pipeline_tag
stringclasses 48
values | library_name
stringclasses 198
values | text
stringlengths 1
900k
| metadata
stringlengths 2
438k
| id
stringlengths 5
122
| last_modified
null | tags
sequencelengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
| arxiv
sequencelengths 0
201
| languages
sequencelengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
sequencelengths 0
722
| processed_texts
sequencelengths 1
723
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-2b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/google-codegemma-2b-HQQ-1bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/google-codegemma-2b-HQQ-1bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-2b")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-2b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/codegemma-2b"} | PrunaAI/google-codegemma-2b-HQQ-1bit-smashed | null | [
"transformers",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/codegemma-2b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:25:29+00:00 | [] | [] | TAGS
#transformers #gemma #text-generation #pruna-ai #base_model-google/codegemma-2b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-2b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-2b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo google/codegemma-2b installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-2b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #gemma #text-generation #pruna-ai #base_model-google/codegemma-2b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo google/codegemma-2b installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-2b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/n8lo64m | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:25:35+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | golf2248/917bjae | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:25:35+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/qriag3h | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:25:43+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | golf2248/9z4ecmt | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:25:44+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | golf2248/aoyxw3l | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:25:50+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | golf2248/e5qu8jo | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:25:54+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | pyannote | This is the model card of a pyannote model that has been pushed on the Hub. This model card has been automatically generated. | {"library_name": "pyannote", "tags": ["pyannote", "pyannote.audio", "pyannote-audio-model", "audio", "voice", "speech", "speaker", "speaker-recognition", "speaker-verification", "speaker-identification", "speaker-embedding", "PyTorch", "wespeaker"], "licence": "cc-by-4.0"} | kamilakesbi/speaker-embedding-test | null | [
"pyannote",
"pytorch",
"pyannote.audio",
"pyannote-audio-model",
"audio",
"voice",
"speech",
"speaker",
"speaker-recognition",
"speaker-verification",
"speaker-identification",
"speaker-embedding",
"PyTorch",
"wespeaker",
"region:us"
] | null | 2024-04-29T13:26:15+00:00 | [] | [] | TAGS
#pyannote #pytorch #pyannote.audio #pyannote-audio-model #audio #voice #speech #speaker #speaker-recognition #speaker-verification #speaker-identification #speaker-embedding #PyTorch #wespeaker #region-us
| This is the model card of a pyannote model that has been pushed on the Hub. This model card has been automatically generated. | [] | [
"TAGS\n#pyannote #pytorch #pyannote.audio #pyannote-audio-model #audio #voice #speech #speaker #speaker-recognition #speaker-verification #speaker-identification #speaker-embedding #PyTorch #wespeaker #region-us \n"
] |
automatic-speech-recognition | pyannote | This is the model card of a pyannote pipeline that has been pushed on the Hub. This model card has been automatically generated. | {"library_name": "pyannote", "tags": ["pyannote", "pyannote.audio", "pyannote-audio-pipeline", "audio", "voice", "speech", "speaker", "speaker-diarization", "speaker-change-detection", "voice-activity-detection", "overlapped-speech-detection", "automatic-speech-recognition"], "licence": "mit"} | kamilakesbi/spd_pipeline_test | null | [
"pyannote",
"pyannote.audio",
"pyannote-audio-pipeline",
"audio",
"voice",
"speech",
"speaker",
"speaker-diarization",
"speaker-change-detection",
"voice-activity-detection",
"overlapped-speech-detection",
"automatic-speech-recognition",
"region:us"
] | null | 2024-04-29T13:26:20+00:00 | [] | [] | TAGS
#pyannote #pyannote.audio #pyannote-audio-pipeline #audio #voice #speech #speaker #speaker-diarization #speaker-change-detection #voice-activity-detection #overlapped-speech-detection #automatic-speech-recognition #region-us
| This is the model card of a pyannote pipeline that has been pushed on the Hub. This model card has been automatically generated. | [] | [
"TAGS\n#pyannote #pyannote.audio #pyannote-audio-pipeline #audio #voice #speech #speaker #speaker-diarization #speaker-change-detection #voice-activity-detection #overlapped-speech-detection #automatic-speech-recognition #region-us \n"
] |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# basic_train_basic_test 1000 similar params: per_device_train_batch_size=32, # bylo 16 a pod tim 1 gradient_accumulation_steps=2, warmup_steps=300, max_steps=3000
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the xbilek25/xbilek25/train_set_1000_en_de_en dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2957
- Wer: 10.8108
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0087 | 7.02 | 500 | 0.2377 | 11.3924 |
| 0.0024 | 15.02 | 1000 | 0.2643 | 11.8029 |
| 0.0006 | 23.02 | 1500 | 0.2832 | 10.8792 |
| 0.0004 | 31.02 | 2000 | 0.2901 | 10.6055 |
| 0.0003 | 39.01 | 2500 | 0.2941 | 10.7766 |
| 0.0003 | 47.01 | 3000 | 0.2957 | 10.8108 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
| {"language": ["multilingual"], "license": "apache-2.0", "tags": ["hf-asr-leaderboard", "generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_11_0"], "metrics": ["wer"], "base_model": "openai/whisper-small", "model-index": [{"name": "basic_train_basic_test 1000 similar params: per_device_train_batch_size=32, # bylo 16 a pod tim 1 gradient_accumulation_steps=2, warmup_steps=300, max_steps=3000", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "xbilek25/xbilek25/train_set_1000_en_de_en", "type": "mozilla-foundation/common_voice_11_0", "args": "config: csen, split: train"}, "metrics": [{"type": "wer", "value": 10.81081081081081, "name": "Wer"}]}]}]} | xbilek25/whisper-small-train-v2.2 | null | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"multilingual",
"dataset:mozilla-foundation/common_voice_11_0",
"base_model:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:28:54+00:00 | [] | [
"multilingual"
] | TAGS
#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #hf-asr-leaderboard #generated_from_trainer #multilingual #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us
| basic\_train\_basic\_test 1000 similar params: per\_device\_train\_batch\_size=32, # bylo 16 a pod tim 1 gradient\_accumulation\_steps=2, warmup\_steps=300, max\_steps=3000
============================================================================================================================================================================
This model is a fine-tuned version of openai/whisper-small on the xbilek25/xbilek25/train\_set\_1000\_en\_de\_en dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2957
* Wer: 10.8108
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* training\_steps: 3000
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.37.2
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.15.2
| [
"# bylo 16 a pod tim 1 gradient\\_accumulation\\_steps=2, warmup\\_steps=300, max\\_steps=3000\n============================================================================================================================================================================\n\n\nThis model is a fine-tuned version of openai/whisper-small on the xbilek25/xbilek25/train\\_set\\_1000\\_en\\_de\\_en dataset.\nIt achieves the following results on the evaluation set:\n\n\n* Loss: 0.2957\n* Wer: 10.8108\n\n\nModel description\n-----------------\n\n\nMore information needed\n\n\nIntended uses & limitations\n---------------------------\n\n\nMore information needed\n\n\nTraining and evaluation data\n----------------------------\n\n\nMore information needed\n\n\nTraining procedure\n------------------",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 3000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #hf-asr-leaderboard #generated_from_trainer #multilingual #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"# bylo 16 a pod tim 1 gradient\\_accumulation\\_steps=2, warmup\\_steps=300, max\\_steps=3000\n============================================================================================================================================================================\n\n\nThis model is a fine-tuned version of openai/whisper-small on the xbilek25/xbilek25/train\\_set\\_1000\\_en\\_de\\_en dataset.\nIt achieves the following results on the evaluation set:\n\n\n* Loss: 0.2957\n* Wer: 10.8108\n\n\nModel description\n-----------------\n\n\nMore information needed\n\n\nIntended uses & limitations\n---------------------------\n\n\nMore information needed\n\n\nTraining and evaluation data\n----------------------------\n\n\nMore information needed\n\n\nTraining procedure\n------------------",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 3000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.15.2"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openthai-mistral-7b-text-to-pandas
This model is a fine-tuned version of [openthaigpt/openthai-mistral-pretrained-7B](https://huggingface.co/openthaigpt/openthai-mistral-pretrained-7B) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2 | {"library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "openthaigpt/openthai-mistral-pretrained-7B", "model-index": [{"name": "openthai-mistral-7b-text-to-pandas", "results": []}]} | kkatiz/openthai-mistral-7b-text-to-pandas | null | [
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:openthaigpt/openthai-mistral-pretrained-7B",
"region:us"
] | null | 2024-04-29T13:29:32+00:00 | [] | [] | TAGS
#peft #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-openthaigpt/openthai-mistral-pretrained-7B #region-us
|
# openthai-mistral-7b-text-to-pandas
This model is a fine-tuned version of openthaigpt/openthai-mistral-pretrained-7B on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2 | [
"# openthai-mistral-7b-text-to-pandas\n\nThis model is a fine-tuned version of openthaigpt/openthai-mistral-pretrained-7B on the generator dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 2\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 32\n- total_eval_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 10",
"### Training results",
"### Framework versions\n\n- PEFT 0.7.2.dev0\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.2"
] | [
"TAGS\n#peft #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-openthaigpt/openthai-mistral-pretrained-7B #region-us \n",
"# openthai-mistral-7b-text-to-pandas\n\nThis model is a fine-tuned version of openthaigpt/openthai-mistral-pretrained-7B on the generator dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 2\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 32\n- total_eval_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 10",
"### Training results",
"### Framework versions\n\n- PEFT 0.7.2.dev0\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.2"
] |
null | null |
# Model description
GMML is a self-supervised learning model that learns to group masked pixels in an image. The model is trained on ImageNet-1K.
# Model Sources
- https://github.com/Sara-Ahmed/GMML
- https://arxiv.org/abs/2205.14986
# Model Card Authors
Sara Atito, Muhammad Awais, Josef Kittler
# How to use
```python
from transformers import BertConfig, BertModel
config = BertConfig()
model = BertModel(config)
model.push_to_hub("nielsr/my-awesome-bert-model")
# reload
model = BertModel.from_pretrained("nielsr/my-awesome-bert-model")
```
# BibTeX entry and citation info
```
@inproceedings{atito2023gmml,
title={GMML is all you need},
author={Atito, Sara and Awais, Muhammed and Nandam, Srinivasa and Kittler, Josef},
booktitle={2023 IEEE International Conference on Image Processing (ICIP)},
pages={2125--2129},
year={2023},
organization={IEEE}
}
``` | {"license": "apache-2.0", "tags": ["self-supervised learning", "vision", "GMML"], "inference": false} | erow/GMML | null | [
"self-supervised learning",
"vision",
"GMML",
"arxiv:2205.14986",
"license:apache-2.0",
"region:us"
] | null | 2024-04-29T13:29:45+00:00 | [
"2205.14986"
] | [] | TAGS
#self-supervised learning #vision #GMML #arxiv-2205.14986 #license-apache-2.0 #region-us
|
# Model description
GMML is a self-supervised learning model that learns to group masked pixels in an image. The model is trained on ImageNet-1K.
# Model Sources
- URL
- URL
# Model Card Authors
Sara Atito, Muhammad Awais, Josef Kittler
# How to use
# BibTeX entry and citation info
| [
"# Model description\n\nGMML is a self-supervised learning model that learns to group masked pixels in an image. The model is trained on ImageNet-1K.",
"# Model Sources\n\n- URL\n- URL",
"# Model Card Authors \nSara Atito, Muhammad Awais, Josef Kittler",
"# How to use",
"# BibTeX entry and citation info"
] | [
"TAGS\n#self-supervised learning #vision #GMML #arxiv-2205.14986 #license-apache-2.0 #region-us \n",
"# Model description\n\nGMML is a self-supervised learning model that learns to group masked pixels in an image. The model is trained on ImageNet-1K.",
"# Model Sources\n\n- URL\n- URL",
"# Model Card Authors \nSara Atito, Muhammad Awais, Josef Kittler",
"# How to use",
"# BibTeX entry and citation info"
] |
text-generation | transformers | # GreenBit LLMs
This is GreenBitAI's pretrained **low-bit** LLMs with extreme compression yet still strong performance.
Please refer to our [Github page](https://github.com/GreenBitAI/green-bit-llm) for the code to run the model and more information.
| **Repository (Llama 3 Family)** | **Avg Acc.** | **OpenBQ** | **ARC-E** | **Winogr.** | **HellaS.** | **ARC-C** | **PIQA** | **BoolQ** | **RACE** | **ANLI-R1** | **ANLI-R2** | **ANLI-R3** | **WiC** |
|:----------------------------------------|:------------:|:----------:|:---------:|:-----------:|:-----------:|:---------:|:--------:|:---------:|:--------:|:-----------:|:-----------:|:-----------:|:-------:|
| `Llama-3-8B-layer-mix-bpw-2.2` | 0.499 | 0.302 | 0.739 | 0.674 | 0.509 | 0.396 | 0.725 | 0.743 | 0.406 | 0.327 | 0.337 | 0.340 | 0.500 |
| `Llama-3-8B-layer-mix-bpw-2.5` | 0.506 | 0.298 | 0.760 | 0.684 | 0.513 | 0.418 | 0.744 | 0.756 | 0.389 | 0.335 | 0.335 | 0.335 | 0.509 |
| `Llama-3-8B-layer-mix-bpw-3.0` | 0.523 | 0.318 | 0.770 | 0.708 | 0.540 | 0.441 | 0.767 | 0.784 | 0.407 | 0.333 | 0.345 | 0.343 | 0.526 |
| `Llama-3-8B-layer-mix-bpw-4.0` | 0.542 | 0.338 | 0.791 | 0.729 | 0.591 | 0.484 | 0.797 | 0.799 | 0.398 | 0.337 | 0.345 | 0.352 | 0.545 |
| `Llama-3-8B-instruct-layer-mix-bpw-2.2` | 0.514 | 0.292 | 0.645 | 0.672 | 0.499 | 0.367 | 0.698 | 0.775 | 0.423 | 0.417 | 0.424 | 0.398 | 0.565 |
| `Llama-3-8B-instruct-layer-mix-bpw-2.5` | 0.528 | 0.304 | 0.741 | 0.681 | 0.512 | 0.412 | 0.749 | 0.798 | 0.425 | 0.417 | 0.410 | 0.390 | 0.498 |
| `Llama-3-8B-instruct-layer-mix-bpw-3.0` | 0.547 | 0.316 | 0.787 | 0.690 | 0.530 | 0.459 | 0.768 | 0.800 | 0.437 | 0.435 | 0.417 | 0.387 | 0.548 |
| `Llama-3-8B-instruct-layer-mix-bpw-4.0` | 0.576 | 0.344 | 0.808 | 0.716 | 0.569 | 0.513 | 0.778 | 0.825 | 0.449 | 0.462 | 0.449 | 0.432 | 0.578 | | {"license": "apache-2.0"} | GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:30:05+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| GreenBit LLMs
=============
This is GreenBitAI's pretrained low-bit LLMs with extreme compression yet still strong performance.
Please refer to our Github page for the code to run the model and more information.
| [] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | lunarsylph/stablecell_v50 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:31:05+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | hereis/nous1 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:31:16+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
image-text-to-text | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
Русскоязычная версия Idefics, обученная на русифицированном сабсете LLaVA.
SFT был без текстовых данных, так что вполне возможно просадка по качеству на text-only данных.
Обучение было в int4 с QLoRA на consumer-grade железе.
## Model Details
### Model Description
- **Model type:** ruIdefics2
- **Language(s) (NLP):** Russian
- **License:** Apache-2.0
- **Finetuned from model:** Idefics2
# How to Get Started
## Запуск в fp16
```python
import requests
import torch
from PIL import Image
from io import BytesIO
from transformers import AutoProcessor, AutoModelForVision2Seq
from transformers.image_utils import load_image
DEVICE = "cuda:0"
image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
processor = AutoProcessor.from_pretrained("GeorgeBredis/ruIdefics2-ruLLaVA-merged")
model = AutoModelForVision2Seq.from_pretrained(
"GeorgeBredis/ruIdefics2-ruLLaVA-merged",
).to(DEVICE)
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Что изображено на данной картинке?"},
]
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image1], return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
generated_ids = model.generate(**inputs, max_new_tokens=500)
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
print(generated_texts)
```
Вполне возможно что это не влезет в вашу GPU (если будете загружать на gpu), так что ниже вариант с bnb для запуска в colab'e.
## Запуск в int4/int8 c bnb.
Требует установки peft
```python
import requests
import torch
from PIL import Image
from io import BytesIO
from peft import LoraConfig
from transformers import AutoProcessor, BitsAndBytesConfig, Idefics2ForConditionalGeneration
from transformers.image_utils import load_image
DEVICE = "cuda:0"
image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
processor = AutoProcessor.from_pretrained(
"GeorgeBredis/ruIdefics2-ruLLaVA-merged",
do_image_splitting=False
)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
model = Idefics2ForConditionalGeneration.from_pretrained(
"GeorgeBredis/ruIdefics2-ruLLaVA-merged",
torch_dtype=torch.float16,
quantization_config=quantization_config,
)
# не нужно переносить на карту, так как в int4/8 заводятся сразу на них
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Что изображено на данной картинке?"},
]
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image1], return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
generated_ids = model.generate(**inputs, max_new_tokens=500)
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
print(generated_texts)
```
| {"language": ["ru"], "license": "apache-2.0", "library_name": "transformers", "tags": ["multimodal", "vision", "image-text-to-text"], "datasets": "Vikhrmodels/LLaVA-Instruct-ru", "pipeline_tag": "image-text-to-text"} | GeorgeBredis/ruIdefics2-ruLLaVA-merged | null | [
"transformers",
"safetensors",
"idefics2",
"pretraining",
"multimodal",
"vision",
"image-text-to-text",
"ru",
"dataset:Vikhrmodels/LLaVA-Instruct-ru",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:31:18+00:00 | [] | [
"ru"
] | TAGS
#transformers #safetensors #idefics2 #pretraining #multimodal #vision #image-text-to-text #ru #dataset-Vikhrmodels/LLaVA-Instruct-ru #license-apache-2.0 #endpoints_compatible #region-us
|
# Model Card for Model ID
Русскоязычная версия Idefics, обученная на русифицированном сабсете LLaVA.
