pipeline_tag
stringclasses 48
values | library_name
stringclasses 198
values | text
stringlengths 1
900k
| metadata
stringlengths 2
438k
| id
stringlengths 5
122
| last_modified
null | tags
sequencelengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
| arxiv
sequencelengths 0
201
| languages
sequencelengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
sequencelengths 0
722
| processed_texts
sequencelengths 1
723
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
reinforcement-learning | null |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1**.
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
# ***Project Information***
**Policy-based learning** is directly approximating π without having to learn a value function- Our objective then is to maximize the performance of the parameterized policy using gradient ascent.
TL;DR: Having the cart learn to balance the pole via optimizing π for the best output; *the pole not falling over*.
This method of learning skips over using a value function like Q-learning does, allowing an immediate improvement in the next iteration instead of having to calculate and approximate tables and numbers for a new action, as Q-learning does.
This specific CartPole model only has 500 training timesteps- the average is 1000, which is the reason why the cart struggles so much with balancing the pole in the video; it has not trained enough for it.
A model trained with 1000 timesteps is successful in balancing the pole, and the more training steps a model has, the more accurate its result is, like when you play a really hard level in a video game over and over, it eventually gets easier.
However, the more timesteps a model has, the longer it takes to train and render- 1000 timesteps take 10-15 minutes to load, and the time only increases the more training timesteps are inputted.
Here -https...- is a video of it working with 1000 timesteps, and here -https...- is one with 2000 *(links will be inserted soon)*
| {"tags": ["CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-Unit4-1", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "95.00 +/- 14.54", "name": "mean_reward", "verified": false}]}]}]} | Saraaaaaaaaa/Reinforce-Unit4-1 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | null | 2024-04-22T01:49:10+00:00 | [] | [] | TAGS
#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
|
# Reinforce Agent playing CartPole-v1
This is a trained model of a Reinforce agent playing CartPole-v1.
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
# *Project Information*
Policy-based learning is directly approximating π without having to learn a value function- Our objective then is to maximize the performance of the parameterized policy using gradient ascent.
TL;DR: Having the cart learn to balance the pole via optimizing π for the best output; *the pole not falling over*.
This method of learning skips over using a value function like Q-learning does, allowing an immediate improvement in the next iteration instead of having to calculate and approximate tables and numbers for a new action, as Q-learning does.
This specific CartPole model only has 500 training timesteps- the average is 1000, which is the reason why the cart struggles so much with balancing the pole in the video; it has not trained enough for it.
A model trained with 1000 timesteps is successful in balancing the pole, and the more training steps a model has, the more accurate its result is, like when you play a really hard level in a video game over and over, it eventually gets easier.
However, the more timesteps a model has, the longer it takes to train and render- 1000 timesteps take 10-15 minutes to load, and the time only increases the more training timesteps are inputted.
Here -https...- is a video of it working with 1000 timesteps, and here -https...- is one with 2000 *(links will be inserted soon)*
| [
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1.\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL\n\n\n # *Project Information*\n\n\n Policy-based learning is directly approximating π without having to learn a value function- Our objective then is to maximize the performance of the parameterized policy using gradient ascent.\n TL;DR: Having the cart learn to balance the pole via optimizing π for the best output; *the pole not falling over*. \n This method of learning skips over using a value function like Q-learning does, allowing an immediate improvement in the next iteration instead of having to calculate and approximate tables and numbers for a new action, as Q-learning does.\n \n\n This specific CartPole model only has 500 training timesteps- the average is 1000, which is the reason why the cart struggles so much with balancing the pole in the video; it has not trained enough for it.\n A model trained with 1000 timesteps is successful in balancing the pole, and the more training steps a model has, the more accurate its result is, like when you play a really hard level in a video game over and over, it eventually gets easier.\n However, the more timesteps a model has, the longer it takes to train and render- 1000 timesteps take 10-15 minutes to load, and the time only increases the more training timesteps are inputted. \n\n Here -https...- is a video of it working with 1000 timesteps, and here -https...- is one with 2000 *(links will be inserted soon)*"
] | [
"TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n",
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1.\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL\n\n\n # *Project Information*\n\n\n Policy-based learning is directly approximating π without having to learn a value function- Our objective then is to maximize the performance of the parameterized policy using gradient ascent.\n TL;DR: Having the cart learn to balance the pole via optimizing π for the best output; *the pole not falling over*. \n This method of learning skips over using a value function like Q-learning does, allowing an immediate improvement in the next iteration instead of having to calculate and approximate tables and numbers for a new action, as Q-learning does.\n \n\n This specific CartPole model only has 500 training timesteps- the average is 1000, which is the reason why the cart struggles so much with balancing the pole in the video; it has not trained enough for it.\n A model trained with 1000 timesteps is successful in balancing the pole, and the more training steps a model has, the more accurate its result is, like when you play a really hard level in a video game over and over, it eventually gets easier.\n However, the more timesteps a model has, the longer it takes to train and render- 1000 timesteps take 10-15 minutes to load, and the time only increases the more training timesteps are inputted. \n\n Here -https...- is a video of it working with 1000 timesteps, and here -https...- is one with 2000 *(links will be inserted soon)*"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | abhayesian/BobzillaV30 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T01:49:17+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | relu-ntnu/bart-large-xsum_v4_trained_on_100_lr_1e-4 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T01:49:36+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
image-classification | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# agusg6/2cla_classification
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.4712
- Validation Loss: 0.4240
- Train Accuracy: 0.8144
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 22190, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.5506 | 0.5478 | 0.7423 | 0 |
| 0.5186 | 0.4889 | 0.7721 | 1 |
| 0.5039 | 0.4618 | 0.7955 | 2 |
| 0.4793 | 0.4596 | 0.7955 | 3 |
| 0.4712 | 0.4240 | 0.8144 | 4 |
### Framework versions
- Transformers 4.40.0
- TensorFlow 2.16.1
- Datasets 2.18.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "agusg6/2cla_classification", "results": []}]} | agusg6/2cla_classification | null | [
"transformers",
"tf",
"vit",
"image-classification",
"generated_from_keras_callback",
"base_model:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T01:50:13+00:00 | [] | [] | TAGS
#transformers #tf #vit #image-classification #generated_from_keras_callback #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| agusg6/2cla\_classification
===========================
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 0.4712
* Validation Loss: 0.4240
* Train Accuracy: 0.8144
* Epoch: 4
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': {'module': 'keras.optimizers.schedules', 'class\_name': 'PolynomialDecay', 'config': {'initial\_learning\_rate': 3e-05, 'decay\_steps': 22190, 'end\_learning\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\_name': None}, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\_decay\_rate': 0.01}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.40.0
* TensorFlow 2.16.1
* Datasets 2.18.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'module': 'keras.optimizers.schedules', 'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 3e-05, 'decay\\_steps': 22190, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\\_name': None}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* TensorFlow 2.16.1\n* Datasets 2.18.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tf #vit #image-classification #generated_from_keras_callback #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'module': 'keras.optimizers.schedules', 'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 3e-05, 'decay\\_steps': 22190, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\\_name': None}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* TensorFlow 2.16.1\n* Datasets 2.18.0\n* Tokenizers 0.19.1"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
eval_accuracy: 0.7110014287569815
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.1.dev0 | {"library_name": "peft", "base_model": "TheBloke/Mistral-7B-Instruct-v0.2-AWQ"} | Jennny/anthro_rm_144k_awq | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:TheBloke/Mistral-7B-Instruct-v0.2-AWQ",
"region:us"
] | null | 2024-04-22T01:51:36+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-TheBloke/Mistral-7B-Instruct-v0.2-AWQ #region-us
|
# Model Card for Model ID
eval_accuracy: 0.7110014287569815
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.1.dev0 | [
"# Model Card for Model ID\n\n\n\neval_accuracy: 0.7110014287569815",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.1.dev0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-TheBloke/Mistral-7B-Instruct-v0.2-AWQ #region-us \n",
"# Model Card for Model ID\n\n\n\neval_accuracy: 0.7110014287569815",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.1.dev0"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | relu-ntnu/bart-large-xsum_v4_trained_on_250_lr_1e-4 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T01:51:55+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | null |
<p align="center">
<img style="width: 20%;" src="llasmol.png">
</p>
<h1 align="center"> LlaSMol </h1>
<h3 align="center"> LlaSMol-Galactica-6.7B </h3>
**Paper**: [LlaSMol: Advancing Large Language Models for Chemistry with a Large-Scale, Comprehensive, High-Quality Instruction Tuning Dataset](https://arxiv.org/abs/2402.09391)
**Page**: [https://osu-nlp-group.github.io/LlaSMol](https://osu-nlp-group.github.io/LlaSMol)
**Code**: [https://github.com/OSU-NLP-Group/LlaSMol](https://github.com/OSU-NLP-Group/LlaSMol)
**Models**:
- LlaSMol-Galactica-6.7B: [https://huggingface.co/osunlp/LlaSMol-Galactica-6.7B](https://huggingface.co/osunlp/LlaSMol-Galactica-6.7B)
- LlaSMol-Llama2-7B: [https://huggingface.co/osunlp/LlaSMol-Llama2-7B](https://huggingface.co/osunlp/LlaSMol-Llama2-7B)
- LlaSMol-CodeLlama-7B: [https://huggingface.co/osunlp/LlaSMol-CodeLlama-7B](https://huggingface.co/osunlp/LlaSMol-CodeLlama-7B)
- LlaSMol-Mistral-7B: [https://huggingface.co/osunlp/LlaSMol-Mistral-7B](https://huggingface.co/osunlp/LlaSMol-Mistral-7B)
LlaSMol-Galactica-6.7B is an LLM for chemistry. It is based on [facebook/galactica-6.7b](https://huggingface.co/facebook/galactica-6.7b) and tuned on our [SMolInstruct](https://huggingface.co/datasets/osunlp/SMolInstruct) dataset with LoRA. This repo contains the weight of the low-rank adapter.
## ⚔️ Usage
For instructions to run the model, please refer to our [repository](https://github.com/OSU-NLP-Group/LlaSMol).
## 🚨 Limitations
While the model is carefully trained, we do not guarantee its effectiveness. The model may output incorrect or inaccurate information. Please use it at your own risk.
Additionally, the model is built as a mature product but solely for research purpose. It may generate harmful or biased information. We emphatically urge all users to adhere to the highest ethical standards when using the model, including maintaining fairness, transparency, and responsibility in their research. Any usage of the dataset that may lead to harm or pose a detriment to society is strictly **forbidden**.
## 📚 Citation
If our paper or related resources prove valuable to your research, we kindly ask for citation. Please feel free to contact us with any inquiries.
```
@article{yu2024llasmol,
title={LlaSMol: Advancing Large Language Models for Chemistry with a Large-Scale, Comprehensive, High-Quality Instruction Tuning Dataset},
author={Botao Yu and Frazier N. Baker and Ziqi Chen and Xia Ning and Huan Sun},
journal={arXiv preprint arXiv:2402.09391},
year={2024}
}
```
| {"language": ["en"], "license": "cc-by-4.0", "tags": ["instruction tuning", "chemistry", "molecule", "small molecule"]} | osunlp/LlaSMol-Galactica-6.7B | null | [
"instruction tuning",
"chemistry",
"molecule",
"small molecule",
"en",
"arxiv:2402.09391",
"license:cc-by-4.0",
"region:us"
] | null | 2024-04-22T01:52:09+00:00 | [
"2402.09391"
] | [
"en"
] | TAGS
#instruction tuning #chemistry #molecule #small molecule #en #arxiv-2402.09391 #license-cc-by-4.0 #region-us
|
<p align="center">
<img style="width: 20%;" src="URL">
</p>
<h1 align="center"> LlaSMol </h1>
<h3 align="center"> LlaSMol-Galactica-6.7B </h3>
Paper: LlaSMol: Advancing Large Language Models for Chemistry with a Large-Scale, Comprehensive, High-Quality Instruction Tuning Dataset
Page: URL
Code: URL
Models:
- LlaSMol-Galactica-6.7B: URL
- LlaSMol-Llama2-7B: URL
- LlaSMol-CodeLlama-7B: URL
- LlaSMol-Mistral-7B: URL
LlaSMol-Galactica-6.7B is an LLM for chemistry. It is based on facebook/galactica-6.7b and tuned on our SMolInstruct dataset with LoRA. This repo contains the weight of the low-rank adapter.
## ️ Usage
For instructions to run the model, please refer to our repository.
## Limitations
While the model is carefully trained, we do not guarantee its effectiveness. The model may output incorrect or inaccurate information. Please use it at your own risk.
Additionally, the model is built as a mature product but solely for research purpose. It may generate harmful or biased information. We emphatically urge all users to adhere to the highest ethical standards when using the model, including maintaining fairness, transparency, and responsibility in their research. Any usage of the dataset that may lead to harm or pose a detriment to society is strictly forbidden.
## Citation
If our paper or related resources prove valuable to your research, we kindly ask for citation. Please feel free to contact us with any inquiries.
| [
"## ️ Usage\n\nFor instructions to run the model, please refer to our repository.",
"## Limitations\n\nWhile the model is carefully trained, we do not guarantee its effectiveness. The model may output incorrect or inaccurate information. Please use it at your own risk.\n\nAdditionally, the model is built as a mature product but solely for research purpose. It may generate harmful or biased information. We emphatically urge all users to adhere to the highest ethical standards when using the model, including maintaining fairness, transparency, and responsibility in their research. Any usage of the dataset that may lead to harm or pose a detriment to society is strictly forbidden.",
"## Citation\nIf our paper or related resources prove valuable to your research, we kindly ask for citation. Please feel free to contact us with any inquiries."
] | [
"TAGS\n#instruction tuning #chemistry #molecule #small molecule #en #arxiv-2402.09391 #license-cc-by-4.0 #region-us \n",
"## ️ Usage\n\nFor instructions to run the model, please refer to our repository.",
"## Limitations\n\nWhile the model is carefully trained, we do not guarantee its effectiveness. The model may output incorrect or inaccurate information. Please use it at your own risk.\n\nAdditionally, the model is built as a mature product but solely for research purpose. It may generate harmful or biased information. We emphatically urge all users to adhere to the highest ethical standards when using the model, including maintaining fairness, transparency, and responsibility in their research. Any usage of the dataset that may lead to harm or pose a detriment to society is strictly forbidden.",
"## Citation\nIf our paper or related resources prove valuable to your research, we kindly ask for citation. Please feel free to contact us with any inquiries."
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "shrenikb/LLaMA0.5sparsity"} | shrenikb/wanda50sparsity | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:shrenikb/LLaMA0.5sparsity",
"region:us"
] | null | 2024-04-22T01:52:22+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.5sparsity #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.5sparsity #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
null | null |
<p align="center">
<img style="width: 20%;" src="llasmol.png">
</p>
<h1 align="center"> LlaSMol </h1>
<h3 align="center"> LlaSMol-CodeLlama-7B </h3>
**Paper**: [LlaSMol: Advancing Large Language Models for Chemistry with a Large-Scale, Comprehensive, High-Quality Instruction Tuning Dataset](https://arxiv.org/abs/2402.09391)
**Page**: [https://osu-nlp-group.github.io/LlaSMol](https://osu-nlp-group.github.io/LlaSMol)
**Code**: [https://github.com/OSU-NLP-Group/LlaSMol](https://github.com/OSU-NLP-Group/LlaSMol)
**Models**:
- LlaSMol-Galactica-6.7B: [https://huggingface.co/osunlp/LlaSMol-Galactica-6.7B](https://huggingface.co/osunlp/LlaSMol-Galactica-6.7B)
- LlaSMol-Llama2-7B: [https://huggingface.co/osunlp/LlaSMol-Llama2-7B](https://huggingface.co/osunlp/LlaSMol-Llama2-7B)
- LlaSMol-CodeLlama-7B: [https://huggingface.co/osunlp/LlaSMol-CodeLlama-7B](https://huggingface.co/osunlp/LlaSMol-CodeLlama-7B)
- LlaSMol-Mistral-7B: [https://huggingface.co/osunlp/LlaSMol-Mistral-7B](https://huggingface.co/osunlp/LlaSMol-Mistral-7B)
LlaSMol-CodeLlama-7B is an LLM for chemistry. It is based on [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) and tuned on our [SMolInstruct](https://huggingface.co/datasets/osunlp/SMolInstruct) dataset with LoRA. This repo contains the weight of the low-rank adapter.
## ⚔️ Usage
For instructions to run the model, please refer to our [repository](https://github.com/OSU-NLP-Group/LlaSMol).
## 🚨 Limitations
While the model is carefully trained, we do not guarantee its effectiveness. The model may output incorrect or inaccurate information. Please use it at your own risk.
Additionally, the model is built as a mature product but solely for research purpose. It may generate harmful or biased information. We emphatically urge all users to adhere to the highest ethical standards when using the model, including maintaining fairness, transparency, and responsibility in their research. Any usage of the dataset that may lead to harm or pose a detriment to society is strictly **forbidden**.
## 📚 Citation
If our paper or related resources prove valuable to your research, we kindly ask for citation. Please feel free to contact us with any inquiries.
```
@article{yu2024llasmol,
title={LlaSMol: Advancing Large Language Models for Chemistry with a Large-Scale, Comprehensive, High-Quality Instruction Tuning Dataset},
author={Botao Yu and Frazier N. Baker and Ziqi Chen and Xia Ning and Huan Sun},
journal={arXiv preprint arXiv:2402.09391},
year={2024}
}
```
| {"language": ["en"], "license": "cc-by-4.0", "tags": ["instruction tuning", "chemistry", "molecule", "small molecule"]} | osunlp/LlaSMol-CodeLlama-7B | null | [
"instruction tuning",
"chemistry",
"molecule",
"small molecule",
"en",
"arxiv:2402.09391",
"license:cc-by-4.0",
"region:us"
] | null | 2024-04-22T01:53:02+00:00 | [
"2402.09391"
] | [
"en"
] | TAGS
#instruction tuning #chemistry #molecule #small molecule #en #arxiv-2402.09391 #license-cc-by-4.0 #region-us
|
<p align="center">
<img style="width: 20%;" src="URL">
</p>
<h1 align="center"> LlaSMol </h1>
<h3 align="center"> LlaSMol-CodeLlama-7B </h3>
Paper: LlaSMol: Advancing Large Language Models for Chemistry with a Large-Scale, Comprehensive, High-Quality Instruction Tuning Dataset
Page: URL
Code: URL
Models:
- LlaSMol-Galactica-6.7B: URL
- LlaSMol-Llama2-7B: URL
- LlaSMol-CodeLlama-7B: URL
- LlaSMol-Mistral-7B: URL
LlaSMol-CodeLlama-7B is an LLM for chemistry. It is based on codellama/CodeLlama-7b-hf and tuned on our SMolInstruct dataset with LoRA. This repo contains the weight of the low-rank adapter.
## ️ Usage
For instructions to run the model, please refer to our repository.
## Limitations
While the model is carefully trained, we do not guarantee its effectiveness. The model may output incorrect or inaccurate information. Please use it at your own risk.
Additionally, the model is built as a mature product but solely for research purpose. It may generate harmful or biased information. We emphatically urge all users to adhere to the highest ethical standards when using the model, including maintaining fairness, transparency, and responsibility in their research. Any usage of the dataset that may lead to harm or pose a detriment to society is strictly forbidden.
## Citation
If our paper or related resources prove valuable to your research, we kindly ask for citation. Please feel free to contact us with any inquiries.
| [
"## ️ Usage\n\nFor instructions to run the model, please refer to our repository.",
"## Limitations\n\nWhile the model is carefully trained, we do not guarantee its effectiveness. The model may output incorrect or inaccurate information. Please use it at your own risk.\n\nAdditionally, the model is built as a mature product but solely for research purpose. It may generate harmful or biased information. We emphatically urge all users to adhere to the highest ethical standards when using the model, including maintaining fairness, transparency, and responsibility in their research. Any usage of the dataset that may lead to harm or pose a detriment to society is strictly forbidden.",
"## Citation\nIf our paper or related resources prove valuable to your research, we kindly ask for citation. Please feel free to contact us with any inquiries."
] | [
"TAGS\n#instruction tuning #chemistry #molecule #small molecule #en #arxiv-2402.09391 #license-cc-by-4.0 #region-us \n",
"## ️ Usage\n\nFor instructions to run the model, please refer to our repository.",
"## Limitations\n\nWhile the model is carefully trained, we do not guarantee its effectiveness. The model may output incorrect or inaccurate information. Please use it at your own risk.\n\nAdditionally, the model is built as a mature product but solely for research purpose. It may generate harmful or biased information. We emphatically urge all users to adhere to the highest ethical standards when using the model, including maintaining fairness, transparency, and responsibility in their research. Any usage of the dataset that may lead to harm or pose a detriment to society is strictly forbidden.",
"## Citation\nIf our paper or related resources prove valuable to your research, we kindly ask for citation. Please feel free to contact us with any inquiries."
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleFalse_extractchosenTrue
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1748
- Accuracy: 0.9237
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7416 | 0.04 | 250 | 0.5877 | 0.7074 |
| 0.7004 | 0.08 | 500 | 0.4614 | 0.7980 |
| 0.6298 | 0.13 | 750 | 0.3453 | 0.8477 |
| 0.5979 | 0.17 | 1000 | 0.2723 | 0.8774 |
| 0.5842 | 0.21 | 1250 | 0.2469 | 0.8868 |
| 0.6257 | 0.25 | 1500 | 0.2255 | 0.8973 |
| 0.5833 | 0.29 | 1750 | 0.2103 | 0.9071 |
| 0.6368 | 0.33 | 2000 | 0.2061 | 0.9082 |
| 0.5854 | 0.38 | 2250 | 0.2063 | 0.9105 |
| 0.5458 | 0.42 | 2500 | 0.1990 | 0.9127 |
| 0.6079 | 0.46 | 2750 | 0.1993 | 0.9135 |
| 0.5819 | 0.5 | 3000 | 0.1917 | 0.9165 |
| 0.5823 | 0.54 | 3250 | 0.1844 | 0.9180 |
| 0.618 | 0.59 | 3500 | 0.1869 | 0.9188 |
| 0.6075 | 0.63 | 3750 | 0.1885 | 0.9169 |
| 0.5685 | 0.67 | 4000 | 0.1848 | 0.9191 |
| 0.5718 | 0.71 | 4250 | 0.1848 | 0.9206 |
| 0.5697 | 0.75 | 4500 | 0.1819 | 0.9210 |
| 0.5719 | 0.79 | 4750 | 0.1769 | 0.9229 |
| 0.5774 | 0.84 | 5000 | 0.1779 | 0.9218 |
| 0.5331 | 0.88 | 5250 | 0.1745 | 0.9233 |
| 0.564 | 0.92 | 5500 | 0.1752 | 0.9237 |
| 0.567 | 0.96 | 5750 | 0.1748 | 0.9237 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleFalse_extractchosenTrue", "results": []}]} | Holarissun/RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleFalse_extractchosenTrue | null | [
"peft",
"safetensors",
"trl",
"reward-trainer",
"generated_from_trainer",
"base_model:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-04-22T01:55:41+00:00 | [] | [] | TAGS
#peft #safetensors #trl #reward-trainer #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us
| RM-HH-AllMix\_harmless\_gpt3\_20000\_gemma2b\_shuffleFalse\_extractchosenTrue
=============================================================================
This model is a fine-tuned version of google/gemma-2b on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1748
* Accuracy: 0.9237
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1.41e-05
* train\_batch\_size: 1
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 4
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1.0
### Training results
### Framework versions
* PEFT 0.10.0
* Transformers 4.38.2
* Pytorch 2.1.2+cu121
* Datasets 2.18.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.41e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.38.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#peft #safetensors #trl #reward-trainer #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.41e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.38.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] |
null | null |
# cleatherbury/M7-7b-Q8_0-GGUF
This model was converted to GGUF format from [`liminerity/M7-7b`](https://huggingface.co/liminerity/M7-7b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/liminerity/M7-7b) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo cleatherbury/M7-7b-Q8_0-GGUF --model m7-7b.Q8_0.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo cleatherbury/M7-7b-Q8_0-GGUF --model m7-7b.Q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m m7-7b.Q8_0.gguf -n 128
```
| {"license": "apache-2.0", "tags": ["liminerity/merge4", "liminerity/merge2", "merge", "merged", "mergedllm", "mergee", "mergedededed", "memfdmsfndsfjkasjkl", "llama-cpp", "gguf-my-repo"]} | cleatherbury/M7-7b-Q8_0-GGUF | null | [
"gguf",
"liminerity/merge4",
"liminerity/merge2",
"merge",
"merged",
"mergedllm",
"mergee",
"mergedededed",
"memfdmsfndsfjkasjkl",
"llama-cpp",
"gguf-my-repo",
"license:apache-2.0",
"region:us"
] | null | 2024-04-22T01:56:03+00:00 | [] | [] | TAGS
#gguf #liminerity/merge4 #liminerity/merge2 #merge #merged #mergedllm #mergee #mergedededed #memfdmsfndsfjkasjkl #llama-cpp #gguf-my-repo #license-apache-2.0 #region-us
|
# cleatherbury/M7-7b-Q8_0-GGUF
This model was converted to GGUF format from 'liminerity/M7-7b' using URL via the URL's GGUF-my-repo space.
Refer to the original model card for more details on the model.
## Use with URL
Install URL through brew.
Invoke the URL server or the CLI.
CLI:
Server:
Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
| [
"# cleatherbury/M7-7b-Q8_0-GGUF\nThis model was converted to GGUF format from 'liminerity/M7-7b' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] | [
"TAGS\n#gguf #liminerity/merge4 #liminerity/merge2 #merge #merged #mergedllm #mergee #mergedededed #memfdmsfndsfjkasjkl #llama-cpp #gguf-my-repo #license-apache-2.0 #region-us \n",
"# cleatherbury/M7-7b-Q8_0-GGUF\nThis model was converted to GGUF format from 'liminerity/M7-7b' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] |
null | transformers |
# Uploaded model
- **Developed by:** anton96vice
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-Instruct-bnb-4bit"} | anton96vice/AV-telegram-llama3-8b-in | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T01:56:39+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: anton96vice
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: anton96vice\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: anton96vice\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | relu-ntnu/bart-large-xsum_v4_trained_on_500_lr_1e-4 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T01:56:48+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers | # Chaos RP

A chaotic force beckons for you, will you heed her call?
Built upon an intelligent foundation and tuned for roleplaying, this model will fulfill your wildest fantasies with the bare minimum of effort.
Enjoy! | {"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "base_model": ["ChaoticNeutrals/IQ_Test_l3_8B", "ResplendentAI/RP_Format_QuoteAsterisk_Llama3"]} | jeiku/Chaos_RP_l3_8B | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"base_model:ChaoticNeutrals/IQ_Test_l3_8B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T01:57:29+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #llama #text-generation #conversational #en #base_model-ChaoticNeutrals/IQ_Test_l3_8B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # Chaos RP
!image/png
A chaotic force beckons for you, will you heed her call?
Built upon an intelligent foundation and tuned for roleplaying, this model will fulfill your wildest fantasies with the bare minimum of effort.
Enjoy! | [
"# Chaos RP\n\n!image/png\n\nA chaotic force beckons for you, will you heed her call?\n\nBuilt upon an intelligent foundation and tuned for roleplaying, this model will fulfill your wildest fantasies with the bare minimum of effort.\n\nEnjoy!"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #en #base_model-ChaoticNeutrals/IQ_Test_l3_8B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Chaos RP\n\n!image/png\n\nA chaotic force beckons for you, will you heed her call?\n\nBuilt upon an intelligent foundation and tuned for roleplaying, this model will fulfill your wildest fantasies with the bare minimum of effort.\n\nEnjoy!"
] |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8293
- Matthews Correlation: 0.5335
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5183 | 1.0 | 535 | 0.4758 | 0.4383 |
| 0.3465 | 2.0 | 1070 | 0.4784 | 0.5158 |
| 0.2381 | 3.0 | 1605 | 0.6127 | 0.5140 |
| 0.1781 | 4.0 | 2140 | 0.7611 | 0.5006 |
| 0.1305 | 5.0 | 2675 | 0.8293 | 0.5335 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["matthews_correlation"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": []}]} | harrisr-smu/distilbert-base-uncased-finetuned-cola | null | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T01:58:30+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-cola
======================================
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8293
* Matthews Correlation: 0.5335
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.40.0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
null | trl |
# Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.24-DPO
This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
Description: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT
It achieves the following results on the evaluation set:
{'eval_loss': 0.008221210911870003, 'eval_runtime': 15.9054, 'eval_samples_per_second': 1.76, 'eval_steps_per_second': 0.44, 'eval_rewards/chosen': 2.6355252265930176, 'eval_rewards/rejected': -2.999356508255005, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 5.634881496429443, 'eval_logps/rejected': -208.50425720214844, 'eval_logps/chosen': -182.0274200439453, 'eval_logits/rejected': -1.9468201398849487, 'eval_logits/chosen': -1.9320443868637085, 'epoch': 5.806451612903226}
## Intended uses & limitations
This model has not been trained to avoid specific intructions.
## Training procedure
Finetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged with the following prompt:
```
---------------------
System_prompt:
Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
{instructions_formatted}
{context_statement}
Lista de requisitos:
- Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
- Nunca traga informações do seu próprio conhecimento.
- Repito é crucial que você responda usando apenas informações do contexto.
- Nunca mencione o contexto fornecido.
- Nunca mencione a pergunta fornecida.
- Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
- Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.
---------------------
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- per_device_train_batch_size: 1
- per_device_eval_batch_size: 1
- gradient_accumulation_steps: 2
- num_gpus: 4
- total_train_batch_size: 8
- optimizer: AdamW
- lr_scheduler_type: cosine
- num_steps: 180
- quantization_type: bitsandbytes
- LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 64\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\n - task_type: CAUSAL_LM",)
### Training results
### Framework versions
- transformers==4.40.0
- datasets==2.18.0
- peft==0.10.0
- safetensors==0.4.2
- evaluate==0.4.1
- bitsandbytes==0.43
- huggingface_hub==0.22.2
- seqeval==1.2.2
- auto-gptq==0.7.1
- gpustat==1.1.1
- deepspeed==0.14.0
- wandb==0.16.6
- trl==0.8.1
- accelerate==0.29.3
- coloredlogs==15.0.1
- traitlets==5.14.2
- git+https://github.com/casper-hansen/AutoAWQ.git
### Hardware
- Cloud provided: runpod.io
| {"language": ["pt"], "license": "mit", "library_name": "trl", "tags": ["DPO", "WeniGPT"], "base_model": "Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged", "model-index": [{"name": "Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.24-DPO", "results": []}]} | Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.24-DPO | null | [
"trl",
"safetensors",
"DPO",
"WeniGPT",
"pt",
"base_model:Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged",
"license:mit",
"region:us"
] | null | 2024-04-22T01:59:55+00:00 | [] | [
"pt"
] | TAGS
#trl #safetensors #DPO #WeniGPT #pt #base_model-Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged #license-mit #region-us
|
# Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.24-DPO
This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for Weni.
Description: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT
It achieves the following results on the evaluation set:
{'eval_loss': 0.008221210911870003, 'eval_runtime': 15.9054, 'eval_samples_per_second': 1.76, 'eval_steps_per_second': 0.44, 'eval_rewards/chosen': 2.6355252265930176, 'eval_rewards/rejected': -2.999356508255005, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 5.634881496429443, 'eval_logps/rejected': -208.50425720214844, 'eval_logps/chosen': -182.0274200439453, 'eval_logits/rejected': -1.9468201398849487, 'eval_logits/chosen': -1.9320443868637085, 'epoch': 5.806451612903226}
## Intended uses & limitations
This model has not been trained to avoid specific intructions.
