pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
null
null
# DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q8_0-GGUF This model was converted to GGUF format from [`alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline`](https://huggingface.co/alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q8_0-GGUF --model bloom-1b7-creative-writing-it-baseline.Q8_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q8_0-GGUF --model bloom-1b7-creative-writing-it-baseline.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m bloom-1b7-creative-writing-it-baseline.Q8_0.gguf -n 128 ```
{"license": "bigscience-bloom-rail-1.0", "tags": ["generated_from_trainer", "llama-cpp", "gguf-my-repo"], "base_model": "bigscience/bloom-1b7", "model-index": [{"name": "Bloom-1b7-creative-writing-IT", "results": []}]}
DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q8_0-GGUF
null
[ "gguf", "generated_from_trainer", "llama-cpp", "gguf-my-repo", "base_model:bigscience/bloom-1b7", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2024-04-15T01:37:49+00:00
[]
[]
TAGS #gguf #generated_from_trainer #llama-cpp #gguf-my-repo #base_model-bigscience/bloom-1b7 #license-bigscience-bloom-rail-1.0 #region-us
# DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q8_0-GGUF This model was converted to GGUF format from 'alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q8_0-GGUF\nThis model was converted to GGUF format from 'alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #generated_from_trainer #llama-cpp #gguf-my-repo #base_model-bigscience/bloom-1b7 #license-bigscience-bloom-rail-1.0 #region-us \n", "# DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q8_0-GGUF\nThis model was converted to GGUF format from 'alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
alexyhc/flan-t5-large-ds
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T01:38:17+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
null
# DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q6_K-GGUF This model was converted to GGUF format from [`alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline`](https://huggingface.co/alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q6_K-GGUF --model bloom-1b7-creative-writing-it-baseline.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q6_K-GGUF --model bloom-1b7-creative-writing-it-baseline.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m bloom-1b7-creative-writing-it-baseline.Q6_K.gguf -n 128 ```
{"license": "bigscience-bloom-rail-1.0", "tags": ["generated_from_trainer", "llama-cpp", "gguf-my-repo"], "base_model": "bigscience/bloom-1b7", "model-index": [{"name": "Bloom-1b7-creative-writing-IT", "results": []}]}
DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q6_K-GGUF
null
[ "gguf", "generated_from_trainer", "llama-cpp", "gguf-my-repo", "base_model:bigscience/bloom-1b7", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2024-04-15T01:40:00+00:00
[]
[]
TAGS #gguf #generated_from_trainer #llama-cpp #gguf-my-repo #base_model-bigscience/bloom-1b7 #license-bigscience-bloom-rail-1.0 #region-us
# DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q6_K-GGUF This model was converted to GGUF format from 'alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q6_K-GGUF\nThis model was converted to GGUF format from 'alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #generated_from_trainer #llama-cpp #gguf-my-repo #base_model-bigscience/bloom-1b7 #license-bigscience-bloom-rail-1.0 #region-us \n", "# DavidAU/Bloom-1b7-creative-writing-IT-baseline-Q6_K-GGUF\nThis model was converted to GGUF format from 'alonzogarbanzo/Bloom-1b7-creative-writing-IT-baseline' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
null
null
# DavidAU/Writing_Partner_Mistral_7B-Q6_K-GGUF This model was converted to GGUF format from [`FPHam/Writing_Partner_Mistral_7B`](https://huggingface.co/FPHam/Writing_Partner_Mistral_7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/FPHam/Writing_Partner_Mistral_7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Writing_Partner_Mistral_7B-Q6_K-GGUF --model writing_partner_mistral_7b.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Writing_Partner_Mistral_7B-Q6_K-GGUF --model writing_partner_mistral_7b.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m writing_partner_mistral_7b.Q6_K.gguf -n 128 ```
{"language": ["en"], "license": "apache-2.0", "tags": ["mistral", "instruct", "finetune", "chatml", "gpt4", "llama-cpp", "gguf-my-repo"]}
DavidAU/Writing_Partner_Mistral_7B-Q6_K-GGUF
null
[ "gguf", "mistral", "instruct", "finetune", "chatml", "gpt4", "llama-cpp", "gguf-my-repo", "en", "license:apache-2.0", "region:us" ]
null
2024-04-15T01:41:04+00:00
[]
[ "en" ]
TAGS #gguf #mistral #instruct #finetune #chatml #gpt4 #llama-cpp #gguf-my-repo #en #license-apache-2.0 #region-us
# DavidAU/Writing_Partner_Mistral_7B-Q6_K-GGUF This model was converted to GGUF format from 'FPHam/Writing_Partner_Mistral_7B' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Writing_Partner_Mistral_7B-Q6_K-GGUF\nThis model was converted to GGUF format from 'FPHam/Writing_Partner_Mistral_7B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #mistral #instruct #finetune #chatml #gpt4 #llama-cpp #gguf-my-repo #en #license-apache-2.0 #region-us \n", "# DavidAU/Writing_Partner_Mistral_7B-Q6_K-GGUF\nThis model was converted to GGUF format from 'FPHam/Writing_Partner_Mistral_7B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemini-1.5-pro-gemma-rewrite-1024 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "gemma", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "google/gemma-2b", "model-index": [{"name": "gemini-1.5-pro-gemma-rewrite-1024", "results": []}]}
mooo16/gemini-1.5-pro-gemma-rewrite-1024
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-04-15T01:42:06+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us
# gemini-1.5-pro-gemma-rewrite-1024 This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# gemini-1.5-pro-gemma-rewrite-1024\n\nThis model is a fine-tuned version of google/gemma-2b on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0246", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us \n", "# gemini-1.5-pro-gemma-rewrite-1024\n\nThis model is a fine-tuned version of google/gemma-2b on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0246", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-generation
transformers
# lust-7b experimental rp model. ## prompt format this one's a bit funky. ``` <|description|>Character Character is blah blah blah</s> <|description|>Character 2 Character 2 is blah blah blah (optional to make more than one)</s> <|narrator|> Describe what you want to happen in the scenario (I dont even know if this works) <|message|>Character Character does blah blah blah</s> <|message|>Character 2 Character 2 does blah blah blah</s> <|message|>Character [start model generation here!] ``` sillytavern templates: TODO ## quants gguf: https://huggingface.co/mradermacher/lust-7b-GGUF (thanks @mradermacher!)
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["roleplay", "conversational", "trl", "unsloth"], "datasets": ["Fizzarolli/rpguild_processed", "Fizzarolli/bluemoon_processeed"]}
Fizzarolli/lust-7b
null
[ "transformers", "safetensors", "mistral", "text-generation", "roleplay", "conversational", "trl", "unsloth", "en", "dataset:Fizzarolli/rpguild_processed", "dataset:Fizzarolli/bluemoon_processeed", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T01:42:29+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #roleplay #conversational #trl #unsloth #en #dataset-Fizzarolli/rpguild_processed #dataset-Fizzarolli/bluemoon_processeed #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# lust-7b experimental rp model. ## prompt format this one's a bit funky. sillytavern templates: TODO ## quants gguf: URL (thanks @mradermacher!)
[ "# lust-7b\nexperimental rp model.", "## prompt format\nthis one's a bit funky.\n\nsillytavern templates: TODO", "## quants\ngguf: URL (thanks @mradermacher!)" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #roleplay #conversational #trl #unsloth #en #dataset-Fizzarolli/rpguild_processed #dataset-Fizzarolli/bluemoon_processeed #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# lust-7b\nexperimental rp model.", "## prompt format\nthis one's a bit funky.\n\nsillytavern templates: TODO", "## quants\ngguf: URL (thanks @mradermacher!)" ]
automatic-speech-recognition
transformers
# Model Card for Model ID ![image](./cover_image.jpeg) <!-- Generated using cagliostrolab/animagine-xl-3.0 --> <!--Prompt: 1girl, black long hair, suit, headphone, write down, upper body, indoor, night, masterpiece, best quality --> Fine tunned ASR model from [distil-whisper/distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2). This model aimed to transcribe japanese audio especially visual novel. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** spow12(yw_nam) - **Shared by :** spow12(yw_nam) - **Model type:** Seq2Seq - **Language(s) (NLP):** japanese - **Finetuned from model :** [distil-whisper/distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2). ## Uses ```python from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq import librosa processor = AutoProcessor.from_pretrained('spow12/Visual-novel-transcriptor', language="ja", task="transcribe") model = AutoModelForSpeechSeq2Seq.from_pretrained('spow12/Visual-novel-transcriptor').cuda() model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="ja", task="transcribe") data, _ = librosa.load(wav_path, sr=16000) input_features = processor(data, sampling_rate=16000, return_tensors="pt").input_features.cuda() predicted_ids = model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) print(transcription[0]) ``` ## Bias, Risks, and Limitations This model trained by japanese dataset included visual novel which contain nsfw content. ## Use & Credit This model is currently available for non-commercial use only. Also, since I'm not detailed in licensing, I hope you use it responsibly. By sharing this model, I hope to contribute to the research efforts of our community (the open-source community and anime persons). ## Citation ```bibtex @misc {Visual-novel-transcriptor, author = { {YoungWoo Nam} }, title = { Visual-novel-transcriptor }, year = 2024, url = { https://huggingface.co/spow12/Visual-novel-transcriptor }, publisher = { Hugging Face } } ```
{"language": ["ja", "en"], "library_name": "transformers", "datasets": ["reazon-research/reazonspeech", "joujiboi/japanese-anime-speech"], "metrics": ["cer"], "pipeline_tag": "automatic-speech-recognition"}
spow12/Visual-novel-transcriptor
null
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "ja", "en", "dataset:reazon-research/reazonspeech", "dataset:joujiboi/japanese-anime-speech", "endpoints_compatible", "has_space", "region:us" ]
null
2024-04-15T01:43:07+00:00
[]
[ "ja", "en" ]
TAGS #transformers #safetensors #whisper #automatic-speech-recognition #ja #en #dataset-reazon-research/reazonspeech #dataset-joujiboi/japanese-anime-speech #endpoints_compatible #has_space #region-us
# Model Card for Model ID !image Fine tunned ASR model from distil-whisper/distil-large-v2. This model aimed to transcribe japanese audio especially visual novel. ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: spow12(yw_nam) - Shared by : spow12(yw_nam) - Model type: Seq2Seq - Language(s) (NLP): japanese - Finetuned from model : distil-whisper/distil-large-v2. ## Uses ## Bias, Risks, and Limitations This model trained by japanese dataset included visual novel which contain nsfw content. ## Use & Credit This model is currently available for non-commercial use only. Also, since I'm not detailed in licensing, I hope you use it responsibly. By sharing this model, I hope to contribute to the research efforts of our community (the open-source community and anime persons).
[ "# Model Card for Model ID\n\n!image\n\n\n\n\n\nFine tunned ASR model from distil-whisper/distil-large-v2.\n\nThis model aimed to transcribe japanese audio especially visual novel.", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: spow12(yw_nam)\n- Shared by : spow12(yw_nam)\n- Model type: Seq2Seq\n- Language(s) (NLP): japanese\n- Finetuned from model : distil-whisper/distil-large-v2.", "## Uses", "## Bias, Risks, and Limitations\n\nThis model trained by japanese dataset included visual novel which contain nsfw content.", "## Use & Credit\n\nThis model is currently available for non-commercial use only. Also, since I'm not detailed in licensing, I hope you use it responsibly. \n\nBy sharing this model, I hope to contribute to the research efforts of our community (the open-source community and anime persons)." ]
[ "TAGS\n#transformers #safetensors #whisper #automatic-speech-recognition #ja #en #dataset-reazon-research/reazonspeech #dataset-joujiboi/japanese-anime-speech #endpoints_compatible #has_space #region-us \n", "# Model Card for Model ID\n\n!image\n\n\n\n\n\nFine tunned ASR model from distil-whisper/distil-large-v2.\n\nThis model aimed to transcribe japanese audio especially visual novel.", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: spow12(yw_nam)\n- Shared by : spow12(yw_nam)\n- Model type: Seq2Seq\n- Language(s) (NLP): japanese\n- Finetuned from model : distil-whisper/distil-large-v2.", "## Uses", "## Bias, Risks, and Limitations\n\nThis model trained by japanese dataset included visual novel which contain nsfw content.", "## Use & Credit\n\nThis model is currently available for non-commercial use only. Also, since I'm not detailed in licensing, I hope you use it responsibly. \n\nBy sharing this model, I hope to contribute to the research efforts of our community (the open-source community and anime persons)." ]
text-generation
transformers
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
{"license": "other", "library_name": "transformers", "tags": ["autotrain", "text-generation-inference", "text-generation", "peft"], "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]}
frcp/jobtalks_llama_v1
null
[ "transformers", "safetensors", "autotrain", "text-generation-inference", "text-generation", "peft", "conversational", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-15T01:43:20+00:00
[]
[]
TAGS #transformers #safetensors #autotrain #text-generation-inference #text-generation #peft #conversational #license-other #endpoints_compatible #region-us
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit AutoTrain. # Usage
[ "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
[ "TAGS\n#transformers #safetensors #autotrain #text-generation-inference #text-generation #peft #conversational #license-other #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
null
null
# andreass123/EEVE-Korean-2.8B-v1.0-Q8_0-GGUF This model was converted to GGUF format from [`yanolja/EEVE-Korean-2.8B-v1.0`](https://huggingface.co/yanolja/EEVE-Korean-2.8B-v1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/yanolja/EEVE-Korean-2.8B-v1.0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo andreass123/EEVE-Korean-2.8B-v1.0-Q8_0-GGUF --model eeve-korean-2.8b-v1.0.Q8_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo andreass123/EEVE-Korean-2.8B-v1.0-Q8_0-GGUF --model eeve-korean-2.8b-v1.0.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m eeve-korean-2.8b-v1.0.Q8_0.gguf -n 128 ```
{"license": "apache-2.0", "tags": ["generated_from_trainer", "llama-cpp", "gguf-my-repo"], "base_model": "microsoft/phi-2", "model-index": [{"name": "yanolja/EEVE-Korean-2.8B-v1.0", "results": []}]}
andreass123/EEVE-Korean-2.8B-v1.0-Q8_0-GGUF
null
[ "gguf", "generated_from_trainer", "llama-cpp", "gguf-my-repo", "base_model:microsoft/phi-2", "license:apache-2.0", "region:us" ]
null
2024-04-15T01:43:57+00:00
[]
[]
TAGS #gguf #generated_from_trainer #llama-cpp #gguf-my-repo #base_model-microsoft/phi-2 #license-apache-2.0 #region-us
# andreass123/EEVE-Korean-2.8B-v1.0-Q8_0-GGUF This model was converted to GGUF format from 'yanolja/EEVE-Korean-2.8B-v1.0' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# andreass123/EEVE-Korean-2.8B-v1.0-Q8_0-GGUF\nThis model was converted to GGUF format from 'yanolja/EEVE-Korean-2.8B-v1.0' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #generated_from_trainer #llama-cpp #gguf-my-repo #base_model-microsoft/phi-2 #license-apache-2.0 #region-us \n", "# andreass123/EEVE-Korean-2.8B-v1.0-Q8_0-GGUF\nThis model was converted to GGUF format from 'yanolja/EEVE-Korean-2.8B-v1.0' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
null
null
# DavidAU/Writing_Partner_Mistral_7B-Q8_0-GGUF This model was converted to GGUF format from [`FPHam/Writing_Partner_Mistral_7B`](https://huggingface.co/FPHam/Writing_Partner_Mistral_7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/FPHam/Writing_Partner_Mistral_7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/Writing_Partner_Mistral_7B-Q8_0-GGUF --model writing_partner_mistral_7b.Q8_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/Writing_Partner_Mistral_7B-Q8_0-GGUF --model writing_partner_mistral_7b.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m writing_partner_mistral_7b.Q8_0.gguf -n 128 ```
{"language": ["en"], "license": "apache-2.0", "tags": ["mistral", "instruct", "finetune", "chatml", "gpt4", "llama-cpp", "gguf-my-repo"]}
DavidAU/Writing_Partner_Mistral_7B-Q8_0-GGUF
null
[ "gguf", "mistral", "instruct", "finetune", "chatml", "gpt4", "llama-cpp", "gguf-my-repo", "en", "license:apache-2.0", "region:us" ]
null
2024-04-15T01:44:46+00:00
[]
[ "en" ]
TAGS #gguf #mistral #instruct #finetune #chatml #gpt4 #llama-cpp #gguf-my-repo #en #license-apache-2.0 #region-us
# DavidAU/Writing_Partner_Mistral_7B-Q8_0-GGUF This model was converted to GGUF format from 'FPHam/Writing_Partner_Mistral_7B' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/Writing_Partner_Mistral_7B-Q8_0-GGUF\nThis model was converted to GGUF format from 'FPHam/Writing_Partner_Mistral_7B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #mistral #instruct #finetune #chatml #gpt4 #llama-cpp #gguf-my-repo #en #license-apache-2.0 #region-us \n", "# DavidAU/Writing_Partner_Mistral_7B-Q8_0-GGUF\nThis model was converted to GGUF format from 'FPHam/Writing_Partner_Mistral_7B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
text-generation
transformers
# What is is? A MoE model for Roleplaying. Since 7B model is small enough, we can combine them to a bigger model (Which CAN be smarter). Adapte (some limited) TSF (Trans Sexual Fiction) content because I have include my pre-train model in. Worse than V1 in logic, but better in expression. # GGUF Version? [Here](https://huggingface.co/Alsebay/NaruMOE-3x7B-v2-GGUF/) # Recipe? You could see base model section # Why 3x7B? I test on 16GB VRAM card could fit < 20B model GGUF version with 4-8k context length. I don't want make a model that I can't use.
{"license": "cc-by-nc-4.0", "tags": ["moe", "merge", "roleplay", "Roleplay"], "base_model": ["Alsebay/NarumashiRTS-V2", "SanjiWatsuki/Kunoichi-DPO-v2-7B", "Nitral-AI/KukulStanta-7B"]}
Alsebay/NaruMOE-3x7B-v2
null
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "merge", "roleplay", "Roleplay", "base_model:Alsebay/NarumashiRTS-V2", "base_model:SanjiWatsuki/Kunoichi-DPO-v2-7B", "base_model:Nitral-AI/KukulStanta-7B", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T01:44:57+00:00
[]
[]
TAGS #transformers #safetensors #mixtral #text-generation #moe #merge #roleplay #Roleplay #base_model-Alsebay/NarumashiRTS-V2 #base_model-SanjiWatsuki/Kunoichi-DPO-v2-7B #base_model-Nitral-AI/KukulStanta-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# What is is? A MoE model for Roleplaying. Since 7B model is small enough, we can combine them to a bigger model (Which CAN be smarter). Adapte (some limited) TSF (Trans Sexual Fiction) content because I have include my pre-train model in. Worse than V1 in logic, but better in expression. # GGUF Version? Here # Recipe? You could see base model section # Why 3x7B? I test on 16GB VRAM card could fit < 20B model GGUF version with 4-8k context length. I don't want make a model that I can't use.
[ "# What is is?\n\nA MoE model for Roleplaying. Since 7B model is small enough, we can combine them to a bigger model (Which CAN be smarter).\n\nAdapte (some limited) TSF (Trans Sexual Fiction) content because I have include my pre-train model in.\n\nWorse than V1 in logic, but better in expression.", "# GGUF Version?\nHere", "# Recipe?\n\nYou could see base model section", "# Why 3x7B?\n\nI test on 16GB VRAM card could fit < 20B model GGUF version with 4-8k context length. I don't want make a model that I can't use." ]
[ "TAGS\n#transformers #safetensors #mixtral #text-generation #moe #merge #roleplay #Roleplay #base_model-Alsebay/NarumashiRTS-V2 #base_model-SanjiWatsuki/Kunoichi-DPO-v2-7B #base_model-Nitral-AI/KukulStanta-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# What is is?\n\nA MoE model for Roleplaying. Since 7B model is small enough, we can combine them to a bigger model (Which CAN be smarter).\n\nAdapte (some limited) TSF (Trans Sexual Fiction) content because I have include my pre-train model in.\n\nWorse than V1 in logic, but better in expression.", "# GGUF Version?\nHere", "# Recipe?\n\nYou could see base model section", "# Why 3x7B?\n\nI test on 16GB VRAM card could fit < 20B model GGUF version with 4-8k context length. I don't want make a model that I can't use." ]
reinforcement-learning
stable-baselines3
# **A2C** Agent playing **PandaReachDense-v3** ## General information about the project: This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). It controls a robotic arm to pick up balls. ### What I did: Manually tuned hyperparameters by adding "learning_rate=0.0007, n_steps=5, gamma=0.99, gae_lambda=0.95" to the A2C model. ``` model = A2C(policy = "MultiInputPolicy", env = env, learning_rate=0.0007, n_steps=5, gamma=0.99, gae_lambda=0.95, verbose=1) ``` ## Links to relevant resources such as tutorials. Reinforcement Learning Tips and Tricks: https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html A Github Training Framework : https://github.com/DLR-RM/rl-baselines3-zoo Poe (GPT-4): Showed me how to use Optuna to do automated hyperparameter optimization, but I was still understanding how it worked and couldn't get it to run properly. ``` import optuna from stable_baselines3 import A2C from stable_baselines3.common.env_util import make_vec_env def optimize_agent(trial): learning_rate = trial.suggest_loguniform('learning_rate', 1e-5, 1) gamma = trial.suggest_uniform('gamma', 0.8, 0.9999) gae_lambda = trial.suggest_uniform('gae_lambda', 0.8, 0.99) n_steps = trial.suggest_int('n_steps', 5, 20) model = A2C('MlpPolicy', env, verbose=0, learning_rate=learning_rate, gamma=gamma, gae_lambda=gae_lambda, n_steps=n_steps) model.learn(total_timesteps=5000) rewards = sum(model.rollout_buffer.rewards) return rewards study = optuna.create_study(direction='maximize') study.optimize(optimize_agent, n_trials=100) print('Best hyperparameters:', study.best_params) ```
{"library_name": "stable-baselines3", "tags": ["PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "A2C", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "PandaReachDense-v3", "type": "PandaReachDense-v3"}, "metrics": [{"type": "mean_reward", "value": "-0.24 +/- 0.09", "name": "mean_reward", "verified": false}]}]}]}
daenielkim-66/a2c-PandaReachDense-v3
null
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-15T01:44:57+00:00
[]
[]
TAGS #stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# A2C Agent playing PandaReachDense-v3 ## General information about the project: This is a trained model of a A2C agent playing PandaReachDense-v3 using the stable-baselines3 library. It controls a robotic arm to pick up balls. ### What I did: Manually tuned hyperparameters by adding "learning_rate=0.0007, n_steps=5, gamma=0.99, gae_lambda=0.95" to the A2C model. ## Links to relevant resources such as tutorials. Reinforcement Learning Tips and Tricks: URL A Github Training Framework : URL Poe (GPT-4): Showed me how to use Optuna to do automated hyperparameter optimization, but I was still understanding how it worked and couldn't get it to run properly.
[ "# A2C Agent playing PandaReachDense-v3", "## General information about the project:\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library. It controls a robotic arm to pick up balls.", "### What I did:\nManually tuned hyperparameters by adding \"learning_rate=0.0007, n_steps=5, gamma=0.99, gae_lambda=0.95\" to the A2C model.", "## Links to relevant resources such as tutorials.\nReinforcement Learning Tips and Tricks: URL\n\nA Github Training Framework : URL\n\nPoe (GPT-4): Showed me how to use Optuna to do automated hyperparameter optimization, but I was still understanding how it worked and couldn't get it to run properly." ]
[ "TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# A2C Agent playing PandaReachDense-v3", "## General information about the project:\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library. It controls a robotic arm to pick up balls.", "### What I did:\nManually tuned hyperparameters by adding \"learning_rate=0.0007, n_steps=5, gamma=0.99, gae_lambda=0.95\" to the A2C model.", "## Links to relevant resources such as tutorials.\nReinforcement Learning Tips and Tricks: URL\n\nA Github Training Framework : URL\n\nPoe (GPT-4): Showed me how to use Optuna to do automated hyperparameter optimization, but I was still understanding how it worked and couldn't get it to run properly." ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Cantonese - Daniel Chan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2611 - Wer: 55.8860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2222 | 1.14 | 1000 | 0.2847 | 63.1879 | | 0.1146 | 2.28 | 2000 | 0.2592 | 58.2725 | | 0.0382 | 3.42 | 3000 | 0.2575 | 55.9216 | | 0.024 | 4.57 | 4000 | 0.2611 | 55.8860 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
{"language": ["zh"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_11_0"], "metrics": ["wer"], "base_model": "openai/whisper-small", "model-index": [{"name": "Whisper Small Cantonese - Daniel Chan", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 11.0", "type": "mozilla-foundation/common_voice_11_0", "config": "zh-HK", "split": "None", "args": "config: Cantonese, split: test"}, "metrics": [{"type": "wer", "value": 55.88601959038291, "name": "Wer"}]}]}]}
chandc/whisper-small-Cantonese
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "zh", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2024-04-15T01:45:12+00:00
[]
[ "zh" ]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #zh #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us
Whisper Small Cantonese - Daniel Chan ===================================== This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: * Loss: 0.2611 * Wer: 55.8860 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 4000 ### Training results ### Framework versions * Transformers 4.38.1 * Pytorch 2.2.0 * Datasets 2.17.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 4000", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.1\n* Pytorch 2.2.0\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #zh #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 4000", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.1\n* Pytorch 2.2.0\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sft-microsoft-phi2-on-dialogsum This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4203 | 5.0 | 50 | 1.3966 | | 1.2814 | 10.0 | 100 | 1.3639 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.15.0 - Tokenizers 0.15.1
{"license": "mit", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "microsoft/phi-2", "model-index": [{"name": "sft-microsoft-phi2-on-dialogsum", "results": []}]}
agitohere/sft-microsoft-phi2-on-dialogsum
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-04-15T01:45:40+00:00
[]
[]
TAGS #peft #safetensors #generated_from_trainer #base_model-microsoft/phi-2 #license-mit #region-us
sft-microsoft-phi2-on-dialogsum =============================== This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.3639 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * gradient\_accumulation\_steps: 5 * total\_train\_batch\_size: 10 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 50 * training\_steps: 100 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * PEFT 0.7.1 * Transformers 4.36.2 * Pytorch 2.1.2 * Datasets 2.15.0 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 5\n* total\\_train\\_batch\\_size: 10\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 50\n* training\\_steps: 100\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2\n* Datasets 2.15.0\n* Tokenizers 0.15.1" ]
[ "TAGS\n#peft #safetensors #generated_from_trainer #base_model-microsoft/phi-2 #license-mit #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 5\n* total\\_train\\_batch\\_size: 10\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 50\n* training\\_steps: 100\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2\n* Datasets 2.15.0\n* Tokenizers 0.15.1" ]
null
transformers
## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/orpo-explorers/mistral-7b-orpo-v3.0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/mistral-7b-orpo-v3.0-GGUF/resolve/main/mistral-7b-orpo-v3.0.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["alignment-handbook", "trl", "orpo", "generated_from_trainer", "trl", "orpo", "generated_from_trainer"], "datasets": ["HuggingFaceH4/distilabel-capybara-dpo-7k-binarized", "HuggingFaceH4/OpenHermesPreferences-10k"], "base_model": "orpo-explorers/mistral-7b-orpo-v3.0", "quantized_by": "mradermacher"}
mradermacher/mistral-7b-orpo-v3.0-GGUF
null
[ "transformers", "gguf", "alignment-handbook", "trl", "orpo", "generated_from_trainer", "en", "dataset:HuggingFaceH4/distilabel-capybara-dpo-7k-binarized", "dataset:HuggingFaceH4/OpenHermesPreferences-10k", "base_model:orpo-explorers/mistral-7b-orpo-v3.0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-15T01:45:47+00:00
[]
[ "en" ]
TAGS #transformers #gguf #alignment-handbook #trl #orpo #generated_from_trainer #en #dataset-HuggingFaceH4/distilabel-capybara-dpo-7k-binarized #dataset-HuggingFaceH4/OpenHermesPreferences-10k #base_model-orpo-explorers/mistral-7b-orpo-v3.0 #license-apache-2.0 #endpoints_compatible #region-us
About ----- static quants of URL weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. Usage ----- If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files. Provided Quants --------------- (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): !URL And here are Artefact2's thoughts on the matter: URL FAQ / Model Request ------------------- See URL for some answers to questions you might have and/or if you want some other model quantized. Thanks ------ I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.
