sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
---|---|---|
def into(self, val: str) -> Union['ApiNode', 'ApiEndpoint']:
"""Get another leaf node with name `val` if possible"""
if val in self.paths:
return self.paths[val]
if self.param:
return self.param
raise IndexError(_("Value {} is missing from api").format(val)) | Get another leaf node with name `val` if possible | entailment |
def can_into(self, val: str) -> bool:
"""Determine if there is a leaf node with name `val`"""
return val in self.paths or (self.param and self.param_name == val) | Determine if there is a leaf node with name `val` | entailment |
def place(self, part: str, val: Union['ApiNode', 'ApiEndpoint']):
"""place a leaf node"""
if part.startswith(':'):
if self.param and self.param != part:
err = """Cannot place param '{}' as '{self.param_name}' exist on node already!"""
raise ParamAlreadyExist(err.format(part, self=self))
self.param = val
self.param_name = part
return val
self.paths[part] = val
return val | place a leaf node | entailment |
def keys(self) -> Iterator[str]:
"""return all possible paths one can take from this ApiNode"""
if self.param:
yield self.param_name
yield from self.paths.keys() | return all possible paths one can take from this ApiNode | entailment |
def add_param(self, group=None, type_='', field='', description=''):
"""parse and append a param"""
group = group or '(Parameter)'
group = group.lower()[1:-1]
p = Param(type_, field, description)
self.params[group][p.field] = p | parse and append a param | entailment |
def add_success(self, group=None, type_='', field='', description=''):
"""parse and append a success data param"""
group = group or '(200)'
group = int(group.lower()[1:-1])
self.retcode = self.retcode or group
if group != self.retcode:
raise ValueError('Two or more retcodes!')
type_ = type_ or '{String}'
p = Param(type_, field, description)
self.params['responce'][p.field] = p | parse and append a success data param | entailment |
def render_docstring(self):
"""make a nice docstring for ipython"""
res = '{{{self.method}}} {self.uri} {self.title}\n'.format(self=self)
if self.params:
for group, params in self.params.items():
res += '\n' + group + ' params:\n'
for param in params.values():
res += param.render_docstring()
return res | make a nice docstring for ipython | entailment |
def validate(self, obj):
"""check if obj has this api param"""
if self.path:
for i in self.path:
obj = obj[i]
obj = obj[self.field]
raise NotImplementedError('Validation is not implemented yet') | check if obj has this api param | entailment |
def render_docstring(self):
"""make a nice docstring for ipython"""
default = (' = ' + str(self.default)) if self.default else ''
opt = 'optional' if self.is_optional else ''
can_be = ' '.join(self.possible_values) if self.possible_values else ''
can_be = 'one of [{}]'.format(can_be) if can_be else ''
type_ = 'of type "' + str(self.type) + '"'
res = ' '.join([opt, '"' + self.field + '"', default, type_, can_be, '\n'])
return res.replace(' ', ' ').lstrip() | make a nice docstring for ipython | entailment |
def is_uuid(u):
"""validator for plumbum prompt"""
if isinstance(u, str) and u.replace('-', '') == uuid.UUID(u).hex:
return u
return False | validator for plumbum prompt | entailment |
def load_conf(configfile, config=None):
"""Get authentication data from the AUTH_CONF file."""
default_login = 'your-login-for-api-here'
default_password = 'your-password-for-api-here'
config = config or {}
configfile = local.path(configfile)
if not configfile.exists():
configfile.dirname.mkdir()
else:
assert_secure_file(configfile)
with secure_filestore(), cli.Config(configfile) as conf:
config['url'] = conf.get('habitipy.url', 'https://habitica.com')
config['login'] = conf.get('habitipy.login', default_login)
config['password'] = conf.get('habitipy.password', default_password)
if config['login'] == default_login or config['password'] == default_password:
if cli.terminal.ask(
_("""Your creditentials are invalid. Do you want to enter them now?"""),
default=True):
msg = _("""
You can get your login information at
https://habitica.com/#/options/settings/api
Both your user id and API token should look like this:
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
where 'x' is a number between 0-9 or a character a-f.
""")
print(dedent(msg))
msg = _("""Please enter your login (user ID)""")
config['login'] = cli.terminal.prompt(msg, validator=is_uuid)
msg = _("""Please enter your password (API token)""")
config['password'] = cli.terminal.prompt(msg, validator=is_uuid)
conf.set('habitipy.login', config['login'])
conf.set('habitipy.password', config['password'])
print(dedent(_("""
Your creditentials are securely stored in
{configfile}
You can edit that file later if you need.
""")).format(configfile=configfile))
config['show_numbers'] = conf.get('habitipy.show_numbers', 'y')
config['show_numbers'] = config['show_numbers'] in YES_ANSWERS
config['show_style'] = conf.get('habitipy.show_style', 'wide')
if config['show_style'] not in CHECK_MARK_STYLES:
config['show_style'] = 'wide'
return config | Get authentication data from the AUTH_CONF file. | entailment |
def get_content(api, rebuild_cache=False):
"""get content from server or cache"""
if hasattr(get_content, 'cache') and not rebuild_cache:
return get_content.cache
if not os.path.exists(CONTENT_JSON) or rebuild_cache:
import locale
content_endpoint = api.content.get
# pylint: disable=protected-access
try_langs = []
try:
lang = get_translation_for('habitipy').info()['language']
try_langs.append(lang)
except KeyError:
pass
try:
loc = locale.getdefaultlocale()[0]
if loc:
try_langs.append(loc)
try_langs.append(loc[:2])
except IndexError:
pass
server_lang = content_endpoint._node.params['query']['language']
# handle something like 'ru_RU' not available - only 'ru'
for lang in try_langs:
if lang in server_lang.possible_values:
loc = {'language': lang}
break
else:
loc = {}
get_content.cache = content = content_endpoint(**loc)
with open(CONTENT_JSON, 'w') as f:
json.dump(content, f)
return content
try:
with open(CONTENT_JSON) as f:
get_content.cache = content = json.load(f)
return content
except JSONDecodeError:
return get_content(api, rebuild_cache=True) | get content from server or cache | entailment |
def get_additional_rewards(api):
"""returns list of non-user rewards (potion, armoire, gear)"""
c = get_content(api)
tasks = [c[i] for i in ['potion', 'armoire']]
tasks.extend(api.user.inventory.buy.get())
for task in tasks:
task['id'] = task['alias'] = task['key']
return tasks | returns list of non-user rewards (potion, armoire, gear) | entailment |
def color(cls, value):
"""task value/score color"""
index = bisect(cls.breakpoints, value)
return colors.fg(cls.colors_[index]) | task value/score color | entailment |
def augment_init_method(cls):
"""
Replace the existing cls.__init__() method with a new one which
also initialises the field generators and similar bookkeeping.
"""
orig_init = cls.__init__
def new_init(self, *args, **kwargs):
super(CustomGenerator, self).__init__() # TODO: does this behave correctly with longer inheritance chains?
orig_init(self, *args, **kwargs)
self.orig_args = args
self.orig_kwargs = kwargs
self.ns_gen_templates = TohuNamespace()
self.ns_gen_templates.update_from_dict(self.__class__.__dict__)
self.ns_gen_templates.update_from_dict(self.__dict__)
self.ns_gen_templates.set_owner(self.__class__)
self._mark_field_generator_templates()
self.ns_gens = self.ns_gen_templates.spawn()
self.ns_gens.set_owner(self)
self._update_namespace_with_field_generators()
self._set_field_names()
self._set_tohu_items_name()
self._set_tohu_items_cls()
cls.__init__ = new_init | Replace the existing cls.__init__() method with a new one which
also initialises the field generators and similar bookkeeping. | entailment |
def find_field_generators(obj):
"""
Return dictionary with the names and instances of
all tohu.BaseGenerator occurring in the given
object's class & instance namespaces.
"""
cls_dict = obj.__class__.__dict__
obj_dict = obj.__dict__
#debug_print_dict(cls_dict, 'cls_dict')
#debug_print_dict(obj_dict, 'obj_dict')
field_gens = {}
add_field_generators(field_gens, cls_dict)
add_field_generators(field_gens, obj_dict)
return field_gens | Return dictionary with the names and instances of
all tohu.BaseGenerator occurring in the given
object's class & instance namespaces. | entailment |
def set_item_class_name(cls_obj):
"""
Return the first part of the class name of this custom generator.
This will be used for the class name of the items produced by this
generator.
Examples:
FoobarGenerator -> Foobar
QuuxGenerator -> Quux
"""
if '__tohu__items__name__' in cls_obj.__dict__:
logger.debug(f"Using item class name '{cls_obj.__tohu_items_name__}' (derived from attribute '__tohu_items_name__')")
else:
m = re.match('^(.*)Generator$', cls_obj.__name__)
if m is not None:
cls_obj.__tohu_items_name__ = m.group(1)
logger.debug(f"Using item class name '{cls_obj.__tohu_items_name__}' (derived from custom generator name)")
else:
raise ValueError("Cannot derive class name for items to be produced by custom generator. "
"Please set '__tohu_items_name__' at the top of the custom generator's "
"definition or change its name so that it ends in '...Generator'") | Return the first part of the class name of this custom generator.
This will be used for the class name of the items produced by this
generator.
Examples:
FoobarGenerator -> Foobar
QuuxGenerator -> Quux | entailment |
def make_item_class_for_custom_generator(obj):
"""
obj:
The custom generator instance for which to create an item class
"""
clsname = obj.__tohu_items_name__
attr_names = obj.field_gens.keys()
return make_item_class(clsname, attr_names) | obj:
The custom generator instance for which to create an item class | entailment |
def add_new_init_method(obj):
"""
Replace the existing obj.__init__() method with a new one
which calls the original one and in addition performs the
following actions:
(1) Finds all instances of tohu.BaseGenerator in the namespace
and collects them in the dictionary `self.field_gens`.
(2) ..to do..
"""
orig_init = obj.__init__
def new_init(self, *args, **kwargs):
logger.debug(f"Initialising new {self}")
# Call original __init__ function to ensure we pick up
# any tohu generators that are defined there.
orig_init(self, *args, **kwargs)
#
# Find field generator templates and attach spawned copies
#
field_gens_templates = find_field_generators(self)
logger.debug(f'Found {len(field_gens_templates)} field generator template(s):')
debug_print_dict(field_gens_templates)
def find_orig_parent(dep_gen, origs):
"""
Find name and instance of the parent of the dependent
generator `dep_gen` amongst the generators in `origs`.
"""
for parent_name, parent in origs.items():
if dep_gen.parent is parent:
return parent_name, parent
raise RuntimeError(f"Parent of dependent generator {dep_gen} not defined in the same custom generator")
logger.debug('Spawning field generator templates...')
origs = {}
spawned = {}
for name, gen in field_gens_templates.items():
if isinstance(gen, IndependentGenerator) and gen in origs.values():
logger.debug(f'Cloning generator {name}={gen} because it is an alias for an existing generator')
gen = gen.clone()
if isinstance(gen, IndependentGenerator):
origs[name] = gen
spawned[name] = gen._spawn()
logger.debug(f'Spawning generator {gen}. New spawn: {spawned[name]}')
elif isinstance(gen, DependentGenerator):
orig_parent_name, orig_parent = find_orig_parent(gen, origs)
new_parent = spawned[orig_parent_name]
#spawned[name] = new_parent.clone()
spawned[name] = gen._spawn_and_reattach_parent(new_parent)
else:
pass
self.field_gens = spawned
self.__dict__.update(self.field_gens)
logger.debug(f'Field generators attached to custom generator instance:')
debug_print_dict(self.field_gens)
#
# Add seed generator
#
self.seed_generator = SeedGenerator()
#
# Create class for the items produced by this generator
#
self.__class__.item_cls = make_item_class_for_custom_generator(self)
obj.__init__ = new_init | Replace the existing obj.__init__() method with a new one
which calls the original one and in addition performs the
following actions:
(1) Finds all instances of tohu.BaseGenerator in the namespace
and collects them in the dictionary `self.field_gens`.
