pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
null
mlx
# mlx-community/dolphin-2.9-llama3-8b-8bit-mlx This model was converted to MLX format from [`cognitivecomputations/dolphin-2.9-llama3-8b`]() using mlx-lm version **0.10.0**. Refer to the [original model card](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/dolphin-2.9-llama3-8b-8bit-mlx") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"license": "other", "tags": ["generated_from_trainer", "mlx"], "datasets": ["cognitivecomputations/Dolphin-2.9", "teknium/OpenHermes-2.5", "m-a-p/CodeFeedback-Filtered-Instruction", "cognitivecomputations/dolphin-coder", "cognitivecomputations/samantha-data", "HuggingFaceH4/ultrachat_200k", "microsoft/orca-math-word-problems-200k", "abacusai/SystemChat-1.1", "Locutusque/function-calling-chatml", "internlm/Agent-FLAN"], "base_model": "meta-llama/Meta-Llama-3-8B", "model-index": [{"name": "out", "results": []}]}
mlx-community/dolphin-2.9-llama3-8b-8bit-mlx
null
[ "mlx", "safetensors", "llama", "generated_from_trainer", "dataset:cognitivecomputations/Dolphin-2.9", "dataset:teknium/OpenHermes-2.5", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:cognitivecomputations/dolphin-coder", "dataset:cognitivecomputations/samantha-data", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:microsoft/orca-math-word-problems-200k", "dataset:abacusai/SystemChat-1.1", "dataset:Locutusque/function-calling-chatml", "dataset:internlm/Agent-FLAN", "base_model:meta-llama/Meta-Llama-3-8B", "license:other", "region:us" ]
null
2024-04-21T07:05:44+00:00
[]
[]
TAGS #mlx #safetensors #llama #generated_from_trainer #dataset-cognitivecomputations/Dolphin-2.9 #dataset-teknium/OpenHermes-2.5 #dataset-m-a-p/CodeFeedback-Filtered-Instruction #dataset-cognitivecomputations/dolphin-coder #dataset-cognitivecomputations/samantha-data #dataset-HuggingFaceH4/ultrachat_200k #dataset-microsoft/orca-math-word-problems-200k #dataset-abacusai/SystemChat-1.1 #dataset-Locutusque/function-calling-chatml #dataset-internlm/Agent-FLAN #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us
# mlx-community/dolphin-2.9-llama3-8b-8bit-mlx This model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b']() using mlx-lm version 0.10.0. Refer to the original model card for more details on the model. ## Use with mlx
[ "# mlx-community/dolphin-2.9-llama3-8b-8bit-mlx\nThis model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b']() using mlx-lm version 0.10.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #llama #generated_from_trainer #dataset-cognitivecomputations/Dolphin-2.9 #dataset-teknium/OpenHermes-2.5 #dataset-m-a-p/CodeFeedback-Filtered-Instruction #dataset-cognitivecomputations/dolphin-coder #dataset-cognitivecomputations/samantha-data #dataset-HuggingFaceH4/ultrachat_200k #dataset-microsoft/orca-math-word-problems-200k #dataset-abacusai/SystemChat-1.1 #dataset-Locutusque/function-calling-chatml #dataset-internlm/Agent-FLAN #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us \n", "# mlx-community/dolphin-2.9-llama3-8b-8bit-mlx\nThis model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b']() using mlx-lm version 0.10.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
galbitang/koalpacapoly-chai-100
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-21T07:09:23+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
zero-shot-image-classification
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # clip-vit-large-patch14-336 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Tokenizers 0.12.1
{"tags": ["generated_from_keras_callback"], "widget": [{"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png", "candidate_labels": "playing music, playing sports", "example_title": "Cat & Dog"}], "model-index": [{"name": "clip-vit-large-patch14-336", "results": []}]}
romilshah16/clip-vit-large-patch14-336
null
[ "transformers", "pytorch", "tf", "clip", "zero-shot-image-classification", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2024-04-21T07:09:52+00:00
[]
[]
TAGS #transformers #pytorch #tf #clip #zero-shot-image-classification #generated_from_keras_callback #endpoints_compatible #region-us
# clip-vit-large-patch14-336 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Tokenizers 0.12.1
[ "# clip-vit-large-patch14-336\n\nThis model was trained from scratch on an unknown dataset.\nIt achieves the following results on the evaluation set:", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: None\n- training_precision: float32", "### Training results", "### Framework versions\n\n- Transformers 4.21.3\n- TensorFlow 2.8.2\n- Tokenizers 0.12.1" ]
[ "TAGS\n#transformers #pytorch #tf #clip #zero-shot-image-classification #generated_from_keras_callback #endpoints_compatible #region-us \n", "# clip-vit-large-patch14-336\n\nThis model was trained from scratch on an unknown dataset.\nIt achieves the following results on the evaluation set:", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: None\n- training_precision: float32", "### Training results", "### Framework versions\n\n- Transformers 4.21.3\n- TensorFlow 2.8.2\n- Tokenizers 0.12.1" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
kakinola23/Meta-Llama-3-8B-Instruct
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:11:30+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
cilantro9246/yme6sqt
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:11:33+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-to-image
diffusers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "diffusers"}
Niggendar/MomoiroPony_v14
null
[ "diffusers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-04-21T07:14:51+00:00
[ "1910.09700" ]
[]
TAGS #diffusers #safetensors #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#diffusers #safetensors #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # timesformer-base-finetuned-k400-kinetic400-subset-epoch6-num_frame_10_myViT2window3_more_data_b4 This model is a fine-tuned version of [facebook/timesformer-base-finetuned-k400](https://huggingface.co/facebook/timesformer-base-finetuned-k400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1298 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 372 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2031 | 0.17 | 63 | 0.1295 | 0.97 | | 0.0389 | 1.17 | 126 | 0.3616 | 0.89 | | 0.0023 | 2.17 | 189 | 0.1584 | 0.97 | | 0.0026 | 3.17 | 252 | 0.2358 | 0.95 | | 0.0007 | 4.17 | 315 | 0.1724 | 0.97 | | 0.0014 | 5.15 | 372 | 0.1644 | 0.97 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "cc-by-nc-4.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/timesformer-base-finetuned-k400", "model-index": [{"name": "timesformer-base-finetuned-k400-kinetic400-subset-epoch6-num_frame_10_myViT2window3_more_data_b4", "results": []}]}
JackWong0911/timesformer-base-finetuned-k400-kinetic400-subset-epoch6-num_frame_10_myViT2window3_more_data_b4
null
[ "transformers", "tensorboard", "safetensors", "timesformer", "generated_from_trainer", "base_model:facebook/timesformer-base-finetuned-k400", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-21T07:22:18+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #timesformer #generated_from_trainer #base_model-facebook/timesformer-base-finetuned-k400 #license-cc-by-nc-4.0 #endpoints_compatible #region-us
timesformer-base-finetuned-k400-kinetic400-subset-epoch6-num\_frame\_10\_myViT2window3\_more\_data\_b4 ====================================================================================================== This model is a fine-tuned version of facebook/timesformer-base-finetuned-k400 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.1298 * Accuracy: 0.96 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 372 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.1.0+cu121 * Datasets 2.19.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 372", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #timesformer #generated_from_trainer #base_model-facebook/timesformer-base-finetuned-k400 #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 372", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
krishnakalyan3/zero_shot_10k_cosine_model
null
[ "transformers", "pytorch", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-21T07:22:44+00:00
[ "1910.09700" ]
[]
TAGS #transformers #pytorch #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #pytorch #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # art-des-bert-large-cased This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8053 | 5.19 | 100 | 1.4663 | | 1.3212 | 10.39 | 200 | 1.3795 | | 1.0223 | 15.58 | 300 | 1.3545 | | 0.8991 | 20.78 | 400 | 1.3239 | | 0.7579 | 25.97 | 500 | 1.3276 | | 0.6554 | 31.17 | 600 | 1.3435 | | 0.5786 | 36.36 | 700 | 1.2276 | | 0.5386 | 41.56 | 800 | 1.1930 | | 0.479 | 46.75 | 900 | 1.2091 | | 0.4336 | 51.95 | 1000 | 1.0554 | | 0.3776 | 57.14 | 1100 | 1.4044 | | 0.3582 | 62.34 | 1200 | 1.1651 | | 0.3343 | 67.53 | 1300 | 1.2394 | | 0.3093 | 72.73 | 1400 | 1.1313 | | 0.2952 | 77.92 | 1500 | 1.2107 | | 0.2845 | 83.12 | 1600 | 1.2804 | | 0.2585 | 88.31 | 1700 | 1.1700 | | 0.2548 | 93.51 | 1800 | 1.2391 | | 0.2581 | 98.7 | 1900 | 1.2776 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "bert-large-cased", "model-index": [{"name": "art-des-bert-large-cased", "results": []}]}
bencyc1129/art-des-bert-large-cased
null
[ "transformers", "tensorboard", "safetensors", "bert", "fill-mask", "generated_from_trainer", "base_model:bert-large-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T07:23:37+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #fill-mask #generated_from_trainer #base_model-bert-large-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
art-des-bert-large-cased ======================== This model is a fine-tuned version of bert-large-cased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.2776 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 100 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #fill-mask #generated_from_trainer #base_model-bert-large-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
null
mlx
# voxmenthe/dolphin-2.9-llama3-8b-mlx-unquantized This model was converted to MLX format from [`cognitivecomputations/dolphin-2.9-llama3-8b`]() using mlx-lm version **0.10.0**. Refer to the [original model card](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("voxmenthe/dolphin-2.9-llama3-8b-mlx-unquantized") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"license": "other", "tags": ["generated_from_trainer", "mlx"], "datasets": ["cognitivecomputations/Dolphin-2.9", "teknium/OpenHermes-2.5", "m-a-p/CodeFeedback-Filtered-Instruction", "cognitivecomputations/dolphin-coder", "cognitivecomputations/samantha-data", "HuggingFaceH4/ultrachat_200k", "microsoft/orca-math-word-problems-200k", "abacusai/SystemChat-1.1", "Locutusque/function-calling-chatml", "internlm/Agent-FLAN"], "base_model": "meta-llama/Meta-Llama-3-8B", "model-index": [{"name": "out", "results": []}]}
voxmenthe/dolphin-2.9-llama3-8b-mlx-unquantized
null
[ "mlx", "safetensors", "llama", "generated_from_trainer", "dataset:cognitivecomputations/Dolphin-2.9", "dataset:teknium/OpenHermes-2.5", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:cognitivecomputations/dolphin-coder", "dataset:cognitivecomputations/samantha-data", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:microsoft/orca-math-word-problems-200k", "dataset:abacusai/SystemChat-1.1", "dataset:Locutusque/function-calling-chatml", "dataset:internlm/Agent-FLAN", "base_model:meta-llama/Meta-Llama-3-8B", "license:other", "region:us" ]
null
2024-04-21T07:23:42+00:00
[]
[]
TAGS #mlx #safetensors #llama #generated_from_trainer #dataset-cognitivecomputations/Dolphin-2.9 #dataset-teknium/OpenHermes-2.5 #dataset-m-a-p/CodeFeedback-Filtered-Instruction #dataset-cognitivecomputations/dolphin-coder #dataset-cognitivecomputations/samantha-data #dataset-HuggingFaceH4/ultrachat_200k #dataset-microsoft/orca-math-word-problems-200k #dataset-abacusai/SystemChat-1.1 #dataset-Locutusque/function-calling-chatml #dataset-internlm/Agent-FLAN #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us
# voxmenthe/dolphin-2.9-llama3-8b-mlx-unquantized This model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b']() using mlx-lm version 0.10.0. Refer to the original model card for more details on the model. ## Use with mlx
[ "# voxmenthe/dolphin-2.9-llama3-8b-mlx-unquantized\nThis model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b']() using mlx-lm version 0.10.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #llama #generated_from_trainer #dataset-cognitivecomputations/Dolphin-2.9 #dataset-teknium/OpenHermes-2.5 #dataset-m-a-p/CodeFeedback-Filtered-Instruction #dataset-cognitivecomputations/dolphin-coder #dataset-cognitivecomputations/samantha-data #dataset-HuggingFaceH4/ultrachat_200k #dataset-microsoft/orca-math-word-problems-200k #dataset-abacusai/SystemChat-1.1 #dataset-Locutusque/function-calling-chatml #dataset-internlm/Agent-FLAN #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us \n", "# voxmenthe/dolphin-2.9-llama3-8b-mlx-unquantized\nThis model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b']() using mlx-lm version 0.10.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
bencyc1129/art-des-gpt2-large
null
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:24:24+00:00
[ "1910.09700" ]
[]
TAGS #transformers #tensorboard #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Uploaded model - **Developed by:** LeroyDyer - **License:** apache-2.0 - **Finetuned from model :** LeroyDyer/Mixtral_AI_CyberTron_Ultra_SFT This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "LeroyDyer/Mixtral_AI_CyberTron_Ultra_SFT"}
LeroyDyer/Mini_Merge_CyberChild
null
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:LeroyDyer/Mixtral_AI_CyberTron_Ultra_SFT", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T07:26:42+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #conversational #en #base_model-LeroyDyer/Mixtral_AI_CyberTron_Ultra_SFT #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Uploaded model - Developed by: LeroyDyer - License: apache-2.0 - Finetuned from model : LeroyDyer/Mixtral_AI_CyberTron_Ultra_SFT This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: LeroyDyer\n- License: apache-2.0\n- Finetuned from model : LeroyDyer/Mixtral_AI_CyberTron_Ultra_SFT\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #conversational #en #base_model-LeroyDyer/Mixtral_AI_CyberTron_Ultra_SFT #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: LeroyDyer\n- License: apache-2.0\n- Finetuned from model : LeroyDyer/Mixtral_AI_CyberTron_Ultra_SFT\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-BrainTumor This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the BrainTumorMRI dataset. It achieves the following results on the evaluation set: - Loss: 0.0769 - Accuracy: 0.9763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5419 | 0.2674 | 100 | 0.2146 | 0.9317 | | 0.23 | 0.5348 | 200 | 0.3410 | 0.8833 | | 0.239 | 0.8021 | 300 | 0.1327 | 0.9573 | | 0.1849 | 1.0695 | 400 | 0.1202 | 0.9649 | | 0.1073 | 1.3369 | 500 | 0.1510 | 0.9545 | | 0.1381 | 1.6043 | 600 | 0.0769 | 0.9763 | | 0.146 | 1.8717 | 700 | 0.0821 | 0.9753 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["image-classification", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "finetuned-BrainTumor", "results": []}]}
Dharamanand/finetuned-BrainTumor
null
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T07:28:15+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
finetuned-BrainTumor ==================== This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the BrainTumorMRI dataset. It achieves the following results on the evaluation set: * Loss: 0.0769 * Accuracy: 0.9763 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.40.0 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.2_esnli_5000_1ep_1.5e-6 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"tags": ["trl", "sft", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "Mistral-7B-Instruct-v0.2_esnli_5000_1ep_1.5e-6", "results": []}]}
mohsenfayyaz/Mistral-7B-Instruct-v0.2_esnli_5000_1ep_1.5e-6
null
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:29:48+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #trl #sft #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Mistral-7B-Instruct-v0.2_esnli_5000_1ep_1.5e-6 This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
[ "# Mistral-7B-Instruct-v0.2_esnli_5000_1ep_1.5e-6\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.5e-06\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 0\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.38.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.17.1\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #trl #sft #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Mistral-7B-Instruct-v0.2_esnli_5000_1ep_1.5e-6\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.5e-06\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 0\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.38.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.17.1\n- Tokenizers 0.15.2" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Akila/ForgottenRealmsWikiDataset data_files: - specific_formats/FRW-J-alpaca.jsonl type: alpaca dataset_prepared_path: val_set_size: 0.1 output_dir: ./qlora-out hub_model_id: Akila/Mistral-of-Realms-7b-Instruct adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` </details><br> # Mistral-of-Realms-7b-Instruct This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7354 | 0.0 | 1 | 2.6820 | | 2.0912 | 0.25 | 54 | 2.1009 | | 2.0407 | 0.51 | 108 | 2.0480 | | 1.9771 | 0.76 | 162 | 2.0238 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "apache-2.0", "library_name": "peft", "tags": ["axolotl", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "Mistral-of-Realms-7b-Instruct", "results": []}]}
Akila/Mistral-of-Realms-7b-Instruct-gguf
null
[ "peft", "mistral", "axolotl", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-04-21T07:33:47+00:00
[]
[]
TAGS #peft #mistral #axolotl #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-apache-2.0 #region-us
<img src="URL alt="Built with Axolotl" width="200" height="32"/> See axolotl config axolotl version: '0.4.0' Mistral-of-Realms-7b-Instruct ============================= This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set: * Loss: 2.0238 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 8 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_steps: 10 * num\_epochs: 1 ### Training results ### Framework versions * PEFT 0.10.0 * Transformers 4.40.0.dev0 * Pytorch 2.2.0+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.2.0+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#peft #mistral #axolotl #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.2.0+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
sentence-similarity
sentence-transformers
# average_word_embeddings_glove.6B.300d This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 300 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/average_word_embeddings_glove.6B.300d') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/average_word_embeddings_glove.6B.300d) ## Full Model Architecture ``` SentenceTransformer( (0): WordEmbeddings( (emb_layer): Embedding(400001, 300) ) (1): Pooling({'word_embedding_dimension': 300, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
{"license": "apache-2.0", "library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
cicero-ai/average_word_embeddings_glove.6B.300d-rust
null
[ "sentence-transformers", "feature-extraction", "sentence-similarity", "arxiv:1908.10084", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-21T07:35:19+00:00
[ "1908.10084" ]
[]
TAGS #sentence-transformers #feature-extraction #sentence-similarity #arxiv-1908.10084 #license-apache-2.0 #endpoints_compatible #region-us
# average_word_embeddings_glove.6B.300d This is a sentence-transformers model: It maps sentences & paragraphs to a 300 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Full Model Architecture ## Citing & Authors This model was trained by sentence-transformers. If you find this model helpful, feel free to cite our publication Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:
[ "# average_word_embeddings_glove.6B.300d\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 300 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Full Model Architecture", "## Citing & Authors\n\nThis model was trained by sentence-transformers. \n \nIf you find this model helpful, feel free to cite our publication Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:" ]
[ "TAGS\n#sentence-transformers #feature-extraction #sentence-similarity #arxiv-1908.10084 #license-apache-2.0 #endpoints_compatible #region-us \n", "# average_word_embeddings_glove.6B.300d\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 300 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Full Model Architecture", "## Citing & Authors\n\nThis model was trained by sentence-transformers. \n \nIf you find this model helpful, feel free to cite our publication Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:" ]
text-generation
transformers
# Model Card for Model ID ### Model Description - base model : beomi/llama-2-koen-13b - dataset : crawling ## Model Details ## Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.\ - Developed by: hi000000 - Funded by [optional]: [More Information Needed] - Shared by [optional]: [More Information Needed] - Model type: [More Information Needed] - Language(s) (NLP): [More Information Needed] - License: [More Information Needed] - Finetuned from model [optional]: [More Information Needed]
{"language": ["ko", "en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["music"]}
hi000000/insta_user2_llama2-koen
null
[ "transformers", "safetensors", "llama", "text-generation", "music", "ko", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:38:34+00:00
[]
[ "ko", "en" ]
TAGS #transformers #safetensors #llama #text-generation #music #ko #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ### Model Description - base model : beomi/llama-2-koen-13b - dataset : crawling ## Model Details ## Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\ - Developed by: hi000000 - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]:
[ "# Model Card for Model ID", "### Model Description\n\n- base model : beomi/llama-2-koen-13b\n- dataset : crawling", "## Model Details", "## Model Description\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\\\n\n\n- Developed by: hi000000 \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #music #ko #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "### Model Description\n\n- base model : beomi/llama-2-koen-13b\n- dataset : crawling", "## Model Details", "## Model Description\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\\\n\n\n- Developed by: hi000000 \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.0_ablation_sample3_4iters_iter_2 This model is a fine-tuned version of [ZhangShenao/0.0_ablation_sample3_4iters_iter_1](https://huggingface.co/ZhangShenao/0.0_ablation_sample3_4iters_iter_1) on the ZhangShenao/0.0_ablation_sample3_4iters_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["ZhangShenao/0.0_ablation_sample3_4iters_dataset"], "base_model": "ZhangShenao/0.0_ablation_sample3_4iters_iter_1", "model-index": [{"name": "0.0_ablation_sample3_4iters_iter_2", "results": []}]}
ZhangShenao/0.0_ablation_sample3_4iters_iter_2
null
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:ZhangShenao/0.0_ablation_sample3_4iters_dataset", "base_model:ZhangShenao/0.0_ablation_sample3_4iters_iter_1", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:42:44+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-ZhangShenao/0.0_ablation_sample3_4iters_dataset #base_model-ZhangShenao/0.0_ablation_sample3_4iters_iter_1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# 0.0_ablation_sample3_4iters_iter_2 This model is a fine-tuned version of ZhangShenao/0.0_ablation_sample3_4iters_iter_1 on the ZhangShenao/0.0_ablation_sample3_4iters_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
[ "# 0.0_ablation_sample3_4iters_iter_2\n\nThis model is a fine-tuned version of ZhangShenao/0.0_ablation_sample3_4iters_iter_1 on the ZhangShenao/0.0_ablation_sample3_4iters_dataset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 128\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-ZhangShenao/0.0_ablation_sample3_4iters_dataset #base_model-ZhangShenao/0.0_ablation_sample3_4iters_iter_1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# 0.0_ablation_sample3_4iters_iter_2\n\nThis model is a fine-tuned version of ZhangShenao/0.0_ablation_sample3_4iters_iter_1 on the ZhangShenao/0.0_ablation_sample3_4iters_dataset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 128\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2701 - Accuracy: 0.9145 - F1: 0.9139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 63 | 0.3339 | 0.8995 | 0.8978 | | No log | 2.0 | 126 | 0.2701 | 0.9145 | 0.9139 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "config": "split", "split": "validation", "args": "split"}, "metrics": [{"type": "accuracy", "value": 0.9145, "name": "Accuracy"}, {"type": "f1", "value": 0.9138609622394958, "name": "F1"}]}]}]}
yukky777/distilbert-base-uncased-finetuned-emotion
null
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T07:45:22+00:00
[]
[]
TAGS #transformers #safetensors #distilbert #text-classification #generated_from_trainer #dataset-emotion #base_model-distilbert-base-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-emotion ========================================= This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set: * Loss: 0.2701 * Accuracy: 0.9145 * F1: 0.9139 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 256 * eval\_batch\_size: 256 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.40.0 * Pytorch 2.2.2+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.2+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #safetensors #distilbert #text-classification #generated_from_trainer #dataset-emotion #base_model-distilbert-base-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.2+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
chriztopherton/mistral-2-7b_qlora_falcon_420_try_1
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:46:59+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
lattavia/Mistral-7b-chat-finetune-final-v2
null
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:47:18+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
