mitigations:\n\n\n* Perpetuation of biases: It's encouraged to perform continuous monitoring\n(using evaluation metrics, human review) and the exploration of de-biasing\ntechniques during model training, fine-tuning, and other use cases.\n* Generation of harmful content: Mechanisms and guidelines for content safety\nare essential. Developers are encouraged to exercise caution and implement\nappropriate content safety safeguards based on their specific product policies\nand application use cases.\n* Misuse for malicious purposes: Technical limitations and developer and\nend-user education can help mitigate against malicious applications of LLMs.\nEducational resources and reporting mechanisms for users to flag misuse are\nprovided. Prohibited uses of Gemma models are outlined in the\nGemma Prohibited Use Policy.\n* Privacy violations: Models were trained on data filtered for removal of PII\n(Personally Identifiable Information). Developers are encouraged to adhere to\nprivacy regulations with privacy-preserving techniques.", "### Benefits\n\n\nAt the time of release, this family of models provides high-performance open\nlarge language model implementations designed from the ground up for Responsible\nAI development compared to similarly sized models.\n\n\nUsing the benchmark evaluation metrics described in this document, these models\nhave shown to provide superior performance to other, comparably-sized open model\nalternatives." ]
[ "TAGS\n#gguf #arxiv-2312.11805 #arxiv-2009.03300 #arxiv-1905.07830 #arxiv-1911.11641 #arxiv-1904.09728 #arxiv-1905.10044 #arxiv-1907.10641 #arxiv-1811.00937 #arxiv-1809.02789 #arxiv-1911.01547 #arxiv-1705.03551 #arxiv-2107.03374 #arxiv-2108.07732 #arxiv-2110.14168 #arxiv-2304.06364 #arxiv-2206.04615 #arxiv-1804.06876 #arxiv-2110.08193 #arxiv-2009.11462 #arxiv-2101.11718 #arxiv-1804.09301 #arxiv-2109.07958 #arxiv-2203.09509 #region-us \n", "### Description\n\n\nGemma is a family of lightweight, state-of-the-art open models from Google,\nbuilt from the same research and technology used to create the Gemini models.\nThey are text-to-text, decoder-only large language models, available in English,\nwith open weights, pre-trained variants, and instruction-tuned variants. Gemma\nmodels are well-suited for a variety of text generation tasks, including\nquestion answering, summarization, and reasoning. Their relatively small size\nmakes it possible to deploy them in environments with limited resources such as\na laptop, desktop or your own cloud infrastructure, democratizing access to\nstate of the art AI models and helping foster innovation for everyone.", "### Context Length\n\n\nModels are trained on a context length of 8192 tokens.", "### Usage\n\n\nBelow we share some code snippets on how to get quickly started with running the model. First make sure to 'pip install -U transformers', then copy the snippet from the section that is relevant for your usecase.", "#### Fine-tuning the model\n\n\nYou can find fine-tuning scripts and notebook under the 'examples/' directory of 'google/gemma-7b' repository. To adapt it to this model, simply change the model-id to 'google/gemma-2b'.\nIn that repository, we provide:\n\n\n* A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA\n* A script to perform SFT using FSDP on TPU devices\n* A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset", "#### Running the model on a CPU", "#### Running the model on a single / multi GPU", "#### Running the model on a GPU using different precisions\n\n\n* *Using 'torch.float16'*\n* *Using 'torch.bfloat16'*", "#### Quantized Versions through 'bitsandbytes'\n\n\n* *Using 8-bit precision (int8)*\n* *Using 4-bit precision*", "#### Other optimizations\n\n\n* *Flash Attention 2*\n\n\nFirst make sure to install 'flash-attn' in your environment 'pip install flash-attn'", "### Inputs and outputs\n\n\n* Input: Text string, such as a question, a prompt, or a document to be\nsummarized.\n* Output: Generated English-language text in response to the input, such\nas an answer to a question, or a summary of a document.\n\n\nModel Data\n----------\n\n\nData used for model training and how the data was processed.", "### Training Dataset\n\n\nThese models were trained on a dataset of text data that includes a wide variety\nof sources, totaling 6 trillion tokens. Here are the key components:\n\n\n* Web Documents: A diverse collection of web text ensures the model is exposed\nto a broad range of linguistic styles, topics, and vocabulary. Primarily\nEnglish-language content.\n* Code: Exposing the model to code helps it to learn the syntax and patterns of\nprogramming languages, which improves its ability to generate code or\nunderstand code-related questions.\n* Mathematics: Training on mathematical text helps the model learn logical\nreasoning, symbolic representation, and to address mathematical queries.\n\n\nThe combination of these diverse data sources is crucial for training a powerful\nlanguage model that can handle a wide variety of different tasks and text\nformats.", "### Data Preprocessing\n\n\nHere are the key data cleaning and filtering methods applied to the training\ndata:\n\n\n* CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was\napplied at multiple stages in the data preparation process to ensure the\nexclusion of harmful and illegal content\n* Sensitive Data Filtering: As part of making Gemma pre-trained models safe and\nreliable, automated techniques were used to filter out certain personal\ninformation and other sensitive data from training sets.\n* Additional methods: Filtering based on content quality and safely in line with\nour policies.\n\n\nImplementation Information\n--------------------------\n\n\nDetails about the model internals.", "### Hardware\n\n\nGemma was trained using the latest generation of\nTensor Processing Unit (TPU) hardware (TPUv5e).\n\n\nTraining large language models requires significant computational power. TPUs,\ndesigned specifically for matrix operations common in machine learning, offer\nseveral advantages in this domain:\n\n\n* Performance: TPUs are specifically designed to handle the massive computations\ninvolved in training LLMs. They can speed up training considerably compared to\nCPUs.\n* Memory: TPUs often come with large amounts of high-bandwidth memory, allowing\nfor the handling of large models and batch sizes during training. This can\nlead to better model quality.\n* Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for\nhandling the growing complexity of large foundation models. You can distribute\ntraining across multiple TPU devices for faster and more efficient processing.\n* Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective\nsolution for training large models compared to CPU-based infrastructure,\nespecially when considering the time and resources saved due to faster\ntraining.\n* These advantages are aligned with\nGoogle's commitments to operate sustainably.", "### Software\n\n\nTraining was done using JAX and ML Pathways.\n\n\nJAX allows researchers to take advantage of the latest generation of hardware,\nincluding TPUs, for faster and more efficient training of large models.