(2) ..to do.. | entailment |
def add_new_reset_method(obj):
"""
Attach a new `reset()` method to `obj` which resets the internal
seed generator of `obj` and then resets each of its constituent
field generators found in `obj.field_gens`.
"""
#
# Create and assign automatically generated reset() method
#
def new_reset(self, seed=None):
logger.debug(f'[EEE] Inside automatically generated reset() method for {self} (seed={seed})')
if seed is not None:
self.seed_generator.reset(seed)
for name, gen in self.field_gens.items():
next_seed = next(self.seed_generator)
gen.reset(next_seed)
# TODO: the following should be covered by the newly added
# reset() method in IndependentGeneratorMeta. However, for
# some reason we can't call this via the usual `orig_reset()`
# pattern, so we have to duplicate this here. Not ideal...
for c in self._dependent_generators:
c.reset_dependent_generator(seed)
return self
obj.reset = new_reset | Attach a new `reset()` method to `obj` which resets the internal
seed generator of `obj` and then resets each of its constituent
field generators found in `obj.field_gens`. | entailment |
def add_new_next_method(obj):
"""
TODO
"""
def new_next(self):
field_values = [next(g) for g in self.field_gens.values()]
return self.item_cls(*field_values)
obj.__next__ = new_next | TODO | entailment |
def add_new_spawn_method(obj):
"""
TODO
"""
def new_spawn(self):
# TODO/FIXME: Check that this does the right thing:
# (i) the spawned generator is independent of the original one (i.e. they can be reset independently without altering the other's behaviour)
# (ii) ensure that it also works if this custom generator's __init__ requires additional arguments
new_instance = self.__class__()
return new_instance
obj._spawn = new_spawn | TODO | entailment |
def check_that_operator_can_be_applied_to_produces_items(op, g1, g2):
"""
Helper function to check that the operator `op` can be applied to items produced by g1 and g2.
"""
g1_tmp_copy = g1.spawn()
g2_tmp_copy = g2.spawn()
sample_item_1 = next(g1_tmp_copy)
sample_item_2 = next(g2_tmp_copy)
try:
op(sample_item_1, sample_item_2)
except TypeError:
raise TypeError(f"Operator '{op.__name__}' cannot be applied to items produced by {g1} and {g2} "
f"(which have type {type(sample_item_1)} and {type(sample_item_2)}, respectively)") | Helper function to check that the operator `op` can be applied to items produced by g1 and g2. | entailment |
def add_new_init_method(cls):
"""
Replace the existing cls.__init__() method with a new one which
also initialises the _dependent_generators attribute to an empty list.
"""
orig_init = cls.__init__
def new_init(self, *args, **kwargs):
self._dependent_generators = []
orig_init(self, *args, **kwargs)
cls.__init__ = new_init | Replace the existing cls.__init__() method with a new one which
also initialises the _dependent_generators attribute to an empty list. | entailment |
def add_new_repr_method(cls):
"""
Add default __repr__ method in case no user-defined one is present.
"""
if isinstance(cls.__repr__, WrapperDescriptorType):
cls.__repr__ = lambda self: f"<{self.__class__.__name__}, id={hex(id(self))}>"
else:
# Keep the user-defined __repr__ method
pass | Add default __repr__ method in case no user-defined one is present. | entailment |
def add_new_reset_method(cls):
"""
Replace existing cls.reset() method with a new one which also
calls reset() on any clones.
"""
orig_reset = cls.reset
def new_reset(self, seed=None):
logger.debug(f"Calling reset() on {self} (seed={seed})")
orig_reset(self, seed)
for c in self._dependent_generators:
c.reset_dependent_generator(seed)
return self
cls.reset = new_reset | Replace existing cls.reset() method with a new one which also
calls reset() on any clones. | entailment |
def generate(self, N, *, seed=None, progressbar=False):
"""
Return sequence of `N` elements.
If `seed` is not None, the generator is reset
using this seed before generating the elements.
"""
if seed is not None:
self.reset(seed)
items = islice(self, N)
if progressbar:
items = tqdm(items, total=N)
item_list = [x for x in items]
#logger.warning("TODO: initialise ItemList with random seed!")
return ItemList(item_list, N) | Return sequence of `N` elements.
If `seed` is not None, the generator is reset
using this seed before generating the elements. | entailment |
def tohu_id(self):
"""
Return (truncated) md5 hash representing this generator.
We truncate the hash simply for readability, as this is
purely intended for debugging purposes and the risk of
any collisions will be negligible.
"""
myhash = hashlib.md5(str(id(self)).encode()).hexdigest()
return myhash[:12] | Return (truncated) md5 hash representing this generator.
We truncate the hash simply for readability, as this is
purely intended for debugging purposes and the risk of
any collisions will be negligible. | entailment |
def _set_item_class(self):
"""
cls:
The custom generator class for which to create an item-class
"""
clsname = self.__tohu_items_name__
self.item_cls = make_item_class(clsname, self.field_names) | cls:
The custom generator class for which to create an item-class | entailment |
def _find_field_generator_templates(self):
"""
Return a dictionary of the form {name: field_generator} containing
all tohu generators defined in the class and instance namespace
of this custom generator.
"""
field_gen_templates = {}
# Extract field generators from class dict
for name, g in self.__class__.__dict__.items():
if isinstance(g, TohuBaseGenerator):
field_gen_templates[name] = g.set_tohu_name(f'{name} (TPL)')
# Extract field generators from instance dict
for name, g in self.__dict__.items():
if isinstance(g, TohuBaseGenerator):
field_gen_templates[name] = g.set_tohu_name(f'{name} (TPL)')
return field_gen_templates | Return a dictionary of the form {name: field_generator} containing
all tohu generators defined in the class and instance namespace
of this custom generator. | entailment |
def _generate_csv_header_line(*, header_names, header_prefix='', header=True, sep=',', newline='\n'):
"""
Helper function to generate a CSV header line depending on
the combination of arguments provided.
"""
if isinstance(header, str): # user-provided header line
header_line = header + newline
else:
if not (header is None or isinstance(header, bool)):
raise ValueError(f"Invalid value for argument `header`: {header}")
else:
if header:
header_line = header_prefix + sep.join(header_names) + newline
else:
header_line = ""
return header_line | Helper function to generate a CSV header line depending on
the combination of arguments provided. | entailment |
def _extract_schema_if_given(table_name):
"""
Return a pair (schema, table) derived from the given `table_name`
(anything before the first '.' if the name contains one; otherwise
the return value of `schema` is None).
Examples:
>>> _extract_schema_if_given('some_schema.my_table')
('some_schema', 'my_table')
>>> _extract_schema_if_given('my_awesome_table')
(None, 'my_awesome_table')
"""
pattern = '^(([^.]+)\.)?(.+)$'
m = re.match(pattern, table_name)
schema, table_name = m.group(2), m.group(3)
return schema, table_name | Return a pair (schema, table) derived from the given `table_name`
(anything before the first '.' if the name contains one; otherwise
the return value of `schema` is None).
Examples:
>>> _extract_schema_if_given('some_schema.my_table')
('some_schema', 'my_table')
>>> _extract_schema_if_given('my_awesome_table')
(None, 'my_awesome_table') | entailment |
def to_df(self, fields=None):
"""
Export items as rows in a pandas dataframe table.
Parameters
----------
fields: list or dict
List of field names to export, or dictionary mapping output column names
to attribute names of the generators.
Examples:
fields=['field_name_1', 'field_name_2']
fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'}
"""
if isinstance(fields, (list, tuple)):
fields = {name: name for name in fields}
if fields is None:
# New version (much faster!, but needs cleaning up)
import attr
colnames = list(self.items[0].as_dict().keys()) # hack! the field names should perhaps be passed in during initialisation?
return pd.DataFrame([attr.astuple(x) for x in self.items], columns=colnames)
# Old version:
#return pd.DataFrame([x.to_series() for x in self.items])
else:
# New version (much faster!)
colnames = list(fields.keys())
attr_getters = [attrgetter(attr_name) for attr_name in fields.values()]
return pd.DataFrame([tuple(func(x) for func in attr_getters) for x in self.items], columns=colnames) | Export items as rows in a pandas dataframe table.
Parameters
----------
fields: list or dict
List of field names to export, or dictionary mapping output column names
to attribute names of the generators.
Examples:
fields=['field_name_1', 'field_name_2']
fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'} | entailment |
def to_csv(self, filename=None, *, fields=None, append=False, header=True, header_prefix='', sep=',', newline='\n'):
"""
Parameters
----------
filename: str or None
The file to which output will be written. By default, any existing content is
overwritten. Use `append=True` to open the file in append mode instead.
If filename is None, the generated CSV output is returned instead of written
to a file.
fields: list or dict
List of field names to export, or dictionary mapping output column names
to attribute names of the generators.
Examples:
fields=['field_name_1', 'field_name_2']
fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'}
append: bool
If `True`, open the file in 'append' mode to avoid overwriting existing content.
Default is `False`, i.e. any existing content will be overwritten.
This argument only has an effect if `filename` is given (i.e. if output happens
to a file instead of returning a CSV string).
header: bool or str or None
If `header=False` or `header=None` then no header line will be written.
If `header` is a string then this string will be used as the header line.
If `header=True` then a header line will be automatically generated from
the field names of the custom generator.
header_prefix: str
If `header=True` then the auto-generated header line will be prefixed
with `header_prefix` (otherwise this argument has no effect). For example,
set `header_prefix='#'` to make the header line start with '#'. Default: ''
sep: str
Field separator to use in the output. Default: ','
newline: str
Line terminator to use in the output. Default: '\n'
Returns
-------
The return value depends on the value of `filename`.
If `filename` is given, writes the output to the file and returns `None`.
If `filename` is `None`, returns a string containing the CSV output.
"""
assert isinstance(append, bool)
if fields is None:
raise NotImplementedError("TODO: derive field names automatically from the generator which produced this item list")
if isinstance(fields, (list, tuple)):
fields = {name: name for name in fields}
header_line = _generate_csv_header_line(header=header, header_prefix=header_prefix, header_names=fields.keys(), sep=sep, newline=newline)
if filename is not None:
# ensure parent directory of output file exits
dirname = os.path.dirname(os.path.abspath(filename))
if not os.path.exists(dirname):
os.makedirs(dirname)
file_or_string = open(filename, 'a' if append else 'w') if (filename is not None) else io.StringIO()
retval = None
attr_getters = [attrgetter(attr_name) for attr_name in fields.values()]
try:
file_or_string.write(header_line)
for x in self.items:
line = sep.join([format(func(x)) for func in attr_getters]) + newline
file_or_string.write(line)
if filename is None:
retval = file_or_string.getvalue()
finally:
file_or_string.close()
return retval | Parameters
----------
filename: str or None
The file to which output will be written. By default, any existing content is
overwritten. Use `append=True` to open the file in append mode instead.