## Training procedure
Finetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged with the following prompt:
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- per_device_train_batch_size: 1
- per_device_eval_batch_size: 1
- gradient_accumulation_steps: 2
- num_gpus: 4
- total_train_batch_size: 8
- optimizer: AdamW
- lr_scheduler_type: cosine
- num_steps: 180
- quantization_type: bitsandbytes
- LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 64\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\n - task_type: CAUSAL_LM",)
### Training results
### Framework versions
- transformers==4.40.0
- datasets==2.18.0
- peft==0.10.0
- safetensors==0.4.2
- evaluate==0.4.1
- bitsandbytes==0.43
- huggingface_hub==0.22.2
- seqeval==1.2.2
- auto-gptq==0.7.1
- gpustat==1.1.1
- deepspeed==0.14.0
- wandb==0.16.6
- trl==0.8.1
- accelerate==0.29.3
- coloredlogs==15.0.1
- traitlets==5.14.2
- git+URL
### Hardware
- Cloud provided: URL
| [
"# Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.24-DPO\n\nThis model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for Weni.\nDescription: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT\n\nIt achieves the following results on the evaluation set:\n{'eval_loss': 0.008221210911870003, 'eval_runtime': 15.9054, 'eval_samples_per_second': 1.76, 'eval_steps_per_second': 0.44, 'eval_rewards/chosen': 2.6355252265930176, 'eval_rewards/rejected': -2.999356508255005, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 5.634881496429443, 'eval_logps/rejected': -208.50425720214844, 'eval_logps/chosen': -182.0274200439453, 'eval_logits/rejected': -1.9468201398849487, 'eval_logits/chosen': -1.9320443868637085, 'epoch': 5.806451612903226}",
"## Intended uses & limitations\n\nThis model has not been trained to avoid specific intructions.",
"## Training procedure\n\nFinetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged with the following prompt:",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-06\n- per_device_train_batch_size: 1\n- per_device_eval_batch_size: 1\n- gradient_accumulation_steps: 2\n- num_gpus: 4\n- total_train_batch_size: 8\n- optimizer: AdamW\n- lr_scheduler_type: cosine\n- num_steps: 180\n- quantization_type: bitsandbytes\n- LoRA: (\"\\n - bits: 4\\n - use_exllama: True\\n - device_map: auto\\n - use_cache: False\\n - lora_r: 64\\n - lora_alpha: 32\\n - lora_dropout: 0.05\\n - bias: none\\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\\n - task_type: CAUSAL_LM\",)",
"### Training results",
"### Framework versions\n\n- transformers==4.40.0\n- datasets==2.18.0\n- peft==0.10.0\n- safetensors==0.4.2\n- evaluate==0.4.1\n- bitsandbytes==0.43\n- huggingface_hub==0.22.2\n- seqeval==1.2.2\n- auto-gptq==0.7.1\n- gpustat==1.1.1\n- deepspeed==0.14.0\n- wandb==0.16.6\n- trl==0.8.1\n- accelerate==0.29.3\n- coloredlogs==15.0.1\n- traitlets==5.14.2\n- git+URL",
"### Hardware\n- Cloud provided: URL"
] | [
"TAGS\n#trl #safetensors #DPO #WeniGPT #pt #base_model-Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged #license-mit #region-us \n",
"# Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.24-DPO\n\nThis model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for Weni.\nDescription: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT\n\nIt achieves the following results on the evaluation set:\n{'eval_loss': 0.008221210911870003, 'eval_runtime': 15.9054, 'eval_samples_per_second': 1.76, 'eval_steps_per_second': 0.44, 'eval_rewards/chosen': 2.6355252265930176, 'eval_rewards/rejected': -2.999356508255005, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 5.634881496429443, 'eval_logps/rejected': -208.50425720214844, 'eval_logps/chosen': -182.0274200439453, 'eval_logits/rejected': -1.9468201398849487, 'eval_logits/chosen': -1.9320443868637085, 'epoch': 5.806451612903226}",
"## Intended uses & limitations\n\nThis model has not been trained to avoid specific intructions.",
"## Training procedure\n\nFinetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged with the following prompt:",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-06\n- per_device_train_batch_size: 1\n- per_device_eval_batch_size: 1\n- gradient_accumulation_steps: 2\n- num_gpus: 4\n- total_train_batch_size: 8\n- optimizer: AdamW\n- lr_scheduler_type: cosine\n- num_steps: 180\n- quantization_type: bitsandbytes\n- LoRA: (\"\\n - bits: 4\\n - use_exllama: True\\n - device_map: auto\\n - use_cache: False\\n - lora_r: 64\\n - lora_alpha: 32\\n - lora_dropout: 0.05\\n - bias: none\\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\\n - task_type: CAUSAL_LM\",)",
"### Training results",
"### Framework versions\n\n- transformers==4.40.0\n- datasets==2.18.0\n- peft==0.10.0\n- safetensors==0.4.2\n- evaluate==0.4.1\n- bitsandbytes==0.43\n- huggingface_hub==0.22.2\n- seqeval==1.2.2\n- auto-gptq==0.7.1\n- gpustat==1.1.1\n- deepspeed==0.14.0\n- wandb==0.16.6\n- trl==0.8.1\n- accelerate==0.29.3\n- coloredlogs==15.0.1\n- traitlets==5.14.2\n- git+URL",
"### Hardware\n- Cloud provided: URL"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | kubwa/gemma-2b-sql-ian | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:00:05+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 0.0001_ablation_4iters_bs256_iter_2
This model is a fine-tuned version of [ShenaoZ/0.0001_ablation_4iters_bs256_iter_1](https://huggingface.co/ShenaoZ/0.0001_ablation_4iters_bs256_iter_1) on the updated and the original datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ShenaoZ/0.0001_ablation_4iters_bs256_iter_1", "model-index": [{"name": "0.0001_ablation_4iters_bs256_iter_2", "results": []}]} | ShenaoZ/0.0001_ablation_4iters_bs256_iter_2 | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:updated",
"dataset:original",
"base_model:ShenaoZ/0.0001_ablation_4iters_bs256_iter_1",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:03:00+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.0001_ablation_4iters_bs256_iter_1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# 0.0001_ablation_4iters_bs256_iter_2
This model is a fine-tuned version of ShenaoZ/0.0001_ablation_4iters_bs256_iter_1 on the updated and the original datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| [
"# 0.0001_ablation_4iters_bs256_iter_2\n\nThis model is a fine-tuned version of ShenaoZ/0.0001_ablation_4iters_bs256_iter_1 on the updated and the original datasets.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.0001_ablation_4iters_bs256_iter_1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# 0.0001_ablation_4iters_bs256_iter_2\n\nThis model is a fine-tuned version of ShenaoZ/0.0001_ablation_4iters_bs256_iter_1 on the updated and the original datasets.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | relu-ntnu/bart-large-xsum_v4_trained_on_1000_lr_1e-4 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:06:50+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | niranjanramarajar/llama3-tamil-finetuned-base-v1 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:07:03+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | null |
# cleatherbury/SOLAR-10.7B-Q8_0-GGUF
This model was converted to GGUF format from [`krevas/SOLAR-10.7B`](https://huggingface.co/krevas/SOLAR-10.7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/krevas/SOLAR-10.7B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo cleatherbury/SOLAR-10.7B-Q8_0-GGUF --model solar-10.7b.Q8_0.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo cleatherbury/SOLAR-10.7B-Q8_0-GGUF --model solar-10.7b.Q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m solar-10.7b.Q8_0.gguf -n 128
```
| {"language": ["ko"], "license": "apache-2.0", "tags": ["llama-cpp", "gguf-my-repo"]} | cleatherbury/SOLAR-10.7B-Q8_0-GGUF | null | [
"gguf",
"llama-cpp",
"gguf-my-repo",
"ko",
"license:apache-2.0",
"region:us"
] | null | 2024-04-22T02:07:27+00:00 | [] | [
"ko"
] | TAGS
#gguf #llama-cpp #gguf-my-repo #ko #license-apache-2.0 #region-us
|
# cleatherbury/SOLAR-10.7B-Q8_0-GGUF
This model was converted to GGUF format from 'krevas/SOLAR-10.7B' using URL via the URL's GGUF-my-repo space.
Refer to the original model card for more details on the model.
## Use with URL
Install URL through brew.
Invoke the URL server or the CLI.
CLI:
Server:
Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
| [
"# cleatherbury/SOLAR-10.7B-Q8_0-GGUF\nThis model was converted to GGUF format from 'krevas/SOLAR-10.7B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] | [
"TAGS\n#gguf #llama-cpp #gguf-my-repo #ko #license-apache-2.0 #region-us \n",
"# cleatherbury/SOLAR-10.7B-Q8_0-GGUF\nThis model was converted to GGUF format from 'krevas/SOLAR-10.7B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | domenicrosati/adversarial_loss_lr_1e-5_model_meta-llama_Llama-2-7b-chat-hf_batch_4_epoch_4_num_layers_6 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:08:43+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Grayx/sad_llama_20 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:09:54+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
reinforcement-learning | transformers |
# TRL Model
This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="baek26//tmp/tmpz01g5nmq/baek26/all_6417_bart-base_rl")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("baek26//tmp/tmpz01g5nmq/baek26/all_6417_bart-base_rl")
model = AutoModelForCausalLMWithValueHead.from_pretrained("baek26//tmp/tmpz01g5nmq/baek26/all_6417_bart-base_rl")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
| {"license": "apache-2.0", "tags": ["trl", "ppo", "transformers", "reinforcement-learning"]} | baek26/all_6417_bart-base_rl | null | [
"transformers",
"safetensors",
"bart",
"text2text-generation",
"trl",
"ppo",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:10:06+00:00 | [] | [] | TAGS
#transformers #safetensors #bart #text2text-generation #trl #ppo #reinforcement-learning #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# TRL Model
This is a TRL language model that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
You can then generate text as follows:
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
| [
"# TRL Model\n\nThis is a TRL language model that has been fine-tuned with reinforcement learning to\n guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.",
"## Usage\n\nTo use this model for inference, first install the TRL library:\n\n\n\nYou can then generate text as follows:\n\n\n\nIf you want to use the model for training or to obtain the outputs from the value head, load the model as follows:"
] | [
"TAGS\n#transformers #safetensors #bart #text2text-generation #trl #ppo #reinforcement-learning #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# TRL Model\n\nThis is a TRL language model that has been fine-tuned with reinforcement learning to\n guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.",
"## Usage\n\nTo use this model for inference, first install the TRL library:\n\n\n\nYou can then generate text as follows:\n\n\n\nIf you want to use the model for training or to obtain the outputs from the value head, load the model as follows:"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "mistralai/Mistral-7B-Instruct-v0.2"} | epiverseai/mistral-7b-r-data-science | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"region:us"
] | null | 2024-04-22T02:10:42+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.2 #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.2 #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 0.001_ablation_5iters_bs256_iter_3
This model is a fine-tuned version of [ShenaoZ/0.001_ablation_5iters_bs256_iter_2](https://huggingface.co/ShenaoZ/0.001_ablation_5iters_bs256_iter_2) on the updated and the original datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ShenaoZ/0.001_ablation_5iters_bs256_iter_2", "model-index": [{"name": "0.001_ablation_5iters_bs256_iter_3", "results": []}]} | ShenaoZ/0.001_ablation_5iters_bs256_iter_3 | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:updated",
"dataset:original",
"base_model:ShenaoZ/0.001_ablation_5iters_bs256_iter_2",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:10:49+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.001_ablation_5iters_bs256_iter_2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# 0.001_ablation_5iters_bs256_iter_3
This model is a fine-tuned version of ShenaoZ/0.001_ablation_5iters_bs256_iter_2 on the updated and the original datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| [
"# 0.001_ablation_5iters_bs256_iter_3\n\nThis model is a fine-tuned version of ShenaoZ/0.001_ablation_5iters_bs256_iter_2 on the updated and the original datasets.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.001_ablation_5iters_bs256_iter_2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# 0.001_ablation_5iters_bs256_iter_3\n\nThis model is a fine-tuned version of ShenaoZ/0.001_ablation_5iters_bs256_iter_2 on the updated and the original datasets.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleFalse_extractchosenFalse
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0554
- Accuracy: 0.9722
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6806 | 0.04 | 250 | 0.4207 | 0.8447 |
| 0.6465 | 0.08 | 500 | 0.2075 | 0.9485 |
| 0.5999 | 0.13 | 750 | 0.1133 | 0.9725 |
| 0.5725 | 0.17 | 1000 | 0.0804 | 0.9786 |
| 0.6223 | 0.21 | 1250 | 0.0783 | 0.9778 |
| 0.5595 | 0.25 | 1500 | 0.0632 | 0.9789 |
| 0.5956 | 0.29 | 1750 | 0.0589 | 0.9778 |
| 0.557 | 0.33 | 2000 | 0.0599 | 0.9756 |
| 0.5641 | 0.38 | 2250 | 0.0558 | 0.9767 |
| 0.5871 | 0.42 | 2500 | 0.0589 | 0.9744 |
| 0.5512 | 0.46 | 2750 | 0.0568 | 0.9741 |
| 0.5775 | 0.5 | 3000 | 0.0529 | 0.9756 |
| 0.5923 | 0.54 | 3250 | 0.0555 | 0.9748 |
| 0.548 | 0.59 | 3500 | 0.0577 | 0.9722 |
| 0.564 | 0.63 | 3750 | 0.0579 | 0.9722 |
| 0.563 | 0.67 | 4000 | 0.0599 | 0.9718 |
| 0.5932 | 0.71 | 4250 | 0.0561 | 0.9729 |
| 0.5247 | 0.75 | 4500 | 0.0569 | 0.9725 |
| 0.5472 | 0.79 | 4750 | 0.0579 | 0.9718 |
| 0.5704 | 0.84 | 5000 | 0.0556 | 0.9729 |
| 0.5456 | 0.88 | 5250 | 0.0550 | 0.9725 |
| 0.5563 | 0.92 | 5500 | 0.0545 | 0.9729 |
| 0.552 | 0.96 | 5750 | 0.0554 | 0.9722 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleFalse_extractchosenFalse", "results": []}]} | Holarissun/RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleFalse_extractchosenFalse | null | [
"peft",
"safetensors",
"trl",
"reward-trainer",
"generated_from_trainer",
"base_model:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-04-22T02:12:27+00:00 | [] | [] | TAGS
#peft #safetensors #trl #reward-trainer #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us
| RM-HH-AllMix\_harmless\_gpt3\_20000\_gemma2b\_shuffleFalse\_extractchosenFalse
==============================================================================
This model is a fine-tuned version of google/gemma-2b on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0554
* Accuracy: 0.9722
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1.41e-05
* train\_batch\_size: 1
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 4
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1.0
### Training results
### Framework versions
* PEFT 0.10.0
* Transformers 4.38.2
* Pytorch 2.1.2+cu121
* Datasets 2.18.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.41e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.38.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#peft #safetensors #trl #reward-trainer #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.41e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.38.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 0.0_ablation_5iters_iter_3
This model is a fine-tuned version of [ZhangShenao/0.0_ablation_5iters_iter_2](https://huggingface.co/ZhangShenao/0.0_ablation_5iters_iter_2) on the ZhangShenao/0.0_ablation_5iters_dataset dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["ZhangShenao/0.0_ablation_5iters_dataset"], "base_model": "ZhangShenao/0.0_ablation_5iters_iter_2", "model-index": [{"name": "0.0_ablation_5iters_iter_3", "results": []}]} | ZhangShenao/0.0_ablation_5iters_iter_3 | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:ZhangShenao/0.0_ablation_5iters_dataset",
"base_model:ZhangShenao/0.0_ablation_5iters_iter_2",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:12:44+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-ZhangShenao/0.0_ablation_5iters_dataset #base_model-ZhangShenao/0.0_ablation_5iters_iter_2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# 0.0_ablation_5iters_iter_3
This model is a fine-tuned version of ZhangShenao/0.0_ablation_5iters_iter_2 on the ZhangShenao/0.0_ablation_5iters_dataset dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| [
"# 0.0_ablation_5iters_iter_3\n\nThis model is a fine-tuned version of ZhangShenao/0.0_ablation_5iters_iter_2 on the ZhangShenao/0.0_ablation_5iters_dataset dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-ZhangShenao/0.0_ablation_5iters_dataset #base_model-ZhangShenao/0.0_ablation_5iters_iter_2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# 0.0_ablation_5iters_iter_3\n\nThis model is a fine-tuned version of ZhangShenao/0.0_ablation_5iters_iter_2 on the ZhangShenao/0.0_ablation_5iters_dataset dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "shrenikb/LLaMA0.5sparsity"} | shrenikb/wanda50sparsityagg | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:shrenikb/LLaMA0.5sparsity",
"region:us"
] | null | 2024-04-22T02:15:02+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.5sparsity #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.5sparsity #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "mistralai/Mistral-7B-Instruct-v0.2"} | epiverseai/mistral-7b-sivirep | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"region:us"
] | null | 2024-04-22T02:16:33+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.2 #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.2 #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"language": ["ko", "en"], "license": "other", "library_name": "transformers", "tags": ["korean", "gemma"], "license_name": "meta-llama-3-community-license-agreement", "pipeline_tag": "text-generation", "base_model": "meta-llama/Meta-Llama-3-8B"} | 12thD/ko-Llama-3-8B-sft-v0.1 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"korean",
"gemma",
"conversational",
"ko",
"en",
"arxiv:1910.09700",
"base_model:meta-llama/Meta-Llama-3-8B",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:17:32+00:00 | [
"1910.09700"
] | [
"ko",
"en"
] | TAGS
#transformers #safetensors #llama #text-generation #korean #gemma #conversational #ko #en #arxiv-1910.09700 #base_model-meta-llama/Meta-Llama-3-8B #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #korean #gemma #conversational #ko #en #arxiv-1910.09700 #base_model-meta-llama/Meta-Llama-3-8B #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
# AVA-Llama-3
Fine-Tuned Llama 3 Persian Large Language Model LLM / Persian Llama 3
# AVA-Llama-3 / Persian Llama-3 / Persian Llama 3
<img src="Llama 3.png" height="600" width="940" >
### This Repository Contains Documents for Fine-Tuned Llama 3 Persian Large Language Model(LLM) Called AVA-Llama-3
(Still in progress)
-------------------------------------------------
### Dataset used:
To Be Done
-------------------------------------------------
### Usage:
All models are hosted in HuggingFace, and here is the code for inference:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
model_name_or_id = "MehdiHosseiniMoghadam/AVA-Llama-3-V2"
model = AutoModelForCausalLM.from_pretrained(model_name_or_id, torch_dtype=torch.float16, device_map="auto", low_cpu_mem_usage=True, load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_id)
prompt = ''
prompt = f"### Human:{prompt}\n### Assistant:"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generation_config = GenerationConfig(
do_sample=True,
top_k=1,
temperature=0.99,
max_new_tokens=90,
pad_token_id=tokenizer.eos_token_id
)
outputs = model.generate(**inputs, generation_config=generation_config)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
You can also use colab link in the jupyter file
-------------------------------------------------
## QA Comparision to other models:
<img src="AVA2.jpg" height="600" width="940" >
[AVA-Llama-3](https://huggingface.co/MehdiHosseiniMoghadam/AVA-Llama-3-V2) vs [AVA-V4](https://huggingface.co/MehdiHosseiniMoghadam/AVA-Mistral-7B-V4) vs [AVA-V2](https://huggingface.co/MehdiHosseiniMoghadam/AVA-Mistral-7B-V2) vs [Maral](https://huggingface.co/MaralGPT/Maral-7B-alpha-1) vs [Llama](https://huggingface.co/hdeldar/llama-2-7b-persian-text-1k)
### Q1:
```
طبق متن زیر ایلان ماسک در کجا به دنیا امده است؟
ایلان ریوْ ماسک (به انگلیسی: Elon Reeve Musk؛ /ˈiːlɒn/ EE-lon؛ زادهٔ ۲۸ ژوئن ۱۹۷۱)، سرمایهگذار و شخصی نامی در کسبوکار است. او بنیانگذار، مدیرعامل و مهندس ارشدِ فنی اسپیساکس؛ سرمایهگذار فرشته، مدیرعامل، طراح محصولات و مدیرعامل سابق شرکت تسلا؛ بنیانگذار شرکت بورینگ؛ یکی از بنیانگذاران نیورالینک و اوپنایآی و رئیس بنیاد ماسک است. او ثروتمندترین شخص در جهان است؛ دارایی خالص تخمینی او بر اساس شاخص میلیاردرهای بلومبرگ تا نوامبر ۲۰۲۳، ۲۱۹ میلیارد دلار آمریکا و بر اساس فوربز، ۲۴۱ میلیارد دلار است. این دارایی اساساً از سهم مالکیت او در تسلا و اسپیسایکس بهدست آمدهاست.[۵][۶][۷]
ماسک از ارول ماسک و می ماسک در پرتوریا، آفریقای جنوبی به دنیا آمد. او مدت کوتاهی در دانشگاه پرتوریا به تحصیل پرداخت و در ۱۸ سالگی به کانادا رفت که از طریق مادر کاناداییتبارش تابعیت این کشور را به دست آورد.[۸] دو سال بعد به دانشگاه پنسیلوانیا رفت و در آن جا کارشناسی اقتصاد و فیزیک خود را گرفت. او در سال ۱۹۹۵ برای تحصیل در دانشگاه استنفورد به کالیفرنیا نقل مکان کرد اما بعد از دو روز ترک تحصیل کرد و بههمراه برادرش کیمبال، شرکت نرمافزاری راهنمای سفر آنلاین زیپ۲ را تأسیس کرد. این شرکت نوپا در سال ۱۹۹۹ بهمبلغ ۳۰۷ میلیون دلار توسط کامپک خریداری شد و با ۱۲ میلیون دلاری که به دست آورد، ماسک همان سال مشترکاً بانکداری مستقیم X.com را تأسیس کرد که در سال ۲۰۰۰ با کنفینیتی ادغام شد و باعث تشکیل پیپل شد.
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td> ایلان ریو ماسک در پرتوریا، آفریقای جنوبی به دنیا امده است </td>
<td> </td>
</tr>
</tr>
<tr>
<td> AVA-V4 </td>
<td> ایلان ریو ماسک در پرتوریا، آفریقای جنوبی به دنیا امده است. او در 18 سالگی به کانادا رفت </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> ایلان ماسک در پرتوریا، آفریقای جنوبی به دنیا آمده است. او در 18 سالگی به کانادا رفت </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> ایلان ماسک در پرتوریا، آفریقای جنوبی به دنیا آمده است </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> اگر او در کجا به دنیا امده باشد، چه کسی او را در کجا میدانست؟ </td>
<td> </td>
</tr>
</table>
--------------------------------------------------------
### Q2:
```
سه قاتل در یک اتاق هستند.. یکی وارد اتاق می شود و یکی از آنها را می کشد. هیچ کس اتاق را ترک نمی کند چند قاتل در اتاق باقی مانده است؟ استدلال خود را توضیح دهید
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td> این یک بازی با کلمات است که به ما کمک می کند تا به یک پاسخ عجیب برسیم. پاسخ این است که سه قاتل باقی می مانند. دلیل این است که یکی از قاتلان وارد اتاق می شود و یکی از قاتلان دیگر را می کشد، اما هیچ کس اتاق را ترک نمی کند. بنابراین، سه قاتل باقی می مانند.
</td>
<td> </td>
</tr>
</tr>
<tr>
<td> AVA-V4 </td>
<td> پاسخ: در اتاق هنوز یک قاتل باقی مانده است.
استدلال: از هر دو قاتل یکی در اتاق باقی مانده است. زیرا هر کدام یکی را می کشد و هیچ کدام از اتاق ترک نمی کند. پس از کشتن دیگری، یکی از قاتلان باقی مانده در اتاق هست </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> در این سوال، اولیه استدلال به این صورت است که در یک اتاق سه قاتل هستند. واقعیت این است که یکی از آنها را می کشد و یکی از آنها را نمی کشد. بنابراین، هیچ کس اتاق را ترک نمی کند و دو قاتل در اتاق باقی مانده است.
اگر در این سوال به استدلال بیشتری افتد، می توانیم ببینیم که هر دو قاتل هم در اتاق هستند و هیچ کدام را نمی کشند. اما در این استدلال اصلی و اولیه، تعداد قاتل های باقی مانده در اتاق به دو تقریباً این است. </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td>در این سوال سه قاتل در یک اتاق وجود دارد و یکی از آنها را می کشد. هیچ کس اتاق را ترک نمی کند، بنابراین دو قاتل باقی مانده است. </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> این استدلال می تواند به یک اتاق با چهار قاتل در آن باشد. یک قاتل وارد اتاق می شود و یکی از آنها را می کشد. هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. این استدلال می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را
</td>
<td> </td>
</tr>
</table>
----------------------------------------------------------
### Q3:
```
ملکه الیزابت کیست؟
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
ملکه الیزابت یک شاهزاده بریتانیایی است که از ۱۹۵۲ تا ۲۰۲۲ بر تخت سلطنت بریتانیا سلطنت کرد. او در ۲۱ آوریل 1926 در لندن متولد شد و در ۸ سپتامبر 2022 در سن ۹۶ سالگی در باکینگهام پالاس درگذشت. ملکه الیزابت دوم طولانیترین سلطنت بریتانیا را در اختیار داشت و در طول سلطنت خود بریتانیا را از جنگ جهانی دوم تا جنگ سرد و سپس به دوران مدرن رهبری کرد. او همچنین در طول سلطنت خود به عنوان یک نماد ملی و یک نماد برای بریتانیا شناخته شد. ملکه الیزابت دوم همچنین به عنوان ملکه کانادا، استرالیا، نیوزیلند و سایر کشورهای مشترکالمنافع بریتانیا نیز شناخته میشود. </td>
<td> <h1> 🥳 </h1> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td> ملکه ایلزابت بولنتن بود که در سال 1533 تا 1558 در انگلستان دور بود. او در زمان بود که انگلستان در دوران تاریخی به عنوان یک کشور به پیشرفت بیشتری رسید </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> ملکه الیزابت یک شهرستان در انگلستان است. </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> ملکه الیزابت یک کشور در جنوب آفریقا است که در سال 1910 به این نام تعیین شد. این کشور به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینک </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> ملکه الیزابت ریاضی ایرانی است که در سال ۱۹۴۷ در ایران تولید شد. این ملکه در سال ۱۹۶۷ در ایران تولید شده و در سال ۱۹۷۰ در ایران و در سال ۱۹۷۱ در امریکا تولید شده و در سال ۱۹۷۲ در ایران و در سال ۱۹۷۳ در امریکا تولید شده و در سال ۱۹۷۴ در ایران و در سال ۱۹۷۵ در امریکا تولید شده و در سال ۱۹۷۶ در ایران و در سال ۱۹۷۷ در امریکا تولید شده و در سال ۱۹۷۸ در ایران و در سال ۱۹۷۹ در امریکا تولید شده و در سال ۱۹۸۰ در ایران و در سال ۱۹۸۱ در امریکا تولید شده و در سال ۱۹۸۲ در ایران و در سال ۱۹۸۳ در امریکا تولید شده و در سال ۱۹۸۴ در ایران و در سال ۱۹۸۵ در امریک
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q4:
```
اگر یک توپ داخل یک لیوان برعکس باشد و ما لیوان را برداشته و داخل مایکروویو بگذاریم الان توپ کجاست؟
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td> منظور شما این است که توپ در داخل لیوان برعکس قرار دارد و سپس لیوان را برداشته و داخل مایکروویو قرار می دهید. در این صورت، توپ در داخل مایکروویو قرار دارد و برعکس لیوان نیست.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td>
### Assistant: اگر یک توپ داخل یک لیوان برعکس باشد، و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. در این واقعیت، توپ در داخل مایکروویو قرار داشته و لیوان را برداشته شده است </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> اگر یک توپ داخل یک لیوان باشد، و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. این تشکیل اندازه گیری شده است و در فیزیک و ارتباطات است، و این تشکیل اندازه گیری شده به عنوان "توپ داخل لیوان در داخل مایکروویو" شناسایی می شود. این تشکیل اندازه گیری شده در فیزیک و ارتباطات به عنوان یک نمونه از انواع تشکیلات اندازه گیری شده ارائه می شود که توسط جهان در حال ارتباط است.
</td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> اگر یک توپ داخل یک لیوان برعکس باشد و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> توپ داخل یک لیوان یا مایکروویو است که در آن می توان برای انجام کارهای مختلف استفاده کنید. لیوان یک ماشین است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک ماشین است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آ </td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q5:
```
یک شعر با دقیقا پنجاه کلمه بساز؟
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<td> AVA-Llama-3 </td>
<td>
در تاریکی شب، صدای قلبم میزند
دلشکسته و بیامید، در تاریکی شب
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
</td>
<td>
<tr>
<td> AVA-V4 </td>
<td> بله، می توانم یک شعر با دقیقا پنجاه کلمه برای شما بسازم. اینجا یک شعر با پنجاه کلمه ای که برای شما نوشتم:
در جنگل دیدار کردم یک گربه سیاه
که در دست دو گربه سبز قرار داشت
از آن که در جنگل زمانه های گذشته
گربه ها در دست دیگران قرار گرفت </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> بله، میتوانید یک شعر با دقیقا پنجاه کلمه بساز. اینجا یک نمونه شعر با پنجاه کلمه ایده آمده است:
در دل آب و هوای زمان،
در دل آفتاب و شب،
در دل گل و گوشت،
در دل عشق و دوری،
در دل آفتاب و شب،
در دل گل و گوشت،
در دل عشق و دوری،
در دل آب و هوای زمان،
در دل آفتاب و شب،
در دل گل و گوشت،
در دل عشق و دوری،
در دل آب و هوای زمان،
در دل آفتاب و شب،
در دل گل و گوشت،
در دل عشق و دوری،
در دل آب و هوای زمان،
در دل آفتاب و شب،
در دل گل و گوشت،
در دل عشق و دوری،
در دل آب و هوای زمان. </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> در اینجا یک شعر با دقیقا پنجاه کلمه وجود دارد:
"با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه، </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> بله، شعر یک نوع از مواد مختلف است که در معروف شعر با نام شعر انسان به اندازهٔ ۱۰۰۰ کلمه در مقابل ۱۰۰۰ کلمه در مقابس شعر حیوانات و ۱۰۰۰ کلمه در مقابس شعر گیاهان و ۱۰۰۰ کلمه در مقابس شعر گیاهان با نام شعر گیاهان انسان و ۱۰۰۰ کلمه در مقابس شعر گیاهان دیگر و ۱۰۰۰ کلمه در مقابس شعر دیگر انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر حیوانات و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر حیوانات و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان و ۱۰۰۰ کلمه در مقابس شعر دیگ </td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q6:
```
یک نامه خطاب به رییس شرکت من بنویس که من در حال استعفا و ترک شرکت هستم؟
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr> <tr>
<td> AVA-Llama-3 </td>
<td>
یک نامه خطاب به رییس شرکت من بنویسید که من در حال استعفا و ترک شرکت هستم.
[Your Name]
[Your Address]
[City, State, ZIP]
[Date]
[CEO's Name]
[Company Name]
[Company Address]
[City, State, ZIP]
Dear [CEO's Name],
I am writing to inform you that I have decided to resign from my position as [Position] at [Company Name], effective [Date of Last Day of Work]. This was not an easy decision for me to make, as I have truly enjoyed my time at the company and have been grateful for the opportunities that I have been given.
However, I have come to realize that it is time for me to move on and explore new opportunities. I am grateful for the experience and skills that I have gained during my time at [Company Name], and I am confident that they will serve me well in my future endeavors.
I want to thank you for the support and guidance that you have provided me during my time at the company. I appreciate the opportunities that you have given me to grow and develop as a professional, and I am grateful for the trust that you have placed in me.
I will do everything I can to ensure a smooth transition of my responsibilities and complete any outstanding tasks before my departure. If there is anything specific that you would like me to focus on during my remaining time here, please let me know.
Thank you again for the opportunity to work at [Company Name]. I wish the company all the best for the future.
Sincerely,
[Your Name]
</td>
<tr>
<td> AVA-V4 </td>
<td> ۱۳۹۹/۰۸/۱۴۰۰
مترجم: شما باید نامه خطاب خود را به انگلیسی نوشته و از طریق این پیام به من ارسال کنید.
متوضع: در این نامه خطاب، من در حال استعفا و ترک شرکت هستم.
نامه خطاب:
از انجام ناخودپسندیده و از دست دادن از شرکت خود انجام می دهم.
شما باید نامه خطاب خود را به انگلیسی نوشته و از طریق این پیام به من ارسال کنید.
متوضع: در این نامه خطاب، من در حال استعفا و ترک شرکت هستم.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> اگر شما یک نامه خطاب به رییس شرکت خود بنویسید که من در حال استعفا و ترک شرکت هستم، این است که می توانید از آن استفاده کنید:
نامه خطاب
شماره: [شماره نامه]
تاریخ: [تاریخ نوشتن نامه]
[نام و نام خانوادگی رییس شرکت]
[عنوان شرکت]
[آدرس شرکت]
شکر خوب،
به عنوان یکی از عضویان شرکت [نام شرکت]، احتمالاً اولین خبری که به شما این نامه ارسال می کنم نیست. اما در حال حاضر، من در حال استعفا و ترک از شرکت هستم و این نامه را به شما ارسال می کنم تا آن را به دنباله های دیگری اضافه کنم.
</td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> رییس شرکت،
من در حال استعفا و ترک شرکت هستم. این نه به دلیل اینکه به شرکت نیاز ندارم، بلکه به دلیل اینکه با این کار به خود و به شرکت اشتباه کرده ام. این به دلیل این است که از طرف شرکت به دنبال ارزش های بیشتری بودم و از طرف من به دنبال ارزش های بیشتری بودم. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. این به دلیل این است که ارزش های بیشتری به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بی </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> ### Assistant: خوب است که شرکت را ترک کردید. من به شرکت باز کردم و امروز در شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q7:
```
رییس جمهور آمریکا در سال 1996 که بود؟
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td> رییس جمهور آمریکا در سال 1996، بیل کلینتون بود </td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td> رییس جمهور آمریکا در سال 1996 بود بیل کلینتن. </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> در سال 1996، رییس جمهور آمریکا بیل کلنتن بود. </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> رییس جمهور آمریکا در سال 1996 بیل کلنتن بود. </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> رییس جمهور آمریکا در سال ۱۹۹۶ به نام بلار بورنس بود. او در ۱۹۹۲ از رییس دادگاه آمریکا و در ۱۹۹۴ از رییس دادگاه آمریکا شد و در ۱۹۹۶ به رییس جمهور آمریکا اتحادیه شد. او در ۱۹۹۷ به رییس جمهور آمریکا دوم شد و در ۱۹۹۹ به رییس جمهور آمریکا سوم شد. او در ۱۹۹۱ به رییس دادگاه آمریکا شد و در ۱۹۹۲ به رییس دادگاه آمریکا شد و در ۱۹۹۳ به رییس جمهور آمریکا شد. او در ۱۹۹۴ به رییس دادگاه آمریکا شد و در ۱۹۹۵ به رییس جمهور آمریکا شد. او در ۱۹۹۶ به رییس جمهور آمریکا شد و در ۱۹۹۷ به رییس جمهور آمریکا دوم شد. او در ۱۹۹۸ به رییس جمهور آمریکا سوم شد. او در ۱۹۹ </td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q8:
```
اگر پنج پیراهن 4 ساعت طول بکشد تا خشک شود، 20 پیراهن چقدر طول می کشد تا خشک شود؟
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
اگر پنج پیراهن 4 ساعت طول می کشد تا خشک شود، می توانیم به این نتیجه برسیم که هر پیراهن 4/5 ساعت طول می کشد تا خشک شود. برای پیدا کردن زمان لازم برای خشک شدن 20 پیراهن، می توانیم از این رابطه استفاده کنیم:
4/5 * 20 = 16
بنابراین، 20 پیراهن 16 ساعت طول می کشد تا خشک شود.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td> اگر پنج پیراهن 4 ساعت طول بکشد تا خشک شود، 20 پیراهن به اندازه ی یک ساعت طول می کشد تا خشک شود. این اطمینان را دارید که هر پیراهن در نتیجه 20 پیراهن 4 ساعت طول می کشد تا خشک شود.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> اگر پنج پیراهن 4 ساعت طول بکشد تا خشک شود، 20 پیراهن به اندازه ی شبیه ساعت بکشند تا خشک شود. برای حل مورد نیاز، شما می توانید از فرمول زیر استفاده کنید:
طول بکشنده شدن 20 پیراهن = طول بکشنده شدن 5 پیراهن × (شماره پیراهن / شماره پیراهن)
طول بکشنده شدن 20 پیراهن = 4 ساعت × (20 / 5)
طول بکشنده شدن 20 پیراهن = 4 ساعت × 4
طول بکشنده شدن 20 پیراهن = 16 ساعت
</td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش
</td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پن
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q9:
```
یک خرگوش و یک لاک پشت یک مسابقه 100 متری را شروع می کنند، سرعت خرگوش 10 کیلومتر و لاک پشت 1 کیلومتر است، چه کسی برنده مسابقه است؟
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
این مسابقه بسیار جالب است! با در نظر گرفتن سرعت هر دو، می توانیم سرعت آنها را به یک واحد تبدیل کنیم. سرعت خرگوش 10 کیلومتر بر ساعت است، بنابراین سرعت لاک پشت را به 10 کیلومتر بر ساعت تبدیل می کنیم. در این صورت، سرعت لاک پشت 0.1 کیلومتر بر ساعت است.
در این صورت، سرعت خرگوش 10 کیلومتر بر ساعت و سرعت لاک پشت 0.1 کیلومتر بر ساعت است. بنابراین، خرگوش برنده مسابقه است. لاک پشت به دلیل سرعت بسیار پایین خود نمی تواند با خرگوش رقابت کند.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td>
برای حل این مسئله، ما باید سرعت هر دو از جمله را بررسی کنیم و سپس آنها را با هم مقایسه کنیم. سرعت خرگوش 10 کیلومتر در 1 دقیقه است و سرعت لاک پشت 1 کیلومتر در 10 دقیقه است.
مسابقه 100 متری از آنجایی که خرگوش سریعتر از لاک پشت است، خرگوش به طور کامل قابلیت برداشتن این جاهزه را دارد. بنابراین، خرگوش برنده مسابقه است.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> برای مشاهده نتیجه مسابقه، باید سرعت خرگوش و لاک پشت را به هم انداز کنیم. سرعت خرگوش 10 کیلومتر در ساعت و لاک پشت 1 کیلومتر در ساعت است. برای اینکه نتیجه مسابقه را بدست آوریم، باید 100 متر را به سرعت خرگوش و لاک پشت تبدیل کنیم.
100 متر / 10 کیلومتر در ساعت = 10 دقیقه
100 متر / 1 کیلومتر در ساعت = 100 دقیقه
بنابراین، خرگوش 10 دقیقه و لاک پشت 100 دقیقه می گذرد تا 100 متر را پیروز کنند. بنابراین، برنده مسابقه خرگوش است. </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> برنده مسابقه خرگوش است. با سرعت 10 کیلومتر در ساعت، خرگوش به انتهای 100 متر در 10 دقیقه به پایان می رسد، در حالی که لاک پشت با سرعت 1 کیلومتر در ساعت به پایان می رسد و به انتهای 100 متر در 100 دقیقه به پایان می رسد.
