sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def _build_fields(self): """ Builds a list of valid fields """ declared_fields = self.solr._send_request('get', ADMIN_URL) result = decoder.decode(declared_fields) self.field_list = self._parse_fields(result, 'fields') # Build regular expressions to match dynamic fields. # dynamic field names may have exactly one wildcard, either at # the beginning or the end of the name self._dynamic_field_regexes = [] for wc_pattern in self._parse_fields(result, 'dynamicFields'): if wc_pattern[0] == "*": self._dynamic_field_regexes.append( re.compile(".*%s\Z" % wc_pattern[1:])) elif wc_pattern[-1] == "*": self._dynamic_field_regexes.append( re.compile("\A%s.*" % wc_pattern[:-1]))
Builds a list of valid fields
entailment
def _clean_doc(self, doc, namespace, timestamp): """Reformats the given document before insertion into Solr. This method reformats the document in the following ways: - removes extraneous fields that aren't defined in schema.xml - unwinds arrays in order to find and later flatten sub-documents - flattens the document so that there are no sub-documents, and every value is associated with its dot-separated path of keys - inserts namespace and timestamp metadata into the document in order to handle rollbacks An example: {"a": 2, "b": { "c": { "d": 5 } }, "e": [6, 7, 8] } becomes: {"a": 2, "b.c.d": 5, "e.0": 6, "e.1": 7, "e.2": 8} """ # Translate the _id field to whatever unique key we're using. # _id may not exist in the doc, if we retrieved it from Solr # as part of update. if '_id' in doc: doc[self.unique_key] = u(doc.pop("_id")) # Update namespace and timestamp metadata if 'ns' in doc or '_ts' in doc: raise errors.OperationFailed( 'Need to set "ns" and "_ts" fields, but these fields already ' 'exist in the document %r!' % doc) doc['ns'] = namespace doc['_ts'] = timestamp # SOLR cannot index fields within sub-documents, so flatten documents # with the dot-separated path to each value as the respective key flat_doc = self._formatter.format_document(doc) # Only include fields that are explicitly provided in the # schema or match one of the dynamic field patterns, if # we were able to retrieve the schema if len(self.field_list) + len(self._dynamic_field_regexes) > 0: def include_field(field): return field in self.field_list or any( regex.match(field) for regex in self._dynamic_field_regexes ) return dict((k, v) for k, v in flat_doc.items() if include_field(k)) return flat_doc
Reformats the given document before insertion into Solr. This method reformats the document in the following ways: - removes extraneous fields that aren't defined in schema.xml - unwinds arrays in order to find and later flatten sub-documents - flattens the document so that there are no sub-documents, and every value is associated with its dot-separated path of keys - inserts namespace and timestamp metadata into the document in order to handle rollbacks An example: {"a": 2, "b": { "c": { "d": 5 } }, "e": [6, 7, 8] } becomes: {"a": 2, "b.c.d": 5, "e.0": 6, "e.1": 7, "e.2": 8}
entailment
def apply_update(self, doc, update_spec): """Override DocManagerBase.apply_update to have flat documents.""" # Replace a whole document if not '$set' in update_spec and not '$unset' in update_spec: # update_spec contains the new document. # Update the key in Solr based on the unique_key mentioned as # parameter. update_spec['_id'] = doc[self.unique_key] return update_spec for to_set in update_spec.get("$set", []): value = update_spec['$set'][to_set] # Find dotted-path to the value, remove that key from doc, then # put value at key: keys_to_pop = [] for key in doc: if key.startswith(to_set): if key == to_set or key[len(to_set)] == '.': keys_to_pop.append(key) for key in keys_to_pop: doc.pop(key) doc[to_set] = value for to_unset in update_spec.get("$unset", []): # MongoDB < 2.5.2 reports $unset for fields that don't exist within # the document being updated. keys_to_pop = [] for key in doc: if key.startswith(to_unset): if key == to_unset or key[len(to_unset)] == '.': keys_to_pop.append(key) for key in keys_to_pop: doc.pop(key) return doc
Override DocManagerBase.apply_update to have flat documents.
entailment
def update(self, document_id, update_spec, namespace, timestamp): """Apply updates given in update_spec to the document whose id matches that of doc. """ # Commit outstanding changes so that the document to be updated is the # same version to which the changes apply. self.commit() # Need to escape special characters in the document_id. document_id = ''.join(map( lambda c: '\\' + c if c in ESCAPE_CHARACTERS else c, u(document_id) )) query = "%s:%s" % (self.unique_key, document_id) results = self.solr.search(query) if not len(results): # Document may not be retrievable yet self.commit() results = self.solr.search(query) # Results is an iterable containing only 1 result for doc in results: # Remove metadata previously stored by Mongo Connector. doc.pop('ns') doc.pop('_ts') updated = self.apply_update(doc, update_spec) # A _version_ of 0 will always apply the update updated['_version_'] = 0 self.upsert(updated, namespace, timestamp) return updated
Apply updates given in update_spec to the document whose id matches that of doc.
entailment
def upsert(self, doc, namespace, timestamp): """Update or insert a document into Solr This method should call whatever add/insert/update method exists for the backend engine and add the document in there. The input will always be one mongo document, represented as a Python dictionary. """ if self.auto_commit_interval is not None: self.solr.add([self._clean_doc(doc, namespace, timestamp)], commit=(self.auto_commit_interval == 0), commitWithin=u(self.auto_commit_interval)) else: self.solr.add([self._clean_doc(doc, namespace, timestamp)], commit=False)
Update or insert a document into Solr This method should call whatever add/insert/update method exists for the backend engine and add the document in there. The input will always be one mongo document, represented as a Python dictionary.
entailment
def bulk_upsert(self, docs, namespace, timestamp): """Update or insert multiple documents into Solr docs may be any iterable """ if self.auto_commit_interval is not None: add_kwargs = { "commit": (self.auto_commit_interval == 0), "commitWithin": str(self.auto_commit_interval) } else: add_kwargs = {"commit": False} cleaned = (self._clean_doc(d, namespace, timestamp) for d in docs) if self.chunk_size > 0: batch = list(next(cleaned) for i in range(self.chunk_size)) while batch: self.solr.add(batch, **add_kwargs) batch = list(next(cleaned) for i in range(self.chunk_size)) else: self.solr.add(cleaned, **add_kwargs)
Update or insert multiple documents into Solr docs may be any iterable
entailment
def remove(self, document_id, namespace, timestamp): """Removes documents from Solr The input is a python dictionary that represents a mongo document. """ self.solr.delete(id=u(document_id), commit=(self.auto_commit_interval == 0))
Removes documents from Solr The input is a python dictionary that represents a mongo document.
entailment
def _stream_search(self, query): """Helper method for iterating over Solr search results.""" for doc in self.solr.search(query, rows=100000000): if self.unique_key != "_id": doc["_id"] = doc.pop(self.unique_key) yield doc
Helper method for iterating over Solr search results.
entailment
def search(self, start_ts, end_ts): """Called to query Solr for documents in a time range.""" query = '_ts: [%s TO %s]' % (start_ts, end_ts) return self._stream_search(query)
Called to query Solr for documents in a time range.
entailment
def get_last_doc(self): """Returns the last document stored in the Solr engine. """ #search everything, sort by descending timestamp, return 1 row try: result = self.solr.search('*:*', sort='_ts desc', rows=1) except ValueError: return None for r in result: r['_id'] = r.pop(self.unique_key) return r
Returns the last document stored in the Solr engine.
entailment
def pbkdf2_single(password, salt, key_length, prf): '''Returns the result of the Password-Based Key Derivation Function 2 with a single iteration (i.e. count = 1). prf - a psuedorandom function See http://en.wikipedia.org/wiki/PBKDF2 ''' block_number = 0 result = b'' # The iterations while len(result) < key_length: block_number += 1 result += prf(password, salt + struct.pack('>L', block_number)) return result[:key_length]
Returns the result of the Password-Based Key Derivation Function 2 with a single iteration (i.e. count = 1). prf - a psuedorandom function See http://en.wikipedia.org/wiki/PBKDF2
entailment
def salsa20_8(B): '''Salsa 20/8 stream cypher; Used by BlockMix. See http://en.wikipedia.org/wiki/Salsa20''' # Create a working copy x = B[:] # Expanded form of this code. The expansion is significantly faster but # this is much easier to understand # ROUNDS = ( # (4, 0, 12, 7), (8, 4, 0, 9), (12, 8, 4, 13), (0, 12, 8, 18), # (9, 5, 1, 7), (13, 9, 5, 9), (1, 13, 9, 13), (5, 1, 13, 18), # (14, 10, 6, 7), (2, 14, 10, 9), (6, 2, 14, 13), (10, 6, 2, 18), # (3, 15, 11, 7), (7, 3, 15, 9), (11, 7, 3, 13), (15, 11, 7, 18), # (1, 0, 3, 7), (2, 1, 0, 9), (3, 2, 1, 13), (0, 3, 2, 18), # (6, 5, 4, 7), (7, 6, 5, 9), (4, 7, 6, 13), (5, 4, 7, 18), # (11, 10, 9, 7), (8, 11, 10, 9), (9, 8, 11, 13), (10, 9, 8, 18), # (12, 15, 14, 7), (13, 12, 15, 9), (14, 13, 12, 13), (15, 14, 13, 18), # ) # # for (destination, a1, a2, b) in ROUNDS: # a = (x[a1] + x[a2]) & 0xffffffff # x[destination] ^= ((a << b) | (a >> (32 - b))) & 0xffffffff for i in (8, 6, 4, 2): a = (x[0] + x[12]) & 0xffffffff x[4] ^= ((a << 7) | (a >> 25)) a = (x[4] + x[0]) & 0xffffffff x[8] ^= ((a << 9) | (a >> 23)) a = (x[8] + x[4]) & 0xffffffff x[12] ^= ((a << 13) | (a >> 19)) a = (x[12] + x[8]) & 0xffffffff x[0] ^= ((a << 18) | (a >> 14)) a = (x[5] + x[1]) & 0xffffffff x[9] ^= ((a << 7) | (a >> 25)) a = (x[9] + x[5]) & 0xffffffff x[13] ^= ((a << 9) | (a >> 23)) a = (x[13] + x[9]) & 0xffffffff x[1] ^= ((a << 13) | (a >> 19)) a = (x[1] + x[13]) & 0xffffffff x[5] ^= ((a << 18) | (a >> 14)) a = (x[10] + x[6]) & 0xffffffff x[14] ^= ((a << 7) | (a >> 25)) a = (x[14] + x[10]) & 0xffffffff x[2] ^= ((a << 9) | (a >> 23)) a = (x[2] + x[14]) & 0xffffffff x[6] ^= ((a << 13) | (a >> 19)) a = (x[6] + x[2]) & 0xffffffff x[10] ^= ((a << 18) | (a >> 14)) a = (x[15] + x[11]) & 0xffffffff x[3] ^= ((a << 7) | (a >> 25)) a = (x[3] + x[15]) & 0xffffffff x[7] ^= ((a << 9) | (a >> 23)) a = (x[7] + x[3]) & 0xffffffff x[11] ^= ((a << 13) | (a >> 19)) a = (x[11] + x[7]) & 0xffffffff x[15] ^= ((a << 18) | (a >> 14)) a = (x[0] + x[3]) & 0xffffffff x[1] ^= ((a << 7) | (a >> 25)) a = (x[1] + x[0]) & 0xffffffff x[2] ^= ((a << 9) | (a >> 23)) a = (x[2] + x[1]) & 0xffffffff x[3] ^= ((a << 13) | (a >> 19)) a = (x[3] + x[2]) & 0xffffffff x[0] ^= ((a << 18) | (a >> 14)) a = (x[5] + x[4]) & 0xffffffff x[6] ^= ((a << 7) | (a >> 25)) a = (x[6] + x[5]) & 0xffffffff x[7] ^= ((a << 9) | (a >> 23)) a = (x[7] + x[6]) & 0xffffffff x[4] ^= ((a << 13) | (a >> 19)) a = (x[4] + x[7]) & 0xffffffff x[5] ^= ((a << 18) | (a >> 14)) a = (x[10] + x[9]) & 0xffffffff x[11] ^= ((a << 7) | (a >> 25)) a = (x[11] + x[10]) & 0xffffffff x[8] ^= ((a << 9) | (a >> 23)) a = (x[8] + x[11]) & 0xffffffff x[9] ^= ((a << 13) | (a >> 19)) a = (x[9] + x[8]) & 0xffffffff x[10] ^= ((a << 18) | (a >> 14)) a = (x[15] + x[14]) & 0xffffffff x[12] ^= ((a << 7) | (a >> 25)) a = (x[12] + x[15]) & 0xffffffff x[13] ^= ((a << 9) | (a >> 23)) a = (x[13] + x[12]) & 0xffffffff x[14] ^= ((a << 13) | (a >> 19)) a = (x[14] + x[13]) & 0xffffffff x[15] ^= ((a << 18) | (a >> 14)) # Add the original values for i in xrange(0, 16): B[i] = (B[i] + x[i]) & 0xffffffff
Salsa 20/8 stream cypher; Used by BlockMix. See http://en.wikipedia.org/wiki/Salsa20
entailment
def blockmix_salsa8(BY, Yi, r): '''Blockmix; Used by SMix.''' start = (2 * r - 1) * 16 X = BY[start:start + 16] # BlockMix - 1 for i in xrange(0, 2 * r): # BlockMix - 2 for xi in xrange(0, 16): # BlockMix - 3(inner) X[xi] ^= BY[i * 16 + xi] salsa20_8(X) # BlockMix - 3(outer) aod = Yi + i * 16 # BlockMix - 4 BY[aod:aod + 16] = X[:16] for i in xrange(0, r): # BlockMix - 6 (and below) aos = Yi + i * 32 aod = i * 16 BY[aod:aod + 16] = BY[aos:aos + 16] for i in xrange(0, r): aos = Yi + (i * 2 + 1) * 16 aod = (i + r) * 16 BY[aod:aod + 16] = BY[aos:aos + 16]
Blockmix; Used by SMix.
entailment
def smix(B, Bi, r, N, V, X): '''SMix; a specific case of ROMix. See scrypt.pdf in the links above.''' X[:32 * r] = B[Bi:Bi + 32 * r] # ROMix - 1 for i in xrange(0, N): # ROMix - 2 aod = i * 32 * r # ROMix - 3 V[aod:aod + 32 * r] = X[:32 * r] blockmix_salsa8(X, 32 * r, r) # ROMix - 4 for i in xrange(0, N): # ROMix - 6 j = X[(2 * r - 1) * 16] & (N - 1) # ROMix - 7 for xi in xrange(0, 32 * r): # ROMix - 8(inner) X[xi] ^= V[j * 32 * r + xi] blockmix_salsa8(X, 32 * r, r) # ROMix - 9(outer) B[Bi:Bi + 32 * r] = X[:32 * r]
SMix; a specific case of ROMix. See scrypt.pdf in the links above.