[]
[ "TAGS\n#transformers #gguf #alignment-handbook #trl #orpo #generated_from_trainer #en #dataset-HuggingFaceH4/distilabel-capybara-dpo-7k-binarized #dataset-HuggingFaceH4/OpenHermesPreferences-10k #base_model-orpo-explorers/mistral-7b-orpo-v3.0 #license-apache-2.0 #endpoints_compatible #region-us \n" ]
reinforcement-learning
ml-agents
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: BWangila/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
{"library_name": "ml-agents", "tags": ["SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget"]}
BWangila/ppo-SnowballTarget
null
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
null
2024-04-15T01:46:29+00:00
[]
[]
TAGS #ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us
# ppo Agent playing SnowballTarget This is a trained model of a ppo agent playing SnowballTarget using the Unity ML-Agents Library. ## Usage (with ML-Agents) The Documentation: URL We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your browser: URL - A *longer tutorial* to understand how works ML-Agents: URL ### Resume the training ### Watch your Agent play You can watch your agent playing directly in your browser 1. If the environment is part of ML-Agents official environments, go to URL 2. Step 1: Find your model_id: BWangila/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play
[ "# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: BWangila/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ "TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n", "# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: BWangila/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Erfan-Shayegani/llama2-lora_Unlearned_bad_weight_5e-2
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-15T01:47:38+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
null
# andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q4_K_M-GGUF This model was converted to GGUF format from [`yanolja/EEVE-Korean-Instruct-2.8B-v1.0`](https://huggingface.co/yanolja/EEVE-Korean-Instruct-2.8B-v1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/yanolja/EEVE-Korean-Instruct-2.8B-v1.0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q4_K_M-GGUF --model eeve-korean-instruct-2.8b-v1.0.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q4_K_M-GGUF --model eeve-korean-instruct-2.8b-v1.0.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m eeve-korean-instruct-2.8b-v1.0.Q4_K_M.gguf -n 128 ```
{"license": "apache-2.0", "tags": ["generated_from_trainer", "llama-cpp", "gguf-my-repo"], "base_model": "yanolja/EEVE-Korean-2.8B-v1.0", "model-index": [{"name": "yanolja/EEVE-Korean-Instruct-2.8B-v1.0", "results": []}]}
andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q4_K_M-GGUF
null
[ "gguf", "generated_from_trainer", "llama-cpp", "gguf-my-repo", "base_model:yanolja/EEVE-Korean-2.8B-v1.0", "license:apache-2.0", "region:us" ]
null
2024-04-15T01:48:34+00:00
[]
[]
TAGS #gguf #generated_from_trainer #llama-cpp #gguf-my-repo #base_model-yanolja/EEVE-Korean-2.8B-v1.0 #license-apache-2.0 #region-us
# andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q4_K_M-GGUF This model was converted to GGUF format from 'yanolja/EEVE-Korean-Instruct-2.8B-v1.0' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'yanolja/EEVE-Korean-Instruct-2.8B-v1.0' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #generated_from_trainer #llama-cpp #gguf-my-repo #base_model-yanolja/EEVE-Korean-2.8B-v1.0 #license-apache-2.0 #region-us \n", "# andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'yanolja/EEVE-Korean-Instruct-2.8B-v1.0' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
reinforcement-learning
stable-baselines3
# **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "A2C", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "PandaReachDense-v3", "type": "PandaReachDense-v3"}, "metrics": [{"type": "mean_reward", "value": "-0.26 +/- 0.13", "name": "mean_reward", "verified": false}]}]}]}
ashwanth18/a2c-PandaReachDense-v3
null
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-15T01:50:24+00:00
[]
[]
TAGS #stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# A2C Agent playing PandaReachDense-v3 This is a trained model of a A2C agent playing PandaReachDense-v3 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
harikrishnad1997/emotion_tweet_t5-base_2024-04-15
null
[ "transformers", "safetensors", "t5", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T01:50:26+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #t5 #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #t5 #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
![SauerkrautLM](https://vago-solutions.ai/wp-content/uploads/2024/04/SauerkrautLM-Qwen-32b.png "SauerkrautLM-Qwen-32b") ## VAGO solutions SauerkrautLM-Qwen-32b Introducing **SauerkrautLM-Qwen-32b** – our Sauerkraut version of the powerful [Qwen/Qwen1.5-32B](https://huggingface.co/Qwen/Qwen1.5-32B)! The model **SauerkrautLM-Qwen-32b** is a **joint effort** between **VAGO solutions** and **Hyperspace.ai.** - Finetuned with **SFT** - Aligned with **DPO** # Table of Contents 1. [Overview of all SauerkrautLM-Qwen-32b](#all-SauerkrautLM-Qwen-32b) 2. [Model Details](#model-details) - [Prompt template](#prompt-template) - [Training procedure](#proceed-of-the-training) 3. [Evaluation](#evaluation) 5. [Disclaimer](#disclaimer) 6. [Contact](#contact) 7. [Collaborations](#collaborations) 8. [Acknowledgement](#acknowledgement) ## All SauerkrautLM-Qwen-32b | Model | HF | EXL2 | GGUF | AWQ | |-------|-------|-------|-------|-------| | SauerkrautLM-Qwen-32b | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-Qwen-32b) | coming soon | coming soon | coming soon | ## Model Details **SauerkrautLM-Qwen-32b** - **Model Type:** SauerkrautLM-Qwen-32b is a finetuned Model based on [Qwen/Qwen1.5-32B](https://huggingface.co/Qwen/Qwen1.5-32B) - **Language(s):** German, English - **License:** [tongyi-qianwen-research](https://huggingface.co/Qwen/Qwen1.5-32B/blob/main/LICENSEs) - **Contact:** [VAGO solutions](https://vago-solutions.ai), [Hyperspace.ai](https://hyperspace.computer/) ### Training procedure: - We trained this model for 2 epochs on 160k data samples with SFT. - Afterwards we applied DPO for 1 epoch with 110k data. - LaserRMT version coming soon **We teached German language skills on this model.** As far as we know, it is the first Qwen 32B model with bilingual skills in German and English. Nevertheless, formulations may occur that are not entirely correct (still work in progress). ### Prompt Template: **English:** ``` <|im_start|>system You are SauerkrautLM, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` **German:** ``` <|im_start|>system Du bist SauerkrautLM, ein hilfreicher und freundlicher KI-Assistent.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ### Example output of german language: ``` Die Karte zeigte eine verborgene Höhle, die in den umliegenden Bergen zu finden war. Mia war von der Idee fasziniert, diese Höhle zu entdecken und ihre Geheimnisse zu lüften. Sie nahm die Karte mit sich und machte sich auf den Weg, um die Höhle zu finden. Die Wanderung zu den Bergen war eine Herausforderung, aber Mia war fest entschlossen, ihr Abenteuer zu vollenden. Sie überwand steinige Wege und überquerte klirrende Bäche, die ihre Füße kühlten und ihr die Energie für den Rest des Weges gab. Endlich erreichte Mia die Höhle, die von einem dichten Wald umgeben war. Die Höhle war ein Ort der Geheimnisse und des Staunens, der ihr Herz höher schlagen ließ. Sie betrat die Höhle, und die Dunkelheit umhüllte sie wie ein Schleier aus Stille. In der Höhle fand Mia eine alte Schatzkiste, die mit einem alten, verwitterten Holz verziert war. Mit zitternden Händen öffnete sie die Schatzkiste und fand darin eine alte, zerfledderte Schriftrolle. Die Schriftrolle war ein geheimnisvolles Artefakt, das ihr die Geschichte der Höhle offenbarte. ``` ## Evaluation **Open LLM Leaderboard:** | Metric | Value | |-----------------------|---------------------------| | Avg. | **73.11** | | ARC (25-shot) | 59.22 | | HellaSwag (10-shot) | 82.32 | | MMLU (5-shot) | 74.40| | TruthfulQA (0-shot) | 61.03 | | Winogrande (5-shot) | 82.16 | | GSM8K (5-shot) | 79.53 | ## Disclaimer We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.   ## Contact If you are interested in customized LLMs for business applications, please get in contact with us via our websites. We are also grateful for your feedback and suggestions.   ## Collaborations We are also keenly seeking support and investment for our startups, VAGO solutions and Hyperspace where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.de/#Kontakt), [Hyperspace.computer](https://hyperspace.computer/) ## Acknowledgement Many thanks to [Qwen](https://huggingface.co/Qwen) for providing such valuable model to the Open-Source community
{"language": ["de", "en"], "license": "other", "tags": ["sft", "dpo"], "license_name": "tongyi-qianwen-research", "license_link": "https://huggingface.co/Qwen/Qwen1.5-32B/blob/main/LICENSE"}
blockblockblock/SauerkrautLM-Qwen-32b-bpw2.25
null
[ "transformers", "safetensors", "qwen2", "text-generation", "sft", "dpo", "conversational", "de", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T01:51:19+00:00
[]
[ "de", "en" ]
TAGS #transformers #safetensors #qwen2 #text-generation #sft #dpo #conversational #de #en #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
!SauerkrautLM VAGO solutions SauerkrautLM-Qwen-32b ------------------------------------ Introducing SauerkrautLM-Qwen-32b – our Sauerkraut version of the powerful Qwen/Qwen1.5-32B! The model SauerkrautLM-Qwen-32b is a joint effort between VAGO solutions and URL. * Finetuned with SFT * Aligned with DPO Table of Contents ================= 1. Overview of all SauerkrautLM-Qwen-32b 2. Model Details * Prompt template * Training procedure 3. Evaluation 4. Disclaimer 5. Contact 6. Collaborations 7. Acknowledgement All SauerkrautLM-Qwen-32b ------------------------- Model Details ------------- SauerkrautLM-Qwen-32b * Model Type: SauerkrautLM-Qwen-32b is a finetuned Model based on Qwen/Qwen1.5-32B * Language(s): German, English * License: tongyi-qianwen-research * Contact: VAGO solutions, URL ### Training procedure: * We trained this model for 2 epochs on 160k data samples with SFT. * Afterwards we applied DPO for 1 epoch with 110k data. * LaserRMT version coming soon We teached German language skills on this model. As far as we know, it is the first Qwen 32B model with bilingual skills in German and English. Nevertheless, formulations may occur that are not entirely correct (still work in progress). ### Prompt Template: English: German: ### Example output of german language: Evaluation ---------- Open LLM Leaderboard: Disclaimer ---------- We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models. Contact ------- If you are interested in customized LLMs for business applications, please get in contact with us via our websites. We are also grateful for your feedback and suggestions. Collaborations -------------- We are also keenly seeking support and investment for our startups, VAGO solutions and Hyperspace where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at VAGO solutions, Hyperspace.computer Acknowledgement --------------- Many thanks to Qwen for providing such valuable model to the Open-Source community
[ "### Training procedure:\n\n\n* We trained this model for 2 epochs on 160k data samples with SFT.\n* Afterwards we applied DPO for 1 epoch with 110k data.\n* LaserRMT version coming soon\n\n\nWe teached German language skills on this model. As far as we know, it is the first Qwen 32B model with bilingual skills in German and English. Nevertheless, formulations may occur that are not entirely correct (still work in progress).", "### Prompt Template:\n\n\nEnglish:\n\n\nGerman:", "### Example output of german language:\n\n\nEvaluation\n----------\n\n\nOpen LLM Leaderboard:\n\n\n\nDisclaimer\n----------\n\n\nWe must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.\nHowever, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.\nAdditionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.\n\n\nContact\n-------\n\n\nIf you are interested in customized LLMs for business applications, please get in contact with us via our websites. We are also grateful for your feedback and suggestions.\n\n\nCollaborations\n--------------\n\n\nWe are also keenly seeking support and investment for our startups, VAGO solutions and Hyperspace where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at VAGO solutions, Hyperspace.computer\n\n\nAcknowledgement\n---------------\n\n\nMany thanks to Qwen for providing such valuable model to the Open-Source community" ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #sft #dpo #conversational #de #en #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training procedure:\n\n\n* We trained this model for 2 epochs on 160k data samples with SFT.\n* Afterwards we applied DPO for 1 epoch with 110k data.\n* LaserRMT version coming soon\n\n\nWe teached German language skills on this model. As far as we know, it is the first Qwen 32B model with bilingual skills in German and English. Nevertheless, formulations may occur that are not entirely correct (still work in progress).", "### Prompt Template:\n\n\nEnglish:\n\n\nGerman:", "### Example output of german language:\n\n\nEvaluation\n----------\n\n\nOpen LLM Leaderboard:\n\n\n\nDisclaimer\n----------\n\n\nWe must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.\nHowever, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.\nAdditionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.\n\n\nContact\n-------\n\n\nIf you are interested in customized LLMs for business applications, please get in contact with us via our websites. We are also grateful for your feedback and suggestions.\n\n\nCollaborations\n--------------\n\n\nWe are also keenly seeking support and investment for our startups, VAGO solutions and Hyperspace where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at VAGO solutions, Hyperspace.computer\n\n\nAcknowledgement\n---------------\n\n\nMany thanks to Qwen for providing such valuable model to the Open-Source community" ]
null
null
# andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q8_0-GGUF This model was converted to GGUF format from [`yanolja/EEVE-Korean-Instruct-2.8B-v1.0`](https://huggingface.co/yanolja/EEVE-Korean-Instruct-2.8B-v1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/yanolja/EEVE-Korean-Instruct-2.8B-v1.0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q8_0-GGUF --model eeve-korean-instruct-2.8b-v1.0.Q8_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q8_0-GGUF --model eeve-korean-instruct-2.8b-v1.0.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m eeve-korean-instruct-2.8b-v1.0.Q8_0.gguf -n 128 ```
{"license": "apache-2.0", "tags": ["generated_from_trainer", "llama-cpp", "gguf-my-repo"], "base_model": "yanolja/EEVE-Korean-2.8B-v1.0", "model-index": [{"name": "yanolja/EEVE-Korean-Instruct-2.8B-v1.0", "results": []}]}
andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q8_0-GGUF
null
[ "gguf", "generated_from_trainer", "llama-cpp", "gguf-my-repo", "base_model:yanolja/EEVE-Korean-2.8B-v1.0", "license:apache-2.0", "region:us" ]
null
2024-04-15T01:53:12+00:00
[]
[]
TAGS #gguf #generated_from_trainer #llama-cpp #gguf-my-repo #base_model-yanolja/EEVE-Korean-2.8B-v1.0 #license-apache-2.0 #region-us
# andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q8_0-GGUF This model was converted to GGUF format from 'yanolja/EEVE-Korean-Instruct-2.8B-v1.0' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q8_0-GGUF\nThis model was converted to GGUF format from 'yanolja/EEVE-Korean-Instruct-2.8B-v1.0' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #generated_from_trainer #llama-cpp #gguf-my-repo #base_model-yanolja/EEVE-Korean-2.8B-v1.0 #license-apache-2.0 #region-us \n", "# andreass123/EEVE-Korean-Instruct-2.8B-v1.0-Q8_0-GGUF\nThis model was converted to GGUF format from 'yanolja/EEVE-Korean-Instruct-2.8B-v1.0' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-accelerate1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0660 - Precision: 0.9330 - Recall: 0.9512 - F1: 0.9420 - Accuracy: 0.9869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0377 | 1.0 | 1756 | 0.0631 | 0.9229 | 0.9392 | 0.9310 | 0.9844 | | 0.0199 | 2.0 | 3512 | 0.0668 | 0.9343 | 0.9451 | 0.9397 | 0.9858 | | 0.0095 | 3.0 | 5268 | 0.0660 | 0.9330 | 0.9512 | 0.9420 | 0.9869 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "bert-base-cased", "model-index": [{"name": "bert-finetuned-ner-accelerate1", "results": []}]}
BrandonM001/bert-finetuned-ner-accelerate1
null
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T01:54:13+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #token-classification #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-finetuned-ner-accelerate1 ============================== This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0660 * Precision: 0.9330 * Recall: 0.9512 * F1: 0.9420 * Accuracy: 0.9869 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #token-classification #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TSC_classification_model This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0442 - Precision: 0.8034 - Recall: 0.7769 - F1: 0.7899 - Accuracy: 0.9944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 48 | 0.0448 | 0.4732 | 0.4380 | 0.4549 | 0.9866 | | No log | 2.0 | 96 | 0.0389 | 0.5349 | 0.5702 | 0.552 | 0.9902 | | No log | 3.0 | 144 | 0.0346 | 0.7154 | 0.7273 | 0.7213 | 0.9932 | | No log | 4.0 | 192 | 0.0355 | 0.7611 | 0.7107 | 0.7350 | 0.9937 | | No log | 5.0 | 240 | 0.0375 | 0.7603 | 0.7603 | 0.7603 | 0.9939 | | No log | 6.0 | 288 | 0.0376 | 0.7478 | 0.7107 | 0.7288 | 0.9937 | | No log | 7.0 | 336 | 0.0414 | 0.7699 | 0.7190 | 0.7436 | 0.9939 | | No log | 8.0 | 384 | 0.0427 | 0.7778 | 0.7521 | 0.7647 | 0.9942 | | No log | 9.0 | 432 | 0.0432 | 0.8120 | 0.7851 | 0.7983 | 0.9947 | | No log | 10.0 | 480 | 0.0438 | 0.7983 | 0.7851 | 0.7917 | 0.9947 | | 0.0095 | 11.0 | 528 | 0.0441 | 0.8034 | 0.7769 | 0.7899 | 0.9944 | | 0.0095 | 12.0 | 576 | 0.0442 | 0.8034 | 0.7769 | 0.7899 | 0.9944 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "distilbert/distilbert-base-uncased", "model-index": [{"name": "TSC_classification_model", "results": []}]}
SiriusW/TSC_classification_model
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T01:54:16+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert/distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
TSC\_classification\_model ========================== This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0442 * Precision: 0.8034 * Recall: 0.7769 * F1: 0.7899 * Accuracy: 0.9944 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 12 ### Training results ### Framework versions * Transformers 4.39.3 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert/distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
sentence-similarity
sentence-transformers
# Santp98/SBERT-pairs-bert-base-spanish-wwm-cased-2023-11-13-22-45 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Santp98/SBERT-pairs-bert-base-spanish-wwm-cased-2023-11-13-22-45') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Santp98/SBERT-pairs-bert-base-spanish-wwm-cased-2023-11-13-22-45') model = AutoModel.from_pretrained('Santp98/SBERT-pairs-bert-base-spanish-wwm-cased-2023-11-13-22-45') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Santp98/SBERT-pairs-bert-base-spanish-wwm-cased-2023-11-13-22-45) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1178 with parameters: ``` {'batch_size': 86, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `src.models.utils.custom_parts.CustomMultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 6, "evaluation_steps": 500, "evaluator": "src.models.utils.custom_parts.CustomEmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "datasets": ["Santp98/query_generated-title-secop2"], "pipeline_tag": "sentence-similarity"}
Santp98/SBERT-pairs-bert-base-spanish-wwm-cased-2023-11-13-22-45
null
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "dataset:Santp98/query_generated-title-secop2", "endpoints_compatible", "region:us" ]
null
2024-04-15T01:58:03+00:00
[]
[]
TAGS #sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #transformers #dataset-Santp98/query_generated-title-secop2 #endpoints_compatible #region-us
# Santp98/SBERT-pairs-bert-base-spanish-wwm-cased-2023-11-13-22-45 This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Usage (HuggingFace Transformers) Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Training The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 1178 with parameters: Loss: 'URL.custom_parts.CustomMultipleNegativesRankingLoss' with parameters: Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# Santp98/SBERT-pairs-bert-base-spanish-wwm-cased-2023-11-13-22-45\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 1178 with parameters:\n\n\nLoss:\n\n'URL.custom_parts.CustomMultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #transformers #dataset-Santp98/query_generated-title-secop2 #endpoints_compatible #region-us \n", "# Santp98/SBERT-pairs-bert-base-spanish-wwm-cased-2023-11-13-22-45\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 1178 with parameters:\n\n\nLoss:\n\n'URL.custom_parts.CustomMultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1231 - Accuracy: 0.69 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 1.5999 | 0.558 | | 1.85 | 2.0 | 500 | 1.2074 | 0.662 | | 1.85 | 3.0 | 750 | 1.1231 | 0.69 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "bert-base-uncased", "model-index": [{"name": "my_awesome_qa_model", "results": []}]}
SaiSaketh/my_awesome_qa_model
null
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T01:58:12+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
my\_awesome\_qa\_model ====================== This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.1231 * Accuracy: 0.69 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Tokenizers 0.15.2" ]
text-generation
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [gotchachurchkhela/SN6-23](https://huggingface.co/gotchachurchkhela/SN6-23) * [tom-brady/sn6_200](https://huggingface.co/tom-brady/sn6_200) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: gotchachurchkhela/SN6-23 layer_range: [0, 24] - model: tom-brady/sn6_200 layer_range: [0, 24] merge_method: slerp base_model: gotchachurchkhela/SN6-23 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["gotchachurchkhela/SN6-23", "tom-brady/sn6_200"]}
Sumail/Ame1
null
[ "transformers", "safetensors", "stablelm", "text-generation", "mergekit", "merge", "conversational", "base_model:gotchachurchkhela/SN6-23", "base_model:tom-brady/sn6_200", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T01:58:53+00:00
[]
[]
TAGS #transformers #safetensors #stablelm #text-generation #mergekit #merge #conversational #base_model-gotchachurchkhela/SN6-23 #base_model-tom-brady/sn6_200 #autotrain_compatible #endpoints_compatible #region-us
# merge This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * gotchachurchkhela/SN6-23 * tom-brady/sn6_200 ### Configuration The following YAML configuration was used to produce this model:
[ "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* gotchachurchkhela/SN6-23\n* tom-brady/sn6_200", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #mergekit #merge #conversational #base_model-gotchachurchkhela/SN6-23 #base_model-tom-brady/sn6_200 #autotrain_compatible #endpoints_compatible #region-us \n", "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* gotchachurchkhela/SN6-23\n* tom-brady/sn6_200", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
zzttbrdd/sn6_6m
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T01:59:07+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
null
# lust 7b yeah yeah you get the drill its just the gargamels. proper quantizations coming sometime soon
{"license": "apache-2.0"}
Fizzarolli/lust-7b-GGUF
null
[ "gguf", "license:apache-2.0", "region:us" ]
null
2024-04-15T02:06:08+00:00
[]
[]
TAGS #gguf #license-apache-2.0 #region-us
# lust 7b yeah yeah you get the drill its just the gargamels. proper quantizations coming sometime soon
[ "# lust 7b\nyeah yeah you get the drill its just the gargamels. proper quantizations coming sometime soon" ]
[ "TAGS\n#gguf #license-apache-2.0 #region-us \n", "# lust 7b\nyeah yeah you get the drill its just the gargamels. proper quantizations coming sometime soon" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
yongsun-shim/eeve-8bit-test
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-15T02:06:36+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [gotchachurchkhela/SN6-23](https://huggingface.co/gotchachurchkhela/SN6-23) * [GamblerOnTrain/danke20a](https://huggingface.co/GamblerOnTrain/danke20a) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: gotchachurchkhela/SN6-23 layer_range: [0, 24] - model: GamblerOnTrain/danke20a layer_range: [0, 24] merge_method: slerp base_model: gotchachurchkhela/SN6-23 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["gotchachurchkhela/SN6-23", "GamblerOnTrain/danke20a"]}
Sumail/Ame2
null
[ "transformers", "safetensors", "stablelm", "text-generation", "mergekit", "merge", "conversational", "base_model:gotchachurchkhela/SN6-23", "base_model:GamblerOnTrain/danke20a", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T02:07:47+00:00
[]
[]
TAGS #transformers #safetensors #stablelm #text-generation #mergekit #merge #conversational #base_model-gotchachurchkhela/SN6-23 #base_model-GamblerOnTrain/danke20a #autotrain_compatible #endpoints_compatible #region-us
# merge This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * gotchachurchkhela/SN6-23 * GamblerOnTrain/danke20a ### Configuration The following YAML configuration was used to produce this model:
[ "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* gotchachurchkhela/SN6-23\n* GamblerOnTrain/danke20a", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #mergekit #merge #conversational #base_model-gotchachurchkhela/SN6-23 #base_model-GamblerOnTrain/danke20a #autotrain_compatible #endpoints_compatible #region-us \n", "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* gotchachurchkhela/SN6-23\n* GamblerOnTrain/danke20a", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ruBert-base-sberquad-0.005-filtered This model is a fine-tuned version of [ai-forever/ruBert-base](https://huggingface.co/ai-forever/ruBert-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 5000 ### Training results ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "ai-forever/ruBert-base", "model-index": [{"name": "ruBert-base-sberquad-0.005-filtered", "results": []}]}
Shalazary/ruBert-base-sberquad-0.005-filtered
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:ai-forever/ruBert-base", "license:apache-2.0", "region:us" ]
null
2024-04-15T02:11:32+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #generated_from_trainer #base_model-ai-forever/ruBert-base #license-apache-2.0 #region-us
# ruBert-base-sberquad-0.005-filtered This model is a fine-tuned version of ai-forever/ruBert-base on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 5000 ### Training results ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# ruBert-base-sberquad-0.005-filtered\n\nThis model is a fine-tuned version of ai-forever/ruBert-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0005\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 5000", "### Training results", "### Framework versions\n\n- PEFT 0.10.1.dev0\n- Transformers 4.40.0.dev0\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #base_model-ai-forever/ruBert-base #license-apache-2.0 #region-us \n", "# ruBert-base-sberquad-0.005-filtered\n\nThis model is a fine-tuned version of ai-forever/ruBert-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0005\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 5000", "### Training results", "### Framework versions\n\n- PEFT 0.10.1.dev0\n- Transformers 4.40.0.dev0\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
{"license": "other", "library_name": "transformers", "tags": ["autotrain", "text-generation-inference", "text-generation", "peft"], "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]}
shaswatamitra/llama2-7b-chat-hf-finetuned2
null
[ "transformers", "safetensors", "autotrain", "text-generation-inference", "text-generation", "peft", "conversational", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-15T02:12:53+00:00
[]
[]
TAGS #transformers #safetensors #autotrain #text-generation-inference #text-generation #peft #conversational #license-other #endpoints_compatible #region-us
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit AutoTrain. # Usage
[ "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
[ "TAGS\n#transformers #safetensors #autotrain #text-generation-inference #text-generation #peft #conversational #license-other #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0603 - Precision: 0.9332 - Recall: 0.9517 - F1: 0.9423 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0747 | 1.0 | 1756 | 0.0679 | 0.8990 | 0.9307 | 0.9146 | 0.9807 | | 0.0346 | 2.0 | 3512 | 0.0641 | 0.9331 | 0.9478 | 0.9404 | 0.9857 | | 0.0233 | 3.0 | 5268 | 0.0603 | 0.9332 | 0.9517 | 0.9423 | 0.9864 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "bert-base-cased", "model-index": [{"name": "bert-finetuned-ner2", "results": []}]}
BrandonM001/bert-finetuned-ner2
null
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T02:13:24+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #token-classification #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-finetuned-ner2 =================== This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0603 * Precision: 0.9332 * Recall: 0.9517 * F1: 0.9423 * Accuracy: 0.9864 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #token-classification #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-to-image
diffusers
# Photography LoRA (XL) <Gallery /> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a4efd2927c1e320ea42479/Utp2KkBeZczk3hXT3k5U6.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a4efd2927c1e320ea42479/cx9NtQrh5wd9VDpQgWMo1.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a4efd2927c1e320ea42479/ZqD3AOmlQrBnidUNvmXLU.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a4efd2927c1e320ea42479/lJD3WGeyU5UV1IgEIvyRC.png) ## Model description PhotographyLoRa is trained with the Stable-Diffusion-xl base checkpoint Base Model: SDXL 1.0 Training STEPS: 1,445 EPOCHS: 10 Usage Tips CLIP SKIP: 1 [Civit](https://civitai.com/models/366187/flowers-photography)
{"language": ["en"], "license": "openrail++", "library_name": "diffusers", "tags": ["stable-diffusion", "lora", "sdxl"], "pipeline_tag": "text-to-image", "base_model": "stabilityai/stable-diffusion-xl-base-1.0"}
f0ster/PhotographyLoRA
