Datasets:
File size: 5,382 Bytes
f451243 5a9bde4 f451243 ff20c49 f451243 ff20c49 f451243 5a9bde4 ff20c49 e2b666c 5a9bde4 ff20c49 f451243 5a9bde4 f451243 e2b666c 5a9bde4 e2b666c f451243 5a9bde4 f451243 57fcc79 f451243 ff20c49 f451243 ff20c49 f451243 ff20c49 f451243 5a9bde4 f451243 ff20c49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
TODO
"""
_HOMEPAGE = ""
_DESCRIPTION = """\
Text To Image Evaluation (TeTIm-Eval)
"""
_URLS = {
"captioned": "https://huggingface.co/datasets/galatolo/TeTIm-Eval/resolve/main/data/TeTIm-Eval-Mini.zip",
"uncaptioned": "https://huggingface.co/datasets/galatolo/TeTIm-Eval/resolve/main/data/TeTIm-Eval.zip"
}
_CLASSES = [
"digital_art",
"sketch_art",
"traditional_art",
"baroque_painting",
"high_renaissance_painting",
"neoclassical_painting",
"animal_photo",
"food_photo",
"landscape_photo",
"person_photo"
]
_CATEGORIES = [
"art",
"painting",
"photo"
]
_MAP_CATEGORY = {
_CLASSES[0]: _CATEGORIES[0],
_CLASSES[1]: _CATEGORIES[0],
_CLASSES[2]: _CATEGORIES[0],
_CLASSES[3]: _CATEGORIES[1],
_CLASSES[4]: _CATEGORIES[1],
_CLASSES[5]: _CATEGORIES[1],
_CLASSES[6]: _CATEGORIES[2],
_CLASSES[7]: _CATEGORIES[2],
_CLASSES[8]: _CATEGORIES[2],
_CLASSES[9]: _CATEGORIES[2],
}
_FOLDERS = {
"captioned": {
_CLASSES[0]: "TeTIm-Eval-Mini/sampled_art_digital",
_CLASSES[1]: "TeTIm-Eval-Mini/sampled_art_sketch",
_CLASSES[2]: "TeTIm-Eval-Mini/sampled_art_traditional",
_CLASSES[3]: "TeTIm-Eval-Mini/sampled_painting_baroque",
_CLASSES[4]: "TeTIm-Eval-Mini/sampled_painting_high-renaissance",
_CLASSES[5]: "TeTIm-Eval-Mini/sampled_painting_neoclassicism",
_CLASSES[6]: "TeTIm-Eval-Mini/sampled_photo_animal",
_CLASSES[7]: "TeTIm-Eval-Mini/sampled_photo_food",
_CLASSES[8]: "TeTIm-Eval-Mini/sampled_photo_landscape",
_CLASSES[9]: "TeTIm-Eval-Mini/sampled_photo_person",
},
"uncaptioned": {
_CLASSES[0]: "TeTIm-Eval/sampled_art_digital",
_CLASSES[1]: "TeTIm-Eval/sampled_art_sketch",
_CLASSES[2]: "TeTIm-Eval/sampled_art_traditional",
_CLASSES[3]: "TeTIm-Eval/sampled_painting_baroque",
_CLASSES[4]: "TeTIm-Eval/sampled_painting_high-renaissance",
_CLASSES[5]: "TeTIm-Eval/sampled_painting_neoclassicism",
_CLASSES[6]: "TeTIm-Eval/sampled_photo_animal",
_CLASSES[7]: "TeTIm-Eval/sampled_photo_food",
_CLASSES[8]: "TeTIm-Eval/sampled_photo_landscape",
_CLASSES[9]: "TeTIm-Eval/sampled_photo_person",
}
}
class TeTImConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(TeTImConfig, self).__init__(**kwargs)
class TeTIm(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
TeTImConfig(
name="captioned",
version=datasets.Version("1.0.0", ""),
description="A random sampling of 300 text-images pairs (30 per category) from the TeTIm dataset, manually annotated by the same person",
),
TeTImConfig(
name="uncaptioned",
version=datasets.Version("1.0.0", ""),
description="2500 labelled images (250 per category) from the TeTIm dataset",
),
]
DEFAULT_CONFIG_NAME="captioned"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"image": datasets.Image(),
"caption": datasets.Value("string"),
"category": datasets.ClassLabel(num_classes=len(_CATEGORIES), names=_CATEGORIES),
"class": datasets.ClassLabel(num_classes=len(_CLASSES), names=_CLASSES)
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
target = os.environ.get(f"TETIMEVAL_{self.config.name}", _URLS[self.config.name])
downloaded_files = dl_manager.download_and_extract(target)
return [
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"path": downloaded_files}),
]
def _generate_examples(self, path):
id = 0
for _class, folder in _FOLDERS[self.config.name].items():
images_folder = os.path.join(path, folder, "images")
annotations_folder = os.path.join(path, folder, "annotations")
for image in os.listdir(images_folder):
image_id = int(image.split(".")[0])
annotation_file = os.path.join(annotations_folder, f"{image_id}.json")
with open(annotation_file) as f:
annotation = json.load(f)
yield id, {
"id": id,
"image": os.path.join(images_folder, image),
"caption": annotation["caption"],
"category": _CATEGORIES.index(_MAP_CATEGORY[_class]),
"class": _CLASSES.index(_class)
}
id += 1
if __name__ == "__main__":
from datasets import load_dataset
dataset_config = {
"LOADING_SCRIPT_FILES": os.path.join(os.getcwd(), "TeTIm-Eval.py"),
"CONFIG_NAME": "uncaptioned",
}
ds = load_dataset(
dataset_config["LOADING_SCRIPT_FILES"],
dataset_config["CONFIG_NAME"],
)
print(ds)
for i, e in zip(range(0, 10), ds["test"]):
print(i, e) |