code
stringlengths
1
46.1k
label
class label
1.18k classes
domain_label
class label
21 classes
index
stringlengths
4
5
object FindCommonDirectoryPath extends App { def commonPath(paths: List[String]): String = { def common(a: List[String], b: List[String]): List[String] = (a, b) match { case (a :: as, b :: bs) if a equals b => a :: common(as, bs) case _ => Nil } if (paths.length < 2) paths.headOption.getOrElse("") else paths.map(_.split("/").toList).reduceLeft(common).mkString("/") } val test = List( "/home/user1/tmp/coverage/test", "/home/user1/tmp/covert/operator", "/home/user1/tmp/coven/members" ) println(commonPath(test)) }
843Find common directory path
16scala
1i7pf
null
857Farey sequence
1lua
zujty
inFile = io.open("input.txt", "r") data = inFile:read("*all")
850File input/output
1lua
i9kot
from fractions import Fraction def nextu(a): n = len(a) a.append(1) for i in range(n - 1, 0, -1): a[i] = i * a[i] + a[i - 1] return a def nextv(a): n = len(a) - 1 b = [(1 - n) * x for x in a] b.append(1) for i in range(n): b[i + 1] += a[i] return b def sumpol(n): u = [0, 1] v = [[1], [1, 1]] yield [Fraction(0), Fraction(1)] for i in range(1, n): v.append(nextv(v[-1])) t = [0] * (i + 2) p = 1 for j, r in enumerate(u): r = Fraction(r, j + 1) for k, s in enumerate(v[j + 1]): t[k] += r * s yield t u = nextu(u) def polstr(a): s = q = False n = len(a) - 1 for i, x in enumerate(reversed(a)): i = n - i if i < 2: m = if i == 1 else else: m = % i c = str(abs(x)) if i > 0: if c == : c = else: m = + m if x != 0: if q: t = if x > 0 else s += % (t, c, m) else: t = if x > 0 else s = % (t, c, m) q = True if q: return s else: return for i, p in enumerate(sumpol(10)): print(i, , polstr(p))
852Faulhaber's formula
3python
vbo29
import Foundation func getPrefix(_ text:[String]) -> String? { var common:String = text[0] for i in text { common = i.commonPrefix(with: common) } return common } var test = ["/home/user1/tmp/coverage/test", "/home/user1/tmp/covert/operator", "/home/user1/tmp/coven/members"] var output:String = getPrefix(test)! print(output)
843Find common directory path
17swift
jqu74
>>> import math >>> from collections import Counter >>> >>> def entropy(s): ... p, lns = Counter(s), float(len(s)) ... return -sum( count/lns * math.log(count/lns, 2) for count in p.values()) ... >>> >>> def fibword(nmax=37): ... fwords = ['1', '0'] ... print('%-3s%10s%-10s%s'% tuple('N Length Entropy Fibword'.split())) ... def pr(n, fwords): ... while len(fwords) < n: ... fwords += [''.join(fwords[-2:][::-1])] ... v = fwords[n-1] ... print('%3i%10i%10.7g%s'% (n, len(v), entropy(v), v if len(v) < 20 else '<too long>')) ... for n in range(1, nmax+1): pr(n, fwords) ... >>> fibword() N Length Entropy Fibword 1 1 -0 1 2 1 -0 0 3 2 1 01 4 3 0.9182958 010 5 5 0.9709506 01001 6 8 0.954434 01001010 7 13 0.9612366 0100101001001 8 21 0.9587119 <too long> 9 34 0.9596869 <too long> 10 55 0.959316 <too long> 11 89 0.9594579 <too long> 12 144 0.9594038 <too long> 13 233 0.9594244 <too long> 14 377 0.9594165 <too long> 15 610 0.9594196 <too long> 16 987 0.9594184 <too long> 17 1597 0.9594188 <too long> 18 2584 0.9594187 <too long> 19 4181 0.9594187 <too long> 20 6765 0.9594187 <too long> 21 10946 0.9594187 <too long> 22 17711 0.9594187 <too long> 23 28657 0.9594187 <too long> 24 46368 0.9594187 <too long> 25 75025 0.9594187 <too long> 26 121393 0.9594187 <too long> 27 196418 0.9594187 <too long> 28 317811 0.9594187 <too long> 29 514229 0.9594187 <too long> 30 832040 0.9594187 <too long> 31 1346269 0.9594187 <too long> 32 2178309 0.9594187 <too long> 33 3524578 0.9594187 <too long> 34 5702887 0.9594187 <too long> 35 9227465 0.9594187 <too long> 36 14930352 0.9594187 <too long> 37 24157817 0.9594187 <too long> >>>
851Fibonacci word
3python
upnvd
'''Faulhaber's triangle''' from itertools import accumulate, chain, count, islice from fractions import Fraction def faulhaberTriangle(m): '''List of rows of Faulhaber fractions.''' def go(rs, n): def f(x, y): return Fraction(n, x) * y xs = list(map(f, islice(count(2), m), rs)) return [Fraction(1 - sum(xs), 1)] + xs return list(accumulate( [[]] + list(islice(count(0), 1 + m)), go ))[1:] def faulhaberSum(p, n): '''Sum of the p-th powers of the first n positive integers. ''' def go(x, y): return y * (n ** x) return sum( map(go, count(1), faulhaberTriangle(p)[-1]) ) def main(): '''Tests''' fs = faulhaberTriangle(9) print( fTable(__doc__ + ':\n')(str)( compose(concat)( fmap(showRatio(3)(3)) ) )( index(fs) )(range(0, len(fs))) ) print('') print( faulhaberSum(17, 1000) ) def fTable(s): '''Heading -> x display function -> fx display function -> f -> xs -> tabular string. ''' def gox(xShow): def gofx(fxShow): def gof(f): def goxs(xs): ys = [xShow(x) for x in xs] w = max(map(len, ys)) def arrowed(x, y): return y.rjust(w, ' ') + ' -> ' + ( fxShow(f(x)) ) return s + '\n' + '\n'.join( map(arrowed, xs, ys) ) return goxs return gof return gofx return gox def compose(g): '''Right to left function composition.''' return lambda f: lambda x: g(f(x)) def concat(xs): '''The concatenation of all