<p align="center" style="margin:0;padding:0"> <img src="llama3-8b-dutch-banner.jpeg" alt="Llama 3 dutch banner" width="400" height="400"/> </p> <div style="margin:auto; text-align:center"> <h1 style="margin-bottom: 0">Llama 3 8B - Dutch</h1> <em>A conversational model for Dutch, based on Llama 3 8B</em> <p><em><a href="https://huggingface.co/spaces/ReBatch/Llama-3-Dutch">Try chatting with the model!</a></em></p> </div> This model is a [QLORA](https://huggingface.co/blog/4bit-transformers-bitsandbytes) and [ORPO](https://huggingface.co/docs/trl/main/en/orpo_trainer) fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the synthetic feedback dataset [BramVanroy/ultra_feedback_dutch](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch) ## Model description This model is a Dutch chat model, originally developed from Llama 3 8B and further refined through a feedback dataset with [ORPO](https://huggingface.co/docs/trl/main/en/orpo_trainer) and trained on [BramVanroy/ultra_feedback_dutch](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch) ## Intended uses & limitations Although the model has been aligned with gpt-4-turbo output, which has strong content filters, the model could still generate wrong, misleading, and potentially even offensive content. Use at your own risk. ## Training procedure The model was trained in bfloat16 with QLORA with flash attention 2 on one GPU - H100 80GB SXM5 for around 24 hours on RunPod. ## Evaluation Results The model was evaluated using [scandeval](https://scandeval.com/dutch-nlg/) The model showed mixed results across different benchmarks; it exhibited slight improvements on some while experiencing a decrease in scores on others. This occurred despite being trained on only 200,000 samples for a single epoch. We are curious to see whether its performance could be enhanced by training with more data or additional epochs. | Model| conll_nl | dutch_social | scala_nl | squad_nl | wiki_lingua_nl | mmlu_nl | hellaswag_nl | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------: meta-llama/Meta-Llama-3-8B-Instruct | 68.72 | 14.67 | 32.91 | 45.36 | 67.62 | 36.18 | 33.91 ReBatch/Llama-3-8B-dutch | 58.85 | 11.14 | 15.58 | 59.96 | 64.51 | 36.27 | 28.34 meta-llama/Meta-Llama-3-8B | 62.26 | 10.45| 30.3| 62.99| 65.17 | 36.38| 28.33 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 2 - eval_batch_size: 2 - num_devices: 1 - gradient_accumulation_steps: 4 - optimizer: paged_adamw_8bit - lr_scheduler_type: linear - warmup_steps: 10 - num_epochs: 1.0 - r: 16 - lora_alpha: 32 - lora_dropout: 0.05
{"language": ["nl"], "license": "llama3", "tags": ["ORPO", "llama 3 8B", "conversational"], "datasets": ["BramVanroy/ultra_feedback_dutch"], "base_model": "meta-llama/Meta-Llama-3-8B", "pipeline_tag": "text-generation", "model-index": [{"name": "ReBatch/Llama-3-8B-dutch", "results": []}]}
ReBatch/Llama-3-8B-dutch
null
[ "transformers", "safetensors", "llama", "text-generation", "ORPO", "llama 3 8B", "conversational", "nl", "dataset:BramVanroy/ultra_feedback_dutch", "base_model:meta-llama/Meta-Llama-3-8B", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:48:01+00:00
[]
[ "nl" ]
TAGS #transformers #safetensors #llama #text-generation #ORPO #llama 3 8B #conversational #nl #dataset-BramVanroy/ultra_feedback_dutch #base_model-meta-llama/Meta-Llama-3-8B #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
![Llama 3 dutch banner](URL) Llama 3 8B - Dutch ================== *A conversational model for Dutch, based on Llama 3 8B* *<a href="URL chatting with the model!</a>* This model is a QLORA and ORPO fine-tuned version of meta-llama/Meta-Llama-3-8B on the synthetic feedback dataset BramVanroy/ultra\_feedback\_dutch Model description ----------------- This model is a Dutch chat model, originally developed from Llama 3 8B and further refined through a feedback dataset with ORPO and trained on BramVanroy/ultra\_feedback\_dutch Intended uses & limitations --------------------------- Although the model has been aligned with gpt-4-turbo output, which has strong content filters, the model could still generate wrong, misleading, and potentially even offensive content. Use at your own risk. Training procedure ------------------ The model was trained in bfloat16 with QLORA with flash attention 2 on one GPU - H100 80GB SXM5 for around 24 hours on RunPod. Evaluation Results ------------------ The model was evaluated using scandeval The model showed mixed results across different benchmarks; it exhibited slight improvements on some while experiencing a decrease in scores on others. This occurred despite being trained on only 200,000 samples for a single epoch. We are curious to see whether its performance could be enhanced by training with more data or additional epochs. ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 8e-06 * train\_batch\_size: 2 * eval\_batch\_size: 2 * num\_devices: 1 * gradient\_accumulation\_steps: 4 * optimizer: paged\_adamw\_8bit * lr\_scheduler\_type: linear * warmup\_steps: 10 * num\_epochs: 1.0 * r: 16 * lora\_alpha: 32 * lora\_dropout: 0.05
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-06\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* num\\_devices: 1\n* gradient\\_accumulation\\_steps: 4\n* optimizer: paged\\_adamw\\_8bit\n* lr\\_scheduler\\_type: linear\n* warmup\\_steps: 10\n* num\\_epochs: 1.0\n* r: 16\n* lora\\_alpha: 32\n* lora\\_dropout: 0.05" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #ORPO #llama 3 8B #conversational #nl #dataset-BramVanroy/ultra_feedback_dutch #base_model-meta-llama/Meta-Llama-3-8B #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-06\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* num\\_devices: 1\n* gradient\\_accumulation\\_steps: 4\n* optimizer: paged\\_adamw\\_8bit\n* lr\\_scheduler\\_type: linear\n* warmup\\_steps: 10\n* num\\_epochs: 1.0\n* r: 16\n* lora\\_alpha: 32\n* lora\\_dropout: 0.05" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.2_esnli_5000_2ep_1.5e-6 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"tags": ["trl", "sft", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "Mistral-7B-Instruct-v0.2_esnli_5000_2ep_1.5e-6", "results": []}]}
mohsenfayyaz/Mistral-7B-Instruct-v0.2_esnli_5000_2ep_1.5e-6
null
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:49:01+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #trl #sft #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Mistral-7B-Instruct-v0.2_esnli_5000_2ep_1.5e-6 This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
[ "# Mistral-7B-Instruct-v0.2_esnli_5000_2ep_1.5e-6\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.5e-06\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 0\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.38.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.17.1\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #trl #sft #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Mistral-7B-Instruct-v0.2_esnli_5000_2ep_1.5e-6\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.5e-06\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 0\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.38.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.17.1\n- Tokenizers 0.15.2" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["unsloth"]}
Glacierz/llama3_8b_han
null
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-21T07:49:27+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #unsloth #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #unsloth #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ItalIA is a LLM trained for the Italian language and based on Llama3-8b. ## Model Details ### Model Description ItalIA is a state-of-the-art language model specifically trained for the Italian language using unsloth, leveraging the latest advancements in the LLM frameworks llama3. This model aims to provide highly accurate and context-aware natural language understanding and generation, making it ideal for a wide range of applications from automated customer support to content creation. - **Developed by:** Davide Pizzo - **Model type:** Transformer-based Large Language Model - **Language(s) (NLP):** Italian - **License:** Other - **Finetuned from model:** llama3-8b ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ItalIA can be directly integrated into applications requiring natural language processing in Italian, including but not limited to text summarization, question answering, and conversational agents. ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model serves as a powerful italian base for fine-tuning on specific tasks such as legal document analysis, medical record interpretation, and more specialized forms of conversational AI tailored to specific industries. ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be aware of the potential for biased outputs based on the training data, particularly in scenarios involving regional linguistic variations within Italy. ## How to Get Started with the Model Use the code below to get started with the model. ** from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "MethosPi/llama3-8b-italIA-unsloth-merged" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) text = "Inserisci qui il tuo testo in italiano." input_ids = tokenizer.encode(text, return_tensors="pt") output = model.generate(input_ids) print(tokenizer.decode(output[0], skip_special_tokens=True)) ** ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> The model was trained on a diverse corpus of Italian texts, including literature, news articles, and web content, ensuring a broad understanding of the language. ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software unsloth ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact For any question, contact me [[email protected]]
{"language": ["it"], "library_name": "transformers", "tags": ["unsloth", "trl", "sft"]}
MethosPi/llama3-8b-italIA-unsloth-merged
null
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "unsloth", "trl", "sft", "it", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:49:59+00:00
[ "1910.09700" ]
[ "it" ]
TAGS #transformers #pytorch #safetensors #llama #text-generation #unsloth #trl #sft #it #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ItalIA is a LLM trained for the Italian language and based on Llama3-8b. ## Model Details ### Model Description ItalIA is a state-of-the-art language model specifically trained for the Italian language using unsloth, leveraging the latest advancements in the LLM frameworks llama3. This model aims to provide highly accurate and context-aware natural language understanding and generation, making it ideal for a wide range of applications from automated customer support to content creation. - Developed by: Davide Pizzo - Model type: Transformer-based Large Language Model - Language(s) (NLP): Italian - License: Other - Finetuned from model: llama3-8b ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ItalIA can be directly integrated into applications requiring natural language processing in Italian, including but not limited to text summarization, question answering, and conversational agents. ### Direct Use This model serves as a powerful italian base for fine-tuning on specific tasks such as legal document analysis, medical record interpretation, and more specialized forms of conversational AI tailored to specific industries. ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users should be aware of the potential for biased outputs based on the training data, particularly in scenarios involving regional linguistic variations within Italy. ## How to Get Started with the Model Use the code below to get started with the model. from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "MethosPi/llama3-8b-italIA-unsloth-merged" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) text = "Inserisci qui il tuo testo in italiano." input_ids = URL(text, return_tensors="pt") output = model.generate(input_ids) print(URL(output[0], skip_special_tokens=True)) ## Training Details ### Training Data The model was trained on a diverse corpus of Italian texts, including literature, news articles, and web content, ensuring a broad understanding of the language. ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software unsloth [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact For any question, contact me [pizzodavide93@URL]
[ "# Model Card for Model ID\n\n\n\nItalIA is a LLM trained for the Italian language and based on Llama3-8b.", "## Model Details", "### Model Description\n\nItalIA is a state-of-the-art language model specifically trained for the Italian language using unsloth, leveraging the latest advancements in the LLM frameworks llama3. This model aims to provide highly accurate and context-aware natural language understanding and generation, making it ideal for a wide range of applications from automated customer support to content creation.\n\n- Developed by: Davide Pizzo\n- Model type: Transformer-based Large Language Model\n- Language(s) (NLP): Italian\n- License: Other\n- Finetuned from model: llama3-8b", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses\n\n\n\n\nItalIA can be directly integrated into applications requiring natural language processing in Italian, including but not limited to text summarization, question answering, and conversational agents.", "### Direct Use\n\n\n\nThis model serves as a powerful italian base for fine-tuning on specific tasks such as legal document analysis, medical record interpretation, and more specialized forms of conversational AI tailored to specific industries.", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be aware of the potential for biased outputs based on the training data, particularly in scenarios involving regional linguistic variations within Italy.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.\n\n\nfrom transformers import AutoModelForCausalLM, AutoTokenizer\n\nmodel_name = \"MethosPi/llama3-8b-italIA-unsloth-merged\"\ntokenizer = AutoTokenizer.from_pretrained(model_name)\nmodel = AutoModelForCausalLM.from_pretrained(model_name)\n\ntext = \"Inserisci qui il tuo testo in italiano.\"\ninput_ids = URL(text, return_tensors=\"pt\")\noutput = model.generate(input_ids)\n\nprint(URL(output[0], skip_special_tokens=True))", "## Training Details", "### Training Data\n\n\n\nThe model was trained on a diverse corpus of Italian texts, including literature, news articles, and web content, ensuring a broad understanding of the language.", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\nunsloth\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact\n\nFor any question, contact me [pizzodavide93@URL]" ]
[ "TAGS\n#transformers #pytorch #safetensors #llama #text-generation #unsloth #trl #sft #it #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID\n\n\n\nItalIA is a LLM trained for the Italian language and based on Llama3-8b.", "## Model Details", "### Model Description\n\nItalIA is a state-of-the-art language model specifically trained for the Italian language using unsloth, leveraging the latest advancements in the LLM frameworks llama3. This model aims to provide highly accurate and context-aware natural language understanding and generation, making it ideal for a wide range of applications from automated customer support to content creation.\n\n- Developed by: Davide Pizzo\n- Model type: Transformer-based Large Language Model\n- Language(s) (NLP): Italian\n- License: Other\n- Finetuned from model: llama3-8b", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses\n\n\n\n\nItalIA can be directly integrated into applications requiring natural language processing in Italian, including but not limited to text summarization, question answering, and conversational agents.", "### Direct Use\n\n\n\nThis model serves as a powerful italian base for fine-tuning on specific tasks such as legal document analysis, medical record interpretation, and more specialized forms of conversational AI tailored to specific industries.", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be aware of the potential for biased outputs based on the training data, particularly in scenarios involving regional linguistic variations within Italy.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.\n\n\nfrom transformers import AutoModelForCausalLM, AutoTokenizer\n\nmodel_name = \"MethosPi/llama3-8b-italIA-unsloth-merged\"\ntokenizer = AutoTokenizer.from_pretrained(model_name)\nmodel = AutoModelForCausalLM.from_pretrained(model_name)\n\ntext = \"Inserisci qui il tuo testo in italiano.\"\ninput_ids = URL(text, return_tensors=\"pt\")\noutput = model.generate(input_ids)\n\nprint(URL(output[0], skip_special_tokens=True))", "## Training Details", "### Training Data\n\n\n\nThe model was trained on a diverse corpus of Italian texts, including literature, news articles, and web content, ensuring a broad understanding of the language.", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\nunsloth\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact\n\nFor any question, contact me [pizzodavide93@URL]" ]
text-generation
transformers
# Synatra-11B-L3-v1 ## Model Description Llama 3 11B attenuated 모델에 40만개 이상의 한국어, 영어 채팅 데이터를 학습시킨 모델입니다. More Details Soon. 채팅 템플릿은 라마3 Chat 형식을 따릅니다. ## License https://llama.meta.com/llama3/license/ ## Thanks to - 기반 모델을 제공해주신, [Jisoo Kim (kuotient)](https://huggingface.co/kuotient) - A100 클러스터를 제공해주신, [Sionic AI](https://sionic.ai/) ## Contact - [Discord Server Link](https://discord.gg/MrBt3PXdXc)
{"license": "other", "license_name": "llama3", "base_model": ["kuotient/Llama-3-11B-Instruct-attenuated"]}
maywell/Llama-3-Synatra-11B-v1
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "base_model:kuotient/Llama-3-11B-Instruct-attenuated", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T07:50:07+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #base_model-kuotient/Llama-3-11B-Instruct-attenuated #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Synatra-11B-L3-v1 ## Model Description Llama 3 11B attenuated 모델에 40만개 이상의 한국어, 영어 채팅 데이터를 학습시킨 모델입니다. More Details Soon. 채팅 템플릿은 라마3 Chat 형식을 따릅니다. ## License URL ## Thanks to - 기반 모델을 제공해주신, Jisoo Kim (kuotient) - A100 클러스터를 제공해주신, Sionic AI ## Contact - Discord Server Link
[ "# Synatra-11B-L3-v1", "## Model Description\n\nLlama 3 11B attenuated 모델에 40만개 이상의 한국어, 영어 채팅 데이터를 학습시킨 모델입니다. More Details Soon.\n\n채팅 템플릿은 라마3 Chat 형식을 따릅니다.", "## License\n\nURL", "## Thanks to\n\n- 기반 모델을 제공해주신, Jisoo Kim (kuotient)\n- A100 클러스터를 제공해주신, Sionic AI", "## Contact\n- Discord Server Link" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #base_model-kuotient/Llama-3-11B-Instruct-attenuated #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Synatra-11B-L3-v1", "## Model Description\n\nLlama 3 11B attenuated 모델에 40만개 이상의 한국어, 영어 채팅 데이터를 학습시킨 모델입니다. More Details Soon.\n\n채팅 템플릿은 라마3 Chat 형식을 따릅니다.", "## License\n\nURL", "## Thanks to\n\n- 기반 모델을 제공해주신, Jisoo Kim (kuotient)\n- A100 클러스터를 제공해주신, Sionic AI", "## Contact\n- Discord Server Link" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Marathi_ASR_using_xlsr_wav2vec This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7582 - Wer: 0.7181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | No log | 2.6667 | 200 | 0.7381 | 0.7263 | | 0.336 | 5.3333 | 400 | 0.7472 | 0.7289 | | 0.336 | 8.0 | 600 | 0.7452 | 0.7215 | | 0.3237 | 10.6667 | 800 | 0.7449 | 0.7212 | | 0.3237 | 13.3333 | 1000 | 0.7546 | 0.7192 | | 0.3104 | 16.0 | 1200 | 0.7565 | 0.7210 | | 0.3104 | 18.6667 | 1400 | 0.7550 | 0.7193 | | 0.3089 | 21.3333 | 1600 | 0.7551 | 0.7186 | | 0.3089 | 24.0 | 1800 | 0.7572 | 0.7185 | | 0.2993 | 26.6667 | 2000 | 0.7571 | 0.7175 | | 0.2993 | 29.3333 | 2200 | 0.7582 | 0.7181 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice_13_0"], "metrics": ["wer"], "base_model": "facebook/wav2vec2-large-xlsr-53", "model-index": [{"name": "Marathi_ASR_using_xlsr_wav2vec", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "common_voice_13_0", "type": "common_voice_13_0", "config": "mr", "split": "test", "args": "mr"}, "metrics": [{"type": "wer", "value": 0.7180765086206896, "name": "Wer"}]}]}]}
PolyChirag/Marathi_ASR_using_xlsr_wav2vec
null
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_13_0", "base_model:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2024-04-21T07:51:35+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice_13_0 #base_model-facebook/wav2vec2-large-xlsr-53 #license-apache-2.0 #model-index #endpoints_compatible #region-us
Marathi\_ASR\_using\_xlsr\_wav2vec ================================== This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common\_voice\_13\_0 dataset. It achieves the following results on the evaluation set: * Loss: 0.7582 * Wer: 0.7181 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 300 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.40.0 * Pytorch 2.1.2 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.1.2\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice_13_0 #base_model-facebook/wav2vec2-large-xlsr-53 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 300\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.1.2\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) LlamaGuard-7b - bnb 4bits - Model creator: https://huggingface.co/meta-llama/ - Original model: https://huggingface.co/meta-llama/LlamaGuard-7b/ Original model description: --- extra_gated_heading: You need to share contact information with Meta to access this model extra_gated_prompt: >- ### LLAMA 2 COMMUNITY LICENSE AGREEMENT "Agreement" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein. "Documentation" means the specifications, manuals and documentation accompanying Llama 2 distributed by Meta at https://ai.meta.com/resources/models-and-libraries/llama-downloads/. "Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity's behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf. "Llama 2" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at ai.meta.com/resources/models-and-libraries/llama-downloads/. "Llama Materials" means, collectively, Meta's proprietary Llama 2 and documentation (and any portion thereof) made available under this Agreement. "Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). By clicking "I Accept" below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement. 1. License Rights and Redistribution. a. Grant of Rights. You are granted a non-exclusive, worldwide, non- transferable and royalty-free limited license under Meta's intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. b. Redistribution and Use. i. If you distribute or make the Llama Materials, or any derivative works thereof, available to a third party, you shall provide a copy of this Agreement to such third party. ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a "Notice" text file distributed as a part of such copies: "Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved." iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://ai.meta.com/llama/use-policy), which is hereby incorporated by reference into this Agreement. v. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Llama 2 or derivative works thereof). 2. Additional Commercial Terms. If, on the Llama 2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee's affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights. 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS. 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING. 5. Intellectual Property. a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials. b. Subject to Meta's ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications. c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials. 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. ### Llama 2 Acceptable Use Policy Meta is committed to promoting safe and fair use of its tools and features, including Llama 2. If you access or use Llama 2, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at [ai.meta.com/llama/use-policy](http://ai.meta.com/llama/use-policy). #### Prohibited Uses We want everyone to use Llama 2 safely and responsibly. You agree you will not use, or allow others to use, Llama 2 to: 1. Violate the law or others’ rights, including to: 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: 1. Violence or terrorism 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material 3. Human trafficking, exploitation, and sexual violence 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. 