If filename is None, the generated CSV output is returned instead of written
to a file.
fields: list or dict
List of field names to export, or dictionary mapping output column names
to attribute names of the generators.
Examples:
fields=['field_name_1', 'field_name_2']
fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'}
append: bool
If `True`, open the file in 'append' mode to avoid overwriting existing content.
Default is `False`, i.e. any existing content will be overwritten.
This argument only has an effect if `filename` is given (i.e. if output happens
to a file instead of returning a CSV string).
header: bool or str or None
If `header=False` or `header=None` then no header line will be written.
If `header` is a string then this string will be used as the header line.
If `header=True` then a header line will be automatically generated from
the field names of the custom generator.
header_prefix: str
If `header=True` then the auto-generated header line will be prefixed
with `header_prefix` (otherwise this argument has no effect). For example,
set `header_prefix='#'` to make the header line start with '#'. Default: ''
sep: str
Field separator to use in the output. Default: ','
newline: str
Line terminator to use in the output. Default: '\n'
Returns
-------
The return value depends on the value of `filename`.
If `filename` is given, writes the output to the file and returns `None`.
If `filename` is `None`, returns a string containing the CSV output. | entailment |
def spawn_generator(self, g):
"""
Return a fresh spawn of g unless g is already
contained in this SpawnMapping, in which case
return the previously spawned generator.
"""
try:
return self.mapping[g]
except KeyError:
return g._spawn(self) | Return a fresh spawn of g unless g is already
contained in this SpawnMapping, in which case
return the previously spawned generator. | entailment |
def spawn(self, spawn_mapping=None):
"""
Return an exact copy of this generator which behaves the same way
(i.e., produces the same elements in the same order) but is otherwise
independent, i.e. there is no link between the two generators
(as opposed to a cloned generator, which is automatically reset
whenever the original generator is reset).
"""
spawn_mapping = spawn_mapping or SpawnMapping()
if self.parent is not None:
if self.parent in spawn_mapping:
# Return new clone of the mapped parent
return spawn_mapping[self.parent].clone()
else:
raise TohuCloneError("Cannot spawn a cloned generator without being able to map its parent.")
else:
new_obj = spawn_mapping.spawn_generator(self)
return new_obj | Return an exact copy of this generator which behaves the same way
(i.e., produces the same elements in the same order) but is otherwise
independent, i.e. there is no link between the two generators
(as opposed to a cloned generator, which is automatically reset
whenever the original generator is reset). | entailment |
def clone(self, spawn_mapping=None):
"""
Return an exact copy of this generator which behaves the same way
(i.e., produces the same elements in the same order) and which is
automatically reset whenever the original generator is reset.
"""
c = self.spawn(spawn_mapping)
self.register_clone(c)
c.register_parent(self)
return c | Return an exact copy of this generator which behaves the same way
(i.e., produces the same elements in the same order) and which is
automatically reset whenever the original generator is reset. | entailment |
def all_generators(self):
"""
Convenience property to iterate over all generators in arg_gens and kwarg_gens.
"""
for arg_gen in self.arg_gens:
yield arg_gen
for kwarg_gen in self.kwarg_gens.values():
yield kwarg_gen | Convenience property to iterate over all generators in arg_gens and kwarg_gens. | entailment |
def Split(g, *, maxbuffer=10, tuple_len=None):
"""
Split a tuple generator into individual generators.
Parameters
----------
g: tohu generator
The generator to be split. The items produced by `g` must be tuples.
maxbuffer: integer
Maximum number of items produced by `g` that will be buffered.
"""
if tuple_len is None:
try:
tuple_len = g.tuple_len
except AttributeError:
raise ValueError("Argument 'tuple_len' must be given since generator is not of type TupleGenerator.")
g_buffered = BufferedTuple(g, maxbuffer=maxbuffer, tuple_len=tuple_len)
return tuple(NthElementBuffered(g_buffered, i) for i in range(tuple_len)) | Split a tuple generator into individual generators.
Parameters
----------
g: tohu generator
The generator to be split. The items produced by `g` must be tuples.
maxbuffer: integer
Maximum number of items produced by `g` that will be buffered. | entailment |
def tuple_len(self):
"""
Length of tuples produced by this generator.
"""
try:
return self._tuple_len
except AttributeError:
raise NotImplementedError("Class {} does not implement attribute 'tuple_len'.".format(self.__class__.__name__)) | Length of tuples produced by this generator. | entailment |
def show_faults():
"""
Return all valid/active faults ordered by ID to allow the user to pick and choose.
:return: List of Tuples where the Tuple elements are: (fault id, fault template)
"""
cursor = CONN.cursor()
query = "select fau_id, fault from surfaults where fau_is_valid = 'y' order by fau_id asc"
cursor.execute(query)
result = cursor.fetchall()
return result | Return all valid/active faults ordered by ID to allow the user to pick and choose.
:return: List of Tuples where the Tuple elements are: (fault id, fault template) | entailment |
def show_sentences():
"""
Return all valid/active sentences ordered by ID to allow the user to pick and choose.
:return: Dict containing the sentence ID as the key and the sentence structure as the value.
"""
cursor = CONN.cursor()
query = "select sen_id, sentence from sursentences where sen_is_valid = 'y' order by sen_id asc"
cursor.execute(query)
result = cursor.fetchall()
response_dict = {}
for row in result:
response_dict[row[0]] = row[1]
return response_dict | Return all valid/active sentences ordered by ID to allow the user to pick and choose.
:return: Dict containing the sentence ID as the key and the sentence structure as the value. | entailment |
def get_fault(fault_id=None):
"""Retrieve a randomly-generated error message as a unicode string.
:param fault_id:
Allows you to optionally specify an integer representing the fault_id
from the database table. This allows you to retrieve a specific fault
each time, albeit with different keywords."""
counts = __get_table_limits()
result = None
id_ = 0
try:
if isinstance(fault_id, int):
id_ = fault_id
elif isinstance(fault_id, float):
print("""ValueError: Floating point number detected.
Rounding number to 0 decimal places.""")
id_ = round(fault_id)
else:
id_ = random.randint(1, counts['max_fau'])
except ValueError:
print("ValueError: Incorrect parameter type detected.")
if id_ <= counts['max_fau']:
fault = __get_fault(counts, fault_id=id_)
else:
print("""ValueError: Parameter integer is too high.
Maximum permitted value is {0}.""".format(str(counts['max_fau'])))
id_ = counts['max_fau']
fault = __get_fault(counts, fault_id=id_)
if fault is not None:
while fault[0] == 'n':
if id_ is not None:
fault = __get_fault(counts, None)
else:
fault = __get_fault(counts, id_)
if fault[0] == 'y':
result = __process_sentence(fault, counts)
return result
else:
print('ValueError: _fault cannot be None.') | Retrieve a randomly-generated error message as a unicode string.
:param fault_id:
Allows you to optionally specify an integer representing the fault_id
from the database table. This allows you to retrieve a specific fault
each time, albeit with different keywords. | entailment |
def get_sentence(sentence_id=None):
"""Retrieve a randomly-generated sentence as a unicode string.
:param sentence_id:
Allows you to optionally specify an integer representing the sentence_id
from the database table. This allows you to retrieve a specific
sentence each time, albeit with different keywords."""
counts = __get_table_limits()
result = None
id_ = 0
try:
if isinstance(sentence_id, int):
id_ = sentence_id
elif isinstance(sentence_id, float):
print("""ValueError: Floating point number detected.
Rounding number to 0 decimal places.""")
id_ = round(sentence_id)
else:
id_ = random.randint(1, counts['max_sen'])
except ValueError:
print("ValueError: Incorrect parameter type detected.")
if id_ <= counts['max_sen']:
sentence = __get_sentence(counts, sentence_id=id_)
else:
print("""ValueError: Parameter integer is too high.
Maximum permitted value is {0}.""".format(str(counts['max_sen'])))
id_ = counts['max_sen']
sentence = __get_sentence(counts, sentence_id=id_)
if sentence is not None:
while sentence[0] == 'n':
if id_ is not None:
# here we delibrately pass 'None' to __getsentence__ as it will
sentence = __get_sentence(counts, None)
else:
sentence = __get_sentence(counts, id_)
if sentence[0] == 'y':
result = __process_sentence(sentence, counts)
return result
else:
print('ValueError: _sentence cannot be None.') | Retrieve a randomly-generated sentence as a unicode string.
:param sentence_id:
Allows you to optionally specify an integer representing the sentence_id
from the database table. This allows you to retrieve a specific
sentence each time, albeit with different keywords. | entailment |
def __get_sentence(counts, sentence_id=None):
"""Let's fetch a random sentence that we then need to substitute bits of...
@
:param counts:
:param sentence_id:
"""
# First of all we need a cursor and a query to retrieve our ID's
cursor = CONN.cursor()
check_query = "select sen_id from sursentences"
# Now we fetch the result of the query and save it into check_result
cursor.execute(check_query)
check_result = cursor.fetchall()
# declare an empty list to be populated below
id_list = []
id_to_fetch = None
# Populate the id_list variable with all of the ID's we retrieved from the database query.
for row in check_result:
id_list.append(row[0])
if sentence_id is not None:
if type(sentence_id) is int:
id_to_fetch = sentence_id
else:
id_to_fetch = random.randint(1, counts['max_sen'])
while id_to_fetch not in id_list:
id_to_fetch = random.randint(1, counts['max_sen'])
query = ("select * from sursentences where sen_id = {0}".format(id_to_fetch))
cursor.execute(query)
result = cursor.fetchone()
# cursor.close()
return result | Let's fetch a random sentence that we then need to substitute bits of...