the elements in a list or iterable. ''' def f(ys): zs = list(chain(*ys)) return ''.join(zs) if isinstance(ys[0], str) else zs return ( f(xs) if isinstance(xs, list) else ( chain.from_iterable(xs) ) ) if xs else [] def fmap(f): '''fmap over a list. f lifted to a function over a list. ''' def go(xs): return list(map(f, xs)) return go def index(xs): '''Item at given (zero-based) index.''' return lambda n: None if 0 > n else ( xs[n] if ( hasattr(xs, ) ) else next(islice(xs, n, None)) ) def showRatio(m): '''Left and right aligned string representation of the ratio r. ''' def go(n): def f(r): d = r.denominator return str(r.numerator).rjust(m, ' ') + ( ('/' + str(d).ljust(n, ' ')) if 1 != d else ( ' ' * (1 + n) ) ) return f return go if __name__ == '__main__': main()
855Faulhaber's triangle
3python
i9gof
entropy <- function(s) { if (length(s) > 1) return(sapply(s, entropy)) freq <- prop.table(table(strsplit(s, '')[1])) ret <- -sum(freq * log(freq, base=2)) return(ret) } fibwords <- function(n) { if (n == 1) fibwords <- "1" else fibwords <- c("1", "0") if (n > 2) { for (i in 3:n) fibwords <- c(fibwords, paste(fibwords[i-1L], fibwords[i-2L], sep="")) } str <- if (n > 7) replicate(n-7, "too long") else NULL fibwords.print <- c(fibwords[1:min(n, 7)], str) ret <- data.frame(Length=nchar(fibwords), Entropy=entropy(fibwords), Fibwords=fibwords.print) rownames(ret) <- NULL return(ret) }
851Fibonacci word
13r
cj095
package main import ( "fmt" "math" "math/cmplx" ) func ditfft2(x []float64, y []complex128, n, s int) { if n == 1 { y[0] = complex(x[0], 0) return } ditfft2(x, y, n/2, 2*s) ditfft2(x[s:], y[n/2:], n/2, 2*s) for k := 0; k < n/2; k++ { tf := cmplx.Rect(1, -2*math.Pi*float64(k)/float64(n)) * y[k+n/2] y[k], y[k+n/2] = y[k]+tf, y[k]-tf } } func main() { x := []float64{1, 1, 1, 1, 0, 0, 0, 0} y := make([]complex128, len(x)) ditfft2(x, y, len(x), 1) for _, c := range y { fmt.Printf("%8.4f\n", c) } }
858Fast Fourier transform
0go
51qul
use warnings; use strict; use Math::BigRat; use ntheory qw/euler_phi vecsum/; sub farey { my $N = shift; my @f; my($m0,$n0, $m1,$n1) = (0, 1, 1, $N); push @f, Math::BigRat->new("$m0/$n0"); push @f, Math::BigRat->new("$m1/$n1"); while ($f[-1] < 1) { my $m = int( ($n0 + $N) / $n1) * $m1 - $m0; my $n = int( ($n0 + $N) / $n1) * $n1 - $n0; ($m0,$n0, $m1,$n1) = ($m1,$n1, $m,$n); push @f, Math::BigRat->new("$m/$n"); } @f; } sub farey_count { 1 + vecsum(euler_phi(1, shift)); } for (1 .. 11) { my @f = map { join "/", $_->parts } farey($_); print "F$_: [@f]\n"; } for (1 .. 10, 100000) { print "F${_}00: ", farey_count(100*$_), " members\n"; }
857Farey sequence
2perl
k0fhc
def binomial(n,k) if n < 0 or k < 0 or n < k then return -1 end if n == 0 or k == 0 then return 1 end num = 1 for i in k+1 .. n do num = num * i end denom = 1 for i in 2 .. n-k do denom = denom * i end return num / denom end def bernoulli(n) if n < 0 then raise end a = Array.new(16) for m in 0 .. n do a[m] = Rational(1, m + 1) for j in m.downto(1) do a[j-1] = (a[j-1] - a[j]) * Rational(j) end end if n!= 1 then return a[0] end return -a[0] end def faulhaber(p) print( % [p]) q = Rational(1, p + 1) sign = -1 for j in 0 .. p do sign = -1 * sign coeff = q * Rational(sign) * Rational(binomial(p+1, j)) * bernoulli(j) if coeff == 0 then next end if j == 0 then if coeff!= 1 then if coeff == -1 then print else print coeff end end else if coeff == 1 then print elsif coeff == -1 then print elsif 0 < coeff then print print coeff else print print -coeff end end pwr = p + 1 - j if pwr > 1 then print % [pwr] else print end end print end def main for i in 0 .. 9 do faulhaber(i) end end main()
852Faulhaber's formula
14ruby
51nuj
import Data.Complex fft [] = [] fft [x] = [x] fft xs = zipWith (+) ys ts ++ zipWith (-) ys ts where n = length xs ys = fft evens zs = fft odds (evens, odds) = split xs split [] = ([], []) split [x] = ([x], []) split (x:y:xs) = (x:xt, y:yt) where (xt, yt) = split xs ts = zipWith (\z k -> exp' k n * z) zs [0..] exp' k n = cis $ -2 * pi * (fromIntegral k) / (fromIntegral n) main = mapM_ print $ fft [1,1,1,1,0,0,0,0]
858Fast Fourier transform
8haskell
xtmw4
package main import ( "fmt" "math" )
860Factors of a Mersenne number
0go
4ax52
class Frac attr_accessor:num attr_accessor:denom def initialize(n,d) if d == 0 then raise ArgumentError.new('d cannot be zero') end nn = n dd = d if nn == 0 then dd = 1 elsif dd < 0 then nn = -nn dd = -dd end g = nn.abs.gcd(dd.abs) if g > 1 then nn = nn / g dd = dd / g end @num = nn @denom = dd end def to_s if self.denom == 1 then return self.num.to_s else return % [self.num, self.denom] end end def -@ return Frac.new(-self.num, self.denom) end def +(rhs) return Frac.new(self.num * rhs.denom + self.denom * rhs.num, rhs.denom * self.denom) end def -(rhs) return Frac.new(self.num * rhs.denom - self.denom * rhs.num, rhs.denom * self.denom) end def *(rhs) return Frac.new(self.num * rhs.num, rhs.denom * self.denom) end end FRAC_ZERO = Frac.new(0, 1) FRAC_ONE = Frac.new(1, 1) def bernoulli(n) if n < 0 then raise ArgumentError.new('n cannot be negative') end a = Array.new(n + 1) a[0] = FRAC_ZERO for m in 0 .. n do a[m] = Frac.new(1, m + 1) m.downto(1) do |j| a[j - 1] = (a[j - 1] - a[j]) * Frac.new(j, 1) end end if n!