SFT был без текстовых данных, так что вполне возможно просадка по качеству на text-only данных.
Обучение было в int4 с QLoRA на consumer-grade железе.
## Model Details
### Model Description
- Model type: ruIdefics2
- Language(s) (NLP): Russian
- License: Apache-2.0
- Finetuned from model: Idefics2
# How to Get Started
## Запуск в fp16
Вполне возможно что это не влезет в вашу GPU (если будете загружать на gpu), так что ниже вариант с bnb для запуска в colab'e.
## Запуск в int4/int8 c bnb.
Требует установки peft
| [
"# Model Card for Model ID\n\n\nРусскоязычная версия Idefics, обученная на русифицированном сабсете LLaVA.\n\nSFT был без текстовых данных, так что вполне возможно просадка по качеству на text-only данных.\n\nОбучение было в int4 с QLoRA на consumer-grade железе.",
"## Model Details",
"### Model Description\n\n- Model type: ruIdefics2\n- Language(s) (NLP): Russian\n- License: Apache-2.0\n- Finetuned from model: Idefics2",
"# How to Get Started",
"## Запуск в fp16\n\n\n\nВполне возможно что это не влезет в вашу GPU (если будете загружать на gpu), так что ниже вариант с bnb для запуска в colab'e.",
"## Запуск в int4/int8 c bnb.\n\nТребует установки peft"
] | [
"TAGS\n#transformers #safetensors #idefics2 #pretraining #multimodal #vision #image-text-to-text #ru #dataset-Vikhrmodels/LLaVA-Instruct-ru #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Model Card for Model ID\n\n\nРусскоязычная версия Idefics, обученная на русифицированном сабсете LLaVA.\n\nSFT был без текстовых данных, так что вполне возможно просадка по качеству на text-only данных.\n\nОбучение было в int4 с QLoRA на consumer-grade железе.",
"## Model Details",
"### Model Description\n\n- Model type: ruIdefics2\n- Language(s) (NLP): Russian\n- License: Apache-2.0\n- Finetuned from model: Idefics2",
"# How to Get Started",
"## Запуск в fp16\n\n\n\nВполне возможно что это не влезет в вашу GPU (если будете загружать на gpu), так что ниже вариант с bnb для запуска в colab'e.",
"## Запуск в int4/int8 c bnb.\n\nТребует установки peft"
] |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-no-perturb
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1545
- Precision: 0.3826
- Recall: 0.3778
- F1: 0.3802
- Accuracy: 0.9597
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 103 | 0.1871 | 0.1940 | 0.1238 | 0.1512 | 0.9499 |
| No log | 2.0 | 206 | 0.1603 | 0.2885 | 0.3476 | 0.3153 | 0.9540 |
| No log | 3.0 | 309 | 0.1545 | 0.3826 | 0.3778 | 0.3802 | 0.9597 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "distilbert/distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased-no-perturb", "results": []}]} | bozhidara-pesheva/distilbert-base-uncased-no-perturb | null | [
"transformers",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:34:14+00:00 | [] | [] | TAGS
#transformers #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert/distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-no-perturb
==================================
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1545
* Precision: 0.3826
* Recall: 0.3778
* F1: 0.3802
* Accuracy: 0.9597
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.39.3
* Pytorch 2.2.1
* Datasets 2.18.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.2.1\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert/distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.2.1\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | shallow6414/2737r7z | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:34:29+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text2text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small_ter
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3472
- Bleu: 0.009
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| 2.5831 | 1.0 | 2420 | 2.3793 | 0.0088 | 19.0 |
| 2.5261 | 2.0 | 4840 | 2.3472 | 0.009 | 19.0 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["bleu"], "base_model": "google-t5/t5-small", "model-index": [{"name": "t5-small_ter", "results": []}]} | lesha-grishchenko/t5-small_ter | null | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:35:21+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google-t5/t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| t5-small\_ter
=============
This model is a fine-tuned version of google-t5/t5-small on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 2.3472
* Bleu: 0.009
* Gen Len: 19.0
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.40.0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google-t5/t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-7b-it installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/google-codegemma-7b-it-HQQ-2bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/google-codegemma-7b-it-HQQ-2bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-7b-it")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b-it before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/codegemma-7b-it"} | PrunaAI/google-codegemma-7b-it-HQQ-2bit-smashed | null | [
"transformers",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/codegemma-7b-it",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:36:01+00:00 | [] | [] | TAGS
#transformers #gemma #text-generation #pruna-ai #base_model-google/codegemma-7b-it #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-7b-it installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b-it before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo google/codegemma-7b-it installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b-it before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #gemma #text-generation #pruna-ai #base_model-google/codegemma-7b-it #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo google/codegemma-7b-it installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b-it before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-7b-it installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/google-codegemma-7b-it-HQQ-1bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/google-codegemma-7b-it-HQQ-1bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-7b-it")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b-it before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/codegemma-7b-it"} | PrunaAI/google-codegemma-7b-it-HQQ-1bit-smashed | null | [
"transformers",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/codegemma-7b-it",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:36:07+00:00 | [] | [] | TAGS
#transformers #gemma #text-generation #pruna-ai #base_model-google/codegemma-7b-it #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-7b-it installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b-it before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo google/codegemma-7b-it installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b-it before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #gemma #text-generation #pruna-ai #base_model-google/codegemma-7b-it #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo google/codegemma-7b-it installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b-it before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
text-classification | transformers | ## TextAttack Model Card
This `bert` model was fine-tuned using TextAttack. The model was fine-tuned
for 3 epochs with a batch size of 8,
a maximum sequence length of 512, and an initial learning rate of 3e-05.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9713333333333334, as measured by the
eval set accuracy, found after 3 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack). | {"language": ["zh"], "license": "apache-2.0", "metrics": ["accuracy"], "pipeline_tag": "text-classification"} | WangA/roberta-base-finetuned-ctrip | null | [
"transformers",
"safetensors",
"bert",
"text-classification",
"zh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:36:23+00:00 | [] | [
"zh"
] | TAGS
#transformers #safetensors #bert #text-classification #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| ## TextAttack Model Card
This 'bert' model was fine-tuned using TextAttack. The model was fine-tuned
for 3 epochs with a batch size of 8,
a maximum sequence length of 512, and an initial learning rate of 3e-05.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9713333333333334, as measured by the
eval set accuracy, found after 3 epochs.
For more information, check out TextAttack on Github. | [
"## TextAttack Model Card\n\n This 'bert' model was fine-tuned using TextAttack. The model was fine-tuned\n for 3 epochs with a batch size of 8,\n a maximum sequence length of 512, and an initial learning rate of 3e-05.\n Since this was a classification task, the model was trained with a cross-entropy loss function.\n The best score the model achieved on this task was 0.9713333333333334, as measured by the\n eval set accuracy, found after 3 epochs.\n\n For more information, check out TextAttack on Github."
] | [
"TAGS\n#transformers #safetensors #bert #text-classification #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"## TextAttack Model Card\n\n This 'bert' model was fine-tuned using TextAttack. The model was fine-tuned\n for 3 epochs with a batch size of 8,\n a maximum sequence length of 512, and an initial learning rate of 3e-05.\n Since this was a classification task, the model was trained with a cross-entropy loss function.\n The best score the model achieved on this task was 0.9713333333333334, as measured by the\n eval set accuracy, found after 3 epochs.\n\n For more information, check out TextAttack on Github."
] |
null | mlx |
# GreenBitAI/Llama-3-8B-layer-mix-bpw-4.0-mlx
This quantized low-bit model was converted to MLX format from [`GreenBitAI/Llama-3-8B-layer-mix-bpw-4.0`]().
Refer to the [original model card](https://huggingface.co/GreenBitAI/Llama-3-8B-layer-mix-bpw-4.0) for more details on the model.
## Use with mlx
```bash
pip install gbx-lm
```
```python
from gbx_lm import load, generate
model, tokenizer = load("GreenBitAI/Llama-3-8B-layer-mix-bpw-4.0-mlx")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
| {"license": "apache-2.0", "tags": ["mlx"]} | GreenBitAI/Llama-3-8B-layer-mix-bpw-4.0-mlx | null | [
"mlx",
"safetensors",
"llama",
"license:apache-2.0",
"region:us"
] | null | 2024-04-29T13:36:32+00:00 | [] | [] | TAGS
#mlx #safetensors #llama #license-apache-2.0 #region-us
|
# GreenBitAI/Llama-3-8B-layer-mix-bpw-4.0-mlx
This quantized low-bit model was converted to MLX format from ['GreenBitAI/Llama-3-8B-layer-mix-bpw-4.0']().
Refer to the original model card for more details on the model.
## Use with mlx
| [
"# GreenBitAI/Llama-3-8B-layer-mix-bpw-4.0-mlx\nThis quantized low-bit model was converted to MLX format from ['GreenBitAI/Llama-3-8B-layer-mix-bpw-4.0']().\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] | [
"TAGS\n#mlx #safetensors #llama #license-apache-2.0 #region-us \n",
"# GreenBitAI/Llama-3-8B-layer-mix-bpw-4.0-mlx\nThis quantized low-bit model was converted to MLX format from ['GreenBitAI/Llama-3-8B-layer-mix-bpw-4.0']().\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-7b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/google-codegemma-7b-HQQ-2bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/google-codegemma-7b-HQQ-2bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-7b")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/codegemma-7b"} | PrunaAI/google-codegemma-7b-HQQ-2bit-smashed | null | [
"transformers",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/codegemma-7b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:36:50+00:00 | [] | [] | TAGS
#transformers #gemma #text-generation #pruna-ai #base_model-google/codegemma-7b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-7b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo google/codegemma-7b installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #gemma #text-generation #pruna-ai #base_model-google/codegemma-7b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo google/codegemma-7b installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-7b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/google-codegemma-7b-HQQ-1bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/google-codegemma-7b-HQQ-1bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-7b")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "google/codegemma-7b"} | PrunaAI/google-codegemma-7b-HQQ-1bit-smashed | null | [
"transformers",
"gemma",
"text-generation",
"pruna-ai",
"base_model:google/codegemma-7b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:37:03+00:00 | [] | [] | TAGS
#transformers #gemma #text-generation #pruna-ai #base_model-google/codegemma-7b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo google/codegemma-7b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo google/codegemma-7b installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #gemma #text-generation #pruna-ai #base_model-google/codegemma-7b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo google/codegemma-7b installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model google/codegemma-7b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/havvanilsu-oz/huggingface/runs/bkhbe82p)
# results
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "other", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "meta-llama/Meta-Llama-3-8B-Instruct", "model-index": [{"name": "results", "results": []}]} | nilsuoz/Llama-3-8B-Instruct-Finance_v1000 | null | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"license:other",
"region:us"
] | null | 2024-04-29T13:37:08+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-meta-llama/Meta-Llama-3-8B-Instruct #license-other #region-us
|
<img src="URL alt="Visualize in Weights & Biases" width="200" height="32"/>
# results
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | [
"# results\n\nThis model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.41.0.dev0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] | [
"TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-meta-llama/Meta-Llama-3-8B-Instruct #license-other #region-us \n",
"# results\n\nThis model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.41.0.dev0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] |
null | transformers |
# itayl/Hebrew-Mistral-7B_Chat-Q8_0-GGUF
This model was converted to GGUF format from [`itayl/Hebrew-Mistral-7B_Chat`](https://huggingface.co/itayl/Hebrew-Mistral-7B_Chat) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/itayl/Hebrew-Mistral-7B_Chat) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo itayl/Hebrew-Mistral-7B_Chat-Q8_0-GGUF --model hebrew-mistral-7b_chat.Q8_0.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo itayl/Hebrew-Mistral-7B_Chat-Q8_0-GGUF --model hebrew-mistral-7b_chat.Q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m hebrew-mistral-7b_chat.Q8_0.gguf -n 128
```
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "llama-cpp", "gguf-my-repo"], "base_model": "yam-peleg/Hebrew-Mistral-7B"} | itayl/Hebrew-Mistral-7B_Chat-Q8_0-GGUF | null | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"llama-cpp",
"gguf-my-repo",
"en",
"base_model:yam-peleg/Hebrew-Mistral-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:37:23+00:00 | [] | [
"en"
] | TAGS
#transformers #gguf #text-generation-inference #unsloth #mistral #trl #llama-cpp #gguf-my-repo #en #base_model-yam-peleg/Hebrew-Mistral-7B #license-apache-2.0 #endpoints_compatible #region-us
|
# itayl/Hebrew-Mistral-7B_Chat-Q8_0-GGUF
This model was converted to GGUF format from 'itayl/Hebrew-Mistral-7B_Chat' using URL via the URL's GGUF-my-repo space.
Refer to the original model card for more details on the model.
## Use with URL
Install URL through brew.
Invoke the URL server or the CLI.
CLI:
Server:
Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
| [
"# itayl/Hebrew-Mistral-7B_Chat-Q8_0-GGUF\nThis model was converted to GGUF format from 'itayl/Hebrew-Mistral-7B_Chat' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] | [
"TAGS\n#transformers #gguf #text-generation-inference #unsloth #mistral #trl #llama-cpp #gguf-my-repo #en #base_model-yam-peleg/Hebrew-Mistral-7B #license-apache-2.0 #endpoints_compatible #region-us \n",
"# itayl/Hebrew-Mistral-7B_Chat-Q8_0-GGUF\nThis model was converted to GGUF format from 'itayl/Hebrew-Mistral-7B_Chat' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="ThatOneSkyler/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | ThatOneSkyler/q-FrozenLake-v1-4x4-noSlippery | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-29T13:37:35+00:00 | [] | [] | TAGS
#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 FrozenLake-v1
This is a trained model of a Q-Learning agent playing FrozenLake-v1 .
## Usage
| [
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
"TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | v-urushkin/SyntheticT5-tokenizer | null | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:37:46+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | noeloco/loracamel-dpo | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:37:50+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["trl", "sft"]} | nilsuoz/Llama-3-8B-Instruct-Finance_v1000_model | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T13:38:26+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #trl #sft #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #trl #sft #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "huggyllama/llama-7b"} | shrenikb/hftestepoch7id7 | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:huggyllama/llama-7b",
"region:us"
] | null | 2024-04-29T13:39:36+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-huggyllama/llama-7b #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-huggyllama/llama-7b #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
text-to-image | diffusers |
# API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "cyberrealisticclassicv31"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs)
Try model for free: [Generate Images](https://modelslab.com/models/cyberrealisticclassicv31)
Model link: [View model](https://modelslab.com/models/cyberrealisticclassicv31)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "cyberrealisticclassicv31",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** | {"license": "creativeml-openrail-m", "tags": ["modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic"], "pinned": true} | stablediffusionapi/cyberrealisticclassicv31 | null | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | null | 2024-04-29T13:40:08+00:00 | [] | [] | TAGS
#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
|
# API Inference
!generated from URL
## Get API Key
Get API key from ModelsLab API, No Payment needed.
Replace Key in below code, change model_id to "cyberrealisticclassicv31"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs
Try model for free: Generate Images
Model link: View model
View all models: View Models
import requests
import json
url = "URL
payload = URL({
"key": "your_api_key",
"model_id": "cyberrealisticclassicv31",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(URL)
> Use this coupon code to get 25% off DMGG0RBN | [
"# API Inference\n\n!generated from URL",
"## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"cyberrealisticclassicv31\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"cyberrealisticclassicv31\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN"
] | [
"TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n",
"# API Inference\n\n!generated from URL",
"## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"cyberrealisticclassicv31\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"cyberrealisticclassicv31\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN"
] |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny chinese - VingeNie
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 16.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7681
- Cer Ortho: 38.5858
- Cer: 29.8372
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 25
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer Ortho | Cer |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.4971 | 0.5435 | 250 | 0.7639 | 39.3347 | 30.8173 |
| 0.3054 | 1.0870 | 500 | 0.7634 | 35.6305 | 29.4969 |
| 0.4034 | 1.6304 | 750 | 0.7576 | 38.6415 | 30.4015 |
| 0.2556 | 2.1739 | 1000 | 0.7681 | 38.5858 | 29.8372 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"language": ["zh"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_16_1"], "base_model": "openai/whisper-tiny", "model-index": [{"name": "Whisper Tiny chinese - VingeNie", "results": []}]} | VingeNie/whisper-tiny-zh_CN | null | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"zh",
"dataset:mozilla-foundation/common_voice_16_1",
"base_model:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:41:44+00:00 | [] | [
"zh"
] | TAGS
#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #zh #dataset-mozilla-foundation/common_voice_16_1 #base_model-openai/whisper-tiny #license-apache-2.0 #endpoints_compatible #region-us
| Whisper Tiny chinese - VingeNie
===============================
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 16.1 dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7681
* Cer Ortho: 38.5858
* Cer: 29.8372
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 64
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: constant\_with\_warmup
* lr\_scheduler\_warmup\_steps: 25
* training\_steps: 1000
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.40.0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\\_with\\_warmup\n* lr\\_scheduler\\_warmup\\_steps: 25\n* training\\_steps: 1000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #zh #dataset-mozilla-foundation/common_voice_16_1 #base_model-openai/whisper-tiny #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\\_with\\_warmup\n* lr\\_scheduler\\_warmup\\_steps: 25\n* training\\_steps: 1000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="ThatOneSkyler/taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.50 +/- 2.72", "name": "mean_reward", "verified": false}]}]}]} | ThatOneSkyler/taxi-v3 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-29T13:43:26+00:00 | [] | [] | TAGS
#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 Taxi-v3
This is a trained model of a Q-Learning agent playing Taxi-v3 .