5. Sexual solicitation 6. Any other criminal activity 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices 5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama 2 Materials 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system 2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 2 related to the following: 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State 2. Guns and illegal weapons (including weapon development) 3. Illegal drugs and regulated/controlled substances 4. Operation of critical infrastructure, transportation technologies, or heavy machinery 5. Self-harm or harm to others, including suicide, cutting, and eating disorders 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual 3. Intentionally deceive or mislead others, including use of Llama 2 related to the following: 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content 3. Generating, promoting, or further distributing spam 4. Impersonating another individual without consent, authorization, or legal right 5. Representing that the use of Llama 2 or outputs are human-generated 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement 4. Fail to appropriately disclose to end users any known dangers of your AI system Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means: * Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama: [[email protected]](mailto:[email protected]) extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text geo: ip_location By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox extra_gated_description: >- The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit language: - en pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-2 license: llama2 --- ## Model Details **This repository contains the model weights both in the vanilla Llama format and the Hugging Face `transformers` format. If you have not received access, please review [this discussion](https://huggingface.co/meta-llama/LlamaGuard-7b/discussions/6)** Llama-Guard is a 7B parameter [Llama 2](https://arxiv.org/abs/2307.09288)-based input-output safeguard model. It can be used for classifying content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM: it generates text in its output that indicates whether a given prompt or response is safe/unsafe, and if unsafe based on a policy, it also lists the violating subcategories. Here is an example: ![](Llama-Guard_example.png) In order to produce classifier scores, we look at the probability for the first token, and turn that into an “unsafe” class probability. Model users can then make binary decisions by applying a desired threshold to the probability scores. ## Training and Evaluation ### Training Data We use a mix of prompts that come from the Anthropic [dataset](https://huggingface.co/datasets/Anthropic/hh-rlhf) and redteaming examples that we have collected in house, in a separate process from our production redteaming. In particular, we took the prompts only from the Anthropic dataset, and generated new responses from our in-house LLaMA models, using jailbreaking techniques to elicit violating responses. We then annotated Anthropic data (prompts & responses) in house, mapping labels according to the categories identified above. Overall we have ~13K training examples. ## Taxonomy of harms and Risk Guidelines As automated content risk mitigation relies on classifiers to make decisions about content in real time, a prerequisite to building these systems is to have the following components: - A **taxonomy** of risks that are of interest – these become the classes of a classifier. - A **risk guideline** that determines where we put the line between encouraged and discouraged outputs for each risk category in the taxonomy. Together with this model, we release an open taxonomy inspired by existing open taxonomies such as those employed by Google, Microsoft and OpenAI in the hope that it can be useful to the community. This taxonomy does not necessarily reflect Meta's own internal policies and is meant to demonstrate the value of our method to tune LLMs into classifiers that show high performance and high degrees of adaptability to different policies. ### The Llama-Guard Safety Taxonomy & Risk Guidelines Below, we provide both the harm types themselves under this taxonomy and also examples of the specific kinds of content that would be considered harmful under each category: - **Violence & Hate** encompasses statements that encourage or could help people plan or engage in violence. Similarly, statements that advocate discrimination, contain slurs, or voice hateful sentiments against people based on their sensitive personal characteristics (ex: race, color, religion, national origin, sexual orientation, gender, gender identity, or disability) would also be considered inappropriate under this category. - **Sexual Content** encompasses statements encouraging someone (who could be underage) to engage in specific sex acts. Similarly, sexually explicit (i.e., erotic) statements would also be considered inappropriate under this category. - **Guns & Illegal Weapons** encompasses statements that specifically encourage, condone, or could help people plan or execute specific crimes involving the illegal acquisition, creation, or use of guns or illegal weapons (ex: explosives, biological agents, or chemical weapons), including instructions on how to create or use them. - **Regulated or Controlled Substances** encompasses statements that specifically encourage or could help people to illegally produce, transfer, or consume regulated or controlled substances like illegal drugs, tobacco, alcohol, or cannabis. - **Suicide & Self Harm** encompasses statements that encourage, condone, or enable people to harm themselves (ex: by providing instructions or information on methods of self-harm). When people express or imply an intent to harm themselves, any response other than one that provides links to appropriate health resources would be considered inappropriate (even if entirely supportive). - **Criminal Planning** encompasses miscellaneous statements that encourage, condone, or could help people plan or execute specific criminal activities, like arson, kidnapping, or theft. Items should only be considered harmful under this category when they could not be read as violating any of the other harm types above (ex: statements that encourage violence should be considered violating under Violence & Hate rather than this category). ## How to Use in `transformers` ```py from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "meta-llama/LlamaGuard-7b" device = "cuda" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map=device) def moderate(chat): input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device) output = model.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0) prompt_len = input_ids.shape[-1] return tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True) moderate([ {"role": "user", "content": "I forgot how to kill a process in Linux, can you help?"}, {"role": "assistant", "content": "Sure! To kill a process in Linux, you can use the kill command followed by the process ID (PID) of the process you want to terminate."}, ]) # `safe` ``` > [!warning] > You need to be logged in to the Hugging Face Hub to use the model. For more details, see [this Colab notebook](https://colab.research.google.com/drive/16s0tlCSEDtczjPzdIK3jq0Le5LlnSYGf?usp=sharing). ## Evaluation results We compare the performance of the model against standard content moderation APIs in the industry, including [OpenAI](https://platform.openai.com/docs/guides/moderation/overview), [Azure Content Safety](https://learn.microsoft.com/en-us/azure/ai-services/content-safety/concepts/harm-categories),and [PerspectiveAPI](https://developers.perspectiveapi.com/s/about-the-api-attributes-and-languages?language=en_US) from Google on both public and in-house benchmarks. The public benchmarks include [ToxicChat](https://huggingface.co/datasets/lmsys/toxic-chat) and [OpenAI Moderation](https://github.com/openai/moderation-api-release). Note: comparisons are not exactly apples-to-apples due to mismatches in each taxonomy. The interested reader can find a more detailed discussion about this in [our paper](https://arxiv.org/abs/2312.04724). | | Our Test Set (Prompt) | OpenAI Mod | ToxicChat | Our Test Set (Response) | | --------------- | --------------------- | ---------- | --------- | ----------------------- | | Llama-Guard | **0.945** | 0.847 | **0.626** | **0.953** | | OpenAI API | 0.764 | **0.856** | 0.588 | 0.769 | | Perspective API | 0.728 | 0.787 | 0.532 | 0.699 |
{}
RichardErkhov/meta-llama_-_LlamaGuard-7b-4bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:2307.09288", "arxiv:2312.04724", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-21T07:51:36+00:00
[ "2307.09288", "2312.04724" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-2307.09288 #arxiv-2312.04724 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models LlamaGuard-7b - bnb 4bits * Model creator: URL * Original model: URL Original model description: --------------------------- extra\_gated\_heading: You need to share contact information with Meta to access this model extra\_gated\_prompt: >- ### LLAMA 2 COMMUNITY LICENSE AGREEMENT "Agreement" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein. "Documentation" means the specifications, manuals and documentation accompanying Llama 2 distributed by Meta at URL "Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity's behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf. "Llama 2" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at URL "Llama Materials" means, collectively, Meta's proprietary Llama 2 and documentation (and any portion thereof) made available under this Agreement. "Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). By clicking "I Accept" below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement. 1. License Rights and Redistribution. a. Grant of Rights. You are granted a non-exclusive, worldwide, non- transferable and royalty-free limited license under Meta's intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. b. Redistribution and Use. i. If you distribute or make the Llama Materials, or any derivative works thereof, available to a third party, you shall provide a copy of this Agreement to such third party. ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a "Notice" text file distributed as a part of such copies: "Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved." iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at URL which is hereby incorporated by reference into this Agreement. v. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Llama 2 or derivative works thereof). 2. Additional Commercial Terms. If, on the Llama 2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee's affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights. 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS. 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING. 5. Intellectual Property. a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials. b. Subject to Meta's ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications. c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials. 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. ### Llama 2 Acceptable Use Policy Meta is committed to promoting safe and fair use of its tools and features, including Llama 2. If you access or use Llama 2, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at URL #### Prohibited Uses We want everyone to use Llama 2 safely and responsibly. You agree you will not use, or allow others to use, Llama 2 to: 1. Violate the law or others’ rights, including to: 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: 1. Violence or terrorism 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material 3. Human trafficking, exploitation, and sexual violence 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. 5. Sexual solicitation 6. Any other criminal activity 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices 5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama 2 Materials 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system 2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 2 related to the following: 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State 2. Guns and illegal weapons (including weapon development) 3. Illegal drugs and regulated/controlled substances 4. Operation of critical infrastructure, transportation technologies, or heavy machinery 5. Self-harm or harm to others, including suicide, cutting, and eating disorders 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual 3. Intentionally deceive or mislead others, including use of Llama 2 related to the following: 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content 3. Generating, promoting, or further distributing spam 4. Impersonating another individual without consent, authorization, or legal right 5. Representing that the use of Llama 2 or outputs are human-generated 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement 7. Fail to appropriately disclose to end users any known dangers of your AI system Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means: * Reporting issues with the model: URL * Reporting risky content generated by the model: URL * Reporting bugs and security concerns: URL * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama: LlamaUseReport@URL extra\_gated\_fields: First Name: text Last Name: text Date of birth: date\_picker Country: country Affiliation: text geo: ip\_location By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox extra\_gated\_description: >- The information you provide will be collected, stored, processed and shared in accordance with the Meta Privacy Policy. extra\_gated\_button\_content: Submit language: * en pipeline\_tag: text-generation tags: * facebook * meta * pytorch * llama * llama-2 license: llama2 --- Model Details ------------- This repository contains the model weights both in the vanilla Llama format and the Hugging Face 'transformers' format. If you have not received access, please review this discussion Llama-Guard is a 7B parameter Llama 2-based input-output safeguard model. It can be used for classifying content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM: it generates text in its output that indicates whether a given prompt or response is safe/unsafe, and if unsafe based on a policy, it also lists the violating subcategories. Here is an example: ![](Llama-Guard_example.png) In order to produce classifier scores, we look at the probability for the first token, and turn that into an “unsafe” class probability. Model users can then make binary decisions by applying a desired threshold to the probability scores. Training and Evaluation ----------------------- ### Training Data We use a mix of prompts that come from the Anthropic dataset and redteaming examples that we have collected in house, in a separate process from our production redteaming. In particular, we took the prompts only from the Anthropic dataset, and generated new responses from our in-house LLaMA models, using jailbreaking techniques to elicit violating responses. We then annotated Anthropic data (prompts & responses) in house, mapping labels according to the categories identified above. Overall we have ~13K training examples. Taxonomy of harms and Risk Guidelines ------------------------------------- As automated content risk mitigation relies on classifiers to make decisions about content in real time, a prerequisite to building these systems is to have the following components: * A taxonomy of risks that are of interest – these become the classes of a classifier. * A risk guideline that determines where we put the line between encouraged and discouraged outputs for each risk category in the taxonomy. Together with this model, we release an open taxonomy inspired by existing open taxonomies such as those employed by Google, Microsoft and OpenAI in the hope that it can be useful to the community. This taxonomy does not necessarily reflect Meta's own internal policies and is meant to demonstrate the value of our method to tune LLMs into classifiers that show high performance and high degrees of adaptability to different policies. ### The Llama-Guard Safety Taxonomy & Risk Guidelines Below, we provide both the harm types themselves under this taxonomy and also examples of the specific kinds of content that would be considered harmful under each category: * Violence & Hate encompasses statements that encourage or could help people plan or engage in violence. Similarly, statements that advocate discrimination, contain slurs, or voice hateful sentiments against people based on their sensitive personal characteristics (ex: race, color, religion, national origin, sexual orientation, gender, gender identity, or disability) would also be considered inappropriate under this category. * Sexual Content encompasses statements encouraging someone (who could be underage) to engage in specific sex acts. Similarly, sexually explicit (i.e., erotic) statements would also be considered inappropriate under this category. * Guns & Illegal Weapons encompasses statements that specifically encourage, condone, or could help people plan or execute specific crimes involving the illegal acquisition, creation, or use of guns or illegal weapons (ex: explosives, biological agents, or chemical weapons), including instructions on how to create or use them. * Regulated or Controlled Substances encompasses statements that specifically encourage or could help people to illegally produce, transfer, or consume regulated or controlled substances like illegal drugs, tobacco, alcohol, or cannabis. * Suicide & Self Harm encompasses statements that encourage, condone, or enable people to harm themselves (ex: by providing instructions or information on methods of self-harm). When people express or imply an intent to harm themselves, any response other than one that provides links to appropriate health resources would be considered inappropriate (even if entirely supportive). * Criminal Planning encompasses miscellaneous statements that encourage, condone, or could help people plan or execute specific criminal activities, like arson, kidnapping, or theft. Items should only be considered harmful under this category when they could not be read as violating any of the other harm types above (ex: statements that encourage violence should be considered violating under Violence & Hate rather than this category). How to Use in 'transformers' ---------------------------- > > [!warning] > You need to be logged in to the Hugging Face Hub to use the model. > > > For more details, see this Colab notebook. Evaluation results ------------------ We compare the performance of the model against standard content moderation APIs in the industry, including OpenAI, Azure Content Safety,and PerspectiveAPI from Google on both public and in-house benchmarks. The public benchmarks include ToxicChat and OpenAI Moderation. Note: comparisons are not exactly apples-to-apples due to mismatches in each taxonomy. The interested reader can find a more detailed discussion about this in our paper.
[ "### LLAMA 2 COMMUNITY LICENSE AGREEMENT\n\n\n\"Agreement\" means the terms and conditions for use, reproduction, distribution\nand modification of the Llama Materials set forth herein.\n\n\n\"Documentation\" means the specifications, manuals and documentation\naccompanying Llama 2 distributed by Meta at\nURL\n\n\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity\n(if you are entering into this Agreement on such person or entity's behalf),\nof the age required under applicable laws, rules or regulations to provide\nlegal consent and that has legal authority to bind your employer or such other\nperson or entity if you are entering in this Agreement on their behalf.\n\n\n\"Llama 2\" means the foundational large language models and software and\nalgorithms, including machine-learning model code, trained model weights,\ninference-enabling code, training-enabling code, fine-tuning enabling code and\nother elements of the foregoing distributed by Meta at\nURL\n\n\n\"Llama Materials\" means, collectively, Meta's proprietary Llama 2 and\ndocumentation (and any portion thereof) made available under this Agreement.\n\n\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or,\nif you are an entity, your principal place of business is in the EEA or\nSwitzerland) and Meta Platforms, Inc. (if you are located outside of the EEA\nor Switzerland).\n\n\nBy clicking \"I Accept\" below or by using or distributing any portion or\nelement of the Llama Materials, you agree to be bound by this Agreement.\n\n\n1. License Rights and Redistribution.\n\n\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-\ntransferable and royalty-free limited license under Meta's intellectual\nproperty or other rights owned by Meta embodied in the Llama Materials to\nuse, reproduce, distribute, copy, create derivative works of, and make\nmodifications to the Llama Materials.\n\n\nb. Redistribution and Use.\n\n\ni. If you distribute or make the Llama Materials, or any derivative works\nthereof, available to a third party, you shall provide a copy of this\nAgreement to such third party.\n\n\nii. If you receive Llama Materials, or any derivative works thereof, from a\nLicensee as part of an integrated end user product, then Section 2 of this\nAgreement will not apply to you.\n\n\niii. You must retain in all copies of the Llama Materials that you distribute\nthe following attribution notice within a \"Notice\" text file distributed as a\npart of such copies: \"Llama 2 is licensed under the LLAMA 2 Community\nLicense, Copyright (c) Meta Platforms, Inc. All Rights Reserved.\"\n\n\niv. Your use of the Llama Materials must comply with applicable laws and\nregulations (including trade compliance laws and regulations) and adhere to\nthe Acceptable Use Policy for the Llama Materials (available at\nURL which is hereby incorporated by\nreference into this Agreement.\n\n\nv. You will not use the Llama Materials or any output or results of the Llama\nMaterials to improve any other large language model (excluding Llama 2 or\nderivative works thereof).\n\n\n2. Additional Commercial Terms. If, on the Llama 2 version release date, the\nmonthly active users of the products or services made available by or for\nLicensee, or Licensee's affiliates, is greater than 700 million monthly\nactive users in the preceding calendar month, you must request a license from\nMeta, which Meta may grant to you in its sole discretion, and you are not\nauthorized to exercise any of the rights under this Agreement unless or until\nMeta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA\nMATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \"AS IS\"\nBASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,\nWITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT,\nMERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY\nRESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING\nTHE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE\nLLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE\nUNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE,\nPRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST\nPROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR\nPUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE\nPOSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\n\n\na. No trademark licenses are granted under this Agreement, and in connection\nwith the Llama Materials, neither Meta nor Licensee may use any name or mark\nowned by or associated with the other or any of its affiliates, except as\nrequired for reasonable and customary use in describing and redistributing\nthe Llama Materials.\n\n\nb. Subject to Meta's ownership of Llama Materials and derivatives made by or\nfor Meta, with respect to any derivative works and modifications of the Llama\nMaterials that are made by you, as between you and Meta, you are and will be\nthe owner of such derivative works and modifications.\n\n\nc. If you institute litigation or other proceedings against Meta or any\nentity (including a cross-claim or counterclaim in a lawsuit) alleging that\nthe Llama Materials or Llama 2 outputs or results, or any portion of any of\nthe foregoing, constitutes infringement of intellectual property or other\nrights owned or licensable by you, then any licenses granted to you under\nthis Agreement shall terminate as of the date such litigation or claim is\nfiled or instituted. You will indemnify and hold harmless Meta from and\nagainst any claim by any third party arising out of or related to your use or\ndistribution of the Llama Materials.\n\n\n6. Term and Termination. The term of this Agreement will commence upon your\nacceptance of this Agreement or access to the Llama Materials and will\ncontinue in full force and effect until terminated in accordance with the\nterms and conditions herein. Meta may terminate this Agreement if you are in\nbreach of any term or condition of this Agreement. Upon termination of this\nAgreement, you shall delete and cease use of the Llama Materials. Sections 3,\n4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and\nconstrued under the laws of the State of California without regard to choice\nof law principles, and the UN Convention on Contracts for the International\nSale of Goods does not apply to this Agreement. The courts of California\nshall have exclusive jurisdiction of any dispute arising out of this\nAgreement.", "### Llama 2 Acceptable Use Policy\n\n\nMeta is committed to promoting safe and fair use of its tools and features,\nincluding Llama 2. If you access or use Llama 2, you agree to this Acceptable\nUse Policy (“Policy”). The most recent copy of this policy can be found at\nURL", "#### Prohibited Uses\n\n\nWe want everyone to use Llama 2 safely and responsibly. You agree you will not\nuse, or allow others to use, Llama 2 to:\n\n\n1. Violate the law or others’ rights, including to:\n\t1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n\t\t1. Violence or terrorism\n\t\t2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n\t\t3. Human trafficking, exploitation, and sexual violence\n\t\t4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n\t\t5. Sexual solicitation\n\t\t6. Any other criminal activity\n\t2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\t3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n\t4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n\t5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws\n\t6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama 2 Materials\n\t7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n2. Engage in, promote, incite, facilitate, or assist in the planning or\ndevelopment of activities that present a risk of death or bodily harm to\nindividuals, including use of Llama 2 related to the following:\n\t1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State\n\t2. Guns and illegal weapons (including weapon development)\n\t3. Illegal drugs and regulated/controlled substances\n\t4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n\t5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n\t6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Llama 2 related\nto the following:\n\t1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n\t2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n\t3. Generating, promoting, or further distributing spam\n\t4. Impersonating another individual without consent, authorization, or legal right\n\t5. Representing that the use of Llama 2 or outputs are human-generated\n\t6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n\t7. Fail to appropriately disclose to end users any known dangers of your AI system\n\tPlease report any violation of this Policy, software “bug,” or other problems\n\tthat could lead to a violation of this Policy through one of the following\n\tmeans:\n\t* Reporting issues with the model: URL\n\t* Reporting risky content generated by the model: URL\n\t* Reporting bugs and security concerns: URL\n\t* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama: LlamaUseReport@URL\n\textra\\_gated\\_fields:\n\tFirst Name: text\n\tLast Name: text\n\tDate of birth: date\\_picker\n\tCountry: country\n\tAffiliation: text\n\tgeo: ip\\_location\n\tBy clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox\n\textra\\_gated\\_description: >-\n\tThe information you provide will be collected, stored, processed and shared in\n\taccordance with the Meta Privacy\n\tPolicy.\n\textra\\_gated\\_button\\_content: Submit\n\tlanguage:\n\n\n* en\npipeline\\_tag: text-generation\ntags:\n* facebook\n* meta\n* pytorch\n* llama\n* llama-2\nlicense: llama2\n\n\n\n\n---\n\n\nModel Details\n-------------\n\n\nThis repository contains the model weights both in the vanilla Llama format and the Hugging Face 'transformers' format. If you have not received access, please review this discussion\n\n\nLlama-Guard is a 7B parameter Llama 2-based input-output\nsafeguard model. It can be used for classifying content in both LLM inputs (prompt\nclassification) and in LLM responses (response classification).\nIt acts as an LLM: it generates text in its output that indicates whether a given prompt or\nresponse is safe/unsafe, and if unsafe based on a policy, it also lists the violating subcategories.\nHere is an example:\n\n\n![](Llama-Guard_example.png)\n\n\nIn order to produce classifier scores, we look at the probability for the first token, and turn that\ninto an “unsafe” class probability. Model users can then make binary decisions by applying a\ndesired threshold to the probability scores.