= 1 then return a[0] end return -a[0] end def binomial(n, k) if n < 0 then raise ArgumentError.new('n cannot be negative') end if k < 0 then raise ArgumentError.new('k cannot be negative') end if n < k then raise ArgumentError.new('n cannot be less than k') end if n == 0 or k == 0 then return 1 end num = 1 for i in k + 1 .. n do num = num * i end den = 1 for i in 2 .. n - k do den = den * i end return num / den end def faulhaberTriangle(p) coeffs = Array.new(p + 1) coeffs[0] = FRAC_ZERO q = Frac.new(1, p + 1) sign = -1 for j in 0 .. p do sign = -sign coeffs[p - j] = q * Frac.new(sign, 1) * Frac.new(binomial(p + 1, j), 1) * bernoulli(j) end return coeffs end def main for i in 0 .. 9 do coeffs = faulhaberTriangle(i) coeffs.each do |coeff| print % [coeff] end puts end end main()
855Faulhaber's triangle
14ruby
dl7ns
import scala.math.Ordering.Implicits.infixOrderingOps abstract class Frac extends Comparable[Frac] { val num: BigInt val denom: BigInt def unary_-(): Frac = { Frac(-num, denom) } def +(rhs: Frac): Frac = { Frac( num * rhs.denom + rhs.num * denom, denom * rhs.denom ) } def -(rhs: Frac): Frac = { Frac( num * rhs.denom - rhs.num * denom, denom * rhs.denom ) } def *(rhs: Frac): Frac = { Frac(num * rhs.num, denom * rhs.denom) } override def compareTo(rhs: Frac): Int = { val ln = num * rhs.denom val rn = rhs.num * denom ln.compare(rn) } def canEqual(other: Any): Boolean = other.isInstanceOf[Frac] override def equals(other: Any): Boolean = other match { case that: Frac => (that canEqual this) && num == that.num && denom == that.denom case _ => false } override def hashCode(): Int = { val state = Seq(num, denom) state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b) } override def toString: String = { if (denom == 1) { return s"$num" } s"$num/$denom" } } object Frac { val ZERO: Frac = Frac(0) val ONE: Frac = Frac(1) def apply(n: BigInt): Frac = new Frac { val num: BigInt = n val denom: BigInt = 1 } def apply(n: BigInt, d: BigInt): Frac = { if (d == 0) { throw new IllegalArgumentException("Parameter d may not be zero.") } var nn = n var dd = d if (nn == 0) { dd = 1 } else if (dd < 0) { nn = -nn dd = -dd } val g = nn.gcd(dd) if (g > 0) { nn /= g dd /= g } new Frac { val num: BigInt = nn val denom: BigInt = dd } } } object Faulhaber { def bernoulli(n: Int): Frac = { if (n < 0) { throw new IllegalArgumentException("n may not be negative or zero") } val a = Array.fill(n + 1)(Frac.ZERO) for (m <- 0 to n) { a(m) = Frac(1, m + 1) for (j <- m to 1 by -1) { a(j - 1) = (a(j - 1) - a(j)) * Frac(j) } }
852Faulhaber's formula
16scala
7xzr9
def entropy(s) counts = Hash.new(0.0) s.each_char { |c| counts[c] += 1 } leng = s.length counts.values.reduce(0) do |entropy, count| freq = count / leng entropy - freq * Math.log2(freq) end end n_max = 37 words = ['1', '0'] for n in words.length ... n_max words << words[-1] + words[-2] end puts '%3s%9s%15s %s' % %w[N Length Entropy Fibword] words.each.with_index(1) do |word, i| puts '%3i%9i%15.12f %s' % [i, word.length, entropy(word), word.length<60? word: '<too long>'] end
851Fibonacci word
14ruby
4af5p
import Data.List import HFM.Primes (isPrime) import Control.Monad import Control.Arrow int2bin = reverse.unfoldr(\x -> if x==0 then Nothing else Just ((uncurry.flip$(,))$divMod x 2)) trialfac m = take 1. dropWhile ((/=1).(\q -> foldl (((`mod` q).).pm) 1 bs)) $ qs where qs = filter (liftM2 (&&) (liftM2 (||) (==1) (==7) .(`mod`8)) isPrime ). map (succ.(2*m*)). enumFromTo 1 $ m `div` 2 bs = int2bin m pm n b = 2^b*n*n
860Factors of a Mersenne number
8haskell
qzyx9
import java.math.MathContext import scala.collection.mutable abstract class Frac extends Comparable[Frac] { val num: BigInt val denom: BigInt def unary_-(): Frac = { Frac(-num, denom) } def +(rhs: Frac): Frac = { Frac( num * rhs.denom + rhs.num * denom, denom * rhs.denom ) } def -(rhs: Frac): Frac = { Frac( num * rhs.denom - rhs.num * denom, denom * rhs.denom ) } def *(rhs: Frac): Frac = { Frac(num * rhs.num, denom * rhs.denom) } override def compareTo(rhs: Frac): Int = { val ln = num * rhs.denom val rn = rhs.num * denom ln.compare(rn) } def canEqual(other: Any): Boolean = other.isInstanceOf[Frac] override def equals(other: Any): Boolean = other match { case that: Frac => (that canEqual this) && num == that.num && denom == that.denom case _ => false } override def hashCode(): Int = { val state = Seq(num, denom) state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b) } override def toString: String = { if (denom == 1) { return s"$num" } s"$num/$denom" } } object Frac { val ZERO: Frac = Frac(0) val ONE: Frac = Frac(1) def apply(n: BigInt): Frac = new Frac { val num: BigInt = n val denom: BigInt = 1 } def apply(n: BigInt, d: BigInt): Frac = { if (d == 0) { throw new IllegalArgumentException("Parameter d may not be zero.") } var nn = n var dd = d if (nn == 0) { dd = 1 } else if (dd < 0) { nn = -nn dd = -dd } val g = nn.gcd(dd) if (g > 0) { nn /= g dd /= g } new Frac { val num: BigInt = nn val denom: BigInt = dd } } } object Faulhaber { def bernoulli(n: Int): Frac = { if (n < 0) { throw new IllegalArgumentException("n may not be negative or zero") } val a = Array.fill(n + 1)(Frac.ZERO) for (m <- 0 to n) { a(m) = Frac(1, m + 1) for (j <- m to 1 by -1) { a(j - 1) = (a(j - 1) - a(j)) * Frac(j) } }