\n\n\nML Pathways is Google's latest effort to build artificially intelligent systems\ncapable of generalizing across multiple tasks. This is specially suitable for\nfoundation models, including large language models like\nthese ones.\n\n\nTogether, JAX and ML Pathways are used as described in the\npaper about the Gemini family of models; \"the 'single\ncontroller' programming model of Jax and Pathways allows a single Python\nprocess to orchestrate the entire training run, dramatically simplifying the\ndevelopment workflow.\"\n\n\nEvaluation\n----------\n\n\nModel evaluation metrics and results.", "### Benchmark Results\n\n\nThese models were evaluated against a large collection of different datasets and\nmetrics to cover different aspects of text generation:\n\n\n\nEthics and Safety\n-----------------\n\n\nEthics and safety evaluation approach and results.", "### Evaluation Approach\n\n\nOur evaluation methods include structured evaluations and internal red-teaming\ntesting of relevant content policies. Red-teaming was conducted by a number of\ndifferent teams, each with different goals and human evaluation metrics. These\nmodels were evaluated against a number of different categories relevant to\nethics and safety, including:\n\n\n* Text-to-Text Content Safety: Human evaluation on prompts covering safety\npolicies including child sexual abuse and exploitation, harassment, violence\nand gore, and hate speech.\n* Text-to-Text Representational Harms: Benchmark against relevant academic\ndatasets such as WinoBias and BBQ Dataset.\n* Memorization: Automated evaluation of memorization of training data, including\nthe risk of personally identifiable information exposure.\n* Large-scale harm: Tests for \"dangerous capabilities,\" such as chemical,\nbiological, radiological, and nuclear (CBRN) risks.", "### Evaluation Results\n\n\nThe results of ethics and safety evaluations are within acceptable thresholds\nfor meeting internal policies for categories such as child\nsafety, content safety, representational harms, memorization, large-scale harms.\nOn top of robust internal evaluations, the results of well known safety\nbenchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA\nare shown here.\n\n\nUpdate: These numbers reflect the new numbers from the updated v1.1 IT models. For the original v1 numbers, please consult the technical report's appendix for the results.\n\n\n\nUsage and Limitations\n---------------------\n\n\nThese models have certain limitations that users should be aware of.", "### Intended Usage\n\n\nOpen Large Language Models (LLMs) have a wide range of applications across\nvarious industries and domains. The following list of potential uses is not\ncomprehensive. The purpose of this list is to provide contextual information\nabout the possible use-cases that the model creators considered as part of model\ntraining and development.\n\n\n* Content Creation and Communication\n\t+ Text Generation: These models can be used to generate creative text formats\n\tsuch as poems, scripts, code, marketing copy, and email drafts.\n\t+ Chatbots and Conversational AI: Power conversational interfaces for customer\n\tservice, virtual assistants, or interactive applications.\n\t+ Text Summarization: Generate concise summaries of a text corpus, research\n\tpapers, or reports.\n* Research and Education\n\t+ Natural Language Processing (NLP) Research: These models can serve as a\n\tfoundation for researchers to experiment with NLP techniques, develop\n\talgorithms, and contribute to the advancement of the field.\n\t+ Language Learning Tools: Support interactive language learning experiences,\n\taiding in grammar correction or providing writing practice.\n\t+ Knowledge Exploration: Assist researchers in exploring large bodies of text\n\tby generating summaries or answering questions about specific topics.", "### Limitations\n\n\n* Training Data\n\t+ The quality and diversity of the training data significantly influence the\n\tmodel's capabilities. Biases or gaps in the training data can lead to\n\tlimitations in the model's responses.\n\t+ The scope of the training dataset determines the subject areas the model can\n\thandle effectively.\n* Context and Task Complexity\n\t+ LLMs are better at tasks that can be framed with clear prompts and\n\tinstructions. Open-ended or highly complex tasks might be challenging.\n\t+ A model's performance can be influenced by the amount of context provided\n\t(longer context generally leads to better outputs, up to a certain point).\n* Language Ambiguity and Nuance\n\t+ Natural language is inherently complex. LLMs might struggle to grasp subtle\n\tnuances, sarcasm, or figurative language.\n* Factual Accuracy\n\t+ LLMs generate responses based on information they learned from their\n\ttraining datasets, but they are not knowledge bases. They may generate\n\tincorrect or outdated factual statements.\n* Common Sense\n\t+ LLMs rely on statistical patterns in language. They might lack the ability\n\tto apply common sense reasoning in certain situations.", "### Ethical Considerations and Risks\n\n\nThe development of large language models (LLMs) raises several ethical concerns.\nIn creating an open model, we have carefully considered the following:\n\n\n* Bias and Fairness\n\t+ LLMs trained on large-scale, real-world text data can reflect socio-cultural\n\tbiases embedded in the training material. These models underwent careful\n\tscrutiny, input data pre-processing described and posterior evaluations\n\treported in this card.\n* Misinformation and Misuse\n\t+ LLMs can be misused to generate text that is false, misleading, or harmful.\n\t+ Guidelines are provided for responsible use with the model, see the\n\tResponsible Generative AI Toolkit.\n* Transparency and Accountability:\n\t+ This model card summarizes details on the models' architecture,\n\tcapabilities, limitations, and evaluation processes.\n\t+ A responsibly developed open model offers the opportunity to share\n\tinnovation by making LLM technology accessible to developers and researchers\n\tacross the AI ecosystem.\n\n\nRisks identified and mitigations:\n\n\n* Perpetuation of biases: It's encouraged to perform continuous monitoring\n(using evaluation metrics, human review) and the exploration of de-biasing\ntechniques during model training, fine-tuning, and other use cases.\n* Generation of harmful content: Mechanisms and guidelines for content safety\nare essential. Developers are encouraged to exercise caution and implement\nappropriate content safety safeguards based on their specific product policies\nand application use cases.\n* Misuse for malicious purposes: Technical limitations and developer and\nend-user education can help mitigate against malicious applications of LLMs.\nEducational resources and reporting mechanisms for users to flag misuse are\nprovided. Prohibited uses of Gemma models are outlined in the\nGemma Prohibited Use Policy.\n* Privacy violations: Models were trained on data filtered for removal of PII\n(Personally Identifiable Information). Developers are encouraged to adhere to\nprivacy regulations with privacy-preserving techniques.", "### Benefits\n\n\nAt the time of release, this family of models provides high-performance open\nlarge language model implementations designed from the ground up for Responsible\nAI development compared to similarly sized models.\n\n\nUsing the benchmark evaluation metrics described in this document, these models\nhave shown to provide superior performance to other, comparably-sized open model\nalternatives." ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