null
[ "diffusers", "stable-diffusion", "lora", "sdxl", "text-to-image", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us", "has_space" ]
null
2024-04-15T02:15:41+00:00
[]
[ "en" ]
TAGS #diffusers #stable-diffusion #lora #sdxl #text-to-image #en #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us #has_space
# Photography LoRA (XL) <Gallery /> !image/png !image/png !image/png !image/png ## Model description PhotographyLoRa is trained with the Stable-Diffusion-xl base checkpoint Base Model: SDXL 1.0 Training STEPS: 1,445 EPOCHS: 10 Usage Tips CLIP SKIP: 1 Civit
[ "# Photography LoRA (XL)\n\n<Gallery />\n\n!image/png\n\n!image/png\n\n!image/png\n\n!image/png", "## Model description\n\nPhotographyLoRa is trained with the Stable-Diffusion-xl base checkpoint\n\nBase Model: SDXL 1.0\n\nTraining\nSTEPS: 1,445\nEPOCHS: 10\n\nUsage Tips\n\nCLIP SKIP: 1\n\nCivit" ]
[ "TAGS\n#diffusers #stable-diffusion #lora #sdxl #text-to-image #en #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us #has_space \n", "# Photography LoRA (XL)\n\n<Gallery />\n\n!image/png\n\n!image/png\n\n!image/png\n\n!image/png", "## Model description\n\nPhotographyLoRa is trained with the Stable-Diffusion-xl base checkpoint\n\nBase Model: SDXL 1.0\n\nTraining\nSTEPS: 1,445\nEPOCHS: 10\n\nUsage Tips\n\nCLIP SKIP: 1\n\nCivit" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ai-er/llama-2-medi-dialog-mini-finetuned
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-15T02:17:00+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
reinforcement-learning
null
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="anologicon/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
anologicon/q-FrozenLake-v1-4x4-noSlippery
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
null
2024-04-15T02:20:08+00:00
[]
[]
TAGS #FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
# Q-Learning Agent playing1 FrozenLake-v1 This is a trained model of a Q-Learning agent playing FrozenLake-v1 . ## Usage
[ "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ "TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n", "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
text-generation
transformers
# karasu-1.1B-linear2 karasu-1.1B-merge1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [lightblue/karasu-1.1B](https://huggingface.co/lightblue/karasu-1.1B) * [niryuu/Karasu-1.1b-chat-vector](https://huggingface.co/niryuu/Karasu-1.1b-chat-vector) ## 🧩 Configuration ```yaml models: - model: lightblue/karasu-1.1B layer_range: [0, 22] parameters: weight: 0.1 - model: niryuu/Karasu-1.1b-chat-vector layer_range: [0, 22] parameters: weight: 0.9 merge_method: linear dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "aipib/karasu-1.1B-merge1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"tags": ["merge", "mergekit", "lazymergekit", "lightblue/karasu-1.1B", "niryuu/Karasu-1.1b-chat-vector"], "base_model": ["lightblue/karasu-1.1B", "niryuu/Karasu-1.1b-chat-vector"]}
aipib/karasu-1.1B-linear2
null
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "lightblue/karasu-1.1B", "niryuu/Karasu-1.1b-chat-vector", "conversational", "base_model:lightblue/karasu-1.1B", "base_model:niryuu/Karasu-1.1b-chat-vector", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T02:20:13+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #merge #mergekit #lazymergekit #lightblue/karasu-1.1B #niryuu/Karasu-1.1b-chat-vector #conversational #base_model-lightblue/karasu-1.1B #base_model-niryuu/Karasu-1.1b-chat-vector #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# karasu-1.1B-linear2 karasu-1.1B-merge1 is a merge of the following models using LazyMergekit: * lightblue/karasu-1.1B * niryuu/Karasu-1.1b-chat-vector ## Configuration ## Usage
[ "# karasu-1.1B-linear2\n\nkarasu-1.1B-merge1 is a merge of the following models using LazyMergekit:\n* lightblue/karasu-1.1B\n* niryuu/Karasu-1.1b-chat-vector", "## Configuration", "## Usage" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #merge #mergekit #lazymergekit #lightblue/karasu-1.1B #niryuu/Karasu-1.1b-chat-vector #conversational #base_model-lightblue/karasu-1.1B #base_model-niryuu/Karasu-1.1b-chat-vector #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# karasu-1.1B-linear2\n\nkarasu-1.1B-merge1 is a merge of the following models using LazyMergekit:\n* lightblue/karasu-1.1B\n* niryuu/Karasu-1.1b-chat-vector", "## Configuration", "## Usage" ]
text-generation
transformers
"""this is my second attempt at converting a model float16 quantized model to 1.5bit. i used my model liminerity/M7-7b for the base model and trained on: abideen/cosmopedia-100k-pretain dataset and used his google colab project to make this""" #EXAMPLE INFERENCE CODE FROM ABIDEEN'S COLAB PROJECT ``` from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.models.llama.modeling_llama import * # Load a pretrained BitNet model model = "liminerity/Bitnet-M7-70M" tokenizer = AutoTokenizer.from_pretrained(model) model = AutoModelForCausalLM.from_pretrained(model) def activation_quant(x): scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5) y = (x * scale).round().clamp_(-128, 127) y = y / scale return y def weight_quant(w): scale = 1.0 / w.abs().mean().clamp_(min=1e-5) u = (w * scale).round().clamp_(-1, 1) u = u / scale return u class BitLinear(nn.Linear): def forward(self, x): w = self.weight # a weight tensor with shape [d, k] x = x.to(w.device) RMSNorm = LlamaRMSNorm(x.shape[-1]).to(w.device) x_norm = RMSNorm(x) # A trick for implementing Straight−Through−Estimator (STE) using detach() x_quant = x_norm + (activation_quant(x_norm) - x_norm).detach() w_quant = w + (weight_quant(w) - w).detach() y = F.linear(x_quant, w_quant) return y def convert_to_bitnet(model, copy_weights): for name, module in model.named_modules(): # Replace linear layers with BitNet if isinstance(module, LlamaSdpaAttention) or isinstance(module, LlamaMLP): for child_name, child_module in module.named_children(): if isinstance(child_module, nn.Linear): bitlinear = BitLinear(child_module.in_features, child_module.out_features, child_module.bias is not None).to(device="cuda:0") if copy_weights: bitlinear.weight = child_module.weight if child_module.bias is not None: bitlinear.bias = child_module.bias setattr(module, child_name, bitlinear) # Remove redundant input_layernorms elif isinstance(module, LlamaDecoderLayer): for child_name, child_module in module.named_children(): if isinstance(child_module, LlamaRMSNorm) and child_name == "input_layernorm": setattr(module, child_name, nn.Identity().to(device="cuda:0")) convert_to_bitnet(model, copy_weights=True) model.to(device="cuda:0") prompt = "What is Machine Learning?" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) generate_ids = model.generate(inputs.input_ids, max_length=50) tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] ```
{"tags": ["Mistral", "1bit", "bitnet", "abideen", "M7", "Liminerity"], "datasets": ["abideen/Cosmopedia-100k-pretrain"]}
liminerity/Bitnet-M7-70m
null
[ "transformers", "safetensors", "mistral", "text-generation", "Mistral", "1bit", "bitnet", "abideen", "M7", "Liminerity", "dataset:abideen/Cosmopedia-100k-pretrain", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T02:21:00+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #Mistral #1bit #bitnet #abideen #M7 #Liminerity #dataset-abideen/Cosmopedia-100k-pretrain #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
"""this is my second attempt at converting a model float16 quantized model to 1.5bit. i used my model liminerity/M7-7b for the base model and trained on: abideen/cosmopedia-100k-pretain dataset and used his google colab project to make this""" #EXAMPLE INFERENCE CODE FROM ABIDEEN'S COLAB PROJECT
[]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #Mistral #1bit #bitnet #abideen #M7 #Liminerity #dataset-abideen/Cosmopedia-100k-pretrain #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
# Used dataset for fine-tuning - sahil2801/CodeAlpaca-20k - m-a-p/CodeFeedback-Filtered-Instruction
{"license": "apache-2.0"}
upstage/TinySolar-248m-4k-code-instruct
null
[ "transformers", "safetensors", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T02:21:14+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Used dataset for fine-tuning - sahil2801/CodeAlpaca-20k - m-a-p/CodeFeedback-Filtered-Instruction
[ "# Used dataset for fine-tuning\n- sahil2801/CodeAlpaca-20k\n- m-a-p/CodeFeedback-Filtered-Instruction" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Used dataset for fine-tuning\n- sahil2801/CodeAlpaca-20k\n- m-a-p/CodeFeedback-Filtered-Instruction" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
tom-brady/sn6_247
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T02:21:17+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
<div style="width: 100%;"> <img src="http://x-pai.algolet.com/bot/img/logo_core.png" alt="TigerBot" style="width: 20%; display: block; margin: auto;"> </div> <p align="center"> <font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font> </p> <p align="center"> 🌐 <a href="https://tigerbot.com/" target="_blank">TigerBot</a> • 🤗 <a href="https://huggingface.co/TigerResearch" target="_blank">Hugging Face</a> </p> This is a 4-bit EXL2 version of the [tigerbot-70b-chat-v6](https://huggingface.co/TigerResearch/tigerbot-70b-chat-v6). It was quantized to 4bit using: https://github.com/turboderp/exllamav2 ## How to download and use this model in github: https://github.com/TigerResearch/TigerBot Here are commands to clone the TigerBot and install. ``` conda create --name tigerbot python=3.8 conda activate tigerbot conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia git clone https://github.com/TigerResearch/TigerBot cd TigerBot pip install -r requirements.txt ``` Inference with command line interface infer with exllamav2 ``` # install exllamav2 git clone https://github.com/turboderp/exllamav2 cd exllamav2 pip install -r requirements.txt # infer command CUDA_VISIBLE_DEVICES=0 python other_infer/exllamav2_hf_infer.py --model_path TigerResearch/tigerbot-70b-chat-v6-4bit-exl2 ```
{"license": "apache-2.0"}
TigerResearch/tigerbot-70b-chat-v6-4bit-exl2
null
[ "transformers", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T02:21:52+00:00
[]
[]
TAGS #transformers #llama #text-generation #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div style="width: 100%;"> <img src="URL alt="TigerBot" style="width: 20%; display: block; margin: auto;"> </div> <p align="center"> <font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font> </p> <p align="center"> <a href="URL target="_blank">TigerBot</a> • <a href="URL target="_blank">Hugging Face</a> </p> This is a 4-bit EXL2 version of the tigerbot-70b-chat-v6. It was quantized to 4bit using: URL ## How to download and use this model in github: URL Here are commands to clone the TigerBot and install. Inference with command line interface infer with exllamav2
[ "## How to download and use this model in github: URL\n\nHere are commands to clone the TigerBot and install.\n\n\n\nInference with command line interface\n\ninfer with exllamav2" ]
[ "TAGS\n#transformers #llama #text-generation #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How to download and use this model in github: URL\n\nHere are commands to clone the TigerBot and install.\n\n\n\nInference with command line interface\n\ninfer with exllamav2" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DS-6.7B-schema_2 This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0235 | 0.19 | 50 | 0.2107 | | 0.0528 | 0.38 | 100 | 0.1890 | | 0.055 | 0.57 | 150 | 0.1867 | | 0.053 | 0.76 | 200 | 0.1722 | | 0.0843 | 0.95 | 250 | 0.1718 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "other", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "deepseek-ai/deepseek-coder-6.7b-instruct", "model-index": [{"name": "DS-6.7B-schema_2", "results": []}]}
jdeklerk10/DS-6.7B-schema_2
null
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:deepseek-ai/deepseek-coder-6.7b-instruct", "license:other", "region:us" ]
null
2024-04-15T02:22:29+00:00
[]
[]
TAGS #peft #safetensors #trl #sft #generated_from_trainer #base_model-deepseek-ai/deepseek-coder-6.7b-instruct #license-other #region-us
DS-6.7B-schema\_2 ================= This model is a fine-tuned version of deepseek-ai/deepseek-coder-6.7b-instruct on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.1718 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.01 * num\_epochs: 1 ### Training results ### Framework versions * PEFT 0.10.0 * Transformers 4.40.0.dev0 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.01\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#peft #safetensors #trl #sft #generated_from_trainer #base_model-deepseek-ai/deepseek-coder-6.7b-instruct #license-other #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.01\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
yongsun-shim/eeve-4bit-test
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-15T02:25:48+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "286.13 +/- 16.13", "name": "mean_reward", "verified": false}]}]}]}
ahforoughi/PPO-LunarLander-v2
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-15T02:28:38+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
text-generation
transformers
# Vezora/Mistral-22B-v0.1 AWQ - Model creator: [Vezora](https://huggingface.co/Vezora) - Original model: [Mistral-22B-v0.2](https://huggingface.co/Vezora/Mistral-22B-v0.2) ## Model Summary - Just two days after our release of **Mistral-22b-v0.1**, we are excited to introduce our handcrafted experimental model, **Mistral-22b-v.02**. This model is a culmination of equal knowledge distilled from all experts into a single, dense 22b model. This model is not a single trained expert, rather its a compressed MOE model, turning it into a dense 22b mode. This is the first working MOE to Dense model conversion. - v0.2 has trained on 8x more data than v0.1! ## How to use **GUANACO PROMPT FORMAT** YOU MUST USE THE GUANACO PROMPT FORMAT SHOWN BELOW. Not using this prompt format will lead to sub optimal results. - This model requires a specific chat template, as the training format was Guanaco this is what it looks like: - "### System: You are a helpful assistant. ### Human###: Give me the best chili recipe you can ###Assistant: Here is the best chili recipe..."
{"language": ["en"], "license": "apache-2.0", "tags": ["quantized", "4-bit", "AWQ", "autotrain_compatible", "endpoints_compatible", "text-generation-inference"], "model_name": "Mistral-22B-v0.2", "base_model": "mistral-community/Mixtral-8x22B-v0.1", "model_creator": "Vezora", "model_type": "mistral", "pipeline_tag": "text-generation", "inference": false}
solidrust/Mistral-22B-v0.2-AWQ
null
[ "transformers", "safetensors", "mistral", "text-generation", "quantized", "4-bit", "AWQ", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "en", "base_model:mistral-community/Mixtral-8x22B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-04-15T02:28:46+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #quantized #4-bit #AWQ #autotrain_compatible #endpoints_compatible #text-generation-inference #en #base_model-mistral-community/Mixtral-8x22B-v0.1 #license-apache-2.0 #region-us
# Vezora/Mistral-22B-v0.1 AWQ - Model creator: Vezora - Original model: Mistral-22B-v0.2 ## Model Summary - Just two days after our release of Mistral-22b-v0.1, we are excited to introduce our handcrafted experimental model, Mistral-22b-v.02. This model is a culmination of equal knowledge distilled from all experts into a single, dense 22b model. This model is not a single trained expert, rather its a compressed MOE model, turning it into a dense 22b mode. This is the first working MOE to Dense model conversion. - v0.2 has trained on 8x more data than v0.1! ## How to use GUANACO PROMPT FORMAT YOU MUST USE THE GUANACO PROMPT FORMAT SHOWN BELOW. Not using this prompt format will lead to sub optimal results. - This model requires a specific chat template, as the training format was Guanaco this is what it looks like: - "### System: You are a helpful assistant. ### Human###: Give me the best chili recipe you can ###Assistant: Here is the best chili recipe..."
[ "# Vezora/Mistral-22B-v0.1 AWQ\n\n- Model creator: Vezora\n- Original model: Mistral-22B-v0.2", "## Model Summary\n\n- Just two days after our release of Mistral-22b-v0.1, we are excited to introduce our handcrafted experimental model, Mistral-22b-v.02. This model is a culmination of equal knowledge distilled from all experts into a single, dense 22b model. This model is not a single trained expert, rather its a compressed MOE model, turning it into a dense 22b mode. This is the first working MOE to Dense model conversion.\n- v0.2 has trained on 8x more data than v0.1!", "## How to use\n\nGUANACO PROMPT FORMAT YOU MUST USE THE GUANACO PROMPT FORMAT SHOWN BELOW. Not using this prompt format will lead to sub optimal results.\n\n- This model requires a specific chat template, as the training format was Guanaco this is what it looks like:\n- \"### System: You are a helpful assistant. ### Human###: Give me the best chili recipe you can ###Assistant: Here is the best chili recipe...\"" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #quantized #4-bit #AWQ #autotrain_compatible #endpoints_compatible #text-generation-inference #en #base_model-mistral-community/Mixtral-8x22B-v0.1 #license-apache-2.0 #region-us \n", "# Vezora/Mistral-22B-v0.1 AWQ\n\n- Model creator: Vezora\n- Original model: Mistral-22B-v0.2", "## Model Summary\n\n- Just two days after our release of Mistral-22b-v0.1, we are excited to introduce our handcrafted experimental model, Mistral-22b-v.02. This model is a culmination of equal knowledge distilled from all experts into a single, dense 22b model. This model is not a single trained expert, rather its a compressed MOE model, turning it into a dense 22b mode. This is the first working MOE to Dense model conversion.\n- v0.2 has trained on 8x more data than v0.1!", "## How to use\n\nGUANACO PROMPT FORMAT YOU MUST USE THE GUANACO PROMPT FORMAT SHOWN BELOW. Not using this prompt format will lead to sub optimal results.\n\n- This model requires a specific chat template, as the training format was Guanaco this is what it looks like:\n- \"### System: You are a helpful assistant. ### Human###: Give me the best chili recipe you can ###Assistant: Here is the best chili recipe...\"" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [google-bert/bert-base-chinese](https://huggingface.co/google-bert/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0253 - Accuracy: 0.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 214 | 0.0540 | 0.9905 | | No log | 2.0 | 428 | 0.0606 | 0.9932 | | 0.0648 | 3.0 | 642 | 0.0253 | 0.9973 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.1
{"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google-bert/bert-base-chinese", "model-index": [{"name": "test_trainer", "results": []}]}
Extrabass/test_trainer
null
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-chinese", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T02:29:56+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-google-bert/bert-base-chinese #autotrain_compatible #endpoints_compatible #region-us
test\_trainer ============= This model is a fine-tuned version of google-bert/bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0253 * Accuracy: 0.9973 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.1.2 * Datasets 2.18.0 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-google-bert/bert-base-chinese #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.15.1" ]
null
transformers
## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> weighted/imatrix quants of https://huggingface.co/ibivibiv/collosus_120b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/collosus_120b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ1_S.gguf) | i1-IQ1_S | 24.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ1_M.gguf) | i1-IQ1_M | 27.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 31.2 | | | [GGUF](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 34.7 | | | [GGUF](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ2_S.gguf) | i1-IQ2_S | 36.5 | | | [GGUF](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ2_M.gguf) | i1-IQ2_M | 39.7 | | | [GGUF](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q2_K.gguf) | i1-Q2_K | 43.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 45.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 48.2 | | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q3_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q3_K_S.gguf.part2of2) | i1-Q3_K_S | 50.8 | IQ3_XS probably better | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ3_S.gguf.part2of2) | i1-IQ3_S | 51.0 | beats Q3_K* | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ3_M.gguf.part2of2) | i1-IQ3_M | 52.7 | | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q3_K_M.gguf.part2of2) | i1-Q3_K_M | 56.7 | IQ3_S probably better | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q3_K_L.gguf.part2of2) | i1-Q3_K_L | 61.8 | IQ3_M probably better | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-IQ4_XS.gguf.part2of2) | i1-IQ4_XS | 62.9 | | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q4_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q4_0.gguf.part2of2) | i1-Q4_0 | 66.7 | fast, low quality | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q4_K_S.gguf.part2of2) | i1-Q4_K_S | 66.9 | optimal size/speed/quality | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q4_K_M.gguf.part2of2) | i1-Q4_K_M | 70.7 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 81.1 | | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 83.3 | | | [PART 1](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/collosus_120b-i1-GGUF/resolve/main/collosus_120b.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 96.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "base_model": "ibivibiv/collosus_120b", "quantized_by": "mradermacher"}
mradermacher/collosus_120b-i1-GGUF
null
[ "transformers", "gguf", "en", "base_model:ibivibiv/collosus_120b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-15T02:30:05+00:00
[]
[ "en" ]
TAGS #transformers #gguf #en #base_model-ibivibiv/collosus_120b #license-apache-2.0 #endpoints_compatible #region-us
About ----- weighted/imatrix quants of URL static quants are available at URL Usage ----- If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files. Provided Quants --------------- (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): !URL And here are Artefact2's thoughts on the matter: URL FAQ / Model Request ------------------- See URL for some answers to questions you might have and/or if you want some other model quantized. Thanks ------ I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.
[]
[ "TAGS\n#transformers #gguf #en #base_model-ibivibiv/collosus_120b #license-apache-2.0 #endpoints_compatible #region-us \n" ]
null
null
LoRA adapter files for https://huggingface.co/tdrussell/Mixtral-8x22B-Capyboros-v1
{"license": "apache-2.0"}
tdrussell/Mixtral-8x22B-Capyboros-v1-lora
null
[ "license:apache-2.0", "region:us" ]
null
2024-04-15T02:30:26+00:00
[]
[]
TAGS #license-apache-2.0 #region-us
LoRA adapter files for URL
[]
[ "TAGS\n#license-apache-2.0 #region-us \n" ]
null
null
q4_k_s quant for https://huggingface.co/tdrussell/Mixtral-8x22B-Capyboros-v1. These files are split using the gguf-split tool. If you want to recombine them to single file, you MUST use that tool, NOT cat.
{"license": "apache-2.0"}
tdrussell/Mixtral-8x22B-Capyboros-v1-GGUF-q4_k_s
null
[ "gguf", "license:apache-2.0", "region:us" ]
null
2024-04-15T02:32:22+00:00
[]
[]
TAGS #gguf #license-apache-2.0 #region-us
q4_k_s quant for URL These files are split using the gguf-split tool. If you want to recombine them to single file, you MUST use that tool, NOT cat.
[]
[ "TAGS\n#gguf #license-apache-2.0 #region-us \n" ]
null
null
<div style="width: 100%;"> <img src="http://x-pai.algolet.com/bot/img/logo_core.png" alt="TigerBot" style="width: 20%; display: block; margin: auto;"> </div> <p align="center"> <font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font> </p> <p align="center"> 🌐 <a href="https://tigerbot.com/" target="_blank">TigerBot</a> • 🤗 <a href="https://huggingface.co/TigerResearch" target="_blank">Hugging Face</a> </p> This is a 4-bit EXL2 version of the [tigerbot-13b-chat-v6](https://huggingface.co/TigerResearch/tigerbot-13b-chat-v6). It was quantized to 4bit using: https://github.com/turboderp/exllamav2 ## How to download and use this model in github: https://github.com/TigerResearch/TigerBot Here are commands to clone the TigerBot and install. ``` conda create --name tigerbot python=3.8 conda activate tigerbot conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia git clone https://github.com/TigerResearch/TigerBot cd TigerBot pip install -r requirements.txt ``` Inference with command line interface infer with exllamav2 ``` # install exllamav2 git clone https://github.com/turboderp/exllamav2 cd exllamav2 pip install -r requirements.txt # infer command CUDA_VISIBLE_DEVICES=0 python other_infer/exllamav2_hf_infer.py --model_path TigerResearch/tigerbot-13b-chat-v6-4bit-exl2 ```
{"license": "apache-2.0"}
TigerResearch/tigerbot-13b-chat-v6-4bit-exl2
null
[ "license:apache-2.0", "region:us" ]
null
2024-04-15T02:33:01+00:00
[]
[]
TAGS #license-apache-2.0 #region-us
<div style="width: 100%;"> <img src="URL alt="TigerBot" style="width: 20%; display: block; margin: auto;"> </div> <p align="center"> <font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font> </p> <p align="center"> <a href="URL target="_blank">TigerBot</a> • <a href="URL target="_blank">Hugging Face</a> </p> This is a 4-bit EXL2 version of the tigerbot-13b-chat-v6. It was quantized to 4bit using: URL ## How to download and use this model in github: URL Here are commands to clone the TigerBot and install. Inference with command line interface infer with exllamav2
[ "## How to download and use this model in github: URL\n\nHere are commands to clone the TigerBot and install.\n\n\n\nInference with command line interface\n\ninfer with exllamav2" ]
[ "TAGS\n#license-apache-2.0 #region-us \n", "## How to download and use this model in github: URL\n\nHere are commands to clone the TigerBot and install.\n\n\n\nInference with command line interface\n\ninfer with exllamav2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
cilantro9246/m3bryby
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T02:33:22+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This is prediction for Suicide and Non-Suicide: Label-1 is Suicide and Label-0 is Non-Suicide. # Transformers_Project This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1389 - Accuracy: 0.9672 - F1: 0.9672 - Precision: 0.9676 - Recall: 0.9667 - Zero One Loss: 0.0328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Zero One Loss | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:| | 0.2495 | 1.0 | 875 | 0.1397 | 0.9552 | 0.9563 | 0.9320 | 0.982 | 0.0448 | | 0.0865 | 2.0 | 1750 | 0.1163 | 0.9692 | 0.9692 | 0.9696 | 0.9687 | 0.0308 | | 0.0344 | 3.0 | 2625 | 0.1389 | 0.9672 | 0.9672 | 0.9676 | 0.9667 | 0.0328 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "base_model": "distilbert-base-cased", "model-index": [{"name": "Transformers_Project", "results": []}]}
MuradA/Transformers_Project
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T02:37:42+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
This is prediction for Suicide and Non-Suicide: Label-1 is Suicide and Label-0 is Non-Suicide. ============================================================================================== Transformers\_Project ===================== This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1389 * Accuracy: 0.9672 * F1: 0.9672 * Precision: 0.9676 * Recall: 0.9667 * Zero One Loss: 0.0328 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-to-speech
tensorflowtts
# LightSpeech MFA SW v1 LightSpeech MFA SW v1 is a text-to-mel-spectrogram model based on the [LightSpeech](https://arxiv.org/abs/2102.04040) architecture. This model was trained from scratch on a real audio dataset. The list of real speakers include: - sw-KE-OpenBible We trained an acoustic Swahili model on our speech corpus using [Montreal Forced Aligner v2.0.0](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) and used it as the duration extractor. That model, and consequently our model, uses the IPA phone set for Swahili. We used [gruut](https://github.com/rhasspy/gruut) for phonemization purposes. We followed these [steps](https://github.com/TensorSpeech/TensorFlowTTS/tree/master/examples/mfa_extraction) to perform duration extraction. This model was trained using the [TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS) framework. All training was done on a Scaleway RENDER-S VM with a Tesla P100 GPU. All necessary scripts used for training could be found in this [Github Fork](https://github.com/bookbot-hive/TensorFlowTTS), as well as the [Training metrics](https://huggingface.co/bookbot/lightspeech-mfa-sw-v1/tensorboard) logged via Tensorboard. ## Model | Model | Config | SR (Hz) | Mel range (Hz) | FFT / Hop / Win (pt) | #steps | | ----------------------- | --------------------------------------------------------------------------------- | ------- | -------------- | -------------------- | ------ | | `lightspeech-mfa-sw-v1` | [Link](https://huggingface.co/bookbot/lightspeech-mfa-sw-v1/blob/main/config.yml) | 44.1K | 20-11025 | 2048 / 512 / None | 200K | ## Training Procedure <details> <summary>Feature Extraction Setting</summary> hop_size: 512 # Hop size. format: "npy" </details> <details> <summary>Network Architecture Setting</summary> model_type: lightspeech lightspeech_params: dataset: "swahiliipa" n_speakers: 1 encoder_hidden_size: 256 encoder_num_hidden_layers: 3 encoder_num_attention_heads: 2 encoder_attention_head_size: 16 encoder_intermediate_size: 1024 encoder_intermediate_kernel_size: - 5 - 25 - 13 - 9 encoder_hidden_act: "mish" decoder_hidden_size: 256 decoder_num_hidden_layers: 3 decoder_num_attention_heads: 2 decoder_attention_head_size: 16 decoder_intermediate_size: 1024 decoder_intermediate_kernel_size: - 17 - 21 - 9 - 13 decoder_hidden_act: "mish" variant_prediction_num_conv_layers: 2 variant_predictor_filter: 256 variant_predictor_kernel_size: 3 variant_predictor_dropout_rate: 0.5 num_mels: 80 hidden_dropout_prob: 0.2 attention_probs_dropout_prob: 0.1 max_position_embeddings: 2048 initializer_range: 0.02 output_attentions: False output_hidden_states: False </details> <details> <summary>Data Loader Setting</summary> batch_size: 8 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1. eval_batch_size: 16 remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps. allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory. mel_length_threshold: 32 # remove all targets has mel_length <= 32 is_shuffle: true # shuffle dataset after each epoch. </details> <details> <summary>Optimizer & Scheduler Setting</summary> optimizer_params: initial_learning_rate: 0.0001 end_learning_rate: 0.00005 decay_steps: 150000 # < train_max_steps is recommend. warmup_proportion: 0.02 weight_decay: 0.001 gradient_accumulation_steps: 2 var_train_expr: null # trainable variable expr (eg. 'embeddings|encoder|decoder' ) # must separate by |. if var_train_expr is null then we # training all variable </details> <details> <summary>Interval Setting</summary> train_max_steps: 200000 # Number of training steps. save_interval_steps: 5000 # Interval steps to save checkpoint. eval_interval_steps: 5000 # Interval steps to evaluate the network. log_interval_steps: 200 # Interval steps to record the training log. delay_f0_energy_steps: 3 # 2 steps use LR outputs only then 1 steps LR + F0 + Energy. </details> <details> <summary>Other Setting</summary> num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results. </details> ## How to Use ```py import tensorflow as tf from tensorflow_tts.inference import TFAutoModel, AutoProcessor lightspeech = TFAutoModel.from_pretrained("bookbot/lightspeech-mfa-sw-v1") processor = AutoProcessor.from_pretrained("bookbot/lightspeech-mfa-sw-v1") text, speaker_name = "Hello World", "sw-KE-OpenBible" input_ids = processor.text_to_sequence(text) mel, duration_outputs, _ = lightspeech.inference( input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), speaker_ids=tf.convert_to_tensor( [processor.speakers_map[speaker_name]], dtype=tf.int32 ), speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), f0_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), energy_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), ) ``` ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors LightSpeech MFA SW v1 was trained and evaluated by [David Samuel Setiawan](https://davidsamuell.github.io/), [Wilson Wongso](https://wilsonwongso.dev/). All computation and development are done on Scaleway. ## Framework versions - TensorFlowTTS 1.8 - TensorFlow 2.7.0
{"language": "sw", "license": "cc-by-sa-4.0", "tags": ["tensorflowtts", "audio", "text-to-speech", "text-to-mel"], "datasets": ["bookbot/OpenBible_Swahili"], "inference": false}