855Faulhaber's triangle
16scala
35bzy
struct Fib<T> { curr: T, next: T, } impl<T> Fib<T> { fn new(curr: T, next: T) -> Self { Fib { curr: curr, next: next, } } } impl Iterator for Fib<String> { type Item = String; fn next(&mut self) -> Option<Self::Item> { let ret = self.curr.clone(); self.curr = self.next.clone(); self.next = format!("{}{}", ret, self.next); Some(ret) } } fn get_entropy(s: &[u8]) -> f64 { let mut entropy = 0.0; let mut histogram = [0.0; 256]; for i in 0..s.len() { histogram.get_mut(s[i] as usize).map(|v| *v += 1.0); } for i in 0..256 { if histogram[i] > 0.0 { let ratio = histogram[i] / s.len() as f64; entropy -= ratio * ratio.log2(); } } entropy } fn main() { let f = Fib::new("1".to_string(), "0".to_string()); println!("{:10} {:10} {:10} {:60}", "N", "Length", "Entropy", "Word"); for (i, s) in f.take(37).enumerate() { let word = if s.len() > 60 {"Too long"} else {&*s}; println!("{:10} {:10} {:.10} {:60}", i + 1, s.len(), get_entropy(&s.bytes().collect::<Vec<_>>()), word); } }
851Fibonacci word
15rust
get4o
null
851Fibonacci word
16scala
jq67i
public class FizzBuzz { public static void main(String[] args) { for (int number = 1; number <= 100; number++) { if (number % 15 == 0) { System.out.println("FizzBuzz"); } else if (number % 3 == 0) { System.out.println("Fizz"); } else if (number % 5 == 0) { System.out.println("Buzz"); } else { System.out.println(number); } } } }
835FizzBuzz
9java
9j2mu
import static java.lang.Math.*; public class FastFourierTransform { public static int bitReverse(int n, int bits) { int reversedN = n; int count = bits - 1; n >>= 1; while (n > 0) { reversedN = (reversedN << 1) | (n & 1); count--; n >>= 1; } return ((reversedN << count) & ((1 << bits) - 1)); } static void fft(Complex[] buffer) { int bits = (int) (log(buffer.length) / log(2)); for (int j = 1; j < buffer.length / 2; j++) { int swapPos = bitReverse(j, bits); Complex temp = buffer[j]; buffer[j] = buffer[swapPos]; buffer[swapPos] = temp; } for (int N = 2; N <= buffer.length; N <<= 1) { for (int i = 0; i < buffer.length; i += N) { for (int k = 0; k < N / 2; k++) { int evenIndex = i + k; int oddIndex = i + k + (N / 2); Complex even = buffer[evenIndex]; Complex odd = buffer[oddIndex]; double term = (-2 * PI * k) / (double) N; Complex exp = (new Complex(cos(term), sin(term)).mult(odd)); buffer[evenIndex] = even.add(exp); buffer[oddIndex] = even.sub(exp); } } } } public static void main(String[] args) { double[] input = {1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0}; Complex[] cinput = new Complex[input.length]; for (int i = 0; i < input.length; i++) cinput[i] = new Complex(input[i], 0.0); fft(cinput); System.out.println("Results:"); for (Complex c : cinput) { System.out.println(c); } } } class Complex { public final double re; public final double im; public Complex() { this(0, 0); } public Complex(double r, double i) { re = r; im = i; } public Complex add(Complex b) { return new Complex(this.re + b.re, this.im + b.im); } public Complex sub(Complex b) { return new Complex(this.re - b.re, this.im - b.im); } public Complex mult(Complex b) { return new Complex(this.re * b.re - this.im * b.im, this.re * b.im + this.im * b.re); } @Override public String toString() { return String.format("(%f,%f)", re, im); } }
858Fast Fourier transform
9java
b8fk3
import java.math.BigInteger; class MersenneFactorCheck { private final static BigInteger TWO = BigInteger.valueOf(2); public static boolean isPrime(long n) { if (n == 2) return true; if ((n < 2) || ((n & 1) == 0)) return false; long maxFactor = (long)Math.sqrt((double)n); for (long possibleFactor = 3; possibleFactor <= maxFactor; possibleFactor += 2) if ((n % possibleFactor) == 0) return false; return true; } public static BigInteger findFactorMersenneNumber(int primeP) { if (primeP <= 0) throw new IllegalArgumentException(); BigInteger bigP = BigInteger.valueOf(primeP); BigInteger m = BigInteger.ONE.shiftLeft(primeP).subtract(BigInteger.ONE);
860Factors of a Mersenne number
9java
podb3
from fractions import Fraction class Fr(Fraction): def __repr__(self): return '(%s/%s)'% (self.numerator, self.denominator) def farey(n, length=False): if not length: return [Fr(0, 1)] + sorted({Fr(m, k) for k in range(1, n+1) for m in range(1, k+1)}) else: return (n*(n+3)) if __name__ == '__main__': print('Farey sequence for order 1 through 11 (inclusive):') for n in range(1, 12): print(farey(n)) print('Number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds:') print([farey(i, length=True) for i in range(100, 1001, 100)])
857Farey sequence
3python
b8tkr
package main import "fmt" func g(i []int, c chan<- int) { var sum int b := append([]int(nil), i...)