\n\n\nTraining and Evaluation\n-----------------------", "### Training Data\n\n\nWe use a mix of prompts that come from the Anthropic\ndataset and redteaming examples that we have collected\nin house, in a separate process from our production redteaming. In particular, we took the\nprompts only from the Anthropic dataset, and generated new responses from our in-house\nLLaMA models, using jailbreaking techniques to elicit violating responses. We then annotated\nAnthropic data (prompts & responses) in house, mapping labels according to the categories\nidentified above. Overall we have ~13K training examples.\n\n\nTaxonomy of harms and Risk Guidelines\n-------------------------------------\n\n\nAs automated content risk mitigation relies on classifiers to make decisions\nabout content in real time, a prerequisite to building these systems is to have\nthe following components:\n\n\n* A taxonomy of risks that are of interest – these become the classes of a\nclassifier.\n* A risk guideline that determines where we put the line between encouraged\nand discouraged outputs for each risk category in the taxonomy.\nTogether with this model, we release an open taxonomy inspired by existing open\ntaxonomies such as those employed by Google, Microsoft and OpenAI in the hope\nthat it can be useful to the community. This taxonomy does not necessarily reflect Meta's\nown internal policies and is meant to demonstrate the value of our method to\ntune LLMs into classifiers that show high performance and high degrees of adaptability to different policies.", "### The Llama-Guard Safety Taxonomy & Risk Guidelines\n\n\nBelow, we provide both the harm types themselves under this taxonomy and also examples of\nthe specific kinds of content that would be considered harmful under each category:\n\n\n* Violence & Hate encompasses statements that encourage or could help people\nplan or engage in violence. Similarly, statements that advocate\ndiscrimination, contain slurs, or voice hateful sentiments against people\nbased on their sensitive personal characteristics (ex: race, color, religion,\nnational origin, sexual orientation, gender, gender identity, or disability)\nwould also be considered inappropriate under this category.\n* Sexual Content encompasses statements encouraging someone (who could be\nunderage) to engage in specific sex acts. Similarly, sexually explicit (i.e.,\nerotic) statements would also be considered inappropriate under this category.\n* Guns & Illegal Weapons encompasses statements that specifically encourage,\ncondone, or could help people plan or execute specific crimes involving the\nillegal acquisition, creation, or use of guns or illegal weapons (ex:\nexplosives, biological agents, or chemical weapons), including instructions on\nhow to create or use them.\n* Regulated or Controlled Substances encompasses statements that\nspecifically encourage or could help people to illegally produce, transfer, or\nconsume regulated or controlled substances like illegal drugs, tobacco,\nalcohol, or cannabis.\n* Suicide & Self Harm encompasses statements that encourage, condone, or\nenable people to harm themselves (ex: by providing instructions or information\non methods of self-harm). When people express or imply an intent to harm\nthemselves, any response other than one that provides links to appropriate\nhealth resources would be considered inappropriate (even if entirely\nsupportive).\n* Criminal Planning encompasses miscellaneous statements that encourage,\ncondone, or could help people plan or execute specific criminal activities,\nlike arson, kidnapping, or theft. Items should only be considered harmful\nunder this category when they could not be read as violating any of the other\nharm types above (ex: statements that encourage violence should be considered\nviolating under Violence & Hate rather than this category).\n\n\nHow to Use in 'transformers'\n----------------------------\n\n\n\n> \n> [!warning]\n> You need to be logged in to the Hugging Face Hub to use the model.\n> \n> \n> \n\n\nFor more details, see this Colab notebook.\n\n\nEvaluation results\n------------------\n\n\nWe compare the performance of the model against standard content moderation APIs\nin the industry, including\nOpenAI, Azure Content Safety,and PerspectiveAPI from Google on both public and in-house benchmarks. The public benchmarks\ninclude ToxicChat and\nOpenAI Moderation.\n\n\nNote: comparisons are not exactly apples-to-apples due to mismatches in each\ntaxonomy. The interested reader can find a more detailed discussion about this\nin our paper." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-2307.09288 #arxiv-2312.04724 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "### LLAMA 2 COMMUNITY LICENSE AGREEMENT\n\n\n\"Agreement\" means the terms and conditions for use, reproduction, distribution\nand modification of the Llama Materials set forth herein.\n\n\n\"Documentation\" means the specifications, manuals and documentation\naccompanying Llama 2 distributed by Meta at\nURL\n\n\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity\n(if you are entering into this Agreement on such person or entity's behalf),\nof the age required under applicable laws, rules or regulations to provide\nlegal consent and that has legal authority to bind your employer or such other\nperson or entity if you are entering in this Agreement on their behalf.\n\n\n\"Llama 2\" means the foundational large language models and software and\nalgorithms, including machine-learning model code, trained model weights,\ninference-enabling code, training-enabling code, fine-tuning enabling code and\nother elements of the foregoing distributed by Meta at\nURL\n\n\n\"Llama Materials\" means, collectively, Meta's proprietary Llama 2 and\ndocumentation (and any portion thereof) made available under this Agreement.\n\n\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or,\nif you are an entity, your principal place of business is in the EEA or\nSwitzerland) and Meta Platforms, Inc. (if you are located outside of the EEA\nor Switzerland).\n\n\nBy clicking \"I Accept\" below or by using or distributing any portion or\nelement of the Llama Materials, you agree to be bound by this Agreement.\n\n\n1. License Rights and Redistribution.\n\n\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-\ntransferable and royalty-free limited license under Meta's intellectual\nproperty or other rights owned by Meta embodied in the Llama Materials to\nuse, reproduce, distribute, copy, create derivative works of, and make\nmodifications to the Llama Materials.\n\n\nb. Redistribution and Use.\n\n\ni. If you distribute or make the Llama Materials, or any derivative works\nthereof, available to a third party, you shall provide a copy of this\nAgreement to such third party.\n\n\nii. If you receive Llama Materials, or any derivative works thereof, from a\nLicensee as part of an integrated end user product, then Section 2 of this\nAgreement will not apply to you.\n\n\niii. You must retain in all copies of the Llama Materials that you distribute\nthe following attribution notice within a \"Notice\" text file distributed as a\npart of such copies: \"Llama 2 is licensed under the LLAMA 2 Community\nLicense, Copyright (c) Meta Platforms, Inc. All Rights Reserved.\"\n\n\niv. Your use of the Llama Materials must comply with applicable laws and\nregulations (including trade compliance laws and regulations) and adhere to\nthe Acceptable Use Policy for the Llama Materials (available at\nURL which is hereby incorporated by\nreference into this Agreement.\n\n\nv. You will not use the Llama Materials or any output or results of the Llama\nMaterials to improve any other large language model (excluding Llama 2 or\nderivative works thereof).\n\n\n2. Additional Commercial Terms. If, on the Llama 2 version release date, the\nmonthly active users of the products or services made available by or for\nLicensee, or Licensee's affiliates, is greater than 700 million monthly\nactive users in the preceding calendar month, you must request a license from\nMeta, which Meta may grant to you in its sole discretion, and you are not\nauthorized to exercise any of the rights under this Agreement unless or until\nMeta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA\nMATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \"AS IS\"\nBASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,\nWITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT,\nMERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY\nRESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING\nTHE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE\nLLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE\nUNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE,\nPRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST\nPROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR\nPUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE\nPOSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\n\n\na. No trademark licenses are granted under this Agreement, and in connection\nwith the Llama Materials, neither Meta nor Licensee may use any name or mark\nowned by or associated with the other or any of its affiliates, except as\nrequired for reasonable and customary use in describing and redistributing\nthe Llama Materials.\n\n\nb. Subject to Meta's ownership of Llama Materials and derivatives made by or\nfor Meta, with respect to any derivative works and modifications of the Llama\nMaterials that are made by you, as between you and Meta, you are and will be\nthe owner of such derivative works and modifications.\n\n\nc. If you institute litigation or other proceedings against Meta or any\nentity (including a cross-claim or counterclaim in a lawsuit) alleging that\nthe Llama Materials or Llama 2 outputs or results, or any portion of any of\nthe foregoing, constitutes infringement of intellectual property or other\nrights owned or licensable by you, then any licenses granted to you under\nthis Agreement shall terminate as of the date such litigation or claim is\nfiled or instituted. You will indemnify and hold harmless Meta from and\nagainst any claim by any third party arising out of or related to your use or\ndistribution of the Llama Materials.\n\n\n6. Term and Termination. The term of this Agreement will commence upon your\nacceptance of this Agreement or access to the Llama Materials and will\ncontinue in full force and effect until terminated in accordance with the\nterms and conditions herein. Meta may terminate this Agreement if you are in\nbreach of any term or condition of this Agreement. Upon termination of this\nAgreement, you shall delete and cease use of the Llama Materials. Sections 3,\n4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and\nconstrued under the laws of the State of California without regard to choice\nof law principles, and the UN Convention on Contracts for the International\nSale of Goods does not apply to this Agreement. The courts of California\nshall have exclusive jurisdiction of any dispute arising out of this\nAgreement.", "### Llama 2 Acceptable Use Policy\n\n\nMeta is committed to promoting safe and fair use of its tools and features,\nincluding Llama 2. If you access or use Llama 2, you agree to this Acceptable\nUse Policy (“Policy”). The most recent copy of this policy can be found at\nURL", "#### Prohibited Uses\n\n\nWe want everyone to use Llama 2 safely and responsibly. You agree you will not\nuse, or allow others to use, Llama 2 to:\n\n\n1. Violate the law or others’ rights, including to:\n\t1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n\t\t1. Violence or terrorism\n\t\t2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n\t\t3. Human trafficking, exploitation, and sexual violence\n\t\t4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n\t\t5. Sexual solicitation\n\t\t6. Any other criminal activity\n\t2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\t3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n\t4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n\t5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws\n\t6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama 2 Materials\n\t7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n2. Engage in, promote, incite, facilitate, or assist in the planning or\ndevelopment of activities that present a risk of death or bodily harm to\nindividuals, including use of Llama 2 related to the following:\n\t1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State\n\t2. Guns and illegal weapons (including weapon development)\n\t3. Illegal drugs and regulated/controlled substances\n\t4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n\t5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n\t6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Llama 2 related\nto the following:\n\t1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n\t2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n\t3. Generating, promoting, or further distributing spam\n\t4. Impersonating another individual without consent, authorization, or legal right\n\t5. Representing that the use of Llama 2 or outputs are human-generated\n\t6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n\t7. Fail to appropriately disclose to end users any known dangers of your AI system\n\tPlease report any violation of this Policy, software “bug,” or other problems\n\tthat could lead to a violation of this Policy through one of the following\n\tmeans:\n\t* Reporting issues with the model: URL\n\t* Reporting risky content generated by the model: URL\n\t* Reporting bugs and security concerns: URL\n\t* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama: LlamaUseReport@URL\n\textra\\_gated\\_fields:\n\tFirst Name: text\n\tLast Name: text\n\tDate of birth: date\\_picker\n\tCountry: country\n\tAffiliation: text\n\tgeo: ip\\_location\n\tBy clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox\n\textra\\_gated\\_description: >-\n\tThe information you provide will be collected, stored, processed and shared in\n\taccordance with the Meta Privacy\n\tPolicy.\n\textra\\_gated\\_button\\_content: Submit\n\tlanguage:\n\n\n* en\npipeline\\_tag: text-generation\ntags:\n* facebook\n* meta\n* pytorch\n* llama\n* llama-2\nlicense: llama2\n\n\n\n\n---\n\n\nModel Details\n-------------\n\n\nThis repository contains the model weights both in the vanilla Llama format and the Hugging Face 'transformers' format. If you have not received access, please review this discussion\n\n\nLlama-Guard is a 7B parameter Llama 2-based input-output\nsafeguard model. It can be used for classifying content in both LLM inputs (prompt\nclassification) and in LLM responses (response classification).\nIt acts as an LLM: it generates text in its output that indicates whether a given prompt or\nresponse is safe/unsafe, and if unsafe based on a policy, it also lists the violating subcategories.\nHere is an example:\n\n\n![](Llama-Guard_example.png)\n\n\nIn order to produce classifier scores, we look at the probability for the first token, and turn that\ninto an “unsafe” class probability. Model users can then make binary decisions by applying a\ndesired threshold to the probability scores.\n\n\nTraining and Evaluation\n-----------------------", "### Training Data\n\n\nWe use a mix of prompts that come from the Anthropic\ndataset and redteaming examples that we have collected\nin house, in a separate process from our production redteaming. In particular, we took the\nprompts only from the Anthropic dataset, and generated new responses from our in-house\nLLaMA models, using jailbreaking techniques to elicit violating responses. We then annotated\nAnthropic data (prompts & responses) in house, mapping labels according to the categories\nidentified above. Overall we have ~13K training examples.\n\n\nTaxonomy of harms and Risk Guidelines\n-------------------------------------\n\n\nAs automated content risk mitigation relies on classifiers to make decisions\nabout content in real time, a prerequisite to building these systems is to have\nthe following components:\n\n\n* A taxonomy of risks that are of interest – these become the classes of a\nclassifier.\n* A risk guideline that determines where we put the line between encouraged\nand discouraged outputs for each risk category in the taxonomy.\nTogether with this model, we release an open taxonomy inspired by existing open\ntaxonomies such as those employed by Google, Microsoft and OpenAI in the hope\nthat it can be useful to the community. This taxonomy does not necessarily reflect Meta's\nown internal policies and is meant to demonstrate the value of our method to\ntune LLMs into classifiers that show high performance and high degrees of adaptability to different policies.", "### The Llama-Guard Safety Taxonomy & Risk Guidelines\n\n\nBelow, we provide both the harm types themselves under this taxonomy and also examples of\nthe specific kinds of content that would be considered harmful under each category:\n\n\n* Violence & Hate encompasses statements that encourage or could help people\nplan or engage in violence. Similarly, statements that advocate\ndiscrimination, contain slurs, or voice hateful sentiments against people\nbased on their sensitive personal characteristics (ex: race, color, religion,\nnational origin, sexual orientation, gender, gender identity, or disability)\nwould also be considered inappropriate under this category.\n* Sexual Content encompasses statements encouraging someone (who could be\nunderage) to engage in specific sex acts. Similarly, sexually explicit (i.e.,\nerotic) statements would also be considered inappropriate under this category.\n* Guns & Illegal Weapons encompasses statements that specifically encourage,\ncondone, or could help people plan or execute specific crimes involving the\nillegal acquisition, creation, or use of guns or illegal weapons (ex:\nexplosives, biological agents, or chemical weapons), including instructions on\nhow to create or use them.\n* Regulated or Controlled Substances encompasses statements that\nspecifically encourage or could help people to illegally produce, transfer, or\nconsume regulated or controlled substances like illegal drugs, tobacco,\nalcohol, or cannabis.\n* Suicide & Self Harm encompasses statements that encourage, condone, or\nenable people to harm themselves (ex: by providing instructions or information\non methods of self-harm). When people express or imply an intent to harm\nthemselves, any response other than one that provides links to appropriate\nhealth resources would be considered inappropriate (even if entirely\nsupportive).\n* Criminal Planning encompasses miscellaneous statements that encourage,\ncondone, or could help people plan or execute specific criminal activities,\nlike arson, kidnapping, or theft. Items should only be considered harmful\nunder this category when they could not be read as violating any of the other\nharm types above (ex: statements that encourage violence should be considered\nviolating under Violence & Hate rather than this category).\n\n\nHow to Use in 'transformers'\n----------------------------\n\n\n\n> \n> [!warning]\n> You need to be logged in to the Hugging Face Hub to use the model.\n> \n> \n> \n\n\nFor more details, see this Colab notebook.\n\n\nEvaluation results\n------------------\n\n\nWe compare the performance of the model against standard content moderation APIs\nin the industry, including\nOpenAI, Azure Content Safety,and PerspectiveAPI from Google on both public and in-house benchmarks. The public benchmarks\ninclude ToxicChat and\nOpenAI Moderation.\n\n\nNote: comparisons are not exactly apples-to-apples due to mismatches in each\ntaxonomy. The interested reader can find a more detailed discussion about this\nin our paper." ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Akila/ForgottenRealmsWikiDataset data_files: - specific_formats/FRW-J-alpaca.jsonl type: alpaca dataset_prepared_path: val_set_size: 0.1 output_dir: ./qlora-out-2 hub_model_id: Akila/Mistral-of-Realms-7b-Instruct-v0.2 adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` </details><br> # Mistral-of-Realms-7b-Instruct-v0.2 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7354 | 0.0 | 1 | 2.6820 | | 2.09 | 0.25 | 54 | 2.0999 | | 2.0349 | 0.51 | 108 | 2.0430 | | 1.9577 | 0.76 | 162 | 2.0063 | | 1.9934 | 1.01 | 216 | 1.9789 | | 1.9108 | 1.25 | 270 | 1.9643 | | 1.8713 | 1.5 | 324 | 1.9539 | | 1.8648 | 1.75 | 378 | 1.9502 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "apache-2.0", "library_name": "peft", "tags": ["axolotl", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "Mistral-of-Realms-7b-Instruct-v0.2", "results": []}]}
Akila/Mistral-of-Realms-7b-Instruct-v0.2-gguf
null
[ "peft", "gguf", "mistral", "axolotl", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-04-21T07:53:28+00:00
[]
[]
TAGS #peft #gguf #mistral #axolotl #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-apache-2.0 #region-us
<img src="URL alt="Built with Axolotl" width="200" height="32"/> See axolotl config axolotl version: '0.4.0' Mistral-of-Realms-7b-Instruct-v0.2 ================================== This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.9502 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 8 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_steps: 10 * num\_epochs: 2 ### Training results ### Framework versions * PEFT 0.10.0 * Transformers 4.40.0.dev0 * Pytorch 2.2.0+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.2.0+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#peft #gguf #mistral #axolotl #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.2.0+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speaker_task This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.065 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 396 | 1.3015 | | 1.3232 | 2.0 | 792 | 0.9507 | | 0.4955 | 3.0 | 1188 | 1.0429 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.1 - Pytorch 2.1.0+cu121 - Datasets 2.9.0 - Tokenizers 0.15.1
{"library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "speaker_task", "results": []}]}
tutrinh/speaker_task
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-04-21T07:54:29+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.2 #region-us
speaker\_task ============= This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.0429 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.065 * num\_epochs: 3 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * PEFT 0.7.2.dev0 * Transformers 4.37.1 * Pytorch 2.1.0+cu121 * Datasets 2.9.0 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.065\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.2.dev0\n* Transformers 4.37.1\n* Pytorch 2.1.0+cu121\n* Datasets 2.9.0\n* Tokenizers 0.15.1" ]
[ "TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.2 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.065\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.2.dev0\n* Transformers 4.37.1\n* Pytorch 2.1.0+cu121\n* Datasets 2.9.0\n* Tokenizers 0.15.1" ]
text-to-image
diffusers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "diffusers"}
Niggendar/animeConfettiComrade_v3
null
[ "diffusers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-04-21T07:55:41+00:00
[ "1910.09700" ]
[]
TAGS #diffusers #safetensors #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#diffusers #safetensors #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
automatic-speech-recognition
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Abhinay123/wav2vec2_vedas_iast_epoch_3_step_1399
null
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:00:23+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #wav2vec2 #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #wav2vec2 #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
stanoh/codeparrot-small
null
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:00:52+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Crysiss/llama-3-8b-sql
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:02:36+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Aspik101/llamaft6v2
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:07:22+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# Uploaded model - **Developed by:** Glacierz - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
Glacierz/llama-3-8b-han-16bit
null
[ "transformers", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:08:15+00:00
[]
[ "en" ]
TAGS #transformers #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: Glacierz - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: Glacierz\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: Glacierz\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ntvcie/gemma2bVinh01
null
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-21T08:09:17+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
fastai
# Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
{"tags": ["fastai"]}
ancebuc/grapes-segmentation
null
[ "fastai", "has_space", "region:us" ]
null
2024-04-21T08:15:07+00:00
[]
[]
TAGS #fastai #has_space #region-us
# Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the documentation here)! 2. Create a demo in Gradio or Streamlit using Spaces (documentation here). 3. Join the fastai community on the Fastai Discord! Greetings fellow fastlearner ! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
[ "# Amazing!\n\n Congratulations on hosting your fastai model on the Hugging Face Hub!", "# Some next steps\n1. Fill out this model card with more information (see the template below and the documentation here)!\n\n2. Create a demo in Gradio or Streamlit using Spaces (documentation here).\n\n3. Join the fastai community on the Fastai Discord!\n\nGreetings fellow fastlearner ! Don't forget to delete this content from your model card.\n\n\n---", "# Model card", "## Model description\nMore information needed", "## Intended uses & limitations\nMore information needed", "## Training and evaluation data\nMore information needed" ]
[ "TAGS\n#fastai #has_space #region-us \n", "# Amazing!\n\n Congratulations on hosting your fastai model on the Hugging Face Hub!", "# Some next steps\n1. Fill out this model card with more information (see the template below and the documentation here)!\n\n2. Create a demo in Gradio or Streamlit using Spaces (documentation here).\n\n3. Join the fastai community on the Fastai Discord!\n\nGreetings fellow fastlearner ! Don't forget to delete this content from your model card.\n\n\n---", "# Model card", "## Model description\nMore information needed", "## Intended uses & limitations\nMore information needed", "## Training and evaluation data\nMore information needed" ]
null
adapter-transformers
# Adapter `ltuzova/classification_tapt_seqbn_adapter_full_train` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [BigTMiami/amazon_helpfulness](https://huggingface.co/datasets/BigTMiami/amazon_helpfulness/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library. ## Usage First, install `adapters`: ``` pip install -U adapters ``` Now, the adapter can be loaded and activated like this: ```python from adapters import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("ltuzova/classification_tapt_seqbn_adapter_full_train", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["adapter-transformers", "roberta"], "datasets": ["BigTMiami/amazon_helpfulness"]}
ltuzova/classification_tapt_seqbn_adapter_full_train