@
:param counts:
:param sentence_id: | entailment |
def __get_verb(counts):
"""Let's fetch a VERB
:param counts:
"""
cursor = CONN.cursor()
check_query = "select verb_id from surverbs"
cursor.execute(check_query)
check_result = cursor.fetchall()
id_list = []
for row in check_result:
id_list.append(row[0])
rand = random.randint(1, counts['max_verb'])
while rand not in id_list:
rand = random.randint(1, counts['max_verb'])
query = "select * from surverbs where verb_id = {0}".format(rand)
cursor.execute(query)
result = cursor.fetchone()
# cursor.close()
return result[1] | Let's fetch a VERB
:param counts: | entailment |
def __get_table_limits():
"""Here we simply take a count of each of the database tables so we know our
upper limits for our random number calls then return a dictionary of them
to the calling function..."""
table_counts = {
'max_adjectives': None,
'max_names': None,
'max_nouns': None,
'max_sentences': None,
'max_faults': None,
'max_verbs': None
}
cursor = CONN.cursor()
cursor.execute('SELECT count(*) FROM suradjs')
table_counts['max_adjectives'] = cursor.fetchone()
table_counts['max_adjectives'] = table_counts['max_adjectives'][0]
cursor.execute('SELECT count(*) FROM surnames')
table_counts['max_names'] = cursor.fetchone()
table_counts['max_names'] = table_counts['max_names'][0]
cursor.execute('SELECT count(*) FROM surnouns')
table_counts['max_nouns'] = cursor.fetchone()
table_counts['max_nouns'] = table_counts['max_nouns'][0]
cursor.execute('SELECT count(*) FROM sursentences')
table_counts['max_sen'] = cursor.fetchone()
table_counts['max_sen'] = table_counts['max_sen'][0]
cursor.execute('SELECT count(*) FROM surfaults')
table_counts['max_fau'] = cursor.fetchone()
table_counts['max_fau'] = table_counts['max_fau'][0]
cursor.execute('SELECT count(*) FROM surverbs')
table_counts['max_verb'] = cursor.fetchone()
table_counts['max_verb'] = table_counts['max_verb'][0]
return table_counts | Here we simply take a count of each of the database tables so we know our
upper limits for our random number calls then return a dictionary of them
to the calling function... | entailment |
def __process_sentence(sentence_tuple, counts):
"""pull the actual sentence from the tuple (tuple contains additional data such as ID)
:param _sentence_tuple:
:param counts:
"""
sentence = sentence_tuple[2]
# now we start replacing words one type at a time...
sentence = __replace_verbs(sentence, counts)
sentence = __replace_nouns(sentence, counts)
sentence = ___replace_adjective_maybe(sentence, counts)
sentence = __replace_adjective(sentence, counts)
sentence = __replace_names(sentence, counts)
# here we perform a check to see if we need to use A or AN depending on the
# first letter of the following word...
sentence = __replace_an(sentence)
# replace the new repeating segments
sentence = __replace_repeat(sentence)
# now we will read, choose and substitute each of the RANDOM sentence tuples
sentence = __replace_random(sentence)
# now we are going to choose whether to capitalize words/sentences or not
sentence = __replace_capitalise(sentence)
# here we will choose whether to capitalize all words in the sentence
sentence = __replace_capall(sentence)
# check for appropriate spaces in the correct places.
sentence = __check_spaces(sentence)
return sentence | pull the actual sentence from the tuple (tuple contains additional data such as ID)
:param _sentence_tuple:
:param counts: | entailment |
def __replace_verbs(sentence, counts):
"""Lets find and replace all instances of #VERB
:param _sentence:
:param counts:
"""
if sentence is not None:
while sentence.find('#VERB') != -1:
sentence = sentence.replace('#VERB', str(__get_verb(counts)), 1)
if sentence.find('#VERB') == -1:
return sentence
return sentence
else:
return sentence | Lets find and replace all instances of #VERB
:param _sentence:
:param counts: | entailment |
def __replace_nouns(sentence, counts):
"""Lets find and replace all instances of #NOUN
:param _sentence:
:param counts:
"""
if sentence is not None:
while sentence.find('#NOUN') != -1:
sentence = sentence.replace('#NOUN', str(__get_noun(counts)), 1)
if sentence.find('#NOUN') == -1:
return sentence
return sentence
else:
return sentence | Lets find and replace all instances of #NOUN
:param _sentence:
:param counts: | entailment |
def ___replace_adjective_maybe(sentence, counts):
"""Lets find and replace all instances of #ADJECTIVE_MAYBE
:param _sentence:
:param counts:
"""
random_decision = random.randint(0, 1)
if sentence is not None:
while sentence.find('#ADJECTIVE_MAYBE') != -1:
if random_decision % 2 == 0:
sentence = sentence.replace('#ADJECTIVE_MAYBE',
' ' + str(__get_adjective(counts)), 1)
elif random_decision % 2 != 0:
sentence = sentence.replace('#ADJECTIVE_MAYBE', '', 1)
if sentence.find('#ADJECTIVE_MAYBE') == -1:
return sentence
return sentence
else:
return sentence | Lets find and replace all instances of #ADJECTIVE_MAYBE
:param _sentence:
:param counts: | entailment |
def __replace_adjective(sentence, counts):
"""Lets find and replace all instances of #ADJECTIVE
:param _sentence:
:param counts:
"""
if sentence is not None:
while sentence.find('#ADJECTIVE') != -1:
sentence = sentence.replace('#ADJECTIVE',
str(__get_adjective(counts)), 1)
if sentence.find('#ADJECTIVE') == -1:
return sentence
return sentence
else:
return sentence | Lets find and replace all instances of #ADJECTIVE
:param _sentence:
:param counts: | entailment |
def __replace_names(sentence, counts):
"""Lets find and replace all instances of #NAME
:param _sentence:
:param counts:
"""
if sentence is not None:
while sentence.find('#NAME') != -1:
sentence = sentence.replace('#NAME', str(__get_name(counts)), 1)
if sentence.find('#NAME') == -1:
return sentence
return sentence
else:
return sentence | Lets find and replace all instances of #NAME
:param _sentence:
:param counts: | entailment |
def __replace_an(sentence):
"""Lets find and replace all instances of #AN
This is a little different, as this depends on whether the next
word starts with a vowel or a consonant.
:param _sentence:
"""
if sentence is not None:
while sentence.find('#AN') != -1:
an_index = sentence.find('#AN')
if an_index > -1:
an_index += 4
if sentence[an_index] in 'aeiouAEIOU':
sentence = sentence.replace('#AN', str('an'), 1)
else:
sentence = sentence.replace('#AN', str('a'), 1)
if sentence.find('#AN') == -1:
return sentence
return sentence
else:
return sentence | Lets find and replace all instances of #AN
This is a little different, as this depends on whether the next
word starts with a vowel or a consonant.
:param _sentence: | entailment |
def __replace_random(sentence):
"""Lets find and replace all instances of #RANDOM
:param _sentence:
"""
sub_list = None
choice = None
if sentence is not None:
while sentence.find('#RANDOM') != -1:
random_index = sentence.find('#RANDOM')
start_index = sentence.find('#RANDOM') + 8
end_index = sentence.find(']')
if sentence.find('#RANDOM') is not None:
sub_list = sentence[start_index:end_index].split(',')
choice = random.randint(1, int(sub_list[0]))
# _sub_list[_choice]
to_be_replaced = sentence[random_index:end_index + 1]
sentence = sentence.replace(to_be_replaced, sub_list[choice], 1)
if sentence.find('#RANDOM') == -1:
return sentence
return sentence
else:
return sentence | Lets find and replace all instances of #RANDOM
:param _sentence: | entailment |
def __replace_repeat(sentence):
"""
Allows the use of repeating random-elements such as in the 'Ten green bottles' type sentences.
:param sentence:
"""
######### USE SENTENCE_ID 47 for testing!
repeat_dict = {}
if sentence is not None:
while sentence.find('#DEFINE_REPEAT') != -1:
begin_index = sentence.find('#DEFINE_REPEAT')
start_index = begin_index + 15
end_index = sentence.find(']')
if sentence.find('#DEFINE_REPEAT') is not None:
sub_list = sentence[start_index:end_index].split(',')
choice = sub_list[0]
repeat_text = sub_list[1]
repeat_dict[choice] = repeat_text
sentence = sentence.replace(sentence[begin_index:end_index + 1], '', 1)
while sentence.find('#REPEAT') != -1:
if sentence.find('#REPEAT') is not None:
repeat_begin_index = sentence.find('#REPEAT')
repeat_start_index = repeat_begin_index + 8
# by searching from repeat_index below we don't encounter dodgy bracket-matching errors.
repeat_end_index = sentence.find(']', repeat_start_index)
repeat_index = sentence[repeat_start_index:repeat_end_index]
if repeat_index in repeat_dict:
sentence = sentence.replace(sentence[repeat_begin_index:repeat_end_index + 1],
str(repeat_dict[repeat_index]))
if sentence.find('#REPEAT') == -1:
return sentence
return sentence
else:
return sentence | Allows the use of repeating random-elements such as in the 'Ten green bottles' type sentences.
:param sentence: | entailment |
def __replace_capitalise(sentence):
"""here we replace all instances of #CAPITALISE and cap the next word.
############
#NOTE: Buggy as hell, as it doesn't account for words that are already
#capitalized
############
:param _sentence:
"""
if sentence is not None:
while sentence.find('#CAPITALISE') != -1:
cap_index = _sentence.find('#CAPITALISE')
part1 = sentence[:cap_index]
part2 = sentence[cap_index + 12:cap_index + 13]
part3 = sentence[cap_index + 13:]
if part2 in "abcdefghijklmnopqrstuvwxyz":
sentence = part1 + part2.capitalize() + part3
else:
sentence = part1 + part2 + part3
if sentence.find('#CAPITALISE') == -1:
return sentence
else:
return sentence | here we replace all instances of #CAPITALISE and cap the next word.
############
#NOTE: Buggy as hell, as it doesn't account for words that are already
#capitalized
############
:param _sentence: | entailment |
def __replace_capall(sentence):
"""here we replace all instances of #CAPALL and cap the entire sentence.
Don't believe that CAPALL is buggy anymore as it forces all uppercase OK?
:param _sentence:
"""
# print "\nReplacing CAPITALISE: "
if sentence is not None:
while sentence.find('#CAPALL') != -1:
# _cap_index = _sentence.find('#CAPALL')
sentence = sentence.upper()
sentence = sentence.replace('#CAPALL ', '', 1)
if sentence.find('#CAPALL') == -1:
return sentence
else:
return sentence | here we replace all instances of #CAPALL and cap the entire sentence.
Don't believe that CAPALL is buggy anymore as it forces all uppercase OK?
:param _sentence: | entailment |
def __check_spaces(sentence):
"""
Here we check to see that we have the correct number of spaces in the correct locations.
:param _sentence:
:return:
"""
# We have to run the process multiple times:
# Once to search for all spaces, and check if there are adjoining spaces;
# The second time to check for 2 spaces after sentence-ending characters such as . and ! and ?
if sentence is not None:
words = sentence.split()
new_sentence = ''
for (i, word) in enumerate(words):
if word[-1] in set('.!?'):
word += ' '
new_word = ''.join(word)
new_sentence += ' ' + new_word
# remove any trailing whitespace
new_sentence = new_sentence.strip()
return new_sentence | Here we check to see that we have the correct number of spaces in the correct locations.
:param _sentence:
:return: | entailment |
def make_exploded_column(df, colname_new, colname_old):
"""
Internal helper function used by `explode_columns()`.
"""
s = df[colname_old].apply(pd.Series).stack()
s.name = colname_new
return s | Internal helper function used by `explode_columns()`. | entailment |
def explode_columns(df, colnames):
"""
Given a dataframe with certain columns that contain lists,
return another dataframe where the elements in each list
are "exploded" into individual rows.
Example:
>>> df
col1 col2 col3 col4
0 foo 11 [DDD, AAA, CCC] [dd, aa, cc]
1 bar 22 [FFF] [ff]
2 quux 33 [EEE, BBB] [ee, bb]
>>> explode_columns(df, ['col3'])
col1 col2 col3 col4
0 foo 11 DDD dd
1 foo 11 AAA aa
2 foo 11 CCC cc
3 bar 22 FFF ff
4 quux 33 EEE ee
5 quux 33 BBB bb
>>> explode_columns(df, {'col3_exploded': 'col3'})
col1 col2 col3_exploded col4
0 foo 11 DDD dd
1 foo 11 AAA aa
2 foo 11 CCC cc
3 bar 22 FFF ff
4 quux 33 EEE ee
5 quux 33 BBB bb
"""
if isinstance(colnames, (list, tuple)):
colnames = {name: name for name in colnames}
remaining_columns = list(df.columns.difference(colnames.values()))
df2 = df.set_index(remaining_columns)
df3 = pd.concat((make_exploded_column(df2, col_new, col_old) for col_new, col_old in colnames.items()), axis=1)
levels_to_reset = list(range(len(remaining_columns)))
df4 = df3.reset_index(level=levels_to_reset).reset_index(drop=True)
return df4 | Given a dataframe with certain columns that contain lists,
return another dataframe where the elements in each list
are "exploded" into individual rows.