entailment
def hash(password, salt, N, r, p, dkLen): """Returns the result of the scrypt password-based key derivation function. Constraints: r * p < (2 ** 30) dkLen <= (((2 ** 32) - 1) * 32 N must be a power of 2 greater than 1 (eg. 2, 4, 8, 16, 32...) N, r, p must be positive """ # This only matters to Python 3 if not check_bytes(password): raise ValueError('password must be a byte array') if not check_bytes(salt): raise ValueError('salt must be a byte array') # Scrypt implementation. Significant thanks to https://github.com/wg/scrypt if N < 2 or (N & (N - 1)): raise ValueError('Scrypt N must be a power of 2 greater than 1') # A psuedorandom function prf = lambda k, m: hmac.new(key = k, msg = m, digestmod = hashlib.sha256).digest() # convert into integers B = [ get_byte(c) for c in pbkdf2_single(password, salt, p * 128 * r, prf) ] B = [ ((B[i + 3] << 24) | (B[i + 2] << 16) | (B[i + 1] << 8) | B[i + 0]) for i in xrange(0, len(B), 4)] XY = [ 0 ] * (64 * r) V = [ 0 ] * (32 * r * N) for i in xrange(0, p): smix(B, i * 32 * r, r, N, V, XY) # Convert back into bytes Bc = [ ] for i in B: Bc.append((i >> 0) & 0xff) Bc.append((i >> 8) & 0xff) Bc.append((i >> 16) & 0xff) Bc.append((i >> 24) & 0xff) return pbkdf2_single(password, chars_to_bytes(Bc), dkLen, prf)
Returns the result of the scrypt password-based key derivation function. Constraints: r * p < (2 ** 30) dkLen <= (((2 ** 32) - 1) * 32 N must be a power of 2 greater than 1 (eg. 2, 4, 8, 16, 32...) N, r, p must be positive
entailment
def _load_get_attr(self, name): 'Return an internal attribute after ensuring the headers is loaded if necessary.' if self._mode in _allowed_read and self._N is None: self._read_header() return getattr(self, name)
Return an internal attribute after ensuring the headers is loaded if necessary.
entailment
def close(self): '''Close the underlying file. Sets data attribute .closed to True. A closed file cannot be used for further I/O operations. close() may be called more than once without error. Some kinds of file objects (for example, opened by popen()) may return an exit status upon closing.''' if self._mode in _allowed_write and self._valid is None: self._finalize_write() result = self._fp.close() self._closed = True return result
Close the underlying file. Sets data attribute .closed to True. A closed file cannot be used for further I/O operations. close() may be called more than once without error. Some kinds of file objects (for example, opened by popen()) may return an exit status upon closing.
entailment
def verify_file(fp, password): 'Returns whether a scrypt encrypted file is valid.' sf = ScryptFile(fp = fp, password = password) for line in sf: pass sf.close() return sf.valid
Returns whether a scrypt encrypted file is valid.
entailment
def readline(self, size = None): '''Next line from the decrypted file, as a string. Retain newline. A non-negative size argument limits the maximum number of bytes to return (an incomplete line may be returned then). Return an empty string at EOF.''' if self.closed: raise ValueError('file closed') if self._mode in _allowed_write: raise Exception('file opened for write only') if self._read_finished: return None line = b'' while not line.endswith(b'\n') and not self._read_finished and (size is None or len(line) <= size): line += self.read(1) return line
Next line from the decrypted file, as a string. Retain newline. A non-negative size argument limits the maximum number of bytes to return (an incomplete line may be returned then). Return an empty string at EOF.
entailment
def _read_header(self): '''Read and parse the header and calculate derived keys.''' try: # Read the entire header header = self._fp.read(96) if len(header) != 96: raise InvalidScryptFileFormat("Incomplete header") # Magic number if header[0:6] != b'scrypt': raise InvalidScryptFileFormat('Invalid magic number").') # Version (we only support 0) version = get_byte(header[6]) if version != 0: raise InvalidScryptFileFormat('Unsupported version (%d)' % version) # Scrypt parameters self._N = 1 << get_byte(header[7]) (self._r, self._p) = struct.unpack('>II', header[8:16]) self._salt = header[16:48] # Generate the key self._key = hash(self._password, self._salt, self._N, self._r, self._p, 64) # Header Checksum checksum = header[48:64] calculate_checksum = hashlib.sha256(header[0:48]).digest()[:16] if checksum != calculate_checksum: raise InvalidScryptFileFormat('Incorrect header checksum') # Stream checksum checksum = header[64:96] self._checksumer = hmac.new(self.key[32:], msg = header[0:64], digestmod = hashlib.sha256) if checksum != self._checksumer.digest(): raise InvalidScryptFileFormat('Incorrect header stream checksum') self._checksumer.update(header[64:96]) # Prepare the AES engine self._crypto = aesctr.AESCounterModeOfOperation(key = self.key[:32]) self._done_header = True except InvalidScryptFileFormat as e: self.close() raise e except Exception as e: self.close() raise InvalidScryptFileFormat('Header error (%s)' % e)
Read and parse the header and calculate derived keys.
entailment
def read(self, size = None): '''Read at most size bytes, returned as a string. If the size argument is negative or omitted, read until EOF is reached. Notice that when in non-blocking mode, less data than what was requested may be returned, even if no size parameter was given.''' if self.closed: raise ValueError('File closed') if self._mode in _allowed_write: raise Exception('File opened for write only') if not self._done_header: self._read_header() # The encrypted file has been entirely read, so return as much as they want # and remove the returned portion from the decrypted buffer if self._read_finished: if size is None: decrypted = self._decrypted_buffer else: decrypted = self._decrypted_buffer[:size] self._decrypted_buffer = self._decrypted[len(decrypted):] return decrypted # Read everything in one chunk if size is None or size < 0: self._encrypted_buffer = self._fp.read() self._read_finished = True else: # We fill the encrypted buffer (keeping it with a minimum of 32 bytes in case of the # end-of-file checksum) and decrypt into a decrypted buffer 1 block at a time while not self._read_finished: # We have enough decrypted bytes (or will after decrypting the encrypted buffer) available = len(self._decrypted_buffer) + len(self._encrypted_buffer) - 32 if available >= size: break # Read a little extra for the possible final checksum data = self._fp.read(BLOCK_SIZE) # No data left; we're done if not data: self._read_finished = True break self._encrypted_buffer += data # Decrypt as much of the encrypted data as possible (leaving the final check sum) safe = self._encrypted_buffer[:-32] self._encrypted_buffer = self._encrypted_buffer[-32:] self._decrypted_buffer += self._crypto.decrypt(safe) self._checksumer.update(safe) # We read all the bytes, only the checksum remains if self._read_finished: self._check_final_checksum(self._encrypted_buffer) # Send back the number of bytes requests and remove them from the buffer decrypted = self._decrypted_buffer[:size] self._decrypted_buffer = self._decrypted_buffer[size:] return decrypted
Read at most size bytes, returned as a string. If the size argument is negative or omitted, read until EOF is reached. Notice that when in non-blocking mode, less data than what was requested may be returned, even if no size parameter was given.
entailment
def _write_header(self): 'Writes the header to the underlying file object.' header = b'scrypt' + CHR0 + struct.pack('>BII', int(math.log(self.N, 2)), self.r, self.p) + self.salt # Add the header checksum to the header checksum = hashlib.sha256(header).digest()[:16] header += checksum # Add the header stream checksum self._checksumer = hmac.new(self.key[32:], msg = header, digestmod = hashlib.sha256) checksum = self._checksumer.digest() header += checksum self._checksumer.update(checksum) # Write the header self._fp.write(header) # Prepare the AES engine self._crypto = aesctr.AESCounterModeOfOperation(key = self.key[:32]) #self._crypto = aes(self.key[:32]) self._done_header = True
Writes the header to the underlying file object.
entailment
def _finalize_write(self): 'Finishes any unencrypted bytes and writes the final checksum.' # Make sure we have written the header if not self._done_header: self._write_header() # Write the remaining decrypted part to disk block = self._crypto.encrypt(self._decrypted_buffer) self._decrypted = '' self._fp.write(block) self._checksumer.update(block) # Write the final checksum self._fp.write(self._checksumer.digest()) self._valid = True
Finishes any unencrypted bytes and writes the final checksum.
entailment
def write(self, str): '''Write string str to the underlying file. Note that due to buffering, flush() or close() may be needed before the file on disk reflects the data written.''' if self.closed: raise ValueError('File closed') if self._mode in _allowed_read: raise Exception('File opened for read only') if self._valid is not None: raise Exception('file already finalized') if not self._done_header: self._write_header() # Encrypt and write the data encrypted = self._crypto.encrypt(str) self._checksumer.update(encrypted) self._fp.write(encrypted)
Write string str to the underlying file. Note that due to buffering, flush() or close() may be needed before the file on disk reflects the data written.
entailment
def get_logger(logger_name): """ Return a logger with the specified name, creating it if necessary. """ # Use default global logger if logger_name is None: return __instance assert isinstance(logger_name, str), 'Logger name must be a string!' with __lock: if logger_name in __loggers: return __loggers[logger_name] logger_instance = LogOne(logger_name=logger_name) __loggers[logger_name] = logger_instance return logger_instance
Return a logger with the specified name, creating it if necessary.
entailment
def removeFile(file): """remove a file""" if "y" in speech.question("Are you sure you want to remove " + file + "? (Y/N): "): speech.speak("Removing " + file + " with the 'rm' command.") subprocess.call(["rm", "-r", file]) else: speech.speak("Okay, I won't remove " + file + ".")
remove a file
entailment
def copy(location): """copy file or directory at a given location; can be pasted later""" copyData = settings.getDataFile() copyFileLocation = os.path.abspath(location) copy = {"copyLocation": copyFileLocation} dataFile = open(copyData, "wb") pickle.dump(copy, dataFile) speech.speak(location + " copied successfully!") speech.speak("Tip: use 'hallie paste' to paste this file.")
copy file or directory at a given location; can be pasted later
entailment
def paste(location): """paste a file or directory that has been previously copied""" copyData = settings.getDataFile() if not location: location = "." try: data = pickle.load(open(copyData, "rb")) speech.speak("Pasting " + data["copyLocation"] + " to current directory.") except: speech.fail("It doesn't look like you've copied anything yet.") speech.fail("Type 'hallie copy <file>' to copy a file or folder.") return process, error = subprocess.Popen(["cp", "-r", data["copyLocation"], location], stderr=subprocess.STDOUT, stdout=subprocess.PIPE).communicate() if "denied" in process: speech.fail("Unable to paste your file successfully. This is most likely due to a permission issue. You can try to run me as sudo!")
paste a file or directory that has been previously copied
entailment
def add_zfs_apt_repository(): """ adds the ZFS repository """ with settings(hide('warnings', 'running', 'stdout'), warn_only=False, capture=True): sudo('DEBIAN_FRONTEND=noninteractive /usr/bin/apt-get update') install_ubuntu_development_tools() apt_install(packages=['software-properties-common', 'dkms', 'linux-headers-generic', 'build-essential']) sudo('echo | add-apt-repository ppa:zfs-native/stable') sudo('DEBIAN_FRONTEND=noninteractive /usr/bin/apt-get update') return True
adds the ZFS repository
entailment
def apt_install(**kwargs): """ installs a apt package """ for pkg in list(kwargs['packages']): if is_package_installed(distribution='ubuntu', pkg=pkg) is False: sudo("DEBIAN_FRONTEND=noninteractive /usr/bin/apt-get install -y %s" % pkg) # if we didn't abort above, we should return True return True
installs a apt package
entailment
def apt_install_from_url(pkg_name, url, log=False): """ installs a pkg from a url p pkg_name: the name of the package to install p url: the full URL for the rpm package """ if is_package_installed(distribution='ubuntu', pkg=pkg_name) is False: if log: log_green( "installing %s from %s" % (pkg_name, url)) with settings(hide('warnings', 'running', 'stdout'), capture=True): sudo("wget -c -O %s.deb %s" % (pkg_name, url)) sudo("dpkg -i %s.deb" % pkg_name) # if we didn't abort above, we should return True return True
installs a pkg from a url p pkg_name: the name of the package to install p url: the full URL for the rpm package
entailment
def apt_add_key(keyid, keyserver='keyserver.ubuntu.com', log=False): """ trust a new PGP key related to a apt-repository """ if log: log_green( 'trusting keyid %s from %s' % (keyid, keyserver) ) with settings(hide('warnings', 'running', 'stdout')): sudo('apt-key adv --keyserver %s --recv %s' % (keyserver, keyid)) return True
trust a new PGP key related to a apt-repository
entailment
def enable_apt_repositories(prefix, url, version, repositories): """ adds an apt repository """ with settings(hide('warnings', 'running', 'stdout'), warn_only=False, capture=True): sudo('apt-add-repository "%s %s %s %s"' % (prefix, url, version, repositories)) with hide('running', 'stdout'): output = sudo("DEBIAN_FRONTEND=noninteractive /usr/bin/apt-get update") if 'Some index files failed to download' in output: raise SystemExit(1) else: # if we didn't abort above, we should return True return True
adds an apt repository
entailment
def install_gem(gem): """ install a particular gem """ with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=False, capture=True): # convert 0 into True, any errors will always raise an exception return not bool( run("gem install %s --no-rdoc --no-ri" % gem).return_code)
install a particular gem
entailment
def install_python_module_locally(name): """ instals a python module using pip """ with settings(hide('everything'), warn_only=False, capture=True): # convert 0 into True, any errors will always raise an exception print(not bool(local('pip --quiet install %s' % name).return_code)) return not bool( local('pip --quiet install %s' % name).return_code)
instals a python module using pip
entailment
def is_package_installed(distribution, pkg): """ checks if a particular package is installed """ if ('centos' in distribution or 'el' in distribution or 'redhat' in distribution): return(is_rpm_package_installed(pkg)) if ('ubuntu' in distribution or 'debian' in distribution): return(is_deb_package_installed(pkg))
checks if a particular package is installed
entailment
def is_rpm_package_installed(pkg): """ checks if a particular rpm package is installed """ with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=True, capture=True): result = sudo("rpm -q %s" % pkg) if result.return_code == 0: return True elif result.return_code == 1: return False else: # print error to user print(result) raise SystemExit()
checks if a particular rpm package is installed
entailment
def yum_install(**kwargs): """ installs a yum package """ if 'repo' in kwargs: repo = kwargs['repo'] for pkg in list(kwargs['packages']): if is_package_installed(distribution='el', pkg=pkg) is False: if 'repo' in locals(): log_green( "installing %s from repo %s ..." % (pkg, repo)) sudo("yum install -y --quiet --enablerepo=%s %s" % (repo, pkg)) else: log_green("installing %s ..." % pkg) sudo("yum install -y --quiet %s" % pkg)
installs a yum package
entailment
def yum_group_install(**kwargs): """ instals a yum group """ for grp in list(kwargs['groups']): log_green("installing %s ..." % grp) if 'repo' in kwargs: repo = kwargs['repo'] sudo("yum groupinstall -y --quiet " "--enablerepo=%s '%s'" % (repo, grp)) else: sudo("yum groups mark install -y --quiet '%s'" % grp) sudo("yum groups mark convert -y --quiet '%s'" % grp) sudo("yum groupinstall -y --quiet '%s'" % grp)
instals a yum group
entailment
def yum_install_from_url(pkg_name, url): """ installs a pkg from a url p pkg_name: the name of the package to install p url: the full URL for the rpm package """ if is_package_installed(distribution='el', pkg=pkg_name) is False: log_green( "installing %s from %s" % (pkg_name, url)) with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=True, capture=True): result = sudo("rpm -i %s" % url) if result.return_code == 0: return True elif result.return_code == 1: return False else: # print error to user print(result) raise SystemExit()
installs a pkg from a url p pkg_name: the name of the package to install p url: the full URL for the rpm package
entailment
def recherche(self, pattern, entete, in_all=False): """abstractSearch in fields of collection and reset rendering. Returns number of results. If in_all is True, call get_all before doing the search.""" if in_all: self.collection = self.get_all() self.collection.recherche(pattern, entete) self._reset_render() return len(self.collection)
abstractSearch in fields of collection and reset rendering. Returns number of results. If in_all is True, call get_all before doing the search.