null
[ "adapter-transformers", "roberta", "dataset:BigTMiami/amazon_helpfulness", "region:us" ]
null
2024-04-21T08:15:42+00:00
[]
[]
TAGS #adapter-transformers #roberta #dataset-BigTMiami/amazon_helpfulness #region-us
# Adapter 'ltuzova/classification_tapt_seqbn_adapter_full_train' for roberta-base An adapter for the 'roberta-base' model that was trained on the BigTMiami/amazon_helpfulness dataset and includes a prediction head for classification. This adapter was created for usage with the Adapters library. ## Usage First, install 'adapters': Now, the adapter can be loaded and activated like this: ## Architecture & Training ## Evaluation results
[ "# Adapter 'ltuzova/classification_tapt_seqbn_adapter_full_train' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the BigTMiami/amazon_helpfulness dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the Adapters library.", "## Usage\n\nFirst, install 'adapters':\n\n\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ "TAGS\n#adapter-transformers #roberta #dataset-BigTMiami/amazon_helpfulness #region-us \n", "# Adapter 'ltuzova/classification_tapt_seqbn_adapter_full_train' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the BigTMiami/amazon_helpfulness dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the Adapters library.", "## Usage\n\nFirst, install 'adapters':\n\n\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.2_esnli_5000_3ep_1.5e-6 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"tags": ["trl", "sft", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "Mistral-7B-Instruct-v0.2_esnli_5000_3ep_1.5e-6", "results": []}]}
mohsenfayyaz/Mistral-7B-Instruct-v0.2_esnli_5000_3ep_1.5e-6
null
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:15:59+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #trl #sft #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Mistral-7B-Instruct-v0.2_esnli_5000_3ep_1.5e-6 This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
[ "# Mistral-7B-Instruct-v0.2_esnli_5000_3ep_1.5e-6\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.5e-06\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 0\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.38.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.17.1\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #trl #sft #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Mistral-7B-Instruct-v0.2_esnli_5000_3ep_1.5e-6\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.5e-06\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 0\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.38.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.17.1\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ntvcie/gemma2bVinh02
null
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-21T08:16:09+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [BruceSuperProgrammer/vit-base-beans](https://huggingface.co/BruceSuperProgrammer/vit-base-beans) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 1.4090 - Accuracy: 0.7143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["image-classification", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "BruceSuperProgrammer/vit-base-beans", "model-index": [{"name": "vit-base-beans", "results": []}]}
BruceSuperProgrammer/vit-base-beans
null
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:BruceSuperProgrammer/vit-base-beans", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:16:44+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #base_model-BruceSuperProgrammer/vit-base-beans #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# vit-base-beans This model is a fine-tuned version of BruceSuperProgrammer/vit-base-beans on the beans dataset. It achieves the following results on the evaluation set: - Loss: 1.4090 - Accuracy: 0.7143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
[ "# vit-base-beans\n\nThis model is a fine-tuned version of BruceSuperProgrammer/vit-base-beans on the beans dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 1.4090\n- Accuracy: 0.7143", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #base_model-BruceSuperProgrammer/vit-base-beans #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# vit-base-beans\n\nThis model is a fine-tuned version of BruceSuperProgrammer/vit-base-beans on the beans dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 1.4090\n- Accuracy: 0.7143", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ### Direct Use # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("health360/Sehty360-llama-3-8b-arabic-health-instruct") model = AutoModelForCausalLM.from_pretrained("health360/Sehty360-llama-3-8b-arabic-health-instruct", device_map='auto', torch_dtype=torch.bfloat16) text = """ ### Input: سلام عليكم اشعر بضيق في التنفس واعاني من كثرة البلغم ### Response: """ stop_word = "###END###" # Encode the input text inputs = tokenizer(text, return_tensors='pt').to('cuda:0') # Remove token type ids if present, not all models use them inputs.pop("token_type_ids", None) # Generating outputs with stopping criteria outputs = model.generate( **inputs, max_new_tokens=512, do_sample=False, early_stopping=True, temperature=0.8, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.encode(stop_word, add_special_tokens=False)[0] # Set EOS token to your stop word ) outputs = tokenizer.decode(outputs[0], skip_special_tokens=True) print(outputs) ### Input: سلام عليكم اشعر بضيق في التنفس واعاني من كثرة البلغم ### Response: وعليكم السلام! أنا هنا لمساعدتك. ضيق التنفس مع وجود بلغم يمكن أن يكون مؤشراً على وجود عدوى في الرئة أو القصبات. أوصي بأن تقوم بزيارة طبيب مختص بأمراض الرئة والصدرية للحصول على تشخيص دقيق. يمكن للطبيب أن يطلب إجراء فحوصات دم، أشعة على الصدر، أو حتى اختبارات أخرى مثل تخطيط الرئة لتحديد نوع العدوى والمضاد المناسب لها. إذا كنت ترغب، يمكنني مساعدتك في العثور على طبيب مختص بأمراض الرئة والصدرية في منطقتك. هل تود معرفة معلومات عن الأطباء المتاحين في منطقتك؟ ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"language": ["ar"], "library_name": "transformers"}
health360/Sehty360-llama-3-8b-arabic-health-instruct
null
[ "transformers", "safetensors", "llama", "text-generation", "ar", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:17:01+00:00
[ "1910.09700" ]
[ "ar" ]
TAGS #transformers #safetensors #llama #text-generation #ar #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ### Direct Use # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("health360/Sehty360-llama-3-8b-arabic-health-instruct") model = AutoModelForCausalLM.from_pretrained("health360/Sehty360-llama-3-8b-arabic-health-instruct", device_map='auto', torch_dtype=torch.bfloat16) text = """ ### Input: سلام عليكم اشعر بضيق في التنفس واعاني من كثرة البلغم ### Response: """ stop_word = "###END###" # Encode the input text inputs = tokenizer(text, return_tensors='pt').to('cuda:0') # Remove token type ids if present, not all models use them URL("token_type_ids", None) # Generating outputs with stopping criteria outputs = model.generate( inputs, max_new_tokens=512, do_sample=False, early_stopping=True, temperature=0.8, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=URL(stop_word, add_special_tokens=False)[0] # Set EOS token to your stop word ) outputs = URL(outputs[0], skip_special_tokens=True) print(outputs) ### Input: سلام عليكم اشعر بضيق في التنفس واعاني من كثرة البلغم ### Response: وعليكم السلام! أنا هنا لمساعدتك. ضيق التنفس مع وجود بلغم يمكن أن يكون مؤشراً على وجود عدوى في الرئة أو القصبات. أوصي بأن تقوم بزيارة طبيب مختص بأمراض الرئة والصدرية للحصول على تشخيص دقيق. يمكن للطبيب أن يطلب إجراء فحوصات دم، أشعة على الصدر، أو حتى اختبارات أخرى مثل تخطيط الرئة لتحديد نوع العدوى والمضاد المناسب لها. إذا كنت ترغب، يمكنني مساعدتك في العثور على طبيب مختص بأمراض الرئة والصدرية في منطقتك. هل تود معرفة معلومات عن الأطباء المتاحين في منطقتك؟ ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "### Direct Use", "# Load model directly\nfrom transformers import AutoTokenizer, AutoModelForCausalLM\nimport torch\ntokenizer = AutoTokenizer.from_pretrained(\"health360/Sehty360-llama-3-8b-arabic-health-instruct\")\nmodel = AutoModelForCausalLM.from_pretrained(\"health360/Sehty360-llama-3-8b-arabic-health-instruct\", device_map='auto', torch_dtype=torch.bfloat16)\n\ntext = \"\"\"", "### Input:\nسلام عليكم اشعر بضيق في التنفس واعاني من كثرة البلغم", "### Response:\n\"\"\"\nstop_word = \"###END###\"", "# Encode the input text\ninputs = tokenizer(text, return_tensors='pt').to('cuda:0')", "# Remove token type ids if present, not all models use them\nURL(\"token_type_ids\", None)", "# Generating outputs with stopping criteria\noutputs = model.generate(\n inputs,\n max_new_tokens=512,\n do_sample=False,\n early_stopping=True,\n temperature=0.8,\n top_k=50,\n top_p=0.95,\n num_return_sequences=1,\n eos_token_id=URL(stop_word, add_special_tokens=False)[0] # Set EOS token to your stop word\n)\noutputs = URL(outputs[0], skip_special_tokens=True)\nprint(outputs)", "### Input:\nسلام عليكم اشعر بضيق في التنفس واعاني من كثرة البلغم", "### Response:\nوعليكم السلام! أنا هنا لمساعدتك. ضيق التنفس مع وجود بلغم يمكن أن يكون مؤشراً على وجود عدوى في الرئة أو القصبات.\n\nأوصي بأن تقوم بزيارة طبيب مختص بأمراض الرئة والصدرية للحصول على تشخيص دقيق. يمكن للطبيب أن يطلب إجراء فحوصات دم، أشعة على الصدر، أو حتى اختبارات أخرى مثل تخطيط الرئة لتحديد نوع العدوى والمضاد المناسب لها.\n\nإذا كنت ترغب، يمكنني مساعدتك في العثور على طبيب مختص بأمراض الرئة والصدرية في منطقتك. هل تود معرفة معلومات عن الأطباء المتاحين في منطقتك؟", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #ar #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "### Direct Use", "# Load model directly\nfrom transformers import AutoTokenizer, AutoModelForCausalLM\nimport torch\ntokenizer = AutoTokenizer.from_pretrained(\"health360/Sehty360-llama-3-8b-arabic-health-instruct\")\nmodel = AutoModelForCausalLM.from_pretrained(\"health360/Sehty360-llama-3-8b-arabic-health-instruct\", device_map='auto', torch_dtype=torch.bfloat16)\n\ntext = \"\"\"", "### Input:\nسلام عليكم اشعر بضيق في التنفس واعاني من كثرة البلغم", "### Response:\n\"\"\"\nstop_word = \"###END###\"", "# Encode the input text\ninputs = tokenizer(text, return_tensors='pt').to('cuda:0')", "# Remove token type ids if present, not all models use them\nURL(\"token_type_ids\", None)", "# Generating outputs with stopping criteria\noutputs = model.generate(\n inputs,\n max_new_tokens=512,\n do_sample=False,\n early_stopping=True,\n temperature=0.8,\n top_k=50,\n top_p=0.95,\n num_return_sequences=1,\n eos_token_id=URL(stop_word, add_special_tokens=False)[0] # Set EOS token to your stop word\n)\noutputs = URL(outputs[0], skip_special_tokens=True)\nprint(outputs)", "### Input:\nسلام عليكم اشعر بضيق في التنفس واعاني من كثرة البلغم", "### Response:\nوعليكم السلام! أنا هنا لمساعدتك. ضيق التنفس مع وجود بلغم يمكن أن يكون مؤشراً على وجود عدوى في الرئة أو القصبات.\n\nأوصي بأن تقوم بزيارة طبيب مختص بأمراض الرئة والصدرية للحصول على تشخيص دقيق. يمكن للطبيب أن يطلب إجراء فحوصات دم، أشعة على الصدر، أو حتى اختبارات أخرى مثل تخطيط الرئة لتحديد نوع العدوى والمضاد المناسب لها.\n\nإذا كنت ترغب، يمكنني مساعدتك في العثور على طبيب مختص بأمراض الرئة والصدرية في منطقتك. هل تود معرفة معلومات عن الأطباء المتاحين في منطقتك؟", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
cilantro9246/plkx33n
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:18:24+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Uploaded model - **Developed by:** HeshamHaroon - **License:** apache-2.0
{"language": ["en", "ar"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "sft"], "datasets": ["Yasbok/Alpaca_arabic_instruct"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
HeshamHaroon/Arabic-llama3
null
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "ar", "dataset:Yasbok/Alpaca_arabic_instruct", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2024-04-21T08:21:48+00:00
[]
[ "en", "ar" ]
TAGS #transformers #pytorch #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #ar #dataset-Yasbok/Alpaca_arabic_instruct #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Uploaded model - Developed by: HeshamHaroon - License: apache-2.0
[ "# Uploaded model\n\n- Developed by: HeshamHaroon\n- License: apache-2.0" ]
[ "TAGS\n#transformers #pytorch #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #ar #dataset-Yasbok/Alpaca_arabic_instruct #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Uploaded model\n\n- Developed by: HeshamHaroon\n- License: apache-2.0" ]
text-generation
transformers
# Llama3 from 8B to 12B ![logo](assets/logo.png) We created a model from other cool models to combine everything into one cool model. ## Model Details ### Model Description - **Developed by:** [@ehristoforu](https://huggingface.co/ehristoforu) - **Model type:** Text Generation (conversational) - **Language(s) (NLP):** English, Russian - **Finetuned from model:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) ## How to Get Started with the Model Use the code below to get started with the model. ```py from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "ehristoforu/llama-3-12b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ## About merge Base model: Meta-Llama-3-8B-Instruct Merge models: - Muhammad2003/Llama3-8B-OpenHermes-DPO - IlyaGusev/saiga_llama3_8b - NousResearch/Meta-Llama-3-8B-Instruct - abacusai/Llama-3-Smaug-8B - vicgalle/Configurable-Llama-3-8B-v0.2 - cognitivecomputations/dolphin-2.9-llama3-8b - NeuralNovel/Llama-3-NeuralPaca-8b Merge datasets: - mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha - tatsu-lab/alpaca - vicgalle/configurable-system-prompt-multitask - IlyaGusev/ru_turbo_saiga - IlyaGusev/ru_sharegpt_cleaned - IlyaGusev/oasst1_ru_main_branch - IlyaGusev/gpt_roleplay_realm - lksy/ru_instruct_gpt4
{"language": ["en", "ru"], "license": "apache-2.0", "library_name": "transformers", "tags": ["llama", "llama3", "llama3-12b", "instruct", "merge"], "datasets": ["mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha", "tatsu-lab/alpaca", "vicgalle/configurable-system-prompt-multitask", "IlyaGusev/ru_turbo_saiga", "IlyaGusev/ru_sharegpt_cleaned", "IlyaGusev/oasst1_ru_main_branch", "IlyaGusev/gpt_roleplay_realm", "lksy/ru_instruct_gpt4"], "base_model": ["Muhammad2003/Llama3-8B-OpenHermes-DPO", "IlyaGusev/saiga_llama3_8b", "NousResearch/Meta-Llama-3-8B-Instruct", "abacusai/Llama-3-Smaug-8B", "vicgalle/Configurable-Llama-3-8B-v0.2", "cognitivecomputations/dolphin-2.9-llama3-8b", "NeuralNovel/Llama-3-NeuralPaca-8b"], "pipeline_tag": "text-generation"}
ehristoforu/llama-3-12b-instruct
null
[ "transformers", "safetensors", "llama", "text-generation", "llama3", "llama3-12b", "instruct", "merge", "conversational", "en", "ru", "dataset:mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha", "dataset:tatsu-lab/alpaca", "dataset:vicgalle/configurable-system-prompt-multitask", "dataset:IlyaGusev/ru_turbo_saiga", "dataset:IlyaGusev/ru_sharegpt_cleaned", "dataset:IlyaGusev/oasst1_ru_main_branch", "dataset:IlyaGusev/gpt_roleplay_realm", "dataset:lksy/ru_instruct_gpt4", "base_model:Muhammad2003/Llama3-8B-OpenHermes-DPO", "base_model:IlyaGusev/saiga_llama3_8b", "base_model:NousResearch/Meta-Llama-3-8B-Instruct", "base_model:abacusai/Llama-3-Smaug-8B", "base_model:vicgalle/Configurable-Llama-3-8B-v0.2", "base_model:cognitivecomputations/dolphin-2.9-llama3-8b", "base_model:NeuralNovel/Llama-3-NeuralPaca-8b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:28:45+00:00
[]
[ "en", "ru" ]
TAGS #transformers #safetensors #llama #text-generation #llama3 #llama3-12b #instruct #merge #conversational #en #ru #dataset-mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha #dataset-tatsu-lab/alpaca #dataset-vicgalle/configurable-system-prompt-multitask #dataset-IlyaGusev/ru_turbo_saiga #dataset-IlyaGusev/ru_sharegpt_cleaned #dataset-IlyaGusev/oasst1_ru_main_branch #dataset-IlyaGusev/gpt_roleplay_realm #dataset-lksy/ru_instruct_gpt4 #base_model-Muhammad2003/Llama3-8B-OpenHermes-DPO #base_model-IlyaGusev/saiga_llama3_8b #base_model-NousResearch/Meta-Llama-3-8B-Instruct #base_model-abacusai/Llama-3-Smaug-8B #base_model-vicgalle/Configurable-Llama-3-8B-v0.2 #base_model-cognitivecomputations/dolphin-2.9-llama3-8b #base_model-NeuralNovel/Llama-3-NeuralPaca-8b #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Llama3 from 8B to 12B !logo We created a model from other cool models to combine everything into one cool model. ## Model Details ### Model Description - Developed by: @ehristoforu - Model type: Text Generation (conversational) - Language(s) (NLP): English, Russian - Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct ## How to Get Started with the Model Use the code below to get started with the model. ## About merge Base model: Meta-Llama-3-8B-Instruct Merge models: - Muhammad2003/Llama3-8B-OpenHermes-DPO - IlyaGusev/saiga_llama3_8b - NousResearch/Meta-Llama-3-8B-Instruct - abacusai/Llama-3-Smaug-8B - vicgalle/Configurable-Llama-3-8B-v0.2 - cognitivecomputations/dolphin-2.9-llama3-8b - NeuralNovel/Llama-3-NeuralPaca-8b Merge datasets: - mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha - tatsu-lab/alpaca - vicgalle/configurable-system-prompt-multitask - IlyaGusev/ru_turbo_saiga - IlyaGusev/ru_sharegpt_cleaned - IlyaGusev/oasst1_ru_main_branch - IlyaGusev/gpt_roleplay_realm - lksy/ru_instruct_gpt4
[ "# Llama3 from 8B to 12B\n\n!logo\n\nWe created a model from other cool models to combine everything into one cool model.", "## Model Details", "### Model Description\n\n- Developed by: @ehristoforu\n- Model type: Text Generation (conversational)\n- Language(s) (NLP): English, Russian\n- Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## About merge\n\nBase model: Meta-Llama-3-8B-Instruct\n\nMerge models:\n- Muhammad2003/Llama3-8B-OpenHermes-DPO\n- IlyaGusev/saiga_llama3_8b\n- NousResearch/Meta-Llama-3-8B-Instruct\n- abacusai/Llama-3-Smaug-8B\n- vicgalle/Configurable-Llama-3-8B-v0.2\n- cognitivecomputations/dolphin-2.9-llama3-8b\n- NeuralNovel/Llama-3-NeuralPaca-8b\n\nMerge datasets:\n- mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha\n- tatsu-lab/alpaca\n- vicgalle/configurable-system-prompt-multitask\n- IlyaGusev/ru_turbo_saiga\n- IlyaGusev/ru_sharegpt_cleaned\n- IlyaGusev/oasst1_ru_main_branch\n- IlyaGusev/gpt_roleplay_realm\n- lksy/ru_instruct_gpt4" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #llama3 #llama3-12b #instruct #merge #conversational #en #ru #dataset-mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha #dataset-tatsu-lab/alpaca #dataset-vicgalle/configurable-system-prompt-multitask #dataset-IlyaGusev/ru_turbo_saiga #dataset-IlyaGusev/ru_sharegpt_cleaned #dataset-IlyaGusev/oasst1_ru_main_branch #dataset-IlyaGusev/gpt_roleplay_realm #dataset-lksy/ru_instruct_gpt4 #base_model-Muhammad2003/Llama3-8B-OpenHermes-DPO #base_model-IlyaGusev/saiga_llama3_8b #base_model-NousResearch/Meta-Llama-3-8B-Instruct #base_model-abacusai/Llama-3-Smaug-8B #base_model-vicgalle/Configurable-Llama-3-8B-v0.2 #base_model-cognitivecomputations/dolphin-2.9-llama3-8b #base_model-NeuralNovel/Llama-3-NeuralPaca-8b #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Llama3 from 8B to 12B\n\n!logo\n\nWe created a model from other cool models to combine everything into one cool model.", "## Model Details", "### Model Description\n\n- Developed by: @ehristoforu\n- Model type: Text Generation (conversational)\n- Language(s) (NLP): English, Russian\n- Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## About merge\n\nBase model: Meta-Llama-3-8B-Instruct\n\nMerge models:\n- Muhammad2003/Llama3-8B-OpenHermes-DPO\n- IlyaGusev/saiga_llama3_8b\n- NousResearch/Meta-Llama-3-8B-Instruct\n- abacusai/Llama-3-Smaug-8B\n- vicgalle/Configurable-Llama-3-8B-v0.2\n- cognitivecomputations/dolphin-2.9-llama3-8b\n- NeuralNovel/Llama-3-NeuralPaca-8b\n\nMerge datasets:\n- mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha\n- tatsu-lab/alpaca\n- vicgalle/configurable-system-prompt-multitask\n- IlyaGusev/ru_turbo_saiga\n- IlyaGusev/ru_sharegpt_cleaned\n- IlyaGusev/oasst1_ru_main_branch\n- IlyaGusev/gpt_roleplay_realm\n- lksy/ru_instruct_gpt4" ]
null
keras
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mindmate-f3-spatialdiaries-cascade-cont-1-64 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.40.0 - TensorFlow 2.15.0 - Tokenizers 0.19.1
{"license": "mit", "tags": ["generated_from_keras_callback"], "base_model": "bert-base-german-cased", "model-index": [{"name": "mindmate-f3-spatialdiaries-cascade-cont-1-64", "results": []}]}
spneshaei/mindmate-f3-spatialdiaries-cascade-cont-1-64
null
[ "keras", "tf", "bert", "generated_from_keras_callback", "base_model:bert-base-german-cased", "license:mit", "region:us" ]
null
2024-04-21T08:29:33+00:00
[]
[]
TAGS #keras #tf #bert #generated_from_keras_callback #base_model-bert-base-german-cased #license-mit #region-us
# mindmate-f3-spatialdiaries-cascade-cont-1-64 This model is a fine-tuned version of bert-base-german-cased on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.40.0 - TensorFlow 2.15.0 - Tokenizers 0.19.1
[ "# mindmate-f3-spatialdiaries-cascade-cont-1-64\n\nThis model is a fine-tuned version of bert-base-german-cased on an unknown dataset.\nIt achieves the following results on the evaluation set:", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n- training_precision: float32", "### Training results", "### Framework versions\n\n- Transformers 4.40.0\n- TensorFlow 2.15.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#keras #tf #bert #generated_from_keras_callback #base_model-bert-base-german-cased #license-mit #region-us \n", "# mindmate-f3-spatialdiaries-cascade-cont-1-64\n\nThis model is a fine-tuned version of bert-base-german-cased on an unknown dataset.\nIt achieves the following results on the evaluation set:", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n- training_precision: float32", "### Training results", "### Framework versions\n\n- Transformers 4.40.0\n- TensorFlow 2.15.0\n- Tokenizers 0.19.1" ]
text-generation
transformers
# Model Card for Mistral-7B-v0.1 The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested. For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/). ## Model Architecture Mistral-7B-v0.1 is a transformer model, with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Troubleshooting - If you see the following error: ``` KeyError: 'mistral' ``` - Or: ``` NotImplementedError: Cannot copy out of meta tensor; no data! ``` Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer. ## Notice Mistral 7B is a pretrained base model and therefore does not have any moderation mechanisms. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
{"language": ["en"], "license": "apache-2.0", "tags": ["pretrained"], "pipeline_tag": "text-generation", "inference": {"parameters": {"temperature": 0.7}}}
MaziyarPanahi/Mistral-7B-v0.1
null
[ "transformers", "safetensors", "mistral", "text-generation", "pretrained", "en", "arxiv:2310.06825", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:30:08+00:00
[ "2310.06825" ]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #pretrained #en #arxiv-2310.06825 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Mistral-7B-v0.1 The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested. For full details of this model please read our paper and release blog post. ## Model Architecture Mistral-7B-v0.1 is a transformer model, with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Troubleshooting - If you see the following error: - Or: Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer. ## Notice Mistral 7B is a pretrained base model and therefore does not have any moderation mechanisms. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
[ "# Model Card for Mistral-7B-v0.1\n\nThe Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. \nMistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested.\n\nFor full details of this model please read our paper and release blog post.", "## Model Architecture\n\nMistral-7B-v0.1 is a transformer model, with the following architecture choices:\n- Grouped-Query Attention\n- Sliding-Window Attention\n- Byte-fallback BPE tokenizer", "## Troubleshooting\n\n- If you see the following error:\n\n- Or:\n\n\nEnsure you are utilizing a stable version of Transformers, 4.34.0 or newer.", "## Notice\n\nMistral 7B is a pretrained base model and therefore does not have any moderation mechanisms.", "## The Mistral AI Team\n \nAlbert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed." ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #pretrained #en #arxiv-2310.06825 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Mistral-7B-v0.1\n\nThe Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. \nMistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested.\n\nFor full details of this model please read our paper and release blog post.", "## Model Architecture\n\nMistral-7B-v0.1 is a transformer model, with the following architecture choices:\n- Grouped-Query Attention\n- Sliding-Window Attention\n- Byte-fallback BPE tokenizer", "## Troubleshooting\n\n- If you see the following error:\n\n- Or:\n\n\nEnsure you are utilizing a stable version of Transformers, 4.34.0 or newer.", "## Notice\n\nMistral 7B is a pretrained base model and therefore does not have any moderation mechanisms.", "## The Mistral AI Team\n \nAlbert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed." ]
null
null
License: https://llama.meta.com/llama3/license 240421: Bellman's back! This is a preliminary test run, run on mostly the same settings and dataset as bellman-mistral-instruct (But not the dpo pass). Context length is 3072. I've done some basic testing, and it's not a total mess. Whether it's an improvement to llama-3-instruct, I'm not sure, because that's REALLY good. I'll try to make a pass on full context length soon. And hopefully improve the results more. Make sure to use the correct chat template (llama-3) for best results. I tested with koboldcpp. Let me know if you'd like any specific version. To save time I only put the one up for this 'preview'. Trained with Unsloth (https://github.com/unslothai/unsloth). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/653cd3049107029eb004f968/IDGX3d9lGe6yx-yHjsrav.png) User: Vem var Edward Teach? AI: Edward Teach, även känd som Svartskägg, var en engelsk sjörövare och piratkapten under 1700-talet. Han anses vara en av de mest berömda sjörövarna i historien. User: Träffade han Gustav Vasa? AI: Nej, Edward Teach, även känd som Svartskägg, levde mellan ca 1680-1720, medan Gustav Vasa dog 1560. Deras tidslinjer korsades inte. User: Berätta om selma lagerlöf AI: Selma Lagerlöf var en svensk författare som vann Nobelpriset i litteratur 1909. Hon är mest känd för sina verk 'Nils Holgerssons underbara resa genom Sverige' och 'Jerusalem'. Hennes skrivande inspirerades ofta av den svenska naturen och folket.