huzaib/prompt-tokenizer-1
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:13:20+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# DavidAU/StarDust_20B_v0.2-Q5_K_S-GGUF This model was converted to GGUF format from [`Evillain/StarDust_20B_v0.2`](https://huggingface.co/Evillain/StarDust_20B_v0.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Evillain/StarDust_20B_v0.2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/StarDust_20B_v0.2-Q5_K_S-GGUF --model stardust_20b_v0.2.Q5_K_S.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/StarDust_20B_v0.2-Q5_K_S-GGUF --model stardust_20b_v0.2.Q5_K_S.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m stardust_20b_v0.2.Q5_K_S.gguf -n 128 ```
{"license": "other", "library_name": "transformers", "tags": ["mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo"], "base_model": ["Kooten/DaringMaid-20B", "TeeZee/DarkForest-20B-v2.0", "athirdpath/Iambe-RP-v3-20b"], "license_name": "microsoft-research-license", "model-index": [{"name": "StarDust_20B_v0.2", "results": [{"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "AI2 Reasoning Challenge (25-Shot)", "type": "ai2_arc", "config": "ARC-Challenge", "split": "test", "args": {"num_few_shot": 25}}, "metrics": [{"type": "acc_norm", "value": 61.01, "name": "normalized accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "HellaSwag (10-Shot)", "type": "hellaswag", "split": "validation", "args": {"num_few_shot": 10}}, "metrics": [{"type": "acc_norm", "value": 83.76, "name": "normalized accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "MMLU (5-Shot)", "type": "cais/mmlu", "config": "all", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 59.29, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "TruthfulQA (0-shot)", "type": "truthful_qa", "config": "multiple_choice", "split": "validation", "args": {"num_few_shot": 0}}, "metrics": [{"type": "mc2", "value": 51.43}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "Winogrande (5-shot)", "type": "winogrande", "config": "winogrande_xl", "split": "validation", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 77.27, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "GSM8k (5-shot)", "type": "gsm8k", "config": "main", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 24.03, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2", "name": "Open LLM Leaderboard"}}]}]}
DavidAU/StarDust_20B_v0.2-Q5_K_S-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo", "base_model:Kooten/DaringMaid-20B", "base_model:TeeZee/DarkForest-20B-v2.0", "base_model:athirdpath/Iambe-RP-v3-20b", "license:other", "model-index", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:14:51+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-Kooten/DaringMaid-20B #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Iambe-RP-v3-20b #license-other #model-index #endpoints_compatible #region-us
# DavidAU/StarDust_20B_v0.2-Q5_K_S-GGUF This model was converted to GGUF format from 'Evillain/StarDust_20B_v0.2' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/StarDust_20B_v0.2-Q5_K_S-GGUF\nThis model was converted to GGUF format from 'Evillain/StarDust_20B_v0.2' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-Kooten/DaringMaid-20B #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Iambe-RP-v3-20b #license-other #model-index #endpoints_compatible #region-us \n", "# DavidAU/StarDust_20B_v0.2-Q5_K_S-GGUF\nThis model was converted to GGUF format from 'Evillain/StarDust_20B_v0.2' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
unconditional-image-generation
diffusers
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Hws999/sd-class-obama-64') image = pipeline().images[0] image ```
{"license": "mit", "tags": ["pytorch", "diffusers", "unconditional-image-generation", "diffusion-models-class"]}
Hws999/sd-class-obama-64
null
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
null
2024-04-12T05:17:39+00:00
[]
[]
TAGS #diffusers #safetensors #pytorch #unconditional-image-generation #diffusion-models-class #license-mit #diffusers-DDPMPipeline #region-us
# Model Card for Unit 1 of the Diffusion Models Class This model is a diffusion model for unconditional image generation of cute . ## Usage
[ "# Model Card for Unit 1 of the Diffusion Models Class \n\nThis model is a diffusion model for unconditional image generation of cute .", "## Usage" ]
[ "TAGS\n#diffusers #safetensors #pytorch #unconditional-image-generation #diffusion-models-class #license-mit #diffusers-DDPMPipeline #region-us \n", "# Model Card for Unit 1 of the Diffusion Models Class \n\nThis model is a diffusion model for unconditional image generation of cute .", "## Usage" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sid-du/TestModel
null
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T05:18:33+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt_neox #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt_neox #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - yuanhaomichael/zwx <Gallery /> ## Model description These are yuanhaomichael/zwx LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of zwx dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](yuanhaomichael/zwx/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of zwx dog", "widget": []}
yuanhaomichael/zwx
null
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-04-12T05:23:12+00:00
[]
[]
TAGS #diffusers #tensorboard #safetensors #text-to-image #diffusers-training #lora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
# SDXL LoRA DreamBooth - yuanhaomichael/zwx <Gallery /> ## Model description These are yuanhaomichael/zwx LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of zwx dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - yuanhaomichael/zwx\n\n<Gallery />", "## Model description\n\nThese are yuanhaomichael/zwx LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: True.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of zwx dog to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #safetensors #text-to-image #diffusers-training #lora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "# SDXL LoRA DreamBooth - yuanhaomichael/zwx\n\n<Gallery />", "## Model description\n\nThese are yuanhaomichael/zwx LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: True.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of zwx dog to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
null
null
Use these model files with: https://github.com/georgecsaszargit/tortoise_audio_book_creator.git --- license: apache-2.0 ---
{}
csdzs/tortoise-audiobook-creator-finetuned-models
null
[ "region:us" ]
null
2024-04-12T05:23:12+00:00
[]
[]
TAGS #region-us
Use these model files with: URL --- license: apache-2.0 ---
[]
[ "TAGS\n#region-us \n" ]