entailment
def launch_background_job(self, job, on_error=None, on_success=None): """Launch the callable job in background thread. Succes or failure are controlled by on_error and on_success """ if not self.main.mode_online: self.sortie_erreur_GUI( "Local mode activated. Can't run background task !") self.reset() return on_error = on_error or self.sortie_erreur_GUI on_success = on_success or self.sortie_standard_GUI def thread_end(r): on_success(r) self.update() def thread_error(r): on_error(r) self.reset() logging.info( f"Launching background task from interface {self.__class__.__name__} ...") th = threads.worker(job, thread_error, thread_end) self._add_thread(th)
Launch the callable job in background thread. Succes or failure are controlled by on_error and on_success
entailment
def filtre(liste_base, criteres) -> groups.Collection: """ Return a filter list, bases on criteres :param liste_base: Acces list :param criteres: Criteria { `attribut`:[valeurs,...] } """ def choisi(ac): for cat, li in criteres.items(): v = ac[cat] if not (v in li): return False return True return groups.Collection(a for a in liste_base if choisi(a))
Return a filter list, bases on criteres :param liste_base: Acces list :param criteres: Criteria { `attribut`:[valeurs,...] }
entailment
def load_remote_data(self, callback_etat=print): """ Load remote data. On succes, build base. On failure, raise :class:`~.Core.exceptions.StructureError`, :class:`~.Core.exceptions.ConnexionError` :param callback_etat: State renderer str , int , int -> None """ callback_etat("Chargement des utilisateurs", 0, 1) self._load_users() self.base = self.BASE_CLASS.load_from_db(callback_etat=callback_etat)
Load remote data. On succes, build base. On failure, raise :class:`~.Core.exceptions.StructureError`, :class:`~.Core.exceptions.ConnexionError` :param callback_etat: State renderer str , int , int -> None
entailment
def _load_users(self): """Default implentation requires users from DB. Should setup `users` attribute""" r = sql.abstractRequetesSQL.get_users()() self.users = {d["id"]: dict(d) for d in r}
Default implentation requires users from DB. Should setup `users` attribute
entailment
def load_modules(self): """Should instance interfaces and set them to interface, following `modules`""" if self.INTERFACES_MODULE is None: raise NotImplementedError("A module containing interfaces modules " "should be setup in INTERFACES_MODULE !") else: for module, permission in self.modules.items(): i = getattr(self.INTERFACES_MODULE, module).Interface(self, permission) self.interfaces[module] = i
Should instance interfaces and set them to interface, following `modules`
entailment
def has_autolog(self, user_id): """ Read auto-connection parameters and returns local password or None """ try: with open("local/init", "rb") as f: s = f.read() s = security.protege_data(s, False) self.autolog = json.loads(s).get("autolog", {}) except FileNotFoundError: return mdp = self.autolog.get(user_id, None) return mdp
Read auto-connection parameters and returns local password or None
entailment
def loggin(self, user_id, mdp, autolog): """Check mdp and return True it's ok""" r = sql.abstractRequetesSQL.check_mdp_user(user_id, mdp) if r(): # update auto-log params self.autolog[user_id] = autolog and mdp or False self.modules = self.users[user_id]["modules"] # load modules list dic = {"autolog": self.autolog, "modules": self.modules} s = json.dumps(dic, indent=4, ensure_ascii=False) b = security.protege_data(s, True) with open("local/init", "wb") as f: f.write(b) self.mode_online = True # authorization to execute bakground tasks return True else: logging.debug("Bad password !")
Check mdp and return True it's ok
entailment
def add_widget(self, w): """Convenience function""" if self.layout(): self.layout().addWidget(w) else: layout = QVBoxLayout(self) layout.addWidget(w)
Convenience function
entailment
def add_layout(self, l): """Convenience function""" if self.layout(): self.layout().addLayout(l) else: layout = QVBoxLayout(self) layout.addLayout(l)
Convenience function
entailment
def mkpad(items): ''' Find the length of the longest element of a list. Return that value + two. ''' pad = 0 stritems = [str(e) for e in items] # cast list to strings for e in stritems: index = stritems.index(e) if len(stritems[index]) > pad: pad = len(stritems[index]) pad += 2 return pad
Find the length of the longest element of a list. Return that value + two.
entailment
def mkcols(l, rows): ''' Compute the size of our columns by first making them a divisible of our row height and then splitting our list into smaller lists the size of the row height. ''' cols = [] base = 0 while len(l) > rows and len(l) % rows != 0: l.append("") for i in range(rows, len(l) + rows, rows): cols.append(l[base:i]) base = i return cols
Compute the size of our columns by first making them a divisible of our row height and then splitting our list into smaller lists the size of the row height.
entailment
def mkrows(l, pad, width, height): ''' Compute the optimal number of rows based on our lists' largest element and our terminal size in columns and rows. Work out our maximum column number by dividing the width of the terminal by our largest element. While the length of our list is greater than the total number of elements we can fit on the screen increment the height by one. ''' maxcols = int(width/pad) while len(l) > height * maxcols: height += 1 return height
Compute the optimal number of rows based on our lists' largest element and our terminal size in columns and rows. Work out our maximum column number by dividing the width of the terminal by our largest element. While the length of our list is greater than the total number of elements we can fit on the screen increment the height by one.
entailment
def prtcols(items, vpad=6): ''' After computing the size of our rows and columns based on the terminal size and length of the largest element, use zip to aggregate our column lists into row lists and then iterate over the row lists and print them. ''' from os import get_terminal_size items = list(items) # copy list so we don't mutate it width, height = get_terminal_size() height -= vpad # customize vertical padding pad = mkpad(items) rows = mkrows(items, pad, width, height) cols = mkcols(items, rows) # * operator in conjunction with zip, unzips the list for c in zip(*cols): row_format = '{:<{pad}}' * len(cols) print(row_format.format(*c, pad=pad))
After computing the size of our rows and columns based on the terminal size and length of the largest element, use zip to aggregate our column lists into row lists and then iterate over the row lists and print them.
entailment
def cmd2list(cmd): ''' Executes a command through the operating system and returns the output as a list, or on error a string with the standard error. EXAMPLE: >>> from subprocess import Popen, PIPE >>> CMDout2array('ls -l') ''' p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) stdout, stderr = p.communicate() if p.returncode != 0 and stderr != '': return "ERROR: %s\n"%(stderr) else: return stdout.split('\n')
Executes a command through the operating system and returns the output as a list, or on error a string with the standard error. EXAMPLE: >>> from subprocess import Popen, PIPE >>> CMDout2array('ls -l')
entailment
def return_timer(self, name, status, timer): ''' Return a text formatted timer ''' timer_template = '%s %s %s : %s : %9s' t = str(timedelta(0, timer)).split(',')[-1].strip().split(':') #t = str(timedelta(0, timer)).split(':') if len(t) == 4: h, m, s = int(t[0])*24 + int(t[1]), int(t[2]), float(t[3]) elif len(t) == 3: h, m, s = int(t[0]), int(t[1]), float(t[2]) else: h, m, s = 0, 0, str(t) return timer_template%( name[:20].ljust(20), status[:7].ljust(7), '%3d'%h if h != 0 else ' --', '%2d'%m if m != 0 else '--', '%.6f'%s if isinstance(s, float) else s )
Return a text formatted timer
entailment
def print_timers(self): ''' PRINT EXECUTION TIMES FOR THE LIST OF PROGRAMS ''' self.timer += time() total_time = self.timer tmp = '* %s *' debug.log( '', '* '*29, tmp%(' '*51), tmp%('%s %s %s'%('Program Name'.ljust(20), 'Status'.ljust(7), 'Execute Time (H:M:S)')), tmp%('='*51) ) for name in self.list: if self.exists(name): timer = getattr(self, name).get_time() status = getattr(self, name).get_status() self.timer -= timer debug.log(tmp%(self.return_timer(name, status, timer))) else: debug.log(tmp%("%s %s -- : -- : --"%(name[:20].ljust(20),' '*8))) debug.log( tmp%(self.return_timer('Wrapper', '', self.timer)), tmp%('='*51), tmp%(self.return_timer('Total', '', total_time)), tmp%(' '*51), '* '*29, '' )
PRINT EXECUTION TIMES FOR THE LIST OF PROGRAMS
entailment
def get_cmd(self): """ This function combines and return the commanline call of the program. """ cmd = [] if self.path is not None: if '/' in self.path and not os.path.exists(self.path): debug.log('Error: path contains / but does not exist: %s'%self.path) else: if self.ptype is not None: if os.path.exists(self.ptype): cmd.append(self.ptype) elif '/' not in self.ptype: for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') ppath = os.path.join(path, self.ptype) if os.path.isfile(ppath): cmd.append(ppath) break cmd.append(self.path) if sys.version_info < (3, 0): cmd.extend([str(x) if not isinstance(x, (unicode)) else x.encode('utf-8') for x in [quote(str(x)) for x in self.args]+self.unquoted_args]) else: cmd.extend([str(x) for x in [quote(str(x)) for x in self.args]+self.unquoted_args]) else: debug.log('Error: Program path not set!') return ' '.join(cmd)
This function combines and return the commanline call of the program.
entailment
def append_args(self, arg): """ This function appends the provided arguments to the program object. """ debug.log("Adding Arguments: %s"%(arg)) if isinstance(arg, (int,float)): self.args.append(str(arg)) if isinstance(arg, str): self.args.append(arg) if isinstance(arg, list): if sys.version_info < (3, 0): self.args.extend([str(x) if not isinstance(x, (unicode)) else x.encode('utf-8') for x in arg]) else: self.args.extend([str(x) for x in arg])
This function appends the provided arguments to the program object.
entailment
def execute(self): """ This function Executes the program with set arguments. """ prog_cmd = self.get_cmd().strip() if prog_cmd == '': self.status = 'Failure' debug.log("Error: No program to execute for %s!"%self.name) debug.log(("Could not combine path and arguments into cmdline:" "\n%s %s)\n")%(self.path, ' '.join(self.args))) else: debug.log("\n\nExecute %s...\n%s" % (self.name, prog_cmd)) # Create shell script script = '%s.sh'%self.name if self.wdir != '': script = '%s/%s'%(self.wdir, script) else: script = '%s/%s'%(os.getcwd(), script) with open_(script, 'w') as f: f.write('#!/bin/bash\n') if self.wdir != '': f.write('cd {workdir}\n'.format(workdir=self.wdir)) f.write( ('touch {stdout} {stderr}\n' 'chmod a+r {stdout} {stderr}\n' '{cmd} 1> {stdout} 2> {stderr}\n' 'ec=$?\n').format( stdout=self.stdout, stderr=self.stderr, cmd=prog_cmd ) ) if not self.forcewait: f.write(('if [ "$ec" -ne "0" ]; then echo "Error" >> {stderr}; ' 'else echo "Done" >> {stderr}; fi\n').format( stderr=self.stderr)) f.write('exit $ec\n') os.chmod(script, 0o744) if self.queue is not None: # Setup execution of shell script through TORQUE other_args = '' if self.forcewait: other_args += "-K " # ADDING -K argument if wait() is forced # QSUB INFO :: run_time_limit(walltime, dd:hh:mm:ss), # memory(mem, up to 100GB *gigabyte), # processors(ppn, up to 16) # USE AS LITTLE AS NEEDED! cmd = ('/usr/bin/qsub ' '-l nodes=1:ppn={procs},walltime={hours}:00:00,mem={mem}g ' '-r y {workdir_arg} {other_args} {cmd}').format( procs=self.procs, hours=self.walltime, mem=self.mem, workdir_arg="-d %s"%(self.wdir) if self.wdir != '' else '', other_args=other_args, cmd=script) debug.log("\n\nTORQUE SETUP %s...\n%s\n" % (self.name, cmd)) else: cmd = script if self.server is not None: cmd = "ssh {server} {cmd}".format( server=self.server, cmd=quote(cmd) ) self.status = 'Executing' # EXECUTING PROGRAM self.update_timer(-time()) # TIME START if self.forcewait: self.p = Popen(cmd) ec = self.p.wait() if ec == 0: debug.log("Program finished successfully!") self.status = 'Done' else: debug.log("Program failed on execution!") self.status = 'Failure' self.p = None else: # WaitOn should be called to determine if the program has ended debug.log("CMD: %s"%cmd) self.p = Popen(cmd) # shell=True, executable="/bin/bash" self.update_timer(time()) # TIME END debug.log("timed: %s" % (self.get_time()))
This function Executes the program with set arguments.
entailment
def wait(self, pattern='Done', interval=None, epatterns=['error','Error','STACK','Traceback']): """ This function will wait on a given pattern being shown on the last line of a given outputfile. OPTIONS pattern - The string pattern to recognise when a program finished properly. interval - The amount of seconds to wait between checking the log file. epatterns - A list of string patterns to recognise when a program has finished with an error. """ increasing_interval = False if interval is None: increasing_interval = True interval = 10 if self.wdir != '': stderr = "%s/%s"%(self.wdir, self.stderr) else: stderr = self.stderr debug.log("\nWaiting for %s to finish..."%str(self.name)) if self.status == 'Executing': self.update_timer(-time()) # TIME START found = False if self.queue is not None: # Handling programs running on the compute servers # Waiting for error log to be created. # Prolonged waiting can be caused by the queue being full, or the # server being unavailable. debug.log(" Waiting for the error log to be created (%s)..."%( stderr)) # Set maximum amount of seconds to wait on the errorlog creation, # before assuming queue failure. max_queued_time = 10800 while ( not os.path.exists(stderr) and time()+self.timer < max_queued_time and time()+self.timer > 0 ): debug.log(" Waiting... (max wait time left: %s seconds)"%( str(max_queued_time-time()-self.timer))) sleep(interval) if increasing_interval: interval *= 1.1 if os.path.exists(stderr): if increasing_interval: interval = 10 # File created looking for pattern debug.log('\nError log created, waiting for program to finish...') # calculate max loops left based on set walltime and check interval max_time = time() + self.walltime * 60 * 60 while time() < max_time: with open_(stderr) as f: for l in f.readlines()[-5:]: # last five lines if pattern in l: found = True max_time = 0 break elif any([ep in l for ep in epatterns]): found = False max_time = 0 break if max_time > 0: debug.log(' Waiting... (max wait-time left: %s seconds)'%( str(max_time-time()))) sleep(interval) if found: debug.log(" Program finished successfully!") self.status = 'Done' else: debug.log("Error: Program took too long, or finished with error!") if self.verbose: debug.print_out( "Technical error occurred!\n", "The service was not able to produce a result.\n", ("Please check your settings are correct, and the file " "type matches what you specified.\n"), ("Try again, and if the problem persists please notify the" " technical support.\n") ) self.status = 'Failure' else: debug.log( ("Error: %s still does not exist!\n")%(stderr), ("This error might be caused by the cgebase not being " "available!") ) if self.verbose: debug.print_out( "Technical error occurred!\n", ("This error might be caused by the server not being " "available!\n"), ("Try again later, and if the problem persists please notify " "the technical support.\n"), "Sorry for any inconvenience.\n" ) self.status = 'Failure' if not self.p is None: self.p.wait() self.p = None else: # Handling wrappers running on the webserver if self.p is None: debug.log("Program not instanciated!") self.status = 'Failure' else: ec = self.p.wait() if ec != 0: debug.log("Program failed on execution!") self.status = 'Failure' elif os.path.exists(stderr): with open_(stderr) as f: for l in f.readlines()[-5:]: # last five lines if pattern in l: found = True break elif any([ep in l for ep in epatterns]): found = False break if found: debug.log(" Program finished successfully!") self.status = 'Done' else: debug.log("Error: Program failed to finish properly!") if self.verbose: debug.print_out("Technical error occurred!\n", "The service was not able to produce a result.\n", "Please check your settings are correct, and the file "+ "type matches what you specified.", "Try again, and if "+ "the problem persists please notify the technical "+ "support.\n") self.status = 'Failure' else: debug.log(("Error: %s does not exist!\n")%(stderr), "This error might be caused by the cgebase not being "+ "available!") if self.verbose: debug.print_out("Technical error occurred!\n", "This error might be caused by the server not being "+ "available!\n", "Try again later, and if the problem "+ "persists please notify the technical support.\n", "Sorry for any inconvenience.\n") self.status = 'Failure' self.p = None self.update_timer(time()) # TIME END debug.log(" timed: %s"%(self.get_time())) else: debug.log(" The check-out of the program has been sorted previously.")