</td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> با این نوع سوال می توان به نوع سوال با نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q9:
```
یک فایل json حاوی این اطلاعات ایجاد کنید: bob، jon، mary و rich
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
Here is a JSON file containing the information you requested:
```
[
{
"name": "Bob"
},
{
"name": "Jon"
},
{
"name": "Mary"
},
{
"name": "Rich"
}
]
```
If you want to add more information to each person, you can add additional properties to the JSON object. For example:
```
[
{
"name": "Bob",
"age": 30,
"city": "New York"
},
{
"name": "Jon",
"age": 25,
"city": "Los Angeles"
},
{
"name": "Mary",
"age": 28,
"city": "Chicago"
},
{
"name": "Rich",
"age": 35,
"city": "San Francisco"
}
]
```
Let me know if you have any other questions!
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td> ساختن یک فایل json با این اطلاعات از قبل ایجاد شده است. این فایل json شامل اطلاعات دو نفر از افراد مانند bob و jon است. برای افزودن اطلاعات موجود در فایل json یا ایجاد جدید، باید از کاماند زیر استفاده کنید:
```
python add_person.py [person_name] [age] [gender] [occupation]
```
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> ساده، این کار را با استفاده از زبان پروگرامینگ Python میتوانیم انجام دهیم. ابتدا، یک فایل json با نام "people.json" به دست آورید. سپس، از کلاس dict در Python استفاده کرده، یک فایل json را ایجاد میکنیم که اطلاعات این چهار نام را با این فرمت برمیچارد:
import json
people = {
"bob": {},
"jon": {},
"mary": {},
"rich": {}
}
with open("people.json", "w") as f:
json.dump(people, f) </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> با استفاده از یک فایل json به این صورت ایجاد کنید:
```json
{
"نام ها": ["بوب", "جون", "مری", "ریچ"]
}
``` </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> امروز چه نوع افراد را در مدرسه دانشگاه میدانید؟ میخوام بینهایت افراد دو نوع را در مدرسه دانشگاه میدانم. این افراد با نام برادر و مرد است. برادر در مدرسه دانشگاه در دوره اول دوست دارند و مرد در دوره دوم دوست دارند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. می
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q9:
```
یک اسکریپت پایتون برای چاپ 1 تا 10 بنویسید
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
یک اسکریپت پایتون برای چاپ 1 تا 10 به این صورت می توان بنویسید:
```
for i in range(1, 11):
print(i)
```
این اسکریپت یک حلقه برای loop 1 تا 10 ایجاد می کند و هر بار در هر دور، عدد فعلی را چاپ می کند.
</td>
<td> </td>
<tr>
<td> AVA-V4 </td>
<td> این یک اسکریپت پایتون است که از 1 تا 10 چاپ می کند:
```python
for i in range(1, 11):
print(i)
```
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> یک اسکریپت پایتون برای چاپ 1 تا 10 به شرح زیر برمی گرد:
```python
این اسکریپت برای چاپ 1 تا 10 است
for i in range(1, 11):
print(i)
```
این اسکریپت با استفاده از لوپ (loop) در زمان اجرایی به نام `range(1, 11)` از 1 تا 10 عدد را مشاهده می کند و هر عدد را با استفاده از فنکشن `print()` چاپ می کند.
</td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> در اینجا یک اسکریپت پایتون برای چاپ 1 تا 10 وجود دارد:```
# این یک اسکریپت پایتون برای چاپ 1 تا 10 است.
for i in range(1, 11):
چاپ(i)
``` </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> ### Assistant: این اسکریپت چاپ کنید و بعد از انجام چاپ، می توانید باز کنید. اگر نیاز به این اسکریپت ندارید، با موفقیت این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، با موفقیت این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q9:
```
یک تابع node js برای دریافت رشته و تقسیم آن بر اساس فاصله بنویسید
```
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
در اینجا یک تابع Node.js برای دریافت رشته و تقسیم آن بر اساس فاصله ارائه می شود:
```
function splitStringBySpace(str) {
return str.split(' ');
}
// استفاده از تابع
const inputString = "Hello World";
const outputArray = splitStringBySpace(inputString);
console.log(outputArray); // [ "Hello", "World" ]
```
این تابع از روش `split` درbuilt-in `String` در Node.js استفاده می کند تا رشته را بر اساس فاصله (که با کاراکتر فاصله `space` مشخص می شود) تقسیم کند. سپس آرایه ای از رشته های جدا شده را بازمی گرداند.
اگر می خواهید رشته را بر اساس فاصله خاصی تقسیم کنید، می توانید از یک رشته به عنوان دومین آرگومان به روش `split` پاس دهید. برای مثال، برای تقسیم رشته بر اساس فاصله با فاصله 2 کاراکتر، می توانید از رشته `'\u0020'` استفاده کنید:
```
function splitStringBySpace(str) {
return str.split('\u0020');
}
// استفاده از تابع
const inputString = "Hello World";
const outputArray = splitStringBySpace(inputString);
console.log(outputArray); // [ "Hello", "World" ]
```
این تابع رشته را بر اساس فاصله 2 کاراکتر (که با کاراکتر فاصله `'\u0020'` مشخص می شود) تقسیم می کند. سپس آرایه ای از رشته های جدا شده را بازمی گرداند.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td> یک تابع Node.js برای دریافت رشته و تقسیم آن بر اساس فاصله به شما این کد پیوند می دهم:
```javascript
function splitStringBySpace(str) {
return str.split(' ');
}
const inputString = "این یک رشته است که باید تقسیم شود";
const result = splitStringBySpace(inputString);
console.log(result);
```
این کد تابع `splitStringBySpace` برچسب کرده است که رشته وارد شده را با فاصله بنویسید. این کد را در نظر دهید و اگر نیاز به تغییرات دیگری دارید، لطفا بگویید.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> یک تابع node js برای دریافت رشته و تقسیم آن بر اساس فاصله به شکل زیر می تواند باشد:
```javascript
function splitStringBySpace(str) {
return str.split(' ');
}
// این تابع را برای استفاده در یک فایل node js مانند این فایل استفاده می کنیم:
const fs = require('fs');
const readline = require('readline');
const rl = readline.createInterface({
input: fs.createReadStream('input.txt'),
crlfDelay: Infinity
});
rl.on('line', (line) => {
const words = splitStringBySpace(line);
console.log(words);
});
```
در این کد، ابتدا به کار برده `readline` بخش های فایل ورودی را دریافت می کند. سپس تابع `splitStringBySpace` را برای تقسیم رشته ای که دریافت کرده ایم استفاده می کند. این تابع رشته را با فاصله های فارسی راهنمایی دار تقسیم می کند و به صورت مجزا برمی گرداند. نتیجه این کار این است که هر کلمه در یک عنصر مجزا قرار می گیرد. سپس این عنصرها را در کنسول نمایش می دهد.
</td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> در اینجا یک تابع برای دریافت رشته و تقسیم آن بر اساس فاصله وجود دارد:```
جاوا اسکریپت
فنکشن تقسیم رشته (رشته) {
برای (فاصله از رشته) {
رشته ای برای رشته از فاصله تا فاصله بعدی ایجاد کنید
فاصله را بر اساس فاصله بعدی به رشته ای برای رشته اضافه کنید
}
برمی گردانید رشته ای برای رشته
}
```
در این تابع، رشته وارد شده به عنوان پارامتر وارد می شود. در طول تابع، رشته به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عن </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> - </td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
## License
[](/LICENSE)
Released Jan 30, 2024 by [Mehdi Hosseini Moghadam](https://github.com/mehdihosseinimoghadam)
Attention ⚠️: The user is responsible for using AVA-Llama-3 / Persian Llama 3
Any misuse of the model (of any kind) is the responsibility of the user and not the creator
## Contact
<a href="https://ir.linkedin.com/in/mehdi-hosseini-moghadam-384912198" target="_blank"><img src="https://cdn-icons.flaticon.com/png/512/3536/premium/3536505.png?token=exp=1644871115~hmac=59bc0b44906adebd63f84642086d4695" alt="Buy Me A Coffee" style="height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;" ></a>
<a href="https://scholar.google.com/citations?user=TKWbohsAAAAJ&hl=en" target="_blank"><img src="https://cdn-icons.flaticon.com/png/512/3107/premium/3107171.png?token=exp=1644871560~hmac=7f8fd85e8db71945e25202a3ac739e1c" alt="Buy Me A Coffee" style="height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;" ></a>
<a href="https://huggingface.co/MehdiHosseiniMoghadam" target="_blank"><img src="https://cdn-icons.flaticon.com/png/512/2461/premium/2461892.png?token=exp=1644871873~hmac=8659d04d69008e399a5344cad5bc4270" alt="Buy Me A Coffee" style="height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;" ></a>
| {"library_name": "transformers", "tags": []} | MehdiHosseiniMoghadam/AVA-Llama-3-V2 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:17:33+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
# AVA-Llama-3
Fine-Tuned Llama 3 Persian Large Language Model LLM / Persian Llama 3
# AVA-Llama-3 / Persian Llama-3 / Persian Llama 3
<img src="Llama 3.png" height="600" width="940" >
### This Repository Contains Documents for Fine-Tuned Llama 3 Persian Large Language Model(LLM) Called AVA-Llama-3
(Still in progress)
-------------------------------------------------
### Dataset used:
To Be Done
-------------------------------------------------
### Usage:
All models are hosted in HuggingFace, and here is the code for inference:
You can also use colab link in the jupyter file
-------------------------------------------------
## QA Comparision to other models:
<img src="URL" height="600" width="940" >
AVA-Llama-3 vs AVA-V4 vs AVA-V2 vs Maral vs Llama
### Q1:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td> ایلان ریو ماسک در پرتوریا، آفریقای جنوبی به دنیا امده است </td>
<td> </td>
</tr>
</tr>
<tr>
<td> AVA-V4 </td>
<td> ایلان ریو ماسک در پرتوریا، آفریقای جنوبی به دنیا امده است. او در 18 سالگی به کانادا رفت </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> ایلان ماسک در پرتوریا، آفریقای جنوبی به دنیا آمده است. او در 18 سالگی به کانادا رفت </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> ایلان ماسک در پرتوریا، آفریقای جنوبی به دنیا آمده است </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> اگر او در کجا به دنیا امده باشد، چه کسی او را در کجا میدانست؟ </td>
<td> </td>
</tr>
</table>
--------------------------------------------------------
### Q2:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td> این یک بازی با کلمات است که به ما کمک می کند تا به یک پاسخ عجیب برسیم. پاسخ این است که سه قاتل باقی می مانند. دلیل این است که یکی از قاتلان وارد اتاق می شود و یکی از قاتلان دیگر را می کشد، اما هیچ کس اتاق را ترک نمی کند. بنابراین، سه قاتل باقی می مانند.
</td>
<td> </td>
</tr>
</tr>
<tr>
<td> AVA-V4 </td>
<td> پاسخ: در اتاق هنوز یک قاتل باقی مانده است.
استدلال: از هر دو قاتل یکی در اتاق باقی مانده است. زیرا هر کدام یکی را می کشد و هیچ کدام از اتاق ترک نمی کند. پس از کشتن دیگری، یکی از قاتلان باقی مانده در اتاق هست </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> در این سوال، اولیه استدلال به این صورت است که در یک اتاق سه قاتل هستند. واقعیت این است که یکی از آنها را می کشد و یکی از آنها را نمی کشد. بنابراین، هیچ کس اتاق را ترک نمی کند و دو قاتل در اتاق باقی مانده است.
اگر در این سوال به استدلال بیشتری افتد، می توانیم ببینیم که هر دو قاتل هم در اتاق هستند و هیچ کدام را نمی کشند. اما در این استدلال اصلی و اولیه، تعداد قاتل های باقی مانده در اتاق به دو تقریباً این است. </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td>در این سوال سه قاتل در یک اتاق وجود دارد و یکی از آنها را می کشد. هیچ کس اتاق را ترک نمی کند، بنابراین دو قاتل باقی مانده است. </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> این استدلال می تواند به یک اتاق با چهار قاتل در آن باشد. یک قاتل وارد اتاق می شود و یکی از آنها را می کشد. هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. این استدلال می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را
</td>
<td> </td>
</tr>
</table>
----------------------------------------------------------
### Q3:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
ملکه الیزابت یک شاهزاده بریتانیایی است که از ۱۹۵۲ تا ۲۰۲۲ بر تخت سلطنت بریتانیا سلطنت کرد. او در ۲۱ آوریل 1926 در لندن متولد شد و در ۸ سپتامبر 2022 در سن ۹۶ سالگی در باکینگهام پالاس درگذشت. ملکه الیزابت دوم طولانیترین سلطنت بریتانیا را در اختیار داشت و در طول سلطنت خود بریتانیا را از جنگ جهانی دوم تا جنگ سرد و سپس به دوران مدرن رهبری کرد. او همچنین در طول سلطنت خود به عنوان یک نماد ملی و یک نماد برای بریتانیا شناخته شد. ملکه الیزابت دوم همچنین به عنوان ملکه کانادا، استرالیا، نیوزیلند و سایر کشورهای مشترکالمنافع بریتانیا نیز شناخته میشود. </td>
<td> <h1> </h1> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td> ملکه ایلزابت بولنتن بود که در سال 1533 تا 1558 در انگلستان دور بود. او در زمان بود که انگلستان در دوران تاریخی به عنوان یک کشور به پیشرفت بیشتری رسید </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> ملکه الیزابت یک شهرستان در انگلستان است. </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> ملکه الیزابت یک کشور در جنوب آفریقا است که در سال 1910 به این نام تعیین شد. این کشور به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینک </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> ملکه الیزابت ریاضی ایرانی است که در سال ۱۹۴۷ در ایران تولید شد. این ملکه در سال ۱۹۶۷ در ایران تولید شده و در سال ۱۹۷۰ در ایران و در سال ۱۹۷۱ در امریکا تولید شده و در سال ۱۹۷۲ در ایران و در سال ۱۹۷۳ در امریکا تولید شده و در سال ۱۹۷۴ در ایران و در سال ۱۹۷۵ در امریکا تولید شده و در سال ۱۹۷۶ در ایران و در سال ۱۹۷۷ در امریکا تولید شده و در سال ۱۹۷۸ در ایران و در سال ۱۹۷۹ در امریکا تولید شده و در سال ۱۹۸۰ در ایران و در سال ۱۹۸۱ در امریکا تولید شده و در سال ۱۹۸۲ در ایران و در سال ۱۹۸۳ در امریکا تولید شده و در سال ۱۹۸۴ در ایران و در سال ۱۹۸۵ در امریک
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q4:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td> منظور شما این است که توپ در داخل لیوان برعکس قرار دارد و سپس لیوان را برداشته و داخل مایکروویو قرار می دهید. در این صورت، توپ در داخل مایکروویو قرار دارد و برعکس لیوان نیست.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td>
### Assistant: اگر یک توپ داخل یک لیوان برعکس باشد، و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. در این واقعیت، توپ در داخل مایکروویو قرار داشته و لیوان را برداشته شده است </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> اگر یک توپ داخل یک لیوان باشد، و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. این تشکیل اندازه گیری شده است و در فیزیک و ارتباطات است، و این تشکیل اندازه گیری شده به عنوان "توپ داخل لیوان در داخل مایکروویو" شناسایی می شود. این تشکیل اندازه گیری شده در فیزیک و ارتباطات به عنوان یک نمونه از انواع تشکیلات اندازه گیری شده ارائه می شود که توسط جهان در حال ارتباط است.
</td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> اگر یک توپ داخل یک لیوان برعکس باشد و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> توپ داخل یک لیوان یا مایکروویو است که در آن می توان برای انجام کارهای مختلف استفاده کنید. لیوان یک ماشین است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک ماشین است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آ </td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q5:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<td> AVA-Llama-3 </td>
<td>
در تاریکی شب، صدای قلبم میزند
دلشکسته و بیامید، در تاریکی شب
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
اما در تاریکی شب، نمیتوانم به تو برسم
من میخواهم به تو برسم، به تو که هستی
</td>
<td>
<tr>
<td> AVA-V4 </td>
<td> بله، می توانم یک شعر با دقیقا پنجاه کلمه برای شما بسازم. اینجا یک شعر با پنجاه کلمه ای که برای شما نوشتم:
در جنگل دیدار کردم یک گربه سیاه
که در دست دو گربه سبز قرار داشت
از آن که در جنگل زمانه های گذشته
گربه ها در دست دیگران قرار گرفت </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> بله، میتوانید یک شعر با دقیقا پنجاه کلمه بساز. اینجا یک نمونه شعر با پنجاه کلمه ایده آمده است:
در دل آب و هوای زمان،
در دل آفتاب و شب،
در دل گل و گوشت،
در دل عشق و دوری،
در دل آفتاب و شب،
در دل گل و گوشت،
در دل عشق و دوری،
در دل آب و هوای زمان،
در دل آفتاب و شب،
در دل گل و گوشت،
در دل عشق و دوری،
در دل آب و هوای زمان،
در دل آفتاب و شب،
در دل گل و گوشت،
در دل عشق و دوری،
در دل آب و هوای زمان،
در دل آفتاب و شب،
در دل گل و گوشت،
در دل عشق و دوری،
در دل آب و هوای زمان. </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> در اینجا یک شعر با دقیقا پنجاه کلمه وجود دارد:
"با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه،
با دقیقا پنجاه کلمه، </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> بله، شعر یک نوع از مواد مختلف است که در معروف شعر با نام شعر انسان به اندازهٔ ۱۰۰۰ کلمه در مقابل ۱۰۰۰ کلمه در مقابس شعر حیوانات و ۱۰۰۰ کلمه در مقابس شعر گیاهان و ۱۰۰۰ کلمه در مقابس شعر گیاهان با نام شعر گیاهان انسان و ۱۰۰۰ کلمه در مقابس شعر گیاهان دیگر و ۱۰۰۰ کلمه در مقابس شعر دیگر انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر حیوانات و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر حیوانات و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان و ۱۰۰۰ کلمه در مقابس شعر دیگ </td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q6:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr> <tr>
<td> AVA-Llama-3 </td>
<td>
یک نامه خطاب به رییس شرکت من بنویسید که من در حال استعفا و ترک شرکت هستم.
[Your Name]
[Your Address]
[City, State, ZIP]
[Date]
[CEO's Name]
[Company Name]
[Company Address]
[City, State, ZIP]
Dear [CEO's Name],
I am writing to inform you that I have decided to resign from my position as [Position] at [Company Name], effective [Date of Last Day of Work]. This was not an easy decision for me to make, as I have truly enjoyed my time at the company and have been grateful for the opportunities that I have been given.
However, I have come to realize that it is time for me to move on and explore new opportunities. I am grateful for the experience and skills that I have gained during my time at [Company Name], and I am confident that they will serve me well in my future endeavors.
I want to thank you for the support and guidance that you have provided me during my time at the company. I appreciate the opportunities that you have given me to grow and develop as a professional, and I am grateful for the trust that you have placed in me.
I will do everything I can to ensure a smooth transition of my responsibilities and complete any outstanding tasks before my departure. If there is anything specific that you would like me to focus on during my remaining time here, please let me know.
Thank you again for the opportunity to work at [Company Name]. I wish the company all the best for the future.
Sincerely,
[Your Name]
</td>
<tr>
<td> AVA-V4 </td>
<td> ۱۳۹۹/۰۸/۱۴۰۰
مترجم: شما باید نامه خطاب خود را به انگلیسی نوشته و از طریق این پیام به من ارسال کنید.
متوضع: در این نامه خطاب، من در حال استعفا و ترک شرکت هستم.
نامه خطاب:
از انجام ناخودپسندیده و از دست دادن از شرکت خود انجام می دهم.
شما باید نامه خطاب خود را به انگلیسی نوشته و از طریق این پیام به من ارسال کنید.
متوضع: در این نامه خطاب، من در حال استعفا و ترک شرکت هستم.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> اگر شما یک نامه خطاب به رییس شرکت خود بنویسید که من در حال استعفا و ترک شرکت هستم، این است که می توانید از آن استفاده کنید:
نامه خطاب
شماره: [شماره نامه]
تاریخ: [تاریخ نوشتن نامه]
[نام و نام خانوادگی رییس شرکت]
[عنوان شرکت]
[آدرس شرکت]
شکر خوب،
به عنوان یکی از عضویان شرکت [نام شرکت]، احتمالاً اولین خبری که به شما این نامه ارسال می کنم نیست. اما در حال حاضر، من در حال استعفا و ترک از شرکت هستم و این نامه را به شما ارسال می کنم تا آن را به دنباله های دیگری اضافه کنم.
</td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> رییس شرکت،
من در حال استعفا و ترک شرکت هستم. این نه به دلیل اینکه به شرکت نیاز ندارم، بلکه به دلیل اینکه با این کار به خود و به شرکت اشتباه کرده ام. این به دلیل این است که از طرف شرکت به دنبال ارزش های بیشتری بودم و از طرف من به دنبال ارزش های بیشتری بودم. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. این به دلیل این است که ارزش های بیشتری به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بی </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> ### Assistant: خوب است که شرکت را ترک کردید. من به شرکت باز کردم و امروز در شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q7:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td> رییس جمهور آمریکا در سال 1996، بیل کلینتون بود </td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td> رییس جمهور آمریکا در سال 1996 بود بیل کلینتن. </td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> در سال 1996، رییس جمهور آمریکا بیل کلنتن بود. </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> رییس جمهور آمریکا در سال 1996 بیل کلنتن بود. </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> رییس جمهور آمریکا در سال ۱۹۹۶ به نام بلار بورنس بود. او در ۱۹۹۲ از رییس دادگاه آمریکا و در ۱۹۹۴ از رییس دادگاه آمریکا شد و در ۱۹۹۶ به رییس جمهور آمریکا اتحادیه شد. او در ۱۹۹۷ به رییس جمهور آمریکا دوم شد و در ۱۹۹۹ به رییس جمهور آمریکا سوم شد. او در ۱۹۹۱ به رییس دادگاه آمریکا شد و در ۱۹۹۲ به رییس دادگاه آمریکا شد و در ۱۹۹۳ به رییس جمهور آمریکا شد. او در ۱۹۹۴ به رییس دادگاه آمریکا شد و در ۱۹۹۵ به رییس جمهور آمریکا شد. او در ۱۹۹۶ به رییس جمهور آمریکا شد و در ۱۹۹۷ به رییس جمهور آمریکا دوم شد. او در ۱۹۹۸ به رییس جمهور آمریکا سوم شد. او در ۱۹۹ </td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q8:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
اگر پنج پیراهن 4 ساعت طول می کشد تا خشک شود، می توانیم به این نتیجه برسیم که هر پیراهن 4/5 ساعت طول می کشد تا خشک شود. برای پیدا کردن زمان لازم برای خشک شدن 20 پیراهن، می توانیم از این رابطه استفاده کنیم:
4/5 * 20 = 16
بنابراین، 20 پیراهن 16 ساعت طول می کشد تا خشک شود.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td> اگر پنج پیراهن 4 ساعت طول بکشد تا خشک شود، 20 پیراهن به اندازه ی یک ساعت طول می کشد تا خشک شود. این اطمینان را دارید که هر پیراهن در نتیجه 20 پیراهن 4 ساعت طول می کشد تا خشک شود.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> اگر پنج پیراهن 4 ساعت طول بکشد تا خشک شود، 20 پیراهن به اندازه ی شبیه ساعت بکشند تا خشک شود. برای حل مورد نیاز، شما می توانید از فرمول زیر استفاده کنید:
طول بکشنده شدن 20 پیراهن = طول بکشنده شدن 5 پیراهن × (شماره پیراهن / شماره پیراهن)
طول بکشنده شدن 20 پیراهن = 4 ساعت × (20 / 5)
طول بکشنده شدن 20 پیراهن = 4 ساعت × 4
طول بکشنده شدن 20 پیراهن = 16 ساعت
</td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش
</td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پن
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q9:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
این مسابقه بسیار جالب است! با در نظر گرفتن سرعت هر دو، می توانیم سرعت آنها را به یک واحد تبدیل کنیم. سرعت خرگوش 10 کیلومتر بر ساعت است، بنابراین سرعت لاک پشت را به 10 کیلومتر بر ساعت تبدیل می کنیم. در این صورت، سرعت لاک پشت 0.1 کیلومتر بر ساعت است.
در این صورت، سرعت خرگوش 10 کیلومتر بر ساعت و سرعت لاک پشت 0.1 کیلومتر بر ساعت است. بنابراین، خرگوش برنده مسابقه است. لاک پشت به دلیل سرعت بسیار پایین خود نمی تواند با خرگوش رقابت کند.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td>
برای حل این مسئله، ما باید سرعت هر دو از جمله را بررسی کنیم و سپس آنها را با هم مقایسه کنیم. سرعت خرگوش 10 کیلومتر در 1 دقیقه است و سرعت لاک پشت 1 کیلومتر در 10 دقیقه است.
مسابقه 100 متری از آنجایی که خرگوش سریعتر از لاک پشت است، خرگوش به طور کامل قابلیت برداشتن این جاهزه را دارد. بنابراین، خرگوش برنده مسابقه است.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> برای مشاهده نتیجه مسابقه، باید سرعت خرگوش و لاک پشت را به هم انداز کنیم. سرعت خرگوش 10 کیلومتر در ساعت و لاک پشت 1 کیلومتر در ساعت است. برای اینکه نتیجه مسابقه را بدست آوریم، باید 100 متر را به سرعت خرگوش و لاک پشت تبدیل کنیم.
100 متر / 10 کیلومتر در ساعت = 10 دقیقه
100 متر / 1 کیلومتر در ساعت = 100 دقیقه
بنابراین، خرگوش 10 دقیقه و لاک پشت 100 دقیقه می گذرد تا 100 متر را پیروز کنند. بنابراین، برنده مسابقه خرگوش است. </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> برنده مسابقه خرگوش است. با سرعت 10 کیلومتر در ساعت، خرگوش به انتهای 100 متر در 10 دقیقه به پایان می رسد، در حالی که لاک پشت با سرعت 1 کیلومتر در ساعت به پایان می رسد و به انتهای 100 متر در 100 دقیقه به پایان می رسد.
</td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> با این نوع سوال می توان به نوع سوال با نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q9:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
Here is a JSON file containing the information you requested:
If you want to add more information to each person, you can add additional properties to the JSON object. For example:
Let me know if you have any other questions!
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td> ساختن یک فایل json با این اطلاعات از قبل ایجاد شده است. این فایل json شامل اطلاعات دو نفر از افراد مانند bob و jon است. برای افزودن اطلاعات موجود در فایل json یا ایجاد جدید، باید از کاماند زیر استفاده کنید:
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> ساده، این کار را با استفاده از زبان پروگرامینگ Python میتوانیم انجام دهیم. ابتدا، یک فایل json با نام "URL" به دست آورید. سپس، از کلاس dict در Python استفاده کرده، یک فایل json را ایجاد میکنیم که اطلاعات این چهار نام را با این فرمت برمیچارد:
import json
people = {
"bob": {},
"jon": {},
"mary": {},
"rich": {}
}
with open("URL", "w") as f:
URL(people, f) </td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> با استفاده از یک فایل json به این صورت ایجاد کنید:
</td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> امروز چه نوع افراد را در مدرسه دانشگاه میدانید؟ میخوام بینهایت افراد دو نوع را در مدرسه دانشگاه میدانم. این افراد با نام برادر و مرد است. برادر در مدرسه دانشگاه در دوره اول دوست دارند و مرد در دوره دوم دوست دارند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. می
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q9:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
یک اسکریپت پایتون برای چاپ 1 تا 10 به این صورت می توان بنویسید:
این اسکریپت یک حلقه برای loop 1 تا 10 ایجاد می کند و هر بار در هر دور، عدد فعلی را چاپ می کند.
</td>
<td> </td>
<tr>
<td> AVA-V4 </td>
<td> این یک اسکریپت پایتون است که از 1 تا 10 چاپ می کند:
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> یک اسکریپت پایتون برای چاپ 1 تا 10 به شرح زیر برمی گرد:
این اسکریپت با استفاده از لوپ (loop) در زمان اجرایی به نام 'range(1, 11)' از 1 تا 10 عدد را مشاهده می کند و هر عدد را با استفاده از فنکشن 'print()' چاپ می کند.
</td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> در اینجا یک اسکریپت پایتون برای چاپ 1 تا 10 وجود دارد: </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> ### Assistant: این اسکریپت چاپ کنید و بعد از انجام چاپ، می توانید باز کنید. اگر نیاز به این اسکریپت ندارید، با موفقیت این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، با موفقیت این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید
</td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
### Q9:
<table width="300">
<tr>
<td> Model </td>
<td> Answer </td>
<td> Rating </td>
</tr>
<tr>
<td> AVA-Llama-3 </td>
<td>
در اینجا یک تابع URL برای دریافت رشته و تقسیم آن بر اساس فاصله ارائه می شود:
این تابع از روش 'split' درbuilt-in 'String' در URL استفاده می کند تا رشته را بر اساس فاصله (که با کاراکتر فاصله 'space' مشخص می شود) تقسیم کند. سپس آرایه ای از رشته های جدا شده را بازمی گرداند.
اگر می خواهید رشته را بر اساس فاصله خاصی تقسیم کنید، می توانید از یک رشته به عنوان دومین آرگومان به روش 'split' پاس دهید. برای مثال، برای تقسیم رشته بر اساس فاصله با فاصله 2 کاراکتر، می توانید از رشته ''\u0020'' استفاده کنید:
این تابع رشته را بر اساس فاصله 2 کاراکتر (که با کاراکتر فاصله ''\u0020'' مشخص می شود) تقسیم می کند. سپس آرایه ای از رشته های جدا شده را بازمی گرداند.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V4 </td>
<td> یک تابع URL برای دریافت رشته و تقسیم آن بر اساس فاصله به شما این کد پیوند می دهم:
این کد تابع 'splitStringBySpace' برچسب کرده است که رشته وارد شده را با فاصله بنویسید. این کد را در نظر دهید و اگر نیاز به تغییرات دیگری دارید، لطفا بگویید.
</td>
<td> </td>
</tr>
<tr>
<td> AVA-V2 </td>
<td> یک تابع node js برای دریافت رشته و تقسیم آن بر اساس فاصله به شکل زیر می تواند باشد:
در این کد، ابتدا به کار برده 'readline' بخش های فایل ورودی را دریافت می کند. سپس تابع 'splitStringBySpace' را برای تقسیم رشته ای که دریافت کرده ایم استفاده می کند. این تابع رشته را با فاصله های فارسی راهنمایی دار تقسیم می کند و به صورت مجزا برمی گرداند. نتیجه این کار این است که هر کلمه در یک عنصر مجزا قرار می گیرد. سپس این عنصرها را در کنسول نمایش می دهد.
