Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
code
Size:
10K - 100K
License:
annotations_creators: | |
- found | |
language_creators: | |
- found | |
language: | |
- code | |
license: | |
- c-uda | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 10K<n<100K | |
source_datasets: | |
- original | |
task_categories: | |
- text-retrieval | |
task_ids: | |
- document-retrieval | |
pretty_name: CodeXGlueCcCloneDetectionPoj104 | |
dataset_info: | |
features: | |
- name: id | |
dtype: int32 | |
- name: code | |
dtype: string | |
- name: label | |
dtype: string | |
splits: | |
- name: train | |
num_bytes: 20179075 | |
num_examples: 32500 | |
- name: validation | |
num_bytes: 6382433 | |
num_examples: 8500 | |
- name: test | |
num_bytes: 7227506 | |
num_examples: 12000 | |
download_size: 13348734 | |
dataset_size: 33789014 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
- split: validation | |
path: data/validation-* | |
- split: test | |
path: data/test-* | |
# Dataset Card for "code_x_glue_cc_clone_detection_poj_104" | |
## Table of Contents | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits-sample-size) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104 | |
### Dataset Summary | |
CodeXGLUE Clone-detection-POJ-104 dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104 | |
Given a code and a collection of candidates as the input, the task is to return Top K codes with the same semantic. Models are evaluated by MAP score. | |
We use POJ-104 dataset on this task. | |
### Supported Tasks and Leaderboards | |
- `document-retrieval`: The dataset can be used to train a model for retrieving top-k codes with the same semantics. | |
### Languages | |
- C++ **programming** language | |
## Dataset Structure | |
### Data Instances | |
An example of 'train' looks as follows. | |
``` | |
{ | |
"code": "\nint f(int shu,int min)\n{ \n int k=1;\n if(shu < min)\n { \n k= 0; \n return k;\n } \n else\n {\n for(int i = min;i<shu;i++)\n { \n if(shu%i == 0)\n { \n k=k+ f(shu/i,i); \n } \n \n \n } \n return k; \n}\n} \n\nmain()\n{\n int n,i,a;\n scanf(\"%d\",&n);\n \n for(i=0;i<n;i++)\n {\n scanf(\"%d\",&a);\n \n if(i!=n-1) \n printf(\"%d\\n\",f(a,2));\n else\n printf(\"%d\",f(a,2)); \n \n \n \n } \n \n \n }", | |
"id": 0, | |
"label": "home" | |
} | |
``` | |
### Data Fields | |
In the following each data field in go is explained for each config. The data fields are the same among all splits. | |
#### default | |
|field name| type | description | | |
|----------|------|----------------------------------------------| | |
|id |int32 | Index of the sample | | |
|code |string| The full text of the function | | |
|label |string| The id of problem that the source code solves| | |
### Data Splits | |
| name |train|validation|test | | |
|-------|----:|---------:|----:| | |
|default|32000| 8000|12000| | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed] | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed] | |
#### Who are the source language producers? | |
[More Information Needed] | |
### Annotations | |
#### Annotation process | |
[More Information Needed] | |
#### Who are the annotators? | |
[More Information Needed] | |
### Personal and Sensitive Information | |
[More Information Needed] | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed] | |
### Discussion of Biases | |
[More Information Needed] | |
### Other Known Limitations | |
[More Information Needed] | |
## Additional Information | |
### Dataset Curators | |
https://github.com/microsoft, https://github.com/madlag | |
### Licensing Information | |
Computational Use of Data Agreement (C-UDA) License. | |
### Citation Information | |
``` | |
@inproceedings{mou2016convolutional, | |
title={Convolutional neural networks over tree structures for programming language processing}, | |
author={Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi}, | |
booktitle={Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence}, | |
pages={1287--1293}, | |
year={2016} | |
} | |
``` | |
### Contributions | |
Thanks to @madlag (and partly also @ncoop57) for adding this dataset. |