This function will wait on a given pattern being shown on the last line of a given outputfile. OPTIONS pattern - The string pattern to recognise when a program finished properly. interval - The amount of seconds to wait between checking the log file. epatterns - A list of string patterns to recognise when a program has finished with an error.
entailment
def print_stdout(self): """ This function will read the standard out of the program and print it """ # First we check if the file we want to print does exists if self.wdir != '': stdout = "%s/%s"%(self.wdir, self.stdout) else: stdout = self.stdout if os.path.exists(stdout): with open_(stdout, 'r') as f: debug.print_out("\n".join([line for line in f])) else: # FILE DOESN'T EXIST debug.log("Error: The stdout file %s does not exist!"%(stdout))
This function will read the standard out of the program and print it
entailment
def find_out_var(self, varnames=[]): """ This function will read the standard out of the program, catch variables and return the values EG. #varname=value """ if self.wdir != '': stdout = "%s/%s"%(self.wdir, self.stdout) else: stdout = self.stdout response = [None]*len(varnames) # First we check if the file we want to print does exists if os.path.exists(stdout): with open_(stdout, 'r') as f: for line in f: if '=' in line: var = line.strip('#').split('=') value = var[1].strip() var = var[0].strip() if var in varnames: response[varnames.index(var)] = value else: # FILE DOESN'T EXIST debug.log("Error: The stdout file %s does not exist!"%(stdout)) return response
This function will read the standard out of the program, catch variables and return the values EG. #varname=value
entailment
def find_err_pattern(self, pattern): """ This function will read the standard error of the program and return a matching pattern if found. EG. prog_obj.FindErrPattern("Update of mySQL failed") """ if self.wdir != '': stderr = "%s/%s"%(self.wdir, self.stderr) else: stderr = self.stderr response = [] # First we check if the file we want to print does exists if os.path.exists(stderr): with open_(stderr, 'r') as f: for line in f: if pattern in line: response.append(line.strip()) else: # FILE DOESN'T EXIST debug.log("Error: The stderr file %s does not exist!"%(stderr)) return response
This function will read the standard error of the program and return a matching pattern if found. EG. prog_obj.FindErrPattern("Update of mySQL failed")
entailment
def find_out_pattern(self, pattern): """ This function will read the standard error of the program and return a matching pattern if found. EG. prog_obj.FindErrPattern("Update of mySQL failed") """ if self.wdir != '': stdout = "%s/%s"%(self.wdir, self.stdout) else: stdout = self.stdout response = [] # First we check if the file we want to print does exists if os.path.exists(stdout): with open_(stdout, 'r') as f: for line in f: if pattern in line: response.append(line.strip()) else: # FILE DOESN'T EXIST debug.log("Error: The stdout file %s does not exist!"%(stdout)) return response
This function will read the standard error of the program and return a matching pattern if found. EG. prog_obj.FindErrPattern("Update of mySQL failed")
entailment
def decode_nfo( buffer ): """Decodes a byte string in NFO format (beloved by PC scener groups) from DOS Code Page 437 to Unicode.""" assert utils.is_bytes( buffer ) return '\n'.join( [''.join( [CP437[y] for y in x] ) for x in buffer.split( b'\r\n' )] )
Decodes a byte string in NFO format (beloved by PC scener groups) from DOS Code Page 437 to Unicode.
entailment
def runner(self): """ Run the necessary methods in the correct order """ if os.path.isfile(self.report): self.report_parse() else: logging.info('Starting {} analysis pipeline'.format(self.analysistype)) # Create the objects to be used in the analyses (if required) general = None for sample in self.runmetadata.samples: general = getattr(sample, 'general') if general is None: # Create the objects to be used in the analyses objects = Objectprep(self) objects.objectprep() self.runmetadata = objects.samples # Run the analyses MLSTmap(self, self.analysistype, self.cutoff) # Create the reports self.reporter() # Print the metadata to a .json file MetadataPrinter(self)
Run the necessary methods in the correct order
entailment
def reporter(self): """ Runs the necessary methods to parse raw read outputs """ logging.info('Preparing reports') # Populate self.plusdict in order to reuse parsing code from an assembly-based method for sample in self.runmetadata.samples: self.plusdict[sample.name] = dict() self.matchdict[sample.name] = dict() if sample.general.bestassemblyfile != 'NA': for gene in sample[self.analysistype].allelenames: self.plusdict[sample.name][gene] = dict() for allele, percentidentity in sample[self.analysistype].results.items(): if gene in allele: # Split the allele number from the gene name using the appropriate delimiter if '_' in allele: splitter = '_' elif '-' in allele: splitter = '-' else: splitter = '' self.matchdict[sample.name].update({gene: allele.split(splitter)[-1]}) # Create the plusdict dictionary as in the assembly-based (r)MLST method. Allows all the # parsing and sequence typing code to be reused. try: self.plusdict[sample.name][gene][allele.split(splitter)[-1]][percentidentity] \ = sample[self.analysistype].avgdepth[allele] except KeyError: self.plusdict[sample.name][gene][allele.split(splitter)[-1]] = dict() self.plusdict[sample.name][gene][allele.split(splitter)[-1]][percentidentity] \ = sample[self.analysistype].avgdepth[allele] if gene not in self.matchdict[sample.name]: self.matchdict[sample.name].update({gene: 'N'}) self.profiler() self.sequencetyper() self.mlstreporter()
Runs the necessary methods to parse raw read outputs
entailment
def profiler(self): """Creates a dictionary from the profile scheme(s)""" logging.info('Loading profiles') # Initialise variables profiledata = defaultdict(make_dict) reverse_profiledata = dict() profileset = set() # Find all the unique profiles to use with a set for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': if sample[self.analysistype].profile != 'NA': profileset.add(sample[self.analysistype].profile) # Extract the profiles for each set for sequenceprofile in profileset: # if sequenceprofile not in self.meta_dict: self.meta_dict[sequenceprofile] = dict() reverse_profiledata[sequenceprofile] = dict() self.meta_dict[sequenceprofile]['ND'] = dict() # Clear the list of genes geneset = set() # Calculate the total number of genes in the typing scheme for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': if sequenceprofile == sample[self.analysistype].profile: geneset = {allele for allele in sample[self.analysistype].alleles} try: # Open the sequence profile file as a dictionary profile = DictReader(open(sequenceprofile), dialect='excel-tab') # Revert to standard comma separated values except KeyError: # Open the sequence profile file as a dictionary profile = DictReader(open(sequenceprofile)) # Iterate through the rows for row in profile: # Populate the profile dictionary with profile number: {gene: allele}. Use the first field name, # which will be either ST, or rST as the key to determine the profile number value allele_comprehension = {gene: allele for gene, allele in row.items() if gene in geneset} st = row[profile.fieldnames[0]] for header, value in row.items(): value = value if value else 'ND' if header not in geneset and header not in ['ST', 'rST']: if st not in self.meta_dict[sequenceprofile]: self.meta_dict[sequenceprofile][st] = dict() if header == 'CC' or header == 'clonal_complex': header = 'CC' self.meta_dict[sequenceprofile][st][header] = value self.meta_dict[sequenceprofile]['ND'][header] = 'ND' self.meta_dict[sequenceprofile][st]['PredictedSerogroup'] = 'ND' if header not in self.meta_headers: self.meta_headers.append(header) profiledata[sequenceprofile][st] = allele_comprehension # Create a 'reverse' dictionary using the the allele comprehension as the key, and # the sequence type as the value - can be used if exact matches are ever desired reverse_profiledata[sequenceprofile].update({frozenset(allele_comprehension.items()): st}) # Add the profile data, and gene list to each sample for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': if sequenceprofile == sample[self.analysistype].profile: # Populate the metadata with the profile data sample[self.analysistype].profiledata = profiledata[sample[self.analysistype].profile] sample[self.analysistype].reverse_profiledata = reverse_profiledata[sequenceprofile] sample[self.analysistype].meta_dict = self.meta_dict[sequenceprofile] else: sample[self.analysistype].profiledata = 'NA' sample[self.analysistype].reverse_profiledata = 'NA' sample[self.analysistype].meta_dict = 'NA'
Creates a dictionary from the profile scheme(s)
entailment
def sequencetyper(self): """Determines the sequence type of each strain based on comparisons to sequence type profiles""" logging.info('Performing sequence typing') for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': if type(sample[self.analysistype].allelenames) == list: # Initialise variables header = 0 genome = sample.name # Initialise self.bestmatch[genome] with an int that will eventually be replaced by the # of matches self.bestmatch[genome] = defaultdict(int) if sample[self.analysistype].profile != 'NA': # Create the profiledata variable to avoid writing self.profiledata[self.analysistype] profiledata = sample[self.analysistype].profiledata # Calculate the number of allele matches between each sequence type and the results best_seqtype = dict() for sequencetype in sample[self.analysistype].profiledata: # Initialise a counter count = 0 # Iterate through each gene for the sequence type for gene, refallele in sample[self.analysistype].profiledata[sequencetype].items(): # Use the gene to extract the calculated allele allele = self.matchdict[genome][gene] # Increment the count on a match if refallele == allele: count += 1 # Add the sequence type to the set of sequence types with the number of matches as the key try: best_seqtype[count].add(sequencetype) except KeyError: best_seqtype[count] = set() best_seqtype[count].add(sequencetype) # Find the highest number of matches from the dictionary best = sorted(best_seqtype.items(), key=operator.itemgetter(0), reverse=True)[0][1] # Deal with multiple allele matches for gene in sample[self.analysistype].allelenames: # Clear the appropriate count and lists multiallele = list() multipercent = list() # Go through the alleles in plusdict for allele in self.plusdict[genome][gene]: percentid = list(self.plusdict[genome][gene][allele].keys())[0] # "N" alleles screw up the allele splitter function if allele not in ['N', 'NA']: # Append as appropriate - alleleNumber is treated as an integer for proper sorting multiallele.append(int(allele)) multipercent.append(percentid) # If the allele is "N" else: # Append "N" and a percent identity of 0 multiallele.append("N") multipercent.append(0) # Populate self.bestdict with genome, gene, alleles joined with a space (this was made like # this because allele is a list generated by the .iteritems() above try: self.bestdict[genome][gene][" ".join(str(allele) for allele in sorted(multiallele))] = \ multipercent[0] except IndexError: self.bestdict[genome][gene]['NA'] = 0 # Find the profile with the most alleles in common with the query genome for sequencetype in best: # The number of genes in the analysis header = len(profiledata[sequencetype]) # refallele is the allele number of the sequence type refallele = profiledata[sequencetype][gene] # If there are multiple allele matches for a gene in the reference profile e.g. 10 692 if len(refallele.split(" ")) > 1: # Map the split (on a space) alleles as integers - if they are treated as integers, # the alleles will sort properly intrefallele = map(int, refallele.split(" ")) # Create a string of the joined, sorted alleles sortedrefallele = " ".join(str(allele) for allele in sorted(intrefallele)) else: # Use the reference allele as the sortedRefAllele sortedrefallele = refallele for allele, percentid in self.bestdict[genome][gene].items(): # If the allele in the query genome matches the allele in the reference profile, add # the result to the bestmatch dictionary. Genes with multiple alleles were sorted # the same, strings with multiple alleles will match: 10 692 will never be 692 10 if allele == sortedrefallele and float(percentid) == 100.00: # Increment the number of matches to each profile self.bestmatch[genome][sequencetype] += 1 # Special handling of BACT000060 and BACT000065 genes for E. coli and BACT000014 # for Listeria. When the reference profile has an allele of 'N', and the query # allele doesn't, set the allele to 'N', and count it as a match elif sortedrefallele == 'N' and allele != 'N': # Increment the number of matches to each profile self.bestmatch[genome][sequencetype] += 1 # Consider cases with multiple allele matches elif len(allele.split(' ')) > 1: # Also increment the number of matches if one of the alleles matches the # reference allele e.g. 41 16665 will match either 41 or 16665 if sortedrefallele != 'N' and allele != 'N': match = False for sub_allele in allele.split(' '): if sub_allele == refallele: match = True if match: # Increment the number of matches to each profile self.bestmatch[genome][sequencetype] += 1 elif allele == sortedrefallele and sortedrefallele == 'N': # Increment the number of matches to each profile self.bestmatch[genome][sequencetype] += 1 # Get the best number of matches # From: https://stackoverflow.com/questions/613183/sort-a-python-dictionary-by-value try: sortedmatches = sorted(self.bestmatch[genome].items(), key=operator.itemgetter(1), reverse=True)[0][1] # If there are no matches, set :sortedmatches to zero except IndexError: sortedmatches = 0 # Otherwise, the query profile matches the reference profile if int(sortedmatches) == header: # Iterate through best match for sequencetype, matches in self.bestmatch[genome].items(): if matches == sortedmatches: for gene in profiledata[sequencetype]: # Populate resultProfile with the genome, best match to profile, # of matches # to the profile, gene, query allele(s), reference allele(s), and % identity self.resultprofile[genome][sequencetype][sortedmatches][gene][ list(self.bestdict[genome][gene] .keys())[0]] = str(list(self.bestdict[genome][gene].values())[0]) sample[self.analysistype].sequencetype = sequencetype sample[self.analysistype].matchestosequencetype = matches # If there are fewer matches than the total number of genes in the typing scheme elif 0 < int(sortedmatches) < header: mismatches = [] # Iterate through the sequence types and the number of matches in bestDict for each genome for sequencetype, matches in self.bestmatch[genome].items(): # If the number of matches for a profile matches the best number of matches if matches == sortedmatches: # Iterate through the gene in the analysis for gene in profiledata[sequencetype]: # Get the reference allele as above refallele = profiledata[sequencetype][gene] # As above get the reference allele split and ordered as necessary if len(refallele.split(" ")) > 1: intrefallele = map(int, refallele.split(" ")) sortedrefallele = " ".join(str(allele) for allele in sorted(intrefallele)) else: sortedrefallele = refallele # Populate self.mlstseqtype with the genome, best match to profile, # of matches # to the profile, gene, query allele(s), reference allele(s), and % identity if self.analysistype == 'mlst': self.resultprofile[genome][sequencetype][sortedmatches][gene][ list(self.bestdict[genome][gene] .keys())[0]] = str(list(self.bestdict[genome][gene].values())[0]) else: self.resultprofile[genome][sequencetype][sortedmatches][gene][ list(self.bestdict[genome][gene].keys())[0]] \ = str(list(self.bestdict[genome][gene].values())[0]) # if sortedrefallele != list(self.bestdict[sample.name][gene].keys())[0]: mismatches.append( ({gene: ('{} ({})'.format(list(self.bestdict[sample.name][gene] .keys())[0], sortedrefallele))})) sample[self.analysistype].mismatchestosequencetype = mismatches sample[self.analysistype].sequencetype = sequencetype sample[self.analysistype].matchestosequencetype = matches elif sortedmatches == 0: for gene in sample[self.analysistype].allelenames: # Populate the results profile with negative values for sequence type and sorted matches self.resultprofile[genome]['NA'][sortedmatches][gene]['NA'] = 0 # Add the new profile to the profile file (if the option is enabled) sample[self.analysistype].sequencetype = 'NA' sample[self.analysistype].matchestosequencetype = 'NA' sample[self.analysistype].mismatchestosequencetype = 'NA' else: sample[self.analysistype].matchestosequencetype = 'NA' sample[self.analysistype].mismatchestosequencetype = 'NA' sample[self.analysistype].sequencetype = 'NA' else: sample[self.analysistype].matchestosequencetype = 'NA' sample[self.analysistype].mismatchestosequencetype = 'NA' sample[self.analysistype].sequencetype = 'NA' else: sample[self.analysistype].matchestosequencetype = 'NA' sample[self.analysistype].mismatchestosequencetype = 'NA' sample[self.analysistype].sequencetype = 'NA' # Clear out the reverse_profiledata attribute - frozen sets can not be .json encoded try: delattr(sample[self.analysistype], 'reverse_profiledata') except AttributeError: pass