859Fibonacci n-step number sequences
0go
vbe2m
package main import ( "fmt" "math/rand" ) func main() { a := rand.Perm(20) fmt.Println(a)
853Filter
0go
omr8q
var fizzBuzz = function () { var i, output; for (i = 1; i < 101; i += 1) { output = ''; if (!(i % 3)) { output += 'Fizz'; } if (!(i % 5)) { output += 'Buzz'; } console.log(output || i);
835FizzBuzz
10javascript
u1gvb
function icfft(amplitudes) { var N = amplitudes.length; var iN = 1 / N;
858Fast Fourier transform
10javascript
wfye2
function mersenne_factor(p){ var limit, k, q limit = Math.sqrt(Math.pow(2,p) - 1) k = 1 while ((2*k*p - 1) < limit){ q = 2*k*p + 1 if (isPrime(q) && (q % 8 == 1 || q % 8 == 7) && trial_factor(2,p,q)){ return q
860Factors of a Mersenne number
10javascript
xt6w9
farey <- function(n, length_only = FALSE) { a <- 0 b <- 1 c <- 1 d <- n if (!length_only) cat(a, "/", b, sep = "") count <- 1 while (c <= n) { count <- count + 1 k <- ((n + b) %/% d) next_c <- k * c - a next_d <- k * d - b a <- c b <- d c <- next_c d <- next_d if (!length_only) cat(" ", a, "/", b, sep = "") } if (length_only) cat(count, "items") cat("\n") } for (i in 1:11) { cat(i, ": ", sep = "") farey(i) } for (i in 100 * 1:10) { cat(i, ": ", sep = "") farey(i, length_only = TRUE) }
857Farey sequence
13r
7xiry
def fib = { List seed, int k=10 -> assert seed: "The seed list must be non-null and non-empty" assert seed.every { it instanceof Number }: "Every member of the seed must be a number" def n = seed.size() assert n > 1: "The seed must contain at least two elements" List result = [] + seed if (k < n) { result[0..k] } else { (n..k).inject(result) { res, kk -> res << res[-n..-1].sum() } } }
859Fibonacci n-step number sequences
7groovy
mrky5
def evens = [1, 2, 3, 4, 5].findAll{it % 2 == 0}
853Filter
7groovy
xtvwl
import Foundation struct Fib: Sequence, IteratorProtocol { private var cur: String private var nex: String init(cur: String, nex: String) { self.cur = cur self.nex = nex } mutating func next() -> String? { let ret = cur cur = nex nex = "\(ret)\(nex)" return ret } } func getEntropy(_ s: [Int]) -> Double { var entropy = 0.0 var hist = Array(repeating: 0.0, count: 256) for i in 0..<s.count { hist[s[i]] += 1 } for i in 0..<256 where hist[i] > 0 { let rat = hist[i] / Double(s.count) entropy -= rat * log2(rat) } return entropy } for (i, str) in Fib(cur: "1", nex: "0").prefix(37).enumerated() { let ent = getEntropy(str.map({ Int($0.asciiValue!) })) print("i: \(i) len: \(str.count) entropy: \(ent)") }
851Fibonacci word
17swift
51du8
null
860Factors of a Mersenne number
11kotlin
7x0r4
import Data.List (tails) import Control.Monad (zipWithM_) fiblike :: [Integer] -> [Integer] fiblike st = xs where xs = st ++ map (sum . take n) (tails xs) n = length st nstep :: Int -> [Integer] nstep n = fiblike $ take n $ 1: iterate (2*) 1 main :: IO () main = do print $ take 10 $ fiblike [1,1] print $ take 10 $ fiblike [2,1] zipWithM_ (\n name -> do putStr (name ++ "nacci -> ") print $ take 15 $ nstep n) [2..] (words "fibo tribo tetra penta hexa hepta octo nona deca")
859Fibonacci n-step number sequences
8haskell
ed3ai
ary = [1..10] evens = [x | x <- ary, even x]
853Filter
8haskell
2k0ll
open my $fh_in, '<', 'input.txt' or die "could not open <input.txt> for reading: $!"; open my $fh_out, '>', 'output.txt' or die "could not open <output.txt> for writing: $!"; binmode $fh_out; print $fh_out $_ while <$fh_in>; close $fh_in; close $fh_out;
850File input/output
2perl
gez4e
def farey(n, length=false) if length (n*(n+3))/2 - (2..n).sum{|k| farey(n/k, true)} else (1..n).each_with_object([]){|k,a|(0..k).each{|m|a << Rational(m,k)}}.uniq.sort end end puts 'Farey sequence for order 1 through 11 (inclusive):' for n in 1..11 puts + farey(n).join() end puts 'Number of fractions in the Farey sequence:' for i in (100..1000).step(100) puts % [i, farey(i, true)] end
857Farey sequence
14ruby
1i3pw
<?php if (!$in = fopen('input.txt', 'r')) { die('Could not open input file.'); } if (!$out = fopen('output.txt', 'w')) { die('Could not open output file.'); } while (!feof($in)) { $data = fread($in, 512); fwrite($out, $data); } fclose($out); fclose($in); ?>
850File input/output
12php
ncbig
import java.lang.Math.* class Complex(val re: Double, val im: Double) { operator infix fun plus(x: Complex) = Complex(re + x.re, im + x.im) operator infix fun minus(x: Complex) = Complex(re - x.re, im - x.im) operator infix fun times(x: Double) = Complex(re * x, im * x) operator infix fun times(x: Complex) = Complex(re * x.re - im * x.im, re * x.im + im * x.re) operator infix fun div(x: Double) = Complex(re / x, im / x) val exp: Complex by lazy { Complex(cos(im), sin(im)) * (cosh(re) + sinh(re)) } override fun toString() = when { b == "0.000" -> a a == "0.000" -> b + 'i' im > 0 -> a + " + " + b + 'i' else -> a + " - " + b + 'i' } private val a = "%1.3f".format(re) private val b = "%1.3f".format(abs(im)) }