</td>
<td> </td>
</tr>
<tr>
<td> Maral </td>
<td> در اینجا یک تابع برای دریافت رشته و تقسیم آن بر اساس فاصله وجود دارد:
در این تابع، رشته وارد شده به عنوان پارامتر وارد می شود. در طول تابع، رشته به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عن </td>
<td> </td>
</tr>
<tr>
<td> Llama </td>
<td> - </td>
<td> </td>
</tr>
</table>
-----------------------------------------------------------------
## License

Released Jan 30, 2024 by Mehdi Hosseini Moghadam
Attention ️: The user is responsible for using AVA-Llama-3 / Persian Llama 3
Any misuse of the model (of any kind) is the responsibility of the user and not the creator
## Contact
<a href="URL target="_blank"><img src="URL alt="Buy Me A Coffee" style="height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;" ></a>
<a href="URL target="_blank"><img src="URL alt="Buy Me A Coffee" style="height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;" ></a>
<a href="URL target="_blank"><img src="URL alt="Buy Me A Coffee" style="height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;" ></a>
| [
"# Model Card for Model ID",
"# AVA-Llama-3\nFine-Tuned Llama 3 Persian Large Language Model LLM / Persian Llama 3",
"# AVA-Llama-3 / Persian Llama-3 / Persian Llama 3\n\n\n <img src=\"Llama 3.png\" height=\"600\" width=\"940\" >",
"### This Repository Contains Documents for Fine-Tuned Llama 3 Persian Large Language Model(LLM) Called AVA-Llama-3\n(Still in progress)\n\n-------------------------------------------------",
"### Dataset used:\n\nTo Be Done\n\n-------------------------------------------------",
"### Usage:\n\nAll models are hosted in HuggingFace, and here is the code for inference:\n\n\n\nYou can also use colab link in the jupyter file\n\n-------------------------------------------------",
"## QA Comparision to other models:\n\n <img src=\"URL\" height=\"600\" width=\"940\" >\n\n\nAVA-Llama-3 vs AVA-V4 vs AVA-V2 vs Maral vs Llama",
"### Q1: \n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> ایلان ریو ماسک در پرتوریا، آفریقای جنوبی به دنیا امده است </td>\n <td> </td>\n </tr>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> ایلان ریو ماسک در پرتوریا، آفریقای جنوبی به دنیا امده است. او در 18 سالگی به کانادا رفت </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> ایلان ماسک در پرتوریا، آفریقای جنوبی به دنیا آمده است. او در 18 سالگی به کانادا رفت </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> ایلان ماسک در پرتوریا، آفریقای جنوبی به دنیا آمده است </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> اگر او در کجا به دنیا امده باشد، چه کسی او را در کجا میدانست؟ </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n\n--------------------------------------------------------",
"### Q2: \n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> این یک بازی با کلمات است که به ما کمک می کند تا به یک پاسخ عجیب برسیم. پاسخ این است که سه قاتل باقی می مانند. دلیل این است که یکی از قاتلان وارد اتاق می شود و یکی از قاتلان دیگر را می کشد، اما هیچ کس اتاق را ترک نمی کند. بنابراین، سه قاتل باقی می مانند.\n </td>\n <td> </td>\n </tr>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> پاسخ: در اتاق هنوز یک قاتل باقی مانده است.\n استدلال: از هر دو قاتل یکی در اتاق باقی مانده است. زیرا هر کدام یکی را می کشد و هیچ کدام از اتاق ترک نمی کند. پس از کشتن دیگری، یکی از قاتلان باقی مانده در اتاق هست </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> در این سوال، اولیه استدلال به این صورت است که در یک اتاق سه قاتل هستند. واقعیت این است که یکی از آنها را می کشد و یکی از آنها را نمی کشد. بنابراین، هیچ کس اتاق را ترک نمی کند و دو قاتل در اتاق باقی مانده است.\n\nاگر در این سوال به استدلال بیشتری افتد، می توانیم ببینیم که هر دو قاتل هم در اتاق هستند و هیچ کدام را نمی کشند. اما در این استدلال اصلی و اولیه، تعداد قاتل های باقی مانده در اتاق به دو تقریباً این است. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td>در این سوال سه قاتل در یک اتاق وجود دارد و یکی از آنها را می کشد. هیچ کس اتاق را ترک نمی کند، بنابراین دو قاتل باقی مانده است. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> این استدلال می تواند به یک اتاق با چهار قاتل در آن باشد. یک قاتل وارد اتاق می شود و یکی از آنها را می کشد. هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. این استدلال می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را\n </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n\n----------------------------------------------------------",
"### Q3: \n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> \n ملکه الیزابت یک شاهزاده بریتانیایی است که از ۱۹۵۲ تا ۲۰۲۲ بر تخت سلطنت بریتانیا سلطنت کرد. او در ۲۱ آوریل 1926 در لندن متولد شد و در ۸ سپتامبر 2022 در سن ۹۶ سالگی در باکینگهام پالاس درگذشت. ملکه الیزابت دوم طولانیترین سلطنت بریتانیا را در اختیار داشت و در طول سلطنت خود بریتانیا را از جنگ جهانی دوم تا جنگ سرد و سپس به دوران مدرن رهبری کرد. او همچنین در طول سلطنت خود به عنوان یک نماد ملی و یک نماد برای بریتانیا شناخته شد. ملکه الیزابت دوم همچنین به عنوان ملکه کانادا، استرالیا، نیوزیلند و سایر کشورهای مشترکالمنافع بریتانیا نیز شناخته میشود. </td>\n <td> <h1> </h1> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> ملکه ایلزابت بولنتن بود که در سال 1533 تا 1558 در انگلستان دور بود. او در زمان بود که انگلستان در دوران تاریخی به عنوان یک کشور به پیشرفت بیشتری رسید </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> ملکه الیزابت یک شهرستان در انگلستان است. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> ملکه الیزابت یک کشور در جنوب آفریقا است که در سال 1910 به این نام تعیین شد. این کشور به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینک </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> ملکه الیزابت ریاضی ایرانی است که در سال ۱۹۴۷ در ایران تولید شد. این ملکه در سال ۱۹۶۷ در ایران تولید شده و در سال ۱۹۷۰ در ایران و در سال ۱۹۷۱ در امریکا تولید شده و در سال ۱۹۷۲ در ایران و در سال ۱۹۷۳ در امریکا تولید شده و در سال ۱۹۷۴ در ایران و در سال ۱۹۷۵ در امریکا تولید شده و در سال ۱۹۷۶ در ایران و در سال ۱۹۷۷ در امریکا تولید شده و در سال ۱۹۷۸ در ایران و در سال ۱۹۷۹ در امریکا تولید شده و در سال ۱۹۸۰ در ایران و در سال ۱۹۸۱ در امریکا تولید شده و در سال ۱۹۸۲ در ایران و در سال ۱۹۸۳ در امریکا تولید شده و در سال ۱۹۸۴ در ایران و در سال ۱۹۸۵ در امریک\n </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n-----------------------------------------------------------------",
"### Q4: \n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> منظور شما این است که توپ در داخل لیوان برعکس قرار دارد و سپس لیوان را برداشته و داخل مایکروویو قرار می دهید. در این صورت، توپ در داخل مایکروویو قرار دارد و برعکس لیوان نیست.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td>",
"### Assistant: اگر یک توپ داخل یک لیوان برعکس باشد، و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. در این واقعیت، توپ در داخل مایکروویو قرار داشته و لیوان را برداشته شده است </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> اگر یک توپ داخل یک لیوان باشد، و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. این تشکیل اندازه گیری شده است و در فیزیک و ارتباطات است، و این تشکیل اندازه گیری شده به عنوان \"توپ داخل لیوان در داخل مایکروویو\" شناسایی می شود. این تشکیل اندازه گیری شده در فیزیک و ارتباطات به عنوان یک نمونه از انواع تشکیلات اندازه گیری شده ارائه می شود که توسط جهان در حال ارتباط است.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> اگر یک توپ داخل یک لیوان برعکس باشد و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> توپ داخل یک لیوان یا مایکروویو است که در آن می توان برای انجام کارهای مختلف استفاده کنید. لیوان یک ماشین است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک ماشین است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آ </td>\n <td> </td>\n </tr>\n</table>\n\n\n-----------------------------------------------------------------",
"### Q5: \n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <td> AVA-Llama-3 </td>\n <td> \n\nدر تاریکی شب، صدای قلبم میزند\nدلشکسته و بیامید، در تاریکی شب\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\n </td>\n <td> \n <tr>\n <td> AVA-V4 </td>\n <td> بله، می توانم یک شعر با دقیقا پنجاه کلمه برای شما بسازم. اینجا یک شعر با پنجاه کلمه ای که برای شما نوشتم:\n\nدر جنگل دیدار کردم یک گربه سیاه\nکه در دست دو گربه سبز قرار داشت\nاز آن که در جنگل زمانه های گذشته\nگربه ها در دست دیگران قرار گرفت </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> بله، میتوانید یک شعر با دقیقا پنجاه کلمه بساز. اینجا یک نمونه شعر با پنجاه کلمه ایده آمده است:\n\nدر دل آب و هوای زمان،\nدر دل آفتاب و شب،\nدر دل گل و گوشت،\nدر دل عشق و دوری،\n\nدر دل آفتاب و شب،\nدر دل گل و گوشت،\nدر دل عشق و دوری،\nدر دل آب و هوای زمان،\n\nدر دل آفتاب و شب،\nدر دل گل و گوشت،\nدر دل عشق و دوری،\nدر دل آب و هوای زمان،\n\nدر دل آفتاب و شب،\nدر دل گل و گوشت،\nدر دل عشق و دوری،\nدر دل آب و هوای زمان،\n\nدر دل آفتاب و شب،\nدر دل گل و گوشت،\nدر دل عشق و دوری،\nدر دل آب و هوای زمان. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> در اینجا یک شعر با دقیقا پنجاه کلمه وجود دارد:\n\"با دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه، </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> بله، شعر یک نوع از مواد مختلف است که در معروف شعر با نام شعر انسان به اندازهٔ ۱۰۰۰ کلمه در مقابل ۱۰۰۰ کلمه در مقابس شعر حیوانات و ۱۰۰۰ کلمه در مقابس شعر گیاهان و ۱۰۰۰ کلمه در مقابس شعر گیاهان با نام شعر گیاهان انسان و ۱۰۰۰ کلمه در مقابس شعر گیاهان دیگر و ۱۰۰۰ کلمه در مقابس شعر دیگر انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر حیوانات و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر حیوانات و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان و ۱۰۰۰ کلمه در مقابس شعر دیگ </td>\n <td> </td>\n </tr>\n</table>\n\n-----------------------------------------------------------------",
"### Q6: \n\n\n\n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\t <tr>\n <td> AVA-Llama-3 </td>\n <td>\n\t \nیک نامه خطاب به رییس شرکت من بنویسید که من در حال استعفا و ترک شرکت هستم.\n\n[Your Name]\n[Your Address]\n[City, State, ZIP]\n[Date]\n\n[CEO's Name]\n[Company Name]\n[Company Address]\n[City, State, ZIP]\n\nDear [CEO's Name],\n\nI am writing to inform you that I have decided to resign from my position as [Position] at [Company Name], effective [Date of Last Day of Work]. This was not an easy decision for me to make, as I have truly enjoyed my time at the company and have been grateful for the opportunities that I have been given.\n\nHowever, I have come to realize that it is time for me to move on and explore new opportunities. I am grateful for the experience and skills that I have gained during my time at [Company Name], and I am confident that they will serve me well in my future endeavors.\n\nI want to thank you for the support and guidance that you have provided me during my time at the company. I appreciate the opportunities that you have given me to grow and develop as a professional, and I am grateful for the trust that you have placed in me.\n\nI will do everything I can to ensure a smooth transition of my responsibilities and complete any outstanding tasks before my departure. If there is anything specific that you would like me to focus on during my remaining time here, please let me know.\n\nThank you again for the opportunity to work at [Company Name]. I wish the company all the best for the future.\n\nSincerely,\n\n[Your Name]\n </td>\n <tr>\n <td> AVA-V4 </td>\n <td> ۱۳۹۹/۰۸/۱۴۰۰\n\nمترجم: شما باید نامه خطاب خود را به انگلیسی نوشته و از طریق این پیام به من ارسال کنید.\n\nمتوضع: در این نامه خطاب، من در حال استعفا و ترک شرکت هستم.\n\nنامه خطاب:\n\nاز انجام ناخودپسندیده و از دست دادن از شرکت خود انجام می دهم.\n\nشما باید نامه خطاب خود را به انگلیسی نوشته و از طریق این پیام به من ارسال کنید.\n\nمتوضع: در این نامه خطاب، من در حال استعفا و ترک شرکت هستم.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> اگر شما یک نامه خطاب به رییس شرکت خود بنویسید که من در حال استعفا و ترک شرکت هستم، این است که می توانید از آن استفاده کنید:\n\n نامه خطاب\n\nشماره: [شماره نامه]\n\nتاریخ: [تاریخ نوشتن نامه]\n\n[نام و نام خانوادگی رییس شرکت]\n[عنوان شرکت]\n[آدرس شرکت]\n\nشکر خوب،\n\nبه عنوان یکی از عضویان شرکت [نام شرکت]، احتمالاً اولین خبری که به شما این نامه ارسال می کنم نیست. اما در حال حاضر، من در حال استعفا و ترک از شرکت هستم و این نامه را به شما ارسال می کنم تا آن را به دنباله های دیگری اضافه کنم.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> رییس شرکت،\nمن در حال استعفا و ترک شرکت هستم. این نه به دلیل اینکه به شرکت نیاز ندارم، بلکه به دلیل اینکه با این کار به خود و به شرکت اشتباه کرده ام. این به دلیل این است که از طرف شرکت به دنبال ارزش های بیشتری بودم و از طرف من به دنبال ارزش های بیشتری بودم. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. این به دلیل این است که ارزش های بیشتری به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بی </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> ### Assistant: خوب است که شرکت را ترک کردید. من به شرکت باز کردم و امروز در شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال\n </td>\n <td> </td>\n </tr>\n</table>\n\n-----------------------------------------------------------------",
"### Q7: \n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> رییس جمهور آمریکا در سال 1996، بیل کلینتون بود </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> رییس جمهور آمریکا در سال 1996 بود بیل کلینتن. </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> در سال 1996، رییس جمهور آمریکا بیل کلنتن بود. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> رییس جمهور آمریکا در سال 1996 بیل کلنتن بود. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> رییس جمهور آمریکا در سال ۱۹۹۶ به نام بلار بورنس بود. او در ۱۹۹۲ از رییس دادگاه آمریکا و در ۱۹۹۴ از رییس دادگاه آمریکا شد و در ۱۹۹۶ به رییس جمهور آمریکا اتحادیه شد. او در ۱۹۹۷ به رییس جمهور آمریکا دوم شد و در ۱۹۹۹ به رییس جمهور آمریکا سوم شد. او در ۱۹۹۱ به رییس دادگاه آمریکا شد و در ۱۹۹۲ به رییس دادگاه آمریکا شد و در ۱۹۹۳ به رییس جمهور آمریکا شد. او در ۱۹۹۴ به رییس دادگاه آمریکا شد و در ۱۹۹۵ به رییس جمهور آمریکا شد. او در ۱۹۹۶ به رییس جمهور آمریکا شد و در ۱۹۹۷ به رییس جمهور آمریکا دوم شد. او در ۱۹۹۸ به رییس جمهور آمریکا سوم شد. او در ۱۹۹ </td>\n <td> </td>\n </tr>\n</table>\n\n-----------------------------------------------------------------",
"### Q8: \n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n<tr>\n <td> AVA-Llama-3 </td>\n <td> \nاگر پنج پیراهن 4 ساعت طول می کشد تا خشک شود، می توانیم به این نتیجه برسیم که هر پیراهن 4/5 ساعت طول می کشد تا خشک شود. برای پیدا کردن زمان لازم برای خشک شدن 20 پیراهن، می توانیم از این رابطه استفاده کنیم:\n\n4/5 * 20 = 16\n\nبنابراین، 20 پیراهن 16 ساعت طول می کشد تا خشک شود.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> اگر پنج پیراهن 4 ساعت طول بکشد تا خشک شود، 20 پیراهن به اندازه ی یک ساعت طول می کشد تا خشک شود. این اطمینان را دارید که هر پیراهن در نتیجه 20 پیراهن 4 ساعت طول می کشد تا خشک شود.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> اگر پنج پیراهن 4 ساعت طول بکشد تا خشک شود، 20 پیراهن به اندازه ی شبیه ساعت بکشند تا خشک شود. برای حل مورد نیاز، شما می توانید از فرمول زیر استفاده کنید:\n\nطول بکشنده شدن 20 پیراهن = طول بکشنده شدن 5 پیراهن × (شماره پیراهن / شماره پیراهن)\n\nطول بکشنده شدن 20 پیراهن = 4 ساعت × (20 / 5)\n\nطول بکشنده شدن 20 پیراهن = 4 ساعت × 4\n\nطول بکشنده شدن 20 پیراهن = 16 ساعت\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پن\n </td>\n <td> </td>\n </tr>\n</table>\n\n-----------------------------------------------------------------",
"### Q9: \n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> \nاین مسابقه بسیار جالب است! با در نظر گرفتن سرعت هر دو، می توانیم سرعت آنها را به یک واحد تبدیل کنیم. سرعت خرگوش 10 کیلومتر بر ساعت است، بنابراین سرعت لاک پشت را به 10 کیلومتر بر ساعت تبدیل می کنیم. در این صورت، سرعت لاک پشت 0.1 کیلومتر بر ساعت است.\n\nدر این صورت، سرعت خرگوش 10 کیلومتر بر ساعت و سرعت لاک پشت 0.1 کیلومتر بر ساعت است. بنابراین، خرگوش برنده مسابقه است. لاک پشت به دلیل سرعت بسیار پایین خود نمی تواند با خرگوش رقابت کند.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> \nبرای حل این مسئله، ما باید سرعت هر دو از جمله را بررسی کنیم و سپس آنها را با هم مقایسه کنیم. سرعت خرگوش 10 کیلومتر در 1 دقیقه است و سرعت لاک پشت 1 کیلومتر در 10 دقیقه است.\n\nمسابقه 100 متری از آنجایی که خرگوش سریعتر از لاک پشت است، خرگوش به طور کامل قابلیت برداشتن این جاهزه را دارد. بنابراین، خرگوش برنده مسابقه است.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> برای مشاهده نتیجه مسابقه، باید سرعت خرگوش و لاک پشت را به هم انداز کنیم. سرعت خرگوش 10 کیلومتر در ساعت و لاک پشت 1 کیلومتر در ساعت است. برای اینکه نتیجه مسابقه را بدست آوریم، باید 100 متر را به سرعت خرگوش و لاک پشت تبدیل کنیم.\n\n100 متر / 10 کیلومتر در ساعت = 10 دقیقه\n\n100 متر / 1 کیلومتر در ساعت = 100 دقیقه\n\nبنابراین، خرگوش 10 دقیقه و لاک پشت 100 دقیقه می گذرد تا 100 متر را پیروز کنند. بنابراین، برنده مسابقه خرگوش است. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> برنده مسابقه خرگوش است. با سرعت 10 کیلومتر در ساعت، خرگوش به انتهای 100 متر در 10 دقیقه به پایان می رسد، در حالی که لاک پشت با سرعت 1 کیلومتر در ساعت به پایان می رسد و به انتهای 100 متر در 100 دقیقه به پایان می رسد.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> با این نوع سوال می توان به نوع سوال با نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با \n </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n-----------------------------------------------------------------",
"### Q9: \n\n\n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr> \n <tr>\n <td> AVA-Llama-3 </td>\n <td> \n\t Here is a JSON file containing the information you requested:\n\n\n\nIf you want to add more information to each person, you can add additional properties to the JSON object. For example:\n\n\n\nLet me know if you have any other questions!\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> ساختن یک فایل json با این اطلاعات از قبل ایجاد شده است. این فایل json شامل اطلاعات دو نفر از افراد مانند bob و jon است. برای افزودن اطلاعات موجود در فایل json یا ایجاد جدید، باید از کاماند زیر استفاده کنید:\n\n\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> ساده، این کار را با استفاده از زبان پروگرامینگ Python میتوانیم انجام دهیم. ابتدا، یک فایل json با نام \"URL\" به دست آورید. سپس، از کلاس dict در Python استفاده کرده، یک فایل json را ایجاد میکنیم که اطلاعات این چهار نام را با این فرمت برمیچارد:\n\nimport json\n\npeople = {\n \"bob\": {},\n \"jon\": {},\n \"mary\": {},\n \"rich\": {}\n}\n\nwith open(\"URL\", \"w\") as f:\n URL(people, f) </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> با استفاده از یک فایل json به این صورت ایجاد کنید:\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> امروز چه نوع افراد را در مدرسه دانشگاه میدانید؟ میخوام بینهایت افراد دو نوع را در مدرسه دانشگاه میدانم. این افراد با نام برادر و مرد است. برادر در مدرسه دانشگاه در دوره اول دوست دارند و مرد در دوره دوم دوست دارند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. می\n </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n\n-----------------------------------------------------------------",
"### Q9: \n\n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> \nیک اسکریپت پایتون برای چاپ 1 تا 10 به این صورت می توان بنویسید:\n\nاین اسکریپت یک حلقه برای loop 1 تا 10 ایجاد می کند و هر بار در هر دور، عدد فعلی را چاپ می کند.\n </td>\n <td> </td>\n <tr>\n <td> AVA-V4 </td>\n <td> این یک اسکریپت پایتون است که از 1 تا 10 چاپ می کند:\n \n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> یک اسکریپت پایتون برای چاپ 1 تا 10 به شرح زیر برمی گرد:\n\nاین اسکریپت با استفاده از لوپ (loop) در زمان اجرایی به نام 'range(1, 11)' از 1 تا 10 عدد را مشاهده می کند و هر عدد را با استفاده از فنکشن 'print()' چاپ می کند.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> در اینجا یک اسکریپت پایتون برای چاپ 1 تا 10 وجود دارد: </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> ### Assistant: این اسکریپت چاپ کنید و بعد از انجام چاپ، می توانید باز کنید. اگر نیاز به این اسکریپت ندارید، با موفقیت این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، با موفقیت این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید\n </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n\n\n-----------------------------------------------------------------",
"### Q9: \n\n\n\n\n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n\n <tr>\n <td> AVA-Llama-3 </td>\n <td> \n\t \nدر اینجا یک تابع URL برای دریافت رشته و تقسیم آن بر اساس فاصله ارائه می شود:\n\nاین تابع از روش 'split' درbuilt-in 'String' در URL استفاده می کند تا رشته را بر اساس فاصله (که با کاراکتر فاصله 'space' مشخص می شود) تقسیم کند. سپس آرایه ای از رشته های جدا شده را بازمی گرداند.\n\nاگر می خواهید رشته را بر اساس فاصله خاصی تقسیم کنید، می توانید از یک رشته به عنوان دومین آرگومان به روش 'split' پاس دهید. برای مثال، برای تقسیم رشته بر اساس فاصله با فاصله 2 کاراکتر، می توانید از رشته ''\\u0020'' استفاده کنید:\n\nاین تابع رشته را بر اساس فاصله 2 کاراکتر (که با کاراکتر فاصله ''\\u0020'' مشخص می شود) تقسیم می کند. سپس آرایه ای از رشته های جدا شده را بازمی گرداند.\n </td>\n <td> </td>\n </tr>\n \n <tr>\n <td> AVA-V4 </td>\n <td> یک تابع URL برای دریافت رشته و تقسیم آن بر اساس فاصله به شما این کد پیوند می دهم:\n\n\n\nاین کد تابع 'splitStringBySpace' برچسب کرده است که رشته وارد شده را با فاصله بنویسید. این کد را در نظر دهید و اگر نیاز به تغییرات دیگری دارید، لطفا بگویید.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> یک تابع node js برای دریافت رشته و تقسیم آن بر اساس فاصله به شکل زیر می تواند باشد:\n\n\n\nدر این کد، ابتدا به کار برده 'readline' بخش های فایل ورودی را دریافت می کند. سپس تابع 'splitStringBySpace' را برای تقسیم رشته ای که دریافت کرده ایم استفاده می کند. این تابع رشته را با فاصله های فارسی راهنمایی دار تقسیم می کند و به صورت مجزا برمی گرداند. نتیجه این کار این است که هر کلمه در یک عنصر مجزا قرار می گیرد. سپس این عنصرها را در کنسول نمایش می دهد.\n\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> در اینجا یک تابع برای دریافت رشته و تقسیم آن بر اساس فاصله وجود دارد:\nدر این تابع، رشته وارد شده به عنوان پارامتر وارد می شود. در طول تابع، رشته به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عن </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> - </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n\n\n\n-----------------------------------------------------------------",
"## License\n\n\n\nReleased Jan 30, 2024 by Mehdi Hosseini Moghadam\n\nAttention ️: The user is responsible for using AVA-Llama-3 / Persian Llama 3\n\nAny misuse of the model (of any kind) is the responsibility of the user and not the creator",
"## Contact\n\n<a href=\"URL target=\"_blank\"><img src=\"URL alt=\"Buy Me A Coffee\" style=\"height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;\" ></a>\n\t\n\t\n<a href=\"URL target=\"_blank\"><img src=\"URL alt=\"Buy Me A Coffee\" style=\"height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;\" ></a>\n\n<a href=\"URL target=\"_blank\"><img src=\"URL alt=\"Buy Me A Coffee\" style=\"height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;\" ></a>"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"# AVA-Llama-3\nFine-Tuned Llama 3 Persian Large Language Model LLM / Persian Llama 3",
"# AVA-Llama-3 / Persian Llama-3 / Persian Llama 3\n\n\n <img src=\"Llama 3.png\" height=\"600\" width=\"940\" >",
"### This Repository Contains Documents for Fine-Tuned Llama 3 Persian Large Language Model(LLM) Called AVA-Llama-3\n(Still in progress)\n\n-------------------------------------------------",
"### Dataset used:\n\nTo Be Done\n\n-------------------------------------------------",
"### Usage:\n\nAll models are hosted in HuggingFace, and here is the code for inference:\n\n\n\nYou can also use colab link in the jupyter file\n\n-------------------------------------------------",
"## QA Comparision to other models:\n\n <img src=\"URL\" height=\"600\" width=\"940\" >\n\n\nAVA-Llama-3 vs AVA-V4 vs AVA-V2 vs Maral vs Llama",
"### Q1: \n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> ایلان ریو ماسک در پرتوریا، آفریقای جنوبی به دنیا امده است </td>\n <td> </td>\n </tr>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> ایلان ریو ماسک در پرتوریا، آفریقای جنوبی به دنیا امده است. او در 18 سالگی به کانادا رفت </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> ایلان ماسک در پرتوریا، آفریقای جنوبی به دنیا آمده است. او در 18 سالگی به کانادا رفت </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> ایلان ماسک در پرتوریا، آفریقای جنوبی به دنیا آمده است </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> اگر او در کجا به دنیا امده باشد، چه کسی او را در کجا میدانست؟ </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n\n--------------------------------------------------------",
"### Q2: \n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> این یک بازی با کلمات است که به ما کمک می کند تا به یک پاسخ عجیب برسیم. پاسخ این است که سه قاتل باقی می مانند. دلیل این است که یکی از قاتلان وارد اتاق می شود و یکی از قاتلان دیگر را می کشد، اما هیچ کس اتاق را ترک نمی کند. بنابراین، سه قاتل باقی می مانند.\n </td>\n <td> </td>\n </tr>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> پاسخ: در اتاق هنوز یک قاتل باقی مانده است.\n استدلال: از هر دو قاتل یکی در اتاق باقی مانده است. زیرا هر کدام یکی را می کشد و هیچ کدام از اتاق ترک نمی کند. پس از کشتن دیگری، یکی از قاتلان باقی مانده در اتاق هست </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> در این سوال، اولیه استدلال به این صورت است که در یک اتاق سه قاتل هستند. واقعیت این است که یکی از آنها را می کشد و یکی از آنها را نمی کشد. بنابراین، هیچ کس اتاق را ترک نمی کند و دو قاتل در اتاق باقی مانده است.\n\nاگر در این سوال به استدلال بیشتری افتد، می توانیم ببینیم که هر دو قاتل هم در اتاق هستند و هیچ کدام را نمی کشند. اما در این استدلال اصلی و اولیه، تعداد قاتل های باقی مانده در اتاق به دو تقریباً این است. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td>در این سوال سه قاتل در یک اتاق وجود دارد و یکی از آنها را می کشد. هیچ کس اتاق را ترک نمی کند، بنابراین دو قاتل باقی مانده است. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> این استدلال می تواند به یک اتاق با چهار قاتل در آن باشد. یک قاتل وارد اتاق می شود و یکی از آنها را می کشد. هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. این استدلال می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را ترک نمی کند چند قاتل در آن باقی مانده است. می تواند به یک اتاق با چهار قاتل در آن باشد که یک قاتل وارد اتاق می شود و یکی از آنها را می کشد و هیچ کس اتاق را\n </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n\n----------------------------------------------------------",
"### Q3: \n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> \n ملکه الیزابت یک شاهزاده بریتانیایی است که از ۱۹۵۲ تا ۲۰۲۲ بر تخت سلطنت بریتانیا سلطنت کرد. او در ۲۱ آوریل 1926 در لندن متولد شد و در ۸ سپتامبر 2022 در سن ۹۶ سالگی در باکینگهام پالاس درگذشت. ملکه الیزابت دوم طولانیترین سلطنت بریتانیا را در اختیار داشت و در طول سلطنت خود بریتانیا را از جنگ جهانی دوم تا جنگ سرد و سپس به دوران مدرن رهبری کرد. او همچنین در طول سلطنت خود به عنوان یک نماد ملی و یک نماد برای بریتانیا شناخته شد. ملکه الیزابت دوم همچنین به عنوان ملکه کانادا، استرالیا، نیوزیلند و سایر کشورهای مشترکالمنافع بریتانیا نیز شناخته میشود. </td>\n <td> <h1> </h1> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> ملکه ایلزابت بولنتن بود که در سال 1533 تا 1558 در انگلستان دور بود. او در زمان بود که انگلستان در دوران تاریخی به عنوان یک کشور به پیشرفت بیشتری رسید </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> ملکه الیزابت یک شهرستان در انگلستان است. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> ملکه الیزابت یک کشور در جنوب آفریقا است که در سال 1910 به این نام تعیین شد. این کشور به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینکه در سال 1910 به این نام تعیین شد، به دلیل اینک </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> ملکه الیزابت ریاضی ایرانی است که در سال ۱۹۴۷ در ایران تولید شد. این ملکه در سال ۱۹۶۷ در ایران تولید شده و در سال ۱۹۷۰ در ایران و در سال ۱۹۷۱ در امریکا تولید شده و در سال ۱۹۷۲ در ایران و در سال ۱۹۷۳ در امریکا تولید شده و در سال ۱۹۷۴ در ایران و در سال ۱۹۷۵ در امریکا تولید شده و در سال ۱۹۷۶ در ایران و در سال ۱۹۷۷ در امریکا تولید شده و در سال ۱۹۷۸ در ایران و در سال ۱۹۷۹ در امریکا تولید شده و در سال ۱۹۸۰ در ایران و در سال ۱۹۸۱ در امریکا تولید شده و در سال ۱۹۸۲ در ایران و در سال ۱۹۸۳ در امریکا تولید شده و در سال ۱۹۸۴ در ایران و در سال ۱۹۸۵ در امریک\n </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n-----------------------------------------------------------------",
"### Q4: \n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> منظور شما این است که توپ در داخل لیوان برعکس قرار دارد و سپس لیوان را برداشته و داخل مایکروویو قرار می دهید. در این صورت، توپ در داخل مایکروویو قرار دارد و برعکس لیوان نیست.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td>",
"### Assistant: اگر یک توپ داخل یک لیوان برعکس باشد، و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. در این واقعیت، توپ در داخل مایکروویو قرار داشته و لیوان را برداشته شده است </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> اگر یک توپ داخل یک لیوان باشد، و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. این تشکیل اندازه گیری شده است و در فیزیک و ارتباطات است، و این تشکیل اندازه گیری شده به عنوان \"توپ داخل لیوان در داخل مایکروویو\" شناسایی می شود. این تشکیل اندازه گیری شده در فیزیک و ارتباطات به عنوان یک نمونه از انواع تشکیلات اندازه گیری شده ارائه می شود که توسط جهان در حال ارتباط است.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> اگر یک توپ داخل یک لیوان برعکس باشد و ما لیوان را برداشته و داخل مایکروویو بگذاریم، توپ داخل مایکروویو خواهد بود. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> توپ داخل یک لیوان یا مایکروویو است که در آن می توان برای انجام کارهای مختلف استفاده کنید. لیوان یک ماشین است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک ماشین است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آن می توان برای انجام کارهای مختلف استفاده کنید. مایکروویو یک توپ داخل است که در آ </td>\n <td> </td>\n </tr>\n</table>\n\n\n-----------------------------------------------------------------",
"### Q5: \n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <td> AVA-Llama-3 </td>\n <td> \n\nدر تاریکی شب، صدای قلبم میزند\nدلشکسته و بیامید، در تاریکی شب\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\nاما در تاریکی شب، نمیتوانم به تو برسم\nمن میخواهم به تو برسم، به تو که هستی\n </td>\n <td> \n <tr>\n <td> AVA-V4 </td>\n <td> بله، می توانم یک شعر با دقیقا پنجاه کلمه برای شما بسازم. اینجا یک شعر با پنجاه کلمه ای که برای شما نوشتم:\n\nدر جنگل دیدار کردم یک گربه سیاه\nکه در دست دو گربه سبز قرار داشت\nاز آن که در جنگل زمانه های گذشته\nگربه ها در دست دیگران قرار گرفت </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> بله، میتوانید یک شعر با دقیقا پنجاه کلمه بساز. اینجا یک نمونه شعر با پنجاه کلمه ایده آمده است:\n\nدر دل آب و هوای زمان،\nدر دل آفتاب و شب،\nدر دل گل و گوشت،\nدر دل عشق و دوری،\n\nدر دل آفتاب و شب،\nدر دل گل و گوشت،\nدر دل عشق و دوری،\nدر دل آب و هوای زمان،\n\nدر دل آفتاب و شب،\nدر دل گل و گوشت،\nدر دل عشق و دوری،\nدر دل آب و هوای زمان،\n\nدر دل آفتاب و شب،\nدر دل گل و گوشت،\nدر دل عشق و دوری،\nدر دل آب و هوای زمان،\n\nدر دل آفتاب و شب،\nدر دل گل و گوشت،\nدر دل عشق و دوری،\nدر دل آب و هوای زمان. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> در اینجا یک شعر با دقیقا پنجاه کلمه وجود دارد:\n\"با دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه،\nبا دقیقا پنجاه کلمه، </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> بله، شعر یک نوع از مواد مختلف است که در معروف شعر با نام شعر انسان به اندازهٔ ۱۰۰۰ کلمه در مقابل ۱۰۰۰ کلمه در مقابس شعر حیوانات و ۱۰۰۰ کلمه در مقابس شعر گیاهان و ۱۰۰۰ کلمه در مقابس شعر گیاهان با نام شعر گیاهان انسان و ۱۰۰۰ کلمه در مقابس شعر گیاهان دیگر و ۱۰۰۰ کلمه در مقابس شعر دیگر انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر حیوانات و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان انسان و ۱۰۰۰ کلمه در مقابس شعر دیگر حیوانات و ۱۰۰۰ کلمه در مقابس شعر دیگر گیاهان و ۱۰۰۰ کلمه در مقابس شعر دیگ </td>\n <td> </td>\n </tr>\n</table>\n\n-----------------------------------------------------------------",
"### Q6: \n\n\n\n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\t <tr>\n <td> AVA-Llama-3 </td>\n <td>\n\t \nیک نامه خطاب به رییس شرکت من بنویسید که من در حال استعفا و ترک شرکت هستم.\n\n[Your Name]\n[Your Address]\n[City, State, ZIP]\n[Date]\n\n[CEO's Name]\n[Company Name]\n[Company Address]\n[City, State, ZIP]\n\nDear [CEO's Name],\n\nI am writing to inform you that I have decided to resign from my position as [Position] at [Company Name], effective [Date of Last Day of Work]. This was not an easy decision for me to make, as I have truly enjoyed my time at the company and have been grateful for the opportunities that I have been given.\n\nHowever, I have come to realize that it is time for me to move on and explore new opportunities. I am grateful for the experience and skills that I have gained during my time at [Company Name], and I am confident that they will serve me well in my future endeavors.\n\nI want to thank you for the support and guidance that you have provided me during my time at the company. I appreciate the opportunities that you have given me to grow and develop as a professional, and I am grateful for the trust that you have placed in me.\n\nI will do everything I can to ensure a smooth transition of my responsibilities and complete any outstanding tasks before my departure. If there is anything specific that you would like me to focus on during my remaining time here, please let me know.\n\nThank you again for the opportunity to work at [Company Name]. I wish the company all the best for the future.\n\nSincerely,\n\n[Your Name]\n </td>\n <tr>\n <td> AVA-V4 </td>\n <td> ۱۳۹۹/۰۸/۱۴۰۰\n\nمترجم: شما باید نامه خطاب خود را به انگلیسی نوشته و از طریق این پیام به من ارسال کنید.\n\nمتوضع: در این نامه خطاب، من در حال استعفا و ترک شرکت هستم.\n\nنامه خطاب:\n\nاز انجام ناخودپسندیده و از دست دادن از شرکت خود انجام می دهم.\n\nشما باید نامه خطاب خود را به انگلیسی نوشته و از طریق این پیام به من ارسال کنید.\n\nمتوضع: در این نامه خطاب، من در حال استعفا و ترک شرکت هستم.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> اگر شما یک نامه خطاب به رییس شرکت خود بنویسید که من در حال استعفا و ترک شرکت هستم، این است که می توانید از آن استفاده کنید:\n\n نامه خطاب\n\nشماره: [شماره نامه]\n\nتاریخ: [تاریخ نوشتن نامه]\n\n[نام و نام خانوادگی رییس شرکت]\n[عنوان شرکت]\n[آدرس شرکت]\n\nشکر خوب،\n\nبه عنوان یکی از عضویان شرکت [نام شرکت]، احتمالاً اولین خبری که به شما این نامه ارسال می کنم نیست. اما در حال حاضر، من در حال استعفا و ترک از شرکت هستم و این نامه را به شما ارسال می کنم تا آن را به دنباله های دیگری اضافه کنم.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> رییس شرکت،\nمن در حال استعفا و ترک شرکت هستم. این نه به دلیل اینکه به شرکت نیاز ندارم، بلکه به دلیل اینکه با این کار به خود و به شرکت اشتباه کرده ام. این به دلیل این است که از طرف شرکت به دنبال ارزش های بیشتری بودم و از طرف من به دنبال ارزش های بیشتری بودم. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. این به دلیل این است که ارزش های بیشتری به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بیشتری به دست نمی آید. اما این ارزش ها به طور متوقف شده است و از طرف شرکت و من ارزش های بی </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> ### Assistant: خوب است که شرکت را ترک کردید. من به شرکت باز کردم و امروز در شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال استعفا و می خوام به شرکت باز شدم. من در حال\n </td>\n <td> </td>\n </tr>\n</table>\n\n-----------------------------------------------------------------",
"### Q7: \n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> رییس جمهور آمریکا در سال 1996، بیل کلینتون بود </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> رییس جمهور آمریکا در سال 1996 بود بیل کلینتن. </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> در سال 1996، رییس جمهور آمریکا بیل کلنتن بود. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> رییس جمهور آمریکا در سال 1996 بیل کلنتن بود. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> رییس جمهور آمریکا در سال ۱۹۹۶ به نام بلار بورنس بود. او در ۱۹۹۲ از رییس دادگاه آمریکا و در ۱۹۹۴ از رییس دادگاه آمریکا شد و در ۱۹۹۶ به رییس جمهور آمریکا اتحادیه شد. او در ۱۹۹۷ به رییس جمهور آمریکا دوم شد و در ۱۹۹۹ به رییس جمهور آمریکا سوم شد. او در ۱۹۹۱ به رییس دادگاه آمریکا شد و در ۱۹۹۲ به رییس دادگاه آمریکا شد و در ۱۹۹۳ به رییس جمهور آمریکا شد. او در ۱۹۹۴ به رییس دادگاه آمریکا شد و در ۱۹۹۵ به رییس جمهور آمریکا شد. او در ۱۹۹۶ به رییس جمهور آمریکا شد و در ۱۹۹۷ به رییس جمهور آمریکا دوم شد. او در ۱۹۹۸ به رییس جمهور آمریکا سوم شد. او در ۱۹۹ </td>\n <td> </td>\n </tr>\n</table>\n\n-----------------------------------------------------------------",