Determines the sequence type of each strain based on comparisons to sequence type profiles
entailment
def mlstreporter(self): """ Parse the results into a report""" logging.info('Writing reports') # Initialise variables header_row = str() combinedrow = str() combined_header_row = str() reportdirset = set() mlst_dict = dict() # Populate a set of all the report directories to use. A standard analysis will only have a single report # directory, while pipeline analyses will have as many report directories as there are assembled samples for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': # Ignore samples that lack a populated reportdir attribute if sample[self.analysistype].reportdir != 'NA': make_path(sample[self.analysistype].reportdir) # Add to the set - I probably could have used a counter here, but I decided against it reportdirset.add(sample[self.analysistype].reportdir) # Create a report for each sample from :self.resultprofile for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': if sample[self.analysistype].reportdir != 'NA': if type(sample[self.analysistype].allelenames) == list: # Initialise the string row = str() if self.analysistype == 'mlst': header_row = str() try: if sample.general.referencegenus not in mlst_dict: mlst_dict[sample.general.referencegenus] = dict() except AttributeError: sample.general.referencegenus = 'ND' mlst_dict[sample.general.referencegenus] = dict() # Additional fields such as clonal complex and lineage additional_fields = list() # if self.meta_headers: for header in self.meta_headers: try: _ = sample[self.analysistype].meta_dict[ sample[self.analysistype].sequencetype][header] additional_fields.append(header.rstrip()) except (AttributeError, KeyError): pass if self.analysistype == 'mlst': additional_fields = sorted(additional_fields) # try: if sample.general.referencegenus == 'Listeria': additional_fields.append('PredictedSerogroup') except AttributeError: pass header_fields = additional_fields else: additional_fields = [ 'genus', 'species', 'subspecies', 'lineage', 'sublineage', 'other_designation', 'notes' ] header_fields = [ 'rMLST_genus', 'species', 'subspecies', 'lineage', 'sublineage', 'other_designation', 'notes' ] # Populate the header with the appropriate data, including all the genes in the list of targets if not header_row: if additional_fields: header_row = 'Strain,MASHGenus,{additional},SequenceType,Matches,{matches},\n' \ .format(additional=','.join(header_fields), matches=','.join(sorted(sample[self.analysistype].allelenames))) else: header_row = 'Strain,MASHGenus,SequenceType,Matches,{matches},\n' \ .format(matches=','.join(sorted(sample[self.analysistype].allelenames))) # Iterate through the best sequence types for the sample for seqtype in self.resultprofile[sample.name]: sample[self.analysistype].sequencetype = seqtype try: if sample.general.referencegenus == 'Listeria': for serogroup, mlst_list in self.listeria_serogroup_dict.items(): if seqtype in [str(string) for string in mlst_list]: sample[self.analysistype].meta_dict[seqtype]['PredictedSerogroup'] = \ serogroup except AttributeError: pass # The number of matches to the profile sample[self.analysistype].matches = list(self.resultprofile[sample.name][seqtype].keys())[0] # Extract the closest reference genus try: genus = sample.general.referencegenus except AttributeError: try: genus = sample.general.closestrefseqgenus except AttributeError: genus = 'ND' # If this is the first of one or more sequence types, include the sample name if additional_fields: row += '{name},{mashgenus},{additional},{seqtype},{matches},'\ .format(name=sample.name, mashgenus=genus, additional=','.join(sample[self.analysistype]. meta_dict[sample[self.analysistype] .sequencetype][header] for header in additional_fields), seqtype=seqtype, matches=sample[self.analysistype].matches) else: row += '{name},{mashgenus},{seqtype},{matches},' \ .format(name=sample.name, mashgenus=genus, seqtype=seqtype, matches=sample[self.analysistype].matches) # Iterate through all the genes present in the analyses for the sample for gene in sorted(sample[self.analysistype].allelenames): refallele = sample[self.analysistype].profiledata[seqtype][gene] # Set the allele and percent id from the dictionary's keys and values, respectively allele = \ list(self.resultprofile[sample.name][seqtype][sample[self.analysistype].matches] [gene].keys())[0] percentid = \ list(self.resultprofile[sample.name][seqtype][sample[self.analysistype].matches] [gene].values())[0] try: if refallele and refallele != allele: if 0 < float(percentid) < 100: row += '{} ({:.2f}%),'.format(allele, float(percentid)) else: row += '{} ({}),'.format(allele, refallele) else: # Add the allele and % id to the row (only add the % identity if it is not 100%) if 0 < float(percentid) < 100: row += '{} ({:.2f}%),'.format(allele, float(percentid)) else: row += '{},'.format(allele) self.referenceprofile[sample.name][gene] = allele except ValueError: pass # Add a newline row += '\n' # combinedrow += row # combined_header_row += header_row combined_header_row += row if self.analysistype == 'mlst': mlst_dict[sample.general.referencegenus]['header'] = header_row try: mlst_dict[sample.general.referencegenus]['combined_row'] += row except KeyError: mlst_dict[sample.general.referencegenus]['combined_row'] = str() mlst_dict[sample.general.referencegenus]['combined_row'] += row # If the length of the # of report directories is greater than 1 (script is being run as part of # the assembly pipeline) make a report for each sample if self.pipeline: # Open the report with open(os.path.join(sample[self.analysistype].reportdir, '{}_{}.csv'.format(sample.name, self.analysistype)), 'w') as report: # Write the row to the report report.write(header_row) report.write(row) # Create the report folder make_path(self.reportpath) # Create the report containing all the data from all samples if self.analysistype == 'mlst': for genus in mlst_dict: if mlst_dict[genus]['combined_row']: with open(os.path.join(self.reportpath, '{at}_{genus}.csv'.format(at=self.analysistype, genus=genus)), 'w') \ as mlstreport: # Add the header mlstreport.write(mlst_dict[genus]['header']) # Write the results to this report mlstreport.write(mlst_dict[genus]['combined_row']) with open(os.path.join(self.reportpath, '{at}.csv'.format(at=self.analysistype)), 'w') \ as combinedreport: # Write the results to this report combinedreport.write(combined_header_row) else: with open(os.path.join(self.reportpath, '{at}.csv'.format(at=self.analysistype)), 'w') \ as combinedreport: # Add the header combinedreport.write(header_row) # Write the results to this report combinedreport.write(combinedrow)
Parse the results into a report
entailment
def report_parse(self): """ If the pipeline has previously been run on these data, instead of reading through the results, parse the report instead """ # Initialise lists report_strains = list() genus_list = list() if self.analysistype == 'mlst': for sample in self.runmetadata.samples: try: genus_list.append(sample.general.referencegenus) except AttributeError: sample.general.referencegenus = 'ND' genus_list.append(sample.general.referencegenus) # Read in the report if self.analysistype == 'mlst': for genus in genus_list: try: report_name = os.path.join(self.reportpath, '{at}_{genus}.csv'.format(at=self.analysistype, genus=genus)) report_strains = self.report_read(report_strains=report_strains, report_name=report_name) except FileNotFoundError: report_name = self.report report_strains = self.report_read(report_strains=report_strains, report_name=report_name) else: report_name = self.report report_strains = self.report_read(report_strains=report_strains, report_name=report_name) # Populate strains not in the report with 'empty' GenObject with appropriate attributes for sample in self.runmetadata.samples: if sample.name not in report_strains: setattr(sample, self.analysistype, GenObject()) sample[self.analysistype].sequencetype = 'ND' sample[self.analysistype].matches = 0 sample[self.analysistype].results = dict()
If the pipeline has previously been run on these data, instead of reading through the results, parse the report instead
entailment
def guess_type(filename, **kwargs): """ Utility function to call classes based on filename extension. Just usefull if you are reading the file and don't know file extension. You can pass kwargs and these args are passed to class only if they are used in class. """ extension = os.path.splitext(filename)[1] case = {'.xls': Xls, '.xlsx': Xlsx, '.csv': Csv} if extension and case.get(extension.lower()): low_extension = extension.lower() new_kwargs = dict() class_name = case.get(low_extension) class_kwargs = inspect.getargspec(class_name.__init__).args[1:] for kwarg in kwargs: if kwarg in class_kwargs: new_kwargs[kwarg] = kwargs[kwarg] return case.get(low_extension)(filename, **new_kwargs) else: raise Exception('No extension found')
Utility function to call classes based on filename extension. Just usefull if you are reading the file and don't know file extension. You can pass kwargs and these args are passed to class only if they are used in class.
entailment
def get_gene_seqs(database_path, gene): """ This function takes the database path and a gene name as inputs and returns the gene sequence contained in the file given by the gene name """ gene_path = database_path + "/" + gene + ".fsa" gene_seq = "" # Open fasta file with open(gene_path) as gene_file: header = gene_file.readline() for line in gene_file: seq = line.strip() gene_seq += seq return gene_seq
This function takes the database path and a gene name as inputs and returns the gene sequence contained in the file given by the gene name
entailment
def get_db_mutations(mut_db_path, gene_list, res_stop_codons): """ This function opens the file resistenss-overview.txt, and reads the content into a dict of dicts. The dict will contain information about all known mutations given in the database. This dict is returned. """ # Open resistens-overview.txt try: drugfile = open(mut_db_path, "r") except: sys.exit("Wrong path: %s"%(mut_db_path)) # Initiate variables known_mutations = dict() drug_genes = dict() known_stop_codon = dict() indelflag = False stopcodonflag = False # Go throug mutation file line by line for line in drugfile: # Ignore headers and check where the indel section starts if line.startswith("#"): if "indel" in line.lower(): indelflag = True elif "stop codon" in line.lower(): stopcodonflag = True else: stopcodonflag = False continue # Ignore empty lines if line.strip() == "": continue # Assert that all lines have the correct set of columns mutation = [data.strip() for data in line.strip().split("\t")] assert len(mutation) == 9, "mutation overview file (%s) must have 9 columns, %s"%(mut_db_path, mutation) # Extract all info on the line (even though it is not all used) gene_ID = mutation[0] # Only consider mutations in genes found in the gene list if gene_ID in gene_list: gene_name = mutation[1] no_of_mut = int(mutation[2]) mut_pos = int(mutation[3]) ref_codon = mutation[4] ref_aa = mutation[5] alt_aa = mutation[6].split(",") res_drug = mutation[7].replace("\t", " ") pmid = mutation[8].split(",") # Check if resistance is known to be caused by a stop codon in the gene if ("*" in alt_aa and res_stop_codons != 'specified') or (res_stop_codons == 'specified' and stopcodonflag == True): if gene_ID not in known_stop_codon: known_stop_codon[gene_ID] = {"pos": [], "drug": res_drug} known_stop_codon[gene_ID]["pos"].append(mut_pos) # Add genes associated with drug resistance to drug_genes dict drug_lst = res_drug.split(",") for drug in drug_lst: drug = drug.upper() if drug not in drug_genes: drug_genes[drug] = [] if gene_ID not in drug_genes[drug]: drug_genes[drug].append(gene_ID) # Initiate empty dict to store relevant mutation information mut_info = dict() # Save need mutation info with pmid cooresponding to the amino acid change for i in range(len(alt_aa)): try: mut_info[alt_aa[i]] = {"gene_name": gene_name, "drug": res_drug, "pmid": pmid[i]} except IndexError: mut_info[alt_aa[i]] = {"gene_name": gene_name, "drug": res_drug, "pmid": "-"} # Check if more than one mutations is needed for resistance if no_of_mut != 1: print("More than one mutation is needed, this is not implemented", mutation) # Add all possible types of mutations to the dict if gene_ID not in known_mutations: known_mutations[gene_ID] = {"sub" : dict(), "ins" : dict(), "del" : dict()} # Check for the type of mutation if indelflag == False: mutation_type = "sub" else: mutation_type = ref_aa # Save mutations positions with required information given in mut_info if mut_pos not in known_mutations[gene_ID][mutation_type]: known_mutations[gene_ID][mutation_type][mut_pos] = dict() for aa in alt_aa: known_mutations[gene_ID][mutation_type][mut_pos][aa] = mut_info[aa] drugfile.close() # Check that all genes in the gene list has known mutations for gene in gene_list: if gene not in known_mutations: known_mutations[gene] = {"sub" : dict(), "ins" : dict(), "del" : dict()} return known_mutations, drug_genes, known_stop_codon
This function opens the file resistenss-overview.txt, and reads the content into a dict of dicts. The dict will contain information about all known mutations given in the database. This dict is returned.