## Usage
| [
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
"TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# selfbiorag-7b-dpo-full-sft-wo-medication_qa
This model is a fine-tuned version of [Minbyul/selfbiorag-7b-wo-medication_qa-sft](https://huggingface.co/Minbyul/selfbiorag-7b-wo-medication_qa-sft) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2759
- Rewards/chosen: -1.2305
- Rewards/rejected: -7.1000
- Rewards/accuracies: 0.8920
- Rewards/margins: 5.8695
- Logps/rejected: -1442.5582
- Logps/chosen: -679.8936
- Logits/rejected: -0.3285
- Logits/chosen: -0.3524
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
|:-------------:|:-----:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:|
| 0.2249 | 0.32 | 100 | -0.1107 | -0.0290 | -650.2339 | -1190.2701 | 0.3821 | 0.8551 | -0.9339 | 3.6432 | -4.5771 |
| 0.1549 | 0.65 | 200 | -0.3180 | -0.3222 | -652.9113 | -1308.4048 | 0.2709 | 0.8977 | -0.9607 | 4.7978 | -5.7585 |
| 0.0946 | 0.97 | 300 | -0.3523 | -0.3283 | -679.6155 | -1442.4718 | 0.2756 | 0.8920 | -1.2277 | 5.8714 | -7.0991 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2
| {"tags": ["alignment-handbook", "trl", "dpo", "generated_from_trainer", "trl", "dpo", "alignment-handbook", "generated_from_trainer"], "datasets": ["HuggingFaceH4/ultrafeedback_binarized"], "base_model": "Minbyul/selfbiorag-7b-wo-medication_qa-sft", "model-index": [{"name": "selfbiorag-7b-dpo-full-sft-wo-medication_qa", "results": []}]} | Minbyul/selfbiorag-7b-dpo-full-sft-wo-medication_qa | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"alignment-handbook",
"trl",
"dpo",
"generated_from_trainer",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"base_model:Minbyul/selfbiorag-7b-wo-medication_qa-sft",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:43:50+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #alignment-handbook #trl #dpo #generated_from_trainer #dataset-HuggingFaceH4/ultrafeedback_binarized #base_model-Minbyul/selfbiorag-7b-wo-medication_qa-sft #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| selfbiorag-7b-dpo-full-sft-wo-medication\_qa
============================================
This model is a fine-tuned version of Minbyul/selfbiorag-7b-wo-medication\_qa-sft on the HuggingFaceH4/ultrafeedback\_binarized dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2759
* Rewards/chosen: -1.2305
* Rewards/rejected: -7.1000
* Rewards/accuracies: 0.8920
* Rewards/margins: 5.8695
* Logps/rejected: -1442.5582
* Logps/chosen: -679.8936
* Logits/rejected: -0.3285
* Logits/chosen: -0.3524
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-06
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* distributed\_type: multi-GPU
* num\_devices: 4
* gradient\_accumulation\_steps: 2
* total\_train\_batch\_size: 64
* total\_eval\_batch\_size: 32
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 1
### Training results
### Framework versions
* Transformers 4.39.0.dev0
* Pytorch 2.1.2
* Datasets 2.14.6
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.39.0.dev0\n* Pytorch 2.1.2\n* Datasets 2.14.6\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #alignment-handbook #trl #dpo #generated_from_trainer #dataset-HuggingFaceH4/ultrafeedback_binarized #base_model-Minbyul/selfbiorag-7b-wo-medication_qa-sft #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.39.0.dev0\n* Pytorch 2.1.2\n* Datasets 2.14.6\n* Tokenizers 0.15.2"
] |
text-generation | transformers |
# Uploaded model
- **Developed by:** cemt
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "sft"], "base_model": "unsloth/llama-3-8b-bnb-4bit"} | cemt/Alpaca-llama-3-8b-bnb-16bit | null | [
"transformers",
"pytorch",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:47:22+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: cemt
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: cemt\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #pytorch #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: cemt\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ellis-v4-emotion-leadership-multi-label
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---:|:---------:|:------:|
| 0.0 | 1.0 | 5910 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0 | 2.0 | 11820 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "base_model": "microsoft/deberta-v3-small", "model-index": [{"name": "ellis-v4-emotion-leadership-multi-label", "results": []}]} | gsl22/ellis-v4-emotion-leadership-multi-label | null | [
"transformers",
"tensorboard",
"safetensors",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-small",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:49:23+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-small #license-mit #autotrain_compatible #endpoints_compatible #region-us
| ellis-v4-emotion-leadership-multi-label
=======================================
This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0000
* Accuracy: 1.0
* F1: 1.0
* Precision: 1.0
* Recall: 1.0
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 3
* eval\_batch\_size: 3
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.40.0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 3\n* eval\\_batch\\_size: 3\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-small #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 3\n* eval\\_batch\\_size: 3\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
text-generation | transformers |
## モデル
- ベースモデル:[ryota39/llm-jp-1b-sft-2M](https://huggingface.co/ryota39/llm-jp-1b-sft-2M)
- 学習データセット:[ryota39/dpo-ja-194k](https://huggingface.co/datasets/ryota39/dpo-ja-194k)
- 学習方式:フルパラメータチューニング
## サンプル
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(
"ryota39/llm-jp-1b-sft-2M-dpo-194k"
)
pad_token_id = tokenizer.pad_token_id
model = AutoModelForCausalLM.from_pretrained(
"ryota39/llm-jp-1b-sft-2M-dpo-194k",
device_map="auto",
)
text = "###Input: 東京の観光名所を教えてください。\n###Output: "
tokenized_input = tokenizer.encode(
text,
add_special_tokens=False,
return_tensors="pt"
).to(model.device)
attention_mask = torch.ones_like(tokenized_input)
attention_mask[tokenized_input == pad_token_id] = 0
with torch.no_grad():
output = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=128,
do_sample=True,
top_p=0.95,
temperature=0.8,
repetition_penalty=1.0
)[0]
print(tokenizer.decode(output))
```
## 出力例
```
###Input: 東京の観光名所を教えてください。
###Output: 1955年、「東京の観光」でデビューしたのは誰?
### Output: 福山 喜左衛門。福山 喜左衛門(ふくやま よしざ、1948年〈昭和23年〉12月10日 - )は、日本の実業家。
東京都出身。1955年、「東京の観光」でデビュー。
1960年、福山 喜左衛門らを指導。1981年、横浜市戸塚区に移住。1985年、横浜市戸塚区
```
## 謝辞
本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。
運営の方々に深く御礼申し上げます。
- 【メタデータラボ株式会社】様
- 【AI声づくり技術研究会】
- サーバー主:やなぎ(Yanagi)様
- 【ローカルLLMに向き合う会】
- サーバー主:saldra(サルドラ)様
[メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始](https://prtimes.jp/main/html/rd/p/000000008.000056944.html)
| {"language": ["ja"], "license": "cc", "library_name": "transformers", "tags": ["dpo"], "datasets": ["ryota39/dpo-ja-194k"]} | ryota39/llm-jp-1b-sft-2M-dpo-194k | null | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"dpo",
"ja",
"dataset:ryota39/dpo-ja-194k",
"license:cc",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:53:28+00:00 | [] | [
"ja"
] | TAGS
#transformers #safetensors #gpt2 #text-generation #dpo #ja #dataset-ryota39/dpo-ja-194k #license-cc #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
## モデル
- ベースモデル:ryota39/llm-jp-1b-sft-2M
- 学習データセット:ryota39/dpo-ja-194k
- 学習方式:フルパラメータチューニング
## サンプル
## 出力例
## 謝辞
本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。
運営の方々に深く御礼申し上げます。
- 【メタデータラボ株式会社】様
- 【AI声づくり技術研究会】
- サーバー主:やなぎ(Yanagi)様
- 【ローカルLLMに向き合う会】
- サーバー主:saldra(サルドラ)様
メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始
| [
"## モデル\n\n- ベースモデル:ryota39/llm-jp-1b-sft-2M\n- 学習データセット:ryota39/dpo-ja-194k\n- 学習方式:フルパラメータチューニング",
"## サンプル",
"## 出力例",
"## 謝辞\n\n本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。\n運営の方々に深く御礼申し上げます。\n\n- 【メタデータラボ株式会社】様\n- 【AI声づくり技術研究会】\n - サーバー主:やなぎ(Yanagi)様\n- 【ローカルLLMに向き合う会】\n - サーバー主:saldra(サルドラ)様\n\nメタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始"
] | [
"TAGS\n#transformers #safetensors #gpt2 #text-generation #dpo #ja #dataset-ryota39/dpo-ja-194k #license-cc #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"## モデル\n\n- ベースモデル:ryota39/llm-jp-1b-sft-2M\n- 学習データセット:ryota39/dpo-ja-194k\n- 学習方式:フルパラメータチューニング",
"## サンプル",
"## 出力例",
"## 謝辞\n\n本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。\n運営の方々に深く御礼申し上げます。\n\n- 【メタデータラボ株式会社】様\n- 【AI声づくり技術研究会】\n - サーバー主:やなぎ(Yanagi)様\n- 【ローカルLLMに向き合う会】\n - サーバー主:saldra(サルドラ)様\n\nメタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始"
] |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-bambara-asr-002
This model is a fine-tuned version of [oza75/whisper-bambara-asr-002](https://huggingface.co/oza75/whisper-bambara-asr-002) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3643
- Wer: 53.2541
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 4
- total_train_batch_size: 192
- total_eval_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 1.2108 | 0.7752 | 100 | 1.1191 | 77.3885 |
| 0.848 | 1.5504 | 200 | 0.8848 | 64.0640 |
| 0.694 | 2.3256 | 300 | 0.8022 | 62.0272 |
| 0.6062 | 3.1008 | 400 | 0.7607 | 67.0102 |
| 0.5617 | 3.8760 | 500 | 0.7314 | 59.4083 |
| 0.4565 | 4.6512 | 600 | 0.7334 | 69.0713 |
| 0.3455 | 5.4264 | 700 | 0.7656 | 59.8812 |
| 0.2621 | 6.2016 | 800 | 0.8062 | 68.1256 |
| 0.2672 | 6.9767 | 900 | 0.8130 | 56.9593 |
| 0.1916 | 7.7519 | 1000 | 0.8706 | 58.0868 |
| 0.1302 | 8.5271 | 1100 | 0.9390 | 58.2565 |
| 0.0785 | 9.3023 | 1200 | 0.9932 | 55.5286 |
| 0.0785 | 0.7752 | 1300 | 1.0391 | 55.8802 |
| 0.0495 | 1.5504 | 1400 | 1.0820 | 58.4627 |
| 0.032 | 2.3256 | 1500 | 1.1270 | 55.2498 |
| 0.026 | 3.1008 | 1600 | 1.1660 | 57.4321 |
| 0.0241 | 3.8760 | 1700 | 1.1738 | 53.5766 |
| 0.019 | 4.6512 | 1800 | 1.1943 | 53.6736 |
| 0.0149 | 5.4264 | 1900 | 1.2236 | 52.3642 |
| 0.0116 | 6.2016 | 2000 | 1.2549 | 58.8143 |
| 0.014 | 6.9767 | 2100 | 1.25 | 52.1581 |
| 0.0121 | 7.7519 | 2200 | 1.2627 | 51.3094 |
| 0.0106 | 8.5271 | 2300 | 1.2705 | 52.6673 |
| 0.0097 | 9.3023 | 2400 | 1.2744 | 53.0674 |
| 0.0079 | 0.7797 | 2500 | 1.2803 | 58.1741 |
| 0.0071 | 1.5595 | 2600 | 1.2979 | 55.2040 |
| 0.0058 | 2.3392 | 2700 | 1.3174 | 54.9199 |
| 0.0052 | 3.1189 | 2800 | 1.3281 | 56.4954 |
| 0.0056 | 3.8986 | 2900 | 1.3193 | 51.3946 |
| 0.0051 | 4.6784 | 3000 | 1.3291 | 49.9483 |
| 0.0045 | 5.4581 | 3100 | 1.3428 | 52.4019 |
| 0.0036 | 6.2378 | 3200 | 1.3506 | 49.0186 |
| 0.0041 | 7.0175 | 3300 | 1.3623 | 50.2583 |
| 0.0047 | 7.7973 | 3400 | 1.3643 | 53.2541 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"language": ["bm"], "license": "apache-2.0", "library_name": "transformers", "tags": ["generated_from_trainer"], "datasets": ["oza75/bambara-asr"], "metrics": ["wer"], "base_model": "oza75/whisper-bambara-asr-002", "model-index": [{"name": "whisper-bambara-asr-002", "results": []}]} | oza75/whisper-bambara-asr-002 | null | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"bm",
"dataset:oza75/bambara-asr",
"base_model:oza75/whisper-bambara-asr-002",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | null | 2024-04-29T13:53:55+00:00 | [] | [
"bm"
] | TAGS
#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #bm #dataset-oza75/bambara-asr #base_model-oza75/whisper-bambara-asr-002 #license-apache-2.0 #endpoints_compatible #has_space #region-us
| whisper-bambara-asr-002
=======================
This model is a fine-tuned version of oza75/whisper-bambara-asr-002 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 1.3643
* Wer: 53.2541
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-06
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* distributed\_type: multi-GPU
* num\_devices: 3
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 192
* total\_eval\_batch\_size: 48
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 8
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.40.1
* Pytorch 2.3.0+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 3\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 192\n* total\\_eval\\_batch\\_size: 48\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #bm #dataset-oza75/bambara-asr #base_model-oza75/whisper-bambara-asr-002 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 3\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 192\n* total\\_eval\\_batch\\_size: 48\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | shallow6414/zpc4hwy | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:55:32+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HPY_gpt2_vB.0
This model is a fine-tuned version of [ClassCat/gpt2-base-french](https://huggingface.co/ClassCat/gpt2-base-french) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7503
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 41 | 1.8163 |
| No log | 2.0 | 83 | 1.7744 |
| No log | 2.99 | 124 | 1.7552 |
| No log | 3.95 | 164 | 1.7503 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.13.3
| {"license": "cc-by-sa-4.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "HPY_gpt2_vB.0", "results": []}]} | azizkt/HPY_gpt2_vB.0 | null | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:55:35+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| HPY\_gpt2\_vB.0
===============
This model is a fine-tuned version of ClassCat/gpt2-base-french on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.7503
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 8
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 4
### Training results
### Framework versions
* Transformers 4.30.0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.13.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.30.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.30.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.13.3"
] |
null | null | # Mistral-7B-CrewAI Model
This repository provides the capability to invoke the model locally. For detailed usage, you can refer to the GitHub repository linked below.
## Repository Link
[Visit the GitHub repository](https://github.com/nickcom007/AutoTx/tree/main) for more details on how to use this model locally.
## How to Use
To use this model, follow the instructions provided in the GitHub repository. It includes steps to set up your environment, load the model, and make predictions.
## Support
If you encounter any issues while using this model, please open an issue in the GitHub repository for support.
| {} | flock-io/Mistral-7B-CrewAI | null | [
"gguf",
"region:us"
] | null | 2024-04-29T13:56:37+00:00 | [] | [] | TAGS
#gguf #region-us
| # Mistral-7B-CrewAI Model
This repository provides the capability to invoke the model locally. For detailed usage, you can refer to the GitHub repository linked below.
## Repository Link
Visit the GitHub repository for more details on how to use this model locally.
## How to Use
To use this model, follow the instructions provided in the GitHub repository. It includes steps to set up your environment, load the model, and make predictions.
## Support
If you encounter any issues while using this model, please open an issue in the GitHub repository for support.
| [
"# Mistral-7B-CrewAI Model\n\nThis repository provides the capability to invoke the model locally. For detailed usage, you can refer to the GitHub repository linked below.",
"## Repository Link\nVisit the GitHub repository for more details on how to use this model locally.",
"## How to Use\nTo use this model, follow the instructions provided in the GitHub repository. It includes steps to set up your environment, load the model, and make predictions.",
"## Support\nIf you encounter any issues while using this model, please open an issue in the GitHub repository for support."
] | [
"TAGS\n#gguf #region-us \n",
"# Mistral-7B-CrewAI Model\n\nThis repository provides the capability to invoke the model locally. For detailed usage, you can refer to the GitHub repository linked below.",
"## Repository Link\nVisit the GitHub repository for more details on how to use this model locally.",
"## How to Use\nTo use this model, follow the instructions provided in the GitHub repository. It includes steps to set up your environment, load the model, and make predictions.",
"## Support\nIf you encounter any issues while using this model, please open an issue in the GitHub repository for support."