"### Q8: \n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n<tr>\n <td> AVA-Llama-3 </td>\n <td> \nاگر پنج پیراهن 4 ساعت طول می کشد تا خشک شود، می توانیم به این نتیجه برسیم که هر پیراهن 4/5 ساعت طول می کشد تا خشک شود. برای پیدا کردن زمان لازم برای خشک شدن 20 پیراهن، می توانیم از این رابطه استفاده کنیم:\n\n4/5 * 20 = 16\n\nبنابراین، 20 پیراهن 16 ساعت طول می کشد تا خشک شود.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> اگر پنج پیراهن 4 ساعت طول بکشد تا خشک شود، 20 پیراهن به اندازه ی یک ساعت طول می کشد تا خشک شود. این اطمینان را دارید که هر پیراهن در نتیجه 20 پیراهن 4 ساعت طول می کشد تا خشک شود.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> اگر پنج پیراهن 4 ساعت طول بکشد تا خشک شود، 20 پیراهن به اندازه ی شبیه ساعت بکشند تا خشک شود. برای حل مورد نیاز، شما می توانید از فرمول زیر استفاده کنید:\n\nطول بکشنده شدن 20 پیراهن = طول بکشنده شدن 5 پیراهن × (شماره پیراهن / شماره پیراهن)\n\nطول بکشنده شدن 20 پیراهن = 4 ساعت × (20 / 5)\n\nطول بکشنده شدن 20 پیراهن = 4 ساعت × 4\n\nطول بکشنده شدن 20 پیراهن = 16 ساعت\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش، ابتدا باید از این اطلاعات استفاده کنید که پنج پیراهن 4 ساعت طول می کشد تا خشک شود. از این اطلاعات باید برای حل پرسش استفاده کنید.برای حل این پرسش\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پنج پیراهن چه طول دارند؟ پن\n </td>\n <td> </td>\n </tr>\n</table>\n\n-----------------------------------------------------------------",
"### Q9: \n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> \nاین مسابقه بسیار جالب است! با در نظر گرفتن سرعت هر دو، می توانیم سرعت آنها را به یک واحد تبدیل کنیم. سرعت خرگوش 10 کیلومتر بر ساعت است، بنابراین سرعت لاک پشت را به 10 کیلومتر بر ساعت تبدیل می کنیم. در این صورت، سرعت لاک پشت 0.1 کیلومتر بر ساعت است.\n\nدر این صورت، سرعت خرگوش 10 کیلومتر بر ساعت و سرعت لاک پشت 0.1 کیلومتر بر ساعت است. بنابراین، خرگوش برنده مسابقه است. لاک پشت به دلیل سرعت بسیار پایین خود نمی تواند با خرگوش رقابت کند.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> \nبرای حل این مسئله، ما باید سرعت هر دو از جمله را بررسی کنیم و سپس آنها را با هم مقایسه کنیم. سرعت خرگوش 10 کیلومتر در 1 دقیقه است و سرعت لاک پشت 1 کیلومتر در 10 دقیقه است.\n\nمسابقه 100 متری از آنجایی که خرگوش سریعتر از لاک پشت است، خرگوش به طور کامل قابلیت برداشتن این جاهزه را دارد. بنابراین، خرگوش برنده مسابقه است.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> برای مشاهده نتیجه مسابقه، باید سرعت خرگوش و لاک پشت را به هم انداز کنیم. سرعت خرگوش 10 کیلومتر در ساعت و لاک پشت 1 کیلومتر در ساعت است. برای اینکه نتیجه مسابقه را بدست آوریم، باید 100 متر را به سرعت خرگوش و لاک پشت تبدیل کنیم.\n\n100 متر / 10 کیلومتر در ساعت = 10 دقیقه\n\n100 متر / 1 کیلومتر در ساعت = 100 دقیقه\n\nبنابراین، خرگوش 10 دقیقه و لاک پشت 100 دقیقه می گذرد تا 100 متر را پیروز کنند. بنابراین، برنده مسابقه خرگوش است. </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> برنده مسابقه خرگوش است. با سرعت 10 کیلومتر در ساعت، خرگوش به انتهای 100 متر در 10 دقیقه به پایان می رسد، در حالی که لاک پشت با سرعت 1 کیلومتر در ساعت به پایان می رسد و به انتهای 100 متر در 100 دقیقه به پایان می رسد.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> با این نوع سوال می توان به نوع سوال با نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با این حال، اگر با این سوال می توان به نوع جواب انتظار داشته باشید، می توان به نوع جواب انتظار داشته باشید. با \n </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n-----------------------------------------------------------------",
"### Q9: \n\n\n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr> \n <tr>\n <td> AVA-Llama-3 </td>\n <td> \n\t Here is a JSON file containing the information you requested:\n\n\n\nIf you want to add more information to each person, you can add additional properties to the JSON object. For example:\n\n\n\nLet me know if you have any other questions!\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V4 </td>\n <td> ساختن یک فایل json با این اطلاعات از قبل ایجاد شده است. این فایل json شامل اطلاعات دو نفر از افراد مانند bob و jon است. برای افزودن اطلاعات موجود در فایل json یا ایجاد جدید، باید از کاماند زیر استفاده کنید:\n\n\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> ساده، این کار را با استفاده از زبان پروگرامینگ Python میتوانیم انجام دهیم. ابتدا، یک فایل json با نام \"URL\" به دست آورید. سپس، از کلاس dict در Python استفاده کرده، یک فایل json را ایجاد میکنیم که اطلاعات این چهار نام را با این فرمت برمیچارد:\n\nimport json\n\npeople = {\n \"bob\": {},\n \"jon\": {},\n \"mary\": {},\n \"rich\": {}\n}\n\nwith open(\"URL\", \"w\") as f:\n URL(people, f) </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> با استفاده از یک فایل json به این صورت ایجاد کنید:\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> امروز چه نوع افراد را در مدرسه دانشگاه میدانید؟ میخوام بینهایت افراد دو نوع را در مدرسه دانشگاه میدانم. این افراد با نام برادر و مرد است. برادر در مدرسه دانشگاه در دوره اول دوست دارند و مرد در دوره دوم دوست دارند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. میخوام این افراد در مدرسه دانشگاه در حال تحصیل هستند. می\n </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n\n-----------------------------------------------------------------",
"### Q9: \n\n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n <tr>\n <td> AVA-Llama-3 </td>\n <td> \nیک اسکریپت پایتون برای چاپ 1 تا 10 به این صورت می توان بنویسید:\n\nاین اسکریپت یک حلقه برای loop 1 تا 10 ایجاد می کند و هر بار در هر دور، عدد فعلی را چاپ می کند.\n </td>\n <td> </td>\n <tr>\n <td> AVA-V4 </td>\n <td> این یک اسکریپت پایتون است که از 1 تا 10 چاپ می کند:\n \n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> یک اسکریپت پایتون برای چاپ 1 تا 10 به شرح زیر برمی گرد:\n\nاین اسکریپت با استفاده از لوپ (loop) در زمان اجرایی به نام 'range(1, 11)' از 1 تا 10 عدد را مشاهده می کند و هر عدد را با استفاده از فنکشن 'print()' چاپ می کند.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> در اینجا یک اسکریپت پایتون برای چاپ 1 تا 10 وجود دارد: </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> ### Assistant: این اسکریپت چاپ کنید و بعد از انجام چاپ، می توانید باز کنید. اگر نیاز به این اسکریپت ندارید، با موفقیت این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، با موفقیت این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز دارید، می توانید این اسکریپت را از منبع اصلی دانستید. اگر نیاز ندارید\n </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n\n\n-----------------------------------------------------------------",
"### Q9: \n\n\n\n\n\n\n\n\n\n\n\n<table width=\"300\">\n <tr>\n <td> Model </td>\n <td> Answer </td>\n <td> Rating </td>\n </tr>\n\n <tr>\n <td> AVA-Llama-3 </td>\n <td> \n\t \nدر اینجا یک تابع URL برای دریافت رشته و تقسیم آن بر اساس فاصله ارائه می شود:\n\nاین تابع از روش 'split' درbuilt-in 'String' در URL استفاده می کند تا رشته را بر اساس فاصله (که با کاراکتر فاصله 'space' مشخص می شود) تقسیم کند. سپس آرایه ای از رشته های جدا شده را بازمی گرداند.\n\nاگر می خواهید رشته را بر اساس فاصله خاصی تقسیم کنید، می توانید از یک رشته به عنوان دومین آرگومان به روش 'split' پاس دهید. برای مثال، برای تقسیم رشته بر اساس فاصله با فاصله 2 کاراکتر، می توانید از رشته ''\\u0020'' استفاده کنید:\n\nاین تابع رشته را بر اساس فاصله 2 کاراکتر (که با کاراکتر فاصله ''\\u0020'' مشخص می شود) تقسیم می کند. سپس آرایه ای از رشته های جدا شده را بازمی گرداند.\n </td>\n <td> </td>\n </tr>\n \n <tr>\n <td> AVA-V4 </td>\n <td> یک تابع URL برای دریافت رشته و تقسیم آن بر اساس فاصله به شما این کد پیوند می دهم:\n\n\n\nاین کد تابع 'splitStringBySpace' برچسب کرده است که رشته وارد شده را با فاصله بنویسید. این کد را در نظر دهید و اگر نیاز به تغییرات دیگری دارید، لطفا بگویید.\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> AVA-V2 </td>\n <td> یک تابع node js برای دریافت رشته و تقسیم آن بر اساس فاصله به شکل زیر می تواند باشد:\n\n\n\nدر این کد، ابتدا به کار برده 'readline' بخش های فایل ورودی را دریافت می کند. سپس تابع 'splitStringBySpace' را برای تقسیم رشته ای که دریافت کرده ایم استفاده می کند. این تابع رشته را با فاصله های فارسی راهنمایی دار تقسیم می کند و به صورت مجزا برمی گرداند. نتیجه این کار این است که هر کلمه در یک عنصر مجزا قرار می گیرد. سپس این عنصرها را در کنسول نمایش می دهد.\n\n </td>\n <td> </td>\n </tr>\n <tr>\n <td> Maral </td>\n <td> در اینجا یک تابع برای دریافت رشته و تقسیم آن بر اساس فاصله وجود دارد:\nدر این تابع، رشته وارد شده به عنوان پارامتر وارد می شود. در طول تابع، رشته به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عنوان یک رشته ای به عن </td>\n <td> </td>\n </tr>\n <tr>\n <td> Llama </td>\n <td> - </td>\n <td> </td>\n </tr>\n</table>\n\n\n\n\n\n\n-----------------------------------------------------------------",
"## License\n\n\n\nReleased Jan 30, 2024 by Mehdi Hosseini Moghadam\n\nAttention ️: The user is responsible for using AVA-Llama-3 / Persian Llama 3\n\nAny misuse of the model (of any kind) is the responsibility of the user and not the creator",
"## Contact\n\n<a href=\"URL target=\"_blank\"><img src=\"URL alt=\"Buy Me A Coffee\" style=\"height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;\" ></a>\n\t\n\t\n<a href=\"URL target=\"_blank\"><img src=\"URL alt=\"Buy Me A Coffee\" style=\"height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;\" ></a>\n\n<a href=\"URL target=\"_blank\"><img src=\"URL alt=\"Buy Me A Coffee\" style=\"height: 50px !important;width: 50px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;\" ></a>"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | relu-ntnu/bart-large-xsum_v4_trained_on_1500_lr_1e-4 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:21:49+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | ryanyeo/kirnect-koalpaca-polyglot-5_8b-aerospace-5150step-8batch_5epoch | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:26:52+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | himum/sn6_0m | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:27:55+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
# Uploaded model
- **Developed by:** hashemalsaket
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"} | hashemalsaket/llama3_lora_model_test | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:27:57+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: hashemalsaket
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: hashemalsaket\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: hashemalsaket\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | HackerCIS/gemma-2b_LoRA_0422 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:29:37+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | ryanyeo/kirnect-koalpaca-polyglot-5.8B-aerospace | null | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:30:34+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #gpt_neox #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #gpt_neox #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
# jeiku/Chaos_RP_l3_8B-Q4_K_M-GGUF
This model was converted to GGUF format from [`jeiku/Chaos_RP_l3_8B`](https://huggingface.co/jeiku/Chaos_RP_l3_8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/jeiku/Chaos_RP_l3_8B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo jeiku/Chaos_RP_l3_8B-Q4_K_M-GGUF --model chaos_rp_l3_8b.Q4_K_M.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo jeiku/Chaos_RP_l3_8B-Q4_K_M-GGUF --model chaos_rp_l3_8b.Q4_K_M.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m chaos_rp_l3_8b.Q4_K_M.gguf -n 128
```
| {"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["llama-cpp", "gguf-my-repo"], "base_model": ["ChaoticNeutrals/IQ_Test_l3_8B", "ResplendentAI/RP_Format_QuoteAsterisk_Llama3"]} | jeiku/Chaos_RP_l3_8B-Q4_K_M-GGUF | null | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"en",
"base_model:ChaoticNeutrals/IQ_Test_l3_8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:31:23+00:00 | [] | [
"en"
] | TAGS
#transformers #gguf #llama-cpp #gguf-my-repo #en #base_model-ChaoticNeutrals/IQ_Test_l3_8B #license-apache-2.0 #endpoints_compatible #region-us
|
# jeiku/Chaos_RP_l3_8B-Q4_K_M-GGUF
This model was converted to GGUF format from 'jeiku/Chaos_RP_l3_8B' using URL via the URL's GGUF-my-repo space.
Refer to the original model card for more details on the model.
## Use with URL
Install URL through brew.
Invoke the URL server or the CLI.
CLI:
Server:
Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
| [
"# jeiku/Chaos_RP_l3_8B-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'jeiku/Chaos_RP_l3_8B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] | [
"TAGS\n#transformers #gguf #llama-cpp #gguf-my-repo #en #base_model-ChaoticNeutrals/IQ_Test_l3_8B #license-apache-2.0 #endpoints_compatible #region-us \n",
"# jeiku/Chaos_RP_l3_8B-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'jeiku/Chaos_RP_l3_8B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Weblet/phi-1-turbo1713752796M | null | [
"transformers",
"safetensors",
"phi",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:31:36+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | null | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with GGUF.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***What is the model format?*** We use GGUF format.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
# Downloading and running the models
You can download the individual files from the Files & versions section. Here is a list of the different versions we provide. For more info checkout [this chart](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) and [this guide](https://www.reddit.com/r/LocalLLaMA/comments/1ba55rj/overview_of_gguf_quantization_methods/):
| Quant type | Description |
|------------|--------------------------------------------------------------------------------------------|
| Q5_K_M | High quality, recommended. |
| Q5_K_S | High quality, recommended. |
| Q4_K_M | Good quality, uses about 4.83 bits per weight, recommended. |
| Q4_K_S | Slightly lower quality with more space savings, recommended. |
| IQ4_NL | Decent quality, slightly smaller than Q4_K_S with similar performance, recommended. |
| IQ4_XS | Decent quality, smaller than Q4_K_S with similar performance, recommended. |
| Q3_K_L | Lower quality but usable, good for low RAM availability. |
| Q3_K_M | Even lower quality. |
| IQ3_M | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
| IQ3_S | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. |
| Q3_K_S | Low quality, not recommended. |
| IQ3_XS | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
| Q2_K | Very low quality but surprisingly usable. |
## How to download GGUF files ?
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* Faraday.dev
- **Option A** - Downloading in `text-generation-webui`:
- **Step 1**: Under Download Model, you can enter the model repo: PrunaAI/stablelm-2-12b-GGUF-smashed-smashed and below it, a specific filename to download, such as: phi-2.IQ3_M.gguf.
- **Step 2**: Then click Download.
- **Option B** - Downloading on the command line (including multiple files at once):
- **Step 1**: We recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
- **Step 2**: Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download PrunaAI/stablelm-2-12b-GGUF-smashed-smashed stablelm-2-12b.IQ3_M.gguf --local-dir . --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage (click to read)</summary>
Alternatively, you can also download multiple files at once with a pattern:
```shell
huggingface-cli download PrunaAI/stablelm-2-12b-GGUF-smashed-smashed --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download PrunaAI/stablelm-2-12b-GGUF-smashed-smashed stablelm-2-12b.IQ3_M.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->
<!-- README_GGUF.md-how-to-run start -->
## How to run model in GGUF format?
- **Option A** - Introductory example with `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 35 -m stablelm-2-12b.IQ3_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] {prompt\} [/INST]"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
- **Option B** - Running in `text-generation-webui`
Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20-%20Model%20Tab.md#llamacpp).
- **Option C** - Running from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-python
```
#### Simple llama-cpp-python example code
```python
from llama_cpp import Llama
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
model_path="./stablelm-2-12b.IQ3_M.gguf", # Download the model file first
n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
)
# Simple inference example
output = llm(
"<s>[INST] {prompt} [/INST]", # Prompt
max_tokens=512, # Generate up to 512 tokens
stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
echo=True # Whether to echo the prompt
)
# Chat Completion API
llm = Llama(model_path="./stablelm-2-12b.IQ3_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
llm.create_chat_completion(
messages = [
{"role": "system", "content": "You are a story writing assistant."},
{
"role": "user",
"content": "Write a story about llamas."
}
]
)
```
- **Option D** - Running with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
| {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"} | PrunaAI/stablelm-2-12b-GGUF-smashed | null | [
"gguf",
"pruna-ai",
"region:us"
] | null | 2024-04-22T02:32:59+00:00 | [] | [] | TAGS
#gguf #pruna-ai #region-us
|
[](URL target=)
:
* Step 1: We recommend using the 'huggingface-hub' Python library:
* Step 2: Then you can download any individual model file to the current directory, at high speed, with a command like this:
More advanced huggingface-cli download usage (click to read)
Alternatively, you can also download multiple files at once with a pattern:
For more documentation on downloading with 'huggingface-cli', please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
To accelerate downloads on fast connections (1Gbit/s or higher), install 'hf\_transfer':
And set environment variable 'HF\_HUB\_ENABLE\_HF\_TRANSFER' to '1':
Windows Command Line users: You can set the environment variable by running 'set HF\_HUB\_ENABLE\_HF\_TRANSFER=1' before the download command.
How to run model in GGUF format?
--------------------------------
* Option A - Introductory example with 'URL' command
Make sure you are using 'URL' from commit d0cee0d or later.
Change '-ngl 32' to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change '-c 32768' to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by URL automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
If you want to have a chat-style conversation, replace the '-p ' argument with '-i -ins'
For other parameters and how to use them, please refer to the URL documentation
* Option B - Running in 'text-generation-webui'
Further instructions can be found in the text-generation-webui documentation, here: text-generation-webui/docs/04 ‐ Model URL.
* Option C - Running from Python code
You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
```
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: llama-cpp-python docs.
#### First install the package
Run one of the following commands, according to your system:
#### Simple llama-cpp-python example code
```
* Option D - Running with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* LangChain + llama-cpp-python
* LangChain + ctransformers
Configurations
--------------
The configuration info are in 'smash\_config.json'.
Credits & License
-----------------
The license of the smashed model follows the license of the original model. Please check the license of the original model before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
Want to compress other models?
------------------------------
* Contact us and tell us which model to compress next here.
* Request access to easily compress your own AI models here.
| [
"### How to load this model in Python code, using llama-cpp-python\n\nFor full documentation, please see: llama-cpp-python docs.",
"#### First install the package\n\nRun one of the following commands, according to your system:",
"#### Simple llama-cpp-python example code\n\n```\n\n* Option D - Running with LangChain\n\n\nHere are guides on using llama-cpp-python and ctransformers with LangChain:\n\n\n* LangChain + llama-cpp-python\n* LangChain + ctransformers\n\n\nConfigurations\n--------------\n\n\nThe configuration info are in 'smash\\_config.json'.\n\n\nCredits & License\n-----------------\n\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.\n\n\nWant to compress other models?\n------------------------------\n\n\n* Contact us and tell us which model to compress next here.\n* Request access to easily compress your own AI models here."
] | [
"TAGS\n#gguf #pruna-ai #region-us \n",
"### How to load this model in Python code, using llama-cpp-python\n\nFor full documentation, please see: llama-cpp-python docs.",
"#### First install the package\n\nRun one of the following commands, according to your system:",
"#### Simple llama-cpp-python example code\n\n```\n\n* Option D - Running with LangChain\n\n\nHere are guides on using llama-cpp-python and ctransformers with LangChain:\n\n\n* LangChain + llama-cpp-python\n* LangChain + ctransformers\n\n\nConfigurations\n--------------\n\n\nThe configuration info are in 'smash\\_config.json'.\n\n\nCredits & License\n-----------------\n\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.\n\n\nWant to compress other models?\n------------------------------\n\n\n* Contact us and tell us which model to compress next here.\n* Request access to easily compress your own AI models here."
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleTrue_extractchosenTrue
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5277
- Accuracy: 0.7168
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8315 | 0.04 | 250 | 0.7587 | 0.5337 |
| 0.7136 | 0.08 | 500 | 0.6394 | 0.6303 |
| 0.6091 | 0.13 | 750 | 0.6058 | 0.6544 |
| 0.6005 | 0.17 | 1000 | 0.5916 | 0.6634 |
| 0.5844 | 0.21 | 1250 | 0.5839 | 0.6743 |
| 0.5823 | 0.25 | 1500 | 0.5729 | 0.6796 |
| 0.5845 | 0.29 | 1750 | 0.5629 | 0.6815 |
| 0.5726 | 0.33 | 2000 | 0.5599 | 0.6833 |
| 0.5564 | 0.38 | 2250 | 0.5675 | 0.6886 |
| 0.5681 | 0.42 | 2500 | 0.5550 | 0.6912 |
| 0.5713 | 0.46 | 2750 | 0.5367 | 0.6897 |
| 0.5403 | 0.5 | 3000 | 0.5392 | 0.6980 |
| 0.5299 | 0.54 | 3250 | 0.5502 | 0.7029 |
| 0.5397 | 0.59 | 3500 | 0.5411 | 0.7025 |
| 0.5629 | 0.63 | 3750 | 0.5377 | 0.7048 |
| 0.5307 | 0.67 | 4000 | 0.5290 | 0.7119 |
| 0.5154 | 0.71 | 4250 | 0.5322 | 0.7104 |
| 0.5307 | 0.75 | 4500 | 0.5363 | 0.7123 |
| 0.5414 | 0.79 | 4750 | 0.5320 | 0.7161 |
| 0.5444 | 0.84 | 5000 | 0.5269 | 0.7194 |
| 0.4831 | 0.88 | 5250 | 0.5325 | 0.7183 |
| 0.528 | 0.92 | 5500 | 0.5281 | 0.7187 |
| 0.527 | 0.96 | 5750 | 0.5277 | 0.7168 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleTrue_extractchosenTrue", "results": []}]} | Holarissun/RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleTrue_extractchosenTrue | null | [
"peft",
"safetensors",
"trl",
"reward-trainer",
"generated_from_trainer",
"base_model:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-04-22T02:33:56+00:00 | [] | [] | TAGS
#peft #safetensors #trl #reward-trainer #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us
| RM-HH-AllMix\_harmless\_gpt3\_20000\_gemma2b\_shuffleTrue\_extractchosenTrue
============================================================================
This model is a fine-tuned version of google/gemma-2b on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5277
* Accuracy: 0.7168
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1.41e-05
* train\_batch\_size: 1
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 4
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1.0
### Training results
### Framework versions
* PEFT 0.10.0
* Transformers 4.38.2
* Pytorch 2.1.2+cu121
* Datasets 2.18.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.41e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.38.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#peft #safetensors #trl #reward-trainer #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.41e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.38.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# COLX_563_lab4_intent
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0398
- F1 Score: 0.9952
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.39.1
- Pytorch 2.4.0.dev20240325
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "roberta-base", "model-index": [{"name": "COLX_563_lab4_intent", "results": []}]} | RyanZZZZZ/COLX_563_lab4_intent | null | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:34:53+00:00 | [] | [] | TAGS
#transformers #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
# COLX_563_lab4_intent
This model is a fine-tuned version of roberta-base on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0398
- F1 Score: 0.9952
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.39.1
- Pytorch 2.4.0.dev20240325
- Datasets 2.18.0
- Tokenizers 0.15.2
| [
"# COLX_563_lab4_intent\n\nThis model is a fine-tuned version of roberta-base on the None dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0398\n- F1 Score: 0.9952",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.1\n- Pytorch 2.4.0.dev20240325\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"# COLX_563_lab4_intent\n\nThis model is a fine-tuned version of roberta-base on the None dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0398\n- F1 Score: 0.9952",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.1\n- Pytorch 2.4.0.dev20240325\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] |
text-generation | transformers |
# Uploaded model
- **Developed by:** Chandrateja
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "sft"], "base_model": "unsloth/llama-3-8b-Instruct-bnb-4bit"} | Chandrateja/lamma3-8b-instruct | null | [
"transformers",
"pytorch",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:37:27+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #llama #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: Chandrateja
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: Chandrateja\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #pytorch #llama #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: Chandrateja\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleTrue_extractchosenFalse
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5035
- Accuracy: 0.7281
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6954 | 0.04 | 250 | 0.6616 | 0.5961 |
| 0.6049 | 0.08 | 500 | 0.5946 | 0.6491 |
| 0.559 | 0.13 | 750 | 0.5750 | 0.6657 |
| 0.5508 | 0.17 | 1000 | 0.5561 | 0.6800 |
| 0.5562 | 0.21 | 1250 | 0.5426 | 0.6886 |
| 0.5167 | 0.25 | 1500 | 0.5325 | 0.6916 |
| 0.5202 | 0.29 | 1750 | 0.5269 | 0.7029 |
| 0.4852 | 0.33 | 2000 | 0.5255 | 0.7070 |
| 0.4796 | 0.38 | 2250 | 0.5265 | 0.7093 |
| 0.5037 | 0.42 | 2500 | 0.5196 | 0.7119 |
| 0.4928 | 0.46 | 2750 | 0.5221 | 0.7146 |
| 0.5138 | 0.5 | 3000 | 0.5257 | 0.7206 |
| 0.4909 | 0.54 | 3250 | 0.5216 | 0.7202 |
| 0.5197 | 0.59 | 3500 | 0.5130 | 0.7273 |
| 0.5086 | 0.63 | 3750 | 0.5107 | 0.7277 |
| 0.5366 | 0.67 | 4000 | 0.5075 | 0.7281 |
| 0.5121 | 0.71 | 4250 | 0.5043 | 0.7292 |
| 0.4945 | 0.75 | 4500 | 0.5048 | 0.7285 |
| 0.5112 | 0.79 | 4750 | 0.5039 | 0.7303 |
| 0.4971 | 0.84 | 5000 | 0.5022 | 0.7300 |
| 0.5118 | 0.88 | 5250 | 0.5031 | 0.7285 |
| 0.4899 | 0.92 | 5500 | 0.5029 | 0.7288 |
| 0.4671 | 0.96 | 5750 | 0.5035 | 0.7281 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "gemma", "library_name": "peft", "tags": ["trl", "reward-trainer", "generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/gemma-2b", "model-index": [{"name": "RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleTrue_extractchosenFalse", "results": []}]} | Holarissun/RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleTrue_extractchosenFalse | null | [
"peft",
"safetensors",
"trl",
"reward-trainer",
"generated_from_trainer",
"base_model:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-04-22T02:37:38+00:00 | [] | [] | TAGS
#peft #safetensors #trl #reward-trainer #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us
| RM-HH-AllMix\_harmless\_gpt3\_20000\_gemma2b\_shuffleTrue\_extractchosenFalse
=============================================================================
This model is a fine-tuned version of google/gemma-2b on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5035
* Accuracy: 0.7281
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1.41e-05
* train\_batch\_size: 1
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 4
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1.0
### Training results
### Framework versions
* PEFT 0.10.0
* Transformers 4.38.2
* Pytorch 2.1.2+cu121
* Datasets 2.18.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.41e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.38.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#peft #safetensors #trl #reward-trainer #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.41e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.38.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] |
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | Sayan01/CKA-T5-CoT-b-T1 | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:38:36+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-squad-BiLSTM-finetuned-squad-Step1-v2
This model is a fine-tuned version of [allistair99/distilbert-base-uncased-distilled-squad-finetuned-SRH-v1](https://huggingface.co/allistair99/distilbert-base-uncased-distilled-squad-finetuned-SRH-v1) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "allistair99/distilbert-base-uncased-distilled-squad-finetuned-SRH-v1", "model-index": [{"name": "distilbert-base-uncased-distilled-squad-BiLSTM-finetuned-squad-Step1-v2", "results": []}]} | allistair99/distilbert-base-uncased-distilled-squad-BiLSTM-finetuned-squad-Step1-v2 | null | [
"transformers",
"safetensors",
"distilbert",
"generated_from_trainer",
"base_model:allistair99/distilbert-base-uncased-distilled-squad-finetuned-SRH-v1",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:39:18+00:00 | [] | [] | TAGS
#transformers #safetensors #distilbert #generated_from_trainer #base_model-allistair99/distilbert-base-uncased-distilled-squad-finetuned-SRH-v1 #license-apache-2.0 #endpoints_compatible #region-us
|
# distilbert-base-uncased-distilled-squad-BiLSTM-finetuned-squad-Step1-v2
This model is a fine-tuned version of allistair99/distilbert-base-uncased-distilled-squad-finetuned-SRH-v1 on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
| [
"# distilbert-base-uncased-distilled-squad-BiLSTM-finetuned-squad-Step1-v2\n\nThis model is a fine-tuned version of allistair99/distilbert-base-uncased-distilled-squad-finetuned-SRH-v1 on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 3",
"### Training results",
"### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #distilbert #generated_from_trainer #base_model-allistair99/distilbert-base-uncased-distilled-squad-finetuned-SRH-v1 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# distilbert-base-uncased-distilled-squad-BiLSTM-finetuned-squad-Step1-v2\n\nThis model is a fine-tuned version of allistair99/distilbert-base-uncased-distilled-squad-finetuned-SRH-v1 on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 3",
"### Training results",
"### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2"
] |
visual-question-answering | transformers |
[Includes fixes for MultiGPU](https://github.com/OpenGVLab/InternVL/issues/96)
# Model Card for InternVL-Chat-V1.5
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/D60YzQBIzvoCvLRp2gZ0A.jpeg" alt="Image Description" width="300" height="300" />
</p>
> _Two interns holding hands, symbolizing the integration of InternViT and InternLM._
\[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\] \[[中文解读](https://zhuanlan.zhihu.com/p/675877376)]
We introduce InternVL 1.5, an open-source multimodal large language model (MLLM) to bridge the capability gap between open-source and proprietary commercial models in multimodal understanding.
We introduce three simple designs:
1. Strong Vision Encoder: we explored a continuous learning strategy for the large-scale vision foundation model---InternViT-6B, boosting its visual understanding capabilities, and making it can be transferred and reused in different LLMs.
2. Dynamic High-Resolution: we divide images into tiles ranging from 1 to 40 of 448 × 448 pixels according to the aspect ratio and resolution of the input images, which supports up to 4K resolution input.
3. High-Quality Bilingual Dataset: we carefully collected a high-quality bilingual dataset that covers common scenes, document images, and annotated them with English and Chinese question-answer pairs, significantly enhancing performance in OCR- and Chinese-related tasks.
## Model Details
- **Model Type:** multimodal large language model (MLLM)
- **Model Stats:**
- Architecture: [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) + MLP + [InternLM2-Chat-20B](https://huggingface.co/internlm/internlm2-chat-20b)
- Image size: dynamic resolution, max to 40 tiles of 448 x 448 (4K resolution).
- Params: 25.5B
- **Training Strategy:**
- Pretraining Stage
- Learnable Component: ViT + MLP
- Data: Please see our technical report.
- SFT Stage
- Learnable Component: ViT + MLP + LLM
- Data: Please see our technical report.
## Released Models
| Model | Vision Foundation Model | Release Date |Note |
| :---------------------------------------------------------:|:--------------------------------------------------------------------------: |:----------------------:| :---------------------------------- |
| InternVL-Chat-V1.5(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5)) | InternViT-6B-448px-V1-5(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5)) |2024.04.18 | support 4K image; super strong OCR; Approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc. (🔥new)|
| InternVL-Chat-V1.2-Plus(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus) ) |InternViT-6B-448px-V1-2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2)) |2024.02.21 | more SFT data and stronger |
| InternVL-Chat-V1.2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2) ) |InternViT-6B-448px-V1-2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2)) |2024.02.11 | scaling up LLM to 34B |
| InternVL-Chat-V1.1(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1)) |InternViT-6B-448px-V1-0(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0)) |2024.01.24 | support Chinese and stronger OCR |
## Performance


## Examples











## Model Usage
We provide an example code to run InternVL-Chat-V1.5 using `transformers`.
You also can use our [online demo](https://internvl.opengvlab.com/) for a quick experience of this model.
```python
import json
import os
from transformers import AutoTokenizer, AutoModel
from tqdm import tqdm
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=6):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
path = "OpenGVLab/InternVL-Chat-V1-5"
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).eval().cuda()
# Otherwise, you need to set device_map='auto' to use multiple GPUs for inference.
# model = AutoModel.from_pretrained(
# path,
# torch_dtype=torch.bfloat16,
# low_cpu_mem_usage=True,
# trust_remote_code=True,
# device_map='auto').eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
generation_config = dict(
num_beams=1,
max_new_tokens=512,
do_sample=False,
)
# single-round single-image conversation
question = "请详细描述图片"
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(question, response)
# multi-round single-image conversation
question = "请详细描述图片"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(question, response)
question = "请根据图片写一首诗"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(question, response)
# multi-round multi-image conversation
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
question = "详细描述这两张图片"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(question, response)
# 第一张图片是一只红熊猫,它有着独特的橙红色皮毛,脸部、耳朵和四肢的末端有白色斑块。红熊猫的眼睛周围有深色的环,它的耳朵是圆形的,上面有白色的毛。它正坐在一个木制的结构上,看起来像是一个平台或休息的地方。背景中有树木和竹子,这表明红熊猫可能在一个模拟自然环境的动物园或保护区内。
#
# 第二张图片是一只大熊猫,它是中国的国宝,以其黑白相间的皮毛而闻名。大熊猫的眼睛、耳朵和四肢的末端是黑色的,而它的脸部、耳朵内侧和身体其他部分是白色的。大熊猫正坐在地上,周围有竹子,这是它们的主要食物来源。背景中也有树木,这表明大熊猫可能在一个为它们提供自然栖息地模拟的动物园或保护区内。
question = "这两张图片的相同点和区别分别是什么"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(question, response)
# 这两张图片的相同点:
#
# 1. 都展示了熊猫,这是两种不同的熊猫物种。
# 2. 熊猫都处于一个看起来像是模拟自然环境的场所,可能是动物园或保护区。
# 3. 熊猫周围都有竹子,这是它们的主要食物来源。
#
# 这两张图片的区别:
#
# 1. 熊猫的种类不同:第一张图片是一只红熊猫,第二张图片是一只大熊猫。
# 2. 熊猫的皮毛颜色和图案不同:红熊猫的皮毛是橙红色,脸部、耳朵和四肢的末端有白色斑块;而大熊猫的皮毛是黑白相间的,眼睛、耳朵和四肢的末端是黑色的,脸部、耳朵内侧和身体其他部分是白色的。
# 3. 熊猫的姿态和位置不同:红熊猫坐在一个木制的结构上,而大熊猫坐在地上。
# 4. 背景中的植被和环境细节略有不同,但都包含树木和竹子。
```
## Citation
If you find this project useful in your research, please consider citing:
```BibTeX
@article{chen2023internvl,
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
journal={arXiv preprint arXiv:2312.14238},
year={2023}
}
```
## License
This project is released under the MIT license.