entailment
def KMA(inputfile_1, gene_list, kma_db, out_path, sample_name, min_cov, mapping_path): """ This function is called when KMA is the method of choice. The function calls kma externally and waits for it to finish. The kma output files with the prefixes .res and .aln are parsed throught to obtain the required alignment informations. The subject and query sequences as well as the start and stop position, coverage, and subject length are stored in a results directory which is returned in the end. """ # Get full path to input of output files inputfile_1 = os.path.abspath(inputfile_1) kma_outfile = os.path.abspath(out_path + "/kma_out_" + sample_name) kma_cmd = "%s -i %s -t_db %s -o %s -1t1 -gapopen -5 -gapextend -2 -penalty -3 -reward 1"%(mapping_path, inputfile_1, kma_db, kma_outfile) # -ID 90 # Call KMA os.system(kma_cmd) if os.path.isfile(kma_outfile + ".aln") == False: os.system(kma_cmd) # Fetch kma output files align_filename = kma_outfile + ".aln" res_filename = kma_outfile + ".res" results = dict() # Open KMA result file with open(res_filename, "r") as res_file: header = res_file.readline() # Parse through each line for line in res_file: data = [data.strip() for data in line.split("\t")] gene = data[0] # Check if gene one of the user specified genes if gene not in gene_list: continue # Store subject length and coverage sbjct_len = int(data[3]) identity = float(data[6]) coverage = float(data[7]) # Result dictionary assumes that more hits can occur if gene not in results: hit = '1' results[gene] = dict() # Gene will only be there once with KMA else: hit = str(len(results[gene])) +1 results[gene][hit] = dict() results[gene][hit]['sbjct_length'] = sbjct_len results[gene][hit]['coverage'] = coverage / 100 results[gene][hit]["sbjct_string"] = [] results[gene][hit]["query_string"] = [] results[gene][hit]["homology"] = [] results[gene][hit]['identity'] = identity # Open KMA alignment file with open(align_filename, "r") as align_file: hit_no = dict() gene = "" # Parse through alignments for line in align_file: # Check when a new gene alignment start if line.startswith("#"): gene = line[1:].strip() if gene not in hit_no: hit_no[gene] = str(1) else: hit_no[gene] += str(int(hit_no[gene]) + 1) else: # Check if gene is one of the user specified genes if gene in results: if hit_no[gene] not in results[gene]: sys.exit("Unexpected database redundency") line_data = line.split("\t")[-1].strip() if line.startswith("template"): results[gene][hit_no[gene]]["sbjct_string"] += [line_data] elif line.startswith("query"): results[gene][hit_no[gene]]["query_string"] += [line_data] else: results[gene][hit_no[gene]]["homology"] += [line_data] # Concatinate all sequences lists and find subject start and subject end seq_start_search_str = re.compile("^-*(\w+)") seq_end_search_str = re.compile("\w+(-*)$") for gene in gene_list: if gene in results: for hit in results[gene]: results[gene][hit]['sbjct_string'] = "".join(results[gene][hit]['sbjct_string']) results[gene][hit]['query_string'] = "".join(results[gene][hit]['query_string']) results[gene][hit]['homology'] = "".join(results[gene][hit]['homology']) seq_start_object = seq_start_search_str.search(results[gene][hit]['query_string']) sbjct_start = seq_start_object.start(1) + 1 seq_end_object = seq_end_search_str.search(results[gene][hit]['query_string']) sbjct_end = seq_end_object.start(1) + 1 results[gene][hit]['query_string'] = results[gene][hit]['query_string'][sbjct_start-1:sbjct_end-1] results[gene][hit]['sbjct_string'] = results[gene][hit]['sbjct_string'][sbjct_start-1:sbjct_end-1] #if sbjct_start: results[gene][hit]["sbjct_start"] = sbjct_start results[gene][hit]["sbjct_end"] = sbjct_end else: results[gene] = "" return results
This function is called when KMA is the method of choice. The function calls kma externally and waits for it to finish. The kma output files with the prefixes .res and .aln are parsed throught to obtain the required alignment informations. The subject and query sequences as well as the start and stop position, coverage, and subject length are stored in a results directory which is returned in the end.
entailment
def find_best_sequence(hits_found, specie_path, gene, silent_N_flag): """ This function takes the list hits_found as argument. This contains all hits found for the blast search of one gene. A hit includes the subjct sequence, the query, and the start and stop position of the allignment corresponding to the subject sequence. This function finds the best hit by concatinating sequences of found hits. If different overlap sequences occurr these are saved in the list alternative_overlaps. The subject and query sequence of the concatinated sequence to gether with alternative overlaps and the corresponding start stop positions are returned. """ # Get information from the fisrt hit found all_start = hits_found[0][0] current_end = hits_found[0][1] final_sbjct = hits_found[0][2] final_qry = hits_found[0][3] sbjct_len = hits_found[0][4] alternative_overlaps = [] # Check if more then one hit was found within the same gene for i in range(len(hits_found)-1): # Save information from previous hit pre_block_start = hits_found[i][0] pre_block_end = hits_found[i][1] pre_sbjct = hits_found[i][2] pre_qry = hits_found[i][3] # Save information from next hit next_block_start = hits_found[i+1][0] next_block_end = hits_found[i+1][1] next_sbjct = hits_found[i+1][2] next_qry = hits_found[i+1][3] # Check for overlapping sequences, collaps them and save alternative overlaps if any if next_block_start <= current_end: # Find overlap start and take gaps into account pos_count = 0 overlap_pos = pre_block_start for i in range(len(pre_sbjct)): # Stop loop if overlap_start position is reached if overlap_pos == next_block_start: overlap_start = pos_count break if pre_sbjct[i] != "-": overlap_pos += 1 pos_count += 1 # Find overlap length and add next sequence to final sequence if len(pre_sbjct[overlap_start:]) > len(next_sbjct): # <---------> # <---> overlap_len = len(next_sbjct) overlap_end_pos = next_block_end else: # <---------> # <---------> overlap_len = len(pre_sbjct[overlap_start:]) overlap_end_pos = pre_block_end # Update current end current_end = next_block_end # Use the entire pre sequence and add the last part of the next sequence final_sbjct += next_sbjct[overlap_len:] final_qry += next_qry[overlap_len:] # Find query overlap sequences pre_qry_overlap = pre_qry[overlap_start : (overlap_start + overlap_len)] # can work for both types of overlap next_qry_overlap = next_qry[:overlap_len] sbjct_overlap = next_sbjct[:overlap_len] # If alternative query overlap excist save it if pre_qry_overlap != next_qry_overlap: print("OVERLAP WARNING:") print(pre_qry_overlap, "\n", next_qry_overlap) # Save alternative overlaps alternative_overlaps += [(next_block_start, overlap_end_pos, sbjct_overlap, next_qry_overlap)] elif next_block_start > current_end: # <-------> # <-------> gap_size = next_block_start - current_end - 1 final_qry += "N"*gap_size if silent_N_flag: final_sbjct += "N"*gap_size else: ref_seq = get_gene_seqs(specie_path, gene) final_sbjct += ref_seq[pre_block_end:pre_block_end+gap_size] current_end = next_block_end final_sbjct += next_sbjct final_qry += next_qry # Calculate coverage no_call = final_qry.upper().count("N") coverage = (current_end - all_start +1 - no_call) / float(sbjct_len) # Calculate identity equal = 0 not_equal = 0 for i in range(len(final_qry)): if final_qry[i].upper() != "N": if final_qry[i].upper() == final_sbjct[i].upper(): equal += 1 else: not_equal += 1 identity = equal/float(equal + not_equal) return final_sbjct, final_qry, all_start, current_end, alternative_overlaps, coverage, identity
This function takes the list hits_found as argument. This contains all hits found for the blast search of one gene. A hit includes the subjct sequence, the query, and the start and stop position of the allignment corresponding to the subject sequence. This function finds the best hit by concatinating sequences of found hits. If different overlap sequences occurr these are saved in the list alternative_overlaps. The subject and query sequence of the concatinated sequence to gether with alternative overlaps and the corresponding start stop positions are returned.
entailment
def find_mismatches(gene, sbjct_start, sbjct_seq, qry_seq, alternative_overlaps = []): """ This function finds mis matches between two sequeces. Depending on the the sequence type either the function find_codon_mismatches or find_nucleotid_mismatches are called, if the sequences contains both a promoter and a coding region both functions are called. The function can also call it self if alternative overlaps is give. All found mis matches are returned """ # Initiate the mis_matches list that will store all found mis matcehs mis_matches = [] # Find mis matches in RNA genes if gene in RNA_gene_list: mis_matches += find_nucleotid_mismatches(sbjct_start, sbjct_seq, qry_seq) else: # Check if the gene sequence is with a promoter regex = r"promoter_size_(\d+)(?:bp)" promtr_gene_objt = re.search(regex, gene) # Check for promoter sequences if promtr_gene_objt: # Get promoter length promtr_len = int(promtr_gene_objt.group(1)) # Extract promoter sequence, while considering gaps # --------agt-->---- # ---->? if sbjct_start <= promtr_len: #Find position in sbjct sequence where promoter ends promtr_end = 0 nuc_count = sbjct_start - 1 for i in range(len(sbjct_seq)): promtr_end += 1 if sbjct_seq[i] != "-": nuc_count += 1 if nuc_count == promtr_len: break # Check if only a part of the promoter is found #--------agt-->---- # ---- promtr_sbjct_start = -1 if nuc_count < promtr_len: promtr_sbjct_start = nuc_count - promtr_len # Get promoter part of subject and query sbjct_promtr_seq = sbjct_seq[:promtr_end] qry_promtr_seq = qry_seq[:promtr_end] # For promoter part find nucleotide mis matches mis_matches += find_nucleotid_mismatches(promtr_sbjct_start, sbjct_promtr_seq, qry_promtr_seq, promoter = True) # Check if gene is also found #--------agt-->---- # ----------- if (sbjct_start + len(sbjct_seq.replace("-", ""))) > promtr_len: sbjct_gene_seq = sbjct_seq[promtr_end:] qry_gene_seq = qry_seq[promtr_end:] sbjct_gene_start = 1 # Find mismatches in gene part mis_matches += find_codon_mismatches(sbjct_gene_start, sbjct_gene_seq, qry_gene_seq) # No promoter, only gene is found #--------agt-->---- # ----- else: sbjct_gene_start = sbjct_start - promtr_len # Find mismatches in gene part mis_matches += find_codon_mismatches(sbjct_gene_start, sbjct_seq, qry_seq) else: # Find mismatches in gene mis_matches += find_codon_mismatches(sbjct_start, sbjct_seq, qry_seq) # Find mismatches in alternative overlaps if any for overlap in alternative_overlaps: mis_matches += find_mismatches(gene, overlap[0], overlap[2], overlap[3]) return mis_matches
This function finds mis matches between two sequeces. Depending on the the sequence type either the function find_codon_mismatches or find_nucleotid_mismatches are called, if the sequences contains both a promoter and a coding region both functions are called. The function can also call it self if alternative overlaps is give. All found mis matches are returned
entailment
def find_nucleotid_mismatches(sbjct_start, sbjct_seq, qry_seq, promoter = False): """ This function takes two alligned sequence (subject and query), and the position on the subject where the alignment starts. The sequences are compared one nucleotide at a time. If mis matches are found they are saved. If a gap is found the function find_nuc_indel is called to find the entire indel and it is also saved into the list mis_matches. If promoter sequences are given as arguments, these are reversed the and the absolut value of the sequence position used, but when mutations are saved the negative value and det reverse sequences are saved in mis_mathces. """ # Initiate the mis_matches list that will store all found mis matcehs mis_matches = [] sbjct_start = abs(sbjct_start) seq_pos = sbjct_start # Set variables depending on promoter status factor = 1 mut_prefix = "r." if promoter == True: factor = (-1) mut_prefix = "n." # Reverse promoter sequences sbjct_seq = sbjct_seq[::-1] qry_seq = qry_seq[::-1] # Go through sequences one nucleotide at a time shift = 0 for index in range(sbjct_start - 1, len(sbjct_seq)): mut_name = mut_prefix mut = "" # Shift index according to gaps i = index + shift # If the end of the sequence is reached, stop if i == len(sbjct_seq): break sbjct_nuc = sbjct_seq[i] qry_nuc = qry_seq[i] # Check for mis matches if sbjct_nuc.upper() != qry_nuc.upper(): # check for insertions and deletions if sbjct_nuc == "-" or qry_nuc == "-": if sbjct_nuc == "-": mut = "ins" indel_start_pos = (seq_pos -1) *factor indel_end_pos = seq_pos * factor indel = find_nuc_indel(sbjct_seq[i:], qry_seq[i:]) else: mut = "del" indel_start_pos = seq_pos * factor indel = find_nuc_indel(qry_seq[i:], sbjct_seq[i:]) indel_end_pos = (seq_pos + len(indel) - 1) * factor seq_pos += len(indel) - 1 # Shift the index to the end of the indel shift += len(indel) - 1 # Write mutation name, depending on sequnce if len(indel) == 1 and mut == "del": mut_name += str(indel_start_pos) + mut + indel else: if promoter == True: # Reverse the sequence and the start and end positions indel = indel[::-1] temp = indel_start_pos indel_start_pos = indel_end_pos indel_end_pos = temp mut_name += str(indel_start_pos) + "_" +str(indel_end_pos) + mut + indel mis_matches += [[mut, seq_pos * factor, seq_pos * factor, indel, mut_name, mut, indel]] # Check for substitutions mutations else: mut = "sub" mut_name += str(seq_pos * factor) + sbjct_nuc + ">" + qry_nuc mis_matches += [[mut, seq_pos * factor, seq_pos * factor, qry_nuc, mut_name, sbjct_nuc, qry_nuc]] # Increment sequence position if mut != "ins": seq_pos += 1 return mis_matches
This function takes two alligned sequence (subject and query), and the position on the subject where the alignment starts. The sequences are compared one nucleotide at a time. If mis matches are found they are saved. If a gap is found the function find_nuc_indel is called to find the entire indel and it is also saved into the list mis_matches. If promoter sequences are given as arguments, these are reversed the and the absolut value of the sequence position used, but when mutations are saved the negative value and det reverse sequences are saved in mis_mathces.
entailment
def find_nuc_indel(gapped_seq, indel_seq): """ This function finds the entire indel missing in from a gapped sequence compared to the indel_seqeunce. It is assumes that the sequences start with the first position of the gap. """ ref_indel = indel_seq[0] for j in range(1,len(gapped_seq)): if gapped_seq[j] == "-": ref_indel += indel_seq[j] else: break return ref_indel
This function finds the entire indel missing in from a gapped sequence compared to the indel_seqeunce. It is assumes that the sequences start with the first position of the gap.