858Fast Fourier transform
11kotlin
rw8go
#[derive(Copy, Clone)] struct Fraction { numerator: u32, denominator: u32, } use std::fmt; impl fmt::Display for Fraction { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}/{}", self.numerator, self.denominator) } } impl Fraction { fn new(n: u32, d: u32) -> Fraction { Fraction { numerator: n, denominator: d, } } } fn farey_sequence(n: u32) -> impl std::iter::Iterator<Item = Fraction> { let mut a = 0; let mut b = 1; let mut c = 1; let mut d = n; std::iter::from_fn(move || { if a > n { return None; } let result = Fraction::new(a, b); let k = (n + b) / d; let next_c = k * c - a; let next_d = k * d - b; a = c; b = d; c = next_c; d = next_d; Some(result) }) } fn main() { for n in 1..=11 { print!("{}:", n); for f in farey_sequence(n) { print!(" {}", f); } println!(); } for n in (100..=1000).step_by(100) { println!("{}: {}", n, farey_sequence(n).count()); } }
857Farey sequence
15rust
an614
object FareySequence { def fareySequence(n: Int, start: (Int, Int), stop: (Int, Int)): LazyList[(Int, Int)] = { val (nominator_l, denominator_l) = start val (nominator_r, denominator_r) = stop val mediant = ((nominator_l + nominator_r), (denominator_l + denominator_r)) if (mediant._2 <= n) fareySequence(n, start, mediant) ++ mediant #:: fareySequence(n, mediant, stop) else LazyList.empty } def farey(n: Int, start: (Int, Int) = (0, 1), stop: (Int, Int) = (1, 1)): LazyList[(Int, Int)] = { start #:: fareySequence(n, start, stop) ++ stop #:: LazyList.empty[(Int, Int)] } def main(args: Array[String]): Unit = { for (i <- 1 to 11) { println(s"$i: " + farey(i).map(e => s"${e._1}/${e._2}").mkString(", ")) } println for (i <- 100 to 1000 by 100) { println(s"$i: " + farey(i).length + " elements") } } }
857Farey sequence
16scala
xt9wg
class Fibonacci { public static int[] lucas(int n, int numRequested) { if (n < 2) throw new IllegalArgumentException("Fibonacci value must be at least 2"); return fibonacci((n == 2) ? new int[] { 2, 1 } : lucas(n - 1, n), numRequested); } public static int[] fibonacci(int n, int numRequested) { if (n < 2) throw new IllegalArgumentException("Fibonacci value must be at least 2"); return fibonacci((n == 2) ? new int[] { 1, 1 } : fibonacci(n - 1, n), numRequested); } public static int[] fibonacci(int[] startingValues, int numRequested) { int[] output = new int[numRequested]; int n = startingValues.length; System.arraycopy(startingValues, 0, output, 0, n); for (int i = n; i < numRequested; i++) for (int j = 1; j <= n; j++) output[i] += output[i - j]; return output; } public static void main(String[] args) { for (int n = 2; n <= 10; n++) { System.out.print("nacci(" + n + "):"); for (int value : fibonacci(n, 15)) System.out.print(" " + value); System.out.println(); } for (int n = 2; n <= 10; n++) { System.out.print("lucas(" + n + "):"); for (int value : lucas(n, 15)) System.out.print(" " + value); System.out.println(); } } }
859Fibonacci n-step number sequences
9java
hsijm
function fib(arity, len) { return nacci(nacci([1,1], arity, arity), arity, len); } function lucas(arity, len) { return nacci(nacci([2,1], arity, arity), arity, len); } function nacci(a, arity, len) { while (a.length < len) { var sum = 0; for (var i = Math.max(0, a.length - arity); i < a.length; i++) sum += a[i]; a.push(sum); } return a; } function main() { for (var arity = 2; arity <= 10; arity++) console.log("fib(" + arity + "): " + fib(arity, 15)); for (var arity = 2; arity <= 10; arity++) console.log("lucas(" + arity + "): " + lucas(arity, 15)); } main();
859Fibonacci n-step number sequences
10javascript
anz10
int[] array = {1, 2, 3, 4, 5 }; List<Integer> evensList = new ArrayList<Integer>(); for (int i: array) { if (i % 2 == 0) evensList.add(i); } int[] evens = evensList.toArray(new int[0]);
853Filter
9java
64a3z
use strict; use utf8; sub factors { my $n = shift; my $p = 2; my @out; while ($n >= $p * $p) { while ($n % $p == 0) { push @out, $p; $n /= $p; } $p = next_prime($p); } push @out, $n if $n > 1 || !@out; @out; } sub next_prime { my $p = shift; do { $p = $p == 2 ? 3 : $p + 2 } until is_prime($p); $p; } my %pcache; sub is_prime { my $x = shift; $pcache{$x} //= (factors($x) == 1) } sub mtest { my @bits = split "", sprintf("%b", shift); my $p = shift; my $sq = 1; while (@bits) { $sq = $sq * $sq; $sq *= 2 if shift @bits; $sq %= $p; } $sq == 1; } for my $m (2 .. 60, 929) { next unless is_prime($m); use bigint; my ($f, $k, $x) = (0, 0, 2**$m - 1); my $q; while (++$k) { $q = 2 * $k * $m + 1; next if (($q & 7) != 1 && ($q & 7) != 7); next unless is_prime($q); last if $q * $q > $x; last if $f = mtest($m, $q); } print $f? "M$m = $x = $q @{[$x / $q]}\n" : "M$m = $x is prime\n"; }
860Factors of a Mersenne number
2perl
f25d7