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | HenryCai1129/adapter-llama-adapterhappy2sad-1k-search-3iter-50-0.003 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:57:14+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | GamblerOnTrain/CAWD291 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T13:58:14+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | GamblerOnTrain/CAWD292 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:58:15+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_ner_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2693
- Precision: 0.5742
- Recall: 0.3336
- F1: 0.4220
- Accuracy: 0.9416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 213 | 0.2853 | 0.6337 | 0.2437 | 0.3521 | 0.9381 |
| No log | 2.0 | 426 | 0.2693 | 0.5742 | 0.3336 | 0.4220 | 0.9416 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.2+cpu
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "my_ner_model", "results": []}]} | amrita06/my_ner_model | null | [
"transformers",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:58:39+00:00 | [] | [] | TAGS
#transformers #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| my\_ner\_model
==============
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2693
* Precision: 0.5742
* Recall: 0.3336
* F1: 0.4220
* Accuracy: 0.9416
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.40.0
* Pytorch 2.2.2+cpu
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.2+cpu\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.2+cpu\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo McGill-NLP/Llama-3-8B-Web installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/McGill-NLP-Llama-3-8B-Web-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("McGill-NLP/Llama-3-8B-Web")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model McGill-NLP/Llama-3-8B-Web before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "McGill-NLP/Llama-3-8B-Web"} | PrunaAI/McGill-NLP-Llama-3-8B-Web-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"pruna-ai",
"conversational",
"base_model:McGill-NLP/Llama-3-8B-Web",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T13:58:50+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-McGill-NLP/Llama-3-8B-Web #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo McGill-NLP/Llama-3-8B-Web installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model McGill-NLP/Llama-3-8B-Web before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo McGill-NLP/Llama-3-8B-Web installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model McGill-NLP/Llama-3-8B-Web before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-McGill-NLP/Llama-3-8B-Web #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo McGill-NLP/Llama-3-8B-Web installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model McGill-NLP/Llama-3-8B-Web before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
fill-mask | transformers |
# DRAGON RoBERTa base domain-specific
Pretrained model on Dutch clinical reports using a masked language modeling (MLM) objective. It was introduced in [this](#pending) paper. The model was pretrained using domain-specific data (i.e., clinical reports) from scratch. The architecture is the same as [`xlm-roberta-base`](https://huggingface.co/xlm-roberta-base) from HuggingFace. The tokenizer was fitted to the dataset of Dutch medical reports, using the same settings for the tokenizer as [`roberta-base`](https://huggingface.co/FacebookAI/roberta-base).
## Model description
RoBERTa is a transformers model that was pretrained on a large corpus of Dutch clinical reports in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way with an automatic process to generate inputs and labels from those texts.
This way, the model learns an inner representation of the Dutch medical language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled reports, for instance, you can train a standard classifier using the features produced by the BERT model as inputs.
## Model variations
Multiple architectures were pretrained for the DRAGON challenge.
| Model | #params | Language |
|------------------------|--------------------------------|-------|
| [`joeranbosma/dragon-bert-base-mixed-domain`](https://huggingface.co/joeranbosma/dragon-bert-base-mixed-domain) | 109M | Dutch → Dutch |
| [`joeranbosma/dragon-roberta-base-mixed-domain`](https://huggingface.co/joeranbosma/dragon-roberta-base-mixed-domain) | 278M | Multiple → Dutch |
| [`joeranbosma/dragon-roberta-large-mixed-domain`](https://huggingface.co/joeranbosma/dragon-roberta-large-mixed-domain) | 560M | Multiple → Dutch |
| [`joeranbosma/dragon-longformer-base-mixed-domain`](https://huggingface.co/joeranbosma/dragon-longformer-base-mixed-domain) | 149M | English → Dutch |
| [`joeranbosma/dragon-longformer-large-mixed-domain`](https://huggingface.co/joeranbosma/dragon-longformer-large-mixed-domain) | 435M | English → Dutch |
| [`joeranbosma/dragon-bert-base-domain-specific`](https://huggingface.co/joeranbosma/dragon-bert-base-domain-specific) | 109M | Dutch |
| [`joeranbosma/dragon-roberta-base-domain-specific`](https://huggingface.co/joeranbosma/dragon-roberta-base-domain-specific) | 278M | Dutch |
| [`joeranbosma/dragon-roberta-large-domain-specific`](https://huggingface.co/joeranbosma/dragon-roberta-large-domain-specific) | 560M | Dutch |
| [`joeranbosma/dragon-longformer-base-domain-specific`](https://huggingface.co/joeranbosma/dragon-longformer-base-domain-specific) | 149M | Dutch |
| [`joeranbosma/dragon-longformer-large-domain-specific`](https://huggingface.co/joeranbosma/dragon-longformer-large-domain-specific) | 435M | Dutch |
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole text (e.g., a clinical report) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2.
## How to use
You can use this model directly with a pipeline for masked language modeling:
```python
from transformers import pipeline
unmasker = pipeline("fill-mask", model="joeranbosma/dragon-roberta-base-domain-specific")
unmasker("Dit onderzoek geen aanwijzingen voor significant carcinoom. PIRADS <mask>.")
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("joeranbosma/dragon-roberta-base-domain-specific")
model = AutoModel.from_pretrained("joeranbosma/dragon-roberta-base-domain-specific")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors="pt")
output = model(**encoded_input)
```
## Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
## Training data
For pretraining, 4,333,201 clinical reports (466,351 consecutive patients) were selected from Ziekenhuisgroep Twente from patients with a diagnostic or interventional visit between 13 July 2000 and 25 April 2023. 180,439 duplicate clinical reports (179,808 patients) were excluded, resulting in 4,152,762 included reports (463,692 patients). These reports were split into training (80%, 3,322,209 reports), validation (10%, 415,276 reports), and testing (10%, 415,277 reports). The testing reports were set aside for future analysis and are not used for pretraining.
## Training procedure
### Pretraining
The model was pretrained using masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
The HuggingFace implementation was used for pretraining: [`run_mlm.py`](https://github.com/huggingface/transformers/blob/7c6ec195adbfcd22cb6baeee64dd3c24a4b80c74/examples/pytorch/language-modeling/run_mlm.py).
### Pretraining hyperparameters
The following hyperparameters were used during pretraining:
- `learning_rate`: 6e-4
- `train_batch_size`: 16
- `eval_batch_size`: 16
- `seed`: 42
- `gradient_accumulation_steps`: 16
- `total_train_batch_size`: 256
- `optimizer`: Adam with betas=(0.9,0.999) and epsilon=1e-08
- `lr_scheduler_type`: linear
- `num_epochs`: 10.0
- `max_seq_length`: 512
### Framework versions
- Transformers 4.29.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
## Evaluation results
Pending evaluation on the DRAGON benchmark.
### BibTeX entry and citation info
```bibtex
@article{PENDING}
```
| {"license": "cc-by-nc-sa-4.0"} | joeranbosma/dragon-roberta-base-domain-specific | null | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"doi:10.57967/hf/2169",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T13:58:54+00:00 | [] | [] | TAGS
#transformers #pytorch #roberta #fill-mask #doi-10.57967/hf/2169 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
| DRAGON RoBERTa base domain-specific
===================================
Pretrained model on Dutch clinical reports using a masked language modeling (MLM) objective. It was introduced in this paper. The model was pretrained using domain-specific data (i.e., clinical reports) from scratch. The architecture is the same as 'xlm-roberta-base' from HuggingFace. The tokenizer was fitted to the dataset of Dutch medical reports, using the same settings for the tokenizer as 'roberta-base'.
Model description
-----------------
RoBERTa is a transformers model that was pretrained on a large corpus of Dutch clinical reports in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way with an automatic process to generate inputs and labels from those texts.
This way, the model learns an inner representation of the Dutch medical language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled reports, for instance, you can train a standard classifier using the features produced by the BERT model as inputs.
Model variations
----------------
Multiple architectures were pretrained for the DRAGON challenge.
Model: 'joeranbosma/dragon-bert-base-mixed-domain', #params: 109M, Language: Dutch → Dutch
Model: 'joeranbosma/dragon-roberta-base-mixed-domain', #params: 278M, Language: Multiple → Dutch
Model: 'joeranbosma/dragon-roberta-large-mixed-domain', #params: 560M, Language: Multiple → Dutch
Model: 'joeranbosma/dragon-longformer-base-mixed-domain', #params: 149M, Language: English → Dutch
Model: 'joeranbosma/dragon-longformer-large-mixed-domain', #params: 435M, Language: English → Dutch
Model: 'joeranbosma/dragon-bert-base-domain-specific', #params: 109M, Language: Dutch
Model: 'joeranbosma/dragon-roberta-base-domain-specific', #params: 278M, Language: Dutch
Model: 'joeranbosma/dragon-roberta-large-domain-specific', #params: 560M, Language: Dutch
Model: 'joeranbosma/dragon-longformer-base-domain-specific', #params: 149M, Language: Dutch
Model: 'joeranbosma/dragon-longformer-large-domain-specific', #params: 435M, Language: Dutch
Intended uses & limitations
---------------------------
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole text (e.g., a clinical report) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2.
How to use
----------
You can use this model directly with a pipeline for masked language modeling:
Here is how to use this model to get the features of a given text in PyTorch:
Limitations and bias
--------------------
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
Training data
-------------
For pretraining, 4,333,201 clinical reports (466,351 consecutive patients) were selected from Ziekenhuisgroep Twente from patients with a diagnostic or interventional visit between 13 July 2000 and 25 April 2023. 180,439 duplicate clinical reports (179,808 patients) were excluded, resulting in 4,152,762 included reports (463,692 patients). These reports were split into training (80%, 3,322,209 reports), validation (10%, 415,276 reports), and testing (10%, 415,277 reports). The testing reports were set aside for future analysis and are not used for pretraining.
Training procedure
------------------
### Pretraining
The model was pretrained using masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence.
The details of the masking procedure for each sentence are the following:
* 15% of the tokens are masked.
* In 80% of the cases, the masked tokens are replaced by '[MASK]'.
* In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
* In the 10% remaining cases, the masked tokens are left as is.
The HuggingFace implementation was used for pretraining: 'run\_mlm.py'.
### Pretraining hyperparameters
The following hyperparameters were used during pretraining:
* 'learning\_rate': 6e-4
* 'train\_batch\_size': 16
* 'eval\_batch\_size': 16
* 'seed': 42
* 'gradient\_accumulation\_steps': 16
* 'total\_train\_batch\_size': 256
* 'optimizer': Adam with betas=(0.9,0.999) and epsilon=1e-08
* 'lr\_scheduler\_type': linear
* 'num\_epochs': 10.0
* 'max\_seq\_length': 512
### Framework versions
* Transformers 4.29.0.dev0
* Pytorch 2.0.0+cu117
* Datasets 2.11.0
* Tokenizers 0.13.3
Evaluation results
------------------
Pending evaluation on the DRAGON benchmark.
### BibTeX entry and citation info
| [
"### Pretraining\n\n\nThe model was pretrained using masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence.\n\n\nThe details of the masking procedure for each sentence are the following:\n\n\n* 15% of the tokens are masked.\n* In 80% of the cases, the masked tokens are replaced by '[MASK]'.\n* In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.\n* In the 10% remaining cases, the masked tokens are left as is.\n\n\nThe HuggingFace implementation was used for pretraining: 'run\\_mlm.py'.",
"### Pretraining hyperparameters\n\n\nThe following hyperparameters were used during pretraining:\n\n\n* 'learning\\_rate': 6e-4\n* 'train\\_batch\\_size': 16\n* 'eval\\_batch\\_size': 16\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 16\n* 'total\\_train\\_batch\\_size': 256\n* 'optimizer': Adam with betas=(0.9,0.999) and epsilon=1e-08\n* 'lr\\_scheduler\\_type': linear\n* 'num\\_epochs': 10.0\n* 'max\\_seq\\_length': 512",
"### Framework versions\n\n\n* Transformers 4.29.0.dev0\n* Pytorch 2.0.0+cu117\n* Datasets 2.11.0\n* Tokenizers 0.13.3\n\n\nEvaluation results\n------------------\n\n\nPending evaluation on the DRAGON benchmark.",
"### BibTeX entry and citation info"
] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #doi-10.57967/hf/2169 #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Pretraining\n\n\nThe model was pretrained using masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence.\n\n\nThe details of the masking procedure for each sentence are the following:\n\n\n* 15% of the tokens are masked.\n* In 80% of the cases, the masked tokens are replaced by '[MASK]'.\n* In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.\n* In the 10% remaining cases, the masked tokens are left as is.\n\n\nThe HuggingFace implementation was used for pretraining: 'run\\_mlm.py'.",
"### Pretraining hyperparameters\n\n\nThe following hyperparameters were used during pretraining:\n\n\n* 'learning\\_rate': 6e-4\n* 'train\\_batch\\_size': 16\n* 'eval\\_batch\\_size': 16\n* 'seed': 42\n* 'gradient\\_accumulation\\_steps': 16\n* 'total\\_train\\_batch\\_size': 256\n* 'optimizer': Adam with betas=(0.9,0.999) and epsilon=1e-08\n* 'lr\\_scheduler\\_type': linear\n* 'num\\_epochs': 10.0\n* 'max\\_seq\\_length': 512",
"### Framework versions\n\n\n* Transformers 4.29.0.dev0\n* Pytorch 2.0.0+cu117\n* Datasets 2.11.0\n* Tokenizers 0.13.3\n\n\nEvaluation results\n------------------\n\n\nPending evaluation on the DRAGON benchmark.",
"### BibTeX entry and citation info"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | cilantro9246/pr83cw7 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:00:58+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: kloodia/raw_bio
type: oasst
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# lora-out
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7317
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.795 | 0.0 | 1 | 1.8088 |
| 1.7519 | 0.25 | 137 | 1.7284 |
| 1.7442 | 0.5 | 274 | 1.7260 |
| 1.7182 | 0.75 | 411 | 1.7249 |
| 1.743 | 1.0 | 548 | 1.7237 |
| 1.7075 | 1.24 | 685 | 1.7265 |
| 1.7264 | 1.49 | 822 | 1.7267 |
| 1.6604 | 1.74 | 959 | 1.7260 |
| 1.6562 | 1.99 | 1096 | 1.7255 |
| 1.6455 | 2.22 | 1233 | 1.7308 |
| 1.6258 | 2.47 | 1370 | 1.7315 |
| 1.6792 | 2.72 | 1507 | 1.7317 |
| 1.6364 | 2.97 | 1644 | 1.7317 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0 | {"license": "other", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "meta-llama/Meta-Llama-3-8B", "model-index": [{"name": "lora-out", "results": []}]} | kloodia/lora-8b-bio | null | [
"peft",
"tensorboard",
"safetensors",
"llama",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B",
"license:other",
"8-bit",
"region:us"
] | null | 2024-04-29T14:02:26+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #llama #generated_from_trainer #base_model-meta-llama/Meta-Llama-3-8B #license-other #8-bit #region-us
| <img src="URL alt="Built with Axolotl" width="200" height="32"/>
See axolotl config
axolotl version: '0.4.0'
lora-out
========
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.7317
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 1
* eval\_batch\_size: 1
* seed: 42
* distributed\_type: multi-GPU
* num\_devices: 4
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 16
* total\_eval\_batch\_size: 4
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_steps: 10
* num\_epochs: 3
### Training results
### Framework versions
* PEFT 0.10.0
* Transformers 4.40.0.dev0
* Pytorch 2.1.2+cu118
* Datasets 2.15.0
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* total\\_eval\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.2+cu118\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
"TAGS\n#peft #tensorboard #safetensors #llama #generated_from_trainer #base_model-meta-llama/Meta-Llama-3-8B #license-other #8-bit #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* total\\_eval\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.2+cu118\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: kloodia/raw_math
type: oasst
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out-math
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# lora-out-math
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0946
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1956 | 0.0 | 1 | 1.1464 |
| 1.1544 | 0.25 | 180 | 1.0905 |
| 1.1932 | 0.5 | 360 | 1.0890 |
| 1.1827 | 0.75 | 540 | 1.0873 |
| 1.0816 | 1.0 | 720 | 1.0861 |
| 1.0741 | 1.24 | 900 | 1.0887 |
| 1.0849 | 1.49 | 1080 | 1.0885 |
| 1.0629 | 1.74 | 1260 | 1.0878 |
| 1.0165 | 1.99 | 1440 | 1.0866 |
| 1.1012 | 2.22 | 1620 | 1.0938 |
| 1.0574 | 2.47 | 1800 | 1.0943 |
| 1.033 | 2.72 | 1980 | 1.0946 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0 | {"license": "other", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "meta-llama/Meta-Llama-3-8B", "model-index": [{"name": "lora-out-math", "results": []}]} | kloodia/lora-8b-math | null | [
"peft",
"tensorboard",
"safetensors",
"llama",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B",
"license:other",
"8-bit",
"region:us"
] | null | 2024-04-29T14:03:16+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #llama #generated_from_trainer #base_model-meta-llama/Meta-Llama-3-8B #license-other #8-bit #region-us
| <img src="URL alt="Built with Axolotl" width="200" height="32"/>
See axolotl config
axolotl version: '0.4.0'
lora-out-math
=============
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0946
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 1
* eval\_batch\_size: 1
* seed: 42
* distributed\_type: multi-GPU
* num\_devices: 4
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 16
* total\_eval\_batch\_size: 4
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_steps: 10
* num\_epochs: 3
### Training results
### Framework versions
* PEFT 0.10.0
* Transformers 4.40.0.dev0
* Pytorch 2.1.2+cu118
* Datasets 2.15.0
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* total\\_eval\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.2+cu118\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
"TAGS\n#peft #tensorboard #safetensors #llama #generated_from_trainer #base_model-meta-llama/Meta-Llama-3-8B #license-other #8-bit #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* total\\_eval\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.2+cu118\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HPY_gpt2_vB.1
This model is a fine-tuned version of [ClassCat/gpt2-base-french](https://huggingface.co/ClassCat/gpt2-base-french) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6582
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 66 | 1.6982 |
| No log | 2.0 | 132 | 1.6749 |
| No log | 2.99 | 198 | 1.6615 |
| No log | 3.99 | 264 | 1.6582 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.13.3
| {"license": "cc-by-sa-4.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "HPY_gpt2_vB.1", "results": []}]} | azizkt/HPY_gpt2_vB.1 | null | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T14:04:35+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| HPY\_gpt2\_vB.1
===============
This model is a fine-tuned version of ClassCat/gpt2-base-french on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.6582
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 8
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 4
### Training results
### Framework versions
* Transformers 4.30.0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.13.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.30.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.30.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.13.3"
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo Orenguteng/Llama-3-8B-Lexi-Uncensored installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/Orenguteng-Llama-3-8B-Lexi-Uncensored-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("Orenguteng/Llama-3-8B-Lexi-Uncensored")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model Orenguteng/Llama-3-8B-Lexi-Uncensored before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "Orenguteng/Llama-3-8B-Lexi-Uncensored"} | PrunaAI/Orenguteng-Llama-3-8B-Lexi-Uncensored-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"pruna-ai",
"conversational",
"base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T14:05:29+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-Orenguteng/Llama-3-8B-Lexi-Uncensored #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo Orenguteng/Llama-3-8B-Lexi-Uncensored installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model Orenguteng/Llama-3-8B-Lexi-Uncensored before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo Orenguteng/Llama-3-8B-Lexi-Uncensored installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model Orenguteng/Llama-3-8B-Lexi-Uncensored before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-Orenguteng/Llama-3-8B-Lexi-Uncensored #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo Orenguteng/Llama-3-8B-Lexi-Uncensored installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model Orenguteng/Llama-3-8B-Lexi-Uncensored before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
text-classification | transformers | ## TextAttack Model Card
This `albert` model was fine-tuned using TextAttack. The model was fine-tuned
for 3 epochs with a batch size of 8,
a maximum sequence length of 512, and an initial learning rate of 3e-05.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9666666666666667, as measured by the
eval set accuracy, found after 3 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack). | {"language": ["zh"], "license": "apache-2.0", "metrics": ["accuracy"], "pipeline_tag": "text-classification"} | WangA/albert-base-finetuned-ctrip | null | [
"transformers",
"safetensors",
"albert",
"text-classification",
"zh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:06:24+00:00 | [] | [
"zh"
] | TAGS
#transformers #safetensors #albert #text-classification #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| ## TextAttack Model Card
This 'albert' model was fine-tuned using TextAttack. The model was fine-tuned
for 3 epochs with a batch size of 8,
a maximum sequence length of 512, and an initial learning rate of 3e-05.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9666666666666667, as measured by the
eval set accuracy, found after 3 epochs.