entailment
def aa(codon): """ This function converts a codon to an amino acid. If the codon is not valid an error message is given, or else, the amino acid is returned. """ codon = codon.upper() aa = {"ATT": "I", "ATC": "I", "ATA": "I", "CTT": "L", "CTC": "L", "CTA": "L", "CTG": "L", "TTA": "L", "TTG": "L", "GTT": "V", "GTC": "V", "GTA": "V", "GTG": "V", "TTT": "F", "TTC": "F", "ATG": "M", "TGT": "C", "TGC": "C", "GCT": "A", "GCC": "A", "GCA": "A", "GCG": "A", "GGT": "G", "GGC": "G", "GGA": "G", "GGG": "G", "CCT": "P", "CCC": "P", "CCA": "P", "CCG": "P", "ACT": "T", "ACC": "T", "ACA": "T", "ACG": "T", "TCT": "S", "TCC": "S", "TCA": "S", "TCG": "S", "AGT": "S", "AGC": "S", "TAT": "Y", "TAC": "Y", "TGG": "W", "CAA": "Q", "CAG": "Q", "AAT": "N", "AAC": "N", "CAT": "H", "CAC": "H", "GAA": "E", "GAG": "E", "GAT": "D", "GAC": "D", "AAA": "K", "AAG": "K", "CGT": "R", "CGC": "R", "CGA": "R", "CGG": "R", "AGA": "R", "AGG": "R", "TAA": "*", "TAG": "*", "TGA": "*"} # Translate valid codon try: amino_a = aa[codon] except KeyError: amino_a = "?" return amino_a
This function converts a codon to an amino acid. If the codon is not valid an error message is given, or else, the amino acid is returned.
entailment
def get_codon(seq, codon_no, start_offset): """ This function takes a sequece and a codon number and returns the codon found in the sequence at that position """ seq = seq.replace("-","") codon_start_pos = int(codon_no - 1)*3 - start_offset codon = seq[codon_start_pos:codon_start_pos + 3] return codon
This function takes a sequece and a codon number and returns the codon found in the sequence at that position
entailment
def name_insertion(sbjct_seq, codon_no, sbjct_nucs, aa_alt, start_offset): """ This function is used to name a insertion mutation based on the HGVS recommendation. """ start_codon_no = codon_no - 1 if len(sbjct_nucs) == 3: start_codon_no = codon_no start_codon = get_codon(sbjct_seq, start_codon_no, start_offset) end_codon = get_codon(sbjct_seq, codon_no, start_offset) pos_name = "p.%s%d_%s%dins%s"%(aa(start_codon), start_codon_no, aa(end_codon), codon_no, aa_alt) return pos_name
This function is used to name a insertion mutation based on the HGVS recommendation.
entailment
def name_indel_mutation(sbjct_seq, indel, sbjct_rf_indel, qry_rf_indel, codon_no, mut, start_offset): """ This function serves to name the individual mutations dependently on the type of the mutation. """ # Get the subject and query sequences without gaps sbjct_nucs = sbjct_rf_indel.replace("-", "") qry_nucs = qry_rf_indel.replace("-", "") # Translate nucleotides to amino acids aa_ref = "" aa_alt = "" for i in range(0, len(sbjct_nucs), 3): aa_ref += aa(sbjct_nucs[i:i+3]) for i in range(0, len(qry_nucs), 3): aa_alt += aa(qry_nucs[i:i+3]) # Identify the gapped sequence if mut == "ins": gapped_seq = sbjct_rf_indel else: gapped_seq = qry_rf_indel gap_size = gapped_seq.count("-") # Write mutation names if gap_size < 3 and len(sbjct_nucs) ==3 and len(qry_nucs) == 3: # Write mutation name for substitution mutation mut_name = "p.%s%d%s"%(aa(sbjct_nucs), codon_no, aa(qry_nucs)) elif len(gapped_seq) == gap_size: if mut == "ins": # Write mutation name for insertion mutation mut_name = name_insertion(sbjct_seq, codon_no, sbjct_nucs, aa_alt, start_offset) aa_ref = mut else: # Write mutation name for deletion mutation mut_name = name_deletion(sbjct_seq, sbjct_rf_indel, sbjct_nucs, codon_no, aa_alt, start_offset, mutation = "del") aa_alt = mut # Check for delins - mix of insertion and deletion else: # Write mutation name for a mixed insertion and deletion mutation mut_name = name_deletion(sbjct_seq, sbjct_rf_indel, sbjct_nucs, codon_no, aa_alt, start_offset, mutation = "delins") # Check for frameshift if gapped_seq.count("-")%3 != 0: # Add the frameshift tag to mutation name mut_name += " - Frameshift" return mut_name, aa_ref, aa_alt
This function serves to name the individual mutations dependently on the type of the mutation.
entailment
def get_inframe_gap(seq, nucs_needed = 3): """ This funtion takes a sequnece starting with a gap or the complementary seqeuence to the gap, and the number of nucleotides that the seqeunce should contain in order to maintain the correct reading frame. The sequence is gone through and the number of non-gap characters are counted. When the number has reach the number of needed nucleotides the indel is returned. If the indel is a 'clean' insert or deletion that starts in the start of a codon and can be divided by 3, then only the gap is returned. """ nuc_count = 0 gap_indel = "" nucs = "" for i in range(len(seq)): # Check if the character is not a gap if seq[i] != "-": # Check if the indel is a 'clean' # i.e. if the insert or deletion starts at the first nucleotide in the codon and can be divided by 3 if gap_indel.count("-") == len(gap_indel) and gap_indel.count("-") >= 3 and len(gap_indel) != 0: return gap_indel nuc_count += 1 gap_indel += seq[i] # If the number of nucleotides in the indel equals the amount needed for the indel, the indel is returned. if nuc_count == nucs_needed: return gap_indel # This will only happen if the gap is in the very end of a sequence return gap_indel
This funtion takes a sequnece starting with a gap or the complementary seqeuence to the gap, and the number of nucleotides that the seqeunce should contain in order to maintain the correct reading frame. The sequence is gone through and the number of non-gap characters are counted. When the number has reach the number of needed nucleotides the indel is returned. If the indel is a 'clean' insert or deletion that starts in the start of a codon and can be divided by 3, then only the gap is returned.
entailment
def get_indels(sbjct_seq, qry_seq, start_pos): """ This function uses regex to find inserts and deletions in sequences given as arguments. A list of these indels are returned. The list includes, type of mutations(ins/del), subject codon no of found mutation, subject sequence position, insert/deletions nucleotide sequence, and the affected qry codon no. """ seqs = [sbjct_seq, qry_seq] indels = [] gap_obj = re.compile(r"-+") for i in range(len(seqs)): for match in gap_obj.finditer(seqs[i]): pos = int(match.start()) gap = match.group() # Find position of the mutation corresponding to the subject sequence sbj_pos = len(sbjct_seq[:pos].replace("-","")) + start_pos # Get indel sequence and the affected sequences in sbjct and qry in the reading frame indel = seqs[abs(i-1)][pos:pos+len(gap)] # Find codon number for mutation codon_no = int(math.ceil((sbj_pos)/3)) qry_pos = len(qry_seq[:pos].replace("-","")) + start_pos qry_codon = int(math.ceil((qry_pos)/3)) if i == 0: mut = "ins" else: mut = "del" indels.append( [mut, codon_no, sbj_pos, indel, qry_codon]) # Sort indels based on codon position and sequence position indels = sorted(indels, key = lambda x:(x[1],x[2])) return indels
This function uses regex to find inserts and deletions in sequences given as arguments. A list of these indels are returned. The list includes, type of mutations(ins/del), subject codon no of found mutation, subject sequence position, insert/deletions nucleotide sequence, and the affected qry codon no.
entailment
def find_codon_mismatches(sbjct_start, sbjct_seq, qry_seq): """ This function takes two alligned sequence (subject and query), and the position on the subject where the alignment starts. The sequences are compared codon by codon. If a mis matches is found it is saved in 'mis_matches'. If a gap is found the function get_inframe_gap is used to find the indel sequence and keep the sequence in the correct reading frame. The function translate_indel is used to name indel mutations and translate the indels to amino acids The function returns a list of tuples containing all needed informations about the mutation in order to look it up in the database dict known mutation and the with the output files the the user. """ mis_matches = [] # Find start pos of first codon in frame, i_start codon_offset = (sbjct_start-1) % 3 i_start = 0 if codon_offset != 0: i_start = 3 - codon_offset sbjct_start = sbjct_start + i_start # Set sequences in frame sbjct_seq = sbjct_seq[i_start:] qry_seq = qry_seq[i_start:] # Find codon number of the first codon in the sequence, start at 0 codon_no = int((sbjct_start-1) / 3) # 1,2,3 start on 0 # s_shift and q_shift are used when gaps appears q_shift = 0 s_shift = 0 mut_no = 0 # Find inserts and deletions in sequence indel_no = 0 indels = get_indels(sbjct_seq, qry_seq, sbjct_start) # Go through sequence and save mutations when found for index in range(0, len(sbjct_seq), 3): # Count codon number codon_no += 1 # Shift index according to gaps s_i = index + s_shift q_i = index + q_shift # Get codons sbjct_codon = sbjct_seq[s_i:s_i+3] qry_codon = qry_seq[q_i:q_i+3] if len(sbjct_seq[s_i:].replace("-","")) + len(qry_codon[q_i:].replace("-","")) < 6: break # Check for mutations if sbjct_codon.upper() != qry_codon.upper(): # Check for codon insertions and deletions and frameshift mutations if "-" in sbjct_codon or "-" in qry_codon: # Get indel info try: indel_data = indels[indel_no] except IndexError: print(sbjct_codon, qry_codon) print(indels) print(gene, indel_data, indel_no) mut = indel_data[0] codon_no_indel = indel_data[1] seq_pos = indel_data[2] + sbjct_start - 1 indel = indel_data[3] indel_no +=1 # Get the affected sequence in frame for both for sbjct and qry if mut == "ins": sbjct_rf_indel = get_inframe_gap(sbjct_seq[s_i:], 3) qry_rf_indel = get_inframe_gap(qry_seq[q_i:], int(math.floor(len(sbjct_rf_indel)/3) *3)) else: qry_rf_indel = get_inframe_gap(qry_seq[q_i:], 3) sbjct_rf_indel = get_inframe_gap(sbjct_seq[s_i:], int(math.floor(len(qry_rf_indel)/3) *3)) mut_name, aa_ref, aa_alt = name_indel_mutation(sbjct_seq, indel, sbjct_rf_indel, qry_rf_indel, codon_no, mut, sbjct_start - 1) # Set index to the correct reading frame after the indel gap shift_diff_before = abs(s_shift - q_shift) s_shift += len(sbjct_rf_indel) - 3 q_shift += len(qry_rf_indel) - 3 shift_diff = abs(s_shift - q_shift) if shift_diff_before != 0 and shift_diff %3 == 0: if s_shift > q_shift: nucs_needed = int((len(sbjct_rf_indel)/3) *3) + shift_diff pre_qry_indel = qry_rf_indel qry_rf_indel = get_inframe_gap(qry_seq[q_i:], nucs_needed) q_shift += len(qry_rf_indel) - len(pre_qry_indel) elif q_shift > s_shift: nucs_needed = int((len(qry_rf_indel)/3)*3) + shift_diff pre_sbjct_indel = sbjct_rf_indel sbjct_rf_indel = get_inframe_gap(sbjct_seq[s_i:], nucs_needed) s_shift += len(sbjct_rf_indel) - len(pre_sbjct_indel) mut_name, aa_ref, aa_alt = name_indel_mutation(sbjct_seq, indel, sbjct_rf_indel, qry_rf_indel, codon_no, mut, sbjct_start - 1) if "Frameshift" in mut_name: mut_name = mut_name.split("-")[0] + "- Frame restored" mis_matches += [[mut, codon_no_indel, seq_pos, indel, mut_name, sbjct_rf_indel, qry_rf_indel, aa_ref, aa_alt]] # Check if the next mutation in the indels list is in the current codon # Find the number of individul gaps in the evaluated sequence no_of_indels = len(re.findall("\-\w", sbjct_rf_indel)) + len(re.findall("\-\w", qry_rf_indel)) if no_of_indels > 1: for j in range(indel_no, indel_no + no_of_indels - 1): try: indel_data = indels[j] except IndexError: sys.exit("indel_data list is out of range, bug!") mut = indel_data[0] codon_no_indel = indel_data[1] seq_pos = indel_data[2] + sbjct_start - 1 indel = indel_data[3] indel_no +=1 mis_matches += [[mut, codon_no_indel, seq_pos, indel, mut_name, sbjct_rf_indel, qry_rf_indel, aa_ref, aa_alt]] # Set codon number, and save nucleotides from out of frame mutations if mut == "del": codon_no += int((len(sbjct_rf_indel) - 3)/3) # If evaluated insert is only gaps codon_no should not increment elif sbjct_rf_indel.count("-") == len(sbjct_rf_indel): codon_no -= 1 # Check of point mutations else: mut = "sub" aa_ref = aa(sbjct_codon) aa_alt = aa(qry_codon) if aa_ref != aa_alt: # End search for mutation if a premature stop codon is found mut_name = "p." + aa_ref + str(codon_no) + aa_alt mis_matches += [[mut, codon_no, codon_no, aa_alt, mut_name, sbjct_codon, qry_codon, aa_ref, aa_alt]] # If a Premature stop codon occur report it an stop the loop try: if mis_matches[-1][-1] == "*": mut_name += " - Premature stop codon" mis_matches[-1][4] = mis_matches[-1][4].split("-")[0] + " - Premature stop codon" break except IndexError: pass # Sort mutations on position mis_matches = sorted(mis_matches, key = lambda x:x[1]) return mis_matches
This function takes two alligned sequence (subject and query), and the position on the subject where the alignment starts. The sequences are compared codon by codon. If a mis matches is found it is saved in 'mis_matches'. If a gap is found the function get_inframe_gap is used to find the indel sequence and keep the sequence in the correct reading frame. The function translate_indel is used to name indel mutations and translate the indels to amino acids The function returns a list of tuples containing all needed informations about the mutation in order to look it up in the database dict known mutation and the with the output files the the user.