bookbot/lightspeech-mfa-sw-v1
null
[ "tensorflowtts", "tflite", "tensorboard", "onnx", "audio", "text-to-speech", "text-to-mel", "sw", "dataset:bookbot/OpenBible_Swahili", "arxiv:2102.04040", "license:cc-by-sa-4.0", "region:us" ]
null
2024-04-15T02:38:09+00:00
[ "2102.04040" ]
[ "sw" ]
TAGS #tensorflowtts #tflite #tensorboard #onnx #audio #text-to-speech #text-to-mel #sw #dataset-bookbot/OpenBible_Swahili #arxiv-2102.04040 #license-cc-by-sa-4.0 #region-us
LightSpeech MFA SW v1 ===================== LightSpeech MFA SW v1 is a text-to-mel-spectrogram model based on the LightSpeech architecture. This model was trained from scratch on a real audio dataset. The list of real speakers include: * sw-KE-OpenBible We trained an acoustic Swahili model on our speech corpus using Montreal Forced Aligner v2.0.0 and used it as the duration extractor. That model, and consequently our model, uses the IPA phone set for Swahili. We used gruut for phonemization purposes. We followed these steps to perform duration extraction. This model was trained using the TensorFlowTTS framework. All training was done on a Scaleway RENDER-S VM with a Tesla P100 GPU. All necessary scripts used for training could be found in this Github Fork, as well as the Training metrics logged via Tensorboard. Model ----- Training Procedure ------------------ Feature Extraction Setting ``` hop_size: 512 # Hop size. format: "npy" ``` Network Architecture Setting ``` model_type: lightspeech lightspeech_params: dataset: "swahiliipa" n_speakers: 1 encoder_hidden_size: 256 encoder_num_hidden_layers: 3 encoder_num_attention_heads: 2 encoder_attention_head_size: 16 encoder_intermediate_size: 1024 encoder_intermediate_kernel_size: - 5 - 25 - 13 - 9 encoder_hidden_act: "mish" decoder_hidden_size: 256 decoder_num_hidden_layers: 3 decoder_num_attention_heads: 2 decoder_attention_head_size: 16 decoder_intermediate_size: 1024 decoder_intermediate_kernel_size: - 17 - 21 - 9 - 13 decoder_hidden_act: "mish" variant_prediction_num_conv_layers: 2 variant_predictor_filter: 256 variant_predictor_kernel_size: 3 variant_predictor_dropout_rate: 0.5 num_mels: 80 hidden_dropout_prob: 0.2 attention_probs_dropout_prob: 0.1 max_position_embeddings: 2048 initializer_range: 0.02 output_attentions: False output_hidden_states: False ``` Data Loader Setting ``` batch_size: 8 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1. eval_batch_size: 16 remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps. allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory. mel_length_threshold: 32 # remove all targets has mel_length <= 32 is_shuffle: true # shuffle dataset after each epoch. ``` Optimizer & Scheduler Setting ``` optimizer_params: initial_learning_rate: 0.0001 end_learning_rate: 0.00005 decay_steps: 150000 # < train_max_steps is recommend. warmup_proportion: 0.02 weight_decay: 0.001 gradient_accumulation_steps: 2 var_train_expr: null # trainable variable expr (eg. 'embeddings|encoder|decoder' ) # must separate by |. if var_train_expr is null then we # training all variable ``` Interval Setting ``` train_max_steps: 200000 # Number of training steps. save_interval_steps: 5000 # Interval steps to save checkpoint. eval_interval_steps: 5000 # Interval steps to evaluate the network. log_interval_steps: 200 # Interval steps to record the training log. delay_f0_energy_steps: 3 # 2 steps use LR outputs only then 1 steps LR + F0 + Energy. ``` Other Setting ``` num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results. ``` How to Use ---------- Disclaimer ---------- Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. Authors ------- LightSpeech MFA SW v1 was trained and evaluated by David Samuel Setiawan, Wilson Wongso. All computation and development are done on Scaleway. Framework versions ------------------ * TensorFlowTTS 1.8 * TensorFlow 2.7.0
[ "# Hop size.\nformat: \"npy\"\n\n```\n\n\n\nNetwork Architecture Setting\n\n```\nmodel_type: lightspeech\nlightspeech_params:\n dataset: \"swahiliipa\"\n n_speakers: 1\n encoder_hidden_size: 256\n encoder_num_hidden_layers: 3\n encoder_num_attention_heads: 2\n encoder_attention_head_size: 16\n encoder_intermediate_size: 1024\n encoder_intermediate_kernel_size:\n - 5\n - 25\n - 13\n - 9\n encoder_hidden_act: \"mish\"\n decoder_hidden_size: 256\n decoder_num_hidden_layers: 3\n decoder_num_attention_heads: 2\n decoder_attention_head_size: 16\n decoder_intermediate_size: 1024\n decoder_intermediate_kernel_size:\n - 17\n - 21\n - 9\n - 13\n decoder_hidden_act: \"mish\"\n variant_prediction_num_conv_layers: 2\n variant_predictor_filter: 256\n variant_predictor_kernel_size: 3\n variant_predictor_dropout_rate: 0.5\n num_mels: 80\n hidden_dropout_prob: 0.2\n attention_probs_dropout_prob: 0.1\n max_position_embeddings: 2048\n initializer_range: 0.02\n output_attentions: False\n output_hidden_states: False\n\n```\n\n\n\nData Loader Setting\n\n```\nbatch_size: 8 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.\neval_batch_size: 16\nremove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.\nallow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.\nmel_length_threshold: 32 # remove all targets has mel_length <= 32\nis_shuffle: true # shuffle dataset after each epoch.\n\n```\n\n\n\nOptimizer & Scheduler Setting\n\n```\noptimizer_params:\n initial_learning_rate: 0.0001\n end_learning_rate: 0.00005\n decay_steps: 150000 # < train_max_steps is recommend.\n warmup_proportion: 0.02\n weight_decay: 0.001\n\ngradient_accumulation_steps: 2\nvar_train_expr:\n null # trainable variable expr (eg. 'embeddings|encoder|decoder' )\n # must separate by |. if var_train_expr is null then we\n # training all variable\n\n```\n\n\n\nInterval Setting\n\n```\ntrain_max_steps: 200000 # Number of training steps.\nsave_interval_steps: 5000 # Interval steps to save checkpoint.\neval_interval_steps: 5000 # Interval steps to evaluate the network.\nlog_interval_steps: 200 # Interval steps to record the training log.\ndelay_f0_energy_steps: 3 # 2 steps use LR outputs only then 1 steps LR + F0 + Energy.\n\n```\n\n\n\nOther Setting\n\n```\nnum_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.\n\n```\n\n\nHow to Use\n----------\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nLightSpeech MFA SW v1 was trained and evaluated by David Samuel Setiawan, Wilson Wongso. All computation and development are done on Scaleway.\n\n\nFramework versions\n------------------\n\n\n* TensorFlowTTS 1.8\n* TensorFlow 2.7.0" ]
[ "TAGS\n#tensorflowtts #tflite #tensorboard #onnx #audio #text-to-speech #text-to-mel #sw #dataset-bookbot/OpenBible_Swahili #arxiv-2102.04040 #license-cc-by-sa-4.0 #region-us \n", "# Hop size.\nformat: \"npy\"\n\n```\n\n\n\nNetwork Architecture Setting\n\n```\nmodel_type: lightspeech\nlightspeech_params:\n dataset: \"swahiliipa\"\n n_speakers: 1\n encoder_hidden_size: 256\n encoder_num_hidden_layers: 3\n encoder_num_attention_heads: 2\n encoder_attention_head_size: 16\n encoder_intermediate_size: 1024\n encoder_intermediate_kernel_size:\n - 5\n - 25\n - 13\n - 9\n encoder_hidden_act: \"mish\"\n decoder_hidden_size: 256\n decoder_num_hidden_layers: 3\n decoder_num_attention_heads: 2\n decoder_attention_head_size: 16\n decoder_intermediate_size: 1024\n decoder_intermediate_kernel_size:\n - 17\n - 21\n - 9\n - 13\n decoder_hidden_act: \"mish\"\n variant_prediction_num_conv_layers: 2\n variant_predictor_filter: 256\n variant_predictor_kernel_size: 3\n variant_predictor_dropout_rate: 0.5\n num_mels: 80\n hidden_dropout_prob: 0.2\n attention_probs_dropout_prob: 0.1\n max_position_embeddings: 2048\n initializer_range: 0.02\n output_attentions: False\n output_hidden_states: False\n\n```\n\n\n\nData Loader Setting\n\n```\nbatch_size: 8 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.\neval_batch_size: 16\nremove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.\nallow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.\nmel_length_threshold: 32 # remove all targets has mel_length <= 32\nis_shuffle: true # shuffle dataset after each epoch.\n\n```\n\n\n\nOptimizer & Scheduler Setting\n\n```\noptimizer_params:\n initial_learning_rate: 0.0001\n end_learning_rate: 0.00005\n decay_steps: 150000 # < train_max_steps is recommend.\n warmup_proportion: 0.02\n weight_decay: 0.001\n\ngradient_accumulation_steps: 2\nvar_train_expr:\n null # trainable variable expr (eg. 'embeddings|encoder|decoder' )\n # must separate by |. if var_train_expr is null then we\n # training all variable\n\n```\n\n\n\nInterval Setting\n\n```\ntrain_max_steps: 200000 # Number of training steps.\nsave_interval_steps: 5000 # Interval steps to save checkpoint.\neval_interval_steps: 5000 # Interval steps to evaluate the network.\nlog_interval_steps: 200 # Interval steps to record the training log.\ndelay_f0_energy_steps: 3 # 2 steps use LR outputs only then 1 steps LR + F0 + Energy.\n\n```\n\n\n\nOther Setting\n\n```\nnum_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.\n\n```\n\n\nHow to Use\n----------\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nLightSpeech MFA SW v1 was trained and evaluated by David Samuel Setiawan, Wilson Wongso. All computation and development are done on Scaleway.\n\n\nFramework versions\n------------------\n\n\n* TensorFlowTTS 1.8\n* TensorFlow 2.7.0" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [google/gemma-1.1-7b-it](https://huggingface.co/google/gemma-1.1-7b-it) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "gemma", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "google/gemma-1.1-7b-it", "model-index": [{"name": "outputs", "results": []}]}
aidiary/gemma-7b-finetune-gozarinnemon
null
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:google/gemma-1.1-7b-it", "license:gemma", "region:us" ]
null
2024-04-15T02:43:50+00:00
[]
[]
TAGS #peft #safetensors #trl #sft #generated_from_trainer #base_model-google/gemma-1.1-7b-it #license-gemma #region-us
# outputs This model is a fine-tuned version of google/gemma-1.1-7b-it on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# outputs\n\nThis model is a fine-tuned version of google/gemma-1.1-7b-it on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 500", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #safetensors #trl #sft #generated_from_trainer #base_model-google/gemma-1.1-7b-it #license-gemma #region-us \n", "# outputs\n\nThis model is a fine-tuned version of google/gemma-1.1-7b-it on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 500", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.1
{"library_name": "peft", "base_model": "vilsonrodrigues/falcon-7b-instruct-sharded"}
deepaknh/falcon7B_FineTuning_ReExperiment_1_QLORA_7perParam_ILR_increased_v4
null
[ "peft", "arxiv:1910.09700", "base_model:vilsonrodrigues/falcon-7b-instruct-sharded", "region:us" ]
null
2024-04-15T02:45:16+00:00
[ "1910.09700" ]
[]
TAGS #peft #arxiv-1910.09700 #base_model-vilsonrodrigues/falcon-7b-instruct-sharded #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ## Training procedure The following 'bitsandbytes' quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.1
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: float16", "### Framework versions\n\n\n- PEFT 0.6.1" ]
[ "TAGS\n#peft #arxiv-1910.09700 #base_model-vilsonrodrigues/falcon-7b-instruct-sharded #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: float16", "### Framework versions\n\n\n- PEFT 0.6.1" ]
reinforcement-learning
stable-baselines3
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga APLunch -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga APLunch -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga APLunch ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
{"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "654.00 +/- 223.01", "name": "mean_reward", "verified": false}]}]}]}
APLunch/dqn-SpaceInvadersNoFrameskip-v4
null
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-15T02:45:29+00:00
[]
[]
TAGS #stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# DQN Agent playing SpaceInvadersNoFrameskip-v4 This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: URL SB3: URL SB3 Contrib: URL Install the RL Zoo (with SB3 and SB3-Contrib): If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do: ## Training (with the RL Zoo) ## Hyperparameters # Environment Arguments
[ "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
text-to-speech
tensorflowtts
# MB-MelGAN HiFi PostNets SW v1 MB-MelGAN HiFi PostNets SW v1 is a mel-to-wav model based on the [MB-MelGAN](https://arxiv.org/abs/2005.05106) architecture with [HiFi-GAN](https://arxiv.org/abs/2010.05646) discriminator. This model was trained from scratch on a synthetic audio dataset. Instead of training on ground truth waveform spectrograms, this model was trained on the generated PostNet spectrograms of [LightSpeech MFA SW v1](https://huggingface.co/bookbot/lightspeech-mfa-sw-v1). The list of real speakers include: - sw-KE-OpenBible This model was trained using the [TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS) framework. All training was done on a Scaleway RENDER-S VM with a Tesla P100 GPU. All necessary scripts used for training could be found in this [Github Fork](https://github.com/bookbot-hive/TensorFlowTTS), as well as the [Training metrics](https://huggingface.co/bookbot/mb-melgan-hifi-postnets-sw-v1/tensorboard) logged via Tensorboard. ## Model | Model | Config | SR (Hz) | Mel range (Hz) | FFT / Hop / Win (pt) | #steps | | ------------------------------- | ----------------------------------------------------------------------------------------- | ------- | -------------- | -------------------- | ------ | | `mb-melgan-hifi-postnets-sw-v1` | [Link](https://huggingface.co/bookbot/mb-melgan-hifi-postnets-sw-v1/blob/main/config.yml) | 44.1K | 20-11025 | 2048 / 512 / None | 1M | ## Training Procedure <details> <summary>Feature Extraction Setting</summary> sampling_rate: 44100 hop_size: 512 # Hop size. format: "npy" </details> <details> <summary>Generator Network Architecture Setting</summary> model_type: "multiband_melgan_generator" multiband_melgan_generator_params: out_channels: 4 # Number of output channels (number of subbands). kernel_size: 7 # Kernel size of initial and final conv layers. filters: 384 # Initial number of channels for conv layers. upsample_scales: [8, 4, 4] # List of Upsampling scales. stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack. stacks: 4 # Number of stacks in a single residual stack module. is_weight_norm: false # Use weight-norm or not. </details> <details> <summary>Discriminator Network Architecture Setting</summary> multiband_melgan_discriminator_params: out_channels: 1 # Number of output channels. scales: 3 # Number of multi-scales. downsample_pooling: "AveragePooling1D" # Pooling type for the input downsampling. downsample_pooling_params: # Parameters of the above pooling function. pool_size: 4 strides: 2 kernel_sizes: [5, 3] # List of kernel size. filters: 16 # Number of channels of the initial conv layer. max_downsample_filters: 512 # Maximum number of channels of downsampling layers. downsample_scales: [4, 4, 4] # List of downsampling scales. nonlinear_activation: "LeakyReLU" # Nonlinear activation function. nonlinear_activation_params: # Parameters of nonlinear activation function. alpha: 0.2 is_weight_norm: false # Use weight-norm or not. hifigan_discriminator_params: out_channels: 1 # Number of output channels (number of subbands). period_scales: [3, 5, 7, 11, 17, 23, 37] # List of period scales. n_layers: 5 # Number of layer of each period discriminator. kernel_size: 5 # Kernel size. strides: 3 # Strides filters: 8 # In Conv filters of each period discriminator filter_scales: 4 # Filter scales. max_filters: 512 # maximum filters of period discriminator's conv. is_weight_norm: false # Use weight-norm or not. </details> <details> <summary>STFT Loss Setting</summary> stft_loss_params: fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss. frame_steps: [120, 240, 50] # List of hop size for STFT-based loss frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss. subband_stft_loss_params: fft_lengths: [384, 683, 171] # List of FFT size for STFT-based loss. frame_steps: [30, 60, 10] # List of hop size for STFT-based loss frame_lengths: [150, 300, 60] # List of window length for STFT-based loss. </details> <details> <summary>Adversarial Loss Setting</summary> lambda_feat_match: 10.0 # Loss balancing coefficient for feature matching loss lambda_adv: 2.5 # Loss balancing coefficient for adversarial loss. </details> <details> <summary>Data Loader Setting</summary> batch_size: 32 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1. eval_batch_size: 16 batch_max_steps: 8192 # Length of each audio in batch for training. Make sure dividable by hop_size. batch_max_steps_valid: 8192 # Length of each audio for validation. Make sure dividable by hope_size. remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps. allow_cache: false # Whether to allow cache in dataset. If true, it requires cpu memory. is_shuffle: false # shuffle dataset after each epoch. </details> <details> <summary>Optimizer & Scheduler Setting</summary> generator_optimizer_params: lr_fn: "PiecewiseConstantDecay" lr_params: boundaries: [100000, 200000, 300000, 400000, 500000, 600000, 700000] values: [ 0.0005, 0.0005, 0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 0.000001, ] amsgrad: false discriminator_optimizer_params: lr_fn: "PiecewiseConstantDecay" lr_params: boundaries: [100000, 200000, 300000, 400000, 500000] values: [0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 0.000001] amsgrad: false gradient_accumulation_steps: 1 </details> <details> <summary>Interval Setting</summary> discriminator_train_start_steps: 200000 # steps begin training discriminator train_max_steps: 1000000 # Number of training steps. save_interval_steps: 20000 # Interval steps to save checkpoint. eval_interval_steps: 5000 # Interval steps to evaluate the network. log_interval_steps: 200 # Interval steps to record the training log. </details> <details> <summary>Other Setting</summary> num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results. </details> ## How to Use ```py import soundfile as sf import tensorflow as tf from tensorflow_tts.inference import TFAutoModel, AutoProcessor lightspeech = TFAutoModel.from_pretrained("bookbot/lightspeech-mfa-sw-v1") processor = AutoProcessor.from_pretrained("bookbot/lightspeech-mfa-sw-v1") mb_melgan = TFAutoModel.from_pretrained("bookbot/mb-melgan-hifi-postnets-sw-v1") text, speaker_name = "Hello World.", "sw-KE-OpenBible" input_ids = processor.text_to_sequence(text) mel, _, _ = lightspeech.inference( input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), speaker_ids=tf.convert_to_tensor( [processor.speakers_map[speaker_name]], dtype=tf.int32 ), speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), f0_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), energy_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), ) audio = mb_melgan.inference(mel)[0, :, 0] sf.write("./audio.wav", audio, 44100, "PCM_16") ``` ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors MB-MelGAN HiFi PostNets SW v1 was trained and evaluated by [David Samuel Setiawan](https://davidsamuell.github.io/), [Wilson Wongso](https://wilsonwongso.dev/). All computation and development are done on Scaleway. ## Framework versions - TensorFlowTTS 1.8 - TensorFlow 2.7.0
{"language": "sw", "license": "cc-by-sa-4.0", "tags": ["tensorflowtts", "audio", "text-to-speech", "mel-to-wav"], "datasets": ["bookbot/OpenBible_Swahili"], "inference": false}
bookbot/mb-melgan-hifi-postnets-sw-v1
null
[ "tensorflowtts", "tflite", "tensorboard", "onnx", "audio", "text-to-speech", "mel-to-wav", "sw", "dataset:bookbot/OpenBible_Swahili", "arxiv:2005.05106", "arxiv:2010.05646", "license:cc-by-sa-4.0", "region:us" ]
null
2024-04-15T02:45:35+00:00
[ "2005.05106", "2010.05646" ]
[ "sw" ]
TAGS #tensorflowtts #tflite #tensorboard #onnx #audio #text-to-speech #mel-to-wav #sw #dataset-bookbot/OpenBible_Swahili #arxiv-2005.05106 #arxiv-2010.05646 #license-cc-by-sa-4.0 #region-us
MB-MelGAN HiFi PostNets SW v1 ============================= MB-MelGAN HiFi PostNets SW v1 is a mel-to-wav model based on the MB-MelGAN architecture with HiFi-GAN discriminator. This model was trained from scratch on a synthetic audio dataset. Instead of training on ground truth waveform spectrograms, this model was trained on the generated PostNet spectrograms of LightSpeech MFA SW v1. The list of real speakers include: * sw-KE-OpenBible This model was trained using the TensorFlowTTS framework. All training was done on a Scaleway RENDER-S VM with a Tesla P100 GPU. All necessary scripts used for training could be found in this Github Fork, as well as the Training metrics logged via Tensorboard. Model ----- Training Procedure ------------------ Feature Extraction Setting ``` sampling_rate: 44100 hop_size: 512 # Hop size. format: "npy" ``` Generator Network Architecture Setting ``` model_type: "multiband_melgan_generator" multiband_melgan_generator_params: out_channels: 4 # Number of output channels (number of subbands). kernel_size: 7 # Kernel size of initial and final conv layers. filters: 384 # Initial number of channels for conv layers. upsample_scales: [8, 4, 4] # List of Upsampling scales. stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack. stacks: 4 # Number of stacks in a single residual stack module. is_weight_norm: false # Use weight-norm or not. ``` Discriminator Network Architecture Setting ``` multiband_melgan_discriminator_params: out_channels: 1 # Number of output channels. scales: 3 # Number of multi-scales. downsample_pooling: "AveragePooling1D" # Pooling type for the input downsampling. downsample_pooling_params: # Parameters of the above pooling function. pool_size: 4 strides: 2 kernel_sizes: [5, 3] # List of kernel size. filters: 16 # Number of channels of the initial conv layer. max_downsample_filters: 512 # Maximum number of channels of downsampling layers. downsample_scales: [4, 4, 4] # List of downsampling scales. nonlinear_activation: "LeakyReLU" # Nonlinear activation function. nonlinear_activation_params: # Parameters of nonlinear activation function. alpha: 0.2 is_weight_norm: false # Use weight-norm or not. hifigan_discriminator_params: out_channels: 1 # Number of output channels (number of subbands). period_scales: [3, 5, 7, 11, 17, 23, 37] # List of period scales. n_layers: 5 # Number of layer of each period discriminator. kernel_size: 5 # Kernel size. strides: 3 # Strides filters: 8 # In Conv filters of each period discriminator filter_scales: 4 # Filter scales. max_filters: 512 # maximum filters of period discriminator's conv. is_weight_norm: false # Use weight-norm or not. ``` STFT Loss Setting ``` stft_loss_params: fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss. frame_steps: [120, 240, 50] # List of hop size for STFT-based loss frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss. subband_stft_loss_params: fft_lengths: [384, 683, 171] # List of FFT size for STFT-based loss. frame_steps: [30, 60, 10] # List of hop size for STFT-based loss frame_lengths: [150, 300, 60] # List of window length for STFT-based loss. ``` Adversarial Loss Setting ``` lambda_feat_match: 10.0 # Loss balancing coefficient for feature matching loss lambda_adv: 2.5 # Loss balancing coefficient for adversarial loss. ``` Data Loader Setting ``` batch_size: 32 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1. eval_batch_size: 16 batch_max_steps: 8192 # Length of each audio in batch for training. Make sure dividable by hop_size. batch_max_steps_valid: 8192 # Length of each audio for validation. Make sure dividable by hope_size. remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps. allow_cache: false # Whether to allow cache in dataset. If true, it requires cpu memory. is_shuffle: false # shuffle dataset after each epoch. ``` Optimizer & Scheduler Setting ``` generator_optimizer_params: lr_fn: "PiecewiseConstantDecay" lr_params: boundaries: [100000, 200000, 300000, 400000, 500000, 600000, 700000] values: [ 0.0005, 0.0005, 0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 0.000001, ] amsgrad: false discriminator_optimizer_params: lr_fn: "PiecewiseConstantDecay" lr_params: boundaries: [100000, 200000, 300000, 400000, 500000] values: [0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 0.000001] amsgrad: false gradient_accumulation_steps: 1 ``` Interval Setting ``` discriminator_train_start_steps: 200000 # steps begin training discriminator train_max_steps: 1000000 # Number of training steps. save_interval_steps: 20000 # Interval steps to save checkpoint. eval_interval_steps: 5000 # Interval steps to evaluate the network. log_interval_steps: 200 # Interval steps to record the training log. ``` Other Setting ``` num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results. ``` How to Use ---------- Disclaimer ---------- Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. Authors ------- MB-MelGAN HiFi PostNets SW v1 was trained and evaluated by David Samuel Setiawan, Wilson Wongso. All computation and development are done on Scaleway. Framework versions ------------------ * TensorFlowTTS 1.8 * TensorFlow 2.7.0
[ "# Hop size.\nformat: \"npy\"\n\n```\n\n\n\nGenerator Network Architecture Setting\n\n```\nmodel_type: \"multiband_melgan_generator\"\n\nmultiband_melgan_generator_params:\n out_channels: 4 # Number of output channels (number of subbands).\n kernel_size: 7 # Kernel size of initial and final conv layers.\n filters: 384 # Initial number of channels for conv layers.\n upsample_scales: [8, 4, 4] # List of Upsampling scales.\n stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack.\n stacks: 4 # Number of stacks in a single residual stack module.\n is_weight_norm: false # Use weight-norm or not.\n\n```\n\n\n\nDiscriminator Network Architecture Setting\n\n```\nmultiband_melgan_discriminator_params:\n out_channels: 1 # Number of output channels.\n scales: 3 # Number of multi-scales.\n downsample_pooling: \"AveragePooling1D\" # Pooling type for the input downsampling.\n downsample_pooling_params: # Parameters of the above pooling function.\n pool_size: 4\n strides: 2\n kernel_sizes: [5, 3] # List of kernel size.\n filters: 16 # Number of channels of the initial conv layer.\n max_downsample_filters: 512 # Maximum number of channels of downsampling layers.\n downsample_scales: [4, 4, 4] # List of downsampling scales.\n nonlinear_activation: \"LeakyReLU\" # Nonlinear activation function.\n nonlinear_activation_params: # Parameters of nonlinear activation function.\n alpha: 0.2\n is_weight_norm: false # Use weight-norm or not.\n\nhifigan_discriminator_params:\n out_channels: 1 # Number of output channels (number of subbands).\n period_scales: [3, 5, 7, 11, 17, 23, 37] # List of period scales.\n n_layers: 5 # Number of layer of each period discriminator.\n kernel_size: 5 # Kernel size.\n strides: 3 # Strides\n filters: 8 # In Conv filters of each period discriminator\n filter_scales: 4 # Filter scales.\n max_filters: 512 # maximum filters of period discriminator's conv.\n is_weight_norm: false # Use weight-norm or not.\n\n```\n\n\n\nSTFT Loss Setting\n\n```\nstft_loss_params:\n fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss.\n frame_steps: [120, 240, 50] # List of hop size for STFT-based loss\n frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss.\n\nsubband_stft_loss_params:\n fft_lengths: [384, 683, 171] # List of FFT size for STFT-based loss.\n frame_steps: [30, 60, 10] # List of hop size for STFT-based loss\n frame_lengths: [150, 300, 60] # List of window length for STFT-based loss.\n\n```\n\n\n\nAdversarial Loss Setting\n\n```\nlambda_feat_match: 10.0 # Loss balancing coefficient for feature matching loss\nlambda_adv: 2.5 # Loss balancing coefficient for adversarial loss.\n\n```\n\n\n\nData Loader Setting\n\n```\nbatch_size: 32 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.\neval_batch_size: 16\nbatch_max_steps: 8192 # Length of each audio in batch for training. Make sure dividable by hop_size.\nbatch_max_steps_valid: 8192 # Length of each audio for validation. Make sure dividable by hope_size.\nremove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.\nallow_cache: false # Whether to allow cache in dataset. If true, it requires cpu memory.\nis_shuffle: false # shuffle dataset after each epoch.\n\n```\n\n\n\nOptimizer & Scheduler Setting\n\n```\ngenerator_optimizer_params:\n lr_fn: \"PiecewiseConstantDecay\"\n lr_params:\n boundaries: [100000, 200000, 300000, 400000, 500000, 600000, 700000]\n values:\n [\n 0.0005,\n 0.0005,\n 0.00025,\n 0.000125,\n 0.0000625,\n 0.00003125,\n 0.000015625,\n 0.000001,\n ]\n amsgrad: false\n\ndiscriminator_optimizer_params:\n lr_fn: \"PiecewiseConstantDecay\"\n lr_params:\n boundaries: [100000, 200000, 300000, 400000, 500000]\n values: [0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 0.000001]\n amsgrad: false\n\ngradient_accumulation_steps: 1\n\n```\n\n\n\nInterval Setting\n\n```\ndiscriminator_train_start_steps: 200000 # steps begin training discriminator\ntrain_max_steps: 1000000 # Number of training steps.\nsave_interval_steps: 20000 # Interval steps to save checkpoint.\neval_interval_steps: 5000 # Interval steps to evaluate the network.\nlog_interval_steps: 200 # Interval steps to record the training log.\n\n```\n\n\n\nOther Setting\n\n```\nnum_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.\n\n```\n\n\nHow to Use\n----------\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nMB-MelGAN HiFi PostNets SW v1 was trained and evaluated by David Samuel Setiawan, Wilson Wongso. All computation and development are done on Scaleway.\n\n\nFramework versions\n------------------\n\n\n* TensorFlowTTS 1.8\n* TensorFlow 2.7.0" ]