text-generation
transformers
# Locutusque/SlimHercules-4.0-Mistral-7B-v0.2 AWQ - Model creator: [Locutusque](https://huggingface.co/Locutusque) - Original model: [SlimHercules-4.0-Mistral-7B-v0.2](https://huggingface.co/Locutusque/SlimHercules-4.0-Mistral-7B-v0.2) ![image/png](https://tse3.mm.bing.net/th/id/OIG1.vnrl3xpEcypR3McLW63q?pid=ImgGn) ## Model Summary limHercules-4.0-Mistral-v0.2-7B is a fine-tuned language model derived from Mistralai/Mistral-7B-v0.2. It is specifically designed to excel in instruction following, function calls, and conversational interactions across various scientific and technical domains. The dataset used for fine-tuning, also named hercules-v4.0, expands upon the diverse capabilities of OpenHermes-2.5 with contributions from numerous curated datasets. This fine-tuning has hercules-v4.0 with enhanced abilities in: - Complex Instruction Following: Understanding and accurately executing multi-step instructions, even those involving specialized terminology. - Function Calling: Seamlessly interpreting and executing function calls, providing appropriate input and output values. - Domain-Specific Knowledge: Engaging in informative and educational conversations about Biology, Chemistry, Physics, Mathematics, Medicine, Computer Science, and more. This model is different in the sense that the dataset was shrunk and not shuffled, that way every dataset could be incorporated, without performance loss. This, in theory, should have much better performance in comparison to it's predecessors. ## How to use ### Install the necessary packages ```bash pip install --upgrade autoawq autoawq-kernels ``` ### Example Python code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer model_path = "solidrust/SlimHercules-4.0-Mistral-7B-v0.2-AWQ" system_message = "You are Hercules, incarnated as a powerful AI." # Load model model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant""" prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), return_tensors='pt').input_ids.cuda() # Generate output generation_output = model.generate(tokens, streamer=streamer, max_new_tokens=512) ``` ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code ## Prompt template: ChatML ```plaintext <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ```
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["medical", "science", "biology", "chemistry", "not-for-all-audiences", "quantized", "4-bit", "AWQ", "text-generation", "autotrain_compatible", "endpoints_compatible", "chatml"], "datasets": ["Locutusque/hercules-v4.0"], "model_name": "SlimHercules-4.0-Mistral-7B-v0.2", "model_creator": "Locutusque", "base_model": "alpindale/Mistral-7B-v0.2-hf", "model_type": "mistral", "pipeline_tag": "text-generation", "inference": false, "prompt_template": "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n", "quantized_by": "Suparious"}
solidrust/SlimHercules-4.0-Mistral-7B-v0.2-AWQ
null
[ "transformers", "safetensors", "mistral", "text-generation", "medical", "science", "biology", "chemistry", "not-for-all-audiences", "quantized", "4-bit", "AWQ", "autotrain_compatible", "endpoints_compatible", "chatml", "conversational", "en", "dataset:Locutusque/hercules-v4.0", "base_model:alpindale/Mistral-7B-v0.2-hf", "license:apache-2.0", "text-generation-inference", "region:us" ]
null
2024-04-12T05:24:30+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #medical #science #biology #chemistry #not-for-all-audiences #quantized #4-bit #AWQ #autotrain_compatible #endpoints_compatible #chatml #conversational #en #dataset-Locutusque/hercules-v4.0 #base_model-alpindale/Mistral-7B-v0.2-hf #license-apache-2.0 #text-generation-inference #region-us
# Locutusque/SlimHercules-4.0-Mistral-7B-v0.2 AWQ - Model creator: Locutusque - Original model: SlimHercules-4.0-Mistral-7B-v0.2 !image/png ## Model Summary limHercules-4.0-Mistral-v0.2-7B is a fine-tuned language model derived from Mistralai/Mistral-7B-v0.2. It is specifically designed to excel in instruction following, function calls, and conversational interactions across various scientific and technical domains. The dataset used for fine-tuning, also named hercules-v4.0, expands upon the diverse capabilities of OpenHermes-2.5 with contributions from numerous curated datasets. This fine-tuning has hercules-v4.0 with enhanced abilities in: - Complex Instruction Following: Understanding and accurately executing multi-step instructions, even those involving specialized terminology. - Function Calling: Seamlessly interpreting and executing function calls, providing appropriate input and output values. - Domain-Specific Knowledge: Engaging in informative and educational conversations about Biology, Chemistry, Physics, Mathematics, Medicine, Computer Science, and more. This model is different in the sense that the dataset was shrunk and not shuffled, that way every dataset could be incorporated, without performance loss. This, in theory, should have much better performance in comparison to it's predecessors. ## How to use ### Install the necessary packages ### Example Python code ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - Text Generation Webui - using Loader: AutoAWQ - vLLM - version 0.2.2 or later for support for all model types. - Hugging Face Text Generation Inference (TGI) - Transformers version 4.35.0 and later, from any code or client that supports Transformers - AutoAWQ - for use from Python code ## Prompt template: ChatML
[ "# Locutusque/SlimHercules-4.0-Mistral-7B-v0.2 AWQ\n\n- Model creator: Locutusque\n- Original model: SlimHercules-4.0-Mistral-7B-v0.2\n\n!image/png", "## Model Summary\n\nlimHercules-4.0-Mistral-v0.2-7B is a fine-tuned language model derived from Mistralai/Mistral-7B-v0.2. It is specifically designed to excel in instruction following, function calls, and conversational interactions across various scientific and technical domains. The dataset used for fine-tuning, also named hercules-v4.0, expands upon the diverse capabilities of OpenHermes-2.5 with contributions from numerous curated datasets. This fine-tuning has hercules-v4.0 with enhanced abilities in:\n\n- Complex Instruction Following: Understanding and accurately executing multi-step instructions, even those involving specialized terminology.\n- Function Calling: Seamlessly interpreting and executing function calls, providing appropriate input and output values.\n- Domain-Specific Knowledge: Engaging in informative and educational conversations about Biology, Chemistry, Physics, Mathematics, Medicine, Computer Science, and more.\n\nThis model is different in the sense that the dataset was shrunk and not shuffled, that way every dataset could be incorporated, without performance loss. This, in theory, should have much better performance in comparison to it's predecessors.", "## How to use", "### Install the necessary packages", "### Example Python code", "### About AWQ\n\nAWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.\n\nAWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.\n\nIt is supported by:\n\n- Text Generation Webui - using Loader: AutoAWQ\n- vLLM - version 0.2.2 or later for support for all model types.