typedef struct { int *list; short count; } Factors; void xferFactors( Factors *fctrs, int *flist, int flix ) { int ix, ij; int newSize = fctrs->count + flix; if (newSize > flix) { fctrs->list = realloc( fctrs->list, newSize * sizeof(int)); } else { fctrs->list = malloc( newSize * sizeof(int)); } for (ij=0,ix=fctrs->count; ix<newSize; ij++,ix++) { fctrs->list[ix] = flist[ij]; } fctrs->count = newSize; } Factors *factor( int num, Factors *fctrs) { int flist[301], flix; int dvsr; flix = 0; fctrs->count = 0; free(fctrs->list); fctrs->list = NULL; for (dvsr=1; dvsr*dvsr < num; dvsr++) { if (num % dvsr != 0) continue; if ( flix == 300) { xferFactors( fctrs, flist, flix ); flix = 0; } flist[flix++] = dvsr; flist[flix++] = num/dvsr; } if (dvsr*dvsr == num) flist[flix++] = dvsr; if (flix > 0) xferFactors( fctrs, flist, flix ); return fctrs; } int main(int argc, char*argv[]) { int nums2factor[] = { 2059, 223092870, 3135, 45 }; Factors ftors = { NULL, 0}; char sep; int i,j; for (i=0; i<4; i++) { factor( nums2factor[i], &ftors ); printf(, nums2factor[i]); sep = ' '; for (j=0; j<ftors.count; j++) { printf(, sep, ftors.list[j]); sep = ','; } printf(); } return 0; }
861Factors of an integer
5c
1idpj
null
858Fast Fourier transform
1lua
7xoru
class Farey { let n: Int init(_ x: Int) { n = x }
857Farey sequence
17swift
pozbl
var arr = [1,2,3,4,5]; var evens = arr.filter(function(a) {return a % 2 == 0});
853Filter
10javascript
lhscf
import shutil shutil.copyfile('input.txt', 'output.txt')
850File input/output
3python
rw3gq
echo 'M929 has a factor: ', mersenneFactor(929), '</br>'; function mersenneFactor($p) { $limit = sqrt(pow(2, $p) - 1); for ($k = 1; 2 * $p * $k - 1 < $limit; $k++) { $q = 2 * $p * $k + 1; if (isPrime($q) && ($q % 8 == 1 || $q % 8 == 7) && bcpowmod(, , ) == ) { return $q; } } return 0; } function isPrime($n) { if ($n < 2 || $n % 2 == 0) return $n == 2; for ($i = 3; $i * $i <= $n; $i += 2) { if ($n % $i == 0) { return false; } } return true; }
860Factors of a Mersenne number
12php
hsojf
null
859Fibonacci n-step number sequences
11kotlin
4aq57
fun fizzBuzz() { for (number in 1..100) { println( when { number % 15 == 0 -> "FizzBuzz" number % 3 == 0 -> "Fizz" number % 5 == 0 -> "Buzz" else -> number } ) } }
835FizzBuzz
11kotlin
z5yts
src <- file("input.txt", "r") dest <- file("output.txt", "w") fc <- readLines(src, -1) writeLines(fc, dest) close(src); close(dest)
850File input/output
13r
updvx
function nStepFibs (seq, limit) local iMax, sum = #seq - 1 while #seq < limit do sum = 0 for i = 0, iMax do sum = sum + seq[#seq - i] end table.insert(seq, sum) end return seq end local fibSeqs = { {name = "Fibonacci", values = {1, 1} }, {name = "Tribonacci", values = {1, 1, 2} }, {name = "Tetranacci", values = {1, 1, 2, 4}}, {name = "Lucas", values = {2, 1} } } for _, sequence in pairs(fibSeqs) do io.write(sequence.name .. ": ") print(table.concat(nStepFibs(sequence.values, 10), " ")) end
859Fibonacci n-step number sequences
1lua
ges4j
def is_prime(number): return True def m_factor(p): max_k = 16384 / p for k in xrange(max_k): q = 2*p*k + 1 if not is_prime(q): continue elif q% 8 != 1 and q% 8 != 7: continue elif pow(2, p, q) == 1: return q return None if __name__ == '__main__': exponent = int(raw_input()) if not is_prime(exponent): print % exponent else: factor = m_factor(exponent) if not factor: print % exponent else: print % (exponent, factor)
860Factors of a Mersenne number
3python
tv4fw
null
853Filter
11kotlin
dlhnz
(defn factors [n] (filter #(zero? (rem n %)) (range 1 (inc n)))) (print (factors 45))
861Factors of an integer
6clojure
qz6xt
require 'prime' def mersenne_factor(p) limit = Math.sqrt(2**p - 1) k = 1 while (2*k*p - 1) < limit q = 2*k*p + 1 if q.prime? and (q % 8 == 1 or q % 8 == 7) and trial_factor(2,p,q) return q end k += 1 end nil end def trial_factor(base, exp, mod) square = 1 ( % exp).each_char {|bit| square = square**2 * (bit == ? base: 1) % mod} (square == 1) end def check_mersenne(p) print f = mersenne_factor(p) if f.nil? puts else puts end end Prime.each(53) { |p| check_mersenne p } check_mersenne 929
860Factors of a Mersenne number
14ruby
35rz7
str = File.open('input.txt', 'rb') {|f| f.read} File.open('output.txt', 'wb') {|f| f.write str}
850File input/output
14ruby
jqy7x
fn bit_count(mut n: usize) -> usize { let mut count = 0; while n > 0 { n >>= 1; count += 1; } count } fn mod_pow(p: usize, n: usize) -> usize { let mut square = 1; let mut bits = bit_count(p); while bits > 0 { square = square * square; bits -= 1; if (p & (1 << bits))!= 0 { square <<= 1; } square%= n; } return square; } fn is_prime(n: usize) -> bool { if n < 2 { return false; } if n% 2 == 0 { return n == 2; } if n% 3 == 0 { return n == 3; } let mut p = 5; while p * p <= n { if n% p == 0 { return false; } p += 2; if n% p == 0 { return false; } p += 4; } true } fn find_mersenne_factor(p: usize) -> usize { let mut k = 0; loop { k += 1; let q = 2 * k * p + 1; if q% 8 == 1 || q% 8 == 7 { if mod_pow(p, q) == 1 && is_prime(p) { return q; } } } } fn main() { println!("{}", find_mersenne_factor(929)); }