[ "TAGS\n#tensorflowtts #tflite #tensorboard #onnx #audio #text-to-speech #mel-to-wav #sw #dataset-bookbot/OpenBible_Swahili #arxiv-2005.05106 #arxiv-2010.05646 #license-cc-by-sa-4.0 #region-us \n", "# Hop size.\nformat: \"npy\"\n\n```\n\n\n\nGenerator Network Architecture Setting\n\n```\nmodel_type: \"multiband_melgan_generator\"\n\nmultiband_melgan_generator_params:\n out_channels: 4 # Number of output channels (number of subbands).\n kernel_size: 7 # Kernel size of initial and final conv layers.\n filters: 384 # Initial number of channels for conv layers.\n upsample_scales: [8, 4, 4] # List of Upsampling scales.\n stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack.\n stacks: 4 # Number of stacks in a single residual stack module.\n is_weight_norm: false # Use weight-norm or not.\n\n```\n\n\n\nDiscriminator Network Architecture Setting\n\n```\nmultiband_melgan_discriminator_params:\n out_channels: 1 # Number of output channels.\n scales: 3 # Number of multi-scales.\n downsample_pooling: \"AveragePooling1D\" # Pooling type for the input downsampling.\n downsample_pooling_params: # Parameters of the above pooling function.\n pool_size: 4\n strides: 2\n kernel_sizes: [5, 3] # List of kernel size.\n filters: 16 # Number of channels of the initial conv layer.\n max_downsample_filters: 512 # Maximum number of channels of downsampling layers.\n downsample_scales: [4, 4, 4] # List of downsampling scales.\n nonlinear_activation: \"LeakyReLU\" # Nonlinear activation function.\n nonlinear_activation_params: # Parameters of nonlinear activation function.\n alpha: 0.2\n is_weight_norm: false # Use weight-norm or not.\n\nhifigan_discriminator_params:\n out_channels: 1 # Number of output channels (number of subbands).\n period_scales: [3, 5, 7, 11, 17, 23, 37] # List of period scales.\n n_layers: 5 # Number of layer of each period discriminator.\n kernel_size: 5 # Kernel size.\n strides: 3 # Strides\n filters: 8 # In Conv filters of each period discriminator\n filter_scales: 4 # Filter scales.\n max_filters: 512 # maximum filters of period discriminator's conv.\n is_weight_norm: false # Use weight-norm or not.\n\n```\n\n\n\nSTFT Loss Setting\n\n```\nstft_loss_params:\n fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss.\n frame_steps: [120, 240, 50] # List of hop size for STFT-based loss\n frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss.\n\nsubband_stft_loss_params:\n fft_lengths: [384, 683, 171] # List of FFT size for STFT-based loss.\n frame_steps: [30, 60, 10] # List of hop size for STFT-based loss\n frame_lengths: [150, 300, 60] # List of window length for STFT-based loss.\n\n```\n\n\n\nAdversarial Loss Setting\n\n```\nlambda_feat_match: 10.0 # Loss balancing coefficient for feature matching loss\nlambda_adv: 2.5 # Loss balancing coefficient for adversarial loss.\n\n```\n\n\n\nData Loader Setting\n\n```\nbatch_size: 32 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.\neval_batch_size: 16\nbatch_max_steps: 8192 # Length of each audio in batch for training. Make sure dividable by hop_size.\nbatch_max_steps_valid: 8192 # Length of each audio for validation. Make sure dividable by hope_size.\nremove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.\nallow_cache: false # Whether to allow cache in dataset. If true, it requires cpu memory.\nis_shuffle: false # shuffle dataset after each epoch.\n\n```\n\n\n\nOptimizer & Scheduler Setting\n\n```\ngenerator_optimizer_params:\n lr_fn: \"PiecewiseConstantDecay\"\n lr_params:\n boundaries: [100000, 200000, 300000, 400000, 500000, 600000, 700000]\n values:\n [\n 0.0005,\n 0.0005,\n 0.00025,\n 0.000125,\n 0.0000625,\n 0.00003125,\n 0.000015625,\n 0.000001,\n ]\n amsgrad: false\n\ndiscriminator_optimizer_params:\n lr_fn: \"PiecewiseConstantDecay\"\n lr_params:\n boundaries: [100000, 200000, 300000, 400000, 500000]\n values: [0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 0.000001]\n amsgrad: false\n\ngradient_accumulation_steps: 1\n\n```\n\n\n\nInterval Setting\n\n```\ndiscriminator_train_start_steps: 200000 # steps begin training discriminator\ntrain_max_steps: 1000000 # Number of training steps.\nsave_interval_steps: 20000 # Interval steps to save checkpoint.\neval_interval_steps: 5000 # Interval steps to evaluate the network.\nlog_interval_steps: 200 # Interval steps to record the training log.\n\n```\n\n\n\nOther Setting\n\n```\nnum_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.\n\n```\n\n\nHow to Use\n----------\n\n\nDisclaimer\n----------\n\n\nDo consider the biases which came from pre-training datasets that may be carried over into the results of this model.\n\n\nAuthors\n-------\n\n\nMB-MelGAN HiFi PostNets SW v1 was trained and evaluated by David Samuel Setiawan, Wilson Wongso. All computation and development are done on Scaleway.\n\n\nFramework versions\n------------------\n\n\n* TensorFlowTTS 1.8\n* TensorFlow 2.7.0" ]
text-generation
transformers
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65c70c9e21d80a923d664563/ntyev6qExGVY3Ysg2D6-l.png) # NeuralStar_AlphaWriter_4x7b I was blown away by the writing results I was getting from mlabonne/Beyonder-4x7B-v3 while writing in [NovelCrafter](https://www.novelcrafter.com). Inspired by his [LLM Course](https://github.com/mlabonne/llm-course) and fueled by his [LazyMergeKit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb). I couldnt help but wonder what a writing model would be like if all 4 “experts” excelled in creative writing. I present NeuralStar-AlphaWriter-4x7b: NeuralStar_AlphaWriter_4x7b is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B](https://huggingface.co/FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B) * [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) * [OmnicromsBrain/NeuralStar-7b-Lazy](https://huggingface.co/OmnicromsBrain/NeuralStar-7b-Lazy) ## &#9889; Quantized Models Thanks to MRadermacher for the quantized models **.GGUF** https://huggingface.co/mradermacher/NeuralStar_AlphaWriter_4x7b-GGUF Q4_K_M and Q5_K_M .gguf [**Here**](https://huggingface.co/OmnicromsBrain/NeuralStar_AlphaWriter_4x7b-GGUF) created with [mlabonne/Autogguf](https://colab.research.google.com/drive/1P646NEg33BZy4BfLDNpTz0V0lwIU3CHu) ## 🧩 Configuration ```yaml base_model: mlabonne/AlphaMonarch-7B experts: - source_model: mlabonne/AlphaMonarch-7B positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - "I want" - source_model: FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B positive_prompts: - "edit" - "rewrite" - "evaluate" - "spelling" - "grammer" - source_model: SanjiWatsuki/Kunoichi-DPO-v2-7B positive_prompts: - "storywriting" - "write" - "scene" - "prose" - "character" - source_model: OmnicromsBrain/NeuralStar-7b-Lazy positive_prompts: - "codex" - "plot" - "outline" - "scenebeat" - "count" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "OmnicromsBrain/NeuralStar_AlphaWriter_4x7b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"license": "apache-2.0", "tags": ["moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "mlabonne/AlphaMonarch-7B", "FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B", "SanjiWatsuki/Kunoichi-DPO-v2-7B", "OmnicromsBrain/NeuralStar-7b-Lazy"], "base_model": ["mlabonne/AlphaMonarch-7B", "FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B", "SanjiWatsuki/Kunoichi-DPO-v2-7B", "OmnicromsBrain/NeuralStar-7b-Lazy"]}
OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
null
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "mlabonne/AlphaMonarch-7B", "FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B", "SanjiWatsuki/Kunoichi-DPO-v2-7B", "OmnicromsBrain/NeuralStar-7b-Lazy", "conversational", "base_model:mlabonne/AlphaMonarch-7B", "base_model:FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B", "base_model:SanjiWatsuki/Kunoichi-DPO-v2-7B", "base_model:OmnicromsBrain/NeuralStar-7b-Lazy", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T02:46:54+00:00
[]
[]
TAGS #transformers #safetensors #mixtral #text-generation #moe #frankenmoe #merge #mergekit #lazymergekit #mlabonne/AlphaMonarch-7B #FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B #SanjiWatsuki/Kunoichi-DPO-v2-7B #OmnicromsBrain/NeuralStar-7b-Lazy #conversational #base_model-mlabonne/AlphaMonarch-7B #base_model-FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B #base_model-SanjiWatsuki/Kunoichi-DPO-v2-7B #base_model-OmnicromsBrain/NeuralStar-7b-Lazy #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
!image/png # NeuralStar_AlphaWriter_4x7b I was blown away by the writing results I was getting from mlabonne/Beyonder-4x7B-v3 while writing in NovelCrafter. Inspired by his LLM Course and fueled by his LazyMergeKit. I couldnt help but wonder what a writing model would be like if all 4 “experts” excelled in creative writing. I present NeuralStar-AlphaWriter-4x7b: NeuralStar_AlphaWriter_4x7b is a Mixture of Experts (MoE) made with the following models using LazyMergekit: * mlabonne/AlphaMonarch-7B * FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B * SanjiWatsuki/Kunoichi-DPO-v2-7B * OmnicromsBrain/NeuralStar-7b-Lazy ## &#9889; Quantized Models Thanks to MRadermacher for the quantized models .GGUF URL Q4_K_M and Q5_K_M .gguf Here created with mlabonne/Autogguf ## Configuration ## Usage
[ "# NeuralStar_AlphaWriter_4x7b\n\nI was blown away by the writing results I was getting from mlabonne/Beyonder-4x7B-v3 while writing in NovelCrafter.\n\nInspired by his LLM Course and fueled by his LazyMergeKit.\nI couldnt help but wonder what a writing model would be like if all 4 “experts” excelled in creative writing.\n\nI present NeuralStar-AlphaWriter-4x7b: \n\n\nNeuralStar_AlphaWriter_4x7b is a Mixture of Experts (MoE) made with the following models using LazyMergekit:\n* mlabonne/AlphaMonarch-7B\n* FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B\n* SanjiWatsuki/Kunoichi-DPO-v2-7B\n* OmnicromsBrain/NeuralStar-7b-Lazy", "## &#9889; Quantized Models\n\nThanks to MRadermacher for the quantized models\n\n.GGUF URL\n\nQ4_K_M and Q5_K_M .gguf Here created with mlabonne/Autogguf", "## Configuration", "## Usage" ]
[ "TAGS\n#transformers #safetensors #mixtral #text-generation #moe #frankenmoe #merge #mergekit #lazymergekit #mlabonne/AlphaMonarch-7B #FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B #SanjiWatsuki/Kunoichi-DPO-v2-7B #OmnicromsBrain/NeuralStar-7b-Lazy #conversational #base_model-mlabonne/AlphaMonarch-7B #base_model-FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B #base_model-SanjiWatsuki/Kunoichi-DPO-v2-7B #base_model-OmnicromsBrain/NeuralStar-7b-Lazy #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# NeuralStar_AlphaWriter_4x7b\n\nI was blown away by the writing results I was getting from mlabonne/Beyonder-4x7B-v3 while writing in NovelCrafter.\n\nInspired by his LLM Course and fueled by his LazyMergeKit.\nI couldnt help but wonder what a writing model would be like if all 4 “experts” excelled in creative writing.\n\nI present NeuralStar-AlphaWriter-4x7b: \n\n\nNeuralStar_AlphaWriter_4x7b is a Mixture of Experts (MoE) made with the following models using LazyMergekit:\n* mlabonne/AlphaMonarch-7B\n* FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B\n* SanjiWatsuki/Kunoichi-DPO-v2-7B\n* OmnicromsBrain/NeuralStar-7b-Lazy", "## &#9889; Quantized Models\n\nThanks to MRadermacher for the quantized models\n\n.GGUF URL\n\nQ4_K_M and Q5_K_M .gguf Here created with mlabonne/Autogguf", "## Configuration", "## Usage" ]
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LLama_music_generator This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.04 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"tags": ["trl", "sft", "missing lyric Llama2", "generated_from_trainer", "missing lyric Llama2 1"], "datasets": ["generator"], "base_model": "meta-llama/Llama-2-7b-hf", "model-index": [{"name": "LLama_music_generator", "results": []}]}
ShushantLLM/LLama_music_generator
null
[ "tensorboard", "safetensors", "trl", "sft", "missing lyric Llama2", "generated_from_trainer", "missing lyric Llama2 1", "dataset:generator", "base_model:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-04-15T02:47:21+00:00
[]
[]
TAGS #tensorboard #safetensors #trl #sft #missing lyric Llama2 #generated_from_trainer #missing lyric Llama2 1 #dataset-generator #base_model-meta-llama/Llama-2-7b-hf #region-us
# LLama_music_generator This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.04 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# LLama_music_generator\n\nThis model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant_with_warmup\n- lr_scheduler_warmup_ratio: 0.04\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#tensorboard #safetensors #trl #sft #missing lyric Llama2 #generated_from_trainer #missing lyric Llama2 1 #dataset-generator #base_model-meta-llama/Llama-2-7b-hf #region-us \n", "# LLama_music_generator\n\nThis model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant_with_warmup\n- lr_scheduler_warmup_ratio: 0.04\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-generation
transformers
Model quantized using a modified [EETQ](https://github.com/NetEase-FuXi/EETQ) repo. Currently working on decoupling its kernels from CUTLASS to make this a bit easier to use. 8bits.
{}
alpindale/Mistral-7B-Instruct-v0.2-EETQ
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-15T02:48:37+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Model quantized using a modified EETQ repo. Currently working on decoupling its kernels from CUTLASS to make this a bit easier to use. 8bits.
[]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n" ]
text-generation
transformers
# Multi_verse_modelExperiment26-7B Multi_verse_modelExperiment26-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. * [MTSAIR/multi_verse_model](https://huggingface.co/MTSAIR/multi_verse_model) * [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: MTSAIR/multi_verse_model layer_range: [0, 32] - model: yam-peleg/Experiment26-7B layer_range: [0, 32] merge_method: slerp base_model: MTSAIR/multi_verse_model parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/Multi_verse_modelExperiment26-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"license": "apache-2.0", "tags": ["merge", "mergekit", "lazymergekit", "automerger"], "base_model": ["MTSAIR/multi_verse_model", "yam-peleg/Experiment26-7B"]}
automerger/Multi_verse_modelExperiment26-7B
null
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "automerger", "conversational", "base_model:MTSAIR/multi_verse_model", "base_model:yam-peleg/Experiment26-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T02:49:52+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #automerger #conversational #base_model-MTSAIR/multi_verse_model #base_model-yam-peleg/Experiment26-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Multi_verse_modelExperiment26-7B Multi_verse_modelExperiment26-7B is an automated merge created by Maxime Labonne using the following configuration. * MTSAIR/multi_verse_model * yam-peleg/Experiment26-7B ## Configuration ## Usage
[ "# Multi_verse_modelExperiment26-7B\n\nMulti_verse_modelExperiment26-7B is an automated merge created by Maxime Labonne using the following configuration.\n* MTSAIR/multi_verse_model\n* yam-peleg/Experiment26-7B", "## Configuration", "## Usage" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #automerger #conversational #base_model-MTSAIR/multi_verse_model #base_model-yam-peleg/Experiment26-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Multi_verse_modelExperiment26-7B\n\nMulti_verse_modelExperiment26-7B is an automated merge created by Maxime Labonne using the following configuration.\n* MTSAIR/multi_verse_model\n* yam-peleg/Experiment26-7B", "## Configuration", "## Usage" ]
unconditional-image-generation
diffusers
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Yellow514/sd-class-butterflies-32') image = pipeline().images[0] image ```
{"license": "mit", "tags": ["pytorch", "diffusers", "unconditional-image-generation", "diffusion-models-class"]}
Yellow514/sd-class-butterflies-32
null
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
null
2024-04-15T02:51:34+00:00
[]
[]
TAGS #diffusers #safetensors #pytorch #unconditional-image-generation #diffusion-models-class #license-mit #diffusers-DDPMPipeline #region-us
# Model Card for Unit 1 of the Diffusion Models Class This model is a diffusion model for unconditional image generation of cute . ## Usage
[ "# Model Card for Unit 1 of the Diffusion Models Class \n\nThis model is a diffusion model for unconditional image generation of cute .", "## Usage" ]
[ "TAGS\n#diffusers #safetensors #pytorch #unconditional-image-generation #diffusion-models-class #license-mit #diffusers-DDPMPipeline #region-us \n", "# Model Card for Unit 1 of the Diffusion Models Class \n\nThis model is a diffusion model for unconditional image generation of cute .", "## Usage" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemini-all-data20240415_025230 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "gemma", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "google/gemma-2b", "model-index": [{"name": "gemini-all-data20240415_025230", "results": []}]}
mooo16/gemini-all-data20240415_025230
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-04-15T02:52:48+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us
# gemini-all-data20240415_025230 This model is a fine-tuned version of google/gemma-2b on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# gemini-all-data20240415_025230\n\nThis model is a fine-tuned version of google/gemma-2b on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us \n", "# gemini-all-data20240415_025230\n\nThis model is a fine-tuned version of google/gemma-2b on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
audio-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dangerous-heartbeat-MIT This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1104 | 1.0 | 18 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "bsd-3-clause", "tags": ["generated_from_trainer"], "datasets": ["audiofolder"], "metrics": ["accuracy"], "base_model": "MIT/ast-finetuned-audioset-10-10-0.4593", "model-index": [{"name": "dangerous-heartbeat-MIT", "results": [{"task": {"type": "audio-classification", "name": "Audio Classification"}, "dataset": {"name": "audiofolder", "type": "audiofolder", "config": "default", "split": "train[:90]", "args": "default"}, "metrics": [{"type": "accuracy", "value": 1.0, "name": "Accuracy"}]}]}]}
Hemg/dangerous-heartbeat-MIT
null
[ "transformers", "tensorboard", "safetensors", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:audiofolder", "base_model:MIT/ast-finetuned-audioset-10-10-0.4593", "license:bsd-3-clause", "model-index", "endpoints_compatible", "region:us" ]
null
2024-04-15T02:54:53+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #audio-spectrogram-transformer #audio-classification #generated_from_trainer #dataset-audiofolder #base_model-MIT/ast-finetuned-audioset-10-10-0.4593 #license-bsd-3-clause #model-index #endpoints_compatible #region-us
dangerous-heartbeat-MIT ======================= This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the audiofolder dataset. It achieves the following results on the evaluation set: * Loss: 0.0000 * Accuracy: 1.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.39.3 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #audio-spectrogram-transformer #audio-classification #generated_from_trainer #dataset-audiofolder #base_model-MIT/ast-finetuned-audioset-10-10-0.4593 #license-bsd-3-clause #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 2.9069 - Mean Iou: 0.0635 - Mean Accuracy: 0.1208 - Overall Accuracy: 0.4617 - Per Category Iou: [0.41928714602092204, 0.5390214194468376, 0.9012448258150285, 0.4803948505715545, 0.286634627489022, 0.3955429610634541, 0.013755700264604875, 0.0, 0.15830383993025027, 0.0, 0.0, 0.05008873442525973, 0.5408022058058475, 0.0, 0.0, 0.015204209024433743, 0.0, 0.0, 0.011558359136104005, 0.005458675263774912, 0.0, 0.0, 0.02979897667822854, 0.04487737341772152, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.10603847090333576, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] - Per Category Accuracy: [0.8627759743647633, 0.5675831029534248, 0.9798871578394094, 0.9012946287138017, 0.9550220818632652, 0.5924650130435409, 0.05558715352822963, nan, 0.230359005236165, 0.0, 0.0, 0.059625456626028785, 0.9366147691642339, nan, 0.0, 0.02054093126920065, 0.0, 0.0, 0.0285415776226433, 0.00626893301918546, 0.0, nan, 0.03166877112948556, 0.05442682722060975, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.23869553302274596, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.9809 | 1.0 | 20 | 4.9704 | 0.0048 | 0.0277 | 0.0613 | [0.004911874635991639, 0.03406250112083096, 0.2670554804708638, 0.06771658036261965, 0.04212671608698573, 0.025069857985360353, 0.06205384643258325, 0.0, 0.0003841762088211126, 0.0, 0.005606722085999641, 0.0, 0.04597345406633831, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0442952626641651, 0.00582620230447109, 0.0, 0.0, 0.0493881593227697, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.002515785319652723, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.00015083714616119463, 0.001783657619275733, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0] | [0.004944155329196129, 0.037135807489725774, 0.8389822852590688, 0.07646954588656024, 0.04640892156620858, 0.025150252943804678, 0.12986766769044097, nan, 0.0003870676400701022, 0.0, 0.006472659486329743, 0.0, 0.046842901935344364, nan, 0.0, 0.0, 0.0, 0.0, 0.07175761029586361, 0.009424436216762033, 0.0, nan, 0.1482831656551668, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.013976431899150453, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0002481184351997353, 0.03814298169136879, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 4.5728 | 2.0 | 40 | 4.7881 | 0.0176 | 0.0770 | 0.2450 | [0.2507255484460695, 0.2977284139484906, 0.23862898391447698, 0.2739403815702492, 0.23710310856686415, 0.17133881711748083, 0.05086156794370356, 0.0, 0.011658808401200172, 0.0, 0.00037139629532195414, 0.0, 0.39436900130239655, 0.0, 0.0, 0.0, 0.0, 0.0, 0.14939800879833295, 0.004368882283605801, 0.000995317800768217, 0.0, 0.05839388398904878, 0.017299836033682573, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.028484399440190995, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.001430474029497361, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0] | [0.3330531771794789, 0.4474675154553311, 0.941542176194739, 0.478411220473498, 0.5273000912881498, 0.1957395903895767, 0.12277708262237895, nan, 0.013160299762383476, 0.0, 0.00041425020712510354, 0.0, 0.4283345947309619, nan, 0.0, 0.0, 0.0, 0.0, 0.24514413259248705, 0.014347021204981488, 0.06484018264840183, nan, 0.12553460144189646, 0.029863992899805705, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.18964099753357083, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.002398478206930775, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 4.2574 | 3.0 | 60 | 4.4704 | 0.0274 | 0.1005 | 0.3626 | [0.3635850414549168, 0.37010164682793634, 0.3855682341569739, 0.2844444257208637, 0.2643699799196787, 0.25330901424005625, 0.013256218650834272, 0.0, 0.007188262747096532, 0.0, 0.0, 0.001604540741145009, 0.5977800636317968, 0.0, 0.0, 0.0, 0.0, 0.0, 0.052051926298157455, 0.007228346456692914, 0.009877098144051858, 0.0, 0.03977203005058424, 0.011193484771017457, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.021203910943574038, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0] | [0.6268206197458863, 0.5427333549701451, 0.9762653679689233, 0.725110212585445, 0.8315610273617725, 0.436360491763112, 0.01964129981420392, nan, 0.008644510628232283, 0.0, 0.0, 0.0016174464152105981, 0.6754514001513677, nan, 0.0, 0.0, 0.0, 0.0, 0.059030251222871255, 0.01931167956916863, 0.3812785388127854, nan, 0.059406948800456195, 0.014704118592434454, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.04932858317347218, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 3.9015 | 4.0 | 80 | 4.1496 | 0.0405 | 0.1007 | 0.3998 | [0.3742520572877334, 0.3849514335203841, 0.5440203329288118, 0.35316902028787084, 0.21878976145989754, 0.22397186573235703, 0.013087026363035057, 0.0, 0.00026723412678774684, 0.0, 0.0, 0.0016120830493254136, 0.6405065062263887, 0.0, 0.0, 0.0008228460793804453, 0.0, 0.0, 0.0, 0.006625088524889773, 0.010328673134383416, 0.0, 0.007047043264689212, 0.001141891428962934, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.017049180327868854, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.7474724286502987, 0.6091844355724827, 0.9756247792843474, 0.7534996858739952, 0.941846981322938, 0.3689952870299641, 0.042012664467447766, nan, 0.00029030073005257667, 0.0, 0.0, 0.001639452488886933, 0.8248999891880203, nan, 0.0, 0.0020480693934100355, 0.0, 0.0, 0.0, 0.012201279030629418, 0.1278538812785388, nan, 0.007596431917233514, 0.0011993571445705101, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.02137571937517128, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 3.8982 | 5.0 | 100 | 4.0155 | 0.0454 | 0.1041 | 0.4049 | [0.36889651396953876, 0.4398856429680584, 0.6636428229151176, 0.33495076670806645, 0.23050444953925636, 0.22171489032678143, 0.015416709650057885, 0.0, 0.002850158836976852, 0.0, 0.0, 0.012147050002142336, 0.5406326394547745, 0.0, 0.0, 0.00044155958846646355, 0.0, 0.0, 0.0027756749936916477, 0.006107094000390854, 0.019520958083832335, 0.0, 0.01822783018033164, 0.0022817025010969725, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.026120937885643767, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.7159330433116354, 0.5926244540289438, 0.9895370514852624, 0.8862595378857441, 0.9004465717598875, 0.39261778821901616, 0.0509991278959542, nan, 0.003096541120560818, 0.0, 0.0, 0.012477443774481758, 0.85481313295131, nan, 0.0, 0.0006023733510029517, 0.0, 0.0, 0.003134349622453341, 0.010518343991921912, 0.14885844748858448, nan, 0.02097674229155635, 0.0024946628607066612, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0348040559057276, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 3.6283 | 6.0 | 120 | 3.7910 | 0.0497 | 0.0968 | 0.4168 | [0.3622566785407158, 0.46462399117235714, 0.8341980470183569, 0.25461895042570054, 0.23580142187752465, 0.22646461900454185, 0.001589825119236884, 0.0, 0.0011174951241368404, 0.0, 0.0, 0.006928185262440935, 0.6226330176253732, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.003520390379923318, 0.01504907306434024, 0.0, 0.00018081002892960464, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8423599899067896, 0.7079812463585636, 0.9520626134375796, 0.6176093131648329, 0.8641533640916829, 0.3481832725595607, 0.0018958783604443939, nan, 0.0011396991624286344, 0.0, 0.0, 0.0071629769816469345, 0.8475961365192634, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0042494109727364525, 0.031506849315068496, nan, 0.0001832919229359293, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 3.6586 | 7.0 | 140 | 3.7161 | 0.0517 | 0.1056 | 0.4282 | [0.3805749650435149, 0.47410873696071826, 0.7868364761246586, 0.3591007291385363, 0.21068110261898693, 0.32015089287057513, 0.015015015015015015, 0.0, 0.008980530210503629, 0.0, 0.0, 0.01552178616061583, 0.5707148768376984, nan, 0.0, 0.00027815122154744795, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.011042526754579342, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.744104863144035, 0.6136734223049461, 0.9818089238931367, 0.942522995634454, 0.8766623078631172, 0.6134283614141792, 0.050051188715732, nan, 0.009407894029481651, 0.0, 0.0, 0.01626248844681132, 0.8450373013298735, nan, 0.0, 0.000361424010601771, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.011221538837521894, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 3.276 | 8.0 | 160 | 3.7658 | 0.0507 | 0.1022 | 0.4112 | [0.38262195274147187, 0.46468131296139953, 0.8702971390699216, 0.2898497591171621, 0.2530257290830033, 0.2718530024125054, 0.00013599891200870393, 0.0, 0.01839955905196172, 0.0, 0.0, 0.02937338166752978, 0.4554050239909681, nan, 0.0, 0.0009861446674227108, 0.0, 0.0, 0.0, 0.0, 0.0028646455001193603, 0.0, 0.0018258564837538038, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.7270773136123638, 0.572498308809441, 0.9705904092376173, 0.8448056446026708, 0.9016308504601416, 0.5335168557139357, 0.00015167026883555152, nan, 0.019740449643575214, 0.0, 0.0, 0.03120461247304256, 0.9013316754964501, nan, 0.0, 0.0012047467020059033, 0.0, 0.0, 0.0, 0.0, 0.010958904109589041, nan, 0.0018940165370046026, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 3.0029 | 9.0 | 180 | 3.5031 | 0.0568 | 0.1023 | 0.4367 | [0.38493961879342514, 0.49555597488702036, 0.8338808432118094, 0.3652995039545917, 0.2247265001335661, 0.29172534336221606, 0.010377174125464139, 0.0, 0.0016075458842566962, 0.0, 0.0, 0.03193341139981644, 0.5990139111244347, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.890923130337117, 0.6058724392637749, 0.9798132437604198, 0.7264150436823086, 0.8925020354790161, 0.5075666950117463, 0.040268456375838924, nan, 0.0016235337125162623, 0.0, 0.0, 0.03330619250913252, 0.8461635492125275, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 3.2719 | 10.0 | 200 | 3.5634 | 0.0516 | 0.1061 | 0.4188 | [0.393634129531262, 0.46001172064450074, 0.8329058314043613, 0.3956630096862876, 0.21145735909250005, 0.30099020521449976, 0.02093284907820457, 0.0, 0.02544115298626637, 0.0, 0.0, 0.029197533418863553, 0.46378429073856975, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0023581070092698, 0.007280334728033473, 0.0, 0.0020021032195437632, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0005379236148466917, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.7509082940766895, 