{"language": ["sv"], "license": "llama3", "tags": ["unsloth"], "datasets": ["neph1/bellman-7b-finetune"]}
neph1/llama-3-instruct-bellman-8b-swe-preview
null
[ "gguf", "unsloth", "sv", "dataset:neph1/bellman-7b-finetune", "license:llama3", "region:us" ]
null
2024-04-21T08:31:27+00:00
[]
[ "sv" ]
TAGS #gguf #unsloth #sv #dataset-neph1/bellman-7b-finetune #license-llama3 #region-us
License: URL 240421: Bellman's back! This is a preliminary test run, run on mostly the same settings and dataset as bellman-mistral-instruct (But not the dpo pass). Context length is 3072. I've done some basic testing, and it's not a total mess. Whether it's an improvement to llama-3-instruct, I'm not sure, because that's REALLY good. I'll try to make a pass on full context length soon. And hopefully improve the results more. Make sure to use the correct chat template (llama-3) for best results. I tested with koboldcpp. Let me know if you'd like any specific version. To save time I only put the one up for this 'preview'. Trained with Unsloth (URL !image/png User: Vem var Edward Teach? AI: Edward Teach, även känd som Svartskägg, var en engelsk sjörövare och piratkapten under 1700-talet. Han anses vara en av de mest berömda sjörövarna i historien. User: Träffade han Gustav Vasa? AI: Nej, Edward Teach, även känd som Svartskägg, levde mellan ca 1680-1720, medan Gustav Vasa dog 1560. Deras tidslinjer korsades inte. User: Berätta om selma lagerlöf AI: Selma Lagerlöf var en svensk författare som vann Nobelpriset i litteratur 1909. Hon är mest känd för sina verk 'Nils Holgerssons underbara resa genom Sverige' och 'Jerusalem'. Hennes skrivande inspirerades ofta av den svenska naturen och folket.
[]
[ "TAGS\n#gguf #unsloth #sv #dataset-neph1/bellman-7b-finetune #license-llama3 #region-us \n" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.0_ablation_sample1_4iters_iter_4 This model is a fine-tuned version of [ZhangShenao/0.0_ablation_sample1_4iters_iter_3](https://huggingface.co/ZhangShenao/0.0_ablation_sample1_4iters_iter_3) on the ZhangShenao/0.0_ablation_sample1_4iters_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["ZhangShenao/0.0_ablation_sample1_4iters_dataset"], "base_model": "ZhangShenao/0.0_ablation_sample1_4iters_iter_3", "model-index": [{"name": "0.0_ablation_sample1_4iters_iter_4", "results": []}]}
ZhangShenao/0.0_ablation_sample1_4iters_iter_4
null
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:ZhangShenao/0.0_ablation_sample1_4iters_dataset", "base_model:ZhangShenao/0.0_ablation_sample1_4iters_iter_3", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:34:30+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-ZhangShenao/0.0_ablation_sample1_4iters_dataset #base_model-ZhangShenao/0.0_ablation_sample1_4iters_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# 0.0_ablation_sample1_4iters_iter_4 This model is a fine-tuned version of ZhangShenao/0.0_ablation_sample1_4iters_iter_3 on the ZhangShenao/0.0_ablation_sample1_4iters_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
[ "# 0.0_ablation_sample1_4iters_iter_4\n\nThis model is a fine-tuned version of ZhangShenao/0.0_ablation_sample1_4iters_iter_3 on the ZhangShenao/0.0_ablation_sample1_4iters_dataset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 128\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-ZhangShenao/0.0_ablation_sample1_4iters_dataset #base_model-ZhangShenao/0.0_ablation_sample1_4iters_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# 0.0_ablation_sample1_4iters_iter_4\n\nThis model is a fine-tuned version of ZhangShenao/0.0_ablation_sample1_4iters_iter_3 on the ZhangShenao/0.0_ablation_sample1_4iters_dataset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 128\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
text-to-image
diffusers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "diffusers"}
Niggendar/ponyRealism_v10
null
[ "diffusers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-04-21T08:34:52+00:00
[ "1910.09700" ]
[]
TAGS #diffusers #safetensors #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#diffusers #safetensors #arxiv-1910.09700 #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a diffusers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
null
# heimberglee/XVERSE-13B-256K-Q4_K_M-GGUF This model was converted to GGUF format from [`xverse/XVERSE-13B-256K`](https://huggingface.co/xverse/XVERSE-13B-256K) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/xverse/XVERSE-13B-256K) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo heimberglee/XVERSE-13B-256K-Q4_K_M-GGUF --model xverse-13b-256k.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo heimberglee/XVERSE-13B-256K-Q4_K_M-GGUF --model xverse-13b-256k.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m xverse-13b-256k.Q4_K_M.gguf -n 128 ```
{"license": "apache-2.0", "tags": ["llama-cpp", "gguf-my-repo"], "inference": false}
heimberglee/XVERSE-13B-256K-Q4_K_M-GGUF
null
[ "gguf", "llama-cpp", "gguf-my-repo", "license:apache-2.0", "region:us" ]
null
2024-04-21T08:35:49+00:00
[]
[]
TAGS #gguf #llama-cpp #gguf-my-repo #license-apache-2.0 #region-us
# heimberglee/XVERSE-13B-256K-Q4_K_M-GGUF This model was converted to GGUF format from 'xverse/XVERSE-13B-256K' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# heimberglee/XVERSE-13B-256K-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'xverse/XVERSE-13B-256K' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #llama-cpp #gguf-my-repo #license-apache-2.0 #region-us \n", "# heimberglee/XVERSE-13B-256K-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'xverse/XVERSE-13B-256K' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "255.46 +/- 17.81", "name": "mean_reward", "verified": false}]}]}]}
jeliasherrero/PPO-LunarLander-v2
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-21T08:36:45+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazon_helpfulness_classification_seqbn_tapt_full_train_add_adapter This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3051 - Accuracy: 0.8778 - F1 Macro: 0.7038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.3274 | 1.0 | 7204 | 0.3143 | 0.866 | 0.6036 | | 0.328 | 2.0 | 14408 | 0.3203 | 0.8668 | 0.5893 | | 0.3155 | 3.0 | 21612 | 0.3076 | 0.8738 | 0.6825 | | 0.3098 | 4.0 | 28816 | 0.3079 | 0.8758 | 0.6805 | | 0.2634 | 5.0 | 36020 | 0.3143 | 0.873 | 0.6983 | | 0.2546 | 6.0 | 43224 | 0.3108 | 0.8756 | 0.6911 | | 0.2574 | 7.0 | 50428 | 0.3103 | 0.8718 | 0.6945 | | 0.2298 | 8.0 | 57632 | 0.3207 | 0.875 | 0.6973 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "roberta-base", "model-index": [{"name": "amazon_helpfulness_classification_seqbn_tapt_full_train_add_adapter", "results": []}]}
ltuzova/amazon_helpfulness_classification_seqbn_tapt_full_train_add_adapter
null
[ "tensorboard", "generated_from_trainer", "base_model:roberta-base", "license:mit", "region:us" ]
null
2024-04-21T08:36:56+00:00
[]
[]
TAGS #tensorboard #generated_from_trainer #base_model-roberta-base #license-mit #region-us
amazon\_helpfulness\_classification\_seqbn\_tapt\_full\_train\_add\_adapter =========================================================================== This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.3051 * Accuracy: 0.8778 * F1 Macro: 0.7038 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.06 * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.06\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#tensorboard #generated_from_trainer #base_model-roberta-base #license-mit #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.06\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
text-generation
transformers
## **Aurora_l3_8B** [exllamav2](https://github.com/turboderp/exllamav2) quant for [ResplendentAI/Aurora_l3_8B](https://huggingface.co/ResplendentAI/Aurora_l3_8B) **Original model information:** # Aurora ![image/png](https://cdn-uploads.huggingface.co/production/uploads/626dfb8786671a29c715f8a9/3RA96iXR7sDvNmnTyIcIP.png) A more poetic offering with a focus on perfecting the quote/asterisk RP format. I have strengthened the creative writing training. Make sure your example messages and introduction are formatted cirrectly. You must respond in quotes if you want the bot to follow. Thoroughly tested and did not see a single issue. The model can still do plaintext/aserisks if you choose.
{"language": ["en"], "license": "apache-2.0", "tags": ["llama3"], "base_model": ["ResplendentAI/Aurora_l3_8B"], "inference": false}
Slvcxc/Aurora_l3_8B-8.0bpw-h8-exl2
null
[ "transformers", "safetensors", "llama", "text-generation", "llama3", "conversational", "en", "base_model:ResplendentAI/Aurora_l3_8B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-21T08:37:49+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #llama3 #conversational #en #base_model-ResplendentAI/Aurora_l3_8B #license-apache-2.0 #autotrain_compatible #text-generation-inference #8-bit #region-us
## Aurora_l3_8B exllamav2 quant for ResplendentAI/Aurora_l3_8B Original model information: # Aurora !image/png A more poetic offering with a focus on perfecting the quote/asterisk RP format. I have strengthened the creative writing training. Make sure your example messages and introduction are formatted cirrectly. You must respond in quotes if you want the bot to follow. Thoroughly tested and did not see a single issue. The model can still do plaintext/aserisks if you choose.
[ "## Aurora_l3_8B\nexllamav2 quant for ResplendentAI/Aurora_l3_8B\n\nOriginal model information:", "# Aurora\n\n!image/png\n\nA more poetic offering with a focus on perfecting the quote/asterisk RP format. I have strengthened the creative writing training. \n\nMake sure your example messages and introduction are formatted cirrectly. You must respond in quotes if you want the bot to follow. Thoroughly tested and did not see a single issue. The model can still do plaintext/aserisks if you choose." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #llama3 #conversational #en #base_model-ResplendentAI/Aurora_l3_8B #license-apache-2.0 #autotrain_compatible #text-generation-inference #8-bit #region-us \n", "## Aurora_l3_8B\nexllamav2 quant for ResplendentAI/Aurora_l3_8B\n\nOriginal model information:", "# Aurora\n\n!image/png\n\nA more poetic offering with a focus on perfecting the quote/asterisk RP format. I have strengthened the creative writing training. \n\nMake sure your example messages and introduction are formatted cirrectly. You must respond in quotes if you want the bot to follow. Thoroughly tested and did not see a single issue. The model can still do plaintext/aserisks if you choose." ]
text2text-generation
transformers
## MaxMini-Instruct-248M # Overview MaxMini-Instruct-248M is a T5 (Text-To-Text Transfer Transformer) model Instruct fine-tuned on a variety of tasks. This model is designed to perform a range of instruction tasks. ## Model Details - Model Name: MaxMini-Instruct-248M - Model Type: T5 (Text-To-Text Transfer Transformer) - Model Size: 248M parameters - Instruction Tuning ## Usage #### Installation You can install the model via the Hugging Face library: ```bash pip install transformers pip install torch ``` ## Inference ```python # Load model directly from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("suriya7/MaxMini-Instruct-248M") model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/MaxMini-Instruct-248M") my_question = "what is depression?" inputs = "Please answer to this question: " + my_question inputs = tokenizer(inputs, return_tensors="pt" ) generated_ids = model.generate(**inputs, max_new_tokens=250,do_sample=True) decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True) print(f"Generated Output: {decoded}") ```
{"license": "mit", "datasets": ["databricks/databricks-dolly-15k", "VMware/open-instruct"], "widget": [{"example_title": "Question Answering!", "text": "Please Answer the Question: what is depression?"}, {"example_title": "Other Example!", "text": "Please Answer the Question: How to bake a cake?"}, {"example_title": "Other Example!", "text": "Please Answer the Question: what is depression?"}, {"example_title": "Other Example!", "text": "Please Answer the Question: I'm going through some things with my feelings and myself.I barely sleep and I do nothing but think about how I'm worthless and how I shouldn't be here. I've never tried or contemplated suicide. I've always wanted to fix my issues, but I never get around to it. How can I change my feeling of being worthless to everyone?"}], "inference": {"parameters": {"do_sample": true, "max_new_tokens": 250}}}
suriya7/MaxMini-Instruct-248M
null
[ "transformers", "safetensors", "t5", "text2text-generation", "dataset:databricks/databricks-dolly-15k", "dataset:VMware/open-instruct", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2024-04-21T08:38:33+00:00
[]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #dataset-databricks/databricks-dolly-15k #dataset-VMware/open-instruct #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
## MaxMini-Instruct-248M # Overview MaxMini-Instruct-248M is a T5 (Text-To-Text Transfer Transformer) model Instruct fine-tuned on a variety of tasks. This model is designed to perform a range of instruction tasks. ## Model Details - Model Name: MaxMini-Instruct-248M - Model Type: T5 (Text-To-Text Transfer Transformer) - Model Size: 248M parameters - Instruction Tuning ## Usage #### Installation You can install the model via the Hugging Face library: ## Inference
[ "## MaxMini-Instruct-248M", "# Overview\nMaxMini-Instruct-248M is a T5 (Text-To-Text Transfer Transformer) model Instruct fine-tuned on a variety of tasks. This model is designed to perform a range of instruction tasks.", "## Model Details\n- Model Name: MaxMini-Instruct-248M\n- Model Type: T5 (Text-To-Text Transfer Transformer)\n- Model Size: 248M parameters\n- Instruction Tuning", "## Usage", "#### Installation\nYou can install the model via the Hugging Face library:", "## Inference" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #dataset-databricks/databricks-dolly-15k #dataset-VMware/open-instruct #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## MaxMini-Instruct-248M", "# Overview\nMaxMini-Instruct-248M is a T5 (Text-To-Text Transfer Transformer) model Instruct fine-tuned on a variety of tasks. This model is designed to perform a range of instruction tasks.", "## Model Details\n- Model Name: MaxMini-Instruct-248M\n- Model Type: T5 (Text-To-Text Transfer Transformer)\n- Model Size: 248M parameters\n- Instruction Tuning", "## Usage", "#### Installation\nYou can install the model via the Hugging Face library:", "## Inference" ]
sentence-similarity
sentence-transformers
# sentence-transformers/msmarco-distilbert-base-v4 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-v4') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-distilbert-base-v4') model = AutoModel.from_pretrained('sentence-transformers/msmarco-distilbert-base-v4') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-base-v4) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
{"license": "apache-2.0", "library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"}
cicero-ai/msmarco-distilbert-base-v4-rust
null
[ "sentence-transformers", "pytorch", "tf", "rust", "safetensors", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:38:38+00:00
[ "1908.10084" ]
[]
TAGS #sentence-transformers #pytorch #tf #rust #safetensors #distilbert #feature-extraction #sentence-similarity #transformers #arxiv-1908.10084 #license-apache-2.0 #endpoints_compatible #region-us
# sentence-transformers/msmarco-distilbert-base-v4 This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Usage (HuggingFace Transformers) Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Full Model Architecture ## Citing & Authors This model was trained by sentence-transformers. If you find this model helpful, feel free to cite our publication Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:
[ "# sentence-transformers/msmarco-distilbert-base-v4\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Full Model Architecture", "## Citing & Authors\n\nThis model was trained by sentence-transformers. \n \nIf you find this model helpful, feel free to cite our publication Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:" ]
[ "TAGS\n#sentence-transformers #pytorch #tf #rust #safetensors #distilbert #feature-extraction #sentence-similarity #transformers #arxiv-1908.10084 #license-apache-2.0 #endpoints_compatible #region-us \n", "# sentence-transformers/msmarco-distilbert-base-v4\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Full Model Architecture", "## Citing & Authors\n\nThis model was trained by sentence-transformers. \n \nIf you find this model helpful, feel free to cite our publication Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
heyllm234/sc55
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:39:02+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Mistral-7B-Instruct-v0.1 The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets. For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/). ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ``` text = "<s>[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " "[INST] Do you have mayonnaise recipes? [/INST]" ``` This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method: ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Model Architecture This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Troubleshooting - If you see the following error: ``` Traceback (most recent call last): File "", line 1, in File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained config, kwargs = AutoConfig.from_pretrained( File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained config_class = CONFIG_MAPPING[config_dict["model_type"]] File "/transformers/models/auto/configuration_auto.py", line 723, in getitem raise KeyError(key) KeyError: 'mistral' ``` Installing transformers from source should solve the issue pip install git+https://github.com/huggingface/transformers This should not be required after transformers-v4.33.4. ## Limitations The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
{"license": "apache-2.0", "tags": ["finetuned"], "pipeline_tag": "text-generation", "inference": true, "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]}
MaziyarPanahi/Mistral-7B-Instruct-v0.1
null
[ "transformers", "safetensors", "mistral", "text-generation", "finetuned", "conversational", "arxiv:2310.06825", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:39:33+00:00
[ "2310.06825" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #finetuned #conversational #arxiv-2310.06825 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Mistral-7B-Instruct-v0.1 The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the Mistral-7B-v0.1 generative text model using a variety of publicly available conversation datasets. For full details of this model please read our paper and release blog post. ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by '[INST]' and '[/INST]' tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. This format is available as a chat template via the 'apply_chat_template()' method: ## Model Architecture This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Troubleshooting - If you see the following error: Installing transformers from source should solve the issue pip install git+URL This should not be required after transformers-v4.33.4. ## Limitations The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
[ "# Model Card for Mistral-7B-Instruct-v0.1\n\nThe Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the Mistral-7B-v0.1 generative text model using a variety of publicly available conversation datasets.\n\nFor full details of this model please read our paper and release blog post.", "## Instruction format\n\nIn order to leverage instruction fine-tuning, your prompt should be surrounded by '[INST]' and '[/INST]' tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.\n\nE.g.\n\n\nThis format is available as a chat template via the 'apply_chat_template()' method:", "## Model Architecture\nThis instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:\n- Grouped-Query Attention\n- Sliding-Window Attention\n- Byte-fallback BPE tokenizer", "## Troubleshooting\n- If you see the following error:\n\n\nInstalling transformers from source should solve the issue\npip install git+URL\n\nThis should not be required after transformers-v4.33.4.", "## Limitations\n\nThe Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. \nIt does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to\nmake the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.", "## The Mistral AI Team\n\nAlbert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed." ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #finetuned #conversational #arxiv-2310.06825 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Mistral-7B-Instruct-v0.1\n\nThe Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the Mistral-7B-v0.1 generative text model using a variety of publicly available conversation datasets.\n\nFor full details of this model please read our paper and release blog post.", "## Instruction format\n\nIn order to leverage instruction fine-tuning, your prompt should be surrounded by '[INST]' and '[/INST]' tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.\n\nE.g.\n\n\nThis format is available as a chat template via the 'apply_chat_template()' method:", "## Model Architecture\nThis instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:\n- Grouped-Query Attention\n- Sliding-Window Attention\n- Byte-fallback BPE tokenizer", "## Troubleshooting\n- If you see the following error:\n\n\nInstalling transformers from source should solve the issue\npip install git+URL\n\nThis should not be required after transformers-v4.33.4.", "## Limitations\n\nThe Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. \nIt does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to\nmake the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.", "## The Mistral AI Team\n\nAlbert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed." ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Haoxiang-Wang/RewardModel-Mistral-7B-for-DPA-v1
null
[ "transformers", "safetensors", "mistral", "text-classification", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:40:00+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-classification #custom_code #arxiv-1910.09700 #autotrain_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-classification #custom_code #arxiv-1910.09700 #autotrain_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xddModel This model is a fine-tuned version of [ukr-models/xlm-roberta-base-uk](https://huggingface.co/ukr-models/xlm-roberta-base-uk) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1495 - Precision: 0.8533 - Recall: 0.8819 - F1: 0.8674 - Accuracy: 0.9625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 175 | 0.1730 | 0.7640 | 0.8340 | 0.7975 | 0.9463 | | No log | 2.0 | 350 | 0.1552 | 0.8131 | 0.8585 | 0.8352 | 0.9527 | | 0.2473 | 3.0 | 525 | 0.1334 | 0.8433 | 0.8718 | 0.8573 | 0.9611 | | 0.2473 | 4.0 | 700 | 0.1305 | 0.8429 | 0.8784 | 0.8603 | 0.9615 | | 0.2473 | 5.0 | 875 | 0.1293 | 0.8541 | 0.8788 | 0.8663 | 0.9626 | | 0.0833 | 6.0 | 1050 | 0.1346 | 0.8449 | 0.8828 | 0.8634 | 0.9621 | | 0.0833 | 7.0 | 1225 | 0.1386 | 0.8449 | 0.8827 | 0.8634 | 0.9624 | | 0.0833 | 8.0 | 1400 | 0.1474 | 0.8548 | 0.8851 | 0.8697 | 0.9632 | | 0.0558 | 9.0 | 1575 | 0.1496 | 0.8485 | 0.8830 | 0.8654 | 0.9622 | | 0.0558 | 10.0 | 1750 | 0.1495 | 0.8533 | 0.8819 | 0.8674 | 0.9625 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "ukr-models/xlm-roberta-base-uk", "model-index": [{"name": "xddModel", "results": []}]}
pushokay/xddModel
null
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:ukr-models/xlm-roberta-base-uk", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:40:49+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #xlm-roberta #token-classification #generated_from_trainer #base_model-ukr-models/xlm-roberta-base-uk #license-mit #autotrain_compatible #endpoints_compatible #region-us
xddModel ======== This model is a fine-tuned version of ukr-models/xlm-roberta-base-uk on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1495 * Precision: 0.8533 * Recall: 0.8819 * F1: 0.8674 * Accuracy: 0.9625 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #xlm-roberta #token-classification #generated_from_trainer #base_model-ukr-models/xlm-roberta-base-uk #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.2_medical_bios_5000_4ep This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"tags": ["trl", "sft", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "Mistral-7B-Instruct-v0.2_medical_bios_5000_4ep", "results": []}]}
mohsenfayyaz/Mistral-7B-Instruct-v0.2_medical_bios_5000_4ep
null
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:41:36+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #trl #sft #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Mistral-7B-Instruct-v0.2_medical_bios_5000_4ep This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