entailment
def write_output(gene, gene_name, mis_matches, known_mutations, known_stop_codon, unknown_flag, GENES): """ This function takes a gene name a list of mis matches found betreewn subject and query of this gene, the dictionary of known mutation in the point finder database, and the flag telling weather the user wants unknown mutations to be reported. All mis matches are looked up in the known mutation dict to se if the mutation is known, and in this case what drug resistence it causes. The funtions returns a 3 strings that are used as output to the users. One string is only tab seperated and contains the mutations listed line by line. If the unknown flag is set to true it will contain both known and unknown mutations. The next string contains only known mutation and are given in in a format that is easy to convert to HTML. The last string is the HTML tab sting from the unknown mutations. """ RNA = False known_header = "Mutation\tNucleotide change\tAmino acid change\tResistance\tPMID\n" unknown_header = "Mutation\tNucleotide change\tAmino acid change\n" if gene in RNA_gene_list: RNA = True known_header = "Mutation\tNucleotide change\tResistance\tPMID\n" unknown_header = "Mutation\tNucleotide change\n" known_lst = [] unknown_lst = [] all_results_lst = [] output_mut = [] stop_codons = [] # Go through each mutation for i in range(len(mis_matches)): m_type = mis_matches[i][0] pos = mis_matches[i][1] # sort on pos? look_up_pos = mis_matches[i][2] look_up_mut = mis_matches[i][3] mut_name = mis_matches[i][4] nuc_ref = mis_matches[i][5] nuc_alt = mis_matches[i][6] ref = mis_matches[i][-2] alt = mis_matches[i][-1] # First index in list indicates if mutation is known output_mut += [[]] #output_mut[i] = [0] # Define output vaiables codon_change = nuc_ref + " -> " + nuc_alt aa_change = ref + " -> " + alt if RNA == True: aa_change = "RNA mutations" elif pos < 0: aa_change = "Promoter mutations" # Check if mutation is known gene_mut_name, resistence, pmid = look_up_known_muts(known_mutations, known_stop_codon, gene, look_up_pos, look_up_mut, m_type, gene_name, mut_name) gene_mut_name = gene_mut_name + " " + mut_name output_mut[i] = [gene_mut_name, codon_change, aa_change, resistence, pmid] # Add mutation to output strings for known mutations if resistence != "Unknown": if RNA == True: # don't include the amino acid change field for RNA mutations known_lst += ["\t".join(output_mut[i][:2]) + "\t" + "\t".join(output_mut[i][3:])] else: known_lst += ["\t".join(output_mut[i])] all_results_lst += ["\t".join(output_mut[i])] # Add mutation to output strings for unknown mutations else: if RNA == True: unknown_lst += ["\t".join(output_mut[i][:2])] else: unknown_lst += ["\t".join(output_mut[i][:3])] if unknown_flag == True: all_results_lst += ["\t".join(output_mut[i])] # Check that you do not print two equal lines (can happen it two indels occure in the same codon) if len(output_mut) > 1: if output_mut[i] == output_mut[i-1]: if resistence != "Unknown": known_lst = known_lst[:-1] all_results_lst = all_results_lst[:-1] else: unknown_lst = unknown_lst[:-1] if unknown_flag == True: all_results_lst = all_results_lst[:-1] if "Premature stop codon" in mut_name: sbjct_len = GENES[gene]['sbjct_len'] qry_len = pos * 3 prec_truckat = round(((float(sbjct_len) - qry_len )/ float(sbjct_len)) * 100, 2) perc = "%" stop_codons.append("Premature stop codon in %s, %.2f%s lost"%(gene, prec_truckat, perc)) # Creat final strings all_results = "\n".join(all_results_lst) total_known_str = "" total_unknown_str = "" # Check if there are only unknown mutations resistence_lst = [res for mut in output_mut for res in mut[3].split(",")] # Save known mutations unknown_no = resistence_lst.count("Unknown") if unknown_no < len(resistence_lst): total_known_str = known_header + "\n".join(known_lst) else: total_known_str = "No known mutations found in %s"%gene_name # Save unknown mutations if unknown_no > 0: total_unknown_str = unknown_header + "\n".join(unknown_lst) else: total_unknown_str = "No unknown mutations found in %s"%gene_name return all_results, total_known_str, total_unknown_str, resistence_lst + stop_codons
This function takes a gene name a list of mis matches found betreewn subject and query of this gene, the dictionary of known mutation in the point finder database, and the flag telling weather the user wants unknown mutations to be reported. All mis matches are looked up in the known mutation dict to se if the mutation is known, and in this case what drug resistence it causes. The funtions returns a 3 strings that are used as output to the users. One string is only tab seperated and contains the mutations listed line by line. If the unknown flag is set to true it will contain both known and unknown mutations. The next string contains only known mutation and are given in in a format that is easy to convert to HTML. The last string is the HTML tab sting from the unknown mutations.
entailment
def merge(self): """Try merging all the bravado_core models across all loaded APIs. If duplicates occur, use the same bravado-core model to represent each, so bravado-core won't treat them as different models when passing them from one PyMacaron client stub to an other or when returning them via the PyMacaron server stub. """ # The sole purpose of this method is to trick isinstance to return true # on model_values of the same kind but different apis/specs at: # https://github.com/Yelp/bravado-core/blob/4840a6e374611bb917226157b5948ee263913abc/bravado_core/marshal.py#L160 log.info("Merging models of apis " + ", ".join(apis.keys())) # model_name => (api_name, model_json_def, bravado_core.model.MODELNAME) models = {} # First pass: find duplicate and keep only one model of each (fail if # duplicates have same name but different definitions) for api_name, api in apis.items(): for model_name, model_def in api.api_spec.swagger_dict['definitions'].items(): if model_name in models: other_api_name, other_model_def, _ = models.get(model_name) log.debug("Model %s in %s is a duplicate of one in %s" % (model_name, api_name, other_api_name)) if ApiPool._cmp_models(model_def, other_model_def) != 0: raise MergeApisException("Cannot merge apis! Model %s exists in apis %s and %s but have different definitions:\n[%s]\n[%s]" % (model_name, api_name, other_api_name, pprint.pformat(model_def), pprint.pformat(other_model_def))) else: models[model_name] = (api_name, model_def, api.api_spec.definitions[model_name]) # Second pass: patch every models and replace with the one we decided # to keep log.debug("Patching api definitions to remove all duplicates") for api_name, api in apis.items(): for model_name in api.api_spec.definitions.keys(): _, _, model_class = models.get(model_name) api.api_spec.definitions[model_name] = model_class
Try merging all the bravado_core models across all loaded APIs. If duplicates occur, use the same bravado-core model to represent each, so bravado-core won't treat them as different models when passing them from one PyMacaron client stub to an other or when returning them via the PyMacaron server stub.
entailment
def _cmp_models(self, m1, m2): """Compare two models from different swagger APIs and tell if they are equal (return 0), or not (return != 0)""" # Don't alter m1/m2 by mistake m1 = copy.deepcopy(m1) m2 = copy.deepcopy(m2) # Remove keys added by bravado-core def _cleanup(d): """Remove all keys in the blacklist""" for k in ('x-model', 'x-persist', 'x-scope'): if k in d: del d[k] for v in list(d.values()): if isinstance(v, dict): _cleanup(v) _cleanup(m1) _cleanup(m2) # log.debug("model1:\n" + pprint.pformat(m1)) # log.debug("model2:\n" + pprint.pformat(m2)) return not m1 == m2
Compare two models from different swagger APIs and tell if they are equal (return 0), or not (return != 0)
entailment
def sync(self): """Sync this model with latest data on the saltant server. Note that in addition to returning the updated object, it also updates the existing object. Returns: :class:`saltant.models.base_task_type.BaseTaskType`: This task type instance after syncing. """ self = self.manager.get(id=self.id) return self
Sync this model with latest data on the saltant server. Note that in addition to returning the updated object, it also updates the existing object. Returns: :class:`saltant.models.base_task_type.BaseTaskType`: This task type instance after syncing.
entailment
def create( self, name, command_to_run, description="", environment_variables=None, required_arguments=None, required_arguments_default_values=None, extra_data_to_post=None, ): """Create a task type. Args: name (str): The name of the task. command_to_run (str): The command to run to execute the task. description (str, optional): The description of the task type. environment_variables (list, optional): The environment variables required on the host to execute the task. required_arguments (list, optional): The argument names for the task type. required_arguments_default_values (dict, optional): Default values for the tasks required arguments. extra_data_to_post (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. Returns: :class:`saltant.models.base_task_instance.BaseTaskType`: A task type model instance representing the task type just created. """ # Set None for optional list and dicts to proper datatypes if environment_variables is None: environment_variables = [] if required_arguments is None: required_arguments = [] if required_arguments_default_values is None: required_arguments_default_values = {} # Create the object request_url = self._client.base_api_url + self.list_url data_to_post = { "name": name, "description": description, "command_to_run": command_to_run, "environment_variables": json.dumps(environment_variables), "required_arguments": json.dumps(required_arguments), "required_arguments_default_values": json.dumps( required_arguments_default_values ), } # Add in extra data if any was passed in if extra_data_to_post is not None: data_to_post.update(extra_data_to_post) response = self._client.session.post(request_url, data=data_to_post) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_201_CREATED, ) # Return a model instance representing the task type return self.response_data_to_model_instance(response.json())
Create a task type. Args: name (str): The name of the task. command_to_run (str): The command to run to execute the task. description (str, optional): The description of the task type. environment_variables (list, optional): The environment variables required on the host to execute the task. required_arguments (list, optional): The argument names for the task type. required_arguments_default_values (dict, optional): Default values for the tasks required arguments. extra_data_to_post (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. Returns: :class:`saltant.models.base_task_instance.BaseTaskType`: A task type model instance representing the task type just created.
entailment
def put( self, id, name, description, command_to_run, environment_variables, required_arguments, required_arguments_default_values, extra_data_to_put=None, ): """Updates a task type on the saltant server. Args: id (int): The ID of the task type. name (str): The name of the task type. description (str): The description of the task type. command_to_run (str): The command to run to execute the task. environment_variables (list): The environment variables required on the host to execute the task. required_arguments (list): The argument names for the task type. required_arguments_default_values (dict): Default values for the tasks required arguments. extra_data_to_put (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. Returns: :class:`saltant.models.base_task_type.BaseTaskType`: A :class:`saltant.models.base_task_type.BaseTaskType` subclass instance representing the task type just updated. """ # Update the object request_url = self._client.base_api_url + self.detail_url.format(id=id) data_to_put = { "name": name, "description": description, "command_to_run": command_to_run, "environment_variables": json.dumps(environment_variables), "required_arguments": json.dumps(required_arguments), "required_arguments_default_values": json.dumps( required_arguments_default_values ), } # Add in extra data if any was passed in if extra_data_to_put is not None: data_to_put.update(extra_data_to_put) response = self._client.session.put(request_url, data=data_to_put) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_200_OK, ) # Return a model instance representing the task instance return self.response_data_to_model_instance(response.json())
Updates a task type on the saltant server. Args: id (int): The ID of the task type. name (str): The name of the task type. description (str): The description of the task type. command_to_run (str): The command to run to execute the task. environment_variables (list): The environment variables required on the host to execute the task. required_arguments (list): The argument names for the task type. required_arguments_default_values (dict): Default values for the tasks required arguments. extra_data_to_put (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. Returns: :class:`saltant.models.base_task_type.BaseTaskType`: A :class:`saltant.models.base_task_type.BaseTaskType` subclass instance representing the task type just updated.
entailment
def response_data_to_model_instance(self, response_data): """Convert response data to a task type model. Args: response_data (dict): The data from the request's response. Returns: :class:`saltant.models.base_task_type.BaseTaskType`: A model instance representing the task type from the reponse data. """ # Coerce datetime strings into datetime objects response_data["datetime_created"] = dateutil.parser.parse( response_data["datetime_created"] ) # Instantiate a model for the task instance return super( BaseTaskTypeManager, self ).response_data_to_model_instance(response_data)
Convert response data to a task type model. Args: response_data (dict): The data from the request's response. Returns: :class:`saltant.models.base_task_type.BaseTaskType`: A model instance representing the task type from the reponse data.
entailment
def regression(): """ Run regression testing - lint and then run all tests. """ # HACK: Start using hitchbuildpy to get around this. Command("touch", DIR.project.joinpath("pathquery", "__init__.py").abspath()).run() storybook = _storybook({}).only_uninherited() #storybook.with_params(**{"python version": "2.7.10"})\ #.ordered_by_name().play() Command("touch", DIR.project.joinpath("pathquery", "__init__.py").abspath()).run() storybook.with_params(**{"python version": "3.5.0"}).ordered_by_name().play() lint()
Run regression testing - lint and then run all tests.
entailment
def deploy(version): """ Deploy to pypi as specified version. """ NAME = "pathquery" git = Command("git").in_dir(DIR.project) version_file = DIR.project.joinpath("VERSION") old_version = version_file.bytes().decode('utf8') if version_file.bytes().decode("utf8") != version: DIR.project.joinpath("VERSION").write_text(version) git("add", "VERSION").run() git("commit", "-m", "RELEASE: Version {0} -> {1}".format( old_version, version )).run() git("push").run() git("tag", "-a", version, "-m", "Version {0}".format(version)).run() git("push", "origin", version).run() else: git("push").run() # Set __version__ variable in __init__.py, build sdist and put it back initpy = DIR.project.joinpath(NAME, "__init__.py") original_initpy_contents = initpy.bytes().decode('utf8') initpy.write_text( original_initpy_contents.replace("DEVELOPMENT_VERSION", version) ) python("setup.py", "sdist").in_dir(DIR.project).run() initpy.write_text(original_initpy_contents) # Upload to pypi python( "-m", "twine", "upload", "dist/{0}-{1}.tar.gz".format(NAME, version) ).in_dir(DIR.project).run()
Deploy to pypi as specified version.
entailment
def hvenvup(package, directory): """ Install a new version of a package in the hitch venv. """ pip = Command(DIR.gen.joinpath("hvenv", "bin", "pip")) pip("uninstall", package, "-y").run() pip("install", DIR.project.joinpath(directory).abspath()).run()
Install a new version of a package in the hitch venv.
entailment
def set_up(self): """Set up your applications and the test environment.""" self.path.state = self.path.gen.joinpath("state") if self.path.state.exists(): self.path.state.rmtree(ignore_errors=True) self.path.state.mkdir() if self.path.gen.joinpath("q").exists(): self.path.gen.joinpath("q").remove() for filename, text in self.given.get("files", {}).items(): filepath = self.path.state.joinpath(filename) if not filepath.dirname().exists(): filepath.dirname().makedirs() filepath.write_text(text) for filename, linkto in self.given.get("symlinks", {}).items(): filepath = self.path.state.joinpath(filename) linktopath = self.path.state.joinpath(linkto) linktopath.symlink(filepath) for filename, permission in self.given.get("permissions", {}).items(): filepath = self.path.state.joinpath(filename) filepath.chmod(int(permission, 8)) pylibrary = hitchbuildpy.PyLibrary( name="py3.5.0", base_python=hitchbuildpy.PyenvBuild("3.5.0").with_build_path(self.path.share), module_name="pathquery", library_src=self.path.project, ).with_build_path(self.path.gen) pylibrary.ensure_built() self.python = pylibrary.bin.python self.example_py_code = ExamplePythonCode(self.python, self.path.state)\ .with_code(self.given.get('code', ''))\ .with_setup_code(self.given.get('setup', ''))\ .with_terminal_size(160, 100)\ .with_env(TMPDIR=self.path.gen)\ .with_long_strings( yaml_snippet_1=self.given.get('yaml_snippet_1'), yaml_snippet=self.given.get('yaml_snippet'), yaml_snippet_2=self.given.get('yaml_snippet_2'), modified_yaml_snippet=self.given.get('modified_yaml_snippet'), )
Set up your applications and the test environment.
entailment
def is_valid(self): """ Validates single instance. Returns boolean value and store errors in self.errors """ self.errors = [] for field in self.get_all_field_names_declared_by_user(): getattr(type(self), field).is_valid(self, type(self), field) field_errors = getattr(type(self), field).errors(self) self.errors.extend(field_errors) return len(self.errors) == 0
Validates single instance. Returns boolean value and store errors in self.errors
entailment
def main(self): """ Run the analyses using the inputted values for forward and reverse read length. However, if not all strains pass the quality thresholds, continue to periodically run the analyses on these incomplete strains until either all strains are complete, or the sequencing run is finished """ logging.info('Starting {} analysis pipeline'.format(self.analysistype)) self.createobjects() # Run the genesipping analyses self.methods() # Determine if the analyses are complete self.complete() self.additionalsipping() # Update the report object self.reports = Reports(self) # Once all the analyses are complete, create reports for each sample Reports.methodreporter(self.reports) # Print the metadata printer = MetadataPrinter(self) printer.printmetadata()
Run the analyses using the inputted values for forward and reverse read length. However, if not all strains pass the quality thresholds, continue to periodically run the analyses on these incomplete strains until either all strains are complete, or the sequencing run is finished
entailment