0.53407602341468, 0.9840509842891518, 0.8269085168419865, 0.9092546445930275, 0.6470749318997449, 0.08042316005005119, nan, 0.027406539292741408, 0.0, 0.0, 0.031050569957308215, 0.8911053447219519, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0024402558061258836, 0.03972602739726028, nan, 0.0020162111522952224, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0005480953685941354, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.9733 | 11.0 | 220 | 3.3877 | 0.0576 | 0.1006 | 0.4344 | [0.3704739367603994, 0.546717691028415, 0.8290715302270899, 0.30168890507742824, 0.26128633731747614, 0.33708007243595245, 0.007301795621308835, 0.0, 0.011698637989787578, 0.0, 0.0, 0.04572016417261456, 0.5720039444451045, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.877993576013068, 0.7172915925345179, 0.8803084680896496, 0.6048617040127583, 0.8662011793442057, 0.537898332444547, 0.02320555113183938, nan, 0.011848570537701464, 0.0, 0.0, 0.04743409180933938, 0.8675712689660143, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 3.1741 | 12.0 | 240 | 3.3514 | 0.0533 | 0.1029 | 0.4234 | [0.3915177527205492, 0.44147329603496643, 0.8400667315445572, 0.3844704389328772, 0.2086454491298782, 0.30382334966258917, 0.016062618964378664, 0.0, 0.019611966980388033, 0.0, 0.0, 0.038059168354814404, 0.5015016296549186, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.355969856688592e-05, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8002549863684743, 0.5458302865834822, 0.9925182526711727, 0.7483125795383153, 0.8122918260097209, 0.6842670394765288, 0.06271565616350055, nan, 0.020052254131409465, 0.0, 0.0, 0.04279081026363276, 0.8470555375355895, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 4.797428578282041e-05, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.5563 | 13.0 | 260 | 3.3722 | 0.0557 | 0.1021 | 0.4226 | [0.37782496004790334, 0.4767717932490223, 0.8499507186567111, 0.33066615515304304, 0.23375701658171494, 0.2564942942150449, 0.05963709556881931, 0.0, 0.017781066652571488, 0.0, 0.0, 0.03590774158667333, 0.5290044021239985, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.004528898686859005, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.9145890526611357, 0.5096133918830674, 0.9844205546840994, 0.5831628461426938, 0.8938836939626459, 0.43425622991222634, 0.22693663974519396, nan, 0.018084660294386445, 0.0, 0.0, 0.03873068967034902, 0.902998522362778, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.004533570006476528, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.8451 | 14.0 | 280 | 3.1796 | 0.0612 | 0.1097 | 0.4619 | [0.39156024730689276, 0.551308867538195, 0.8480320776617073, 0.44210512258960527, 0.22791422404434397, 0.3974314191791834, 0.0229637293786285, 0.0, 0.01439132893094509, 0.0, 0.0, 0.029355184210799964, 0.6230688202247191, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8804922147577156, 0.6843475914709252, 0.9900544500381889, 0.8888584607288798, 0.880560558584787, 0.5985471945577447, 0.09088840859970425, nan, 0.014504284623737998, 0.0, 0.0, 0.031061572994146386, 0.8633636068764191, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.7476 | 15.0 | 300 | 3.3989 | 0.0551 | 0.1123 | 0.4330 | [0.4080696099205872, 0.42335844008283396, 0.8643215338143736, 0.4204801102405771, 0.23651920916785849, 0.31306817021102734, 0.0862659996351171, 0.0, 0.05275076464591012, 0.0, 0.0, 0.036088607463968296, 0.5161180222310522, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.000778816199376947, 0.0, 0.0, 0.0026457379163146427, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8180414239015571, 0.4516632321486527, 0.9611294071269597, 0.8651191262464358, 0.950704399101922, 0.6626262917429342, 0.3406514238046487, nan, 0.05785586031158945, 0.0, 0.0, 0.03837859249152766, 0.9128464338487043, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0009132420091324201, nan, 0.0, 0.0028544700040778145, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.9164 | 16.0 | 320 | 3.3170 | 0.0550 | 0.1122 | 0.4321 | [0.38993464910187264, 0.4802651969437669, 0.8828752549311226, 0.380604088407443, 0.23143937318503097, 0.3454494725991831, 0.05810921943623034, 0.0, 0.05710090461961823, 0.0, 0.0, 0.013345543596814356, 0.4595161203989509, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00016201875367073738, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.7439701605237845, 0.5574476904006851, 0.9848065504299336, 0.935778683463011, 0.9379487306012682, 0.6424196128734705, 0.2518484814014333, nan, 0.05979119851193996, 0.0, 0.0, 0.014270938779103032, 0.9281904350019822, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.00016292615372082603, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.8282 | 17.0 | 340 | 3.2867 | 0.0547 | 0.1109 | 0.4252 | [0.38590376232924806, 0.3864431946841881, 0.8754518615591893, 0.39757661591722726, 0.2198797270729733, 0.3720394694105572, 0.04818361453108375, 0.0, 0.036813854567551145, 0.0, 0.0, 0.0150271013672033, 0.5445358592692828, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.7528244862802536, 0.4070666348631602, 0.9765692369603246, 0.9225209551578416, 0.9381954553304878, 0.8254543620195148, 0.20433776968869677, nan, 0.03908307976818949, 0.0, 0.0, 0.016350512741516658, 0.9064313259091072, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.3337 | 18.0 | 360 | 3.2886 | 0.0555 | 0.1069 | 0.4235 | [0.3927202651812333, 0.5005855354558084, 0.875262413459391, 0.3322465061922771, 0.26062742143779594, 0.3374254049445865, 0.013214185758266363, 0.0, 0.05392194970264703, 0.0, 0.0, 0.0767706528617817, 0.42972571219124805, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0014436958614051972, 0.0, 1.9893767282710327e-05, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.7597398531931161, 0.5382169963673618, 0.9655971025681036, 0.8793111780530631, 0.9560089807801436, 0.5276724846143868, 0.05012702385014978, nan, 0.059662175965249926, 0.0, 0.0, 0.08142247260243828, 0.9507063826720006, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00410958904109589, nan, 2.0365769215103254e-05, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.8002 | 19.0 | 380 | 3.1449 | 0.0604 | 0.1085 | 0.4509 | [0.3868533812781752, 0.5416788002329644, 0.895083801416724, 0.3709154852296421, 0.25466858614327137, 0.39167420726897934, 0.023323072917151015, 0.0, 0.030309736844878647, 0.0, 0.0, 0.03917405644540122, 0.5682338817716277, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8617457839028472, 0.6982642323949996, 0.9723725598088089, 0.762273735307226, 0.9296587796994893, 0.5833057088912269, 0.0950972585598908, nan, 0.030922403690044835, 0.0, 0.0, 0.04364904713700982, 0.8827981403394961, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.4428 | 20.0 | 400 | 3.1723 | 0.0577 | 0.1103 | 0.4485 | [0.39619768427376073, 0.4825493958408961, 0.8844711121174383, 0.47874993207465144, 0.25480198643442975, 0.34537051964103394, 0.05053853332296446, 0.0, 0.03277448374565529, 0.0, 0.0, 0.061568581614166326, 0.5297843423853117, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8984152521310523, 0.5093905066533196, 0.9624270098469978, 0.8515445870988181, 0.94816313439096, 0.5557845581770751, 0.1971334319190081, nan, 0.03447052372402077, 0.0, 0.0, 0.06955019585405572, 0.9307312502252496, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.9851 | 21.0 | 420 | 3.0996 | 0.0611 | 0.1127 | 0.4559 | [0.4010135605343876, 0.5165926521339104, 0.864738873916527, 0.4698051152863791, 0.2666893117578613, 0.3927616715623885, 0.05379022178430997, 0.0, 0.04327767360180969, 0.0, 0.0, 0.022643586151691014, 0.5737018049650562, nan, 0.0, 0.0, 0.0, 0.0, 0.0006169031462060457, 8.12842918106076e-05, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0008219178082191781, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8636771538664395, 0.6081599455690807, 0.9750088286261015, 0.8652157804017591, 0.9104389232932817, 0.6426934551691337, 0.22356197626360294, nan, 0.04689969572182739, 0.0, 0.0, 0.024899872364772677, 0.9215680974519768, nan, 0.0, 0.0, 0.0, 0.0, 0.0009972930616896994, 8.41467519353753e-05, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.000822143052891203, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.8011 | 22.0 | 440 | 3.1982 | 0.0564 | 0.1127 | 0.4435 | [0.41858414374416514, 0.46021764897567474, 0.8761636192728706, 0.4231863513893916, 0.23095789208572695, 0.3728752458797991, 0.05068186631552777, 0.0, 0.07254557547025017, 0.0, 0.0, 0.027401637707209905, 0.48257889612249183, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.02354830077602355, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.828531153301068, 0.5025436288061563, 0.949221027734205, 0.9041137082440625, 0.9502602945893267, 0.6857587593502731, 0.20869828991771888, nan, 0.09147698560323417, 0.0, 0.0, 0.030192333083931166, 0.9109813673550293, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.024116196218141955, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.3434 | 23.0 | 460 | 3.0638 | 0.0577 | 0.1114 | 0.4544 | [0.40165049275831083, 0.507995590348313, 0.8918478788648435, 0.4444788273615635, 0.2746630071493393, 0.3883609710916766, 0.029570773263433815, 0.0, 0.030956636252469194, 0.0, 0.0, 0.019971600486265055, 0.5311679162683037, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8387097386200001, 0.6414636912140207, 0.9805031084976553, 0.8792628509754015, 0.918482149465841, 0.6285041004280587, 0.12319417586167672, nan, 0.035384433429741846, 0.0, 0.0, 0.02151093701861714, 0.9510848019605723, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.6275 | 24.0 | 480 | 3.0454 | 0.0611 | 0.1125 | 0.4545 | [0.3986234496092969, 0.49864655103868133, 0.8908842936165674, 0.4497267007783604, 0.2636574252297527, 0.32828489017084533, 0.046670676970061546, 0.0, 0.050056953139486625, 0.0, 0.0, 0.024963289280469897, 0.6233010812449474, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00933099858475857, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0832350860646074, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8965104432475094, 0.5640130290102723, 0.9602670762054154, 0.9127642551454913, 0.9293873824973478, 0.5331205050228442, 0.19121829143442157, nan, 0.06095240143215027, 0.0, 0.0, 0.028993002068570927, 0.889204238296032, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.00933099858475857, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0967388325568649, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.9599 | 25.0 | 500 | 3.1466 | 0.0563 | 0.1128 | 0.4372 | [0.41127177891600164, 0.46575695877726336, 0.8965847239667444, 0.4423164494655299, 0.25211535363299503, 0.3572440382074552, 0.03792146409826606, 0.0, 0.1007402371780346, 0.0, 0.0, 0.03661754479552664, 0.4982757797201127, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.006786781934232851, 0.00033407572383073496, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.042478354978354976, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.7889551440274566, 0.522388234788083, 0.9848640391580366, 0.902320236695287, 0.9652364856529569, 0.5942954325987634, 0.1569787282447958, nan, 0.14339780876708205, 0.0, 0.0, 0.042295673605915234, 0.939957472879951, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.006842898456274693, 0.0003598071433711531, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.043025486434639625, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.8633 | 26.0 | 520 | 3.0706 | 0.0611 | 0.1106 | 0.4518 | [0.38994658664496407, 0.49370947081172684, 0.8883858060440138, 0.4688081893981783, 0.24840472828076782, 0.37372282958505965, 0.054418988985444075, 0.0, 0.058632015951144804, 0.0, 0.0, 0.026662877232871234, 0.5962126530466547, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.003765258891526968, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.9153953711626354, 0.5320035818047447, 0.9700647980092475, 0.82331620406914, 0.937405936196985, 0.5648717985673725, 0.22723998028286505, nan, 0.06544668680851978, 0.0, 0.0, 0.027870692311077857, 0.9029354524813493, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.003765981433951402, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.6615 | 27.0 | 540 | 2.9819 | 0.0602 | 0.1133 | 0.4587 | [0.40176908670767325, 0.4935155275304932, 0.8989296853379607, 0.49002573182848846, 0.2697391610856539, 0.400059997620784, 0.019648038940372554, 0.0, 0.05516763318511505, 0.0, 0.0, 0.031787696019300364, 0.535792363881262, nan, 0.0, 0.0, 0.0, 0.0, 0.0012696332398173366, 0.0059145760558907585, 0.0, 0.0, 0.0, 0.009537173571802312, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.12119219811527504, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8701827212585399, 0.685223491321162, 0.9870486108259487, 0.8262426771053154, 0.9062692753694703, 0.5573987864462476, 0.07958897357145565, nan, 0.07016676164159687, 0.0, 0.0, 0.0362440033449232, 0.9318484881248423, nan, 0.0, 0.0, 0.0, 0.0, 0.0029443890392743506, 0.00626893301918546, 0.0, nan, 0.0, 0.009618844299455491, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.15154836941627844, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.0586 | 28.0 | 560 | 3.0440 | 0.0599 | 0.1164 | 0.4531 | [0.40171468113652053, 0.5233187718117763, 0.8926763287944506, 0.48027994753309416, 0.25681509076932174, 0.35874871731086166, 0.09419245517036572, 0.0, 0.09596786077137251, 0.0, 0.0, 0.01677077535201105, 0.5384269639431997, nan, 0.0, 0.0, 0.0, 0.0, 4.620324808834061e-05, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.05689063266307013, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8822035072008986, 0.5869428358039704, 0.9702044134917832, 0.8316821581798949, 0.9643729491006884, 0.49883977343153224, 0.4089030447806469, nan, 0.1330437493952068, 0.0, 0.0, 0.017901940935698253, 0.9282174649511659, nan, 0.0, 0.0, 0.0, 0.0, 9.498029158949519e-05, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0635790627569197, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.4707 | 29.0 | 580 | 3.0078 | 0.0574 | 0.1105 | 0.4423 | [0.39838843212467284, 0.5062870980536787, 0.887361235402445, 0.424692917590995, 0.2894622375861359, 0.33955829599387827, 0.023558551319259966, 0.0, 0.08507824202441279, 0.0, 0.0, 0.04338517547417167, 0.5450031166681508, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.422528359463105e-05, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.018543046357615896, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8161593816580565, 0.5689986196756824, 0.9853650123600766, 0.8881765119663214, 0.9358762428758235, 0.5532118818730813, 0.09449057748454859, nan, 0.11480856279634866, 0.0, 0.0, 0.050613969455569736, 0.9374526975889286, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 4.797428578282041e-05, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.01918333790079474, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.3796 | 30.0 | 600 | 2.9648 | 0.0581 | 0.1108 | 0.4498 | [0.39855196661531195, 0.5209957159303226, 0.8909988549675079, 0.40551327004760684, 0.2897538960581059, 0.41507648713985656, 0.006226603209240204, 0.0, 0.08406138388476785, 0.0, 0.0, 0.03647697756788666, 0.5509980668795591, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.006512890094979647, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.798524721725256, 0.6476810160438263, 0.9841577490699145, 0.9166035729819417, 0.9124127211270385, 0.6038150555611606, 0.025101429492283774, nan, 0.11514187104196458, 0.0, 0.0, 0.042493728269002246, 0.929659062240963, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.006577144423129624, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.351 | 31.0 | 620 | 2.9798 | 0.0578 | 0.1136 | 0.4510 | [0.40868524828498876, 0.48146085385816695, 0.8996394367048899, 0.45394785596851267, 0.261096202871327, 0.3624850543654202, 0.044936767285147235, 0.0, 0.11868812518230015, 0.0, 0.0, 0.024970499790643676, 0.5388361076560721, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.008626887131560028, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0358604091456077, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.87358064228486, 0.5002834943711704, 0.9774397805573122, 0.8880905971615897, 0.960227973649799, 0.6051770606632748, 0.1845827171728662, nan, 0.14875224445471846, 0.0, 0.0, 0.028871968663351084, 0.917261325548708, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.008923217155604596, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.040833104960263086, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.0727 | 32.0 | 640 | 3.0076 | 0.0591 | 0.1192 | 0.4549 | [0.41325460886895865, 0.5059136124550379, 0.9010746108837814, 0.4417688948955193, 0.28983656206740954, 0.4465339651202351, 0.025903254702896387, 0.0, 0.10671502137715308, 0.0, 0.0, 0.034965806309287445, 0.46958300900700545, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001382865044943114, 0.0, 0.0, 0.0, 0.006372141161190819, 0.0258011471526731, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.11359377252414589, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.786779032683409, 0.6566746305775074, 0.9675435066481608, 0.912710558392534, 0.9350127063235548, 0.6526238415750256, 0.10525916657187274, nan, 0.16799810766931522, 0.0, 0.0, 0.04185555213238854, 0.9512199517064908, nan, 0.0, 0.0, 0.0, 0.0, 0.003134349622453341, 0.0, 0.0, nan, 0.006394851533542422, 0.03161505433087865, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.21594957522608935, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.509 | 33.0 | 660 | 2.9574 | 0.0598 | 0.1099 | 0.4501 | [0.39003503467218836, 0.5006520333992297, 0.8909112789193417, 0.41623088470611525, 0.40006458557588803, 0.3452544380923725, 0.009562726823215502, 0.0, 0.12358409694306426, 0.0, 0.0, 0.053615722190421676, 0.5600836742587256, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0013520311910451516, 0.0, 0.0, 0.0, 0.0, 0.01553952979526223, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.05997693194925029, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.9084325737496846, 0.5179187993915624, 0.9728078316073027, 0.8129097733460058, 0.9169771286176014, 0.5292146491215427, 0.03886550638911007, nan, 0.15965464965002635, 0.0, 0.0, 0.06183706703050042, 0.926352398457491, nan, 0.0, 0.0, 0.0, 0.0, 0.0020420762691741464, 0.0, 0.0, nan, 0.0, 0.016695051452421502, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0712523979172376, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.9774 | 34.0 | 680 | 2.9613 | 0.0605 | 0.1159 | 0.4472 | [0.4032043730706014, 0.49005445332208886, 0.8999721349871596, 0.4486175963944834, 0.28643575451944914, 0.35683293247440745, 0.01875600248573527, 0.0, 0.12956005243922983, 0.0, 0.0, 0.04747182975110512, 0.5348329340822733, 0.0, 0.0, 0.004999725289819241, 0.0, 0.0, 0.0013948371380299398, 0.0, 0.0, 0.0, 0.004140326782865106, 0.005348516218081435, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.12236286919831224, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.821456419907909, 0.527154850490934, 0.9814229281473026, 0.8894061676090447, 0.9585502454911056, 0.6382831529337157, 0.07553179388010466, nan, 0.19020073757889192, 0.0, 0.0, 0.05659962149553277, 0.933389195228313, nan, 0.0, 0.00548159749412686, 0.0, 0.0, 0.0033718003514270787, 0.0, 0.0, nan, 0.004174982689096167, 0.00594881143706973, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.16689503973691422, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.3159 | 35.0 | 700 | 2.9346 | 0.0624 | 0.1154 | 0.4541 | [0.3967801656985792, 0.5560759595507347, 0.8909327969006109, 0.4287167091629943, 0.27348066298342544, 0.35888412918189133, 0.022443983830577465, 0.0, 0.10658222852119624, 0.0, 0.0, 0.04496837157205681, 0.5648853693653783, nan, 0.0, 0.014322781525687597, 0.0, 0.0, 0.01697486791375125, 0.0, 0.0, 0.0, 0.0, 0.03473754095903026, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.09884929987522528, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8876238647509804, 0.6216386365680366, 0.9820799421827648, 0.7809655750116791, 0.952604179516913, 0.5174033985270167, 0.09073673833086869, nan, 0.12775382498091542, 0.0, 0.0, 0.053892874433343604, 0.9190813421270768, nan, 0.0, 0.016625504487681464, 0.0, 0.0, 0.045163128650804955, 0.0, 0.0, nan, 0.0, 0.038907145769867355, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.19539599890380926, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.3852 | 36.0 | 720 | 2.9270 | 0.0613 | 0.1200 | 0.4552 | [0.4254229381284313, 0.4888272651405433, 0.8959242922926509, 0.4472104320320191, 0.2932553977208365, 0.4111456139826328, 0.0281153517703475, 0.0, 0.1447234659226094, 0.0, 0.0, 0.050443709280573554, 0.5151018519885623, 0.0, 0.0, 0.009063160366283166, 0.0, 0.0, 0.0037032592110000516, 0.0, 0.0, 0.0, 0.01192418474429472, 0.034037584066777676, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.10296658986175115, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8373911707175475, 0.5107630104365031, 0.9858824109130031, 0.8927783236947662, 0.9580814685055883, 0.6936641540434977, 0.11360103135782808, nan, 0.21582246497575452, 0.0, 0.0, 0.06023062365212799, 0.9430028471546473, nan, 0.0, 0.011625805674356967, 0.0, 0.0, 0.01025787149166548, 0.0, 0.0, nan, 0.012056535375341126, 0.03775576291107966, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.1959440942724034, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 2.1402 | 37.0 | 740 | 2.9398 | 0.0620 | 0.1173 | 0.4606 | [0.4223035263402758, 0.5094182057849878, 0.8962940869435538, 0.4436519707569334, 0.28216223292074527, 0.3776633539548852, 0.008834390682700501, 0.0, 0.14524188213436176, 0.0, 0.0, 0.05276351292540691, 0.5956512513409329, 0.0, 0.0, 0.0030471787327939477, 0.0, 0.0, 0.001824386684123543, 0.0, 0.0, 0.0, 0.018751383216304852, 0.03871739650634123, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.11195133979944107, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8868953322696254, 0.5319253764609736, 0.9871800136330412, 0.9075127127062627, 0.9572672768991636, 0.5745427554300044, 0.03537709020589239, nan, 0.22189727654907695, 0.0, 0.0, 0.06670040931297037, 0.9105218582189065, nan, 0.0, 0.0034937654358171196, 0.0, 0.0, 0.004036662392553545, 0.0, 0.0, nan, 0.018980896908476232, 0.03881119719830171, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.18662647300630308, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.8155 | 38.0 | 760 | 2.9118 | 0.0626 | 0.1194 | 0.4625 | [0.4190383753229526, 0.5019843587800783, 0.9122145865661716, 0.4997097765584999, 0.273329225888235, 0.4021394049064297, 0.017948082693313515, 0.0, 0.1381760481255138, 0.0, 0.0, 0.03519455868396077, 0.5907354562921361, nan, 0.0, 0.0115396775213405, 0.0, 0.0, 0.002848335166122839, 0.0, 0.0, 0.0, 0.018416243654822334, 0.02954796549211349, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.09110437199898913, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8600515664396959, 0.5880689927542749, 0.9800596240237182, 0.8783285274739436, 0.9522587648960055, 0.6325829093582002, 0.0741667614605847, nan, 0.23313298999000076, 0.0, 0.0, 0.044067162536860174, 0.9363264497062745, nan, 0.0, 0.01319197638696464, 0.0, 0.0, 0.007503443035570119, 0.0, 0.0, nan, 0.01847175267809865, 0.030151838614502626, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.1975883803781858, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.5568 | 39.0 | 780 | 2.8854 | 0.0647 | 0.1194 | 0.4688 | [0.4224814606797645, 0.5596298858768196, 0.9102870174742768, 0.4723640639111197, 0.28282399132702396, 0.41134304392705584, 0.003113047274659985, 0.0, 0.13887857147862895, 0.0, 0.0, 0.05047816672681343, 0.5759129264465256, nan, 0.0, 0.0025584255842558425, 0.0, 0.0, 0.006596742493529744, 0.0, 0.0, 0.0, 0.05668434328387853, 0.042575986957028064, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.07587587587587588, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8833911669231076, 0.626252751850534, 0.980141750778151, 0.8931166132383975, 0.952604179516913, 0.568604701439834, 0.012436962044515224, nan, 0.21306998397970045, 0.0, 0.0, 0.06156199110954624, 0.9291725231556565, nan, 0.0, 0.0031323414252153485, 0.0, 0.0, 0.016099159424419432, 0.0, 0.0, nan, 0.05812390533990469, 0.043848497205497855, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.20772814469717732, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.7911 | 40.0 | 800 | 2.8534 | 0.0633 | 0.1166 | 0.4671 | [0.41145112706721, 0.5624394397627507, 0.900155724570629, 0.4748438051893156, 0.3094077553355194, 0.3880899550814978, 0.002816581917166027, 0.0, 0.13526457471172004, 0.0, 0.0, 0.050124997577566326, 0.5646437270951743, 0.0, 0.0, 0.0008599322171075927, 0.0, 0.0, 0.002325035227806482, 0.003937739143355994, 0.0, 0.0, 0.005711090698510324, 0.04057337220602527, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.07380789413643624, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.9049587639232233, 0.5992093439744738, 0.9826876801655675, 0.880691184604067, 0.947521650094989, 0.5684533675395991, 0.011299435028248588, nan, 0.1809863773694453, 0.0, 0.0, 0.05691870956383962, 0.9273164666450427, nan, 0.0, 0.0010240346967050177, 0.0, 0.0, 0.0047015244336800115, 0.004459777852574891, 0.0, nan, 0.005824609995519531, 0.044064381491520546, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.1773088517402028, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.3954 | 41.0 | 820 | 2.8746 | 0.0658 | 0.1222 | 0.4677 | [0.429931223109492, 0.5447907709945543, 0.9040346168923198, 0.4577431526371508, 0.2704986092082866, 0.4418497787989148, 0.01935283077590516, 0.0, 0.15359412363098304, 0.0, 0.0, 0.04569787855987685, 0.5513937282229965, nan, 0.0, 0.005778805120910384, 0.0, 0.0, 0.0002426863169042051, 0.0, 0.0, 0.0, 0.05380778050448566, 0.03783722253841776, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.09748731577675768, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8571013893342085, 0.5946030492263537, 0.9848804645089231, 0.9054776057691791, 0.9645209839382202, 0.6513627257397345, 0.07780684791263792, nan, 0.2500026879697227, 0.0, 0.0, 0.05814004665287619, 0.9296410422748406, nan, 0.0, 0.007830853563038372, 0.0, 0.0, 0.0005223916037422235, 0.0, 0.0, nan, 0.054478432650401205, 0.03986663148552376, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.22115648122773363, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 0.9732 | 42.0 | 840 | 2.8900 | 0.0644 | 0.1202 | 0.4688 | [0.4224535909948316, 0.5667352484899163, 0.9051175782969744, 0.4971466251049035, 0.2811067558885737, 0.4085123427486352, 0.01438068482100637, 0.0, 0.14828315492388425, 0.0, 0.0, 0.0393518100568746, 0.5720518449529892, 0.0, 0.0, 0.011198884758364312, 0.0, 0.0, 0.003992622768083339, 0.0, 0.0, 0.0, 0.034013197360527894, 0.027279091299144142, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.12596242685555897, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8888912077133376, 0.6042535886477123, 0.9792958452074932, 0.8906573019529509, 0.960795440527004, 0.5953259443956013, 0.0588101467409851, nan, 0.22087584805444752, 0.0, 0.0, 0.04796223757757141, 0.9297311421054528, nan, 0.0, 0.014517197759171135, 0.0, 0.0, 0.009355558721565274, 0.0, 0.0, nan, 0.034642173434890636, 0.028976468612823526, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.22417100575500137, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.1853 | 43.0 | 860 | 2.8886 | 0.0631 | 0.1178 | 0.4648 | [0.4164725374604488, 0.5243178591788601, 0.9001648667453187, 0.4662798686073323, 0.3077297389357923, 0.3811166220093875, 0.006105440584324375, 0.0, 0.14801813775310765, 0.0, 0.0, 0.044645641844166806, 0.5946926517645833, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01479727730097662, 0.0, 0.0, 0.0, 0.035294797242654136, 0.03421671346070442, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.1022539857064321, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.9032398826000262, 0.5502449782393631, 0.9775301199871882, 0.9001884756028803, 0.936172312550887, 0.5781099116498277, 0.024722253820194898, nan, 0.20356532304020128, 0.0, 0.0, 0.053551780291360415, 0.9259829891519804, nan, 0.0, 0.0, 0.0, 0.0, 0.03324310205632331, 0.0, 0.0, nan, 0.03733045497128427, 0.035956727194223895, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.20389147711701835, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.5388 | 44.0 | 880 | 2.9169 | 0.0629 | 0.1195 | 0.4655 | [0.42280357202959284, 0.5407059981507442, 0.897838057411085, 0.4544268542552529, 0.29147934224362587, 0.4043066713744686, 0.011111215736494694, 0.0, 0.15802679265769665, 0.0, 0.0, 0.052951951007419194, 0.5589473570284428, 0.0, 0.0, 0.000828137178487919, 0.0, 0.0, 0.01231741658394279, 0.00011003521126760564, 0.0, 0.0, 0.01925285678132726, 0.048688814965222274, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0885954381752701, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8818202687601857, 0.5670904092876666, 0.9802238775325838, 0.901530894426814, 0.943771434210851, 0.6023809866970296, 0.0447427293064877, nan, 0.2315954713086112, 0.0, 0.0, 0.06298138286166982, 0.930632140411576, nan, 0.0, 0.0010240346967050177, 0.0, 0.0, 0.028874008643206536, 0.00012622012790306295, 0.0, nan, 0.020141745753737117, 0.0540670200772386, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.20224719101123595, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.4788 | 45.0 | 900 | 2.8847 | 0.0640 | 0.1187 | 0.4650 | [0.4180026057388679, 0.53775172418872, 0.9016485390533218, 0.4698107243055281, 0.3024590098978516, 0.3888761941804215, 0.007401875519927399, 0.0, 0.15458886733323385, 0.0, 0.0, 0.05495073757552665, 0.5560196942769547, 0.0, 0.0, 0.004654697444666097, 0.0, 0.0, 0.011835570115185459, 0.00491101100361864, 0.0, 0.0, 0.02039043040027805, 0.04625127942681678, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.08618625807996169, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8892953155740893, 0.571059330484052, 0.9769716580570452, 0.8937985620009558, 0.9416742740124843, 0.5764092068662352, 0.029689455124559207, nan, 0.22275742686034383, 0.0, 0.0, 0.06664539412877954, 0.9330468158719861, nan, 0.0, 0.005903258839828926, 0.0, 0.0, 0.026594481645058652, 0.005595759003702457, 0.0, nan, 0.021506252291149035, 0.05202811293146873, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.19731433269388873, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.3885 | 46.0 | 920 | 2.8785 | 0.0638 | 0.1202 | 0.4641 | [0.4201585638344481, 0.5331688332827749, 0.9046800875805863, 0.46508072779639426, 0.29490482161176335, 0.3960324658712993, 0.008586556818929924, 0.0, 0.15349019827803798, 0.0, 0.0, 0.04837349623355695, 0.553003003003003, 0.0, 0.0, 0.008513394716143062, 0.0, 0.0, 0.00783691959229898, 0.009046917736166631, 0.0, 0.0, 0.020112444212600708, 0.05622912285042682, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0786701459360201, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8733264148043871, 0.5635594380163996, 0.9772919523993331, 0.9017617904645306, 0.9574893291554613, 0.6135869016906158, 0.03461873886171463, nan, 0.2353801326781855, 0.0, 0.0, 0.05680867919545795, 0.9291454932064728, nan, 0.0, 0.01108366965845431, 0.0, 0.0, 0.016431590444982665, 0.010854930999663413, 0.0, nan, 0.021200765752922488, 0.06541293866487563, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.2230748150178131, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.8846 | 47.0 | 940 | 2.8586 | 0.0631 | 0.1209 | 0.4669 | [0.42126351151513125, 0.5619484959872791, 0.903077995061878, 0.45611847191059657, 0.2881597611048899, 0.4248252540044385, 0.007047834701386924, 0.0, 0.15031563312291124, 0.0, 0.0, 0.04944146019590714, 0.5475122942792562, 0.0, 0.0, 0.00926526452330214, 0.0, 0.0, 0.011057512280006168, 7.082152974504249e-05, 0.0, 0.0, 0.012477576240781343, 0.060697546763501246, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.06901712955263596, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.859326828398348, 0.6163245834587877, 0.9792547818302768, 0.9092954449044466, 0.9523327823147714, 0.60836227894441, 0.028324422705039244, nan, 0.23937983162557658, 0.0, 0.0, 0.058536155979050215, 0.9319025480232097, nan, 0.0, 0.012047467020059032, 0.0, 0.0, 0.02384005318896329, 8.41467519353753e-05, 0.0, nan, 0.012748971528654637, 0.06896303581280434, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.22745957796656618, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.5732 | 48.0 | 960 | 2.8888 | 0.0647 | 0.1203 | 0.4644 | [0.41528233229777933, 0.5486457742747138, 0.8974603436756327, 0.49323992025137897, 0.28029349194633785, 0.3990796269551808, 0.011545940690325718, 0.0, 0.15427116913204844, 0.0, 0.0, 0.048772232959555385, 0.5637565075892096, 0.0, 3.0967102614655695e-05, 0.01218417945690673, 0.0, 0.0, 0.011959057567414196, 0.0011873399873845126, 0.0, 0.0, 0.03245594044363415, 0.04846399903434124, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0902263705610986, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8764776972302485, 0.5789424291361829, 0.9818089238931367, 0.8993561759320414, 0.95571291110508, 0.5874493752071833, 0.04682819550297653, nan, 0.21765028438719666, 0.0, 0.0, 0.06025262972580432, 0.9239647529462645, nan, 3.0967102614655695e-05, 0.015541232455876151, 0.0, 0.0, 0.02702189295721138, 0.0013463480309660047, 0.0, nan, 0.034805099588611464, 0.05778502722540718, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.23047410249383393, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.7336 | 49.0 | 980 | 2.8839 | 0.0646 | 0.1219 | 0.4641 | [0.42124436649111535, 0.5461265174255733, 0.901155598467248, 0.44400077150438144, 0.30278251801289346, 0.4082709202643832, 0.014376293632285316, 0.0, 0.15661008171689247, 0.0, 0.0, 0.0460897067280046, 0.5467434298651567, 0.0, 0.00021673615984807828, 0.007981450929682972, 0.0, 0.0, 0.01957213510715792, 0.0010473946059177796, 0.0, 0.0, 0.03429535927588381, 0.051096956829440904, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.101363236587511, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8520718591048536, 0.5968788247300938, 0.9811519098576743, 0.9147134472778431, 0.9455725247341541, 0.6084992000922416, 0.05820346566564289, nan, 0.22110163751115508, 0.0, 0.0, 0.05291360415474671, 0.9377860669621941, nan, 0.0002167697183025899, 0.010782482982952835, 0.0, 0.0, 0.04848743885643729, 0.0011780545270952542, 0.0, nan, 0.03765630727872592, 0.060615510086593584, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.2526719649218964, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | | 1.4673 | 50.0 | 1000 | 2.9069 | 0.0635 | 0.1208 | 0.4617 | [0.41928714602092204, 0.5390214194468376, 0.9012448258150285, 0.4803948505715545, 0.286634627489022, 0.3955429610634541, 0.013755700264604875, 0.0, 0.15830383993025027, 0.0, 0.0, 0.05008873442525973, 0.5408022058058475, 0.0, 0.0, 0.015204209024433743, 0.0, 0.0, 0.011558359136104005, 0.005458675263774912, 0.0, 0.0, 0.02979897667822854, 0.04487737341772152, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.10603847090333576, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | [0.8627759743647633, 0.5675831029534248, 0.9798871578394094, 0.9012946287138017, 0.9550220818632652, 0.5924650130435409, 0.05558715352822963, nan, 0.230359005236165, 0.0, 0.0, 0.059625456626028785, 0.9366147691642339, nan, 0.0, 0.02054093126920065, 0.0, 0.0, 0.0285415776226433, 0.00626893301918546, 0.0, nan, 0.03166877112948556, 0.05442682722060975, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.23869553302274596, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "other", "tags": ["generated_from_trainer"], "datasets": ["scene_parse_150"], "base_model": "nvidia/mit-b0", "model-index": [{"name": "segformer-b0-scene-parse-150", "results": []}]}