Example:
>>> df
col1 col2 col3 col4
0 foo 11 [DDD, AAA, CCC] [dd, aa, cc]
1 bar 22 [FFF] [ff]
2 quux 33 [EEE, BBB] [ee, bb]
>>> explode_columns(df, ['col3'])
col1 col2 col3 col4
0 foo 11 DDD dd
1 foo 11 AAA aa
2 foo 11 CCC cc
3 bar 22 FFF ff
4 quux 33 EEE ee
5 quux 33 BBB bb
>>> explode_columns(df, {'col3_exploded': 'col3'})
col1 col2 col3_exploded col4
0 foo 11 DDD dd
1 foo 11 AAA aa
2 foo 11 CCC cc
3 bar 22 FFF ff
4 quux 33 EEE ee
5 quux 33 BBB bb | entailment |
def print_generated_sequence(gen, num, *, sep=", ", fmt='', seed=None):
"""
Helper function which prints a sequence of `num` items
produced by the random generator `gen`.
"""
if seed:
gen.reset(seed)
elems = [format(next(gen), fmt) for _ in range(num)]
sep_initial = "\n\n" if '\n' in sep else " "
print("Generated sequence:{}{}".format(sep_initial, sep.join(elems))) | Helper function which prints a sequence of `num` items
produced by the random generator `gen`. | entailment |
def make_dummy_tuples(chars='abcde'):
"""
Helper function to create a list of namedtuples which are useful
for testing and debugging (especially of custom generators).
Example
-------
>>> make_dummy_tuples(chars='abcd')
[Quux(x='AA', y='aa'),
Quux(x='BB', y='bb'),
Quux(x='CC', y='cc'),
Quux(x='DD', y='dd')]
"""
Quux = namedtuple('Quux', ['x', 'y'])
some_tuples = [Quux((c*2).upper(), c*2) for c in chars]
return some_tuples | Helper function to create a list of namedtuples which are useful
for testing and debugging (especially of custom generators).
Example
-------
>>> make_dummy_tuples(chars='abcd')
[Quux(x='AA', y='aa'),
Quux(x='BB', y='bb'),
Quux(x='CC', y='cc'),
Quux(x='DD', y='dd')] | entailment |
def ensure_is_date_object(x):
"""
Ensure input represents a valid date and return the corresponding `datetime.date` object.
Valid inputs:
- string of the form "YYYY-MM-DD"
- dt.date object
- pd.Timestamp of the form "YYYY-MM-DD 00:00:00" with freq='D' (as is generated by pd.date_range())
"""
error_msg = f"Cannot convert input to date object: {x} (type: {type(x)})"
if isinstance(x, dt.date):
if isinstance(x, pd.Timestamp):
if x.freq != 'D':
raise TohuDateError("Pandas Timestamp must have freq='D' set. Got: freq={x.freq!r}")
elif pd.Timestamp(x.date()) == x:
return x.date()
else:
raise TohuDateError(error_msg)
elif isinstance(x, dt.datetime):
raise TohuDateError(error_msg)
else:
return x
elif isinstance(x, str):
return parse_date_string(x)
else:
raise TohuDateError(error_msg) | Ensure input represents a valid date and return the corresponding `datetime.date` object.
Valid inputs:
- string of the form "YYYY-MM-DD"
- dt.date object
- pd.Timestamp of the form "YYYY-MM-DD 00:00:00" with freq='D' (as is generated by pd.date_range()) | entailment |
def all_independent_generators(self):
"""
Return all generators in this namespace which are not clones.
"""
return {g: name for g, name in self._ns.items() if not is_clone(g)} | Return all generators in this namespace which are not clones. | entailment |
def make_tohu_items_class(clsname, attr_names):
"""
Parameters
----------
clsname: string
Name of the class to be created
attr_names: list of strings
Names of the attributes of the class to be created
"""
item_cls = attr.make_class(clsname, {name: attr.ib() for name in attr_names}, repr=False, cmp=True, frozen=True)
def new_repr(self):
all_fields = ', '.join([f'{name}={repr(value)}' for name, value in attr.asdict(self).items()])
return f'{clsname}({all_fields})'
orig_eq = item_cls.__eq__
def new_eq(self, other):
"""
Custom __eq__() method which also allows comparisons with
tuples and dictionaries. This is mostly for convenience
during testing.
"""
if isinstance(other, self.__class__):
return orig_eq(self, other)
else:
if isinstance(other, tuple):
return attr.astuple(self) == other
elif isinstance(other, dict):
return attr.asdict(self) == other
else:
return NotImplemented
item_cls.__repr__ = new_repr
item_cls.__eq__ = new_eq
item_cls.keys = lambda self: attr_names
item_cls.__getitem__ = lambda self, key: getattr(self, key)
item_cls.as_dict = lambda self: attr.asdict(self)
item_cls.to_series = lambda self: pd.Series(attr.asdict(self))
return item_cls | Parameters
----------
clsname: string
Name of the class to be created
attr_names: list of strings
Names of the attributes of the class to be created | entailment |
def get_tohu_items_name(cls):
"""
Return a string which defines the name of the namedtuple class which will be used
to produce items for the custom generator.
By default this will be the first part of the class name (before '...Generator'),
for example:
FoobarGenerator -> Foobar
QuuxGenerator -> Quux
However, it can be set explicitly by the user by defining `__tohu_items_name__`
in the class definition, for example:
class Quux(CustomGenerator):
__tohu_items_name__ = 'MyQuuxItem'
"""
assert issubclass(cls, TohuBaseGenerator)
try:
tohu_items_name = cls.__dict__['__tohu_items_name__']
logger.debug(f"Using item class name '{tohu_items_name}' (derived from attribute '__tohu_items_name__')")
except KeyError:
m = re.match('^(.*)Generator$', cls.__name__)
if m is not None:
tohu_items_name = m.group(1)
logger.debug(f"Using item class name '{tohu_items_name}' (derived from custom generator name)")
else:
msg = (
"Cannot derive class name for items to be produced by custom generator. "
"Please set '__tohu_items_name__' at the top of the custom generator's "
"definition or change its name so that it ends in '...Generator'"
)
raise ValueError(msg)
return tohu_items_name | Return a string which defines the name of the namedtuple class which will be used
to produce items for the custom generator.
By default this will be the first part of the class name (before '...Generator'),
for example:
FoobarGenerator -> Foobar
QuuxGenerator -> Quux
However, it can be set explicitly by the user by defining `__tohu_items_name__`
in the class definition, for example:
class Quux(CustomGenerator):
__tohu_items_name__ = 'MyQuuxItem' | entailment |
def _init_randgen(self):
"""
Initialise random generator to be used for picking elements.
With the current implementation in tohu (where we pick elements
from generators individually instead of in bulk), it is faster
to `use random.Random` than `numpy.random.RandomState` (it is
possible that this may change in the future if we change the
design so that tohu pre-produces elements in bulk, but that's
not likely to happen in the near future).
Since `random.Random` doesn't support arbitrary distributions,
we can only use it if `p=None`. This helper function returns
the appropriate random number generator depending in the value
of `p`, and also returns a function `random_choice` which can be
applied to the input sequence to select random elements from it.
"""
if self.p is None:
self.randgen = Random()
self.func_random_choice = self.randgen.choice
else:
self.randgen = np.random.RandomState()
self.func_random_choice = partial(self.randgen.choice, p=self.p) | Initialise random generator to be used for picking elements.
With the current implementation in tohu (where we pick elements
from generators individually instead of in bulk), it is faster
to `use random.Random` than `numpy.random.RandomState` (it is
possible that this may change in the future if we change the
design so that tohu pre-produces elements in bulk, but that's
not likely to happen in the near future).
Since `random.Random` doesn't support arbitrary distributions,
we can only use it if `p=None`. This helper function returns
the appropriate random number generator depending in the value
of `p`, and also returns a function `random_choice` which can be
applied to the input sequence to select random elements from it. | entailment |
def _set_random_state_from(self, other):
"""
Transfer the internal state from `other` to `self`.
After this call, `self` will produce the same elements
in the same order as `other` (even though they otherwise
remain completely independent).
"""
try:
# this works if randgen is an instance of random.Random()
self.randgen.setstate(other.randgen.getstate())
except AttributeError:
# this works if randgen is an instance of numpy.random.RandomState()
self.randgen.set_state(other.randgen.get_state())
return self | Transfer the internal state from `other` to `self`.
After this call, `self` will produce the same elements
in the same order as `other` (even though they otherwise
remain completely independent). | entailment |
def _init_randgen(self):
"""
Initialise random generator to be used for picking elements.
With the current implementation in tohu (where we pick elements
from generators individually instead of in bulk), it is faster
to `use random.Random` than `numpy.random.RandomState` (it is
possible that this may change in the future if we change the
design so that tohu pre-produces elements in bulk, but that's
not likely to happen in the near future).
Since `random.Random` doesn't support arbitrary distributions,
we can only use it if `p=None`. This helper function returns
the appropriate random number generator depending in the value
of `p`, and also returns a function `random_choice` which can be
applied to the input sequence to select random elements from it.
"""
if self.p is None:
self.randgen = Random()
self.func_random_choice = partial(self.randgen.choices, k=self.num)
else:
self.randgen = np.random.RandomState()
self.func_random_choice = partial(self.randgen.choice, p=self.p, k=self.num) | Initialise random generator to be used for picking elements.
With the current implementation in tohu (where we pick elements
from generators individually instead of in bulk), it is faster
to `use random.Random` than `numpy.random.RandomState` (it is
possible that this may change in the future if we change the
design so that tohu pre-produces elements in bulk, but that's
not likely to happen in the near future).
Since `random.Random` doesn't support arbitrary distributions,
we can only use it if `p=None`. This helper function returns
the appropriate random number generator depending in the value
of `p`, and also returns a function `random_choice` which can be
applied to the input sequence to select random elements from it. | entailment |
def update_with_tohu_generators(field_gens, adict):
"""
Helper function which updates `field_gens` with any items in the
dictionary `adict` that are instances of `TohuUltraBaseGenerator`.
"""
for name, gen in adict.items():
if isinstance(gen, TohuUltraBaseGenerator):
field_gens[name] = gen | Helper function which updates `field_gens` with any items in the
dictionary `adict` that are instances of `TohuUltraBaseGenerator`. | entailment |
def find_field_generator_templates(obj):
"""
Return dictionary with the names and instances of
all tohu.BaseGenerator occurring in the given
object's class & instance namespaces.
"""
cls_dict = obj.__class__.__dict__
obj_dict = obj.__dict__
#debug_print_dict(cls_dict, 'cls_dict')
#debug_print_dict(obj_dict, 'obj_dict')
field_gens = {}
update_with_tohu_generators(field_gens, cls_dict)
update_with_tohu_generators(field_gens, obj_dict)
return field_gens | Return dictionary with the names and instances of
all tohu.BaseGenerator occurring in the given
object's class & instance namespaces. | entailment |
def set_item_class_name_on_custom_generator_class(cls):
"""
Set the attribute `cls.__tohu_items_name__` to a string which defines the name
of the namedtuple class which will be used to produce items for the custom
generator.