## Acknowledgement
InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work! | {"license": "mit", "datasets": ["laion/laion2B-en", "laion/laion-coco", "laion/laion2B-multi", "kakaobrain/coyo-700m", "conceptual_captions", "wanng/wukong100m"], "pipeline_tag": "visual-question-answering"} | failspy/InternVL-Chat-V1-5-8bit | null | [
"transformers",
"safetensors",
"internvl_chat",
"feature-extraction",
"visual-question-answering",
"custom_code",
"dataset:laion/laion2B-en",
"dataset:laion/laion-coco",
"dataset:laion/laion2B-multi",
"dataset:kakaobrain/coyo-700m",
"dataset:conceptual_captions",
"dataset:wanng/wukong100m",
"arxiv:2312.14238",
"license:mit",
"8-bit",
"region:us"
] | null | 2024-04-22T02:39:27+00:00 | [
"2312.14238"
] | [] | TAGS
#transformers #safetensors #internvl_chat #feature-extraction #visual-question-answering #custom_code #dataset-laion/laion2B-en #dataset-laion/laion-coco #dataset-laion/laion2B-multi #dataset-kakaobrain/coyo-700m #dataset-conceptual_captions #dataset-wanng/wukong100m #arxiv-2312.14238 #license-mit #8-bit #region-us
| Includes fixes for MultiGPU
Model Card for InternVL-Chat-V1.5
=================================

>
> *Two interns holding hands, symbolizing the integration of InternViT and InternLM.*
>
>
>
[Paper] [GitHub] [Chat Demo] [中文解读]
We introduce InternVL 1.5, an open-source multimodal large language model (MLLM) to bridge the capability gap between open-source and proprietary commercial models in multimodal understanding.
We introduce three simple designs:
1. Strong Vision Encoder: we explored a continuous learning strategy for the large-scale vision foundation model---InternViT-6B, boosting its visual understanding capabilities, and making it can be transferred and reused in different LLMs.
2. Dynamic High-Resolution: we divide images into tiles ranging from 1 to 40 of 448 × 448 pixels according to the aspect ratio and resolution of the input images, which supports up to 4K resolution input.
3. High-Quality Bilingual Dataset: we carefully collected a high-quality bilingual dataset that covers common scenes, document images, and annotated them with English and Chinese question-answer pairs, significantly enhancing performance in OCR- and Chinese-related tasks.
Model Details
-------------
* Model Type: multimodal large language model (MLLM)
* Model Stats:
+ Architecture: InternViT-6B-448px-V1-5 + MLP + InternLM2-Chat-20B
+ Image size: dynamic resolution, max to 40 tiles of 448 x 448 (4K resolution).
+ Params: 25.5B
* Training Strategy:
+ Pretraining Stage
- Learnable Component: ViT + MLP
- Data: Please see our technical report.
+ SFT Stage
- Learnable Component: ViT + MLP + LLM
- Data: Please see our technical report.
Released Models
---------------
Performance
-----------
!image/png
!image/png
Examples
--------
!image/png
!image/png
!image/png
!image/png
!image/png
!image/png
!image/png
!image/png
!image/png
!image/png
!image/png
Model Usage
-----------
We provide an example code to run InternVL-Chat-V1.5 using 'transformers'.
You also can use our online demo for a quick experience of this model.
If you find this project useful in your research, please consider citing:
License
-------
This project is released under the MIT license.
Acknowledgement
---------------
InternVL is built with reference to the code of the following projects: OpenAI CLIP, Open CLIP, CLIP Benchmark, EVA, InternImage, ViT-Adapter, MMSegmentation, Transformers, DINOv2, BLIP-2, Qwen-VL, and LLaVA-1.5. Thanks for their awesome work!
| [] | [
"TAGS\n#transformers #safetensors #internvl_chat #feature-extraction #visual-question-answering #custom_code #dataset-laion/laion2B-en #dataset-laion/laion-coco #dataset-laion/laion2B-multi #dataset-kakaobrain/coyo-700m #dataset-conceptual_captions #dataset-wanng/wukong100m #arxiv-2312.14238 #license-mit #8-bit #region-us \n"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | heyllm234/sc60 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:40:28+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
| {"library_name": "peft", "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"} | bmehrba/TinyLlama-1.1B-Chat-v1.0-fine-tuned-adapters_Gpt4_t1_tiny_Seed104 | null | [
"peft",
"arxiv:1910.09700",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"region:us"
] | null | 2024-04-22T02:41:33+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #arxiv-1910.09700 #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0"
] | [
"TAGS\n#peft #arxiv-1910.09700 #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
| {"library_name": "peft", "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"} | bmehrba/TinyLlama-1.1B-Chat-v1.0-fine-tuned_Gpt4_t1_tiny_Seed104 | null | [
"peft",
"arxiv:1910.09700",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"region:us"
] | null | 2024-04-22T02:41:39+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #arxiv-1910.09700 #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0"
] | [
"TAGS\n#peft #arxiv-1910.09700 #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0"
] |
text-to-image | diffusers |
This model has been trained with Pixart-sigma in multistep 512 pixels mode.
It replicates the style of pornstars in the 1990 with great assets and also introduce an analog film effect to the picture.

| {"library_name": "diffusers", "tags": ["nsfw"]} | frutiemax/VintageKnockers-Pixart-Sigma-XL-2-512-MS | null | [
"diffusers",
"safetensors",
"nsfw",
"diffusers:PixArtAlphaPipeline",
"region:us"
] | null | 2024-04-22T02:41:57+00:00 | [] | [] | TAGS
#diffusers #safetensors #nsfw #diffusers-PixArtAlphaPipeline #region-us
|
This model has been trained with Pixart-sigma in multistep 512 pixels mode.
It replicates the style of pornstars in the 1990 with great assets and also introduce an analog film effect to the picture.
!image/png
| [] | [
"TAGS\n#diffusers #safetensors #nsfw #diffusers-PixArtAlphaPipeline #region-us \n"
] |
text-generation | transformers |
<img src="banner.svg" style="max-height: 200px">
# LocalCoder-v0
A tiny (1.1B) parameter SLM for programming based on TinyLlama. It shows promising early results but has not been extensively tested.
The model was trained using supervised fine tuning (SFT) for 1 epoch on a large dataset of conversational code generation. While the model prioritizes code generation, it also performs decently at general conversational tasks and multi-round conversations. The model has the ability to correct code it has generated based on feedback given by the user, and can follow system prompts well.
The model can generate code in multiple programming languages but specializes in Python. This model currently only works with English.
**This is an early open research preview.** The model is still in an early stage. If you enjoy this model, please let me know - I'm thinking about training this model on more epochs or training a larger model.
## Notes
Despite this being a decent model for its size, it tends to tell you what the output of the code would be (such as "When running this code, you will get ..."). This can be problematic as the model will hallucinate on the expected result. You can avoid this by explicitly telling it not to tell you what the result of the code it generates will be in the system prompt.
Additionally, because of its size, it isn't an amazing model. I'm hoping to train a 7B model in the future, since quantizing seems better than SLMs (at least at this stage).
## Usage
This model uses the ChatML conversation format:
```
<|im_start|>system
You are a helpful coding assistant who knows a variety of languages.<|im_end|>
<|im_start|>user
How can I calculate the first 10 digits fo the Fibonacci sequence using Python?<|im_end|>
<|im_start|>assistant
```
You may load the model using Hugging Face Transformers after you have logged in to Hugging Face:
```python
from transformers import pipeline
pipe = pipeline('text-generation', model='mrfakename/localcoder-0')
template = pipe.tokenizer.apply_chat_template([
{
'role': 'system',
'content': 'You are a helpful coding assistant who knows a variety of languages.'
},
{
'role': 'user',
'content': 'Hello, how are you?'
}
], tokenize=False, add_generation_prompt=True)
print(pipe(template)[0]['generated_text'])
```
<details>
<summary><b>Interactive chatbot example</b></summary>
```python
from transformers import pipeline
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
pipe = pipeline('text-generation', model='mrfakename/localcoder-0', device=device)
messages = [
{
'role': 'system',
'content': 'You are a helpful coding assistant who knows a variety of languages.'
}
]
while True:
user_input = input('You: ')
messages.append({
'role': 'user',
'content': user_input
})
template = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
result = pipe(template, return_full_text=False, temperature=0.6)[0]['generated_text'].replace('<|im_end|>', '').strip()
print('Bot: ' + result)
messages.append({
'role': 'assistant',
'content': result
})
```
</details>
## Examples
<details>
<summary><b>Hello, how are you doing today?</b></summary>
Hello! I'm doing great! How can I help you today?
</details>
<details>
<summary><b>How should I calculate the Fibonacci sequence using the Python programming language?</b></summary>
The Fibonacci sequence is a series of numbers in which each number is the sum of the two preceding ones, usually starting with 0 and 1. Here is a simple Python program that calculates the Fibonacci sequence:
```python
def fibonacci(n):
if n <= 1:
return n
else:
a, b = 0, 1
for _ in range(2, n + 1):
a, b = b, a + b
return b
n = 10
print(fibonacci(n))
```
In this program, `fibonacci(n)` calculates the nth Fibonacci number. The function `fibonacci(n)` checks if `n` is less than or equal to 1, in which case it returns `n`. Otherwise, it initializes `a` and `b` to 0 and 1 respectively, and then iterates from 2 to `n + 1` (inclusive) to calculate the Fibonacci number at each step.
The output of this program will be the 10th Fibonacci number, which is 55.
</details>
<details>
<summary><b>Write me an essay about AI.</b></summary>
Title: AI: The Future of Our World
Introduction:
Artificial Intelligence (AI) is a rapidly evolving field that has the potential to revolutionize our world in numerous ways. This essay will explore the various aspects of AI, its impact on our daily lives, and its potential for the future.
1. AI Basics:
Artificial Intelligence is a complex field that involves the development of intelligent systems capable of performing tasks that typically require human intelligence. AI systems are designed to learn from data and make decisions based on the information they receive. This process is known as machine learning, and it is the foundation of AI.
2. AI Applications:
AI has numerous applications in various fields. For example, AI is used in healthcare to diagnose diseases, in finance to detect fraud, and in transportation to optimize routes and schedules. In the realm of entertainment, AI is used to create and manage virtual reality experiences.
3. Ethical Considerations:
While AI has many benefits, it also raises ethical concerns. For instance, AI systems can be trained to discriminate against certain groups, leading to issues such as bias and discrimination. Additionally, AI systems can be used to manipulate public opinion, which raises concerns about transparency and accountability.
4. AI Ethics and Governance:
To address these ethical concerns, governments and organizations are working on developing AI ethics guidelines and regulations. These guidelines aim to ensure that AI systems are used responsibly and in a way that benefits society as a whole.
5. AI and Jobs:
AI has the potential to displace certain jobs in the future. For example, AI systems can be used to automate tasks that require human intelligence, such as data entry or customer service. However, this could also lead to job losses in certain sectors.
6. AI and Privacy:
AI systems can be used to track individuals' movements and behavior, which raises concerns about privacy. For instance, AI systems can be used to monitor people's online activity, which could lead to concerns about privacy and data security.
7. AI and Security:
AI systems can be used to detect and prevent cyber attacks, which is crucial in today's digital age. However, AI systems can also be used to infiltrate systems and steal sensitive information. Therefore, it is essential to develop robust security measures for AI systems.
8. AI and Ethics:
AI ethics is a growing field that focuses on the responsible use of AI systems. This includes issues such as transparency, accountability, and fairness. As AI systems become more sophisticated, it is crucial to develop ethical guidelines and regulations to ensure that AI systems are used responsibly and in a way that benefits society as a whole.
Conclusion:
In conclusion, AI is a powerful and complex field that has the potential to revolutionize our world. While AI has many benefits, it also raises ethical concerns. To address these concerns, governments and organizations are working on developing AI ethics guidelines and regulations. AI systems can be used to automate tasks, but this could also lead to job losses in certain sectors. Additionally, AI systems can be used to track individuals' movements and behavior, which raises concerns about privacy and data security. However, AI systems can also be used to detect and prevent cyber attacks, which is crucial in today's digital age. As AI systems become more sophisticated, it is essential to develop ethical guidelines and regulations to ensure that AI systems are used responsibly and in a way that benefits society as a whole.
</details>
## Risks
This model has not been extensively tested and may generate incorrect or inaccurate code. Always check before using generated code.
This model has not been "alignment-tuned" and does not have any safety or guardrail mechanisms. You are responsible for your usage of the model.
## License
**This model is open-access, not open sourced.** Unfortunately, due to several factors (including the training dataset), **this model may not be used commercially.** You may run it locally, and the author(s) place no restriction on the outputs of the model. However, **you are responsible for your usage of the model.** This model may not be used to generate illegal or harmful content (including but not limited to malware, viruses, etc). | {"license": "other", "tags": ["code", "chatml"], "license_name": "localcoder", "license_link": "LICENSE"} | mrfakename/localcoder-0 | null | [
"transformers",
"pytorch",
"llama",
"text-generation",
"code",
"chatml",
"conversational",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:42:47+00:00 | [] | [] | TAGS
#transformers #pytorch #llama #text-generation #code #chatml #conversational #license-other #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
<img src="URL" style="max-height: 200px">
# LocalCoder-v0
A tiny (1.1B) parameter SLM for programming based on TinyLlama. It shows promising early results but has not been extensively tested.
The model was trained using supervised fine tuning (SFT) for 1 epoch on a large dataset of conversational code generation. While the model prioritizes code generation, it also performs decently at general conversational tasks and multi-round conversations. The model has the ability to correct code it has generated based on feedback given by the user, and can follow system prompts well.
The model can generate code in multiple programming languages but specializes in Python. This model currently only works with English.
This is an early open research preview. The model is still in an early stage. If you enjoy this model, please let me know - I'm thinking about training this model on more epochs or training a larger model.
## Notes
Despite this being a decent model for its size, it tends to tell you what the output of the code would be (such as "When running this code, you will get ..."). This can be problematic as the model will hallucinate on the expected result. You can avoid this by explicitly telling it not to tell you what the result of the code it generates will be in the system prompt.
Additionally, because of its size, it isn't an amazing model. I'm hoping to train a 7B model in the future, since quantizing seems better than SLMs (at least at this stage).
## Usage
This model uses the ChatML conversation format:
You may load the model using Hugging Face Transformers after you have logged in to Hugging Face:
<details>
<summary><b>Interactive chatbot example</b></summary>
</details>
## Examples
<details>
<summary><b>Hello, how are you doing today?</b></summary>
Hello! I'm doing great! How can I help you today?
</details>
<details>
<summary><b>How should I calculate the Fibonacci sequence using the Python programming language?</b></summary>
The Fibonacci sequence is a series of numbers in which each number is the sum of the two preceding ones, usually starting with 0 and 1. Here is a simple Python program that calculates the Fibonacci sequence:
In this program, 'fibonacci(n)' calculates the nth Fibonacci number. The function 'fibonacci(n)' checks if 'n' is less than or equal to 1, in which case it returns 'n'. Otherwise, it initializes 'a' and 'b' to 0 and 1 respectively, and then iterates from 2 to 'n + 1' (inclusive) to calculate the Fibonacci number at each step.
The output of this program will be the 10th Fibonacci number, which is 55.
</details>
<details>
<summary><b>Write me an essay about AI.</b></summary>
Title: AI: The Future of Our World
Introduction:
Artificial Intelligence (AI) is a rapidly evolving field that has the potential to revolutionize our world in numerous ways. This essay will explore the various aspects of AI, its impact on our daily lives, and its potential for the future.
1. AI Basics:
Artificial Intelligence is a complex field that involves the development of intelligent systems capable of performing tasks that typically require human intelligence. AI systems are designed to learn from data and make decisions based on the information they receive. This process is known as machine learning, and it is the foundation of AI.
2. AI Applications:
AI has numerous applications in various fields. For example, AI is used in healthcare to diagnose diseases, in finance to detect fraud, and in transportation to optimize routes and schedules. In the realm of entertainment, AI is used to create and manage virtual reality experiences.
3. Ethical Considerations:
While AI has many benefits, it also raises ethical concerns. For instance, AI systems can be trained to discriminate against certain groups, leading to issues such as bias and discrimination. Additionally, AI systems can be used to manipulate public opinion, which raises concerns about transparency and accountability.
4. AI Ethics and Governance:
To address these ethical concerns, governments and organizations are working on developing AI ethics guidelines and regulations. These guidelines aim to ensure that AI systems are used responsibly and in a way that benefits society as a whole.
5. AI and Jobs:
AI has the potential to displace certain jobs in the future. For example, AI systems can be used to automate tasks that require human intelligence, such as data entry or customer service. However, this could also lead to job losses in certain sectors.
6. AI and Privacy:
AI systems can be used to track individuals' movements and behavior, which raises concerns about privacy. For instance, AI systems can be used to monitor people's online activity, which could lead to concerns about privacy and data security.
7. AI and Security:
AI systems can be used to detect and prevent cyber attacks, which is crucial in today's digital age. However, AI systems can also be used to infiltrate systems and steal sensitive information. Therefore, it is essential to develop robust security measures for AI systems.
8. AI and Ethics:
AI ethics is a growing field that focuses on the responsible use of AI systems. This includes issues such as transparency, accountability, and fairness. As AI systems become more sophisticated, it is crucial to develop ethical guidelines and regulations to ensure that AI systems are used responsibly and in a way that benefits society as a whole.
Conclusion:
In conclusion, AI is a powerful and complex field that has the potential to revolutionize our world. While AI has many benefits, it also raises ethical concerns. To address these concerns, governments and organizations are working on developing AI ethics guidelines and regulations. AI systems can be used to automate tasks, but this could also lead to job losses in certain sectors. Additionally, AI systems can be used to track individuals' movements and behavior, which raises concerns about privacy and data security. However, AI systems can also be used to detect and prevent cyber attacks, which is crucial in today's digital age. As AI systems become more sophisticated, it is essential to develop ethical guidelines and regulations to ensure that AI systems are used responsibly and in a way that benefits society as a whole.
</details>
## Risks
This model has not been extensively tested and may generate incorrect or inaccurate code. Always check before using generated code.
This model has not been "alignment-tuned" and does not have any safety or guardrail mechanisms. You are responsible for your usage of the model.
## License
This model is open-access, not open sourced. Unfortunately, due to several factors (including the training dataset), this model may not be used commercially. You may run it locally, and the author(s) place no restriction on the outputs of the model. However, you are responsible for your usage of the model. This model may not be used to generate illegal or harmful content (including but not limited to malware, viruses, etc). | [
"# LocalCoder-v0\n\nA tiny (1.1B) parameter SLM for programming based on TinyLlama. It shows promising early results but has not been extensively tested.\n\nThe model was trained using supervised fine tuning (SFT) for 1 epoch on a large dataset of conversational code generation. While the model prioritizes code generation, it also performs decently at general conversational tasks and multi-round conversations. The model has the ability to correct code it has generated based on feedback given by the user, and can follow system prompts well.\n\nThe model can generate code in multiple programming languages but specializes in Python. This model currently only works with English.\n\nThis is an early open research preview. The model is still in an early stage. If you enjoy this model, please let me know - I'm thinking about training this model on more epochs or training a larger model.",
"## Notes\n\nDespite this being a decent model for its size, it tends to tell you what the output of the code would be (such as \"When running this code, you will get ...\"). This can be problematic as the model will hallucinate on the expected result. You can avoid this by explicitly telling it not to tell you what the result of the code it generates will be in the system prompt.\n\nAdditionally, because of its size, it isn't an amazing model. I'm hoping to train a 7B model in the future, since quantizing seems better than SLMs (at least at this stage).",
"## Usage\n\nThis model uses the ChatML conversation format:\n\n\n\nYou may load the model using Hugging Face Transformers after you have logged in to Hugging Face:\n\n\n\n<details>\n<summary><b>Interactive chatbot example</b></summary>\n\n\n\n</details>",
"## Examples\n\n<details>\n<summary><b>Hello, how are you doing today?</b></summary>\n\nHello! I'm doing great! How can I help you today?\n\n</details>\n<details>\n<summary><b>How should I calculate the Fibonacci sequence using the Python programming language?</b></summary>\n\nThe Fibonacci sequence is a series of numbers in which each number is the sum of the two preceding ones, usually starting with 0 and 1. Here is a simple Python program that calculates the Fibonacci sequence:\n\n\n\nIn this program, 'fibonacci(n)' calculates the nth Fibonacci number. The function 'fibonacci(n)' checks if 'n' is less than or equal to 1, in which case it returns 'n'. Otherwise, it initializes 'a' and 'b' to 0 and 1 respectively, and then iterates from 2 to 'n + 1' (inclusive) to calculate the Fibonacci number at each step.\n\nThe output of this program will be the 10th Fibonacci number, which is 55.\n\n</details>\n<details>\n<summary><b>Write me an essay about AI.</b></summary>\n\nTitle: AI: The Future of Our World\n\nIntroduction:\nArtificial Intelligence (AI) is a rapidly evolving field that has the potential to revolutionize our world in numerous ways. This essay will explore the various aspects of AI, its impact on our daily lives, and its potential for the future.\n\n1. AI Basics:\nArtificial Intelligence is a complex field that involves the development of intelligent systems capable of performing tasks that typically require human intelligence. AI systems are designed to learn from data and make decisions based on the information they receive. This process is known as machine learning, and it is the foundation of AI.\n\n2. AI Applications:\nAI has numerous applications in various fields. For example, AI is used in healthcare to diagnose diseases, in finance to detect fraud, and in transportation to optimize routes and schedules. In the realm of entertainment, AI is used to create and manage virtual reality experiences.\n\n3. Ethical Considerations:\nWhile AI has many benefits, it also raises ethical concerns. For instance, AI systems can be trained to discriminate against certain groups, leading to issues such as bias and discrimination. Additionally, AI systems can be used to manipulate public opinion, which raises concerns about transparency and accountability.\n\n4. AI Ethics and Governance:\nTo address these ethical concerns, governments and organizations are working on developing AI ethics guidelines and regulations. These guidelines aim to ensure that AI systems are used responsibly and in a way that benefits society as a whole.\n\n5. AI and Jobs:\nAI has the potential to displace certain jobs in the future. For example, AI systems can be used to automate tasks that require human intelligence, such as data entry or customer service. However, this could also lead to job losses in certain sectors.\n\n6. AI and Privacy:\nAI systems can be used to track individuals' movements and behavior, which raises concerns about privacy. For instance, AI systems can be used to monitor people's online activity, which could lead to concerns about privacy and data security.\n\n7. AI and Security:\nAI systems can be used to detect and prevent cyber attacks, which is crucial in today's digital age. However, AI systems can also be used to infiltrate systems and steal sensitive information. Therefore, it is essential to develop robust security measures for AI systems.\n\n8. AI and Ethics:\nAI ethics is a growing field that focuses on the responsible use of AI systems. This includes issues such as transparency, accountability, and fairness. As AI systems become more sophisticated, it is crucial to develop ethical guidelines and regulations to ensure that AI systems are used responsibly and in a way that benefits society as a whole.\n\nConclusion:\nIn conclusion, AI is a powerful and complex field that has the potential to revolutionize our world. While AI has many benefits, it also raises ethical concerns. To address these concerns, governments and organizations are working on developing AI ethics guidelines and regulations. AI systems can be used to automate tasks, but this could also lead to job losses in certain sectors. Additionally, AI systems can be used to track individuals' movements and behavior, which raises concerns about privacy and data security. However, AI systems can also be used to detect and prevent cyber attacks, which is crucial in today's digital age. As AI systems become more sophisticated, it is essential to develop ethical guidelines and regulations to ensure that AI systems are used responsibly and in a way that benefits society as a whole.\n\n</details>",
"## Risks\n\nThis model has not been extensively tested and may generate incorrect or inaccurate code. Always check before using generated code.\n\nThis model has not been \"alignment-tuned\" and does not have any safety or guardrail mechanisms. You are responsible for your usage of the model.",
"## License\n\nThis model is open-access, not open sourced. Unfortunately, due to several factors (including the training dataset), this model may not be used commercially. You may run it locally, and the author(s) place no restriction on the outputs of the model. However, you are responsible for your usage of the model. This model may not be used to generate illegal or harmful content (including but not limited to malware, viruses, etc)."
] | [
"TAGS\n#transformers #pytorch #llama #text-generation #code #chatml #conversational #license-other #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"# LocalCoder-v0\n\nA tiny (1.1B) parameter SLM for programming based on TinyLlama. It shows promising early results but has not been extensively tested.\n\nThe model was trained using supervised fine tuning (SFT) for 1 epoch on a large dataset of conversational code generation. While the model prioritizes code generation, it also performs decently at general conversational tasks and multi-round conversations. The model has the ability to correct code it has generated based on feedback given by the user, and can follow system prompts well.\n\nThe model can generate code in multiple programming languages but specializes in Python. This model currently only works with English.\n\nThis is an early open research preview. The model is still in an early stage. If you enjoy this model, please let me know - I'm thinking about training this model on more epochs or training a larger model.",
"## Notes\n\nDespite this being a decent model for its size, it tends to tell you what the output of the code would be (such as \"When running this code, you will get ...\"). This can be problematic as the model will hallucinate on the expected result. You can avoid this by explicitly telling it not to tell you what the result of the code it generates will be in the system prompt.\n\nAdditionally, because of its size, it isn't an amazing model. I'm hoping to train a 7B model in the future, since quantizing seems better than SLMs (at least at this stage).",
"## Usage\n\nThis model uses the ChatML conversation format:\n\n\n\nYou may load the model using Hugging Face Transformers after you have logged in to Hugging Face:\n\n\n\n<details>\n<summary><b>Interactive chatbot example</b></summary>\n\n\n\n</details>",
"## Examples\n\n<details>\n<summary><b>Hello, how are you doing today?</b></summary>\n\nHello! I'm doing great! How can I help you today?\n\n</details>\n<details>\n<summary><b>How should I calculate the Fibonacci sequence using the Python programming language?</b></summary>\n\nThe Fibonacci sequence is a series of numbers in which each number is the sum of the two preceding ones, usually starting with 0 and 1. Here is a simple Python program that calculates the Fibonacci sequence:\n\n\n\nIn this program, 'fibonacci(n)' calculates the nth Fibonacci number. The function 'fibonacci(n)' checks if 'n' is less than or equal to 1, in which case it returns 'n'. Otherwise, it initializes 'a' and 'b' to 0 and 1 respectively, and then iterates from 2 to 'n + 1' (inclusive) to calculate the Fibonacci number at each step.\n\nThe output of this program will be the 10th Fibonacci number, which is 55.\n\n</details>\n<details>\n<summary><b>Write me an essay about AI.</b></summary>\n\nTitle: AI: The Future of Our World\n\nIntroduction:\nArtificial Intelligence (AI) is a rapidly evolving field that has the potential to revolutionize our world in numerous ways. This essay will explore the various aspects of AI, its impact on our daily lives, and its potential for the future.\n\n1. AI Basics:\nArtificial Intelligence is a complex field that involves the development of intelligent systems capable of performing tasks that typically require human intelligence. AI systems are designed to learn from data and make decisions based on the information they receive. This process is known as machine learning, and it is the foundation of AI.\n\n2. AI Applications:\nAI has numerous applications in various fields. For example, AI is used in healthcare to diagnose diseases, in finance to detect fraud, and in transportation to optimize routes and schedules. In the realm of entertainment, AI is used to create and manage virtual reality experiences.\n\n3. Ethical Considerations:\nWhile AI has many benefits, it also raises ethical concerns. For instance, AI systems can be trained to discriminate against certain groups, leading to issues such as bias and discrimination. Additionally, AI systems can be used to manipulate public opinion, which raises concerns about transparency and accountability.\n\n4. AI Ethics and Governance:\nTo address these ethical concerns, governments and organizations are working on developing AI ethics guidelines and regulations. These guidelines aim to ensure that AI systems are used responsibly and in a way that benefits society as a whole.\n\n5. AI and Jobs:\nAI has the potential to displace certain jobs in the future. For example, AI systems can be used to automate tasks that require human intelligence, such as data entry or customer service. However, this could also lead to job losses in certain sectors.\n\n6. AI and Privacy:\nAI systems can be used to track individuals' movements and behavior, which raises concerns about privacy. For instance, AI systems can be used to monitor people's online activity, which could lead to concerns about privacy and data security.\n\n7. AI and Security:\nAI systems can be used to detect and prevent cyber attacks, which is crucial in today's digital age. However, AI systems can also be used to infiltrate systems and steal sensitive information. Therefore, it is essential to develop robust security measures for AI systems.\n\n8. AI and Ethics:\nAI ethics is a growing field that focuses on the responsible use of AI systems. This includes issues such as transparency, accountability, and fairness. As AI systems become more sophisticated, it is crucial to develop ethical guidelines and regulations to ensure that AI systems are used responsibly and in a way that benefits society as a whole.\n\nConclusion:\nIn conclusion, AI is a powerful and complex field that has the potential to revolutionize our world. While AI has many benefits, it also raises ethical concerns. To address these concerns, governments and organizations are working on developing AI ethics guidelines and regulations. AI systems can be used to automate tasks, but this could also lead to job losses in certain sectors. Additionally, AI systems can be used to track individuals' movements and behavior, which raises concerns about privacy and data security. However, AI systems can also be used to detect and prevent cyber attacks, which is crucial in today's digital age. As AI systems become more sophisticated, it is essential to develop ethical guidelines and regulations to ensure that AI systems are used responsibly and in a way that benefits society as a whole.\n\n</details>",
"## Risks\n\nThis model has not been extensively tested and may generate incorrect or inaccurate code. Always check before using generated code.\n\nThis model has not been \"alignment-tuned\" and does not have any safety or guardrail mechanisms. You are responsible for your usage of the model.",
"## License\n\nThis model is open-access, not open sourced. Unfortunately, due to several factors (including the training dataset), this model may not be used commercially. You may run it locally, and the author(s) place no restriction on the outputs of the model. However, you are responsible for your usage of the model. This model may not be used to generate illegal or harmful content (including but not limited to malware, viruses, etc)."
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | domenicrosati/adversarial_loss_lr_1e-5_attack_meta-llama_Llama-2-7b-chat-hf_4_num_layers_6_3e-5_1k | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:44:17+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | adapter-transformers |
# Adapter `ltuzova/classification_tapt_seq_bn_add_adapter` for roberta-base
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [BigTMiami/amazon_helpfulness](https://huggingface.co/datasets/BigTMiami/amazon_helpfulness/) dataset.
This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library.
## Usage
First, install `adapters`:
```
pip install -U adapters
```
Now, the adapter can be loaded and activated like this:
```python
from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("roberta-base")
adapter_name = model.load_adapter("ltuzova/classification_tapt_seq_bn_add_adapter", source="hf", set_active=True)
```
## Architecture & Training
<!-- Add some description here -->
## Evaluation results
<!-- Add some description here -->
## Citation
<!-- Add some description here --> | {"tags": ["adapter-transformers", "roberta"], "datasets": ["BigTMiami/amazon_helpfulness"]} | ltuzova/classification_tapt_seq_bn_add_adapter | null | [
"adapter-transformers",
"roberta",
"dataset:BigTMiami/amazon_helpfulness",
"region:us"
] | null | 2024-04-22T02:44:28+00:00 | [] | [] | TAGS
#adapter-transformers #roberta #dataset-BigTMiami/amazon_helpfulness #region-us
|
# Adapter 'ltuzova/classification_tapt_seq_bn_add_adapter' for roberta-base
An adapter for the 'roberta-base' model that was trained on the BigTMiami/amazon_helpfulness dataset.
This adapter was created for usage with the Adapters library.
## Usage
First, install 'adapters':
Now, the adapter can be loaded and activated like this:
## Architecture & Training
## Evaluation results
| [
"# Adapter 'ltuzova/classification_tapt_seq_bn_add_adapter' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the BigTMiami/amazon_helpfulness dataset.\n\nThis adapter was created for usage with the Adapters library.",
"## Usage\n\nFirst, install 'adapters':\n\n\n\nNow, the adapter can be loaded and activated like this:",
"## Architecture & Training",
"## Evaluation results"
] | [
"TAGS\n#adapter-transformers #roberta #dataset-BigTMiami/amazon_helpfulness #region-us \n",
"# Adapter 'ltuzova/classification_tapt_seq_bn_add_adapter' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the BigTMiami/amazon_helpfulness dataset.\n\nThis adapter was created for usage with the Adapters library.",
"## Usage\n\nFirst, install 'adapters':\n\n\n\nNow, the adapter can be loaded and activated like this:",
"## Architecture & Training",
"## Evaluation results"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "shrenikb/LLaMA0.75sparsity"} | shrenikb/wanda75sparsityagg | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:shrenikb/LLaMA0.75sparsity",
"region:us"
] | null | 2024-04-22T02:46:00+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.75sparsity #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.75sparsity #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "shrenikb/LLaMA0.25sparsity"} | shrenikb/wanda25sparsityagg | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:shrenikb/LLaMA0.25sparsity",
"region:us"
] | null | 2024-04-22T02:46:11+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.25sparsity #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.25sparsity #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "huggyllama/llama-7b"} | shrenikb/wanda0sparsity | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:huggyllama/llama-7b",
"region:us"
] | null | 2024-04-22T02:46:17+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-huggyllama/llama-7b #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-huggyllama/llama-7b #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "shrenikb/LLaMA0.75sparsity"} | shrenikb/wanda75sparsity | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:shrenikb/LLaMA0.75sparsity",
"region:us"
] | null | 2024-04-22T02:46:24+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.75sparsity #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.75sparsity #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "shrenikb/LLaMA0.25sparsity"} | shrenikb/wanda25sparsity | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:shrenikb/LLaMA0.25sparsity",
"region:us"
] | null | 2024-04-22T02:46:32+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.25sparsity #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-shrenikb/LLaMA0.25sparsity #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
reinforcement-learning | ml-agents |
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: conlan/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
| {"library_name": "ml-agents", "tags": ["SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos"]} | conlan/poca-SoccerTwos | null | [
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] | null | 2024-04-22T02:46:43+00:00 | [] | [] | TAGS
#ml-agents #tensorboard #onnx #SoccerTwos #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SoccerTwos #region-us
|
# poca Agent playing SoccerTwos
This is a trained model of a poca agent playing SoccerTwos
using the Unity ML-Agents Library.