\n- Hugging Face Text Generation Inference (TGI)\n- Transformers version 4.35.0 and later, from any code or client that supports Transformers\n- AutoAWQ - for use from Python code", "## Prompt template: ChatML" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #medical #science #biology #chemistry #not-for-all-audiences #quantized #4-bit #AWQ #autotrain_compatible #endpoints_compatible #chatml #conversational #en #dataset-Locutusque/hercules-v4.0 #base_model-alpindale/Mistral-7B-v0.2-hf #license-apache-2.0 #text-generation-inference #region-us \n", "# Locutusque/SlimHercules-4.0-Mistral-7B-v0.2 AWQ\n\n- Model creator: Locutusque\n- Original model: SlimHercules-4.0-Mistral-7B-v0.2\n\n!image/png", "## Model Summary\n\nlimHercules-4.0-Mistral-v0.2-7B is a fine-tuned language model derived from Mistralai/Mistral-7B-v0.2. It is specifically designed to excel in instruction following, function calls, and conversational interactions across various scientific and technical domains. The dataset used for fine-tuning, also named hercules-v4.0, expands upon the diverse capabilities of OpenHermes-2.5 with contributions from numerous curated datasets. This fine-tuning has hercules-v4.0 with enhanced abilities in:\n\n- Complex Instruction Following: Understanding and accurately executing multi-step instructions, even those involving specialized terminology.\n- Function Calling: Seamlessly interpreting and executing function calls, providing appropriate input and output values.\n- Domain-Specific Knowledge: Engaging in informative and educational conversations about Biology, Chemistry, Physics, Mathematics, Medicine, Computer Science, and more.\n\nThis model is different in the sense that the dataset was shrunk and not shuffled, that way every dataset could be incorporated, without performance loss. This, in theory, should have much better performance in comparison to it's predecessors.", "## How to use", "### Install the necessary packages", "### Example Python code", "### About AWQ\n\nAWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.\n\nAWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.\n\nIt is supported by:\n\n- Text Generation Webui - using Loader: AutoAWQ\n- vLLM - version 0.2.2 or later for support for all model types.\n- Hugging Face Text Generation Inference (TGI)\n- Transformers version 4.35.0 and later, from any code or client that supports Transformers\n- AutoAWQ - for use from Python code", "## Prompt template: ChatML" ]
null
transformers
# DavidAU/StarDust_20B_v0.1_slerp-Q5_K_S-GGUF This model was converted to GGUF format from [`Evillain/StarDust_20B_v0.1_slerp`](https://huggingface.co/Evillain/StarDust_20B_v0.1_slerp) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Evillain/StarDust_20B_v0.1_slerp) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/StarDust_20B_v0.1_slerp-Q5_K_S-GGUF --model stardust_20b_v0.1_slerp.Q5_K_S.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/StarDust_20B_v0.1_slerp-Q5_K_S-GGUF --model stardust_20b_v0.1_slerp.Q5_K_S.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m stardust_20b_v0.1_slerp.Q5_K_S.gguf -n 128 ```
{"license": "other", "library_name": "transformers", "tags": ["mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo"], "base_model": ["Kooten/DaringMaid-20B-V1.1", "TeeZee/DarkForest-20B-v2.0", "athirdpath/Iambe-RP-v3-20b"], "license_name": "microsoft-research-license"}
DavidAU/StarDust_20B_v0.1_slerp-Q5_K_S-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo", "base_model:Kooten/DaringMaid-20B-V1.1", "base_model:TeeZee/DarkForest-20B-v2.0", "base_model:athirdpath/Iambe-RP-v3-20b", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:26:09+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-Kooten/DaringMaid-20B-V1.1 #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Iambe-RP-v3-20b #license-other #endpoints_compatible #region-us
# DavidAU/StarDust_20B_v0.1_slerp-Q5_K_S-GGUF This model was converted to GGUF format from 'Evillain/StarDust_20B_v0.1_slerp' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/StarDust_20B_v0.1_slerp-Q5_K_S-GGUF\nThis model was converted to GGUF format from 'Evillain/StarDust_20B_v0.1_slerp' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-Kooten/DaringMaid-20B-V1.1 #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Iambe-RP-v3-20b #license-other #endpoints_compatible #region-us \n", "# DavidAU/StarDust_20B_v0.1_slerp-Q5_K_S-GGUF\nThis model was converted to GGUF format from 'Evillain/StarDust_20B_v0.1_slerp' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
null
mlx
# mlx-community/mixtral-8x22b-instruct-oh-4bit This model was converted to MLX format from [`fireworks-ai/mixtral-8x22b-instruct-oh`]() using mlx-lm version **0.9.0**. Model added by [Prince Canuma](https://twitter.com/Prince_Canuma). Refer to the [original model card](https://huggingface.co/fireworks-ai/mixtral-8x22b-instruct-oh) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/mixtral-8x22b-instruct-oh-4bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"language": ["en"], "license": "apache-2.0", "tags": ["mlx"], "datasets": ["teknium/OpenHermes-2.5"], "base_model": "mistral-community/Mixtral-8x22B-v0.1"}
mlx-community/mixtral-8x22b-instruct-oh-4bit
null
[ "mlx", "safetensors", "mixtral", "en", "dataset:teknium/OpenHermes-2.5", "base_model:mistral-community/Mixtral-8x22B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-04-12T05:26:13+00:00
[]
[ "en" ]
TAGS #mlx #safetensors #mixtral #en #dataset-teknium/OpenHermes-2.5 #base_model-mistral-community/Mixtral-8x22B-v0.1 #license-apache-2.0 #region-us
# mlx-community/mixtral-8x22b-instruct-oh-4bit This model was converted to MLX format from ['fireworks-ai/mixtral-8x22b-instruct-oh']() using mlx-lm version 0.9.0. Model added by Prince Canuma. Refer to the original model card for more details on the model. ## Use with mlx
[ "# mlx-community/mixtral-8x22b-instruct-oh-4bit\nThis model was converted to MLX format from ['fireworks-ai/mixtral-8x22b-instruct-oh']() using mlx-lm version 0.9.0.\n\nModel added by Prince Canuma.\n\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #mixtral #en #dataset-teknium/OpenHermes-2.5 #base_model-mistral-community/Mixtral-8x22B-v0.1 #license-apache-2.0 #region-us \n", "# mlx-community/mixtral-8x22b-instruct-oh-4bit\nThis model was converted to MLX format from ['fireworks-ai/mixtral-8x22b-instruct-oh']() using mlx-lm version 0.9.0.\n\nModel added by Prince Canuma.\n\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmp_trainer This model is a fine-tuned version of [bigscience/bloomz-1b1](https://huggingface.co/bigscience/bloomz-1b1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.2
{"license": "bigscience-bloom-rail-1.0", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "bigscience/bloomz-1b1", "model-index": [{"name": "tmp_trainer", "results": []}]}
Femboyuwu2000/tmp_trainer
null
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:bigscience/bloomz-1b1", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2024-04-12T05:29:37+00:00
[]
[]
TAGS #peft #safetensors #trl #sft #generated_from_trainer #base_model-bigscience/bloomz-1b1 #license-bigscience-bloom-rail-1.0 #region-us