By default this will be the first part of the class name (before '...Generator'),
for example:
FoobarGenerator -> Foobar
QuuxGenerator -> Quux
However, it can be set explicitly by the user by defining `__tohu_items_name__`
in the class definition, for example:
class Quux(CustomGenerator):
__tohu_items_name__ = 'MyQuuxItem'
"""
if '__tohu__items__name__' in cls.__dict__:
logger.debug(
f"Using item class name '{cls.__tohu_items_name__}' (derived from attribute '__tohu_items_name__')")
else:
m = re.match('^(.*)Generator$', cls.__name__)
if m is not None:
cls.__tohu_items_name__ = m.group(1)
logger.debug(f"Using item class name '{cls.__tohu_items_name__}' (derived from custom generator name)")
else:
raise ValueError("Cannot derive class name for items to be produced by custom generator. "
"Please set '__tohu_items_name__' at the top of the custom generator's "
"definition or change its name so that it ends in '...Generator'") | Set the attribute `cls.__tohu_items_name__` to a string which defines the name
of the namedtuple class which will be used to produce items for the custom
generator.
By default this will be the first part of the class name (before '...Generator'),
for example:
FoobarGenerator -> Foobar
QuuxGenerator -> Quux
However, it can be set explicitly by the user by defining `__tohu_items_name__`
in the class definition, for example:
class Quux(CustomGenerator):
__tohu_items_name__ = 'MyQuuxItem' | entailment |
def make_item_class_for_custom_generator_class(cls):
"""
cls:
The custom generator class for which to create an item-class
"""
clsname = cls.__tohu_items_name__
attr_names = cls.field_gens.keys()
return make_item_class(clsname, attr_names) | cls:
The custom generator class for which to create an item-class | entailment |
def _add_new_init_method(cls):
"""
Replace the existing cls.__init__() method with a new one
which calls the original one and in addition performs the
following actions:
(1) Finds all instances of tohu.BaseGenerator in the namespace
and collects them in the dictionary `self.field_gens`.
(2) ..to do..
"""
orig_init = cls.__init__
def new_init_method(self, *args, **kwargs):
logger.debug(f"Initialising new {self} (type: {type(self)})")
# Call original __init__ function to ensure we pick up
# any tohu generators that are defined there.
#
logger.debug(f" orig_init: {orig_init}")
orig_init(self, *args, **kwargs)
#
# Find field generator templates and spawn them to create
# field generators for the new custom generator instance.
#
field_gens_templates = find_field_generator_templates(self)
logger.debug(f'Found {len(field_gens_templates)} field generator template(s):')
debug_print_dict(field_gens_templates)
logger.debug('Spawning field generator templates...')
origs = {}
spawned = {}
dependency_mapping = {}
for (name, gen) in field_gens_templates.items():
origs[name] = gen
spawned[name] = gen.spawn(dependency_mapping)
logger.debug(f'Adding dependency mapping: {gen} -> {spawned[name]}')
self.field_gens = spawned
self.__dict__.update(self.field_gens)
logger.debug(f'Spawned field generators attached to custom generator instance:')
debug_print_dict(self.field_gens)
# Add seed generator
#
#self.seed_generator = SeedGenerator()
# Create class for the items produced by this generator
#
self.__class__.item_cls = make_item_class_for_custom_generator_class(self)
cls.__init__ = new_init_method | Replace the existing cls.__init__() method with a new one
which calls the original one and in addition performs the
following actions:
(1) Finds all instances of tohu.BaseGenerator in the namespace
and collects them in the dictionary `self.field_gens`.
(2) ..to do.. | entailment |
def _add_new_next_method(cls):
"""
TODO
"""
def new_next(self):
field_values = [next(g) for g in self.field_gens.values()]
return self.item_cls(*field_values)
cls.__next__ = new_next | TODO | entailment |
def _add_new_reset_method(cls):
"""
Attach a new `reset()` method to `cls` which resets the internal
seed generator of `cls` and then resets each of its constituent
field generators found in `cls.field_gens`.
"""
#
# Create and assign automatically generated reset() method
#
def new_reset_method(self, seed=None):
logger.debug(f'[EEE] Inside automatically generated reset() method for {self} (seed={seed})')
if seed is not None:
self.seed_generator.reset(seed)
for name, gen in self.field_gens.items():
next_seed = next(self.seed_generator)
gen.reset(next_seed)
# TODO: the following should be covered by the newly added
# reset() method in IndependentGeneratorMeta. However, for
# some reason we can't call this via the usual `orig_reset()`
# pattern, so we have to duplicate this here. Not ideal...
for c in self._clones:
c.reset_clone(seed)
return self
cls.reset = new_reset_method | Attach a new `reset()` method to `cls` which resets the internal
seed generator of `cls` and then resets each of its constituent
field generators found in `cls.field_gens`. | entailment |
def _add_new_spawn_method(cls):
"""
TODO
"""
def new_spawn_method(self, dependency_mapping):
# TODO/FIXME: Check that this does the right thing:
# (i) the spawned generator is independent of the original one (i.e. they can be reset independently without altering the other's behaviour)
# (ii) ensure that it also works if this custom generator's __init__ requires additional arguments
#new_instance = self.__class__()
#
# FIXME: It would be good to explicitly spawn the field generators of `self`
# here because this would ensure that the internal random generators
# of the spawned versions are in the same state as the ones in `self`.
# This would guarantee that the spawned custom generator produces the
# same elements as `self` even before reset() is called explicitly.
new_instance = cls()
return new_instance
cls.spawn = new_spawn_method | TODO | entailment |
def reset_input_generators(self, seed):
"""
Helper method which explicitly resets all input generators
to the derived generator. This should only ever be called
for testing or debugging.
"""
seed_generator = SeedGenerator().reset(seed=seed)
for gen in self.input_generators:
gen.reset(next(seed_generator))
try:
# In case `gen` is itself a derived generator,
# recursively reset its own input generators.
gen.reset_input_generators(next(seed_generator))
except AttributeError:
pass | Helper method which explicitly resets all input generators
to the derived generator. This should only ever be called
for testing or debugging. | entailment |
def _spot_check_that_elements_produced_by_this_generator_have_attribute(self, name):
"""
Helper function to spot-check that the items produces by this generator have the attribute `name`.
"""
g_tmp = self.values_gen.spawn()
sample_element = next(g_tmp)[0]
try:
getattr(sample_element, name)
except AttributeError:
raise AttributeError(f"Items produced by {self} do not have the attribute '{name}'") | Helper function to spot-check that the items produces by this generator have the attribute `name`. | entailment |
def to_df(self, fields=None, fields_to_explode=None):
"""
Export items as rows in a pandas dataframe table.
Parameters
----------
fields: list or dict
List of field names to export, or dictionary mapping output column names
to attribute names of the generators.
Examples:
fields=['field_name_1', 'field_name_2']
fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'}
fields_to_explode: list or None
Optional list of field names where each entry (which must itself be a sequence)
is to be "exploded" into separate rows.
"""
if isinstance(fields, (list, tuple)):
fields = {name: name for name in fields}
assert fields_to_explode is None or isinstance(fields_to_explode, (list, tuple))
if fields_to_explode is None:
fields_to_explode = []
if fields is None:
colnames_to_export = list(self.items[0].as_dict().keys()) # hack! the field names should perhaps be passed in during initialisation?
else:
colnames_to_export = list(fields.keys())
if not set(fields_to_explode).issubset(colnames_to_export):
raise ValueError(
"All fields to explode must occur as column names. "
f"Got field names: {fields_to_explode}. Column names: {list(fields.keys())}"
)
if fields is None:
# New version (much faster!, but needs cleaning up)
import attr
df = pd.DataFrame([attr.astuple(x) for x in self.items], columns=colnames_to_export)
# Old version:
#return pd.DataFrame([x.to_series() for x in self.items])
else:
# New version (much faster!)
def make_attrgetter(attr_name_new, attr_name, fields_to_explode):
# TODO: this needs cleaning up!
if attr_name_new in fields_to_explode and '.' in attr_name:
attr_name_first_part, attr_name_rest = attr_name.split('.', maxsplit=1)
def func(row):
foo_items = attrgetter(attr_name_first_part)(row)
return [attrgetter(attr_name_rest)(x) for x in foo_items]
return func
else:
return attrgetter(attr_name)
attr_getters = [make_attrgetter(attr_name_new, attr_name, fields_to_explode) for attr_name_new, attr_name in fields.items()]
try:
df = pd.DataFrame([tuple(func(x) for func in attr_getters) for x in self.items], columns=colnames_to_export)
except AttributeError as exc:
msg = (
"Could not export to dataframe. Did you forget to pass any fields "
"which contain sequences within the 'fields_to_explode' argument?. "
f"The original error message was: \"{exc}\""
)
raise AttributeError(msg)
if fields_to_explode != []:
# TODO: add sanity checks to avoid unwanted behaviour (e.g. that all columns
# to be exploded must have the same number of elements in each entry?)
df = explode_columns(df, fields_to_explode)
return df | Export items as rows in a pandas dataframe table.
Parameters
----------
fields: list or dict
List of field names to export, or dictionary mapping output column names
to attribute names of the generators.
Examples:
fields=['field_name_1', 'field_name_2']
fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'}
fields_to_explode: list or None
Optional list of field names where each entry (which must itself be a sequence)
is to be "exploded" into separate rows. | entailment |
def to_csv(self, output_file=None, *, fields=None, fields_to_explode=None, append=False, header=True, header_prefix='', sep=',', newline='\n'):
"""
Parameters
----------
output_file: str or file object or None
The file to which output will be written. By default, any existing content is
overwritten. Use `append=True` to open the file in append mode instead.
If `output_file` is None, the generated CSV output is returned as a string
instead of written to a file.
fields: list or dict
List of field names to export, or dictionary mapping output column names
to attribute names of the generators.
Examples:
fields=['field_name_1', 'field_name_2']
fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'}
fields_to_explode: list
Optional list of field names where each entry (which must itself be a sequence)
is to be "exploded" into separate rows. (*Note:* this is not supported yet for CSV export.)
append: bool
If `True`, open the file in 'append' mode to avoid overwriting existing content.
Default is `False`, i.e. any existing content will be overwritten.
This argument only has an effect if `output_file` is given (i.e. if output happens
to a file instead of returning a CSV string).
header: bool or str or None
If `header=False` or `header=None` then no header line will be written.
If `header` is a string then this string will be used as the header line.
If `header=True` then a header line will be automatically generated from
the field names of the custom generator.
header_prefix: str
If `header=True` then the auto-generated header line will be prefixed
with `header_prefix` (otherwise this argument has no effect). For example,
set `header_prefix='#'` to make the header line start with '#'. Default: ''
sep: str
Field separator to use in the output. Default: ','
newline: str
Line terminator to use in the output. Default: '\n'
Returns
-------
The return value depends on the value of `output_file`.
If `output_file` is given, writes the output to the file and returns `None`.
If `output_file` is `None`, returns a string containing the CSV output.