For more information, check out TextAttack on Github. | [
"## TextAttack Model Card\n\n This 'albert' model was fine-tuned using TextAttack. The model was fine-tuned\n for 3 epochs with a batch size of 8,\n a maximum sequence length of 512, and an initial learning rate of 3e-05.\n Since this was a classification task, the model was trained with a cross-entropy loss function.\n The best score the model achieved on this task was 0.9666666666666667, as measured by the\n eval set accuracy, found after 3 epochs.\n\n For more information, check out TextAttack on Github."
] | [
"TAGS\n#transformers #safetensors #albert #text-classification #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"## TextAttack Model Card\n\n This 'albert' model was fine-tuned using TextAttack. The model was fine-tuned\n for 3 epochs with a batch size of 8,\n a maximum sequence length of 512, and an initial learning rate of 3e-05.\n Since this was a classification task, the model was trained with a cross-entropy loss function.\n The best score the model achieved on this task was 0.9666666666666667, as measured by the\n eval set accuracy, found after 3 epochs.\n\n For more information, check out TextAttack on Github."
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma-2b-dpo
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "gemma", "library_name": "peft", "tags": ["trl", "dpo", "unsloth", "generated_from_trainer"], "base_model": "google/gemma-2b", "model-index": [{"name": "gemma-2b-dpo", "results": []}]} | DuongTrongChi/gemma-2b-dpo | null | [
"peft",
"tensorboard",
"safetensors",
"trl",
"dpo",
"unsloth",
"generated_from_trainer",
"base_model:google/gemma-2b",
"license:gemma",
"region:us"
] | null | 2024-04-29T14:06:54+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #trl #dpo #unsloth #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us
|
# gemma-2b-dpo
This model is a fine-tuned version of google/gemma-2b on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 | [
"# gemma-2b-dpo\n\nThis model is a fine-tuned version of google/gemma-2b on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] | [
"TAGS\n#peft #tensorboard #safetensors #trl #dpo #unsloth #generated_from_trainer #base_model-google/gemma-2b #license-gemma #region-us \n",
"# gemma-2b-dpo\n\nThis model is a fine-tuned version of google/gemma-2b on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | shallow6414/o6vmsz7 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T14:07:43+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-to-image | diffusers |
# SDXL LoRA DreamBooth - aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone
<Gallery />
## Model description
### These are aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone.safetensors` here 💾](/aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone/blob/main//home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb.safetensors` here 💾](/aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone/blob/main//home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb` to your prompt. For example, `A photo of /home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone', filename='/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('A photo of <s0><s1> giving a speech').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Details
All [Files & versions](/aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
| {"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "diffusers-training", "text-to-image", "diffusers", "lora", "template:sd-lora"], "widget": [{"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_0.png"}}, {"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_1.png"}}, {"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_2.png"}}, {"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_3.png"}}], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "A photo of <s0><s1>"} | aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone | null | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"diffusers-training",
"text-to-image",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | null | 2024-04-29T14:07:51+00:00 | [] | [] | TAGS
#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #diffusers-training #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
|
# SDXL LoRA DreamBooth - aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone
<Gallery />
## Model description
### These are aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- LoRA: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone.safetensors' here .
- Place it on your 'models/Lora' folder.
- On AUTOMATIC1111, load the LoRA by adding '<lora:/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone:1>' to your prompt. On ComfyUI just load it as a regular LoRA.
- *Embeddings*: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb.safetensors' here .
- Place it on it on your 'embeddings' folder
- Use it by adding '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb' to your prompt. For example, 'A photo of /home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb'
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the diffusers library
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept 'TOK' → use '<s0><s1>' in your prompt
## Details
All Files & versions.
The weights were trained using diffusers Advanced Dreambooth Training Script.
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
| [
"# SDXL LoRA DreamBooth - aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone\n\n<Gallery />",
"## Model description",
"### These are aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.",
"## Download model",
"### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke\n\n- LoRA: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone.safetensors' here .\n - Place it on your 'models/Lora' folder.\n - On AUTOMATIC1111, load the LoRA by adding '<lora:/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone:1>' to your prompt. On ComfyUI just load it as a regular LoRA.\n- *Embeddings*: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb.safetensors' here .\n - Place it on it on your 'embeddings' folder\n - Use it by adding '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb' to your prompt. For example, 'A photo of /home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb'\n (you need both the LoRA and the embeddings as they were trained together for this LoRA)",
"## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers",
"## Trigger words\n\nTo trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:\n\nto trigger concept 'TOK' → use '<s0><s1>' in your prompt",
"## Details\nAll Files & versions.\n\nThe weights were trained using diffusers Advanced Dreambooth Training Script.\n\nLoRA for the text encoder was enabled. False.\n\nPivotal tuning was enabled: True.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix."
] | [
"TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #diffusers-training #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n",
"# SDXL LoRA DreamBooth - aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone\n\n<Gallery />",
"## Model description",
"### These are aarashfeizi/jean-francois-godbout-batch4-repeats4-rank8-snrNone LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.",
"## Download model",
"### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke\n\n- LoRA: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone.safetensors' here .\n - Place it on your 'models/Lora' folder.\n - On AUTOMATIC1111, load the LoRA by adding '<lora:/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone:1>' to your prompt. On ComfyUI just load it as a regular LoRA.\n- *Embeddings*: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb.safetensors' here .\n - Place it on it on your 'embeddings' folder\n - Use it by adding '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb' to your prompt. For example, 'A photo of /home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank8-snrNone_emb'\n (you need both the LoRA and the embeddings as they were trained together for this LoRA)",
"## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers",
"## Trigger words\n\nTo trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:\n\nto trigger concept 'TOK' → use '<s0><s1>' in your prompt",
"## Details\nAll Files & versions.\n\nThe weights were trained using diffusers Advanced Dreambooth Training Script.\n\nLoRA for the text encoder was enabled. False.\n\nPivotal tuning was enabled: True.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix."
] |
text-classification | setfit |
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a OneVsRestClassifier instance
- **Maximum Sequence Length:** 512 tokens
<!-- - **Number of Classes:** Unknown -->
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.3217 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("amitprgx/setfit-categorization")
# Run inference
preds = model("300108")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 4.7197 | 10 |
### Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.0008 | 1 | 0.1444 | - |
| 0.0379 | 50 | 0.1563 | - |
| 0.0758 | 100 | 0.2163 | - |
| 0.1136 | 150 | 0.3125 | - |
| 0.1515 | 200 | 0.2152 | - |
| 0.1894 | 250 | 0.2731 | - |
| 0.2273 | 300 | 0.2788 | - |
| 0.2652 | 350 | 0.2315 | - |
| 0.3030 | 400 | 0.1847 | - |
| 0.3409 | 450 | 0.1253 | - |
| 0.3788 | 500 | 0.1363 | - |
| 0.4167 | 550 | 0.1816 | - |
| 0.4545 | 600 | 0.1957 | - |
| 0.4924 | 650 | 0.1931 | - |
| 0.5303 | 700 | 0.1392 | - |
| 0.5682 | 750 | 0.0613 | - |
| 0.6061 | 800 | 0.0403 | - |
| 0.6439 | 850 | 0.0796 | - |
| 0.6818 | 900 | 0.0661 | - |
| 0.7197 | 950 | 0.1207 | - |
| 0.7576 | 1000 | 0.0795 | - |
| 0.7955 | 1050 | 0.0439 | - |
| 0.8333 | 1100 | 0.0744 | - |
| 0.8712 | 1150 | 0.0972 | - |
| 0.9091 | 1200 | 0.0512 | - |
| 0.9470 | 1250 | 0.0335 | - |
| 0.9848 | 1300 | 0.0092 | - |
| 1.0227 | 1350 | 0.0489 | - |
| 1.0606 | 1400 | 0.0176 | - |
| 1.0985 | 1450 | 0.0302 | - |
| 1.1364 | 1500 | 0.0811 | - |
| 1.1742 | 1550 | 0.0181 | - |
| 1.2121 | 1600 | 0.0354 | - |
| 1.25 | 1650 | 0.0183 | - |
| 1.2879 | 1700 | 0.0167 | - |
| 1.3258 | 1750 | 0.006 | - |
| 1.3636 | 1800 | 0.0294 | - |
| 1.4015 | 1850 | 0.0342 | - |
| 1.4394 | 1900 | 0.005 | - |
| 1.4773 | 1950 | 0.0044 | - |
| 1.5152 | 2000 | 0.0069 | - |
| 1.5530 | 2050 | 0.0051 | - |
| 1.5909 | 2100 | 0.0375 | - |
| 1.6288 | 2150 | 0.0123 | - |
| 1.6667 | 2200 | 0.0058 | - |
| 1.7045 | 2250 | 0.0086 | - |
| 1.7424 | 2300 | 0.0141 | - |
| 1.7803 | 2350 | 0.0014 | - |
| 1.8182 | 2400 | 0.0047 | - |
| 1.8561 | 2450 | 0.0018 | - |
| 1.8939 | 2500 | 0.0063 | - |
| 1.9318 | 2550 | 0.0018 | - |
| 1.9697 | 2600 | 0.0032 | - |
| 2.0076 | 2650 | 0.001 | - |
| 2.0455 | 2700 | 0.0165 | - |
| 2.0833 | 2750 | 0.0773 | - |
| 2.1212 | 2800 | 0.0014 | - |
| 2.1591 | 2850 | 0.0105 | - |
| 2.1970 | 2900 | 0.0013 | - |
| 2.2348 | 2950 | 0.0009 | - |
| 2.2727 | 3000 | 0.0034 | - |
| 2.3106 | 3050 | 0.0013 | - |
| 2.3485 | 3100 | 0.0065 | - |
| 2.3864 | 3150 | 0.0008 | - |
| 2.4242 | 3200 | 0.1143 | - |
| 2.4621 | 3250 | 0.0036 | - |
| 2.5 | 3300 | 0.0254 | - |
| 2.5379 | 3350 | 0.0023 | - |
| 2.5758 | 3400 | 0.004 | - |
| 2.6136 | 3450 | 0.0034 | - |
| 2.6515 | 3500 | 0.0019 | - |
| 2.6894 | 3550 | 0.001 | - |
| 2.7273 | 3600 | 0.1044 | - |
| 2.7652 | 3650 | 0.0005 | - |
| 2.8030 | 3700 | 0.0955 | - |
| 2.8409 | 3750 | 0.0011 | - |
| 2.8788 | 3800 | 0.0018 | - |
| 2.9167 | 3850 | 0.0017 | - |
| 2.9545 | 3900 | 0.0007 | - |
| 2.9924 | 3950 | 0.001 | - |
| 3.0303 | 4000 | 0.0009 | - |
| 3.0682 | 4050 | 0.001 | - |
| 3.1061 | 4100 | 0.0035 | - |
| 3.1439 | 4150 | 0.0009 | - |
| 3.1818 | 4200 | 0.0009 | - |
| 3.2197 | 4250 | 0.0005 | - |
| 3.2576 | 4300 | 0.0011 | - |
| 3.2955 | 4350 | 0.0007 | - |
| 3.3333 | 4400 | 0.0007 | - |
| 3.3712 | 4450 | 0.0003 | - |
| 3.4091 | 4500 | 0.0008 | - |
| 3.4470 | 4550 | 0.0007 | - |
| 3.4848 | 4600 | 0.0004 | - |
| 3.5227 | 4650 | 0.0011 | - |
| 3.5606 | 4700 | 0.0009 | - |
| 3.5985 | 4750 | 0.0004 | - |
| 3.6364 | 4800 | 0.0006 | - |
| 3.6742 | 4850 | 0.0012 | - |
| 3.7121 | 4900 | 0.0004 | - |
| 3.75 | 4950 | 0.0003 | - |
| 3.7879 | 5000 | 0.0005 | - |
| 3.8258 | 5050 | 0.0007 | - |
| 3.8636 | 5100 | 0.0012 | - |
| 3.9015 | 5150 | 0.0003 | - |
| 3.9394 | 5200 | 0.0009 | - |
| 3.9773 | 5250 | 0.0003 | - |
| 4.0152 | 5300 | 0.0003 | - |
| 4.0530 | 5350 | 0.0005 | - |
| 4.0909 | 5400 | 0.0004 | - |
| 4.1288 | 5450 | 0.0003 | - |
| 4.1667 | 5500 | 0.0003 | - |
| 4.2045 | 5550 | 0.0011 | - |
| 4.2424 | 5600 | 0.0002 | - |
| 4.2803 | 5650 | 0.0004 | - |
| 4.3182 | 5700 | 0.0009 | - |
| 4.3561 | 5750 | 0.0003 | - |
| 4.3939 | 5800 | 0.0002 | - |
| 4.4318 | 5850 | 0.0008 | - |
| 4.4697 | 5900 | 0.0003 | - |
| 4.5076 | 5950 | 0.0004 | - |
| 4.5455 | 6000 | 0.0272 | - |
| 4.5833 | 6050 | 0.0012 | - |
| 4.6212 | 6100 | 0.0006 | - |
| 4.6591 | 6150 | 0.0005 | - |
| 4.6970 | 6200 | 0.0011 | - |
| 4.7348 | 6250 | 0.0003 | - |
| 4.7727 | 6300 | 0.0003 | - |
| 4.8106 | 6350 | 0.0026 | - |
| 4.8485 | 6400 | 0.0007 | - |
| 4.8864 | 6450 | 0.0002 | - |
| 4.9242 | 6500 | 0.0007 | - |
| 4.9621 | 6550 | 0.0004 | - |
| 5.0 | 6600 | 0.0002 | - |
| 5.0379 | 6650 | 0.0002 | - |
| 5.0758 | 6700 | 0.0003 | - |
| 5.1136 | 6750 | 0.0004 | - |
| 5.1515 | 6800 | 0.0007 | - |
| 5.1894 | 6850 | 0.0002 | - |
| 5.2273 | 6900 | 0.0002 | - |
| 5.2652 | 6950 | 0.0001 | - |
| 5.3030 | 7000 | 0.0003 | - |
| 5.3409 | 7050 | 0.0001 | - |
| 5.3788 | 7100 | 0.0002 | - |
| 5.4167 | 7150 | 0.0003 | - |
| 5.4545 | 7200 | 0.0006 | - |
| 5.4924 | 7250 | 0.0002 | - |
| 5.5303 | 7300 | 0.0002 | - |
| 5.5682 | 7350 | 0.0002 | - |
| 5.6061 | 7400 | 0.0004 | - |
| 5.6439 | 7450 | 0.0003 | - |
| 5.6818 | 7500 | 0.0002 | - |
| 5.7197 | 7550 | 0.0002 | - |
| 5.7576 | 7600 | 0.0002 | - |
| 5.7955 | 7650 | 0.0005 | - |
| 5.8333 | 7700 | 0.0013 | - |
| 5.8712 | 7750 | 0.0002 | - |
| 5.9091 | 7800 | 0.0015 | - |
| 5.9470 | 7850 | 0.0001 | - |
| 5.9848 | 7900 | 0.0002 | - |
| 6.0227 | 7950 | 0.0001 | - |
| 6.0606 | 8000 | 0.0015 | - |
| 6.0985 | 8050 | 0.0004 | - |
| 6.1364 | 8100 | 0.0373 | - |
| 6.1742 | 8150 | 0.0003 | - |
| 6.2121 | 8200 | 0.0002 | - |
| 6.25 | 8250 | 0.0003 | - |
| 6.2879 | 8300 | 0.0003 | - |
| 6.3258 | 8350 | 0.0003 | - |
| 6.3636 | 8400 | 0.0002 | - |
| 6.4015 | 8450 | 0.0001 | - |
| 6.4394 | 8500 | 0.0004 | - |
| 6.4773 | 8550 | 0.0002 | - |