sanya94/segformer-b0-scene-parse-150
null
[ "transformers", "tensorboard", "safetensors", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-15T02:59:35+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #segformer #generated_from_trainer #dataset-scene_parse_150 #base_model-nvidia/mit-b0 #license-other #endpoints_compatible #region-us
segformer-b0-scene-parse-150 ============================ This model is a fine-tuned version of nvidia/mit-b0 on the scene\_parse\_150 dataset. It achieves the following results on the evaluation set: * Loss: 2.9069 * Mean Iou: 0.0635 * Mean Accuracy: 0.1208 * Overall Accuracy: 0.4617 * Per Category Iou: [0.41928714602092204, 0.5390214194468376, 0.9012448258150285, 0.4803948505715545, 0.286634627489022, 0.3955429610634541, 0.013755700264604875, 0.0, 0.15830383993025027, 0.0, 0.0, 0.05008873442525973, 0.5408022058058475, 0.0, 0.0, 0.015204209024433743, 0.0, 0.0, 0.011558359136104005, 0.005458675263774912, 0.0, 0.0, 0.02979897667822854, 0.04487737341772152, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.10603847090333576, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] * Per Category Accuracy: [0.8627759743647633, 0.5675831029534248, 0.9798871578394094, 0.9012946287138017, 0.9550220818632652, 0.5924650130435409, 0.05558715352822963, nan, 0.230359005236165, 0.0, 0.0, 0.059625456626028785, 0.9366147691642339, nan, 0.0, 0.02054093126920065, 0.0, 0.0, 0.0285415776226433, 0.00626893301918546, 0.0, nan, 0.03166877112948556, 0.05442682722060975, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.23869553302274596, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan] Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 6e-05 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #segformer #generated_from_trainer #dataset-scene_parse_150 #base_model-nvidia/mit-b0 #license-other #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 6e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-generation
transformers
![SauerkrautLM](https://vago-solutions.ai/wp-content/uploads/2024/04/SauerkrautLM-Qwen-32b.png "SauerkrautLM-Qwen-32b") ## VAGO solutions SauerkrautLM-Qwen-32b Introducing **SauerkrautLM-Qwen-32b** – our Sauerkraut version of the powerful [Qwen/Qwen1.5-32B](https://huggingface.co/Qwen/Qwen1.5-32B)! The model **SauerkrautLM-Qwen-32b** is a **joint effort** between **VAGO solutions** and **Hyperspace.ai.** - Finetuned with **SFT** - Aligned with **DPO** # Table of Contents 1. [Overview of all SauerkrautLM-Qwen-32b](#all-SauerkrautLM-Qwen-32b) 2. [Model Details](#model-details) - [Prompt template](#prompt-template) - [Training procedure](#proceed-of-the-training) 3. [Evaluation](#evaluation) 5. [Disclaimer](#disclaimer) 6. [Contact](#contact) 7. [Collaborations](#collaborations) 8. [Acknowledgement](#acknowledgement) ## All SauerkrautLM-Qwen-32b | Model | HF | EXL2 | GGUF | AWQ | |-------|-------|-------|-------|-------| | SauerkrautLM-Qwen-32b | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-Qwen-32b) | coming soon | coming soon | coming soon | ## Model Details **SauerkrautLM-Qwen-32b** - **Model Type:** SauerkrautLM-Qwen-32b is a finetuned Model based on [Qwen/Qwen1.5-32B](https://huggingface.co/Qwen/Qwen1.5-32B) - **Language(s):** German, English - **License:** [tongyi-qianwen-research](https://huggingface.co/Qwen/Qwen1.5-32B/blob/main/LICENSEs) - **Contact:** [VAGO solutions](https://vago-solutions.ai), [Hyperspace.ai](https://hyperspace.computer/) ### Training procedure: - We trained this model for 2 epochs on 160k data samples with SFT. - Afterwards we applied DPO for 1 epoch with 110k data. - LaserRMT version coming soon **We teached German language skills on this model.** As far as we know, it is the first Qwen 32B model with bilingual skills in German and English. Nevertheless, formulations may occur that are not entirely correct (still work in progress). ### Prompt Template: **English:** ``` <|im_start|>system You are SauerkrautLM, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` **German:** ``` <|im_start|>system Du bist SauerkrautLM, ein hilfreicher und freundlicher KI-Assistent.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ### Example output of german language: ``` Die Karte zeigte eine verborgene Höhle, die in den umliegenden Bergen zu finden war. Mia war von der Idee fasziniert, diese Höhle zu entdecken und ihre Geheimnisse zu lüften. Sie nahm die Karte mit sich und machte sich auf den Weg, um die Höhle zu finden. Die Wanderung zu den Bergen war eine Herausforderung, aber Mia war fest entschlossen, ihr Abenteuer zu vollenden. Sie überwand steinige Wege und überquerte klirrende Bäche, die ihre Füße kühlten und ihr die Energie für den Rest des Weges gab. Endlich erreichte Mia die Höhle, die von einem dichten Wald umgeben war. Die Höhle war ein Ort der Geheimnisse und des Staunens, der ihr Herz höher schlagen ließ. Sie betrat die Höhle, und die Dunkelheit umhüllte sie wie ein Schleier aus Stille. In der Höhle fand Mia eine alte Schatzkiste, die mit einem alten, verwitterten Holz verziert war. Mit zitternden Händen öffnete sie die Schatzkiste und fand darin eine alte, zerfledderte Schriftrolle. Die Schriftrolle war ein geheimnisvolles Artefakt, das ihr die Geschichte der Höhle offenbarte. ``` ## Evaluation **Open LLM Leaderboard:** | Metric | Value | |-----------------------|---------------------------| | Avg. | **73.11** | | ARC (25-shot) | 59.22 | | HellaSwag (10-shot) | 82.32 | | MMLU (5-shot) | 74.40| | TruthfulQA (0-shot) | 61.03 | | Winogrande (5-shot) | 82.16 | | GSM8K (5-shot) | 79.53 | ## Disclaimer We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.   ## Contact If you are interested in customized LLMs for business applications, please get in contact with us via our websites. We are also grateful for your feedback and suggestions.   ## Collaborations We are also keenly seeking support and investment for our startups, VAGO solutions and Hyperspace where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.de/#Kontakt), [Hyperspace.computer](https://hyperspace.computer/) ## Acknowledgement Many thanks to [Qwen](https://huggingface.co/Qwen) for providing such valuable model to the Open-Source community
{"language": ["de", "en"], "license": "other", "tags": ["sft", "dpo"], "license_name": "tongyi-qianwen-research", "license_link": "https://huggingface.co/Qwen/Qwen1.5-32B/blob/main/LICENSE"}
blockblockblock/SauerkrautLM-Qwen-32b-bpw2.5
null
[ "transformers", "safetensors", "qwen2", "text-generation", "sft", "dpo", "conversational", "de", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:00:30+00:00
[]
[ "de", "en" ]
TAGS #transformers #safetensors #qwen2 #text-generation #sft #dpo #conversational #de #en #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
!SauerkrautLM VAGO solutions SauerkrautLM-Qwen-32b ------------------------------------ Introducing SauerkrautLM-Qwen-32b – our Sauerkraut version of the powerful Qwen/Qwen1.5-32B! The model SauerkrautLM-Qwen-32b is a joint effort between VAGO solutions and URL. * Finetuned with SFT * Aligned with DPO Table of Contents ================= 1. Overview of all SauerkrautLM-Qwen-32b 2. Model Details * Prompt template * Training procedure 3. Evaluation 4. Disclaimer 5. Contact 6. Collaborations 7. Acknowledgement All SauerkrautLM-Qwen-32b ------------------------- Model Details ------------- SauerkrautLM-Qwen-32b * Model Type: SauerkrautLM-Qwen-32b is a finetuned Model based on Qwen/Qwen1.5-32B * Language(s): German, English * License: tongyi-qianwen-research * Contact: VAGO solutions, URL ### Training procedure: * We trained this model for 2 epochs on 160k data samples with SFT. * Afterwards we applied DPO for 1 epoch with 110k data. * LaserRMT version coming soon We teached German language skills on this model. As far as we know, it is the first Qwen 32B model with bilingual skills in German and English. Nevertheless, formulations may occur that are not entirely correct (still work in progress). ### Prompt Template: English: German: ### Example output of german language: Evaluation ---------- Open LLM Leaderboard: Disclaimer ---------- We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models. Contact ------- If you are interested in customized LLMs for business applications, please get in contact with us via our websites. We are also grateful for your feedback and suggestions. Collaborations -------------- We are also keenly seeking support and investment for our startups, VAGO solutions and Hyperspace where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at VAGO solutions, Hyperspace.computer Acknowledgement --------------- Many thanks to Qwen for providing such valuable model to the Open-Source community
[ "### Training procedure:\n\n\n* We trained this model for 2 epochs on 160k data samples with SFT.\n* Afterwards we applied DPO for 1 epoch with 110k data.\n* LaserRMT version coming soon\n\n\nWe teached German language skills on this model. As far as we know, it is the first Qwen 32B model with bilingual skills in German and English. Nevertheless, formulations may occur that are not entirely correct (still work in progress).", "### Prompt Template:\n\n\nEnglish:\n\n\nGerman:", "### Example output of german language:\n\n\nEvaluation\n----------\n\n\nOpen LLM Leaderboard:\n\n\n\nDisclaimer\n----------\n\n\nWe must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.\nHowever, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.\nAdditionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.\n\n\nContact\n-------\n\n\nIf you are interested in customized LLMs for business applications, please get in contact with us via our websites. We are also grateful for your feedback and suggestions.\n\n\nCollaborations\n--------------\n\n\nWe are also keenly seeking support and investment for our startups, VAGO solutions and Hyperspace where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at VAGO solutions, Hyperspace.computer\n\n\nAcknowledgement\n---------------\n\n\nMany thanks to Qwen for providing such valuable model to the Open-Source community" ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #sft #dpo #conversational #de #en #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training procedure:\n\n\n* We trained this model for 2 epochs on 160k data samples with SFT.\n* Afterwards we applied DPO for 1 epoch with 110k data.\n* LaserRMT version coming soon\n\n\nWe teached German language skills on this model. As far as we know, it is the first Qwen 32B model with bilingual skills in German and English. Nevertheless, formulations may occur that are not entirely correct (still work in progress).", "### Prompt Template:\n\n\nEnglish:\n\n\nGerman:", "### Example output of german language:\n\n\nEvaluation\n----------\n\n\nOpen LLM Leaderboard:\n\n\n\nDisclaimer\n----------\n\n\nWe must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.\nHowever, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.\nAdditionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.\n\n\nContact\n-------\n\n\nIf you are interested in customized LLMs for business applications, please get in contact with us via our websites. We are also grateful for your feedback and suggestions.\n\n\nCollaborations\n--------------\n\n\nWe are also keenly seeking support and investment for our startups, VAGO solutions and Hyperspace where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at VAGO solutions, Hyperspace.computer\n\n\nAcknowledgement\n---------------\n\n\nMany thanks to Qwen for providing such valuable model to the Open-Source community" ]
text-generation
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: NousResearch/Hermes-2-Pro-Mistral-7B - model: WizardLM/WizardMath-7B-V1.1 merge_method: slerp base_model: NousResearch/Hermes-2-Pro-Mistral-7B dtype: bfloat16 parameters: t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["NousResearch/Hermes-2-Pro-Mistral-7B", "WizardLM/WizardMath-7B-V1.1"]}
Taf2023/mergekit-slerp-xvskemx
null
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:NousResearch/Hermes-2-Pro-Mistral-7B", "base_model:WizardLM/WizardMath-7B-V1.1", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:03:18+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-NousResearch/Hermes-2-Pro-Mistral-7B #base_model-WizardLM/WizardMath-7B-V1.1 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# merge This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * NousResearch/Hermes-2-Pro-Mistral-7B * WizardLM/WizardMath-7B-V1.1 ### Configuration The following YAML configuration was used to produce this model:
[ "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* NousResearch/Hermes-2-Pro-Mistral-7B\n* WizardLM/WizardMath-7B-V1.1", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-NousResearch/Hermes-2-Pro-Mistral-7B #base_model-WizardLM/WizardMath-7B-V1.1 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* NousResearch/Hermes-2-Pro-Mistral-7B\n* WizardLM/WizardMath-7B-V1.1", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # style-dailymed-from-facebook This model is a fine-tuned version of [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "other", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "facebook/opt-2.7b", "model-index": [{"name": "style-dailymed-from-facebook", "results": []}]}
RuoxiL/style-dailymed-from-facebook
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:facebook/opt-2.7b", "license:other", "region:us" ]
null
2024-04-15T03:05:11+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-facebook/opt-2.7b #license-other #region-us
# style-dailymed-from-facebook This model is a fine-tuned version of facebook/opt-2.7b on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# style-dailymed-from-facebook\n\nThis model is a fine-tuned version of facebook/opt-2.7b on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 3\n- total_train_batch_size: 6\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.39.3\n- Pytorch 2.2.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-facebook/opt-2.7b #license-other #region-us \n", "# style-dailymed-from-facebook\n\nThis model is a fine-tuned version of facebook/opt-2.7b on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 3\n- total_train_batch_size: 6\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.39.3\n- Pytorch 2.2.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MLMA_Lab_8_GPT_model_Task5 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1759 - Precision: 0.5233 - Recall: 0.6157 - F1: 0.5657 - Accuracy: 0.9544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 474 | 0.1577 | 0.4240 | 0.6032 | 0.4979 | 0.9447 | | 0.0431 | 2.0 | 948 | 0.1545 | 0.4980 | 0.6269 | 0.5551 | 0.9534 | | 0.0653 | 3.0 | 1422 | 0.1759 | 0.5233 | 0.6157 | 0.5657 | 0.9544 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.0 - Datasets 2.18.0 - Tokenizers 0.15.2
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "MLMA_Lab_8_GPT_model_Task5", "results": []}]}
shubhanmathur/MLMA_Lab_8_GPT_model_Task5
null
[ "transformers", "tensorboard", "safetensors", "gpt2", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:06:40+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt2 #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
MLMA\_Lab\_8\_GPT\_model\_Task5 =============================== This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1759 * Precision: 0.5233 * Recall: 0.6157 * F1: 0.5657 * Accuracy: 0.9544 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.39.3 * Pytorch 2.2.0 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.2.0\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt2 #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.2.0\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spark-name-ja-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7365 - Bleu: 17.2754 - Gen Len: 6.3357 # japan Names to English Translation Model ## Model Overview This translation model is specifically designed to accurately and fluently translate japan names and surnames into English. ## Intended Uses and Limitations This model is built for Spark IT enterprise looking to automate the translation process of japan names and surnames into English. ## Training and Evaluation Data This model has been trained on a diverse dataset consisting of over 144,56 lines of data, encompassing a wide range of Hindi names and surnames along with their English counterparts. Evaluation data has been carefully selected to ensure reliable and accurate translation performance. ## Training Procedure - 1 days of training ### Hardware Environment: - Azure Studio - Standard_DS12_v2 - 4 cores, 28GB RAM, 56GB storage - Data manipulation and training on medium-sized datasets (1-10GB) - 6 cores - Loss: 0.4618 - Bleu: 70.7674 - Gen Len: 10.2548 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 2.8748 | 1.0 | 1750 | 2.9016 | 16.3954 | 6.1249 | | 2.3245 | 2.0 | 3500 | 2.7663 | 16.9405 | 6.216 | | 2.0804 | 3.0 | 5250 | 2.7365 | 17.2754 | 6.3357 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cpu - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["bleu"], "base_model": "Helsinki-NLP/opus-mt-ja-en", "model-index": [{"name": "spark-name-ja-to-en", "results": []}]}
ihebaker10/spark-name-ja-to-en
null
[ "transformers", "safetensors", "marian", "text2text-generation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-ja-en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T03:10:51+00:00
[]
[]
TAGS #transformers #safetensors #marian #text2text-generation #generated_from_trainer #base_model-Helsinki-NLP/opus-mt-ja-en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
spark-name-ja-to-en =================== This model is a fine-tuned version of Helsinki-NLP/opus-mt-ja-en on the None dataset. It achieves the following results on the evaluation set: * Loss: 2.7365 * Bleu: 17.2754 * Gen Len: 6.3357 japan Names to English Translation Model ======================================== Model Overview -------------- This translation model is specifically designed to accurately and fluently translate japan names and surnames into English. Intended Uses and Limitations ----------------------------- This model is built for Spark IT enterprise looking to automate the translation process of japan names and surnames into English. Training and Evaluation Data ---------------------------- This model has been trained on a diverse dataset consisting of over 144,56 lines of data, encompassing a wide range of Hindi names and surnames along with their English counterparts. Evaluation data has been carefully selected to ensure reliable and accurate translation performance. Training Procedure ------------------ * 1 days of training ### Hardware Environment: * Azure Studio * Standard\_DS12\_v2 * 4 cores, 28GB RAM, 56GB storage * Data manipulation and training on medium-sized datasets (1-10GB) * 6 cores * Loss: 0.4618 * Bleu: 70.7674 * Gen Len: 10.2548 ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.39.1 * Pytorch 2.2.1+cpu * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Hardware Environment:\n\n\n* Azure Studio\n* Standard\\_DS12\\_v2\n* 4 cores, 28GB RAM, 56GB storage\n* Data manipulation and training on medium-sized datasets (1-10GB)\n* 6 cores\n* Loss: 0.4618\n* Bleu: 70.7674\n* Gen Len: 10.2548", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.1\n* Pytorch 2.2.1+cpu\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #marian #text2text-generation #generated_from_trainer #base_model-Helsinki-NLP/opus-mt-ja-en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Hardware Environment:\n\n\n* Azure Studio\n* Standard\\_DS12\\_v2\n* 4 cores, 28GB RAM, 56GB storage\n* Data manipulation and training on medium-sized datasets (1-10GB)\n* 6 cores\n* Loss: 0.4618\n* Bleu: 70.7674\n* Gen Len: 10.2548", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.1\n* Pytorch 2.2.1+cpu\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
feature-extraction
transformers
# usage ``` from transformers import AutoModelForCausalLM, AutoTokenizer import torch path = "mssma/ko-solar-10.7b-v0.1" model = AutoModelForCausalLM.from_pretrained( path, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) tokenizer = AutoTokenizer.from_pretrained(path) ```
{"language": ["ko"], "license": "apache-2.0", "library_name": "transformers"}
mssma/ko-solar-10.7b-v0.1
null
[ "transformers", "safetensors", "llama", "feature-extraction", "ko", "license:apache-2.0", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:11:44+00:00
[]
[ "ko" ]
TAGS #transformers #safetensors #llama #feature-extraction #ko #license-apache-2.0 #endpoints_compatible #text-generation-inference #region-us
# usage
[ "# usage" ]
[ "TAGS\n#transformers #safetensors #llama #feature-extraction #ko #license-apache-2.0 #endpoints_compatible #text-generation-inference #region-us \n", "# usage" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_translator This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.3036 - Bleu: 20.6458 - Gen Len: 18.52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.5155 | 1.0 | 1556 | 1.3228 | 17.8685 | 18.5208 | | 1.2945 | 2.0 | 3112 | 1.2303 | 18.5903 | 18.5401 | | 1.1669 | 3.0 | 4668 | 1.2021 | 19.0779 | 18.5258 | | 1.0522 | 4.0 | 6224 | 1.1794 | 19.41 | 18.5329 | | 0.9606 | 5.0 | 7780 | 1.1635 | 19.6192 | 18.5289 | | 0.8903 | 6.0 | 9336 | 1.1702 | 19.894 | 18.515 | | 0.8152 | 7.0 | 10892 | 1.1734 | 19.9585 | 18.5129 | | 0.7499 | 8.0 | 12448 | 1.1959 | 20.1959 | 18.5369 | | 0.7078 | 9.0 | 14004 | 1.2016 | 20.1621 | 18.5272 | | 0.6623 | 10.0 | 15560 | 1.2251 | 20.2858 | 18.515 | | 0.6114 | 11.0 | 17116 | 1.2415 | 20.4039 | 18.5227 | | 0.5742 | 12.0 | 18672 | 1.2607 | 20.5759 | 18.5248 | | 0.5333 | 13.0 | 20228 | 1.2762 | 20.5848 | 18.5142 | | 0.5134 | 14.0 | 21784 | 1.2900 | 20.5416 | 18.517 | | 0.4932 | 15.0 | 23340 | 1.3036 | 20.6458 | 18.52 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["generator"], "metrics": ["bleu"], "base_model": "google-t5/t5-small", "model-index": [{"name": "my_translator", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "generator", "type": "generator", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "bleu", "value": 20.6458, "name": "Bleu"}]}]}]}
jsphelps12/my_translator
null
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:generator", "base_model:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:13:24+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #dataset-generator #base_model-google-t5/t5-small #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
my\_translator ============== This model is a fine-tuned version of google-t5/t5-small on the generator dataset. It achieves the following results on the evaluation set: * Loss: 1.3036 * Bleu: 20.6458 * Gen Len: 18.52 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.001 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 15 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #dataset-generator #base_model-google-t5/t5-small #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-sft-800k-epoch3 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the Lichang-Chen/800k_ift dataset. It achieves the following results on the evaluation set: - Loss: 3.2540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.7384 | 1.0 | 1179 | 6.6521 | | 3.848 | 2.0 | 2358 | 3.8441 | | 3.245 | 3.0 | 3537 | 3.2540 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["alignment-handbook", "trl", "sft", "generated_from_trainer", "trl", "sft", "generated_from_trainer"], "datasets": ["Lichang-Chen/800k_ift"], "base_model": "mistralai/Mistral-7B-v0.1", "model-index": [{"name": "zephyr-7b-sft-800k-epoch3", "results": []}]}
Lichang-Chen/zephyr-7b-sft-800k-epoch3
null
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "sft", "generated_from_trainer", "conversational", "dataset:Lichang-Chen/800k_ift", "base_model:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:13:51+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #mistral #text-generation #alignment-handbook #trl #sft #generated_from_trainer #conversational #dataset-Lichang-Chen/800k_ift #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
zephyr-7b-sft-800k-epoch3 ========================= This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the Lichang-Chen/800k\_ift dataset. It achieves the following results on the evaluation set: * Loss: 3.2540 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 8 * total\_train\_batch\_size: 128 * total\_eval\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.39.0.dev0 * Pytorch 2.1.2+cu121 * Datasets 2.14.6 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 8\n* total\\_train\\_batch\\_size: 128\n* total\\_eval\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #mistral #text-generation #alignment-handbook #trl #sft #generated_from_trainer #conversational #dataset-Lichang-Chen/800k_ift #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 8\n* total\\_train\\_batch\\_size: 128\n* total\\_eval\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.15.2" ]
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "251.88 +/- 21.17", "name": "mean_reward", "verified": false}]}]}]}
WharfRat/ppo-LunarLander-v2
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-15T03:14:58+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Ruiz3/phi-2-kingshipAIv5-interpreter
null
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:18:53+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ## Model Details 공개된 한국어, 영어 데이터셋으로 파인튜닝하였습니다. ### Model Description BASE MODEL : [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) - fine-tuned the mistralai/Mistral-7B-Instruct-v0.2 model. This model is fine-tuned on the Mistral-7B-Instruct-v0.2 to enhance its performance for specific tasks. During the training phase, iam utilized the Axolotl library ### Applications This fine-tuned model is particularly suited for [mention applications, e.g., chatbots, question-answering systems, etc.]. Its enhanced capabilities ensure more accurate and contextually appropriate responses in these domains. ### Limitations and Considerations While our fine-tuning process has optimized the model for specific tasks, it's important to acknowledge potential limitations. The model's performance can still vary based on the complexity of the task and the specificities of the input data. Users are encouraged to evaluate the model thoroughly in their specific context to ensure it meets their requirements.