[ "# Mistral-7B-Instruct-v0.2_medical_bios_5000_4ep\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.5e-06\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 0\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4", "### Training results", "### Framework versions\n\n- Transformers 4.38.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.17.1\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #trl #sft #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Mistral-7B-Instruct-v0.2_medical_bios_5000_4ep\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.5e-06\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 0\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4", "### Training results", "### Framework versions\n\n- Transformers 4.38.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.17.1\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
vessl/llama3-ko-4bit
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-21T08:41:39+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MODEL_EPOCHS_D2_testcase This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 - load_in_4bit: True - load_in_8bit: False ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "NousResearch/Llama-2-7b-hf", "model-index": [{"name": "MODEL_EPOCHS_D2_testcase", "results": []}]}
LLMLover/MODEL_EPOCHS_D2_testcase
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:NousResearch/Llama-2-7b-hf", "region:us" ]
null
2024-04-21T08:42:00+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #generated_from_trainer #base_model-NousResearch/Llama-2-7b-hf #region-us
# MODEL_EPOCHS_D2_testcase This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following 'bitsandbytes' quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 - load_in_4bit: True - load_in_8bit: False ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
[ "# MODEL_EPOCHS_D2_testcase\n\nThis model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- _load_in_8bit: False\n- _load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16\n- load_in_4bit: True\n- load_in_8bit: False", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 2\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.4.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #base_model-NousResearch/Llama-2-7b-hf #region-us \n", "# MODEL_EPOCHS_D2_testcase\n\nThis model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- _load_in_8bit: False\n- _load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16\n- load_in_4bit: True\n- load_in_8bit: False", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 2\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.4.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2" ]
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # full_bert This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 45.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 6.778 | 1.0 | 55319 | 6.4618 | | 6.4271 | 2.0 | 110638 | 6.3701 | | 6.3616 | 3.0 | 165957 | 6.3217 | | 6.3257 | 4.0 | 221276 | 6.2966 | | 6.3001 | 5.0 | 276595 | 6.2759 | | 6.2834 | 6.0 | 331914 | 6.2610 | | 6.2699 | 7.0 | 387233 | 6.2465 | | 6.2565 | 8.0 | 442552 | 6.1939 | | 6.2221 | 9.0 | 497871 | 6.1154 | | 6.0721 | 10.0 | 553190 | 5.9524 | | 5.9212 | 11.0 | 608509 | 5.7947 | | 5.8113 | 12.0 | 663828 | 5.7161 | | 5.7509 | 13.0 | 719147 | 5.6614 | | 5.7053 | 14.0 | 774466 | 5.6158 | | 5.6665 | 15.0 | 829785 | 5.5774 | | 5.634 | 16.0 | 885104 | 5.5448 | | 5.6055 | 17.0 | 940423 | 2.7563 | | 3.3308 | 18.0 | 995742 | 2.5443 | | 2.6179 | 19.0 | 1051061 | 2.4196 | | 2.5324 | 20.0 | 1106380 | 2.3393 | | 2.4791 | 21.0 | 1161699 | 2.2755 | | 2.4105 | 22.0 | 1217018 | 2.2241 | | 2.3582 | 23.0 | 1272337 | 2.1772 | | 2.3281 | 24.0 | 1327656 | 2.1416 | | 2.2987 | 25.0 | 1382975 | 2.1137 | | 2.7859 | 26.0 | 1438294 | 2.0950 | | 2.2728 | 27.0 | 1493613 | 2.0685 | | 2.2308 | 28.0 | 1548932 | 2.0499 | | 2.1739 | 29.0 | 1604251 | 2.0082 | | 2.1569 | 30.0 | 1659570 | 1.9939 | | 2.1425 | 31.0 | 1714889 | 1.9802 | | 2.1318 | 32.0 | 1770208 | 1.9669 | | 2.1207 | 33.0 | 1825527 | 1.9583 | | 2.1111 | 34.0 | 1880846 | 1.9477 | | 2.102 | 35.0 | 1936165 | 1.9409 | | 2.0943 | 36.0 | 1991484 | 1.9313 | | 2.0871 | 37.0 | 2046803 | 1.9236 | | 2.0736 | 38.0 | 2102122 | 1.9191 | | 2.0693 | 39.0 | 2157441 | 1.9147 | | 2.0653 | 40.0 | 2212760 | 1.9118 | | 2.0755 | 41.0 | 2268079 | nan | | 0.0 | 42.0 | 2323398 | nan | | 0.0 | 43.0 | 2378717 | nan | | 0.0 | 44.0 | 2434036 | nan | | 0.0 | 45.0 | 2489355 | nan | ### Framework versions - Transformers 4.38.2 - Pytorch 2.3.0a0+ebedce2 - Datasets 2.17.1 - Tokenizers 0.15.2
{"tags": ["generated_from_trainer"], "model-index": [{"name": "full_bert", "results": []}]}
morten-j/full_bert
null
[ "transformers", "tensorboard", "safetensors", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:42:12+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
full\_bert ========== This model is a fine-tuned version of [](URL on the None dataset. It achieves the following results on the evaluation set: * Loss: nan Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 4 * total\_train\_batch\_size: 64 * total\_eval\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 10000 * num\_epochs: 45.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.3.0a0+ebedce2 * Datasets 2.17.1 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 10000\n* num\\_epochs: 45.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.3.0a0+ebedce2\n* Datasets 2.17.1\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 10000\n* num\\_epochs: 45.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.3.0a0+ebedce2\n* Datasets 2.17.1\n* Tokenizers 0.15.2" ]
null
null
{ "params": { "local_server":"True", "local_uri":"mysql://root:@localhost/video", "prod_uri":"mysql://root:@localhost/video", "fb_url":"https://facebook.com/video", "tw_url":"https://twitter.com/video", "git_url":"https://github.com/video", "gmail_user":"[email protected]", "gmail_password":"Google@12345" } }
{"license": "mit"}
gungun156/gungun123
null
[ "license:mit", "region:us" ]
null
2024-04-21T08:44:51+00:00
[]
[]
TAGS #license-mit #region-us
{ "params": { "local_server":"True", "local_uri":"mysql://root:@localhost/video", "prod_uri":"mysql://root:@localhost/video", "fb_url":"URL "tw_url":"URL "git_url":"URL "gmail_user":"techteam@URL", "gmail_password":"Google@12345" } }
[]
[ "TAGS\n#license-mit #region-us \n" ]
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
davidataka/bank_model_2
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:45:58+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
chiawei0411/blip2-opt-2.7b-646-220k-captions-flickr
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:46:09+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistralv1_spectral_r4_1e-5_e5 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "mistralai/Mistral-7B-v0.1", "model-index": [{"name": "mistralv1_spectral_r4_1e-5_e5", "results": []}]}
fangzhaoz/mistralv1_spectral_r4_1e-5_e5
null
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2024-04-21T08:46:23+00:00
[]
[]
TAGS #peft #safetensors #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #region-us
# mistralv1_spectral_r4_1e-5_e5 This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# mistralv1_spectral_r4_1e-5_e5\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- PEFT 0.9.0\n- Transformers 4.39.3\n- Pytorch 2.2.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #safetensors #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #region-us \n", "# mistralv1_spectral_r4_1e-5_e5\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- PEFT 0.9.0\n- Transformers 4.39.3\n- Pytorch 2.2.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
0x0grandpa0/amnesia
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:48:56+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Imcf1Y3FSatM/weblab-10b-neo-len2048-250iteration
null
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:50:05+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.2_esnli_5000_4ep_1.5e-6 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
{"tags": ["trl", "sft", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "Mistral-7B-Instruct-v0.2_esnli_5000_4ep_1.5e-6", "results": []}]}
mohsenfayyaz/Mistral-7B-Instruct-v0.2_esnli_5000_4ep_1.5e-6
null
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:50:54+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #trl #sft #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Mistral-7B-Instruct-v0.2_esnli_5000_4ep_1.5e-6 This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
[ "# Mistral-7B-Instruct-v0.2_esnli_5000_4ep_1.5e-6\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.5e-06\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 0\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4", "### Training results", "### Framework versions\n\n- Transformers 4.38.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.17.1\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #trl #sft #generated_from_trainer #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Mistral-7B-Instruct-v0.2_esnli_5000_4ep_1.5e-6\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.5e-06\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 0\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4", "### Training results", "### Framework versions\n\n- Transformers 4.38.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.17.1\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
fangzhaoz/mistralv1_spectral_r4_1e-5_e5_merged
null
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:51:13+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Mistral-7B-Instruct-v0.2 The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.2. Mistral-7B-v0.2 has the following changes compared to Mistral-7B-v0.1 - 32k context window (vs 8k context in v0.1) - Rope-theta = 1e6 - No Sliding-Window Attention For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/la-plateforme/). ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ``` text = "<s>[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " "[INST] Do you have mayonnaise recipes? [/INST]" ``` This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method: ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Troubleshooting - If you see the following error: ``` Traceback (most recent call last): File "", line 1, in File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained config, kwargs = AutoConfig.from_pretrained( File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained config_class = CONFIG_MAPPING[config_dict["model_type"]] File "/transformers/models/auto/configuration_auto.py", line 723, in getitem raise KeyError(key) KeyError: 'mistral' ``` Installing transformers from source should solve the issue pip install git+https://github.com/huggingface/transformers This should not be required after transformers-v4.33.4. ## Limitations The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
{"license": "apache-2.0", "tags": ["finetuned"], "pipeline_tag": "text-generation", "inference": true, "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]}
MaziyarPanahi/Mistral-7B-Instruct-v0.2
null
[ "transformers", "safetensors", "mistral", "text-generation", "finetuned", "conversational", "arxiv:2310.06825", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:55:10+00:00
[ "2310.06825" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #finetuned #conversational #arxiv-2310.06825 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Mistral-7B-Instruct-v0.2 The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.2. Mistral-7B-v0.2 has the following changes compared to Mistral-7B-v0.1 - 32k context window (vs 8k context in v0.1) - Rope-theta = 1e6 - No Sliding-Window Attention For full details of this model please read our paper and release blog post. ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by '[INST]' and '[/INST]' tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. This format is available as a chat template via the 'apply_chat_template()' method: ## Troubleshooting - If you see the following error: Installing transformers from source should solve the issue pip install git+URL This should not be required after transformers-v4.33.4. ## Limitations The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
[ "# Model Card for Mistral-7B-Instruct-v0.2\n\nThe Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.2.\n\nMistral-7B-v0.2 has the following changes compared to Mistral-7B-v0.1\n- 32k context window (vs 8k context in v0.1)\n- Rope-theta = 1e6\n- No Sliding-Window Attention\n\nFor full details of this model please read our paper and release blog post.", "## Instruction format\n\nIn order to leverage instruction fine-tuning, your prompt should be surrounded by '[INST]' and '[/INST]' tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.\n\nE.g.\n\n\nThis format is available as a chat template via the 'apply_chat_template()' method:", "## Troubleshooting\n- If you see the following error:\n\n\nInstalling transformers from source should solve the issue\npip install git+URL\n\nThis should not be required after transformers-v4.33.4.", "## Limitations\n\nThe Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. \nIt does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to\nmake the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.", "## The Mistral AI Team\n\nAlbert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed." ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #finetuned #conversational #arxiv-2310.06825 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Mistral-7B-Instruct-v0.2\n\nThe Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.2.\n\nMistral-7B-v0.2 has the following changes compared to Mistral-7B-v0.1\n- 32k context window (vs 8k context in v0.1)\n- Rope-theta = 1e6\n- No Sliding-Window Attention\n\nFor full details of this model please read our paper and release blog post.", "## Instruction format\n\nIn order to leverage instruction fine-tuning, your prompt should be surrounded by '[INST]' and '[/INST]' tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.\n\nE.g.\n\n\nThis format is available as a chat template via the 'apply_chat_template()' method:", "## Troubleshooting\n- If you see the following error:\n\n\nInstalling transformers from source should solve the issue\npip install git+URL\n\nThis should not be required after transformers-v4.33.4.", "## Limitations\n\nThe Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. \nIt does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to\nmake the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.", "## The Mistral AI Team\n\nAlbert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed." ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
nem012/gemma2b-r1
null
[ "transformers", "tensorboard", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T08:56:15+00:00
[ "1910.09700" ]
[]
TAGS #transformers #tensorboard #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Edgar404/donut-shivi-cheques_qlora_r16
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:57:17+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert2bert-model99-last-Xtreme-Train This model is a fine-tuned version of [Alfahluzi/bert2bert-model99-last](https://huggingface.co/Alfahluzi/bert2bert-model99-last) on the id_liputan6 dataset. It achieves the following results on the evaluation set: - Loss: 2.8449 - R1 Precision: 0.3481 - R1 Recall: 0.3462 - R1 Fmeasure: 0.3448 - R2 Precision: 0.1475 - R2 Recall: 0.1463 - R2 Fmeasure: 0.1458 - Rl Precision: 0.2761 - Rl Recall: 0.2748 - Rl Fmeasure: 0.2736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | R1 Precision | R1 Recall | R1 Fmeasure | R2 Precision | R2 Recall | R2 Fmeasure | Rl Precision | Rl Recall | Rl Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:------------:|:---------:|:-----------:|:------------:|:---------:|:-----------:|:------------:|:---------:|:-----------:| | 2.5931 | 1.0 | 495 | 2.3625 | 0.359 | 0.3516 | 0.3528 | 0.159 | 0.155 | 0.1557 | 0.2876 | 0.2819 | 0.2826 | | 1.8329 | 2.0 | 990 | 2.4301 | 0.3577 | 0.3489 | 0.3508 | 0.1563 | 0.1517 | 0.1528 | 0.286 | 0.2793 | 0.2806 | | 1.3237 | 3.0 | 1485 | 2.6019 | 0.3483 | 0.3445 | 0.344 | 0.149 | 0.1468 | 0.1468 | 0.2784 | 0.2755 | 0.275 | | 0.976 | 4.0 | 1980 | 2.7468 | 0.3509 | 0.3481 | 0.3471 | 0.1501 | 0.1483 | 0.1481 | 0.2784 | 0.2765 | 0.2755 | | 0.7665 | 5.0 | 2475 | 2.8449 | 0.3481 | 0.3462 | 0.3448 | 0.1475 | 0.1463 | 0.1458 | 0.2761 | 0.2748 | 0.2736 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"tags": ["generated_from_trainer"], "datasets": ["id_liputan6"], "base_model": "Alfahluzi/bert2bert-model99-last", "model-index": [{"name": "bert2bert-model99-last-Xtreme-Train", "results": []}]}
Alfahluzi/bert2bert-model99-last-Xtreme-Train
null
[ "transformers", "tensorboard", "safetensors", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:id_liputan6", "base_model:Alfahluzi/bert2bert-model99-last", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:57:18+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #encoder-decoder #text2text-generation #generated_from_trainer #dataset-id_liputan6 #base_model-Alfahluzi/bert2bert-model99-last #autotrain_compatible #endpoints_compatible #region-us
bert2bert-model99-last-Xtreme-Train =================================== This model is a fine-tuned version of Alfahluzi/bert2bert-model99-last on the id\_liputan6 dataset. It achieves the following results on the evaluation set: * Loss: 2.8449 * R1 Precision: 0.3481 * R1 Recall: 0.3462 * R1 Fmeasure: 0.3448 * R2 Precision: 0.1475 * R2 Recall: 0.1463 * R2 Fmeasure: 0.1458 * Rl Precision: 0.2761 * Rl Recall: 0.2748 * Rl Fmeasure: 0.2736 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 10 * eval\_batch\_size: 10 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #encoder-decoder #text2text-generation #generated_from_trainer #dataset-id_liputan6 #base_model-Alfahluzi/bert2bert-model99-last #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
vegaandre/InsideStoryOfPoliceMissionKhaki
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:57:29+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
# Uploaded model - **Developed by:** karsar - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
karsar/Llama-3-8B-TUZ
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-21T08:58:23+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: karsar - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: karsar\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: karsar\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-rotten-tomatoes This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8457 - Accuracy: 0.8452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3924 | 1.0 | 1067 | 0.3900 | 0.8443 | | 0.2239 | 2.0 | 2134 | 0.6995 | 0.8480 | | 0.0699 | 3.0 | 3201 | 0.8457 | 0.8452 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["classification", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "bert-base-uncased", "model-index": [{"name": "clasificador-rotten-tomatoes", "results": []}]}
lauragordo/clasificador-rotten-tomatoes
null
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "classification", "generated_from_trainer", "base_model:bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2024-04-21T08:59:19+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #text-classification #classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
clasificador-rotten-tomatoes ============================ This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.8457 * Accuracy: 0.8452 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.40.0 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
null
null
# DavidAU/storytime-13b-Q8_0-GGUF This model was converted to GGUF format from [`chargoddard/storytime-13b`](https://huggingface.co/chargoddard/storytime-13b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/chargoddard/storytime-13b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/storytime-13b-Q8_0-GGUF --model storytime-13b.Q8_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/storytime-13b-Q8_0-GGUF --model storytime-13b.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m storytime-13b.Q8_0.gguf -n 128 ```
{"language": ["en"], "license": "llama2", "tags": ["llama", "llama-cpp", "gguf-my-repo"]}
DavidAU/storytime-13b-Q8_0-GGUF
null
[ "gguf", "llama", "llama-cpp", "gguf-my-repo", "en", "license:llama2", "region:us" ]
null
2024-04-21T09:00:54+00:00
[]
[ "en" ]
TAGS #gguf #llama #llama-cpp #gguf-my-repo #en #license-llama2 #region-us
# DavidAU/storytime-13b-Q8_0-GGUF This model was converted to GGUF format from 'chargoddard/storytime-13b' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# DavidAU/storytime-13b-Q8_0-GGUF\nThis model was converted to GGUF format from 'chargoddard/storytime-13b' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #llama #llama-cpp #gguf-my-repo #en #license-llama2 #region-us \n", "# DavidAU/storytime-13b-Q8_0-GGUF\nThis model was converted to GGUF format from 'chargoddard/storytime-13b' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
text-generation
Gen AI
# 🦙🧠 guanaco-llama2-1k <center><img src="https://i.imgur.com/1IZmjU4.png" width="300"></center> This is a `Llama-2-7b-chat-hf` model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/guanaco-llama2-1k`](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k) dataset, which is a subset of the [`timdettmers/openassistant-guanaco`](https://huggingface.co/datasets/timdettmers/openassistant-guanaco). ## 🔧 Training It was trained on a Google Colab notebook with a T4 GPU and high RAM. It is mainly designed for educational purposes, not for inference. ## 💻 Usage ``` python # pip install transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Stanlito/llama-2-7b-stanlito" prompt = "What is a large language model?" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) sequences = pipeline( f'<s>[INST] {prompt} [/INST]', do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=200, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` Output: > A large language model is trained on massive amounts of text data to understand and generate human language. The model learns by predicting the next word in a sequence based on the context of the previous words. This process allows the language model to learn patterns, rules, and relationships within the language that allow it to generate text that looks and sounds authentic and coherent. These large language models are used for many applications, such as language translation, sentiment analysis, and language generation. These models can also be used to generate text summaries of complex documents, such as legal or scientific papers, or to generate text summaries of social media posts. These models are often used in natural language processing (NLP) and machine learning applications. > The large language models are trained using a large number of parameters, often in the billions or even in the tens of billions.
{"language": ["en"], "license": "apache-2.0", "library_name": "Gen AI", "tags": ["code", "finance", "medical"], "datasets": ["mlabonne/guanaco-llama2-1k"], "metrics": ["accuracy", "code_eval"], "pipeline_tag": "text-generation"}
Stanlito/llama-2-7b-stanlito
null
[ "Gen AI", "pytorch", "llama", "code", "finance", "medical", "text-generation", "conversational", "en", "dataset:mlabonne/guanaco-llama2-1k", "license:apache-2.0", "region:us" ]
null
2024-04-21T09:01:30+00:00
[]
[ "en" ]
TAGS #Gen AI #pytorch #llama #code #finance #medical #text-generation #conversational #en #dataset-mlabonne/guanaco-llama2-1k #license-apache-2.0 #region-us
# guanaco-llama2-1k <center><img src="https://i.URL width="300"></center> This is a 'Llama-2-7b-chat-hf' model fine-tuned using QLoRA (4-bit precision) on the 'mlabonne/guanaco-llama2-1k' dataset, which is a subset of the 'timdettmers/openassistant-guanaco'. ## Training It was trained on a Google Colab notebook with a T4 GPU and high RAM. It is mainly designed for educational purposes, not for inference. ## Usage Output: > A large language model is trained on massive amounts of text data to understand and generate human language. The model learns by predicting the next word in a sequence based on the context of the previous words. This process allows the language model to learn patterns, rules, and relationships within the language that allow it to generate text that looks and sounds authentic and coherent. These large language models are used for many applications, such as language translation, sentiment analysis, and language generation. These models can also be used to generate text summaries of complex documents, such as legal or scientific papers, or to generate text summaries of social media posts. These models are often used in natural language processing (NLP) and machine learning applications. > The large language models are trained using a large number of parameters, often in the billions or even in the tens of billions.