| 6.5152 | 8600 | 0.0002 | - |
| 6.5530 | 8650 | 0.0002 | - |
| 6.5909 | 8700 | 0.0004 | - |
| 6.6288 | 8750 | 0.0002 | - |
| 6.6667 | 8800 | 0.0001 | - |
| 6.7045 | 8850 | 0.0003 | - |
| 6.7424 | 8900 | 0.0001 | - |
| 6.7803 | 8950 | 0.0002 | - |
| 6.8182 | 9000 | 0.0003 | - |
| 6.8561 | 9050 | 0.0002 | - |
| 6.8939 | 9100 | 0.0002 | - |
| 6.9318 | 9150 | 0.0001 | - |
| 6.9697 | 9200 | 0.0001 | - |
| 7.0076 | 9250 | 0.0002 | - |
| 7.0455 | 9300 | 0.0002 | - |
| 7.0833 | 9350 | 0.0002 | - |
| 7.1212 | 9400 | 0.0001 | - |
| 7.1591 | 9450 | 0.0002 | - |
| 7.1970 | 9500 | 0.0003 | - |
| 7.2348 | 9550 | 0.0005 | - |
| 7.2727 | 9600 | 0.0002 | - |
| 7.3106 | 9650 | 0.0002 | - |
| 7.3485 | 9700 | 0.0002 | - |
| 7.3864 | 9750 | 0.0002 | - |
| 7.4242 | 9800 | 0.0002 | - |
| 7.4621 | 9850 | 0.0001 | - |
| 7.5 | 9900 | 0.0001 | - |
| 7.5379 | 9950 | 0.0002 | - |
| 7.5758 | 10000 | 0.0001 | - |
| 7.6136 | 10050 | 0.0001 | - |
| 7.6515 | 10100 | 0.0001 | - |
| 7.6894 | 10150 | 0.0002 | - |
| 7.7273 | 10200 | 0.0002 | - |
| 7.7652 | 10250 | 0.0001 | - |
| 7.8030 | 10300 | 0.0002 | - |
| 7.8409 | 10350 | 0.0003 | - |
| 7.8788 | 10400 | 0.0002 | - |
| 7.9167 | 10450 | 0.0002 | - |
| 7.9545 | 10500 | 0.0001 | - |
| 7.9924 | 10550 | 0.0002 | - |
| 8.0303 | 10600 | 0.0002 | - |
| 8.0682 | 10650 | 0.0002 | - |
| 8.1061 | 10700 | 0.0002 | - |
| 8.1439 | 10750 | 0.0001 | - |
| 8.1818 | 10800 | 0.0001 | - |
| 8.2197 | 10850 | 0.0001 | - |
| 8.2576 | 10900 | 0.0001 | - |
| 8.2955 | 10950 | 0.0001 | - |
| 8.3333 | 11000 | 0.0002 | - |
| 8.3712 | 11050 | 0.0007 | - |
| 8.4091 | 11100 | 0.0001 | - |
| 8.4470 | 11150 | 0.0002 | - |
| 8.4848 | 11200 | 0.0001 | - |
| 8.5227 | 11250 | 0.0002 | - |
| 8.5606 | 11300 | 0.0001 | - |
| 8.5985 | 11350 | 0.0001 | - |
| 8.6364 | 11400 | 0.0001 | - |
| 8.6742 | 11450 | 0.0001 | - |
| 8.7121 | 11500 | 0.0002 | - |
| 8.75 | 11550 | 0.0001 | - |
| 8.7879 | 11600 | 0.0001 | - |
| 8.8258 | 11650 | 0.0001 | - |
| 8.8636 | 11700 | 0.0001 | - |
| 8.9015 | 11750 | 0.0001 | - |
| 8.9394 | 11800 | 0.0001 | - |
| 8.9773 | 11850 | 0.0001 | - |
| 9.0152 | 11900 | 0.0001 | - |
| 9.0530 | 11950 | 0.0001 | - |
| 9.0909 | 12000 | 0.0001 | - |
| 9.1288 | 12050 | 0.0001 | - |
| 9.1667 | 12100 | 0.0002 | - |
| 9.2045 | 12150 | 0.0001 | - |
| 9.2424 | 12200 | 0.0001 | - |
| 9.2803 | 12250 | 0.0002 | - |
| 9.3182 | 12300 | 0.0002 | - |
| 9.3561 | 12350 | 0.0002 | - |
| 9.3939 | 12400 | 0.0001 | - |
| 9.4318 | 12450 | 0.0003 | - |
| 9.4697 | 12500 | 0.0001 | - |
| 9.5076 | 12550 | 0.0001 | - |
| 9.5455 | 12600 | 0.0001 | - |
| 9.5833 | 12650 | 0.0002 | - |
| 9.6212 | 12700 | 0.0001 | - |
| 9.6591 | 12750 | 0.0002 | - |
| 9.6970 | 12800 | 0.0002 | - |
| 9.7348 | 12850 | 0.0001 | - |
| 9.7727 | 12900 | 0.0001 | - |
| 9.8106 | 12950 | 0.0001 | - |
| 9.8485 | 13000 | 0.0001 | - |
| 9.8864 | 13050 | 0.0001 | - |
| 9.9242 | 13100 | 0.0001 | - |
| 9.9621 | 13150 | 0.0001 | - |
| 10.0 | 13200 | 0.0002 | - |
### Framework Versions
- Python: 3.11.8
- SetFit: 1.1.0.dev0
- Sentence Transformers: 2.6.1
- Transformers: 4.39.3
- PyTorch: 1.13.1+cu117
- Datasets: 2.19.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> | {"library_name": "setfit", "tags": ["setfit", "sentence-transformers", "text-classification", "generated_from_setfit_trainer"], "metrics": ["accuracy"], "base_model": "sentence-transformers/paraphrase-mpnet-base-v2", "widget": [{"text": "BI 8U-Q10-AP6X2-V1131 SENSOR QUICK DISCO"}, {"text": "48-08-0551 FOLDING MITRE SAW STAND"}, {"text": "JAS-LEB04-M3 COMPACT SPEED CONTROLLER"}, {"text": "LWFS37C2R1025HS2/E37.5 RAIL"}, {"text": "300108"}], "pipeline_tag": "text-classification", "inference": false, "model-index": [{"name": "SetFit with sentence-transformers/paraphrase-mpnet-base-v2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "Unknown", "type": "unknown", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.3217244143582435, "name": "Accuracy"}]}]}]} | amitprgx/setfit-categorization | null | [
"setfit",
"safetensors",
"mpnet",
"sentence-transformers",
"text-classification",
"generated_from_setfit_trainer",
"arxiv:2209.11055",
"base_model:sentence-transformers/paraphrase-mpnet-base-v2",
"model-index",
"region:us"
] | null | 2024-04-29T14:09:46+00:00 | [
"2209.11055"
] | [] | TAGS
#setfit #safetensors #mpnet #sentence-transformers #text-classification #generated_from_setfit_trainer #arxiv-2209.11055 #base_model-sentence-transformers/paraphrase-mpnet-base-v2 #model-index #region-us
| SetFit with sentence-transformers/paraphrase-mpnet-base-v2
==========================================================
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a Sentence Transformer with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
-------------
### Model Description
* Model Type: SetFit
* Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
* Classification head: a OneVsRestClassifier instance
* Maximum Sequence Length: 512 tokens
### Model Sources
* Repository: SetFit on GitHub
* Paper: Efficient Few-Shot Learning Without Prompts
* Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
----------
### Metrics
Uses
----
### Direct Use for Inference
First install the SetFit library:
Then you can load this model and run inference.
Training Details
----------------
### Training Set Metrics
### Training Hyperparameters
* batch\_size: (8, 8)
* num\_epochs: (10, 10)
* max\_steps: -1
* sampling\_strategy: oversampling
* num\_iterations: 20
* body\_learning\_rate: (2e-05, 2e-05)
* head\_learning\_rate: 2e-05
* loss: CosineSimilarityLoss
* distance\_metric: cosine\_distance
* margin: 0.25
* end\_to\_end: False
* use\_amp: False
* warmup\_proportion: 0.1
* seed: 42
* eval\_max\_steps: -1
* load\_best\_model\_at\_end: False
### Training Results
### Framework Versions
* Python: 3.11.8
* SetFit: 1.1.0.dev0
* Sentence Transformers: 2.6.1
* Transformers: 4.39.3
* PyTorch: 1.13.1+cu117
* Datasets: 2.19.0
* Tokenizers: 0.15.2
### BibTeX
| [
"### Model Description\n\n\n* Model Type: SetFit\n* Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2\n* Classification head: a OneVsRestClassifier instance\n* Maximum Sequence Length: 512 tokens",
"### Model Sources\n\n\n* Repository: SetFit on GitHub\n* Paper: Efficient Few-Shot Learning Without Prompts\n* Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts\n\n\nEvaluation\n----------",
"### Metrics\n\n\n\nUses\n----",
"### Direct Use for Inference\n\n\nFirst install the SetFit library:\n\n\nThen you can load this model and run inference.\n\n\nTraining Details\n----------------",
"### Training Set Metrics",
"### Training Hyperparameters\n\n\n* batch\\_size: (8, 8)\n* num\\_epochs: (10, 10)\n* max\\_steps: -1\n* sampling\\_strategy: oversampling\n* num\\_iterations: 20\n* body\\_learning\\_rate: (2e-05, 2e-05)\n* head\\_learning\\_rate: 2e-05\n* loss: CosineSimilarityLoss\n* distance\\_metric: cosine\\_distance\n* margin: 0.25\n* end\\_to\\_end: False\n* use\\_amp: False\n* warmup\\_proportion: 0.1\n* seed: 42\n* eval\\_max\\_steps: -1\n* load\\_best\\_model\\_at\\_end: False",
"### Training Results",
"### Framework Versions\n\n\n* Python: 3.11.8\n* SetFit: 1.1.0.dev0\n* Sentence Transformers: 2.6.1\n* Transformers: 4.39.3\n* PyTorch: 1.13.1+cu117\n* Datasets: 2.19.0\n* Tokenizers: 0.15.2",
"### BibTeX"
] | [
"TAGS\n#setfit #safetensors #mpnet #sentence-transformers #text-classification #generated_from_setfit_trainer #arxiv-2209.11055 #base_model-sentence-transformers/paraphrase-mpnet-base-v2 #model-index #region-us \n",
"### Model Description\n\n\n* Model Type: SetFit\n* Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2\n* Classification head: a OneVsRestClassifier instance\n* Maximum Sequence Length: 512 tokens",
"### Model Sources\n\n\n* Repository: SetFit on GitHub\n* Paper: Efficient Few-Shot Learning Without Prompts\n* Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts\n\n\nEvaluation\n----------",
"### Metrics\n\n\n\nUses\n----",
"### Direct Use for Inference\n\n\nFirst install the SetFit library:\n\n\nThen you can load this model and run inference.\n\n\nTraining Details\n----------------",
"### Training Set Metrics",
"### Training Hyperparameters\n\n\n* batch\\_size: (8, 8)\n* num\\_epochs: (10, 10)\n* max\\_steps: -1\n* sampling\\_strategy: oversampling\n* num\\_iterations: 20\n* body\\_learning\\_rate: (2e-05, 2e-05)\n* head\\_learning\\_rate: 2e-05\n* loss: CosineSimilarityLoss\n* distance\\_metric: cosine\\_distance\n* margin: 0.25\n* end\\_to\\_end: False\n* use\\_amp: False\n* warmup\\_proportion: 0.1\n* seed: 42\n* eval\\_max\\_steps: -1\n* load\\_best\\_model\\_at\\_end: False",
"### Training Results",
"### Framework Versions\n\n\n* Python: 3.11.8\n* SetFit: 1.1.0.dev0\n* Sentence Transformers: 2.6.1\n* Transformers: 4.39.3\n* PyTorch: 1.13.1+cu117\n* Datasets: 2.19.0\n* Tokenizers: 0.15.2",
"### BibTeX"
] |
token-classification | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Ornelas7/model-token-classification-bert-base-NER | null | [
"transformers",
"safetensors",
"bert",
"token-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:11:09+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #bert #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #bert #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/qnkumwv | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:12:18+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/4pz3n98 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:12:24+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` | {"license": "other", "library_name": "transformers", "tags": ["autotrain", "text-generation-inference", "text-generation", "peft"], "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]} | abhishek/autotrain-llama3-oh-sft-v0-3 | null | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"autotrain",
"text-generation-inference",
"peft",
"conversational",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:12:29+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #llama #text-generation #autotrain #text-generation-inference #peft #conversational #license-other #autotrain_compatible #endpoints_compatible #region-us
|
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit AutoTrain.
# Usage
| [
"# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.",
"# Usage"
] | [
"TAGS\n#transformers #tensorboard #safetensors #llama #text-generation #autotrain #text-generation-inference #peft #conversational #license-other #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.",
"# Usage"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/xwpjcq4 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:12:29+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
token-classification | flair |
## HunFlair2 model for ENHANCER
[HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR2.md) (biomedical flair) for enhancer entity:
- pre-trained language model: michiyasunaga/BioLinkBERT-base
- fine-tuned on RegEl corpus for `Enhancer` entity type
Predicts 1 tag:
| **tag** | **meaning** |
| -------- | ------------------- |
| Enhancer | DNA enhancer region |
______________________________________________________________________
## Info
### Demo: How to use in Flair
Requires:
- **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`)
```python
from flair.data import Sentence
from flair.nn import Classifier
from flair.tokenization import SciSpacyTokenizer
text = "An upstream activator of the mitogen-activated protein (MAP) kinase pathways was used to isolate an enhancer element located between -89 and -50 bp in PAI-1 promoter that was activated by MEKK-1."
sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer())
tagger = Classifier.load("regel-corpus/hunflair2-regel-enhancer")
tagger.predict(sentence)
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
print(entity)
```
| {"language": "en", "tags": ["flair", "hunflair", "token-classification", "sequence-tagger-model"], "widget": [{"text": "Isolate an enhancer element located between -89 and -50 bp in PAI-1"}]} | regel-corpus/hunflair2-regel-enhancer | null | [
"flair",
"pytorch",
"hunflair",
"token-classification",
"sequence-tagger-model",
"en",
"region:us"
] | null | 2024-04-29T14:14:34+00:00 | [] | [
"en"
] | TAGS
#flair #pytorch #hunflair #token-classification #sequence-tagger-model #en #region-us
| HunFlair2 model for ENHANCER
----------------------------
HunFlair (biomedical flair) for enhancer entity:
* pre-trained language model: michiyasunaga/BioLinkBERT-base
* fine-tuned on RegEl corpus for 'Enhancer' entity type
Predicts 1 tag:
---
Info
----
### Demo: How to use in Flair
Requires:
* Flair>=0.14.0 ('pip install flair' or 'pip install git+URL
| [
"### Demo: How to use in Flair\n\n\nRequires:\n\n\n* Flair>=0.14.0 ('pip install flair' or 'pip install git+URL"
] | [
"TAGS\n#flair #pytorch #hunflair #token-classification #sequence-tagger-model #en #region-us \n",
"### Demo: How to use in Flair\n\n\nRequires:\n\n\n* Flair>=0.14.0 ('pip install flair' or 'pip install git+URL"
] |
automatic-speech-recognition | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | tgrhn/wav2vec2-turkish-300m-9 | null | [
"transformers",
"tensorboard",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:15:19+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | mlx |
# GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0-mlx
This quantized low-bit model was converted to MLX format from [`GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0`]().
Refer to the [original model card](https://huggingface.co/GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0) for more details on the model.
## Use with mlx
```bash
pip install gbx-lm
```
```python
from gbx_lm import load, generate
model, tokenizer = load("GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0-mlx")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
| {"license": "apache-2.0", "tags": ["mlx"]} | GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0-mlx | null | [
"mlx",
"safetensors",
"llama",
"license:apache-2.0",
"region:us"
] | null | 2024-04-29T14:16:28+00:00 | [] | [] | TAGS
#mlx #safetensors #llama #license-apache-2.0 #region-us
|
# GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0-mlx
This quantized low-bit model was converted to MLX format from ['GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0']().
Refer to the original model card for more details on the model.