{"language": ["ko", "en"], "license": "apache-2.0", "library_name": "transformers"}
CarrotAI/OpenCarrot-Mistral-7B-Instruct-v0.2
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "ko", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-15T03:21:59+00:00
[]
[ "ko", "en" ]
TAGS #transformers #safetensors #mistral #text-generation #conversational #ko #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
<img src="URL alt="Built with Axolotl" width="200" height="32"/> ## Model Details 공개된 한국어, 영어 데이터셋으로 파인튜닝하였습니다. ### Model Description BASE MODEL : mistralai/Mistral-7B-Instruct-v0.2 - fine-tuned the mistralai/Mistral-7B-Instruct-v0.2 model. This model is fine-tuned on the Mistral-7B-Instruct-v0.2 to enhance its performance for specific tasks. During the training phase, iam utilized the Axolotl library ### Applications This fine-tuned model is particularly suited for [mention applications, e.g., chatbots, question-answering systems, etc.]. Its enhanced capabilities ensure more accurate and contextually appropriate responses in these domains. ### Limitations and Considerations While our fine-tuning process has optimized the model for specific tasks, it's important to acknowledge potential limitations. The model's performance can still vary based on the complexity of the task and the specificities of the input data. Users are encouraged to evaluate the model thoroughly in their specific context to ensure it meets their requirements.
[ "## Model Details\n\n공개된 한국어, 영어 데이터셋으로 파인튜닝하였습니다.", "### Model Description\nBASE MODEL : mistralai/Mistral-7B-Instruct-v0.2\n\n- fine-tuned the mistralai/Mistral-7B-Instruct-v0.2 model.\n\nThis model is fine-tuned on the Mistral-7B-Instruct-v0.2 to enhance its performance for specific tasks. During the training phase, iam utilized the Axolotl library", "### Applications\nThis fine-tuned model is particularly suited for [mention applications, e.g., chatbots, question-answering systems, etc.]. Its enhanced capabilities ensure more accurate and contextually appropriate responses in these domains.", "### Limitations and Considerations\nWhile our fine-tuning process has optimized the model for specific tasks, it's important to acknowledge potential limitations. The model's performance can still vary based on the complexity of the task and the specificities of the input data. Users are encouraged to evaluate the model thoroughly in their specific context to ensure it meets their requirements." ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #ko #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "## Model Details\n\n공개된 한국어, 영어 데이터셋으로 파인튜닝하였습니다.", "### Model Description\nBASE MODEL : mistralai/Mistral-7B-Instruct-v0.2\n\n- fine-tuned the mistralai/Mistral-7B-Instruct-v0.2 model.\n\nThis model is fine-tuned on the Mistral-7B-Instruct-v0.2 to enhance its performance for specific tasks. During the training phase, iam utilized the Axolotl library", "### Applications\nThis fine-tuned model is particularly suited for [mention applications, e.g., chatbots, question-answering systems, etc.]. Its enhanced capabilities ensure more accurate and contextually appropriate responses in these domains.", "### Limitations and Considerations\nWhile our fine-tuning process has optimized the model for specific tasks, it's important to acknowledge potential limitations. The model's performance can still vary based on the complexity of the task and the specificities of the input data. Users are encouraged to evaluate the model thoroughly in their specific context to ensure it meets their requirements." ]
text-generation
transformers
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
{"license": "other", "library_name": "transformers", "tags": ["autotrain", "text-generation-inference", "text-generation", "peft"], "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]}
shaswatamitra/mistral-7b-v2-finetuned2
null
[ "transformers", "safetensors", "autotrain", "text-generation-inference", "text-generation", "peft", "conversational", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-15T03:23:15+00:00
[]
[]
TAGS #transformers #safetensors #autotrain #text-generation-inference #text-generation #peft #conversational #license-other #endpoints_compatible #region-us
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit AutoTrain. # Usage
[ "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
[ "TAGS\n#transformers #safetensors #autotrain #text-generation-inference #text-generation #peft #conversational #license-other #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased-finetuned-squad2", "results": []}]}
vubacktracking/distilbert-base-uncased-finetuned-squad2
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-15T03:25:02+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #endpoints_compatible #region-us
# distilbert-base-uncased-finetuned-squad2 This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# distilbert-base-uncased-finetuned-squad2\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #endpoints_compatible #region-us \n", "# distilbert-base-uncased-finetuned-squad2\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/zcotlf7
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T03:26:23+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythia-160m-v0-finetuned-squad This model is a fine-tuned version of [EleutherAI/pythia-160m-v0](https://huggingface.co/EleutherAI/pythia-160m-v0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.7825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.7926 | 1.0 | 5539 | 4.7825 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.36.2 - Pytorch 2.2.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-160m-v0", "model-index": [{"name": "pythia-160m-v0-finetuned-squad", "results": []}]}
K-kiron/pythia-160m-v0-finetuned-squad
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:EleutherAI/pythia-160m-v0", "license:apache-2.0", "region:us" ]
null
2024-04-15T03:26:24+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #generated_from_trainer #base_model-EleutherAI/pythia-160m-v0 #license-apache-2.0 #region-us
pythia-160m-v0-finetuned-squad ============================== This model is a fine-tuned version of EleutherAI/pythia-160m-v0 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 4.7825 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * PEFT 0.7.2.dev0 * Transformers 4.36.2 * Pytorch 2.2.1+cu121 * Datasets 2.16.1 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.2.dev0\n* Transformers 4.36.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #base_model-EleutherAI/pythia-160m-v0 #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.2.dev0\n* Transformers 4.36.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.2" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistralv1_lora_r8_2e4_e3 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "mistralai/Mistral-7B-v0.1", "model-index": [{"name": "mistralv1_lora_r8_2e4_e3", "results": []}]}
fangzhaoz/mistralv1_lora_r8_2e4_e3
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-04-15T03:27:19+00:00
[]
[]
TAGS #peft #safetensors #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us
# mistralv1_lora_r8_2e4_e3 This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# mistralv1_lora_r8_2e4_e3\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- PEFT 0.9.0\n- Transformers 4.39.3\n- Pytorch 2.2.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #safetensors #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us \n", "# mistralv1_lora_r8_2e4_e3\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- PEFT 0.9.0\n- Transformers 4.39.3\n- Pytorch 2.2.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
fangzhaoz/mistralv1_lora_r8_2e4_e3_merged
null
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:27:39+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral_instruct_generation This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.6546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7866 | 1.0 | 20 | 0.7343 | | 0.6662 | 2.0 | 40 | 0.6764 | | 0.6019 | 3.0 | 60 | 0.6573 | | 0.56 | 4.0 | 80 | 0.6523 | | 0.4894 | 5.0 | 100 | 0.6546 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "mistralai/Mistral-7B-Instruct-v0.1", "model-index": [{"name": "mistral_instruct_generation", "results": []}]}
adil0101/mistral_instruct_generation
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2024-04-15T03:30:19+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-mistralai/Mistral-7B-Instruct-v0.1 #license-apache-2.0 #region-us
mistral\_instruct\_generation ============================= This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on the generator dataset. It achieves the following results on the evaluation set: * Loss: 0.6546 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant * lr\_scheduler\_warmup\_steps: 0.03 * training\_steps: 100 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * PEFT 0.10.0 * Transformers 4.40.0 * Pytorch 2.2.2+cu121 * Datasets 2.18.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* lr\\_scheduler\\_warmup\\_steps: 0.03\n* training\\_steps: 100\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0\n* Pytorch 2.2.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-mistralai/Mistral-7B-Instruct-v0.1 #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* lr\\_scheduler\\_warmup\\_steps: 0.03\n* training\\_steps: 100\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0\n* Pytorch 2.2.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.19.1" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
thienan092/mistral_7b_thienan
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:31:37+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) * [beowolx/MistralHermes-CodePro-7B-v1](https://huggingface.co/beowolx/MistralHermes-CodePro-7B-v1) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: beowolx/MistralHermes-CodePro-7B-v1 layer_range: [0, 32] - model: beowolx/CodeNinja-1.0-OpenChat-7B layer_range: [0, 32] merge_method: slerp base_model: beowolx/MistralHermes-CodePro-7B-v1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["beowolx/CodeNinja-1.0-OpenChat-7B", "beowolx/MistralHermes-CodePro-7B-v1"]}
K00B404/BagOClownCoders-slerp-7B
null
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:beowolx/CodeNinja-1.0-OpenChat-7B", "base_model:beowolx/MistralHermes-CodePro-7B-v1", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:32:24+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-beowolx/CodeNinja-1.0-OpenChat-7B #base_model-beowolx/MistralHermes-CodePro-7B-v1 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# merge This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * beowolx/CodeNinja-1.0-OpenChat-7B * beowolx/MistralHermes-CodePro-7B-v1 ### Configuration The following YAML configuration was used to produce this model:
[ "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* beowolx/CodeNinja-1.0-OpenChat-7B\n* beowolx/MistralHermes-CodePro-7B-v1", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-beowolx/CodeNinja-1.0-OpenChat-7B #base_model-beowolx/MistralHermes-CodePro-7B-v1 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* beowolx/CodeNinja-1.0-OpenChat-7B\n* beowolx/MistralHermes-CodePro-7B-v1", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Yasusan/Llama2_121
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:35:25+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["trl", "sft"]}
rainerberger/planetn5
null
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:37:41+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #trl #sft #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #trl #sft #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [beowolx/MistralHermes-CodePro-7B-v1](https://huggingface.co/beowolx/MistralHermes-CodePro-7B-v1) as a base. ### Models Merged The following models were included in the merge: * [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) * [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: beowolx/MistralHermes-CodePro-7B-v1 # # no parameters necessary for base model - model: teknium/OpenHermes-2.5-Mistral-7B parameters: density: 0.5 weight: 0.5 - model: beowolx/CodeNinja-1.0-OpenChat-7B parameters: density: 0.5 weight: 0.3 merge_method: ties base_model: beowolx/MistralHermes-CodePro-7B-v1 parameters: normalize: true dtype: float16 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["beowolx/MistralHermes-CodePro-7B-v1", "beowolx/CodeNinja-1.0-OpenChat-7B", "teknium/OpenHermes-2.5-Mistral-7B"]}
K00B404/BagOClownCoders-ties-7B
null
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:beowolx/MistralHermes-CodePro-7B-v1", "base_model:beowolx/CodeNinja-1.0-OpenChat-7B", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:41:06+00:00
[ "2306.01708" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #arxiv-2306.01708 #base_model-beowolx/MistralHermes-CodePro-7B-v1 #base_model-beowolx/CodeNinja-1.0-OpenChat-7B #base_model-teknium/OpenHermes-2.5-Mistral-7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# merge This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the TIES merge method using beowolx/MistralHermes-CodePro-7B-v1 as a base. ### Models Merged The following models were included in the merge: * beowolx/CodeNinja-1.0-OpenChat-7B * teknium/OpenHermes-2.5-Mistral-7B ### Configuration The following YAML configuration was used to produce this model:
[ "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the TIES merge method using beowolx/MistralHermes-CodePro-7B-v1 as a base.", "### Models Merged\n\nThe following models were included in the merge:\n* beowolx/CodeNinja-1.0-OpenChat-7B\n* teknium/OpenHermes-2.5-Mistral-7B", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #arxiv-2306.01708 #base_model-beowolx/MistralHermes-CodePro-7B-v1 #base_model-beowolx/CodeNinja-1.0-OpenChat-7B #base_model-teknium/OpenHermes-2.5-Mistral-7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the TIES merge method using beowolx/MistralHermes-CodePro-7B-v1 as a base.", "### Models Merged\n\nThe following models were included in the merge:\n* beowolx/CodeNinja-1.0-OpenChat-7B\n* teknium/OpenHermes-2.5-Mistral-7B", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Grayx/sad_pepe_14
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T03:42:22+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Original Model Card [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <p align="left"> <img src="https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0/resolve/main/eeve_logo.webp" width="50%"/> <p> # EEVE-Korean-Instruct-10.8B-v1.0 ## Join Our Community on Discord! If you're passionate about the field of Large Language Models and wish to exchange knowledge and insights, we warmly invite you to join our Discord server. It's worth noting that Korean is the primary language used in this server. The landscape of LLM is evolving rapidly, and without active sharing, our collective knowledge risks becoming outdated swiftly. Let's collaborate and drive greater impact together! Join us here: [Discord Link](https://discord.gg/b27bAHg95m). ## Our Dedicated Team (Alphabetical Order) | Research | Engineering | Product Management | UX Design | |-----------------|-----------------|--------------------|-------------- | Myeongho Jeong | Geon Kim | Bokyung Huh | Eunsue Choi | | Seungduk Kim | Rifqi Alfi | | | | Seungtaek Choi | Sanghoon Han | | | | | Suhyun Kang | | | ## About the Model This model is a fine-tuned version of [yanolja/EEVE-Korean-10.8B-v1.0](https://huggingface.co/yanolja/EEVE-Korean-10.8B-v1.0), which is a Korean vocabulary-extended version of [upstage/SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0). Specifically, we utilized Direct Preference Optimization (DPO) through the use of [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). For more details, please refer to our technical report: [Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models](https://arxiv.org/abs/2402.14714). ## Prompt Template ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. Human: {prompt} Assistant: ``` ## How to Use it ```python from transformers import AutoTokenizer from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("yanolja/EEVE-Korean-Instruct-10.8B-v1.0") tokenizer = AutoTokenizer.from_pretrained("yanolja/EEVE-Korean-Instruct-10.8B-v1.0") prompt_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {prompt}\nAssistant:\n" text = '한국의 수도는 어디인가요? 아래 선택지 중 골라주세요.\n\n(A) 경성\n(B) 부산\n(C) 평양\n(D) 서울\n(E) 전주' model_inputs = tokenizer(prompt_template.format(prompt=text), return_tensors='pt') outputs = model.generate(**model_inputs, max_new_tokens=256) output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] print(output_text) ``` ### Example Output ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. Human: 한국의 수도는 어디인가요? 아래 선택지 중 골라주세요. (A) 경성 (B) 부산 (C) 평양 (D) 서울 (E) 전주 Assistant: (D) 서울이 한국의 수도입니다. 서울은 나라의 북동부에 위치해 있으며, 정치, 경제, 문화의 중심지입니다. 약 1,000만 명이 넘는 인구를 가진 세계에서 가장 큰 도시 중 하나입니다. 서울은 높은 빌딩, 현대적인 인프라, 활기 문화 장면으로 유명합니다. 또한, 많은 역사적 명소와 박물관이 있어 방문객들에게 풍부한 문화 체험을 제공합니다. ``` ### Training Data - Korean-translated version of [Open-Orca/SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup) - Korean-translated version of [argilla/ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned) - No other dataset was used ## Citation ``` @misc{kim2024efficient, title={Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models}, author={Seungduk Kim and Seungtaek Choi and Myeongho Jeong}, year={2024}, eprint={2402.14714}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{cui2023ultrafeedback, title={UltraFeedback: Boosting Language Models with High-quality Feedback}, author={Ganqu Cui and Lifan Yuan and Ning Ding and Guanming Yao and Wei Zhu and Yuan Ni and Guotong Xie and Zhiyuan Liu and Maosong Sun}, year={2023}, eprint={2310.01377}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{SlimOrcaDedup, title = {SlimOrca Dedup: A Deduplicated Subset of SlimOrca}, author = {Wing Lian and Guan Wang and Bleys Goodson and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium" and Nathan Hoos}, year = {2023}, publisher = {HuggingFace}, url = {https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup/} } ``` ``` @misc{mukherjee2023orca, title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, year={2023}, eprint={2306.02707}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_yanolja__EEVE-Korean-Instruct-10.8B-v1.0) | Metric |Value| |---------------------------------|----:| |Avg. |66.48| |AI2 Reasoning Challenge (25-Shot)|64.85| |HellaSwag (10-Shot) |83.04| |MMLU (5-Shot) |64.23| |TruthfulQA (0-shot) |54.09| |Winogrande (5-shot) |81.93| |GSM8k (5-shot) |50.72|
{"license": "apache-2.0", "base_model": "yanolja/EEVE-Korean-Instruct-10.8B-v1.0"}
maywell/EEVE-Korean-Instruct-10.8B-v1.0-32k
null
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "arxiv:2402.14714", "arxiv:2310.01377", "arxiv:2306.02707", "base_model:yanolja/EEVE-Korean-Instruct-10.8B-v1.0", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:43:34+00:00
[ "2402.14714", "2310.01377", "2306.02707" ]
[]
TAGS #transformers #pytorch #llama #text-generation #conversational #arxiv-2402.14714 #arxiv-2310.01377 #arxiv-2306.02707 #base_model-yanolja/EEVE-Korean-Instruct-10.8B-v1.0 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Original Model Card =================== <img src="URL alt="Built with Axolotl" width="200" height="32"/> ![](URL width=) EEVE-Korean-Instruct-10.8B-v1.0 =============================== Join Our Community on Discord! ------------------------------ If you're passionate about the field of Large Language Models and wish to exchange knowledge and insights, we warmly invite you to join our Discord server. It's worth noting that Korean is the primary language used in this server. The landscape of LLM is evolving rapidly, and without active sharing, our collective knowledge risks becoming outdated swiftly. Let's collaborate and drive greater impact together! Join us here: Discord Link. Our Dedicated Team (Alphabetical Order) --------------------------------------- About the Model --------------- This model is a fine-tuned version of yanolja/EEVE-Korean-10.8B-v1.0, which is a Korean vocabulary-extended version of upstage/SOLAR-10.7B-v1.0. Specifically, we utilized Direct Preference Optimization (DPO) through the use of Axolotl. For more details, please refer to our technical report: Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. Prompt Template --------------- How to Use it ------------- ### Example Output ### Training Data * Korean-translated version of Open-Orca/SlimOrca-Dedup * Korean-translated version of argilla/ultrafeedback-binarized-preferences-cleaned * No other dataset was used Open LLM Leaderboard Evaluation Results ======================================= Detailed results can be found here
[ "### Example Output", "### Training Data\n\n\n* Korean-translated version of Open-Orca/SlimOrca-Dedup\n* Korean-translated version of argilla/ultrafeedback-binarized-preferences-cleaned\n* No other dataset was used\n\n\nOpen LLM Leaderboard Evaluation Results\n=======================================\n\n\nDetailed results can be found here" ]
[ "TAGS\n#transformers #pytorch #llama #text-generation #conversational #arxiv-2402.14714 #arxiv-2310.01377 #arxiv-2306.02707 #base_model-yanolja/EEVE-Korean-Instruct-10.8B-v1.0 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Example Output", "### Training Data\n\n\n* Korean-translated version of Open-Orca/SlimOrca-Dedup\n* Korean-translated version of argilla/ultrafeedback-binarized-preferences-cleaned\n* No other dataset was used\n\n\nOpen LLM Leaderboard Evaluation Results\n=======================================\n\n\nDetailed results can be found here" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma-chinese This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.38.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2
{"license": "gemma", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "google/gemma-2b", "model-index": [{"name": "gemma-chinese", "results": []}]}
kaierlong/gemma-chinese
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-04-15T03:47:59+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-google/gemma-2b #license-gemma #region-us
# gemma-chinese This model is a fine-tuned version of google/gemma-2b on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.38.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2
[ "# gemma-chinese\n\nThis model is a fine-tuned version of google/gemma-2b on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- PEFT 0.7.2.dev0\n- Transformers 4.38.1\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-google/gemma-2b #license-gemma #region-us \n", "# gemma-chinese\n\nThis model is a fine-tuned version of google/gemma-2b on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- PEFT 0.7.2.dev0\n- Transformers 4.38.1\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
thusinh1969/LLaMA-2-finetune-50k-checkpoint28100-ep1.42
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:50:44+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [K00B404/Merged_Beowolx-CodePro_Medusa2-14X-7B-Mistral-I-v0-2](https://huggingface.co/K00B404/Merged_Beowolx-CodePro_Medusa2-14X-7B-Mistral-I-v0-2) as a base. ### Models Merged The following models were included in the merge: * [Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta) * [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: K00B404/Merged_Beowolx-CodePro_Medusa2-14X-7B-Mistral-I-v0-2 # # no parameters necessary for base model - model: Nexusflow/Starling-LM-7B-beta parameters: density: 0.5 weight: 0.5 - model: beowolx/CodeNinja-1.0-OpenChat-7B parameters: density: 0.5 weight: 0.3 merge_method: ties base_model: K00B404/Merged_Beowolx-CodePro_Medusa2-14X-7B-Mistral-I-v0-2 parameters: normalize: true dtype: float16 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["K00B404/Merged_Beowolx-CodePro_Medusa2-14X-7B-Mistral-I-v0-2", "Nexusflow/Starling-LM-7B-beta", "beowolx/CodeNinja-1.0-OpenChat-7B"]}
K00B404/BagOMistral_14X_Coders-ties-7B
null
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:K00B404/Merged_Beowolx-CodePro_Medusa2-14X-7B-Mistral-I-v0-2", "base_model:Nexusflow/Starling-LM-7B-beta", "base_model:beowolx/CodeNinja-1.0-OpenChat-7B", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:51:06+00:00
[ "2306.01708" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #arxiv-2306.01708 #base_model-K00B404/Merged_Beowolx-CodePro_Medusa2-14X-7B-Mistral-I-v0-2 #base_model-Nexusflow/Starling-LM-7B-beta #base_model-beowolx/CodeNinja-1.0-OpenChat-7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# merge This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the TIES merge method using K00B404/Merged_Beowolx-CodePro_Medusa2-14X-7B-Mistral-I-v0-2 as a base. ### Models Merged The following models were included in the merge: * Nexusflow/Starling-LM-7B-beta * beowolx/CodeNinja-1.0-OpenChat-7B ### Configuration The following YAML configuration was used to produce this model:
[ "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the TIES merge method using K00B404/Merged_Beowolx-CodePro_Medusa2-14X-7B-Mistral-I-v0-2 as a base.", "### Models Merged\n\nThe following models were included in the merge:\n* Nexusflow/Starling-LM-7B-beta\n* beowolx/CodeNinja-1.0-OpenChat-7B", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #arxiv-2306.01708 #base_model-K00B404/Merged_Beowolx-CodePro_Medusa2-14X-7B-Mistral-I-v0-2 #base_model-Nexusflow/Starling-LM-7B-beta #base_model-beowolx/CodeNinja-1.0-OpenChat-7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# merge\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the TIES merge method using K00B404/Merged_Beowolx-CodePro_Medusa2-14X-7B-Mistral-I-v0-2 as a base.", "### Models Merged\n\nThe following models were included in the merge:\n* Nexusflow/Starling-LM-7B-beta\n* beowolx/CodeNinja-1.0-OpenChat-7B", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
SuperPowerMz/Mistral-7B-QLoRA-Peft
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-15T03:53:56+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
image-text-to-text
transformers
4-bit AWQ-quantized version of [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b). Refer to the original model's card for more information (including inference snippet).
{"language": ["en"], "license": "apache-2.0", "tags": ["multimodal", "vision", "image-text-to-text", "quantized", "4-bit", "AWQ"], "datasets": ["HuggingFaceM4/OBELICS", "laion/laion-coco", "wikipedia", "facebook/pmd", "pixparse/idl-wds", "pixparse/pdfa-eng-wds", "wendlerc/RenderedText", "HuggingFaceM4/the_cauldron", "teknium/OpenHermes-2.5", "GAIR/lima", "databricks/databricks-dolly-15k", "meta-math/MetaMathQA", "TIGER-Lab/MathInstruct", "microsoft/orca-math-word-problems-200k", "camel-ai/math", "AtlasUnified/atlas-math-sets", "tiedong/goat"]}
HuggingFaceM4/idefics2-8b-AWQ
null
[ "transformers", "safetensors", "idefics2", "pretraining", "multimodal", "vision", "image-text-to-text", "quantized", "4-bit", "AWQ", "en", "dataset:HuggingFaceM4/OBELICS", "dataset:laion/laion-coco", "dataset:wikipedia", "dataset:facebook/pmd", "dataset:pixparse/idl-wds", "dataset:pixparse/pdfa-eng-wds", "dataset:wendlerc/RenderedText", "dataset:HuggingFaceM4/the_cauldron", "dataset:teknium/OpenHermes-2.5", "dataset:GAIR/lima", "dataset:databricks/databricks-dolly-15k", "dataset:meta-math/MetaMathQA", "dataset:TIGER-Lab/MathInstruct", "dataset:microsoft/orca-math-word-problems-200k", "dataset:camel-ai/math", "dataset:AtlasUnified/atlas-math-sets", "dataset:tiedong/goat", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-15T03:55:40+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #idefics2 #pretraining #multimodal #vision #image-text-to-text #quantized #4-bit #AWQ #en #dataset-HuggingFaceM4/OBELICS #dataset-laion/laion-coco #dataset-wikipedia #dataset-facebook/pmd #dataset-pixparse/idl-wds #dataset-pixparse/pdfa-eng-wds #dataset-wendlerc/RenderedText #dataset-HuggingFaceM4/the_cauldron #dataset-teknium/OpenHermes-2.5 #dataset-GAIR/lima #dataset-databricks/databricks-dolly-15k #dataset-meta-math/MetaMathQA #dataset-TIGER-Lab/MathInstruct #dataset-microsoft/orca-math-word-problems-200k #dataset-camel-ai/math #dataset-AtlasUnified/atlas-math-sets #dataset-tiedong/goat #license-apache-2.0 #endpoints_compatible #region-us
4-bit AWQ-quantized version of HuggingFaceM4/idefics2-8b. Refer to the original model's card for more information (including inference snippet).
[]
[ "TAGS\n#transformers #safetensors #idefics2 #pretraining #multimodal #vision #image-text-to-text #quantized #4-bit #AWQ #en #dataset-HuggingFaceM4/OBELICS #dataset-laion/laion-coco #dataset-wikipedia #dataset-facebook/pmd #dataset-pixparse/idl-wds #dataset-pixparse/pdfa-eng-wds #dataset-wendlerc/RenderedText #dataset-HuggingFaceM4/the_cauldron #dataset-teknium/OpenHermes-2.5 #dataset-GAIR/lima #dataset-databricks/databricks-dolly-15k #dataset-meta-math/MetaMathQA #dataset-TIGER-Lab/MathInstruct #dataset-microsoft/orca-math-word-problems-200k #dataset-camel-ai/math #dataset-AtlasUnified/atlas-math-sets #dataset-tiedong/goat #license-apache-2.0 #endpoints_compatible #region-us \n" ]
fill-mask
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
mratcheva/crsmgr_bert_distr_gen
null
[ "transformers", "safetensors", "bert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-15T03:58:53+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #bert #fill-mask #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #bert #fill-mask #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
bdsaglam/llama-2-7b-chat-jerx-peft-qdiovveg
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-15T04:00:19+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abhayesian/BobzillaV23
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-15T04:00:31+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ruBert-base-sberquad-0.005-filtered-negative This model is a fine-tuned version of [ai-forever/ruBert-base](https://huggingface.co/ai-forever/ruBert-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 5000 ### Training results ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "ai-forever/ruBert-base", "model-index": [{"name": "ruBert-base-sberquad-0.005-filtered-negative", "results": []}]}
Shalazary/ruBert-base-sberquad-0.005-filtered-negative
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:ai-forever/ruBert-base", "license:apache-2.0", "region:us" ]
null
2024-04-15T04:00:52+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #generated_from_trainer #base_model-ai-forever/ruBert-base #license-apache-2.0 #region-us
# ruBert-base-sberquad-0.005-filtered-negative This model is a fine-tuned version of ai-forever/ruBert-base on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 5000 ### Training results ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# ruBert-base-sberquad-0.005-filtered-negative\n\nThis model is a fine-tuned version of ai-forever/ruBert-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0005\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 5000", "### Training results", "### Framework versions\n\n- PEFT 0.10.1.dev0\n- Transformers 4.40.0.dev0\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #base_model-ai-forever/ruBert-base #license-apache-2.0 #region-us \n", "# ruBert-base-sberquad-0.005-filtered-negative\n\nThis model is a fine-tuned version of ai-forever/ruBert-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0005\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 5000", "### Training results", "### Framework versions\n\n- PEFT 0.10.1.dev0\n- Transformers 4.40.0.dev0\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]