"""
assert isinstance(append, bool)
if fields is None:
raise NotImplementedError("TODO: derive field names automatically from the generator which produced this item list")
if fields_to_explode is not None:
raise NotImplementedError("TODO: the 'fields_to_explode' argument is not supported for CSV export yet.")
if isinstance(fields, (list, tuple)):
fields = {name: name for name in fields}
header_line = _generate_csv_header_line(header=header, header_prefix=header_prefix, header_names=fields.keys(), sep=sep, newline=newline)
if output_file is None:
file_or_string = io.StringIO()
elif isinstance(output_file, str):
mode = 'a' if append else 'w'
file_or_string = open(output_file, mode)
# ensure parent directory of output file exits
dirname = os.path.dirname(os.path.abspath(output_file))
if not os.path.exists(dirname):
logger.debug(f"Creating parent directory of output file '{output_file}'")
os.makedirs(dirname)
elif isinstance(output_file, io.IOBase):
file_or_string = output_file
else:
raise TypeError(f"Invalid output file: {output_file} (type: {type(output_file)})")
retval = None
attr_getters = [attrgetter(attr_name) for attr_name in fields.values()]
try:
# TODO: quick-and-dirty solution to enable writing to gzip files; tidy this up!
# (Note that for regular file output we don't want to encode each line to a bytes
# object because this seems to be ca. 2x slower).
if isinstance(file_or_string, gzip.GzipFile):
file_or_string.write(header_line.encode())
for x in self.items:
line = sep.join([format(func(x)) for func in attr_getters]) + newline
file_or_string.write(line.encode())
else:
file_or_string.write(header_line)
for x in self.items:
line = sep.join([format(func(x)) for func in attr_getters]) + newline
file_or_string.write(line)
if output_file is None:
retval = file_or_string.getvalue()
finally:
file_or_string.close()
return retval | Parameters
----------
output_file: str or file object or None
The file to which output will be written. By default, any existing content is
overwritten. Use `append=True` to open the file in append mode instead.
If `output_file` is None, the generated CSV output is returned as a string
instead of written to a file.
fields: list or dict
List of field names to export, or dictionary mapping output column names
to attribute names of the generators.
Examples:
fields=['field_name_1', 'field_name_2']
fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'}
fields_to_explode: list
Optional list of field names where each entry (which must itself be a sequence)
is to be "exploded" into separate rows. (*Note:* this is not supported yet for CSV export.)
append: bool
If `True`, open the file in 'append' mode to avoid overwriting existing content.
Default is `False`, i.e. any existing content will be overwritten.
This argument only has an effect if `output_file` is given (i.e. if output happens
to a file instead of returning a CSV string).
header: bool or str or None
If `header=False` or `header=None` then no header line will be written.
If `header` is a string then this string will be used as the header line.
If `header=True` then a header line will be automatically generated from
the field names of the custom generator.
header_prefix: str
If `header=True` then the auto-generated header line will be prefixed
with `header_prefix` (otherwise this argument has no effect). For example,
set `header_prefix='#'` to make the header line start with '#'. Default: ''
sep: str
Field separator to use in the output. Default: ','
newline: str
Line terminator to use in the output. Default: '\n'
Returns
-------
The return value depends on the value of `output_file`.
If `output_file` is given, writes the output to the file and returns `None`.
If `output_file` is `None`, returns a string containing the CSV output. | entailment |
def to_sql(self, url, table_name, *, schema=None, fields=None, fields_to_explode=None, if_exists="fail", dtype=None):
"""
Export items as rows in a PostgreSQL table.
Parameters
----------
url: string
Connection string to connect to the database.
Example: "postgresql://[email protected]:5432/testdb"
table_name: string
Name of the database table. Note that if this name contains a dot ('.')
and `schema` is not specified, the first part of the name before the dot
will be interpreted as the schema name.
schema : string, optional
Specify the schema (if database flavor supports this). If None,
use default schema or derive the schema name from `table_name`.
fields: list or dict
List of field names to export, or dictionary mapping output column names
to attribute names of the generators.
Examples:
fields=['field_name_1', 'field_name_2']
fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'}
fields_to_explode: list or None
Optional list of field names where each entry (which must itself be a sequence)
is to be "exploded" into separate rows.
if_exists : {'fail', 'do_nothing', 'replace', 'append'}, default 'fail'
- fail: If table exists, raise an error.
- do_nothing: If table exists, do nothing and immediately return.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.
dtype : dict, optional
Specifying the datatype for columns. The keys should be the column
names and the values should be the SQLAlchemy types or strings for
the sqlite3 legacy mode. This is passed through to pandas.DataFrame.to_sql().
"""
if schema is None:
schema, table_name = _extract_schema_if_given(table_name)
engine = create_engine(url)
ins = inspect(engine)
if schema is not None and schema not in ins.get_schema_names():
logger.debug(f"Creating non-existing schema: '{schema}'")
engine.execute(CreateSchema(schema))
if table_name in ins.get_table_names(schema=schema) and if_exists == 'do_nothing':
logger.debug("Table already exists (use if_exists='replace' or if_exists='append' to modify it).")
return
if if_exists == 'do_nothing':
# we handled the 'do nothing' case above; change to an option that pandas will understand
if_exists = 'fail'
with engine.begin() as conn:
self.to_df(fields=fields, fields_to_explode=fields_to_explode).to_sql(
table_name, conn, schema=schema, index=False, if_exists=if_exists, dtype=dtype) | Export items as rows in a PostgreSQL table.
Parameters
----------
url: string
Connection string to connect to the database.
Example: "postgresql://[email protected]:5432/testdb"
table_name: string
Name of the database table. Note that if this name contains a dot ('.')
and `schema` is not specified, the first part of the name before the dot
will be interpreted as the schema name.
schema : string, optional
Specify the schema (if database flavor supports this). If None,
use default schema or derive the schema name from `table_name`.
fields: list or dict
List of field names to export, or dictionary mapping output column names
to attribute names of the generators.
Examples:
fields=['field_name_1', 'field_name_2']
fields={'COL1': 'field_name_1', 'COL2': 'field_name_2'}
fields_to_explode: list or None
Optional list of field names where each entry (which must itself be a sequence)
is to be "exploded" into separate rows.
if_exists : {'fail', 'do_nothing', 'replace', 'append'}, default 'fail'
- fail: If table exists, raise an error.
- do_nothing: If table exists, do nothing and immediately return.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.
dtype : dict, optional
Specifying the datatype for columns. The keys should be the column
names and the values should be the SQLAlchemy types or strings for
the sqlite3 legacy mode. This is passed through to pandas.DataFrame.to_sql(). | entailment |
def reset(self, seed):
"""
Reset this generator's seed generator and any clones.
"""
logger.debug(f'Resetting {self} (seed={seed})')
self.seed_generator.reset(seed)
for c in self.clones:
c.reset(seed) | Reset this generator's seed generator and any clones. | entailment |
def _load_config(initial_namespace=None, defaults=None):
# type: (Optional[str], Optional[str]) -> ConfigLoader
"""
Kwargs:
initial_namespace:
defaults:
"""
# load defaults
if defaults:
config = ConfigLoader()
config.update_from_object(defaults)
namespace = getattr(config, 'CONFIG_NAMESPACE', initial_namespace)
app_config = getattr(config, 'APP_CONFIG', None)
# load customised config
if app_config:
if namespace is None:
config.update_from_object(app_config)
else:
_temp = ConfigLoader()
_temp.update_from_object(app_config, lambda key: key.startswith(namespace))
config.update(_temp.namespace(namespace))
return config | Kwargs:
initial_namespace:
defaults: | entailment |
def override_environment(settings, **kwargs):
# type: (Settings, **str) -> Generator
"""
Override env vars and reload the Settings object
NOTE:
Obviously this context has to be in place before you import any
module which reads env values at import time.
NOTE:
The values in `kwargs` must be strings else you will get a cryptic:
TypeError: execve() arg 3 contains a non-string value
"""
old_env = os.environ.copy()
os.environ.update(kwargs)
settings._reload()
try:
yield
except Exception:
raise
finally:
for key in kwargs.keys():
del os.environ[key]
os.environ.update(old_env)
settings._reload() | Override env vars and reload the Settings object
NOTE:
Obviously this context has to be in place before you import any
module which reads env values at import time.
NOTE:
The values in `kwargs` must be strings else you will get a cryptic:
TypeError: execve() arg 3 contains a non-string value | entailment |
def _import_yaml(config_file_path):
"""Return a configuration object
"""
try:
logger.info('Importing config %s...', config_file_path)
with open(config_file_path) as config_file:
return yaml.safe_load(config_file.read())
except IOError as ex:
raise RepexError('{0}: {1} ({2})'.format(
ERRORS['config_file_not_found'], config_file_path, ex))
except (yaml.parser.ParserError, yaml.scanner.ScannerError) as ex:
raise RepexError('{0} ({1})'.format(ERRORS['invalid_yaml'], ex)) | Return a configuration object | entailment |
def _get_all_files(filename_regex,
path,
base_dir,
excluded_paths=None,
excluded_filename_regex=None):
"""Get all files for processing.
This starts iterating from `base_dir` and checks for all files
that look like `filename_regex` under `path` regex excluding
all paths under the `excluded_paths` list, whether they are files
or folders. `excluded_paths` are explicit paths, not regex.
`excluded_filename_regex` are files to be excluded as well.
"""
# For windows
def replace_backslashes(string):
return string.replace('\\', '/')
excluded_paths = _normalize_excluded_paths(base_dir, excluded_paths)
if excluded_paths:
logger.info('Excluding paths: %s', excluded_paths)
logger.info('Looking for %s under %s...',
filename_regex, os.path.join(base_dir, path))
if excluded_filename_regex:
logger.info('Excluding file names: %s', excluded_filename_regex)
path_expression = re.compile(replace_backslashes(path))
target_files = []
for root, _, files in os.walk(base_dir):
if not root.startswith(tuple(excluded_paths)) \
and path_expression.search(replace_backslashes(root)):
for filename in files:
filepath = os.path.join(root, filename)
is_file, matched, excluded_filename, excluded_path = \
_set_match_parameters(
filename,
filepath,
filename_regex,
excluded_filename_regex,
excluded_paths)
if is_file and matched and not excluded_filename \
and not excluded_path:
logger.debug('%s is a match. Appending to list...',
filepath)
target_files.append(filepath)
return target_files | Get all files for processing.
This starts iterating from `base_dir` and checks for all files
that look like `filename_regex` under `path` regex excluding
all paths under the `excluded_paths` list, whether they are files
or folders. `excluded_paths` are explicit paths, not regex.
`excluded_filename_regex` are files to be excluded as well. | entailment |
def _match_tags(repex_tags, path_tags):
"""Check for matching tags between what the user provided
and the tags set in the config.
If `any` is chosen, match.
If no tags are chosen and none are configured, match.
If the user provided tags match any of the configured tags, match.
"""
if 'any' in repex_tags or (not repex_tags and not path_tags):
return True
elif set(repex_tags) & set(path_tags):
return True
return False | Check for matching tags between what the user provided
and the tags set in the config.
If `any` is chosen, match.
If no tags are chosen and none are configured, match.