## Use with mlx
| [
"# GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0-mlx\nThis quantized low-bit model was converted to MLX format from ['GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0']().\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] | [
"TAGS\n#mlx #safetensors #llama #license-apache-2.0 #region-us \n",
"# GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0-mlx\nThis quantized low-bit model was converted to MLX format from ['GreenBitAI/Llama-3-8B-instruct-layer-mix-bpw-4.0']().\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] |
null | null | # YuisekinAIEvol-Mistral-7B-ja-math-v0.1.1-gguf
[yuisekiさんが公開しているYuisekinAIEvol-Mistral-7B-ja-math-v0.1.1](https://huggingface.co/yuiseki/YuisekinAIEvol-Mistral-7B-ja-math-v0.1.1)のggufフォーマット変換版です。
imatrixのデータは[TFMC/imatrix-dataset-for-japanese-llm](https://huggingface.co/datasets/TFMC/imatrix-dataset-for-japanese-llm)を使用して作成しました。
## Usage
```
git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp
make -j
./main -m 'YuisekinAIEvol-Mistral-7B-ja-math-v0.1.1-Q4_0.gguf' -p "[INST] 今晩の夕食のレシピを教えて [/INST] " -n 128
``` | {"language": ["en", "ja"], "license": "apache-2.0", "datasets": ["TFMC/imatrix-dataset-for-japanese-llm"]} | mmnga/YuisekinAIEvol-Mistral-7B-ja-math-v0.1.1-gguf | null | [
"gguf",
"en",
"ja",
"dataset:TFMC/imatrix-dataset-for-japanese-llm",
"license:apache-2.0",
"region:us"
] | null | 2024-04-29T14:18:07+00:00 | [] | [
"en",
"ja"
] | TAGS
#gguf #en #ja #dataset-TFMC/imatrix-dataset-for-japanese-llm #license-apache-2.0 #region-us
| # YuisekinAIEvol-Mistral-7B-ja-math-v0.1.1-gguf
yuisekiさんが公開しているYuisekinAIEvol-Mistral-7B-ja-math-v0.1.1のggufフォーマット変換版です。
imatrixのデータはTFMC/imatrix-dataset-for-japanese-llmを使用して作成しました。
## Usage
| [
"# YuisekinAIEvol-Mistral-7B-ja-math-v0.1.1-gguf \nyuisekiさんが公開しているYuisekinAIEvol-Mistral-7B-ja-math-v0.1.1のggufフォーマット変換版です。\n\nimatrixのデータはTFMC/imatrix-dataset-for-japanese-llmを使用して作成しました。",
"## Usage"
] | [
"TAGS\n#gguf #en #ja #dataset-TFMC/imatrix-dataset-for-japanese-llm #license-apache-2.0 #region-us \n",
"# YuisekinAIEvol-Mistral-7B-ja-math-v0.1.1-gguf \nyuisekiさんが公開しているYuisekinAIEvol-Mistral-7B-ja-math-v0.1.1のggufフォーマット変換版です。\n\nimatrixのデータはTFMC/imatrix-dataset-for-japanese-llmを使用して作成しました。",
"## Usage"
] |
text-classification | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Lakshit11/bert-16-categories_with_others | null | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:18:32+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo openlynn/Llama-3-Soliloquy-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/openlynn-Llama-3-Soliloquy-8B-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("openlynn/Llama-3-Soliloquy-8B")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model openlynn/Llama-3-Soliloquy-8B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "openlynn/Llama-3-Soliloquy-8B"} | PrunaAI/openlynn-Llama-3-Soliloquy-8B-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"pruna-ai",
"conversational",
"base_model:openlynn/Llama-3-Soliloquy-8B",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T14:18:32+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-openlynn/Llama-3-Soliloquy-8B #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo openlynn/Llama-3-Soliloquy-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model openlynn/Llama-3-Soliloquy-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo openlynn/Llama-3-Soliloquy-8B installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model openlynn/Llama-3-Soliloquy-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-openlynn/Llama-3-Soliloquy-8B #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo openlynn/Llama-3-Soliloquy-8B installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model openlynn/Llama-3-Soliloquy-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | NikiBase/bloomz-560m_PROMPT_TUNING_CAUSAL_LM | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:19:05+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
feature-extraction | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Teera/sentence-transformers-mini-thai-v-3 | null | [
"transformers",
"safetensors",
"bert",
"feature-extraction",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:19:06+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Teera/sentence-transformers-mini-thai-v3 | null | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:19:22+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HPY_gpt2_vB.2
This model is a fine-tuned version of [ClassCat/gpt2-base-french](https://huggingface.co/ClassCat/gpt2-base-french) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5851
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 139 | 1.6318 |
| No log | 1.99 | 279 | 1.6035 |
| No log | 3.0 | 419 | 1.5899 |
| 1.5825 | 3.97 | 556 | 1.5851 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.13.3
| {"license": "cc-by-sa-4.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "HPY_gpt2_vB.2", "results": []}]} | azizkt/HPY_gpt2_vB.2 | null | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T14:20:29+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| HPY\_gpt2\_vB.2
===============
This model is a fine-tuned version of ClassCat/gpt2-base-french on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.5851
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 8
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 4
### Training results
### Framework versions
* Transformers 4.30.0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.13.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.30.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-cc-by-sa-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.30.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.13.3"
] |
token-classification | flair |
## HunFlair2 model for PROMOTER
[HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR2.md) (biomedical flair) for enhancer entity:
- pre-trained language model: michiyasunaga/BioLinkBERT-base
- fine-tuned on RegEl corpus for `Promoter` entity type
Predicts 1 tag:
| **tag** | **meaning** |
| -------- | ------------------- |
| Promoter | DNA promoter region |
______________________________________________________________________
## Info
### Demo: How to use in Flair
Requires:
- **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`)
```python
from flair.data import Sentence
from flair.nn import Classifier
from flair.tokenization import SciSpacyTokenizer
text = "The upstream region of the glnA gene contained two putative extended promoter consensus sequences (p1 and p2)."
sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer())
tagger = Classifier.load("regel-corpus/hunflair2-regel-promoter")
tagger.predict(sentence)
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
print(entity)
```
| {"language": "en", "tags": ["flair", "hunflair", "token-classification", "sequence-tagger-model"], "widget": [{"text": "Two putative extended promoters consensus sequences (p1 and p2)."}]} | regel-corpus/hunflair2-regel-promoter | null | [
"flair",
"pytorch",
"hunflair",
"token-classification",
"sequence-tagger-model",
"en",
"region:us"
] | null | 2024-04-29T14:21:05+00:00 | [] | [
"en"
] | TAGS
#flair #pytorch #hunflair #token-classification #sequence-tagger-model #en #region-us
| HunFlair2 model for PROMOTER
----------------------------
HunFlair (biomedical flair) for enhancer entity:
* pre-trained language model: michiyasunaga/BioLinkBERT-base
* fine-tuned on RegEl corpus for 'Promoter' entity type
Predicts 1 tag:
---
Info
----
### Demo: How to use in Flair
Requires:
* Flair>=0.14.0 ('pip install flair' or 'pip install git+URL
| [
"### Demo: How to use in Flair\n\n\nRequires:\n\n\n* Flair>=0.14.0 ('pip install flair' or 'pip install git+URL"
] | [
"TAGS\n#flair #pytorch #hunflair #token-classification #sequence-tagger-model #en #region-us \n",
"### Demo: How to use in Flair\n\n\nRequires:\n\n\n* Flair>=0.14.0 ('pip install flair' or 'pip install git+URL"
] |
null | transformers |
# Uploaded model
- **Developed by:** robgonsalves
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-3-8b-Instruct-bnb-4bit"} | robgonsalves/fan-fabler-gguf | null | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:21:25+00:00 | [] | [
"en"
] | TAGS
#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: robgonsalves
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: robgonsalves\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: robgonsalves\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo beomi/Llama-3-Open-Ko-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/beomi-Llama-3-Open-Ko-8B-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("beomi/Llama-3-Open-Ko-8B")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model beomi/Llama-3-Open-Ko-8B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "beomi/Llama-3-Open-Ko-8B"} | PrunaAI/beomi-Llama-3-Open-Ko-8B-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"pruna-ai",
"conversational",
"base_model:beomi/Llama-3-Open-Ko-8B",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T14:21:44+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-beomi/Llama-3-Open-Ko-8B #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo beomi/Llama-3-Open-Ko-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model beomi/Llama-3-Open-Ko-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo beomi/Llama-3-Open-Ko-8B installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model beomi/Llama-3-Open-Ko-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-beomi/Llama-3-Open-Ko-8B #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo beomi/Llama-3-Open-Ko-8B installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model beomi/Llama-3-Open-Ko-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
null | null | The trained models for https://github.com/pastelite/game_detection_ai | {"license": "creativeml-openrail-m"} | pastelite/game-classification | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-04-29T14:22:22+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| The trained models for URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-Instruct-spider
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2 | {"license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "Mistral-7B-Instruct-spider", "results": []}]} | VictorDCh/Mistral-7B-Instruct-spider | null | [
"peft",
"tensorboard",
"safetensors",
"mistral",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"region:us"
] | null | 2024-04-29T14:23:38+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #mistral #trl #sft #generated_from_trainer #dataset-generator #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-apache-2.0 #region-us
|
# Mistral-7B-Instruct-spider
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2 | [
"# Mistral-7B-Instruct-spider\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the generator dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- PEFT 0.7.2.dev0\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.2"
] | [
"TAGS\n#peft #tensorboard #safetensors #mistral #trl #sft #generated_from_trainer #dataset-generator #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-apache-2.0 #region-us \n",
"# Mistral-7B-Instruct-spider\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the generator dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- PEFT 0.7.2.dev0\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.2"
] |
token-classification | flair |
## HunFlair2 model for TFBS
[HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR2.md) (biomedical flair) for enhancer entity:
- pre-trained language model: michiyasunaga/BioLinkBERT-base
- fine-tuned on RegEl corpus for `Tfbs` entity type
Predicts 1 tag:
| **tag** | **meaning** |
| ------- | ---------------------------------------- |
| Tfbs | DNA region bound by transcription factor |
______________________________________________________________________
## Info
### Demo: How to use in Flair
Requires:
- **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`)
```python
from flair.data import Sentence
from flair.nn import Classifier
from flair.tokenization import SciSpacyTokenizer
text = "We found that Egr-1 specifically binds to the PTEN 5' untranslated region, which contains a functional GCGGCGGCG Egr-1-binding site."
sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer())
tagger = Classifier.load("regel-corpus/hunflair2-regel-tfbs")
tagger.predict(sentence)
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
print(entity)
```
| {"language": "en", "tags": ["flair", "hunflair", "token-classification", "sequence-tagger-model"], "widget": [{"text": "It contains a functional GCGGCGGCG Egr-1-binding site"}]} | regel-corpus/hunflair2-regel-tfbs | null | [
"flair",
"pytorch",
"hunflair",
"token-classification",
"sequence-tagger-model",
"en",
"region:us"
] | null | 2024-04-29T14:24:13+00:00 | [] | [
"en"
] | TAGS
#flair #pytorch #hunflair #token-classification #sequence-tagger-model #en #region-us
| HunFlair2 model for TFBS
------------------------
HunFlair (biomedical flair) for enhancer entity:
* pre-trained language model: michiyasunaga/BioLinkBERT-base
* fine-tuned on RegEl corpus for 'Tfbs' entity type
Predicts 1 tag:
---
Info
----
### Demo: How to use in Flair
Requires:
* Flair>=0.14.0 ('pip install flair' or 'pip install git+URL
| [
"### Demo: How to use in Flair\n\n\nRequires:\n\n\n* Flair>=0.14.0 ('pip install flair' or 'pip install git+URL"
] | [
"TAGS\n#flair #pytorch #hunflair #token-classification #sequence-tagger-model #en #region-us \n",
"### Demo: How to use in Flair\n\n\nRequires:\n\n\n* Flair>=0.14.0 ('pip install flair' or 'pip install git+URL"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | shallow6414/r818q55 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T14:24:28+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | null | # ryota39-Phi-3-mini-4k-instruct-dpo-gguf
[ryota39さんが公開しているPhi-3-mini-4k-instruct-dpo](https://huggingface.co/ryota39/Phi-3-mini-4k-instruct-dpo)のggufフォーマット変換版です。
imatrixのデータは[TFMC/imatrix-dataset-for-japanese-llm](https://huggingface.co/datasets/TFMC/imatrix-dataset-for-japanese-llm)を使用して作成しました。
## Usage
```
git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp
make -j
./main -m 'ryota39-Phi-3-mini-4k-instruct-dpo-Q4_0.gguf' -p "<|user|>\n今晩の夕食のレシピを教えて<|end>\n<|assistant|>\n" -n 128
``` | {"language": ["en", "ja"], "license": "mit", "datasets": ["TFMC/imatrix-dataset-for-japanese-llm"]} | mmnga/ryota39-Phi-3-mini-4k-instruct-dpo-gguf | null | [
"gguf",
"en",
"ja",
"dataset:TFMC/imatrix-dataset-for-japanese-llm",
"license:mit",
"region:us"
] | null | 2024-04-29T14:27:25+00:00 | [] | [
"en",
"ja"
] | TAGS
#gguf #en #ja #dataset-TFMC/imatrix-dataset-for-japanese-llm #license-mit #region-us
| # ryota39-Phi-3-mini-4k-instruct-dpo-gguf
ryota39さんが公開しているPhi-3-mini-4k-instruct-dpoのggufフォーマット変換版です。
imatrixのデータはTFMC/imatrix-dataset-for-japanese-llmを使用して作成しました。
## Usage
| [
"# ryota39-Phi-3-mini-4k-instruct-dpo-gguf \nryota39さんが公開しているPhi-3-mini-4k-instruct-dpoのggufフォーマット変換版です。\n\nimatrixのデータはTFMC/imatrix-dataset-for-japanese-llmを使用して作成しました。",
"## Usage"
] | [
"TAGS\n#gguf #en #ja #dataset-TFMC/imatrix-dataset-for-japanese-llm #license-mit #region-us \n",
"# ryota39-Phi-3-mini-4k-instruct-dpo-gguf \nryota39さんが公開しているPhi-3-mini-4k-instruct-dpoのggufフォーマット変換版です。\n\nimatrixのデータはTFMC/imatrix-dataset-for-japanese-llmを使用して作成しました。",
"## Usage"
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B-Instruct installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/meta-llama-Meta-Llama-3-8B-Instruct-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/meta-llama-Meta-Llama-3-8B-Instruct-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B-Instruct before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "meta-llama/Meta-Llama-3-8B-Instruct"} | PrunaAI/meta-llama-Meta-Llama-3-8B-Instruct-HQQ-4bit-smashed | null | [
"transformers",
"llama",
"text-generation",
"pruna-ai",
"conversational",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T14:28:03+00:00 | [] | [] | TAGS
#transformers #llama #text-generation #pruna-ai #conversational #base_model-meta-llama/Meta-Llama-3-8B-Instruct #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B-Instruct installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B-Instruct before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B-Instruct installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B-Instruct before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #llama #text-generation #pruna-ai #conversational #base_model-meta-llama/Meta-Llama-3-8B-Instruct #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B-Instruct installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B-Instruct before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/meta-llama-Meta-Llama-3-8B-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/meta-llama-Meta-Llama-3-8B-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "meta-llama/Meta-Llama-3-8B"} | PrunaAI/meta-llama-Meta-Llama-3-8B-HQQ-4bit-smashed | null | [
"transformers",
"llama",
"text-generation",
"pruna-ai",
"base_model:meta-llama/Meta-Llama-3-8B",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T14:28:06+00:00 | [] | [] | TAGS
#transformers #llama #text-generation #pruna-ai #base_model-meta-llama/Meta-Llama-3-8B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #llama #text-generation #pruna-ai #base_model-meta-llama/Meta-Llama-3-8B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
null | transformers |
# Uploaded model
- **Developed by:** SubashNeupane
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-Instruct-bnb-4bit"} | SubashNeupane/llama-3-8b-Instruct-bnb-4bit-medicalQA2 | null | [
"transformers",
"safetensors",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"trl",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:30:00+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #gguf #llama #text-generation-inference #unsloth #trl #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: SubashNeupane
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: SubashNeupane\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #safetensors #gguf #llama #text-generation-inference #unsloth #trl #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: SubashNeupane\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | rbgo/infer-Llama-3-8B | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T14:30:09+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo NousResearch/Meta-Llama-3-8B-Instruct installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/NousResearch-Meta-Llama-3-8B-Instruct-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/NousResearch-Meta-Llama-3-8B-Instruct-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Meta-Llama-3-8B-Instruct")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model NousResearch/Meta-Llama-3-8B-Instruct before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "NousResearch/Meta-Llama-3-8B-Instruct"} | PrunaAI/NousResearch-Meta-Llama-3-8B-Instruct-HQQ-4bit-smashed | null | [
"transformers",
"llama",
"text-generation",
"pruna-ai",
"conversational",
"base_model:NousResearch/Meta-Llama-3-8B-Instruct",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T14:30:29+00:00 | [] | [] | TAGS
#transformers #llama #text-generation #pruna-ai #conversational #base_model-NousResearch/Meta-Llama-3-8B-Instruct #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo NousResearch/Meta-Llama-3-8B-Instruct installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model NousResearch/Meta-Llama-3-8B-Instruct before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo NousResearch/Meta-Llama-3-8B-Instruct installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model NousResearch/Meta-Llama-3-8B-Instruct before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #llama #text-generation #pruna-ai #conversational #base_model-NousResearch/Meta-Llama-3-8B-Instruct #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo NousResearch/Meta-Llama-3-8B-Instruct installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model NousResearch/Meta-Llama-3-8B-Instruct before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo NousResearch/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/NousResearch-Meta-Llama-3-8B-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/NousResearch-Meta-Llama-3-8B-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Meta-Llama-3-8B")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model NousResearch/Meta-Llama-3-8B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "NousResearch/Meta-Llama-3-8B"} | PrunaAI/NousResearch-Meta-Llama-3-8B-HQQ-4bit-smashed | null | [
"transformers",
"llama",
"text-generation",
"pruna-ai",
"base_model:NousResearch/Meta-Llama-3-8B",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T14:30:34+00:00 | [] | [] | TAGS
#transformers #llama #text-generation #pruna-ai #base_model-NousResearch/Meta-Llama-3-8B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo NousResearch/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model NousResearch/Meta-Llama-3-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo NousResearch/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model NousResearch/Meta-Llama-3-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #llama #text-generation #pruna-ai #base_model-NousResearch/Meta-Llama-3-8B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with hqq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo NousResearch/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model NousResearch/Meta-Llama-3-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
text-classification | transformers | ## TextAttack Model Card
This `distilbert` model was fine-tuned using TextAttack. The model was fine-tuned
for 3 epochs with a batch size of 8,
a maximum sequence length of 512, and an initial learning rate of 3e-05.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9543333333333334, as measured by the
eval set accuracy, found after 3 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack). | {"language": ["zh"], "license": "apache-2.0", "metrics": ["accuracy"], "pipeline_tag": "text-classification"} | WangA/distilbert-base-finetuned-ctrip | null | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"zh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:31:38+00:00 | [] | [
"zh"
] | TAGS
#transformers #safetensors #distilbert #text-classification #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| ## TextAttack Model Card
This 'distilbert' model was fine-tuned using TextAttack. The model was fine-tuned
for 3 epochs with a batch size of 8,
a maximum sequence length of 512, and an initial learning rate of 3e-05.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9543333333333334, as measured by the
eval set accuracy, found after 3 epochs.