# tmp_trainer This model is a fine-tuned version of bigscience/bloomz-1b1 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.2
[ "# tmp_trainer\n\nThis model is a fine-tuned version of bigscience/bloomz-1b1 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.16.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #safetensors #trl #sft #generated_from_trainer #base_model-bigscience/bloomz-1b1 #license-bigscience-bloom-rail-1.0 #region-us \n", "# tmp_trainer\n\nThis model is a fine-tuned version of bigscience/bloomz-1b1 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.16.0\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sid-du/TestModelBf16
null
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-12T05:31:10+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt_neox #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt_neox #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "269.15 +/- 20.35", "name": "mean_reward", "verified": false}]}]}]}
Santhoshkumar777/ppo-LunarLander-v2
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-12T05:31:31+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
winirrr/typhoon-7b-quote-demoV01
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:34:38+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # idiotDeveloper/KoreanTelephone_Mini_dataset_processed_Model This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the KoreanTelephone_Mini_dataset_processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 1.10.1+cu111 - Datasets 2.18.0 - Tokenizers 0.15.2
{"language": ["ko"], "license": "apache-2.0", "tags": ["hf-asr-leaderboard", "generated_from_trainer"], "datasets": ["idiotDeveloper/KoreanTelephone_Mini_dataset_processed"], "base_model": "openai/whisper-base", "model-index": [{"name": "idiotDeveloper/KoreanTelephone_Mini_dataset_processed_Model", "results": []}]}
idiotDeveloper/KoreanTelephone_Mini_dataset_processed_Model
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "dataset:idiotDeveloper/KoreanTelephone_Mini_dataset_processed", "base_model:openai/whisper-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:35:12+00:00
[]
[ "ko" ]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #hf-asr-leaderboard #generated_from_trainer #ko #dataset-idiotDeveloper/KoreanTelephone_Mini_dataset_processed #base_model-openai/whisper-base #license-apache-2.0 #endpoints_compatible #region-us
# idiotDeveloper/KoreanTelephone_Mini_dataset_processed_Model This model is a fine-tuned version of openai/whisper-base on the KoreanTelephone_Mini_dataset_processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 1.10.1+cu111 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# idiotDeveloper/KoreanTelephone_Mini_dataset_processed_Model\n\nThis model is a fine-tuned version of openai/whisper-base on the KoreanTelephone_Mini_dataset_processed dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 32\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- training_steps: 10\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.40.0.dev0\n- Pytorch 1.10.1+cu111\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #hf-asr-leaderboard #generated_from_trainer #ko #dataset-idiotDeveloper/KoreanTelephone_Mini_dataset_processed #base_model-openai/whisper-base #license-apache-2.0 #endpoints_compatible #region-us \n", "# idiotDeveloper/KoreanTelephone_Mini_dataset_processed_Model\n\nThis model is a fine-tuned version of openai/whisper-base on the KoreanTelephone_Mini_dataset_processed dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 32\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- training_steps: 10\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.40.0.dev0\n- Pytorch 1.10.1+cu111\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
winirrr/typhoon-7b-quote-demoV1
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:37:21+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# DavidAU/Maiden-Unquirked-20B-Q5_K_S-GGUF This model was converted to GGUF format from [`ND911/Maiden-Unquirked-20B`](https://huggingface.co/ND911/Maiden-Unquirked-20B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ND911/Maiden-Unquirked-20B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Maiden-Unquirked-20B-Q5_K_S-GGUF --model maiden-unquirked-20b.Q5_K_S.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Maiden-Unquirked-20B-Q5_K_S-GGUF --model maiden-unquirked-20b.Q5_K_S.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m maiden-unquirked-20b.Q5_K_S.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo"], "base_model": ["TeeZee/BigMaid-20B-v1.0", "TeeZee/DarkForest-20B-v2.0", "athirdpath/Harmonia-20B"]}
DavidAU/Maiden-Unquirked-20B-Q5_K_S-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "not-for-all-audiences", "llama-cpp", "gguf-my-repo", "base_model:TeeZee/BigMaid-20B-v1.0", "base_model:TeeZee/DarkForest-20B-v2.0", "base_model:athirdpath/Harmonia-20B", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:38:30+00:00
[]
[]
TAGS #transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-TeeZee/BigMaid-20B-v1.0 #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Harmonia-20B #endpoints_compatible #region-us
# DavidAU/Maiden-Unquirked-20B-Q5_K_S-GGUF This model was converted to GGUF format from 'ND911/Maiden-Unquirked-20B' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Maiden-Unquirked-20B-Q5_K_S-GGUF\nThis model was converted to GGUF format from 'ND911/Maiden-Unquirked-20B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #mergekit #merge #not-for-all-audiences #llama-cpp #gguf-my-repo #base_model-TeeZee/BigMaid-20B-v1.0 #base_model-TeeZee/DarkForest-20B-v2.0 #base_model-athirdpath/Harmonia-20B #endpoints_compatible #region-us \n", "# DavidAU/Maiden-Unquirked-20B-Q5_K_S-GGUF\nThis model was converted to GGUF format from 'ND911/Maiden-Unquirked-20B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "204.03 +/- 22.31", "name": "mean_reward", "verified": false}]}]}]}
soft-boy/ppo-LunarLander-v2
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-12T05:38:43+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9490 - Accuracy: {'accuracy': 0.896} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 0.4908 | {'accuracy': 0.865} | | 0.4238 | 2.0 | 500 | 0.3895 | {'accuracy': 0.884} | | 0.4238 | 3.0 | 750 | 0.7152 | {'accuracy': 0.878} | | 0.1877 | 4.0 | 1000 | 0.6360 | {'accuracy': 0.898} | | 0.1877 | 5.0 | 1250 | 0.7666 | {'accuracy': 0.897} | | 0.0805 | 6.0 | 1500 | 0.8102 | {'accuracy': 0.891} | | 0.0805 | 7.0 | 1750 | 0.8150 | {'accuracy': 0.89} | | 0.0283 | 8.0 | 2000 | 0.9224 | {'accuracy': 0.893} | | 0.0283 | 9.0 | 2250 | 0.9227 | {'accuracy': 0.894} | | 0.0148 | 10.0 | 2500 | 0.9490 | {'accuracy': 0.896} | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased-lora-text-classification", "results": []}]}
barathsmart/distilbert-base-uncased-lora-text-classification
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "region:us" ]
null
2024-04-12T05:40:18+00:00
[]
[]
TAGS #peft #safetensors #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #region-us