If the user provided tags match any of the configured tags, match. | entailment |
def iterate(config_file_path=None,
config=None,
variables=None,
tags=None,
validate=True,
validate_only=False,
with_diff=False):
"""Iterate over all paths in `config_file_path`
:param string config_file_path: a path to a repex config file
:param dict config: a dictionary representing a repex config
:param dict variables: a dict of variables (can be None)
:param list tags: a list of tags to check for
:param bool validate: whether to perform schema validation on the config
:param bool validate_only: only perform validation without running
:param bool with_diff: whether to write a diff of all changes to a file
"""
# TODO: Check if tags can be a tuple instead of a list
if not isinstance(variables or {}, dict):
raise TypeError(ERRORS['variables_not_dict'])
if not isinstance(tags or [], list):
raise TypeError(ERRORS['tags_not_list'])
config = _get_config(config_file_path, config)
if validate or validate_only:
_validate_config_schema(config)
if validate_only:
logger.info('Config file validation completed successfully!')
sys.exit(0)
repex_vars = _merge_variables(config['variables'], variables or {})
repex_tags = tags or []
logger.debug('Chosen tags: %s', repex_tags)
for path in config['paths']:
_process_path(path, repex_tags, repex_vars, with_diff) | Iterate over all paths in `config_file_path`
:param string config_file_path: a path to a repex config file
:param dict config: a dictionary representing a repex config
:param dict variables: a dict of variables (can be None)
:param list tags: a list of tags to check for
:param bool validate: whether to perform schema validation on the config
:param bool validate_only: only perform validation without running
:param bool with_diff: whether to write a diff of all changes to a file | entailment |
def handle_path(pathobj, variables=None, diff=False):
"""Iterate over all chosen files in a path
:param dict pathobj: a dict of a specific path in the config
:param dict variables: a dict of variables (can be None)
"""
logger.info('Handling path with description: %s',
pathobj.get('description'))
variables = variables or {}
variable_expander = _VariablesHandler()
pathobj = variable_expander.expand(variables, pathobj)
pathobj = _set_path_defaults(pathobj)
path_to_handle = os.path.join(pathobj['base_directory'], pathobj['path'])
logger.debug('Path to process: %s', path_to_handle)
validate = 'validator' in pathobj
if validate:
validator_config = pathobj['validator']
validator = _Validator(validator_config)
validator_type = validator_config.get('type', 'per_type')
rpx = Repex(pathobj)
if not pathobj.get('type'):
_handle_single_file(
rpx=rpx,
path_to_handle=path_to_handle,
pathobj=pathobj,
validate=validate,
diff=diff,
validator=validator if validate else None)
else:
_handle_multiple_files(
rpx=rpx,
path_to_handle=path_to_handle,
pathobj=pathobj,
validate=validate,
diff=diff,
validator=validator if validate else None,
validator_type=validator_type if validate else None) | Iterate over all chosen files in a path
:param dict pathobj: a dict of a specific path in the config
:param dict variables: a dict of variables (can be None) | entailment |
def _build_vars_dict(vars_file='', variables=None):
"""Merge variables into a single dictionary
Applies to CLI provided variables only
"""
repex_vars = {}
if vars_file:
with open(vars_file) as varsfile:
repex_vars = yaml.safe_load(varsfile.read())
for var in variables:
key, value = var.split('=')
repex_vars.update({str(key): str(value)})
return repex_vars | Merge variables into a single dictionary
Applies to CLI provided variables only | entailment |
def main(verbose, **kwargs):
"""Replace strings in one or multiple files.
You must either provide `REGEX_PATH` or use the `-c` flag
to provide a valid repex configuration.
`REGEX_PATH` can be: a regex of paths under `basedir`,
a path to a single directory under `basedir`,
or a path to a single file.
It's important to note that if the `REGEX_PATH` is a path to a
directory, the `-t,--ftype` flag must be provided.
"""
config = kwargs['config']
if not config and not kwargs['regex_path']:
click.echo('Must either provide a path or a viable repex config file.')
sys.exit(1)
if verbose:
set_verbose()
if config:
repex_vars = _build_vars_dict(kwargs['vars_file'], kwargs['var'])
try:
iterate(
config_file_path=config,
variables=repex_vars,
tags=list(kwargs['tag']),
validate=kwargs['validate'],
validate_only=kwargs['validate_only'],
with_diff=kwargs['diff'])
except (RepexError, IOError, OSError) as ex:
sys.exit(str(ex))
else:
pathobj = _construct_path_object(**kwargs)
try:
handle_path(pathobj)
except (RepexError, IOError, OSError) as ex:
sys.exit(str(ex)) | Replace strings in one or multiple files.
You must either provide `REGEX_PATH` or use the `-c` flag
to provide a valid repex configuration.
`REGEX_PATH` can be: a regex of paths under `basedir`,
a path to a single directory under `basedir`,
or a path to a single file.
It's important to note that if the `REGEX_PATH` is a path to a
directory, the `-t,--ftype` flag must be provided. | entailment |
def expand(self, repex_vars, fields):
r"""Receive a dict of variables and a dict of fields
and iterates through them to expand a variable in an field, then
returns the fields dict with its variables expanded.
This will fail if not all variables expand (due to not providing
all necessary ones).
fields:
type: VERSION
path: resources
excluded:
- excluded_file.file
base_directory: '{{ .base_dir }}'
match: '"version": "\d+\.\d+(\.\d+)?(-\w\d+)?'
replace: \d+\.\d+(\.\d+)?(-\w\d+)?
with: "{{ .version }}"
must_include:
- {{ .my_var }}/{{ .another_var }}
- {{ .my_other_var }}
- version
validator:
type: per_file
path: {{ .my_validator_path }}
function: validate
variables:
{
'version': 3,
'base_dir': .
...
}
:param dict vars: dict of variables
:param dict fields: dict of fields as shown above.
"""
logger.debug('Expanding variables...')
unexpanded_instances = set()
# Expand variables in variables
# TODO: This should be done in the global scope.
# _VariableHandler is called per path, which makes this redundant
# as variables are declared globally per config.
for k, v in repex_vars.items():
repex_vars[k] = self._expand_var(v, repex_vars)
instances = self._get_instances(repex_vars[k])
unexpanded_instances.update(instances)
# TODO: Consolidate variable expansion code into single logic
# Expand variables in path objects
for key in fields.keys():
field = fields[key]
if isinstance(field, str):
fields[key] = self._expand_var(field, repex_vars)
instances = self._get_instances(fields[key])
unexpanded_instances.update(instances)
elif isinstance(field, dict):
for k, v in field.items():
fields[key][k] = self._expand_var(v, repex_vars)
instances = self._get_instances(fields[key][k])
unexpanded_instances.update(instances)
elif isinstance(field, list):
for index, item in enumerate(field):
fields[key][index] = self._expand_var(item, repex_vars)
instances = self._get_instances(fields[key][index])
unexpanded_instances.update(instances)
if unexpanded_instances:
raise RepexError(
'Variables failed to expand: {0}\n'
'Please make sure to provide all necessary variables '.format(
list(unexpanded_instances)))
return fields | r"""Receive a dict of variables and a dict of fields
and iterates through them to expand a variable in an field, then
returns the fields dict with its variables expanded.
This will fail if not all variables expand (due to not providing
all necessary ones).
fields:
type: VERSION
path: resources
excluded:
- excluded_file.file
base_directory: '{{ .base_dir }}'
match: '"version": "\d+\.\d+(\.\d+)?(-\w\d+)?'
replace: \d+\.\d+(\.\d+)?(-\w\d+)?
with: "{{ .version }}"
must_include:
- {{ .my_var }}/{{ .another_var }}
- {{ .my_other_var }}
- version
validator:
type: per_file
path: {{ .my_validator_path }}
function: validate
variables:
{
'version': 3,
'base_dir': .
...
}
:param dict vars: dict of variables
:param dict fields: dict of fields as shown above. | entailment |
def _expand_var(self, in_string, available_variables):
"""Expand variable to its corresponding value in_string
:param string variable: variable name
:param value: value to replace with
:param string in_string: the string to replace in
"""
instances = self._get_instances(in_string)
for instance in instances:
for name, value in available_variables.items():
variable_string = self._get_variable_string(name)
if instance == variable_string:
in_string = in_string.replace(variable_string, value)
return in_string | Expand variable to its corresponding value in_string
:param string variable: variable name
:param value: value to replace with
:param string in_string: the string to replace in | entailment |
def validate_before(self, content, file_to_handle):
"""Verify that all required strings are in the file
"""
logger.debug('Looking for required strings: %s', self.must_include)
included = True
for string in self.must_include:
if not re.search(r'{0}'.format(string), content):
logger.error('Required string `%s` not found in %s',
string, file_to_handle)
included = False
if not included:
logger.debug('Required strings not found')
return False
logger.debug('Required strings found')
return True | Verify that all required strings are in the file | entailment |
def find_matches(self, content, file_to_handle):
"""Find all matches of an expression in a file
"""
# look for all match groups in the content
groups = [match.groupdict() for match in
self.match_expression.finditer(content)]
# filter out content not in the matchgroup
matches = [group['matchgroup'] for group in groups
if group.get('matchgroup')]
logger.info('Found %s matches in %s', len(matches), file_to_handle)
# We only need the unique strings found as we'll be replacing each
# of them. No need to replace the ones already replaced.
return list(set(matches)) | Find all matches of an expression in a file | entailment |
def replace(self, match, content):
"""Replace all occurences of the regex in all matches
from a file with a specific value.
"""
new_string = self.replace_expression.sub(self.replace_with, match)
logger.info('Replacing: [ %s ] --> [ %s ]', match, new_string)
new_content = content.replace(match, new_string)
return new_content | Replace all occurences of the regex in all matches
from a file with a specific value. | entailment |
def set_exit_events(self, no_workers=None, idle=None, reload=None, sig_term=None):
"""Do exit on certain events
:param bool no_workers: Shutdown uWSGI when no workers are running.
:param bool idle: Shutdown uWSGI when idle.
:param bool reload: Force exit even if a reload is requested.
:param bool sig_term: Exit on SIGTERM instead of brutal workers reload.
.. note:: Before 2.1 SIGTERM reloaded the stack while SIGINT/SIGQUIT shut it down.
"""
self._set('die-on-no-workers', no_workers, cast=bool)
self._set('exit-on-reload', reload, cast=bool)
self._set('die-on-term', sig_term, cast=bool)
self.set_idle_params(exit=idle)
return self._section | Do exit on certain events
:param bool no_workers: Shutdown uWSGI when no workers are running.
:param bool idle: Shutdown uWSGI when idle.
:param bool reload: Force exit even if a reload is requested.
:param bool sig_term: Exit on SIGTERM instead of brutal workers reload.
.. note:: Before 2.1 SIGTERM reloaded the stack while SIGINT/SIGQUIT shut it down. | entailment |
def set_exception_handling_params(self, handler=None, catch=None, no_write_exception=None):
"""Exception handling related params.
:param str|unicode|list[str|unicode] handler: Register one or more exception handling C-functions.
:param bool catch: Catch exceptions and report them as http output (including stack trace and env params).
.. warning:: Use only for testing purposes.
:param bool no_write_exception: Disable exception generation on write()/writev().
.. note:: This can be combined with ``logging.set_filters(write_errors=False, sigpipe=False)``.
.. note: Currently available for Python.
"""
self._set('exception-handler', handler, multi=True)
self._set('catch-exceptions', catch, cast=bool)
self._set('disable-write-exception', no_write_exception, cast=bool)
return self._section | Exception handling related params.
:param str|unicode|list[str|unicode] handler: Register one or more exception handling C-functions.
:param bool catch: Catch exceptions and report them as http output (including stack trace and env params).
.. warning:: Use only for testing purposes.
:param bool no_write_exception: Disable exception generation on write()/writev().
.. note:: This can be combined with ``logging.set_filters(write_errors=False, sigpipe=False)``.
.. note: Currently available for Python. | entailment |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.