For more information, check out TextAttack on Github. | [
"## TextAttack Model Card\n\n This 'distilbert' model was fine-tuned using TextAttack. The model was fine-tuned\n for 3 epochs with a batch size of 8,\n a maximum sequence length of 512, and an initial learning rate of 3e-05.\n Since this was a classification task, the model was trained with a cross-entropy loss function.\n The best score the model achieved on this task was 0.9543333333333334, as measured by the\n eval set accuracy, found after 3 epochs.\n\n For more information, check out TextAttack on Github."
] | [
"TAGS\n#transformers #safetensors #distilbert #text-classification #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"## TextAttack Model Card\n\n This 'distilbert' model was fine-tuned using TextAttack. The model was fine-tuned\n for 3 epochs with a batch size of 8,\n a maximum sequence length of 512, and an initial learning rate of 3e-05.\n Since this was a classification task, the model was trained with a cross-entropy loss function.\n The best score the model achieved on this task was 0.9543333333333334, as measured by the\n eval set accuracy, found after 3 epochs.\n\n For more information, check out TextAttack on Github."
] |
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut_synDB_plus
This model is a fine-tuned version of [Donut01/donut_synDB_wplus](https://huggingface.co/Donut01/donut_synDB_wplus) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0612
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 5
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 30
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1308 | 0.98 | 32 | 0.0953 |
| 0.0601 | 1.99 | 65 | 0.0854 |
| 0.0465 | 2.94 | 96 | 0.0612 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "Donut01/donut_synDB_wplus", "model-index": [{"name": "donut_synDB_plus", "results": []}]} | Donut01/donut_synDB_plus | null | [
"transformers",
"tensorboard",
"safetensors",
"vision-encoder-decoder",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:Donut01/donut_synDB_wplus",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:32:59+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #dataset-imagefolder #base_model-Donut01/donut_synDB_wplus #license-mit #endpoints_compatible #region-us
| donut\_synDB\_plus
==================
This model is a fine-tuned version of Donut01/donut\_synDB\_wplus on the imagefolder dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0612
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 8e-05
* train\_batch\_size: 5
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 6
* total\_train\_batch\_size: 30
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.38.2
* Pytorch 2.2.2+cu121
* Datasets 2.18.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 5\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 6\n* total\\_train\\_batch\\_size: 30\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #dataset-imagefolder #base_model-Donut01/donut_synDB_wplus #license-mit #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 5\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 6\n* total\\_train\\_batch\\_size: 30\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 0.001_2iters_bs256_nodpo_full6w_iter_2
This model is a fine-tuned version of [ShenaoZhang/0.001_2iters_bs256_nodpo_full6w_iter_1](https://huggingface.co/ShenaoZhang/0.001_2iters_bs256_nodpo_full6w_iter_1) on the updated and the original datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ShenaoZhang/0.001_2iters_bs256_nodpo_full6w_iter_1", "model-index": [{"name": "0.001_2iters_bs256_nodpo_full6w_iter_2", "results": []}]} | ShenaoZhang/0.001_2iters_bs256_nodpo_full6w_iter_2 | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:updated",
"dataset:original",
"base_model:ShenaoZhang/0.001_2iters_bs256_nodpo_full6w_iter_1",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T14:33:32+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZhang/0.001_2iters_bs256_nodpo_full6w_iter_1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# 0.001_2iters_bs256_nodpo_full6w_iter_2
This model is a fine-tuned version of ShenaoZhang/0.001_2iters_bs256_nodpo_full6w_iter_1 on the updated and the original datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| [
"# 0.001_2iters_bs256_nodpo_full6w_iter_2\n\nThis model is a fine-tuned version of ShenaoZhang/0.001_2iters_bs256_nodpo_full6w_iter_1 on the updated and the original datasets.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZhang/0.001_2iters_bs256_nodpo_full6w_iter_1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# 0.001_2iters_bs256_nodpo_full6w_iter_2\n\nThis model is a fine-tuned version of ShenaoZhang/0.001_2iters_bs256_nodpo_full6w_iter_1 on the updated and the original datasets.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2"
] |
reinforcement-learning | stable-baselines3 |
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga pietroorlandi -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga pietroorlandi -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga pietroorlandi
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
| {"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "394.50 +/- 119.84", "name": "mean_reward", "verified": false}]}]}]} | pietroorlandi/dqn-spaceinvaders-rlzoo | null | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | null | 2024-04-29T14:33:47+00:00 | [] | [] | TAGS
#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# DQN Agent playing SpaceInvadersNoFrameskip-v4
This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4
using the stable-baselines3 library
and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: URL
SB3: URL
SB3 Contrib: URL
Install the RL Zoo (with SB3 and SB3-Contrib):
If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:
## Training (with the RL Zoo)
## Hyperparameters
# Environment Arguments
| [
"# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.",
"## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:",
"## Training (with the RL Zoo)",
"## Hyperparameters",
"# Environment Arguments"
] | [
"TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.",
"## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:",
"## Training (with the RL Zoo)",
"## Hyperparameters",
"# Environment Arguments"
] |
text-generation | transformers |
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` | {"license": "other", "library_name": "transformers", "tags": ["autotrain", "text-generation-inference", "text-generation", "peft"], "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]} | usr-bin-ksh/gsn-sh-kolama-finetune2 | null | [
"transformers",
"safetensors",
"autotrain",
"text-generation-inference",
"text-generation",
"peft",
"conversational",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:33:51+00:00 | [] | [] | TAGS
#transformers #safetensors #autotrain #text-generation-inference #text-generation #peft #conversational #license-other #endpoints_compatible #region-us
|
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit AutoTrain.
# Usage
| [
"# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.",
"# Usage"
] | [
"TAGS\n#transformers #safetensors #autotrain #text-generation-inference #text-generation #peft #conversational #license-other #endpoints_compatible #region-us \n",
"# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.",
"# Usage"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | shallow6414/dwr97r8 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T14:34:57+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | fastai |
# Amazing!
🥳 Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
| {"tags": ["fastai"]} | mendozalopez/adventuretime | null | [
"fastai",
"region:us",
"has_space"
] | null | 2024-04-29T14:35:01+00:00 | [] | [] | TAGS
#fastai #region-us #has_space
|
# Amazing!
Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the documentation here)!
2. Create a demo in Gradio or Streamlit using Spaces (documentation here).
3. Join the fastai community on the Fastai Discord!
Greetings fellow fastlearner ! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
| [
"# Amazing!\n\n Congratulations on hosting your fastai model on the Hugging Face Hub!",
"# Some next steps\n1. Fill out this model card with more information (see the template below and the documentation here)!\n\n2. Create a demo in Gradio or Streamlit using Spaces (documentation here).\n\n3. Join the fastai community on the Fastai Discord!\n\nGreetings fellow fastlearner ! Don't forget to delete this content from your model card.\n\n\n---",
"# Model card",
"## Model description\nMore information needed",
"## Intended uses & limitations\nMore information needed",
"## Training and evaluation data\nMore information needed"
] | [
"TAGS\n#fastai #region-us #has_space \n",
"# Amazing!\n\n Congratulations on hosting your fastai model on the Hugging Face Hub!",
"# Some next steps\n1. Fill out this model card with more information (see the template below and the documentation here)!\n\n2. Create a demo in Gradio or Streamlit using Spaces (documentation here).\n\n3. Join the fastai community on the Fastai Discord!\n\nGreetings fellow fastlearner ! Don't forget to delete this content from your model card.\n\n\n---",
"# Model card",
"## Model description\nMore information needed",
"## Intended uses & limitations\nMore information needed",
"## Training and evaluation data\nMore information needed"
] |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# training_with_callbacks
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1529
- Precision: 0.4993
- Recall: 0.5397
- F1: 0.5187
- Accuracy: 0.9661
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 205 | 0.1641 | 0.3048 | 0.3556 | 0.3282 | 0.9556 |
| No log | 2.0 | 410 | 0.1387 | 0.4741 | 0.4365 | 0.4545 | 0.9642 |
| 0.1943 | 3.0 | 615 | 0.1430 | 0.4690 | 0.4810 | 0.4749 | 0.9648 |
| 0.1943 | 4.0 | 820 | 0.1481 | 0.4993 | 0.5365 | 0.5172 | 0.9655 |
| 0.0496 | 5.0 | 1025 | 0.1529 | 0.4993 | 0.5397 | 0.5187 | 0.9661 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.0+cpu
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "distilbert/distilbert-base-uncased", "model-index": [{"name": "training_with_callbacks", "results": []}]} | cria111/training_with_callbacks | null | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:35:09+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert/distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| training\_with\_callbacks
=========================
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1529
* Precision: 0.4993
* Recall: 0.5397
* F1: 0.5187
* Accuracy: 0.9661
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.38.2
* Pytorch 2.2.0+cpu
* Datasets 2.18.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.0+cpu\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert/distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.0+cpu\n* Datasets 2.18.0\n* Tokenizers 0.15.2"
] |
sentence-similarity | sentence-transformers |
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 373 with parameters:
```
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 2,
"evaluation_steps": 50,
"evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 74,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> | {"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"} | nhinbm/recruit_finetune | null | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T14:36:30+00:00 | [] | [] | TAGS
#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #transformers #endpoints_compatible #region-us
|
# {MODEL_NAME}
This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
Then you can use the model like this:
## Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL
## Training
The model was trained with the parameters:
DataLoader:
'URL.dataloader.DataLoader' of length 373 with parameters:
Loss:
'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:
Parameters of the fit()-Method:
## Full Model Architecture
## Citing & Authors
| [
"# {MODEL_NAME}\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.",
"## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 373 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] | [
"TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #transformers #endpoints_compatible #region-us \n",
"# {MODEL_NAME}\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.",
"## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 373 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] |
text-to-image | diffusers |
# SDXL LoRA DreamBooth - aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0
<Gallery />
## Model description
### These are aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0.safetensors` here 💾](/aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0/blob/main//home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb.safetensors` here 💾](/aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0/blob/main//home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb` to your prompt. For example, `A photo of /home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0', filename='/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('A photo of <s0><s1> giving a speech').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Details
All [Files & versions](/aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
| {"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "diffusers-training", "text-to-image", "diffusers", "lora", "template:sd-lora"], "widget": [{"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_0.png"}}, {"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_1.png"}}, {"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_2.png"}}, {"text": "A photo of <s0><s1> giving a speech", "output": {"url": "image_3.png"}}], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "A photo of <s0><s1>"} | aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0 | null | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"diffusers-training",
"text-to-image",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | null | 2024-04-29T14:36:56+00:00 | [] | [] | TAGS
#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #diffusers-training #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
|
# SDXL LoRA DreamBooth - aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0
<Gallery />
## Model description
### These are aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- LoRA: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0.safetensors' here .
- Place it on your 'models/Lora' folder.
- On AUTOMATIC1111, load the LoRA by adding '<lora:/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0:1>' to your prompt. On ComfyUI just load it as a regular LoRA.
- *Embeddings*: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb.safetensors' here .
- Place it on it on your 'embeddings' folder
- Use it by adding '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb' to your prompt. For example, 'A photo of /home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb'
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the diffusers library
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept 'TOK' → use '<s0><s1>' in your prompt
## Details
All Files & versions.
The weights were trained using diffusers Advanced Dreambooth Training Script.
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
| [
"# SDXL LoRA DreamBooth - aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0\n\n<Gallery />",
"## Model description",
"### These are aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.",
"## Download model",
"### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke\n\n- LoRA: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0.safetensors' here .\n - Place it on your 'models/Lora' folder.\n - On AUTOMATIC1111, load the LoRA by adding '<lora:/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0:1>' to your prompt. On ComfyUI just load it as a regular LoRA.\n- *Embeddings*: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb.safetensors' here .\n - Place it on it on your 'embeddings' folder\n - Use it by adding '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb' to your prompt. For example, 'A photo of /home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb'\n (you need both the LoRA and the embeddings as they were trained together for this LoRA)",
"## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers",
"## Trigger words\n\nTo trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:\n\nto trigger concept 'TOK' → use '<s0><s1>' in your prompt",
"## Details\nAll Files & versions.\n\nThe weights were trained using diffusers Advanced Dreambooth Training Script.\n\nLoRA for the text encoder was enabled. False.\n\nPivotal tuning was enabled: True.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix."
] | [
"TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #diffusers-training #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n",
"# SDXL LoRA DreamBooth - aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0\n\n<Gallery />",
"## Model description",
"### These are aarashfeizi/jean-francois-godbout-batch4-repeats4-rank32-snr5.0 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.",
"## Download model",
"### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke\n\n- LoRA: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0.safetensors' here .\n - Place it on your 'models/Lora' folder.\n - On AUTOMATIC1111, load the LoRA by adding '<lora:/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0:1>' to your prompt. On ComfyUI just load it as a regular LoRA.\n- *Embeddings*: download '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb.safetensors' here .\n - Place it on it on your 'embeddings' folder\n - Use it by adding '/home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb' to your prompt. For example, 'A photo of /home/mila/f/feiziaar/scratch/dreambooth-outputs/jean-francois-godbout-batch4-repeats4-rank32-snr5.0_emb'\n (you need both the LoRA and the embeddings as they were trained together for this LoRA)",
"## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers",
"## Trigger words\n\nTo trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:\n\nto trigger concept 'TOK' → use '<s0><s1>' in your prompt",
"## Details\nAll Files & versions.\n\nThe weights were trained using diffusers Advanced Dreambooth Training Script.\n\nLoRA for the text encoder was enabled. False.\n\nPivotal tuning was enabled: True.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix."
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "Universal-NER/UniNER-7B-type"} | jc80622/unilora_sec151_populated | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Universal-NER/UniNER-7B-type",
"region:us"
] | null | 2024-04-29T14:37:03+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-Universal-NER/UniNER-7B-type #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-Universal-NER/UniNER-7B-type #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
null | fastai |
# Amazing!
🥳 Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
| {"tags": ["fastai"]} | Ronicola/cardSorter | null | [
"fastai",
"region:us",
"has_space"
] | null | 2024-04-29T14:37:36+00:00 | [] | [] | TAGS
#fastai #region-us #has_space
|
# Amazing!
Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the documentation here)!
2. Create a demo in Gradio or Streamlit using Spaces (documentation here).
3. Join the fastai community on the Fastai Discord!
Greetings fellow fastlearner ! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
| [
"# Amazing!\n\n Congratulations on hosting your fastai model on the Hugging Face Hub!",
"# Some next steps\n1. Fill out this model card with more information (see the template below and the documentation here)!\n\n2. Create a demo in Gradio or Streamlit using Spaces (documentation here).\n\n3. Join the fastai community on the Fastai Discord!\n\nGreetings fellow fastlearner ! Don't forget to delete this content from your model card.\n\n\n---",
"# Model card",
"## Model description\nMore information needed",
"## Intended uses & limitations\nMore information needed",
"## Training and evaluation data\nMore information needed"
] | [
"TAGS\n#fastai #region-us #has_space \n",
"# Amazing!\n\n Congratulations on hosting your fastai model on the Hugging Face Hub!",
"# Some next steps\n1. Fill out this model card with more information (see the template below and the documentation here)!\n\n2. Create a demo in Gradio or Streamlit using Spaces (documentation here).\n\n3. Join the fastai community on the Fastai Discord!\n\nGreetings fellow fastlearner ! Don't forget to delete this content from your model card.\n\n\n---",
"# Model card",
"## Model description\nMore information needed",
"## Intended uses & limitations\nMore information needed",
"## Training and evaluation data\nMore information needed"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.