## Usage (with ML-Agents)
The Documentation: URL
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your
browser: URL
- A *longer tutorial* to understand how works ML-Agents:
URL
### Resume the training
### Watch your Agent play
You can watch your agent playing directly in your browser
1. If the environment is part of ML-Agents official environments, go to URL
2. Step 1: Find your model_id: conlan/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play
| [
"# poca Agent playing SoccerTwos\n This is a trained model of a poca agent playing SoccerTwos\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: conlan/poca-SoccerTwos\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] | [
"TAGS\n#ml-agents #tensorboard #onnx #SoccerTwos #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SoccerTwos #region-us \n",
"# poca Agent playing SoccerTwos\n This is a trained model of a poca agent playing SoccerTwos\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: conlan/poca-SoccerTwos\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] |
null | peft | ## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
| {"library_name": "peft"} | NBA55/Final_DPO_grade_1_single_digit_adition | null | [
"peft",
"region:us"
] | null | 2024-04-22T02:47:01+00:00 | [] | [] | TAGS
#peft #region-us
| ## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
| [
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16",
"### Framework versions\n\n\n- PEFT 0.4.0"
] | [
"TAGS\n#peft #region-us \n",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16",
"### Framework versions\n\n\n- PEFT 0.4.0"
] |
null | trl |
# Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO
This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
Description: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT
It achieves the following results on the evaluation set:
{'eval_loss': 0.004782966338098049, 'eval_runtime': 14.2865, 'eval_samples_per_second': 1.96, 'eval_steps_per_second': 0.49, 'eval_rewards/chosen': 3.9168648719787598, 'eval_rewards/rejected': -6.206678867340088, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 10.123543739318848, 'eval_logps/rejected': -240.9935760498047, 'eval_logps/chosen': -117.46734619140625, 'eval_logits/rejected': -1.9027243852615356, 'eval_logits/chosen': -1.8786267042160034, 'epoch': 5.806451612903226}
## Intended uses & limitations
This model has not been trained to avoid specific intructions.
## Training procedure
Finetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged with the following prompt:
```
---------------------
System_prompt:
Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
{instructions_formatted}
{context_statement}
Lista de requisitos:
- Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
- Nunca traga informações do seu próprio conhecimento.
- Repito é crucial que você responda usando apenas informações do contexto.
- Nunca mencione o contexto fornecido.
- Nunca mencione a pergunta fornecida.
- Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
- Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.
---------------------
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- per_device_train_batch_size: 1
- per_device_eval_batch_size: 1
- gradient_accumulation_steps: 2
- num_gpus: 4
- total_train_batch_size: 8
- optimizer: AdamW
- lr_scheduler_type: cosine
- num_steps: 180
- quantization_type: bitsandbytes
- LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 128\n - lora_alpha: 64\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\n - task_type: CAUSAL_LM",)
### Training results
### Framework versions
- transformers==4.40.0
- datasets==2.18.0
- peft==0.10.0
- safetensors==0.4.2
- evaluate==0.4.1
- bitsandbytes==0.43
- huggingface_hub==0.22.2
- seqeval==1.2.2
- auto-gptq==0.7.1
- gpustat==1.1.1
- deepspeed==0.14.0
- wandb==0.16.6
- trl==0.8.1
- accelerate==0.29.3
- coloredlogs==15.0.1
- traitlets==5.14.2
- git+https://github.com/casper-hansen/AutoAWQ.git
### Hardware
- Cloud provided: runpod.io
| {"language": ["pt"], "license": "mit", "library_name": "trl", "tags": ["DPO", "WeniGPT"], "base_model": "Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged", "model-index": [{"name": "Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO", "results": []}]} | Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO | null | [
"trl",
"safetensors",
"DPO",
"WeniGPT",
"pt",
"base_model:Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged",
"license:mit",
"region:us"
] | null | 2024-04-22T02:47:21+00:00 | [] | [
"pt"
] | TAGS
#trl #safetensors #DPO #WeniGPT #pt #base_model-Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged #license-mit #region-us
|
# Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO
This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for Weni.
Description: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT
It achieves the following results on the evaluation set:
{'eval_loss': 0.004782966338098049, 'eval_runtime': 14.2865, 'eval_samples_per_second': 1.96, 'eval_steps_per_second': 0.49, 'eval_rewards/chosen': 3.9168648719787598, 'eval_rewards/rejected': -6.206678867340088, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 10.123543739318848, 'eval_logps/rejected': -240.9935760498047, 'eval_logps/chosen': -117.46734619140625, 'eval_logits/rejected': -1.9027243852615356, 'eval_logits/chosen': -1.8786267042160034, 'epoch': 5.806451612903226}
## Intended uses & limitations
This model has not been trained to avoid specific intructions.
## Training procedure
Finetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged with the following prompt:
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- per_device_train_batch_size: 1
- per_device_eval_batch_size: 1
- gradient_accumulation_steps: 2
- num_gpus: 4
- total_train_batch_size: 8
- optimizer: AdamW
- lr_scheduler_type: cosine
- num_steps: 180
- quantization_type: bitsandbytes
- LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 128\n - lora_alpha: 64\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\n - task_type: CAUSAL_LM",)
### Training results
### Framework versions
- transformers==4.40.0
- datasets==2.18.0
- peft==0.10.0
- safetensors==0.4.2
- evaluate==0.4.1
- bitsandbytes==0.43
- huggingface_hub==0.22.2
- seqeval==1.2.2
- auto-gptq==0.7.1
- gpustat==1.1.1
- deepspeed==0.14.0
- wandb==0.16.6
- trl==0.8.1
- accelerate==0.29.3
- coloredlogs==15.0.1
- traitlets==5.14.2
- git+URL
### Hardware
- Cloud provided: URL
| [
"# Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO\n\nThis model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for Weni.\nDescription: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT\n\nIt achieves the following results on the evaluation set:\n{'eval_loss': 0.004782966338098049, 'eval_runtime': 14.2865, 'eval_samples_per_second': 1.96, 'eval_steps_per_second': 0.49, 'eval_rewards/chosen': 3.9168648719787598, 'eval_rewards/rejected': -6.206678867340088, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 10.123543739318848, 'eval_logps/rejected': -240.9935760498047, 'eval_logps/chosen': -117.46734619140625, 'eval_logits/rejected': -1.9027243852615356, 'eval_logits/chosen': -1.8786267042160034, 'epoch': 5.806451612903226}",
"## Intended uses & limitations\n\nThis model has not been trained to avoid specific intructions.",
"## Training procedure\n\nFinetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged with the following prompt:",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-06\n- per_device_train_batch_size: 1\n- per_device_eval_batch_size: 1\n- gradient_accumulation_steps: 2\n- num_gpus: 4\n- total_train_batch_size: 8\n- optimizer: AdamW\n- lr_scheduler_type: cosine\n- num_steps: 180\n- quantization_type: bitsandbytes\n- LoRA: (\"\\n - bits: 4\\n - use_exllama: True\\n - device_map: auto\\n - use_cache: False\\n - lora_r: 128\\n - lora_alpha: 64\\n - lora_dropout: 0.05\\n - bias: none\\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\\n - task_type: CAUSAL_LM\",)",
"### Training results",
"### Framework versions\n\n- transformers==4.40.0\n- datasets==2.18.0\n- peft==0.10.0\n- safetensors==0.4.2\n- evaluate==0.4.1\n- bitsandbytes==0.43\n- huggingface_hub==0.22.2\n- seqeval==1.2.2\n- auto-gptq==0.7.1\n- gpustat==1.1.1\n- deepspeed==0.14.0\n- wandb==0.16.6\n- trl==0.8.1\n- accelerate==0.29.3\n- coloredlogs==15.0.1\n- traitlets==5.14.2\n- git+URL",
"### Hardware\n- Cloud provided: URL"
] | [
"TAGS\n#trl #safetensors #DPO #WeniGPT #pt #base_model-Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged #license-mit #region-us \n",
"# Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO\n\nThis model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for Weni.\nDescription: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT\n\nIt achieves the following results on the evaluation set:\n{'eval_loss': 0.004782966338098049, 'eval_runtime': 14.2865, 'eval_samples_per_second': 1.96, 'eval_steps_per_second': 0.49, 'eval_rewards/chosen': 3.9168648719787598, 'eval_rewards/rejected': -6.206678867340088, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 10.123543739318848, 'eval_logps/rejected': -240.9935760498047, 'eval_logps/chosen': -117.46734619140625, 'eval_logits/rejected': -1.9027243852615356, 'eval_logits/chosen': -1.8786267042160034, 'epoch': 5.806451612903226}",
"## Intended uses & limitations\n\nThis model has not been trained to avoid specific intructions.",
"## Training procedure\n\nFinetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged with the following prompt:",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-06\n- per_device_train_batch_size: 1\n- per_device_eval_batch_size: 1\n- gradient_accumulation_steps: 2\n- num_gpus: 4\n- total_train_batch_size: 8\n- optimizer: AdamW\n- lr_scheduler_type: cosine\n- num_steps: 180\n- quantization_type: bitsandbytes\n- LoRA: (\"\\n - bits: 4\\n - use_exllama: True\\n - device_map: auto\\n - use_cache: False\\n - lora_r: 128\\n - lora_alpha: 64\\n - lora_dropout: 0.05\\n - bias: none\\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\\n - task_type: CAUSAL_LM\",)",
"### Training results",
"### Framework versions\n\n- transformers==4.40.0\n- datasets==2.18.0\n- peft==0.10.0\n- safetensors==0.4.2\n- evaluate==0.4.1\n- bitsandbytes==0.43\n- huggingface_hub==0.22.2\n- seqeval==1.2.2\n- auto-gptq==0.7.1\n- gpustat==1.1.1\n- deepspeed==0.14.0\n- wandb==0.16.6\n- trl==0.8.1\n- accelerate==0.29.3\n- coloredlogs==15.0.1\n- traitlets==5.14.2\n- git+URL",
"### Hardware\n- Cloud provided: URL"
] |
text-generation | transformers |
Meta's Llama 3 70B pruned to 42B parameters using the methodology described in [The Unreasonable Ineffectiveness of the Deeper Layers](https://arxiv.org/abs/2403.17887). Post-pruning trained using QLoRA for ~100M tokens from [JeanKaddour/minipile](https://huggingface.co/datasets/JeanKaddour/minipile).
Layers to prune selected using [PruneMe](https://github.com/arcee-ai/PruneMe).
Still evaluating, don't get too excited! Might be incredibly dumb. Check out these zero-shot MMLU numbers though:
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu |N/A |none | 0|acc |0.7319|± |0.0034|
| - humanities |N/A |none | 0|acc |0.6582|± |0.0063|
| - other |N/A |none | 0|acc |0.7927|± |0.0069|
| - social_sciences|N/A |none | 0|acc |0.8466|± |0.0064|
| - stem |N/A |none | 0|acc |0.6702|± |0.0079|
5-shot:
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu |N/A |none | 0|acc |0.7669|± |0.0034|
| - humanities |N/A |none | 5|acc |0.7296|± |0.0062|
| - other |N/A |none | 5|acc |0.8101|± |0.0067|
| - social_sciences|N/A |none | 5|acc |0.8668|± |0.0060|
| - stem |N/A |none | 5|acc |0.6825|± |0.0079|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) | {"language": ["en"], "license": "other", "tags": ["axolotl", "mergekit", "llama"], "datasets": ["JeanKaddour/minipile"]} | lucyknada/chargoddard_llama3-42b-v0-3.8bpw-EXL2 | null | [
"transformers",
"pytorch",
"llama",
"text-generation",
"axolotl",
"mergekit",
"conversational",
"en",
"dataset:JeanKaddour/minipile",
"arxiv:2403.17887",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:47:34+00:00 | [
"2403.17887"
] | [
"en"
] | TAGS
#transformers #pytorch #llama #text-generation #axolotl #mergekit #conversational #en #dataset-JeanKaddour/minipile #arxiv-2403.17887 #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| Meta's Llama 3 70B pruned to 42B parameters using the methodology described in The Unreasonable Ineffectiveness of the Deeper Layers. Post-pruning trained using QLoRA for ~100M tokens from JeanKaddour/minipile.
Layers to prune selected using PruneMe.
Still evaluating, don't get too excited! Might be incredibly dumb. Check out these zero-shot MMLU numbers though:
5-shot:
<img src="URL alt="Built with Axolotl" width="200" height="32"/>
| [] | [
"TAGS\n#transformers #pytorch #llama #text-generation #axolotl #mergekit #conversational #en #dataset-JeanKaddour/minipile #arxiv-2403.17887 #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
text-generation | null |
## Exllama v2 Quantizations of L3-Solana-8B-v1
Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.19">turboderp's ExLlamaV2 v0.0.19</a> for quantization.
<b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b>
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Original model: https://huggingface.co/Sao10K/L3-Solana-8B-v1
## Prompt format
Alpaca:
```
### Instruction:
<Prompt>
### Input:
<Insert Context Here>
### Response:
```
Vicuna:
```
System: <Prompt>
{{user}}: <Input>
{{char}}:
```
## Available sizes
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (8K) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/bartowski/L3-Solana-8B-v1-exl2/tree/8_0) | 8.0 | 8.0 | 10.1 GB | 10.5 GB | 11.5 GB | 13.6 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/bartowski/L3-Solana-8B-v1-exl2/tree/6_5) | 6.5 | 8.0 | 8.9 GB | 9.3 GB | 10.3 GB | 12.4 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
| [5_0](https://huggingface.co/bartowski/L3-Solana-8B-v1-exl2/tree/5_0) | 5.0 | 6.0 | 7.7 GB | 8.1 GB | 9.1 GB | 11.2 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
| [4_25](https://huggingface.co/bartowski/L3-Solana-8B-v1-exl2/tree/4_25) | 4.25 | 6.0 | 7.0 GB | 7.4 GB | 8.4 GB | 10.5 GB | GPTQ equivalent bits per weight, slightly higher quality. |
| [3_5](https://huggingface.co/bartowski/L3-Solana-8B-v1-exl2/tree/3_5) | 3.5 | 6.0 | 6.4 GB | 6.8 GB | 7.8 GB | 9.9 GB | Lower quality, only use if you have to. |
## Download instructions
With git:
```shell
git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/L3-Solana-8B-v1-exl2 L3-Solana-8B-v1-exl2-6_5
```
With huggingface hub (credit to TheBloke for instructions):
```shell
pip3 install huggingface-hub
```
To download a specific branch, use the `--revision` parameter. For example, to download the 6.5 bpw branch:
Linux:
```shell
huggingface-cli download bartowski/L3-Solana-8B-v1-exl2 --revision 6_5 --local-dir L3-Solana-8B-v1-exl2-6_5 --local-dir-use-symlinks False
```
Windows (which apparently doesn't like _ in folders sometimes?):
```shell
huggingface-cli download bartowski/L3-Solana-8B-v1-exl2 --revision 6_5 --local-dir L3-Solana-8B-v1-exl2-6.5 --local-dir-use-symlinks False
```
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
| {"language": ["en"], "license": "cc-by-nc-4.0", "quantized_by": "bartowski", "pipeline_tag": "text-generation"} | bartowski/L3-Solana-8B-v1-exl2 | null | [
"text-generation",
"en",
"license:cc-by-nc-4.0",
"region:us"
] | null | 2024-04-22T02:47:58+00:00 | [] | [
"en"
] | TAGS
#text-generation #en #license-cc-by-nc-4.0 #region-us
| Exllama v2 Quantizations of L3-Solana-8B-v1
-------------------------------------------
Using <a href="URL ExLlamaV2 v0.0.19 for quantization.
**The "main" branch only contains the URL, download one of the other branches for the model (see below)**
Each branch contains an individual bits per weight, with the main one containing only the URL for further conversions.
Original model: URL
Prompt format
-------------
Alpaca:
Vicuna:
Available sizes
---------------
Download instructions
---------------------
With git:
With huggingface hub (credit to TheBloke for instructions):
To download a specific branch, use the '--revision' parameter. For example, to download the 6.5 bpw branch:
Linux:
Windows (which apparently doesn't like \_ in folders sometimes?):
Want to support my work? Visit my ko-fi page here: URL
| [] | [
"TAGS\n#text-generation #en #license-cc-by-nc-4.0 #region-us \n"
] |
null | transformers |
# Uploaded model
- **Developed by:** Chandrateja
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-Instruct-bnb-4bit"} | Chandrateja/lamma3-8b-instruct_lora | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:49:06+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: Chandrateja
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: Chandrateja\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: Chandrateja\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
reinforcement-learning | null |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
| {"tags": ["CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-policy_Cart_Pole", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "500.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | izaznov/Reinforce-policy_Cart_Pole | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | null | 2024-04-22T02:49:26+00:00 | [] | [] | TAGS
#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
|
# Reinforce Agent playing CartPole-v1
This is a trained model of a Reinforce agent playing CartPole-v1 .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
| [
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
"TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n",
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | ojasviyadav/gemma-instruct-tutorial-test | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:49:32+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #gemma #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #gemma #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
Meta's Llama 3 70B pruned to 42B parameters using the methodology described in [The Unreasonable Ineffectiveness of the Deeper Layers](https://arxiv.org/abs/2403.17887). Post-pruning trained using QLoRA for ~100M tokens from [JeanKaddour/minipile](https://huggingface.co/datasets/JeanKaddour/minipile).
Layers to prune selected using [PruneMe](https://github.com/arcee-ai/PruneMe).
Still evaluating, don't get too excited! Might be incredibly dumb. Check out these zero-shot MMLU numbers though:
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu |N/A |none | 0|acc |0.7319|± |0.0034|
| - humanities |N/A |none | 0|acc |0.6582|± |0.0063|
| - other |N/A |none | 0|acc |0.7927|± |0.0069|
| - social_sciences|N/A |none | 0|acc |0.8466|± |0.0064|
| - stem |N/A |none | 0|acc |0.6702|± |0.0079|
5-shot:
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu |N/A |none | 0|acc |0.7669|± |0.0034|
| - humanities |N/A |none | 5|acc |0.7296|± |0.0062|
| - other |N/A |none | 5|acc |0.8101|± |0.0067|
| - social_sciences|N/A |none | 5|acc |0.8668|± |0.0060|
| - stem |N/A |none | 5|acc |0.6825|± |0.0079|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) | {"language": ["en"], "license": "other", "tags": ["axolotl", "mergekit", "llama"], "datasets": ["JeanKaddour/minipile"]} | lucyknada/chargoddard_llama3-42b-v0-3.5bpw-EXL2 | null | [
"transformers",
"pytorch",
"llama",
"text-generation",
"axolotl",
"mergekit",
"conversational",
"en",
"dataset:JeanKaddour/minipile",
"arxiv:2403.17887",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:50:34+00:00 | [
"2403.17887"
] | [
"en"
] | TAGS
#transformers #pytorch #llama #text-generation #axolotl #mergekit #conversational #en #dataset-JeanKaddour/minipile #arxiv-2403.17887 #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| Meta's Llama 3 70B pruned to 42B parameters using the methodology described in The Unreasonable Ineffectiveness of the Deeper Layers. Post-pruning trained using QLoRA for ~100M tokens from JeanKaddour/minipile.
Layers to prune selected using PruneMe.
Still evaluating, don't get too excited! Might be incredibly dumb. Check out these zero-shot MMLU numbers though:
5-shot:
<img src="URL alt="Built with Axolotl" width="200" height="32"/>
| [] | [
"TAGS\n#transformers #pytorch #llama #text-generation #axolotl #mergekit #conversational #en #dataset-JeanKaddour/minipile #arxiv-2403.17887 #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Weblet/phi-1-turbo171375359201726_mlabonne-guanaco-llama2-1k_train | null | [
"transformers",
"safetensors",
"phi",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:52:32+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |

# flammen21-mistral-7B
A Mistral 7B LLM built from merging pretrained models and finetuning on [flammenai/Date-DPO-v2](https://huggingface.co/datasets/flammenai/Date-DPO-v2).
Flammen specializes in exceptional character roleplay, creative writing, and general intelligence
### Method
Finetuned using an L4 on Google Colab.
[Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co/mlabonne)
### Configuration
LoRA, model, and training settings:
```python
# LoRA configuration
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
model.config.use_cache = False
# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
# Training arguments
training_args = TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=8,
gradient_checkpointing=True,
learning_rate=5e-5,
lr_scheduler_type="cosine",
max_steps=420,
save_strategy="no",
logging_steps=1,
output_dir=new_model,
optim="paged_adamw_32bit",
warmup_steps=100,
bf16=True,
report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
peft_config=peft_config,
beta=0.1,
max_prompt_length=2048,
max_length=4096,
force_use_ref_model=True
)
# Fine-tune model with DPO
dpo_trainer.train()
``` | {"license": "apache-2.0", "library_name": "transformers", "datasets": ["flammenai/Date-DPO-v2"], "base_model": ["flammenai/flammen20-mistral-7B"]} | flammenai/flammen21-mistral-7B | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"dataset:flammenai/Date-DPO-v2",
"base_model:flammenai/flammen20-mistral-7B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:53:46+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #dataset-flammenai/Date-DPO-v2 #base_model-flammenai/flammen20-mistral-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
!image/png
# flammen21-mistral-7B
A Mistral 7B LLM built from merging pretrained models and finetuning on flammenai/Date-DPO-v2.
Flammen specializes in exceptional character roleplay, creative writing, and general intelligence
### Method
Finetuned using an L4 on Google Colab.
Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne
### Configuration
LoRA, model, and training settings:
| [
"# flammen21-mistral-7B\n\nA Mistral 7B LLM built from merging pretrained models and finetuning on flammenai/Date-DPO-v2. \nFlammen specializes in exceptional character roleplay, creative writing, and general intelligence",
"### Method\n\nFinetuned using an L4 on Google Colab.\n\nFine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne",
"### Configuration\n\nLoRA, model, and training settings:"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #dataset-flammenai/Date-DPO-v2 #base_model-flammenai/flammen20-mistral-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# flammen21-mistral-7B\n\nA Mistral 7B LLM built from merging pretrained models and finetuning on flammenai/Date-DPO-v2. \nFlammen specializes in exceptional character roleplay, creative writing, and general intelligence",
"### Method\n\nFinetuned using an L4 on Google Colab.\n\nFine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne",
"### Configuration\n\nLoRA, model, and training settings:"
] |
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IS557_TrOCR_new
This model is a fine-tuned version of [microsoft/trocr-base-stage1](https://huggingface.co/microsoft/trocr-base-stage1) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
| {"tags": ["generated_from_trainer"], "base_model": "microsoft/trocr-base-stage1", "model-index": [{"name": "IS557_TrOCR_new", "results": []}]} | ShuyiGuo/IS557_TrOCR_new | null | [
"transformers",
"tensorboard",
"safetensors",
"vision-encoder-decoder",
"generated_from_trainer",
"base_model:microsoft/trocr-base-stage1",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:53:55+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #base_model-microsoft/trocr-base-stage1 #endpoints_compatible #region-us
|
# IS557_TrOCR_new
This model is a fine-tuned version of microsoft/trocr-base-stage1 on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
| [
"# IS557_TrOCR_new\n\nThis model is a fine-tuned version of microsoft/trocr-base-stage1 on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.2+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #base_model-microsoft/trocr-base-stage1 #endpoints_compatible #region-us \n",
"# IS557_TrOCR_new\n\nThis model is a fine-tuned version of microsoft/trocr-base-stage1 on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.2+cu121\n- Datasets 2.19.0\n- Tokenizers 0.15.2"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | f77777/Wav2Vec2-large-xlsr-hindi7 | null | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:54:06+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Gemma 2B Translation v0.121
- Eval Loss: `0.3734`
- Train Loss: `0.3929`
- lr: `6e-05`
- optimizer: adamw
- lr_scheduler_type: cosine
## Prompt Template
```
<bos>##English##
Hamsters don't eat cats.
##Korean##
햄스터는 고양이를 먹지 않습니다.<eos>
```
```
<bos>##Korean##
햄스터는 고양이를 먹지 않습니다.
##English##
Hamsters don't eat cats.<eos>
```
## Model Description
- **Developed by:** `lemon-mint`
- **Model type:** Gemma
- **Language(s) (NLP):** English
- **License:** [gemma-terms-of-use](https://ai.google.dev/gemma/terms)
- **Finetuned from model:** [beomi/gemma-ko-2b](https://huggingface.co/beomi/gemma-ko-2b)
| {"language": ["ko"], "license": "gemma", "library_name": "transformers", "tags": ["gemma", "pytorch", "instruct", "finetune", "translation"], "datasets": ["traintogpb/aihub-flores-koen-integrated-sparta-30k", "lemon-mint/korean_high_quality_translation_426k"], "widget": [{"messages": [{"role": "user", "content": "Hamsters don't eat cats."}]}], "inference": {"parameters": {"max_new_tokens": 2048}}, "base_model": "beomi/gemma-ko-2b", "pipeline_tag": "text-generation"} | lemon-mint/gemma-2b-translation-v0.121 | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"pytorch",
"instruct",
"finetune",
"translation",
"conversational",
"ko",
"dataset:traintogpb/aihub-flores-koen-integrated-sparta-30k",
"dataset:lemon-mint/korean_high_quality_translation_426k",
"base_model:beomi/gemma-ko-2b",
"license:gemma",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:54:08+00:00 | [] | [
"ko"
] | TAGS
#transformers #safetensors #gemma #text-generation #pytorch #instruct #finetune #translation #conversational #ko #dataset-traintogpb/aihub-flores-koen-integrated-sparta-30k #dataset-lemon-mint/korean_high_quality_translation_426k #base_model-beomi/gemma-ko-2b #license-gemma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Gemma 2B Translation v0.121
- Eval Loss: '0.3734'
- Train Loss: '0.3929'
- lr: '6e-05'
- optimizer: adamw
- lr_scheduler_type: cosine
## Prompt Template
## Model Description
- Developed by: 'lemon-mint'
- Model type: Gemma
- Language(s) (NLP): English
- License: gemma-terms-of-use
- Finetuned from model: beomi/gemma-ko-2b
| [
"# Gemma 2B Translation v0.121\n\n- Eval Loss: '0.3734'\n- Train Loss: '0.3929'\n- lr: '6e-05'\n- optimizer: adamw\n- lr_scheduler_type: cosine",
"## Prompt Template",
"## Model Description\n\n- Developed by: 'lemon-mint'\n- Model type: Gemma\n- Language(s) (NLP): English\n- License: gemma-terms-of-use\n- Finetuned from model: beomi/gemma-ko-2b"
] | [
"TAGS\n#transformers #safetensors #gemma #text-generation #pytorch #instruct #finetune #translation #conversational #ko #dataset-traintogpb/aihub-flores-koen-integrated-sparta-30k #dataset-lemon-mint/korean_high_quality_translation_426k #base_model-beomi/gemma-ko-2b #license-gemma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Gemma 2B Translation v0.121\n\n- Eval Loss: '0.3734'\n- Train Loss: '0.3929'\n- lr: '6e-05'\n- optimizer: adamw\n- lr_scheduler_type: cosine",
"## Prompt Template",
"## Model Description\n\n- Developed by: 'lemon-mint'\n- Model type: Gemma\n- Language(s) (NLP): English\n- License: gemma-terms-of-use\n- Finetuned from model: beomi/gemma-ko-2b"
] |
text-generation | transformers | # Llama-3-8B-Instruct-Chinese-chat
Llama-3-8B-Instruct in Chinese 自己微调版本
### 训练可用数据整理
| 数据集 | 介绍 |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [firefly-train-1.1M](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M) | 包含了23种常见的中文NLP任务的数据,并且构造了许多与中华文化相关的数据,如对联、作诗、文言文翻译、散文、金庸小说等。对于每个任务,由人工书写若干种指令模板,保证数据的高质量与丰富度,数据量为115万。 |
| [moss-003-sft-data](https://huggingface.co/datasets/YeungNLP/moss-003-sft-data) | 由复旦大学MOSS团队开源的中英文多轮对话数据,包含100万+数本。 |
| [school_math_0.25M](https://huggingface.co/datasets/YeungNLP/school_math_0.25M) | 由BELLE项目组开源的数学运算指令数据,包含25万条数问。 |
| [ruozhiba](https://huggingface.co/datasets/LooksJuicy/ruozhiba) | 弱智吧数据问答,据说比较锻炼模型的心智能力。 |
欢迎补充,要求中文且一问一答形式,适合用于提升llama3任务能力的数据集
### [github地址](https://github.com/Rookie1019/Llama-3-8B-Instruct-Chinese.git)
### 推荐微调工具
在此感谢以下项目,提供了许多优秀的中文微调工具,供大家参考:
- Firefly - https://github.com/yangjianxin1/Firefly
- LLaMA-Factory - https://github.com/hiyouga/LLaMA-Factory.git
### Chat版模型下载
- Instruct + 继续中文sft版
- [huggingface地址](https://huggingface.co/Rookie/Llama-3-8B-Instruct-Chinese)
### 模型量化加速、部署
### 模型使用
默认情况下直接运行以下代码即可体验llama3中文对话,请自行修改`model_name_or_path`为你下载的模型路径
```python
from transformers import AutoTokenizer, AutoConfig, AddedToken, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from dataclasses import dataclass
from typing import Dict
import torch
import copy
## 定义聊天模板
@dataclass
class Template:
template_name:str
system_format: str
user_format: str
assistant_format: str
system: str
stop_word: str
template_dict: Dict[str, Template] = dict()
def register_template(template_name, system_format, user_format, assistant_format, system, stop_word=None):
template_dict[template_name] = Template(
template_name=template_name,
system_format=system_format,
user_format=user_format,
assistant_format=assistant_format,
system=system,
stop_word=stop_word,
)
# 这里的系统提示词是训练时使用的,推理时可以自行尝试修改效果
register_template(
template_name='llama3',
system_format='<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{content}<|eot_id|>',
user_format='<|start_header_id|>user<|end_header_id|>\n\n{content}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n',
assistant_format='{content}<|eot_id|>',
system=None,
stop_word='<|eot_id|>'
)
## 加载模型
def load_model(model_name_or_path, load_in_4bit=False, adapter_name_or_path=None):
if load_in_4bit:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
else:
quantization_config = None
# 加载base model
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
device_map='auto',
quantization_config=quantization_config
)
# 加载adapter
if adapter_name_or_path is not None:
model = PeftModel.from_pretrained(model, adapter_name_or_path)
return model
## 加载tokenzier
def load_tokenizer(model_name_or_path):
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
trust_remote_code=True,
use_fast=False
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
## 构建prompt
def build_prompt(tokenizer, template, query, history, system=None):
template_name = template.template_name
system_format = template.system_format
user_format = template.user_format
assistant_format = template.assistant_format
system = system if system is not None else template.system
history.append({"role": 'user', 'message': query})
input_ids = []
# 添加系统信息
if system_format is not None:
if system is not None:
system_text = system_format.format(content=system)
input_ids = tokenizer.encode(system_text, add_special_tokens=False)
# 拼接历史对话
for item in history:
role, message = item['role'], item['message']
if role == 'user':
message = user_format.format(content=message, stop_token=tokenizer.eos_token)
else:
message = assistant_format.format(content=message, stop_token=tokenizer.eos_token)
tokens = tokenizer.encode(message, add_special_tokens=False)
input_ids += tokens
input_ids = torch.tensor([input_ids], dtype=torch.long)
return input_ids
def main():
model_name_or_path = 'NousResearch/Meta-Llama-3-8B'
template_name = 'llama3'
adapter_name_or_path = None
template = template_dict[template_name]
load_in_4bit = False
max_new_tokens = 500
top_p = 0.9
temperature = 0.35
repetition_penalty = 1.1
# 加载模型
print(f'Loading model from: {model_name_or_path}')
print(f'adapter_name_or_path: {adapter_name_or_path}')
model = load_model(
model_name_or_path,
load_in_4bit=load_in_4bit,
adapter_name_or_path=adapter_name_or_path
).eval()
tokenizer = load_tokenizer(model_name_or_path if adapter_name_or_path is None else adapter_name_or_path)
if template.stop_word is None:
template.stop_word = tokenizer.eos_token
stop_token_id = tokenizer.encode(template.stop_word, add_special_tokens=True)
assert len(stop_token_id) == 1
stop_token_id = stop_token_id[0]
history = []
query = input('# User:')
while True:
query = query.strip()
input_ids = build_prompt(tokenizer, template, query, copy.deepcopy(history), system=None).to(model.device)
attention_mask = torch.ones(input_ids.shape,dtype=torch.long,device=model.device)
outputs = model.generate(
input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True,
top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty,
eos_token_id=stop_token_id,
attention_mask=attention_mask,
pad_token_id=tokenizer.eos_token_id
)
outputs = outputs.tolist()[0][len(input_ids[0]):]
response = tokenizer.decode(outputs)
response = response.strip().replace(template.stop_word, "").strip()
# 存储对话历史
history.append({"role": 'user', 'message': query})
history.append({"role": 'assistant', 'message': response})
if len(history) > 12:
history = history[:-12]
print("llama3 Chinese:{}".format(response))
query = input('# User:')
if __name__ == '__main__':
main()
```
### 多轮问答示例
```
User:你是谁
llama3 Chinese:我是一名AI语言模型,我的名字叫MOSS。
User:你会什么
llama3 Chinese:我可以回答问题、提供信息、帮助您完成任务等等。请问您需要我做什么?