[ "# guanaco-llama2-1k\n\n<center><img src=\"https://i.URL width=\"300\"></center>\n\nThis is a 'Llama-2-7b-chat-hf' model fine-tuned using QLoRA (4-bit precision) on the 'mlabonne/guanaco-llama2-1k' dataset, which is a subset of the 'timdettmers/openassistant-guanaco'.", "## Training\n\nIt was trained on a Google Colab notebook with a T4 GPU and high RAM. It is mainly designed for educational purposes, not for inference.", "## Usage\n\n\n\nOutput:\n> A large language model is trained on massive amounts of text data to understand and generate human language. The model learns by predicting the next word in a sequence based on the context of the previous words. This process allows the language model to learn patterns, rules, and relationships within the language that allow it to generate text that looks and sounds authentic and coherent. These large language models are used for many applications, such as language translation, sentiment analysis, and language generation. These models can also be used to generate text summaries of complex documents, such as legal or scientific papers, or to generate text summaries of social media posts. These models are often used in natural language processing (NLP) and machine learning applications.\n> The large language models are trained using a large number of parameters, often in the billions or even in the tens of billions." ]
[ "TAGS\n#Gen AI #pytorch #llama #code #finance #medical #text-generation #conversational #en #dataset-mlabonne/guanaco-llama2-1k #license-apache-2.0 #region-us \n", "# guanaco-llama2-1k\n\n<center><img src=\"https://i.URL width=\"300\"></center>\n\nThis is a 'Llama-2-7b-chat-hf' model fine-tuned using QLoRA (4-bit precision) on the 'mlabonne/guanaco-llama2-1k' dataset, which is a subset of the 'timdettmers/openassistant-guanaco'.", "## Training\n\nIt was trained on a Google Colab notebook with a T4 GPU and high RAM. It is mainly designed for educational purposes, not for inference.", "## Usage\n\n\n\nOutput:\n> A large language model is trained on massive amounts of text data to understand and generate human language. The model learns by predicting the next word in a sequence based on the context of the previous words. This process allows the language model to learn patterns, rules, and relationships within the language that allow it to generate text that looks and sounds authentic and coherent. These large language models are used for many applications, such as language translation, sentiment analysis, and language generation. These models can also be used to generate text summaries of complex documents, such as legal or scientific papers, or to generate text summaries of social media posts. These models are often used in natural language processing (NLP) and machine learning applications.\n> The large language models are trained using a large number of parameters, often in the billions or even in the tens of billions." ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Imcf1Y3FSatM/weblab-10b-neo-len4096-700iteration
null
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T09:01:37+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
null
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
IsmayilMasimov36/Deepfake_detection
null
[ "arxiv:1910.09700", "region:us" ]
null
2024-04-21T09:02:15+00:00
[ "1910.09700" ]
[]
TAGS #arxiv-1910.09700 #region-us
# Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using this raw template. ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID\n\n\n\nThis modelcard aims to be a base template for new models. It has been generated using this raw template.", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#arxiv-1910.09700 #region-us \n", "# Model Card for Model ID\n\n\n\nThis modelcard aims to be a base template for new models. It has been generated using this raw template.", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # timesformer-base-finetuned-k400-kinetic400-subset-epoch6-num_frame_10_myViT2window4_more_data_b4 This model is a fine-tuned version of [facebook/timesformer-base-finetuned-k400](https://huggingface.co/facebook/timesformer-base-finetuned-k400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1876 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 72 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.407 | 0.18 | 13 | 0.6302 | 0.92 | | 0.2401 | 1.18 | 26 | 0.2320 | 0.96 | | 0.0568 | 2.18 | 39 | 0.1465 | 0.96 | | 0.0045 | 3.18 | 52 | 0.1131 | 0.96 | | 0.0027 | 4.18 | 65 | 0.1251 | 0.92 | | 0.0022 | 5.1 | 72 | 0.1256 | 0.92 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "cc-by-nc-4.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/timesformer-base-finetuned-k400", "model-index": [{"name": "timesformer-base-finetuned-k400-kinetic400-subset-epoch6-num_frame_10_myViT2window4_more_data_b4", "results": []}]}
JackWong0911/timesformer-base-finetuned-k400-kinetic400-subset-epoch6-num_frame_10_myViT2window4_more_data_b4
null
[ "transformers", "tensorboard", "safetensors", "timesformer", "generated_from_trainer", "base_model:facebook/timesformer-base-finetuned-k400", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-21T09:03:52+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #timesformer #generated_from_trainer #base_model-facebook/timesformer-base-finetuned-k400 #license-cc-by-nc-4.0 #endpoints_compatible #region-us
timesformer-base-finetuned-k400-kinetic400-subset-epoch6-num\_frame\_10\_myViT2window4\_more\_data\_b4 ====================================================================================================== This model is a fine-tuned version of facebook/timesformer-base-finetuned-k400 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.1876 * Accuracy: 0.96 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 72 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.1.0+cu121 * Datasets 2.19.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 72", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #timesformer #generated_from_trainer #base_model-facebook/timesformer-base-finetuned-k400 #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 72", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "276.99 +/- 15.65", "name": "mean_reward", "verified": false}]}]}]}
MalumaDev/PPO_LunarLander-v2_test
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-21T09:04:28+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
text-to-image
diffusers
### CUHKSZ-老南门 on Stable Diffusion via Dreambooth #### model by HenryZeng This your the Stable Diffusion model fine-tuned the CUHKSZ-老南门 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **<老南门> building** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/HenryZeng/cuhksz-lao-nan-men/resolve/main/concept_images/0.jpeg) ![image 1](https://huggingface.co/HenryZeng/cuhksz-lao-nan-men/resolve/main/concept_images/1.jpeg) ![image 2](https://huggingface.co/HenryZeng/cuhksz-lao-nan-men/resolve/main/concept_images/2.jpeg) ![image 3](https://huggingface.co/HenryZeng/cuhksz-lao-nan-men/resolve/main/concept_images/5.jpeg) ![image 4](https://huggingface.co/HenryZeng/cuhksz-lao-nan-men/resolve/main/concept_images/4.jpeg) ![image 5](https://huggingface.co/HenryZeng/cuhksz-lao-nan-men/resolve/main/concept_images/3.jpeg)
{"license": "creativeml-openrail-m", "tags": ["text-to-image"]}
HenryZeng/cuhksz-lao-nan-men
null
[ "diffusers", "safetensors", "text-to-image", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-04-21T09:06:03+00:00
[]
[]
TAGS #diffusers #safetensors #text-to-image #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
### CUHKSZ-老南门 on Stable Diffusion via Dreambooth #### model by HenryZeng This your the Stable Diffusion model fine-tuned the CUHKSZ-老南门 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the 'instance_prompt': <老南门> building You can also train your own concepts and upload them to the library by using this notebook. And you can run your new concept via 'diffusers': Colab Notebook for Inference, Spaces with the Public Concepts loaded Here are the images used for training this concept: !image 0 !image 1 !image 2 !image 3 !image 4 !image 5
[ "### CUHKSZ-老南门 on Stable Diffusion via Dreambooth", "#### model by HenryZeng\nThis your the Stable Diffusion model fine-tuned the CUHKSZ-老南门 concept taught to Stable Diffusion with Dreambooth.\nIt can be used by modifying the 'instance_prompt': <老南门> building\n\nYou can also train your own concepts and upload them to the library by using this notebook.\nAnd you can run your new concept via 'diffusers': Colab Notebook for Inference, Spaces with the Public Concepts loaded\n\nHere are the images used for training this concept:\n!image 0\n!image 1\n!image 2\n!image 3\n!image 4\n!image 5" ]
[ "TAGS\n#diffusers #safetensors #text-to-image #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "### CUHKSZ-老南门 on Stable Diffusion via Dreambooth", "#### model by HenryZeng\nThis your the Stable Diffusion model fine-tuned the CUHKSZ-老南门 concept taught to Stable Diffusion with Dreambooth.\nIt can be used by modifying the 'instance_prompt': <老南门> building\n\nYou can also train your own concepts and upload them to the library by using this notebook.\nAnd you can run your new concept via 'diffusers': Colab Notebook for Inference, Spaces with the Public Concepts loaded\n\nHere are the images used for training this concept:\n!image 0\n!image 1\n!image 2\n!image 3\n!image 4\n!image 5" ]
audio-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.6653 - Accuracy: 0.0354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.8 | 3 | 2.6453 | 0.0796 | | No log | 1.8667 | 7 | 2.6504 | 0.0354 | | 2.6366 | 2.9333 | 11 | 2.6507 | 0.0531 | | 2.6366 | 4.0 | 15 | 2.6557 | 0.0531 | | 2.6366 | 4.8 | 18 | 2.6585 | 0.0619 | | 2.6276 | 5.8667 | 22 | 2.6633 | 0.0531 | | 2.6276 | 6.9333 | 26 | 2.6652 | 0.0442 | | 2.6164 | 8.0 | 30 | 2.6653 | 0.0354 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu118 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["minds14"], "metrics": ["accuracy"], "base_model": "facebook/wav2vec2-base", "model-index": [{"name": "my_awesome_mind_model", "results": [{"task": {"type": "audio-classification", "name": "Audio Classification"}, "dataset": {"name": "minds14", "type": "minds14", "config": "en-US", "split": "train", "args": "en-US"}, "metrics": [{"type": "accuracy", "value": 0.035398230088495575, "name": "Accuracy"}]}]}]}
stevehoang9/my_awesome_mind_model
null
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:minds14", "base_model:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2024-04-21T09:06:14+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #wav2vec2 #audio-classification #generated_from_trainer #dataset-minds14 #base_model-facebook/wav2vec2-base #license-apache-2.0 #model-index #endpoints_compatible #region-us
my\_awesome\_mind\_model ======================== This model is a fine-tuned version of facebook/wav2vec2-base on the minds14 dataset. It achieves the following results on the evaluation set: * Loss: 2.6653 * Accuracy: 0.0354 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.40.0 * Pytorch 2.2.2+cu118 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.2+cu118\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #wav2vec2 #audio-classification #generated_from_trainer #dataset-minds14 #base_model-facebook/wav2vec2-base #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.2+cu118\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-to-image
diffusers
# API Inference ![generated from stablediffusionapi.com](https://cdn2.stablediffusionapi.com/generations/bf190b5a-fe19-437c-ba05-82f29cb1f7ad-0.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "juggernaut-xl-rundiffusion" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Try model for free: [Generate Images](https://stablediffusionapi.com/models/juggernaut-xl-rundiffusion) Model link: [View model](https://stablediffusionapi.com/models/juggernaut-xl-rundiffusion) Credits: [View credits](https://civitai.com/?query=model_search) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v4/dreambooth" payload = json.dumps({ "key": "your_api_key", "model_id": "juggernaut-xl-rundiffusion", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
{"license": "creativeml-openrail-m", "tags": ["stablediffusionapi.com", "stable-diffusion-api", "text-to-image", "ultra-realistic"], "pinned": true}
stablediffusionapi/juggernaut-xl-rundiffusion
null
[ "diffusers", "stablediffusionapi.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-04-21T09:07:02+00:00
[]
[]
TAGS #diffusers #stablediffusionapi.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
# API Inference !generated from URL ## Get API Key Get API key from Stable Diffusion API, No Payment needed. Replace Key in below code, change model_id to "juggernaut-xl-rundiffusion" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs Try model for free: Generate Images Model link: View model Credits: View credits View all models: View Models import requests import json url = "URL payload = URL({ "key": "your_api_key", "model_id": "juggernaut-xl-rundiffusion", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(URL) > Use this coupon code to get 25% off DMGG0RBN
[ "# API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from Stable Diffusion API, No Payment needed. \n\nReplace Key in below code, change model_id to \"juggernaut-xl-rundiffusion\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nCredits: View credits\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"juggernaut-xl-rundiffusion\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ "TAGS\n#diffusers #stablediffusionapi.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n", "# API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from Stable Diffusion API, No Payment needed. \n\nReplace Key in below code, change model_id to \"juggernaut-xl-rundiffusion\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nCredits: View credits\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"juggernaut-xl-rundiffusion\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
redmojo7/llama-3-8b-it-finetune-palo-alto-network
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T09:07:24+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
reinforcement-learning
transformers
# TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="baek26//tmp/tmpvd99c56p/baek26/all_5483_all_8657_bart-base_rl") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("baek26//tmp/tmpvd99c56p/baek26/all_5483_all_8657_bart-base_rl") model = AutoModelForCausalLMWithValueHead.from_pretrained("baek26//tmp/tmpvd99c56p/baek26/all_5483_all_8657_bart-base_rl") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
{"license": "apache-2.0", "tags": ["trl", "ppo", "transformers", "reinforcement-learning"]}
baek26/all_5483_all_8657_bart-base_rl
null
[ "transformers", "safetensors", "bart", "text2text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T09:07:37+00:00
[]
[]
TAGS #transformers #safetensors #bart #text2text-generation #trl #ppo #reinforcement-learning #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# TRL Model This is a TRL language model that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: You can then generate text as follows: If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
[ "# TRL Model\n\nThis is a TRL language model that has been fine-tuned with reinforcement learning to\n guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.", "## Usage\n\nTo use this model for inference, first install the TRL library:\n\n\n\nYou can then generate text as follows:\n\n\n\nIf you want to use the model for training or to obtain the outputs from the value head, load the model as follows:" ]
[ "TAGS\n#transformers #safetensors #bart #text2text-generation #trl #ppo #reinforcement-learning #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# TRL Model\n\nThis is a TRL language model that has been fine-tuned with reinforcement learning to\n guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.", "## Usage\n\nTo use this model for inference, first install the TRL library:\n\n\n\nYou can then generate text as follows:\n\n\n\nIf you want to use the model for training or to obtain the outputs from the value head, load the model as follows:" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DISTILBERT-IMDB-HUGGINGFACE This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4106 - Accuracy: 0.9107 - F1: 0.9103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "DISTILBERT-IMDB-HUGGINGFACE", "results": []}]}
ysphang/DISTILBERT-IMDB-HUGGINGFACE
null
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T09:09:22+00:00
[]
[]
TAGS #transformers #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# DISTILBERT-IMDB-HUGGINGFACE This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4106 - Accuracy: 0.9107 - F1: 0.9103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1 - Datasets 2.19.0 - Tokenizers 0.19.1
[ "# DISTILBERT-IMDB-HUGGINGFACE\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.4106\n- Accuracy: 0.9107\n- F1: 0.9103", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4", "### Training results", "### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.2.1\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# DISTILBERT-IMDB-HUGGINGFACE\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.4106\n- Accuracy: 0.9107\n- F1: 0.9103", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4", "### Training results", "### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.2.1\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stablelm-2-1_6b-sft-full This model is a fine-tuned version of [stabilityai/stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b) on the HuggingFaceH4/ultrachat_200k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.19.1
{"license": "other", "tags": ["alignment-handbook", "trl", "sft", "generated_from_trainer", "trl", "sft", "generated_from_trainer"], "datasets": ["HuggingFaceH4/ultrachat_200k"], "base_model": "stabilityai/stablelm-2-1_6b", "model-index": [{"name": "stablelm-2-1_6b-sft-full", "results": []}]}
nnheui/stablelm-2-1_6b-sft-full
null
[ "transformers", "tensorboard", "safetensors", "stablelm", "text-generation", "alignment-handbook", "trl", "sft", "generated_from_trainer", "conversational", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:stabilityai/stablelm-2-1_6b", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T09:09:22+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #stablelm #text-generation #alignment-handbook #trl #sft #generated_from_trainer #conversational #dataset-HuggingFaceH4/ultrachat_200k #base_model-stabilityai/stablelm-2-1_6b #license-other #autotrain_compatible #endpoints_compatible #region-us
# stablelm-2-1_6b-sft-full This model is a fine-tuned version of stabilityai/stablelm-2-1_6b on the HuggingFaceH4/ultrachat_200k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.19.1
[ "# stablelm-2-1_6b-sft-full\n\nThis model is a fine-tuned version of stabilityai/stablelm-2-1_6b on the HuggingFaceH4/ultrachat_200k dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 2\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 128\n- total_eval_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #stablelm #text-generation #alignment-handbook #trl #sft #generated_from_trainer #conversational #dataset-HuggingFaceH4/ultrachat_200k #base_model-stabilityai/stablelm-2-1_6b #license-other #autotrain_compatible #endpoints_compatible #region-us \n", "# stablelm-2-1_6b-sft-full\n\nThis model is a fine-tuned version of stabilityai/stablelm-2-1_6b on the HuggingFaceH4/ultrachat_200k dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 2\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 128\n- total_eval_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.19.1" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"license": "apache-2.0", "library_name": "transformers", "datasets": ["netcat420/MFANN"], "pipeline_tag": "text-classification"}
netcat420/MFANN3bv0.5
null
[ "transformers", "safetensors", "phi", "text-generation", "text-classification", "dataset:netcat420/MFANN", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T09:10:20+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #phi #text-generation #text-classification #dataset-netcat420/MFANN #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #phi #text-generation #text-classification #dataset-netcat420/MFANN #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1 - Datasets 2.19.0 - Tokenizers 0.19.1
{"tags": ["generated_from_trainer"], "model-index": [{"name": "results", "results": []}]}
ysphang/results
null
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-21T09:14:18+00:00
[]
[]
TAGS #transformers #safetensors #distilbert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
# results This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1 - Datasets 2.19.0 - Tokenizers 0.19.1
[ "# results\n\nThis model was trained from scratch on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.2.1\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #safetensors #distilbert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "# results\n\nThis model was trained from scratch on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.2.1\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
object-detection
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 313 | 5.5361 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "facebook/detr-resnet-50", "model-index": [{"name": "detr", "results": []}]}
kuchidareo/detr
null
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-21T09:19:03+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #detr #object-detection #generated_from_trainer #base_model-facebook/detr-resnet-50 #license-apache-2.0 #endpoints_compatible #region-us
detr ==== This model is a fine-tuned version of facebook/detr-resnet-50 on an unknown dataset. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.001 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #detr #object-detection #generated_from_trainer #base_model-facebook/detr-resnet-50 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
OmarSamehSaid/LLM-CXR-v1
null
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-21T09:23:39+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt_neox #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt_neox #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
text-generation
transformers
# Model Card for Mixtral-8x7B The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested. For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/). ## Warning This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF. ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Hello my name is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem: ### In half-precision Note `float16` precision only works on GPU devices <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Lower precision using (8-bit & 4-bit) using `bitsandbytes` <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Load the model with Flash Attention 2 <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ## Notice Mixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms. # The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
{"language": ["fr", "it", "de", "es", "en"], "license": "apache-2.0", "tags": ["moe"]}
MaziyarPanahi/Mixtral-8x7B-v0.1
null
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "fr", "it", "de", "es", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-21T09:25:04+00:00
[]
[ "fr", "it", "de", "es", "en" ]
TAGS #transformers #safetensors #mixtral #text-generation #moe #fr #it #de #es #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Mixtral-8x7B The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested. For full details of this model please read our release blog post. ## Warning This repo contains weights that are compatible with vLLM serving of the model as well as Hugging Face transformers library. It is based on the original Mixtral torrent release, but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF. ## Run the model By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem: ### In half-precision Note 'float16' precision only works on GPU devices <details> <summary> Click to expand </summary> </details> ### Lower precision using (8-bit & 4-bit) using 'bitsandbytes' <details> <summary> Click to expand </summary> </details> ### Load the model with Flash Attention 2 <details> <summary> Click to expand </summary> </details> ## Notice Mixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms. # The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
[ "# Model Card for Mixtral-8x7B\nThe Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested.\n\nFor full details of this model please read our release blog post.", "## Warning\nThis repo contains weights that are compatible with vLLM serving of the model as well as Hugging Face transformers library. It is based on the original Mixtral torrent release, but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.", "## Run the model\n\n\n\n\nBy default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:", "### In half-precision\n\nNote 'float16' precision only works on GPU devices\n\n<details>\n<summary> Click to expand </summary>\n\n\n</details>", "### Lower precision using (8-bit & 4-bit) using 'bitsandbytes'\n\n<details>\n<summary> Click to expand </summary>\n\n\n</details>", "### Load the model with Flash Attention 2\n\n<details>\n<summary> Click to expand </summary>\n\n\n</details>", "## Notice\nMixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms.", "# The Mistral AI Team\nAlbert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed." ]
[ "TAGS\n#transformers #safetensors #mixtral #text-generation #moe #fr #it #de #es #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Mixtral-8x7B\nThe Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested.\n\nFor full details of this model please read our release blog post.", "## Warning\nThis repo contains weights that are compatible with vLLM serving of the model as well as Hugging Face transformers library. It is based on the original Mixtral torrent release, but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.", "## Run the model\n\n\n\n\nBy default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:", "### In half-precision\n\nNote 'float16' precision only works on GPU devices\n\n<details>\n<summary> Click to expand </summary>\n\n\n</details>", "### Lower precision using (8-bit & 4-bit) using 'bitsandbytes'\n\n<details>\n<summary> Click to expand </summary>\n\n\n</details>", "### Load the model with Flash Attention 2\n\n<details>\n<summary> Click to expand </summary>\n\n\n</details>", "## Notice\nMixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms.", "# The Mistral AI Team\nAlbert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed." ]
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "261.78 +/- 17.21", "name": "mean_reward", "verified": false}]}]}]}
nguyenmuoi157/ppo-LunarLander-v2
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-21T09:26:06+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MODEL_EPOCHS_C2_testcase This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 - load_in_4bit: True - load_in_8bit: False ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "NousResearch/Llama-2-7b-hf", "model-index": [{"name": "MODEL_EPOCHS_C2_testcase", "results": []}]}
LLMLover/MODEL_EPOCHS_C2_testcase
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:NousResearch/Llama-2-7b-hf", "region:us" ]
null
2024-04-21T09:27:26+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #generated_from_trainer #base_model-NousResearch/Llama-2-7b-hf #region-us
# MODEL_EPOCHS_C2_testcase This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following 'bitsandbytes' quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 - load_in_4bit: True - load_in_8bit: False ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
[ "# MODEL_EPOCHS_C2_testcase\n\nThis model is a fine-tuned version of NousResearch/Llama-2-7b-hf on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- _load_in_8bit: False\n- _load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16\n- load_in_4bit: True\n- load_in_8bit: False", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 2\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.4.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #base_model-NousResearch/Llama-2-7b-hf #region-us \n", "# MODEL_EPOCHS_C2_testcase\n\nThis model is a fine-tuned version of NousResearch/Llama-2-7b-hf on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- _load_in_8bit: False\n- _load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16\n- load_in_4bit: True\n- load_in_8bit: False", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 2\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.4.0\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2" ]