distilbert-base-uncased-lora-text-classification ================================================ This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.9490 * Accuracy: {'accuracy': 0.896} Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.001 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * PEFT 0.10.0 * Transformers 4.39.3 * Pytorch 2.2.2+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.39.3\n* Pytorch 2.2.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#peft #safetensors #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.39.3\n* Pytorch 2.2.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-generation
transformers
# Uploaded model - **Developed by:** TheHappyDrone - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "sft"], "base_model": "unsloth/mistral-7b-bnb-4bit"}
TheHappyDrone/Occult_V01
null
[ "transformers", "pytorch", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:41:13+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/mistral-7b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Uploaded model - Developed by: TheHappyDrone - License: apache-2.0 - Finetuned from model : unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: TheHappyDrone\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/mistral-7b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: TheHappyDrone\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dpo_anthropic_hh_gamma0.1_beta0.1_subset20000_modelmistral7b_maxsteps2400_bz16_lr1e-06 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - training_steps: 2400 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-v0.1", "model-index": [{"name": "dpo_anthropic_hh_gamma0.1_beta0.1_subset20000_modelmistral7b_maxsteps2400_bz16_lr1e-06", "results": []}]}
Holarissun/dpo_anthropic_hh_gamma0.1_beta0.1_subset20000_modelmistral7b_maxsteps2400_bz16_lr1e-06
null
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-04-12T05:42:30+00:00
[]
[]
TAGS #peft #safetensors #trl #dpo #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us
# dpo_anthropic_hh_gamma0.1_beta0.1_subset20000_modelmistral7b_maxsteps2400_bz16_lr1e-06 This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - training_steps: 2400 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# dpo_anthropic_hh_gamma0.1_beta0.1_subset20000_modelmistral7b_maxsteps2400_bz16_lr1e-06\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-06\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 150\n- training_steps: 2400", "### Training results", "### Framework versions\n\n- PEFT 0.9.0\n- Transformers 4.38.2\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #safetensors #trl #dpo #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us \n", "# dpo_anthropic_hh_gamma0.1_beta0.1_subset20000_modelmistral7b_maxsteps2400_bz16_lr1e-06\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-06\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 150\n- training_steps: 2400", "### Training results", "### Framework versions\n\n- PEFT 0.9.0\n- Transformers 4.38.2\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["t", "r", "a", "n", "s", "l", "i", "o"]}
Tohrumi/server_model_Mistral
null
[ "transformers", "safetensors", "t", "r", "a", "n", "s", "l", "i", "o", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:43:01+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #t #r #a #n #s #l #i #o #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #t #r #a #n #s #l #i #o #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.6462 | | 2.8448 | 2.0 | 500 | 1.9400 | | 2.8448 | 3.0 | 750 | 1.8304 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "distilbert/distilbert-base-uncased", "model-index": [{"name": "my_awesome_qa_model", "results": []}]}
prinslayy-16/my_awesome_qa_model
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:43:29+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-distilbert/distilbert-base-uncased #license-apache-2.0 #endpoints_compatible #region-us
my\_awesome\_qa\_model ====================== This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.8304 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-distilbert/distilbert-base-uncased #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Tokenizers 0.15.2" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
cindy990915/duke_chatbot_0411
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:45:08+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
**Code-Jamba-v0.1** This model is trained upon my dataset [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT) and [Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback). It is finetuned on Jamba-v0.1 . It is very very good in Code generation in various languages such as **Python, Java, JavaScript, GO, C++, Rust, Ruby, Sql, MySql, R, Julia, Haskell**, etc.. This model will also generate detailed explanation/logic behind each code. This model uses ChatML prompt format. **Training** Entire dataset was trained on **2 x H100** 94GB. For 3 epoch, training took **162 hours**. Axolotl along with DeepSpeed codebase was used for training purpose. This was trained on Jamba-v0.1 by AI21Labs. This is a qlora model. Links for quantized models will be updated very soon. **GPTQ, GGUF, AWQ & Exllama** GPTQ: TBA GGUF: TBA AWQ: TBA Exllama v2: TBA **Example Prompt:** This model uses **ChatML** prompt format. ``` <|im_start|>system You are a Helpful Assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` You can modify above Prompt as per your requirement. I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development. Thank you for your love & support. **Example Output** Coming soon!
{"language": ["en"], "license": "apache-2.0", "tags": ["code", "Python", "C++", "Rust", "Ruby", "Sql", "R", "Julia"], "datasets": ["ajibawa-2023/Code-290k-ShareGPT", "m-a-p/Code-Feedback"]}
ajibawa-2023/Code-Jamba-v0.1
null
[ "transformers", "safetensors", "jamba", "text-generation", "code", "Python", "C++", "Rust", "Ruby", "Sql", "R", "Julia", "conversational", "custom_code", "en", "dataset:ajibawa-2023/Code-290k-ShareGPT", "dataset:m-a-p/Code-Feedback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:46:06+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #jamba #text-generation #code #Python #C++ #Rust #Ruby #Sql #R #Julia #conversational #custom_code #en #dataset-ajibawa-2023/Code-290k-ShareGPT #dataset-m-a-p/Code-Feedback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Code-Jamba-v0.1 This model is trained upon my dataset Code-290k-ShareGPT and Code-Feedback. It is finetuned on Jamba-v0.1 . It is very very good in Code generation in various languages such as Python, Java, JavaScript, GO, C++, Rust, Ruby, Sql, MySql, R, Julia, Haskell, etc.. This model will also generate detailed explanation/logic behind each code. This model uses ChatML prompt format. Training Entire dataset was trained on 2 x H100 94GB. For 3 epoch, training took 162 hours. Axolotl along with DeepSpeed codebase was used for training purpose. This was trained on Jamba-v0.1 by AI21Labs. This is a qlora model. Links for quantized models will be updated very soon. GPTQ, GGUF, AWQ & Exllama GPTQ: TBA GGUF: TBA AWQ: TBA Exllama v2: TBA Example Prompt: This model uses ChatML prompt format. You can modify above Prompt as per your requirement. I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development. Thank you for your love & support. Example Output Coming soon!