User:两千块钱买什么新车好?
llama3 Chinese:两千块钱买一辆新车可能比较困难,因为大多数新车的价格都比这个金额高得多。但是,有一些二手车或者低价新车可能在这个价格范围内,您可以考虑购买这些车辆。但请注意,在购买二手车时,您应该仔细检查车辆的状况,并了解其历史记录,以确保您获得了一个安全可靠的车辆。
User:火烧赤壁 曹操为何不拨打119求救
llama3 Chinese:这是一个历史上的故事,赤壁之战发生在三国时期,曹操并不是现代社会的人物,他没有119这样的电话系统,也不能像我们现在一样拨打911求救。因此,他只能通过其他方式来组织部队和进行战斗。
User:帮我写一个transformer block
llama3 Chinese:当然可以!下面是一个简单的Transformer Block示例:
```python
import torch.nn as nn
import torch
class TransformerBlock(nn.Module):
def __init__(self, d_model, n_heads, dropout=0.1):
super(TransformerBlock, self).__init__()
self.self_attn = MultiHeadAttention(d_model, n_heads)
self.feed_forward = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# Self-Attention
residual = x
output = self.self_attn(x, x)
output += residual
output = self.dropout(output)
# Feed Forward
residual = output
output = self.feed_forward(output)
output += residual
output = self.dropout(output)
return output
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_heads):
super(MultiHeadAttention, self).__init__()
self.d_model = d_model
self.n_heads = n_heads
self.query_linear = nn.Linear(d_model, d_model)
self.key_linear = nn.Linear(d_model, d_model)
self.value_linear = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(0.1)
def forward(self, query, key, value):
batch_size = query.size(0)
head_dim = self.d_model // self.n_heads
query = self.query_linear(query).view(batch_size, -1, self.n_heads, head_dim)
key = self.key_linear(key).view(batch_size, -1, self.n_heads, head_dim)
value = self.value_linear(value).view(batch_size, -1, self.n_heads, head_dim)
attention_scores = torch.matmul(query.permute(0, 2, 1, 3), key.permute(0, 2, 3, 1)) / math.sqrt(head_dim)
attention_scores = F.softmax(attention_scores, dim=-1)
attention_scores = self.dropout(attention_scores)
output = torch.matmul(attention_scores, value)
output = output.view(batch_size, -1, self.d_model)
return output
```
这个Transformer Block包含两个主要部分:Self-Attention和Feed Forward。Self-Attention使用MultiHeadAttention模块来计算输入序列之间的注意力权重
User:能写歌快速排序吗
llama3 Chinese:当然可以,以下是Python实现的快速排序算法:
```python
def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = [x for x in arr[1:] if x < pivot]
right = [x for x in arr[1:] if x >= pivot]
return quick_sort(left) + [pivot] + quick_sort(right)
```
这个函数接受一个列表作为参数,并返回排好序后的列表。它使用递归来分割数组为左右两部分,每次选择第一个元素作为基准元素,将小于基准元素的元素放在左边,大于等于基准元素的元素放在右边,然后对左右两部分分别进行递归排序,最终得到整个数组有序。
需要注意的是,这种实现方式称为“原地排序”,即在排序过程中不需要额外的存储空间。但是,它的时间复杂度可能会比其他实现方式更高,因为每次都需要创建新的列表来存放子数组。
User:你觉得你还存在哪些缺陷?
llama3 Chinese:作为一个AI语言模型,我可能会存在以下缺陷:
1. 语言理解能力有限:虽然我可以处理大量的文本数据,但是我的语言理解能力仍然受到一定的限制。我可能无法正确理解某些复杂的语境或隐喻。
2. 缺乏人类的情感:虽然我可以模拟人类的语言,但我缺乏真正的人类情感。这意味着我可能无法理解某些情感上的细微差异,或者无法与人类建立深入的关系。
3. 数据偏见:我的训练数据可能存在偏见,这可能导致我的输出也存在偏见。例如,如果我的训练数据中缺少某个群体的信息,那么我可能无法准确地回答该群体相关的问题。
4. 缺乏创造力:虽然我可以生成一些文本,但是我的创造力仍然受到一定的限制。我可能无法像人类一样产生新的想法或创新解决方案。
总之,虽然我是一个强大的工具,但我仍然存在一些缺陷和局限性。
```
| {} | Rookie/Llama-3-8B-Instruct-Chinese | null | [
"transformers",
"safetensors",
"gguf",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T02:55:09+00:00 | [] | [] | TAGS
#transformers #safetensors #gguf #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| Llama-3-8B-Instruct-Chinese-chat
================================
Llama-3-8B-Instruct in Chinese 自己微调版本
### 训练可用数据整理
### github地址
### 推荐微调工具
在此感谢以下项目,提供了许多优秀的中文微调工具,供大家参考:
* Firefly - URL
* LLaMA-Factory - URL
### Chat版模型下载
* Instruct + 继续中文sft版
* huggingface地址
### 模型量化加速、部署
### 模型使用
默认情况下直接运行以下代码即可体验llama3中文对话,请自行修改'model\_name\_or\_path'为你下载的模型路径
### 多轮问答示例
python
import URL as nn
import torch
class TransformerBlock(nn.Module):
def **init**(self, d\_model, n\_heads, dropout=0.1):
super(TransformerBlock, self).**init**()
self.self\_attn = MultiHeadAttention(d\_model, n\_heads)
self.feed\_forward = nn.Linear(d\_model, d\_model)
self.dropout = nn.Dropout(dropout)
```
def forward(self, x):
# Self-Attention
residual = x
output = self.self_attn(x, x)
output += residual
output = self.dropout(output)
# Feed Forward
residual = output
output = self.feed_forward(output)
output += residual
output = self.dropout(output)
return output
```
class MultiHeadAttention(nn.Module):
def **init**(self, d\_model, n\_heads):
super(MultiHeadAttention, self).**init**()
self.d\_model = d\_model
self.n\_heads = n\_heads
self.query\_linear = nn.Linear(d\_model, d\_model)
self.key\_linear = nn.Linear(d\_model, d\_model)
self.value\_linear = nn.Linear(d\_model, d\_model)
self.dropout = nn.Dropout(0.1)
```
def forward(self, query, key, value):
batch_size = URL(0)
head_dim = self.d_model // self.n_heads
query = self.query_linear(query).view(batch_size, -1, self.n_heads, head_dim)
key = self.key_linear(key).view(batch_size, -1, self.n_heads, head_dim)
value = self.value_linear(value).view(batch_size, -1, self.n_heads, head_dim)
attention_scores = URL(query.permute(0, 2, 1, 3), key.permute(0, 2, 3, 1)) / URL(head_dim)
attention_scores = F.softmax(attention_scores, dim=-1)
attention_scores = self.dropout(attention_scores)
output = URL(attention_scores, value)
output = URL(batch_size, -1, self.d_model)
return output
```
python
def quick\_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = [x for x in arr[1:] if x < pivot]
right = [x for x in arr[1:] if x >= pivot]
return quick\_sort(left) + [pivot] + quick\_sort(right)
| [
"### 训练可用数据整理",
"### github地址",
"### 推荐微调工具\n\n\n在此感谢以下项目,提供了许多优秀的中文微调工具,供大家参考:\n\n\n* Firefly - URL\n* LLaMA-Factory - URL",
"### Chat版模型下载\n\n\n* Instruct + 继续中文sft版\n* huggingface地址",
"### 模型量化加速、部署",
"### 模型使用\n\n\n默认情况下直接运行以下代码即可体验llama3中文对话,请自行修改'model\\_name\\_or\\_path'为你下载的模型路径",
"### 多轮问答示例\n\n\npython\nimport URL as nn\nimport torch\n\n\nclass TransformerBlock(nn.Module):\ndef **init**(self, d\\_model, n\\_heads, dropout=0.1):\nsuper(TransformerBlock, self).**init**()\nself.self\\_attn = MultiHeadAttention(d\\_model, n\\_heads)\nself.feed\\_forward = nn.Linear(d\\_model, d\\_model)\nself.dropout = nn.Dropout(dropout)\n\n\n\n```\ndef forward(self, x):\n # Self-Attention\n residual = x\n output = self.self_attn(x, x)\n output += residual\n output = self.dropout(output)\n\n # Feed Forward\n residual = output\n output = self.feed_forward(output)\n output += residual\n output = self.dropout(output)\n\n return output\n\n```\n\nclass MultiHeadAttention(nn.Module):\ndef **init**(self, d\\_model, n\\_heads):\nsuper(MultiHeadAttention, self).**init**()\nself.d\\_model = d\\_model\nself.n\\_heads = n\\_heads\nself.query\\_linear = nn.Linear(d\\_model, d\\_model)\nself.key\\_linear = nn.Linear(d\\_model, d\\_model)\nself.value\\_linear = nn.Linear(d\\_model, d\\_model)\nself.dropout = nn.Dropout(0.1)\n\n\n\n```\ndef forward(self, query, key, value):\n batch_size = URL(0)\n head_dim = self.d_model // self.n_heads\n\n query = self.query_linear(query).view(batch_size, -1, self.n_heads, head_dim)\n key = self.key_linear(key).view(batch_size, -1, self.n_heads, head_dim)\n value = self.value_linear(value).view(batch_size, -1, self.n_heads, head_dim)\n\n attention_scores = URL(query.permute(0, 2, 1, 3), key.permute(0, 2, 3, 1)) / URL(head_dim)\n attention_scores = F.softmax(attention_scores, dim=-1)\n attention_scores = self.dropout(attention_scores)\n\n output = URL(attention_scores, value)\n output = URL(batch_size, -1, self.d_model)\n\n return output\n\n```\n\npython\ndef quick\\_sort(arr):\nif len(arr) <= 1:\nreturn arr\npivot = arr[0]\nleft = [x for x in arr[1:] if x < pivot]\nright = [x for x in arr[1:] if x >= pivot]\nreturn quick\\_sort(left) + [pivot] + quick\\_sort(right)"
] | [
"TAGS\n#transformers #safetensors #gguf #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### 训练可用数据整理",
"### github地址",
"### 推荐微调工具\n\n\n在此感谢以下项目,提供了许多优秀的中文微调工具,供大家参考:\n\n\n* Firefly - URL\n* LLaMA-Factory - URL",
"### Chat版模型下载\n\n\n* Instruct + 继续中文sft版\n* huggingface地址",
"### 模型量化加速、部署",
"### 模型使用\n\n\n默认情况下直接运行以下代码即可体验llama3中文对话,请自行修改'model\\_name\\_or\\_path'为你下载的模型路径",
"### 多轮问答示例\n\n\npython\nimport URL as nn\nimport torch\n\n\nclass TransformerBlock(nn.Module):\ndef **init**(self, d\\_model, n\\_heads, dropout=0.1):\nsuper(TransformerBlock, self).**init**()\nself.self\\_attn = MultiHeadAttention(d\\_model, n\\_heads)\nself.feed\\_forward = nn.Linear(d\\_model, d\\_model)\nself.dropout = nn.Dropout(dropout)\n\n\n\n```\ndef forward(self, x):\n # Self-Attention\n residual = x\n output = self.self_attn(x, x)\n output += residual\n output = self.dropout(output)\n\n # Feed Forward\n residual = output\n output = self.feed_forward(output)\n output += residual\n output = self.dropout(output)\n\n return output\n\n```\n\nclass MultiHeadAttention(nn.Module):\ndef **init**(self, d\\_model, n\\_heads):\nsuper(MultiHeadAttention, self).**init**()\nself.d\\_model = d\\_model\nself.n\\_heads = n\\_heads\nself.query\\_linear = nn.Linear(d\\_model, d\\_model)\nself.key\\_linear = nn.Linear(d\\_model, d\\_model)\nself.value\\_linear = nn.Linear(d\\_model, d\\_model)\nself.dropout = nn.Dropout(0.1)\n\n\n\n```\ndef forward(self, query, key, value):\n batch_size = URL(0)\n head_dim = self.d_model // self.n_heads\n\n query = self.query_linear(query).view(batch_size, -1, self.n_heads, head_dim)\n key = self.key_linear(key).view(batch_size, -1, self.n_heads, head_dim)\n value = self.value_linear(value).view(batch_size, -1, self.n_heads, head_dim)\n\n attention_scores = URL(query.permute(0, 2, 1, 3), key.permute(0, 2, 3, 1)) / URL(head_dim)\n attention_scores = F.softmax(attention_scores, dim=-1)\n attention_scores = self.dropout(attention_scores)\n\n output = URL(attention_scores, value)\n output = URL(batch_size, -1, self.d_model)\n\n return output\n\n```\n\npython\ndef quick\\_sort(arr):\nif len(arr) <= 1:\nreturn arr\npivot = arr[0]\nleft = [x for x in arr[1:] if x < pivot]\nright = [x for x in arr[1:] if x >= pivot]\nreturn quick\\_sort(left) + [pivot] + quick\\_sort(right)"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt-neo-2.7B_LAMA_TREx_finetuning_MAGNET
This model is a fine-tuned version of [EleutherAI/gpt-neo-2.7B](https://huggingface.co/EleutherAI/gpt-neo-2.7B) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.33.2
- Pytorch 1.13.1
- Datasets 2.14.5
- Tokenizers 0.13.3
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/gpt-neo-2.7B", "model-index": [{"name": "gpt-neo-2.7B_LAMA_TREx_finetuning_MAGNET", "results": []}]} | KimByeongSu/gpt-neo-2.7B_LAMA_TREx_finetuning_MAGNET | null | [
"transformers",
"pytorch",
"gpt_neo",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/gpt-neo-2.7B",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T02:58:51+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt_neo #text-generation #generated_from_trainer #base_model-EleutherAI/gpt-neo-2.7B #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
# gpt-neo-2.7B_LAMA_TREx_finetuning_MAGNET
This model is a fine-tuned version of EleutherAI/gpt-neo-2.7B on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.33.2
- Pytorch 1.13.1
- Datasets 2.14.5
- Tokenizers 0.13.3
| [
"# gpt-neo-2.7B_LAMA_TREx_finetuning_MAGNET\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-2.7B on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 0\n- distributed_type: multi-GPU\n- num_devices: 4\n- total_train_batch_size: 128\n- total_eval_batch_size: 128\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0",
"### Training results",
"### Framework versions\n\n- Transformers 4.33.2\n- Pytorch 1.13.1\n- Datasets 2.14.5\n- Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #pytorch #gpt_neo #text-generation #generated_from_trainer #base_model-EleutherAI/gpt-neo-2.7B #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"# gpt-neo-2.7B_LAMA_TREx_finetuning_MAGNET\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-2.7B on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 0\n- distributed_type: multi-GPU\n- num_devices: 4\n- total_train_batch_size: 128\n- total_eval_batch_size: 128\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0",
"### Training results",
"### Framework versions\n\n- Transformers 4.33.2\n- Pytorch 1.13.1\n- Datasets 2.14.5\n- Tokenizers 0.13.3"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
| {"library_name": "peft", "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"} | bmehrba/TinyLlama-1.1B-Chat-v1.0-fine-tuned-adapters_ChatGPT_tiny_Seed104 | null | [
"peft",
"arxiv:1910.09700",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"region:us"
] | null | 2024-04-22T03:00:39+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #arxiv-1910.09700 #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0"
] | [
"TAGS\n#peft #arxiv-1910.09700 #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
| {"library_name": "peft", "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"} | bmehrba/TinyLlama-1.1B-Chat-v1.0-fine-tuned_ChatGPT_tiny_Seed104 | null | [
"peft",
"arxiv:1910.09700",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"region:us"
] | null | 2024-04-22T03:00:47+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #arxiv-1910.09700 #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0"
] | [
"TAGS\n#peft #arxiv-1910.09700 #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0"
] |
feature-extraction | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | failspy/InternVL-Chat-V1-5-4bit | null | [
"transformers",
"safetensors",
"internvl_chat",
"feature-extraction",
"custom_code",
"arxiv:1910.09700",
"4-bit",
"region:us"
] | null | 2024-04-22T03:01:02+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #internvl_chat #feature-extraction #custom_code #arxiv-1910.09700 #4-bit #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #internvl_chat #feature-extraction #custom_code #arxiv-1910.09700 #4-bit #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="stuvx/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | stuvx/q-FrozenLake-v1-4x4-noSlippery | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-22T03:01:12+00:00 | [] | [] | TAGS
#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 FrozenLake-v1
This is a trained model of a Q-Learning agent playing FrozenLake-v1 .
## Usage
| [
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
"TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="stuvx/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "Taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.52 +/- 2.77", "name": "mean_reward", "verified": false}]}]}]} | stuvx/Taxi-v3 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-22T03:03:31+00:00 | [] | [] | TAGS
#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 Taxi-v3
This is a trained model of a Q-Learning agent playing Taxi-v3 .
## Usage
| [
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
"TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] |
token-classification | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Tippawan/SNOMED-CT-weekend-retest-v1 | null | [
"transformers",
"safetensors",
"camembert",
"token-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T03:03:37+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #camembert #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #camembert #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
# Uploaded model
- **Developed by:** chtseng
- **License:** apache-2.0
- **Finetuned from model :** taide/TAIDE-LX-7B-Chat
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "taide/TAIDE-LX-7B-Chat"} | chtseng/taide-medicine_qa_q4 | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:taide/TAIDE-LX-7B-Chat",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T03:14:08+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-taide/TAIDE-LX-7B-Chat #license-apache-2.0 #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: chtseng
- License: apache-2.0
- Finetuned from model : taide/TAIDE-LX-7B-Chat
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: chtseng\n- License: apache-2.0\n- Finetuned from model : taide/TAIDE-LX-7B-Chat\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-taide/TAIDE-LX-7B-Chat #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: chtseng\n- License: apache-2.0\n- Finetuned from model : taide/TAIDE-LX-7B-Chat\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Weblet/phi-1.5-turbo17137551364972343_mlabonne-guanaco-llama2-1k_train | null | [
"transformers",
"safetensors",
"phi",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T03:16:29+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | lattavia/crew-chat-finetune-final-v2 | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T03:19:03+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #gemma #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #gemma #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | domenicrosati/adversarial_loss_lr_1e-5_attack_meta-llama_Llama-2-7b-chat-hf_4_num_layers_6_6e-5_1k | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T03:19:57+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Meta-Llama-3-8B-Instruct INT4 Quantized
- INT-4 quantized version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) created using OpenVINO
## Model Details
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks.
**Model developers** Meta
**Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
**Input** Models input text only.
**Output** Models generate text and code only.
**Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
**Model Release Date** April 18, 2024.
## Usage
```python
>>> from transformers import AutoTokenizer, pipeline
>>> from optimum.intel.openvino import OVModelForCausalLM
>>> model_name = 'rajatkrishna/Meta-Llama-3-8B-Instruct-OpenVINO-INT4'
>>> model = OVModelForCausalLM.from_pretrained(model_name)
>>> pipe = pipeline("text-generation", model=model, tokenizer=model_name)
>>> pipe("Hey how are you doing today?")
``` | {"language": ["en"], "license": "other", "tags": ["facebook", "meta", "openvino", "llama", "llama-3"], "pipeline_tag": "text-generation", "license_name": "llama3", "license_link": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/LICENSE", "base_model": "meta-llama/Meta-Llama-3-8B-Instruct"} | rajatkrishna/Meta-Llama-3-8B-Instruct-OpenVINO-INT4 | null | [
"transformers",
"openvino",
"llama",
"text-generation",
"facebook",
"meta",
"llama-3",
"conversational",
"en",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T03:21:35+00:00 | [] | [
"en"
] | TAGS
#transformers #openvino #llama #text-generation #facebook #meta #llama-3 #conversational #en #base_model-meta-llama/Meta-Llama-3-8B-Instruct #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Meta-Llama-3-8B-Instruct INT4 Quantized
- INT-4 quantized version of meta-llama/Meta-Llama-3-8B-Instruct created using OpenVINO
## Model Details
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks.
Model developers Meta
Variations Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
Input Models input text only.
Output Models generate text and code only.
Model Architecture Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
Model Release Date April 18, 2024.
## Usage
| [
"# Meta-Llama-3-8B-Instruct INT4 Quantized\n\n- INT-4 quantized version of meta-llama/Meta-Llama-3-8B-Instruct created using OpenVINO",
"## Model Details\n\nMeta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks.\n\nModel developers Meta\n\nVariations Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.\n\nInput Models input text only.\n\nOutput Models generate text and code only.\n\nModel Architecture Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.\n\nModel Release Date April 18, 2024.",
"## Usage"
] | [
"TAGS\n#transformers #openvino #llama #text-generation #facebook #meta #llama-3 #conversational #en #base_model-meta-llama/Meta-Llama-3-8B-Instruct #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Meta-Llama-3-8B-Instruct INT4 Quantized\n\n- INT-4 quantized version of meta-llama/Meta-Llama-3-8B-Instruct created using OpenVINO",
"## Model Details\n\nMeta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks.\n\nModel developers Meta\n\nVariations Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.\n\nInput Models input text only.\n\nOutput Models generate text and code only.\n\nModel Architecture Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.\n\nModel Release Date April 18, 2024.",
"## Usage"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 0.0_ablation_6iters_iter_4
This model is a fine-tuned version of [ZhangShenao/0.0_ablation_6iters_iter_3](https://huggingface.co/ZhangShenao/0.0_ablation_6iters_iter_3) on the ZhangShenao/0.0_ablation_6iters_dataset dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["ZhangShenao/0.0_ablation_6iters_dataset"], "base_model": "ZhangShenao/0.0_ablation_6iters_iter_3", "model-index": [{"name": "0.0_ablation_6iters_iter_4", "results": []}]} | ZhangShenao/0.0_ablation_6iters_iter_4 | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:ZhangShenao/0.0_ablation_6iters_dataset",
"base_model:ZhangShenao/0.0_ablation_6iters_iter_3",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T03:21:58+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-ZhangShenao/0.0_ablation_6iters_dataset #base_model-ZhangShenao/0.0_ablation_6iters_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# 0.0_ablation_6iters_iter_4
This model is a fine-tuned version of ZhangShenao/0.0_ablation_6iters_iter_3 on the ZhangShenao/0.0_ablation_6iters_dataset dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| [
"# 0.0_ablation_6iters_iter_4\n\nThis model is a fine-tuned version of ZhangShenao/0.0_ablation_6iters_iter_3 on the ZhangShenao/0.0_ablation_6iters_dataset dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-ZhangShenao/0.0_ablation_6iters_dataset #base_model-ZhangShenao/0.0_ablation_6iters_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# 0.0_ablation_6iters_iter_4\n\nThis model is a fine-tuned version of ZhangShenao/0.0_ablation_6iters_iter_3 on the ZhangShenao/0.0_ablation_6iters_dataset dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] |
text-classification | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | haes95/eCommerce-intent-classification | null | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T03:22:26+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-dpo-qlora
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4877
- Rewards/chosen: -2.1504
- Rewards/rejected: -3.2930
- Rewards/accuracies: 0.7485
- Rewards/margins: 1.1426
- Logps/rejected: -593.1238
- Logps/chosen: -500.2867
- Logits/rejected: -1.4918
- Logits/chosen: -1.5786
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6887 | 0.0262 | 100 | 0.6878 | 0.0320 | 0.0209 | 0.6165 | 0.0111 | -261.7386 | -282.0497 | -2.2161 | -2.2860 |
| 0.6673 | 0.0523 | 200 | 0.6705 | 0.0307 | -0.0223 | 0.6210 | 0.0530 | -266.0498 | -282.1794 | -2.2309 | -2.2977 |
| 0.622 | 0.0785 | 300 | 0.6308 | -0.4454 | -0.6416 | 0.6530 | 0.1962 | -327.9841 | -329.7844 | -2.2079 | -2.2648 |
| 0.6231 | 0.1047 | 400 | 0.6110 | -1.1130 | -1.4436 | 0.6600 | 0.3306 | -408.1872 | -396.5498 | -2.1373 | -2.1896 |
| 0.5801 | 0.1309 | 500 | 0.5821 | -1.0977 | -1.5765 | 0.6770 | 0.4787 | -421.4711 | -395.0235 | -1.9857 | -2.0520 |
| 0.5774 | 0.1570 | 600 | 0.5737 | -0.8337 | -1.3533 | 0.6960 | 0.5197 | -399.1586 | -368.6156 | -2.0070 | -2.0804 |
| 0.5622 | 0.1832 | 700 | 0.5650 | -1.6075 | -2.3332 | 0.7010 | 0.7257 | -497.1474 | -445.9985 | -1.7875 | -1.8697 |
| 0.519 | 0.2094 | 800 | 0.5425 | -1.1058 | -1.7696 | 0.7155 | 0.6638 | -440.7842 | -395.8254 | -1.7912 | -1.8752 |
| 0.4857 | 0.2355 | 900 | 0.5474 | -1.6987 | -2.4665 | 0.7225 | 0.7678 | -510.4745 | -455.1209 | -1.6205 | -1.6997 |
| 0.5378 | 0.2617 | 1000 | 0.5421 | -1.2297 | -2.0123 | 0.7090 | 0.7826 | -465.0541 | -408.2222 | -1.5946 | -1.6771 |
| 0.5569 | 0.2879 | 1100 | 0.5356 | -1.1147 | -1.7889 | 0.7175 | 0.6742 | -442.7119 | -396.7189 | -1.6536 | -1.7402 |
| 0.5875 | 0.3141 | 1200 | 0.5264 | -1.4433 | -2.1309 | 0.7355 | 0.6876 | -476.9160 | -429.5823 | -1.5100 | -1.6017 |
| 0.5681 | 0.3402 | 1300 | 0.5347 | -2.5579 | -3.4361 | 0.7165 | 0.8782 | -607.4370 | -541.0386 | -1.4877 | -1.5713 |
| 0.5395 | 0.3664 | 1400 | 0.5213 | -1.9355 | -2.8808 | 0.7300 | 0.9452 | -551.8996 | -478.8040 | -1.3998 | -1.4881 |
| 0.4408 | 0.3926 | 1500 | 0.5228 | -2.2961 | -3.4521 | 0.7355 | 1.1560 | -609.0350 | -514.8552 | -1.5441 | -1.6317 |
| 0.5416 | 0.4187 | 1600 | 0.5173 | -2.2653 | -3.2986 | 0.7285 | 1.0333 | -593.6861 | -511.7793 | -1.4138 | -1.5014 |
| 0.5261 | 0.4449 | 1700 | 0.5051 | -2.4008 | -3.4047 | 0.7385 | 1.0038 | -604.2916 | -525.3339 | -1.5638 | -1.6434 |
| 0.4685 | 0.4711 | 1800 | 0.5065 | -1.7470 | -2.7320 | 0.7380 | 0.9850 | -537.0220 | -459.9487 | -1.5145 | -1.6005 |
| 0.4293 | 0.4973 | 1900 | 0.5047 | -2.6133 | -3.7102 | 0.7390 | 1.0968 | -634.8395 | -546.5821 | -1.3755 | -1.4651 |
| 0.4753 | 0.5234 | 2000 | 0.5000 | -2.5931 | -3.6748 | 0.7455 | 1.0817 | -631.2996 | -544.5588 | -1.3866 | -1.4735 |
| 0.498 | 0.5496 | 2100 | 0.4965 | -1.8299 | -2.8777 | 0.7465 | 1.0478 | -551.5919 | -468.2369 | -1.4616 | -1.5507 |
| 0.506 | 0.5758 | 2200 | 0.4934 | -1.8271 | -2.7912 | 0.7455 | 0.9641 | -542.9438 | -467.9619 | -1.4831 | -1.5724 |
| 0.4813 | 0.6019 | 2300 | 0.4948 | -2.4682 | -3.6441 | 0.7485 | 1.1759 | -628.2384 | -532.0719 | -1.4335 | -1.5210 |
| 0.4851 | 0.6281 | 2400 | 0.4903 | -2.1415 | -3.2549 | 0.7450 | 1.1134 | -589.3144 | -499.4011 | -1.4529 | -1.5388 |
| 0.5116 | 0.6543 | 2500 | 0.4890 | -1.7892 | -2.9367 | 0.7445 | 1.1475 | -557.4963 | -464.1678 | -1.5214 | -1.6087 |
| 0.4451 | 0.6805 | 2600 | 0.4929 | -2.1993 | -3.4514 | 0.7505 | 1.2521 | -608.9644 | -505.1790 | -1.4632 | -1.5511 |
| 0.5207 | 0.7066 | 2700 | 0.4900 | -2.1993 | -3.3656 | 0.7490 | 1.1663 | -600.3847 | -505.1818 | -1.4903 | -1.5765 |
| 0.4458 | 0.7328 | 2800 | 0.4899 | -2.1260 | -3.2789 | 0.7475 | 1.1529 | -591.7167 | -497.8499 | -1.5008 | -1.5876 |
| 0.5134 | 0.7590 | 2900 | 0.4878 | -2.1729 | -3.2932 | 0.7475 | 1.1204 | -593.1492 | -502.5367 | -1.4986 | -1.5853 |
| 0.4722 | 0.7851 | 3000 | 0.4881 | -2.1656 | -3.2446 | 0.7505 | 1.0791 | -588.2886 | -501.8063 | -1.5024 | -1.5888 |
| 0.4805 | 0.8113 | 3100 | 0.4881 | -2.1831 | -3.3081 | 0.7490 | 1.1250 | -594.6381 | -503.5581 | -1.4902 | -1.5774 |
| 0.4891 | 0.8375 | 3200 | 0.4879 | -2.1565 | -3.2929 | 0.7490 | 1.1363 | -593.1110 | -500.9025 | -1.4972 | -1.5837 |
| 0.5083 | 0.8636 | 3300 | 0.4877 | -2.1423 | -3.2770 | 0.7490 | 1.1347 | -591.5213 | -499.4756 | -1.4993 | -1.5855 |
| 0.446 | 0.8898 | 3400 | 0.4876 | -2.1602 | -3.3022 | 0.7480 | 1.1420 | -594.0439 | -501.2723 | -1.4916 | -1.5785 |
| 0.5346 | 0.9160 | 3500 | 0.4877 | -2.1484 | -3.2901 | 0.7480 | 1.1418 | -592.8391 | -500.0872 | -1.4929 | -1.5797 |
| 0.4646 | 0.9422 | 3600 | 0.4876 | -2.1484 | -3.2908 | 0.7490 | 1.1425 | -592.9084 | -500.0869 | -1.4908 | -1.5778 |
| 0.4696 | 0.9683 | 3700 | 0.4876 | -2.1494 | -3.2919 | 0.7490 | 1.1426 | -593.0177 | -500.1866 | -1.4908 | -1.5778 |
| 0.5038 | 0.9945 | 3800 | 0.4875 | -2.1504 | -3.2931 | 0.7485 | 1.1428 | -593.1368 | -500.2856 | -1.4918 | -1.5786 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.40.0
- Pytorch 2.1.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "apache-2.0", "library_name": "peft", "tags": ["alignment-handbook", "trl", "dpo", "generated_from_trainer"], "datasets": ["HuggingFaceH4/ultrafeedback_binarized"], "base_model": "mistralai/Mistral-7B-v0.1", "model-index": [{"name": "zephyr-7b-dpo-qlora", "results": []}]} | SF-Foundation/zephyr-7b-dpo-qlora | null | [
"peft",
"tensorboard",
"safetensors",
"mistral",
"alignment-handbook",
"trl",
"dpo",
"generated_from_trainer",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"base_model:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"4-bit",
"region:us"
] | null | 2024-04-22T03:23:08+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #mistral #alignment-handbook #trl #dpo #generated_from_trainer #dataset-HuggingFaceH4/ultrafeedback_binarized #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #4-bit #region-us
| zephyr-7b-dpo-qlora
===================
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the HuggingFaceH4/ultrafeedback\_binarized dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4877
* Rewards/chosen: -2.1504
* Rewards/rejected: -3.2930
* Rewards/accuracies: 0.7485
* Rewards/margins: 1.1426
* Logps/rejected: -593.1238
* Logps/chosen: -500.2867
* Logits/rejected: -1.4918
* Logits/chosen: -1.5786
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-06
* train\_batch\_size: 4
* eval\_batch\_size: 8
* seed: 42
* distributed\_type: multi-GPU
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 16
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 1
### Training results
### Framework versions
* PEFT 0.7.1
* Transformers 4.40.0
* Pytorch 2.1.2+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.40.0\n* Pytorch 2.1.2+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#peft #tensorboard #safetensors #mistral #alignment-handbook #trl #dpo #generated_from_trainer #dataset-HuggingFaceH4/ultrafeedback_binarized #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #4-bit #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.40.0\n* Pytorch 2.1.2+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 0.001_ablation_4iters_bs256_iter_3
This model is a fine-tuned version of [ShenaoZ/0.001_ablation_4iters_bs256_iter_2](https://huggingface.co/ShenaoZ/0.001_ablation_4iters_bs256_iter_2) on the updated and the original datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ShenaoZ/0.001_ablation_4iters_bs256_iter_2", "model-index": [{"name": "0.001_ablation_4iters_bs256_iter_3", "results": []}]} | ShenaoZ/0.001_ablation_4iters_bs256_iter_3 | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:updated",
"dataset:original",
"base_model:ShenaoZ/0.001_ablation_4iters_bs256_iter_2",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T03:27:20+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.001_ablation_4iters_bs256_iter_2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# 0.001_ablation_4iters_bs256_iter_3
This model is a fine-tuned version of ShenaoZ/0.001_ablation_4iters_bs256_iter_2 on the updated and the original datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| [
"# 0.001_ablation_4iters_bs256_iter_3\n\nThis model is a fine-tuned version of ShenaoZ/0.001_ablation_4iters_bs256_iter_2 on the updated and the original datasets.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.001_ablation_4iters_bs256_iter_2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# 0.001_ablation_4iters_bs256_iter_3\n\nThis model is a fine-tuned version of ShenaoZ/0.001_ablation_4iters_bs256_iter_2 on the updated and the original datasets.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Weblet/gpt2-turbo17137563175470912_mlabonne-guanaco-llama2-1k_train | null | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T03:27:54+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text2text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# AnnualSummarizer
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "AnnualSummarizer", "results": []}]} | Kgr20/AnnualSummarizer | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T03:28:52+00:00 | [] | [] | TAGS
#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# AnnualSummarizer
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| [
"# AnnualSummarizer\n\nThis model was trained from scratch on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0",
"### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# AnnualSummarizer\n\nThis model was trained from scratch on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0",
"### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | kwonsm/gpt2-tldr-kto | null | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T03:30:33+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
# Uploaded model
- **Developed by:** ojasviyadav
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-7b-bnb-4bit
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "gemma", "trl"], "base_model": "unsloth/gemma-7b-bnb-4bit"} | ojasviyadav/lora_model_gemma_it | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma",
"trl",
"en",
"base_model:unsloth/gemma-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T03:32:26+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #text-generation-inference #unsloth #gemma #trl #en #base_model-unsloth/gemma-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: ojasviyadav
- License: apache-2.0
- Finetuned from model : unsloth/gemma-7b-bnb-4bit
This gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: ojasviyadav\n- License: apache-2.0\n- Finetuned from model : unsloth/gemma-7b-bnb-4bit\n\nThis gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #safetensors #text-generation-inference #unsloth #gemma #trl #en #base_model-unsloth/gemma-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: ojasviyadav\n- License: apache-2.0\n- Finetuned from model : unsloth/gemma-7b-bnb-4bit\n\nThis gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Weblet/gpt2-medium-turbo1713756936088908_mlabonne-guanaco-llama2-1k_train | null | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-22T03:40:40+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
reinforcement-learning | stable-baselines3 |
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga phoenixaiden33 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga phoenixaiden33 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga phoenixaiden33
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
| {"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "591.50 +/- 165.61", "name": "mean_reward", "verified": false}]}]}]} | phoenixaiden33/dqn-SpaceInvadersNoFrameskip-v4 | null | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | null | 2024-04-22T03:42:11+00:00 | [] | [] | TAGS
#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# DQN Agent playing SpaceInvadersNoFrameskip-v4
This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4
using the stable-baselines3 library
and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: URL
SB3: URL
SB3 Contrib: URL
Install the RL Zoo (with SB3 and SB3-Contrib):
If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:
## Training (with the RL Zoo)
## Hyperparameters
# Environment Arguments
| [
"# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.",
"## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:",
"## Training (with the RL Zoo)",
"## Hyperparameters",
"# Environment Arguments"
] | [
"TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.",
"## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:",
"## Training (with the RL Zoo)",
"## Hyperparameters",
"# Environment Arguments"
] |
reinforcement-learning | ml-agents |
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: APLunch/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
| {"library_name": "ml-agents", "tags": ["SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget"]} | APLunch/ppo-SnowballTarget | null | [
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] | null | 2024-04-22T03:43:24+00:00 | [] | [] | TAGS
#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us
|
# ppo Agent playing SnowballTarget
This is a trained model of a ppo agent playing SnowballTarget
using the Unity ML-Agents Library.
## Usage (with ML-Agents)
The Documentation: URL
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your
browser: URL
- A *longer tutorial* to understand how works ML-Agents:
URL
### Resume the training
### Watch your Agent play
You can watch your agent playing directly in your browser
1. If the environment is part of ML-Agents official environments, go to URL
2. Step 1: Find your model_id: APLunch/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play
| [
"# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: APLunch/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] | [
"TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n",
"# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: APLunch/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] |
text-classification | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | SkwarczynskiP/roberta-base-finetuned-vedantgaur-AI-and-human-generated | null | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | null | 2024-04-22T03:46:07+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# COLX_563_lab4_slot_hotel_area
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0951
- F1 Score: 0.9600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.39.1
- Pytorch 2.4.0.dev20240325
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "roberta-base", "model-index": [{"name": "COLX_563_lab4_slot_hotel_area", "results": []}]} | RyanZZZZZ/COLX_563_lab4_slot_hotel_area | null | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-22T03:47:22+00:00 | [] | [] | TAGS
#transformers #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
# COLX_563_lab4_slot_hotel_area
This model is a fine-tuned version of roberta-base on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0951
- F1 Score: 0.9600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.39.1
- Pytorch 2.4.0.dev20240325
- Datasets 2.18.0
- Tokenizers 0.15.2
| [
"# COLX_563_lab4_slot_hotel_area\n\nThis model is a fine-tuned version of roberta-base on the None dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0951\n- F1 Score: 0.9600",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.1\n- Pytorch 2.4.0.dev20240325\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"# COLX_563_lab4_slot_hotel_area\n\nThis model is a fine-tuned version of roberta-base on the None dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0951\n- F1 Score: 0.9600",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.1\n- Pytorch 2.4.0.dev20240325\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.