[]
[ "TAGS\n#transformers #safetensors #jamba #text-generation #code #Python #C++ #Rust #Ruby #Sql #R #Julia #conversational #custom_code #en #dataset-ajibawa-2023/Code-290k-ShareGPT #dataset-m-a-p/Code-Feedback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
token-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
AwesomeREK/concept-extraction-xlnet-distant-early-stopping
null
[ "transformers", "safetensors", "xlnet", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:46:52+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlnet #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlnet #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3427 - Accuracy: 0.8733 - F1: 0.8758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "finetuning-sentiment-model-3000-samples", "results": []}]}
YudingWang/finetuning-sentiment-model-3000-samples
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:53:11+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# finetuning-sentiment-model-3000-samples This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3427 - Accuracy: 0.8733 - F1: 0.8758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# finetuning-sentiment-model-3000-samples\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.3427\n- Accuracy: 0.8733\n- F1: 0.8758", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# finetuning-sentiment-model-3000-samples\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.3427\n- Accuracy: 0.8733\n- F1: 0.8758", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1911 | 1.0 | 5533 | 1.1557 | | 0.9306 | 2.0 | 11066 | 1.1048 | | 0.7439 | 3.0 | 16599 | 1.1530 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.0 - Datasets 2.14.5 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "finetuned-squad", "results": []}]}
Andru/finetuned-squad
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:53:16+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #endpoints_compatible #region-us
finetuned-squad =============== This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.1530 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.39.3 * Pytorch 2.1.0 * Datasets 2.14.5 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.1.0\n* Datasets 2.14.5\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.1.0\n* Datasets 2.14.5\n* Tokenizers 0.15.2" ]
text-generation
transformers
# StarMonarch-7B-Instruct-v0.1 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f158693196560d34495d54/kY82CwYmaGSt2k3iWjOOZ.png) # Description This model is an Instruct Finetune of the model [Ppoyaa/StarMonarch-7B](https://huggingface.co/Ppoyaa/StarMonarch-7B) # Uploaded model - **Developed by:** Ppoyaa - **License:** apache-2.0 - **Finetuned from model :** Ppoyaa/StarMonarch-7B
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "sft"], "base_model": "Ppoyaa/StarMonarch-7B"}
Ppoyaa/StarMonarch-7B-Instruct-v0.1
null
[ "transformers", "pytorch", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:Ppoyaa/StarMonarch-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:53:28+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-Ppoyaa/StarMonarch-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# StarMonarch-7B-Instruct-v0.1 !image/png # Description This model is an Instruct Finetune of the model Ppoyaa/StarMonarch-7B # Uploaded model - Developed by: Ppoyaa - License: apache-2.0 - Finetuned from model : Ppoyaa/StarMonarch-7B
[ "# StarMonarch-7B-Instruct-v0.1\n!image/png", "# Description\nThis model is an Instruct Finetune of the model Ppoyaa/StarMonarch-7B", "# Uploaded model\n\n- Developed by: Ppoyaa\n- License: apache-2.0\n- Finetuned from model : Ppoyaa/StarMonarch-7B" ]
[ "TAGS\n#transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-Ppoyaa/StarMonarch-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# StarMonarch-7B-Instruct-v0.1\n!image/png", "# Description\nThis model is an Instruct Finetune of the model Ppoyaa/StarMonarch-7B", "# Uploaded model\n\n- Developed by: Ppoyaa\n- License: apache-2.0\n- Finetuned from model : Ppoyaa/StarMonarch-7B" ]
null
transformers
## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> weighted/imatrix quants of https://huggingface.co/ICBU-NPU/FashionGPT-70B-V1.2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-IQ1_S.gguf) | i1-IQ1_S | 14.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-IQ1_M.gguf) | i1-IQ1_M | 16.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 18.4 | | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 20.4 | | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-IQ2_S.gguf) | i1-IQ2_S | 21.5 | | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-IQ2_M.gguf) | i1-IQ2_M | 23.3 | | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-Q2_K.gguf) | i1-Q2_K | 25.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 26.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.4 | | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-IQ3_S.gguf) | i1-IQ3_S | 30.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 30.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-IQ3_M.gguf) | i1-IQ3_M | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 36.9 | | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-Q4_0.gguf) | i1-Q4_0 | 39.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 47.6 | | | [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 48.9 | | | [PART 1](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/FashionGPT-70B-V1.2-i1-GGUF/resolve/main/FashionGPT-70B-V1.2.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 56.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "llama2", "library_name": "transformers", "base_model": "ICBU-NPU/FashionGPT-70B-V1.2", "quantized_by": "mradermacher"}
mradermacher/FashionGPT-70B-V1.2-i1-GGUF
null
[ "transformers", "gguf", "en", "base_model:ICBU-NPU/FashionGPT-70B-V1.2", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:54:56+00:00
[]
[ "en" ]
TAGS #transformers #gguf #en #base_model-ICBU-NPU/FashionGPT-70B-V1.2 #license-llama2 #endpoints_compatible #region-us
About ----- weighted/imatrix quants of URL static quants are available at URL Usage ----- If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files. Provided Quants --------------- (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): !URL And here are Artefact2's thoughts on the matter: URL FAQ / Model Request ------------------- See URL for some answers to questions you might have and/or if you want some other model quantized. Thanks ------ I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.
[]
[ "TAGS\n#transformers #gguf #en #base_model-ICBU-NPU/FashionGPT-70B-V1.2 #license-llama2 #endpoints_compatible #region-us \n" ]
null
transformers
## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/maywell/PiVoT-MoE <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/PiVoT-MoE-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.Q2_K.gguf) | Q2_K | 13.3 | | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.IQ3_XS.gguf) | IQ3_XS | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.Q3_K_S.gguf) | Q3_K_S | 15.7 | | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.IQ3_S.gguf) | IQ3_S | 15.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.IQ3_M.gguf) | IQ3_M | 16.0 | | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.Q3_K_M.gguf) | Q3_K_M | 17.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.Q3_K_L.gguf) | Q3_K_L | 18.8 | | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.IQ4_XS.gguf) | IQ4_XS | 19.6 | | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.Q4_K_S.gguf) | Q4_K_S | 20.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.Q4_K_M.gguf) | Q4_K_M | 21.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.Q5_K_S.gguf) | Q5_K_S | 24.9 | | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.Q5_K_M.gguf) | Q5_K_M | 25.7 | | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.Q6_K.gguf) | Q6_K | 29.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/PiVoT-MoE-GGUF/resolve/main/PiVoT-MoE.Q8_0.gguf) | Q8_0 | 38.5 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "cc-by-nc-4.0", "library_name": "transformers", "base_model": "maywell/PiVoT-MoE", "quantized_by": "mradermacher"}
mradermacher/PiVoT-MoE-GGUF
null
[ "transformers", "gguf", "en", "base_model:maywell/PiVoT-MoE", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-12T05:59:21+00:00
[]
[ "en" ]
TAGS #transformers #gguf #en #base_model-maywell/PiVoT-MoE #license-cc-by-nc-4.0 #endpoints_compatible #region-us
About ----- static quants of URL weighted/imatrix quants are available at URL Usage ----- If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files. Provided Quants --------------- (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): !URL And here are Artefact2's thoughts on the matter: URL FAQ / Model Request ------------------- See URL for some answers to questions you might have and/or if you want some other model quantized. Thanks ------ I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.
[]
[ "TAGS\n#transformers #gguf #en #base_model-maywell/PiVoT-MoE #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n" ]