860Factors of a Mersenne number
15rust
6473l
object FactorsOfAMersenneNumber extends App { val two: BigInt = 2
860Factors of a Mersenne number
16scala
97km5
use std::fs::File; use std::io::{Read, Write}; fn main() { let mut file = File::open("input.txt").unwrap(); let mut data = Vec::new(); file.read_to_end(&mut data).unwrap(); let mut file = File::create("output.txt").unwrap(); file.write_all(&data).unwrap(); }
850File input/output
15rust
hsmj2
import java.io.{ FileNotFoundException, PrintWriter } object FileIO extends App { try { val MyFileTxtTarget = new PrintWriter("output.txt") scala.io.Source.fromFile("input.txt").getLines().foreach(MyFileTxtTarget.println) MyFileTxtTarget.close() } catch { case e: FileNotFoundException => println(e.getLocalizedMessage()) case e: Throwable => { println("Some other exception type:") e.printStackTrace() } } }
850File input/output
16scala
polbj
$ fib=1;j=1;while((fib<100));do echo $fib;((k=fib+j,fib=j,j=k));done
862Fibonacci sequence
4bash
dl2np
use strict; use warnings; use feature <say signatures>; no warnings 'experimental'; use List::Util <max sum>; sub fib_n ($n = 2, $xs = [1], $max = 100) { my @xs = @$xs; while ( $max > (my $len = @xs) ) { push @xs, sum @xs[ max($len - $n, 0) .. $len-1 ]; } @xs } say $_-1 . ': ' . join ' ', (fib_n $_)[0..19] for 2..10; say "\nLucas: " . join ' ', fib_n(2, [2,1], 20);
859Fibonacci n-step number sequences
2perl
i9vo3
use strict; use warnings; use Math::Complex; sub fft { return @_ if @_ == 1; my @evn = fft(@_[grep { not $_ % 2 } 0 .. $ my @odd = fft(@_[grep { $_ % 2 } 1 .. $ my $twd = 2*i* pi / @_; $odd[$_] *= exp( $_ * -$twd ) for 0 .. $ return (map { $evn[$_] + $odd[$_] } 0 .. $ (map { $evn[$_] - $odd[$_] } 0 .. $ } print "$_\n" for fft qw(1 1 1 1 0 0 0 0);
858Fast Fourier transform
2perl
dl4nw
import Foundation extension BinaryInteger { var isPrime: Bool { if self == 0 || self == 1 { return false } else if self == 2 { return true } let max = Self(ceil((Double(self).squareRoot()))) for i in stride(from: 2, through: max, by: 1) where self% i == 0 { return false } return true } func modPow(exp: Self, mod: Self) -> Self { guard exp!= 0 else { return 1 } var res = Self(1) var base = self% mod var exp = exp while true { if exp & 1 == 1 { res *= base res%= mod } if exp == 1 { return res } exp >>= 1 base *= base base%= mod } } } func mFactor(exp: Int) -> Int? { for k in 0..<16384 { let q = 2*exp*k + 1 if!q.isPrime { continue } else if q% 8!= 1 && q% 8!= 7 { continue } else if 2.modPow(exp: exp, mod: q) == 1 { return q } } return nil } print(mFactor(exp: 929)!)
860Factors of a Mersenne number
17swift
zugtu
<?php function fib_n_step($x, &$series = array(1, 1), $n = 15) { $count = count($series); if($count > $x && $count == $n) { return $series; } if($count < $n) { if($count >= $x) { fib($series, $x, $count); return fib_n_step($x, $series, $n); } else { while(count($series) < $x ) { $count = count($series); fib($series, $count, $count); } return fib_n_step($x, $series, $n); } } return $series; } function fib(&$series, $n, $i) { $end = 0; for($j = $n; $j > 0; $j--) { $end += $series[$i-$j]; } $series[$i] = $end; } header('Content-Type: text/plain'); $steps = array( 'LUCAS' => array(2, array(2, 1)), 'FIBONACCI' => array(2, array(1, 1)), 'TRIBONACCI' => array(3, array(1, 1, 2)), 'TETRANACCI' => array(4, array(1, 1, 2, 4)), 'PENTANACCI' => array(5, array(1, 1, 2, 4)), 'HEXANACCI' => array(6, array(1, 1, 2, 4)), 'HEPTANACCI' => array(7, array(1, 1, 2, 4)), 'OCTONACCI' => array(8, array(1, 1, 2, 4)), 'NONANACCI' => array(9, array(1, 1, 2, 4)), 'DECANACCI' => array(10, array(1, 1, 2, 4)), ); foreach($steps as $name=>$pair) { $ser = fib_n_step($pair[0],$pair[1]); $n = count($ser)-1; echo $name..implode(',', $ser) . ; }
859Fibonacci n-step number sequences
12php
rw0ge
import 'dart:math'; factors(n) { var factorsArr = []; factorsArr.add(n); factorsArr.add(1); for(var test = n - 1; test >= sqrt(n).toInt(); test--) if(n% test == 0) { factorsArr.add(test); factorsArr.add(n / test); } return factorsArr; } void main() { print(factors(5688)); }
861Factors of an integer
18dart
7xsr7
<?php class Complex { public $real; public $imaginary; function __construct($real, $imaginary){ $this->real = $real; $this->imaginary = $imaginary; } function Add($other, $dst){ $dst->real = $this->real + $other->real; $dst->imaginary = $this->imaginary + $other->imaginary; return $dst; } function Subtract($other, $dst){ $dst->real = $this->real - $other->real; $dst->imaginary = $this->imaginary - $other->imaginary; return $dst; } function Multiply($other, $dst){ $r = $this->real * $other->real - $this->imaginary * $other->imaginary; $dst->imaginary = $this->real * $other->imaginary + $this->imaginary * $other->real; $dst->real = $r; return $dst; } function ComplexExponential($dst){ $er = exp($this->real); $dst->real = $er * cos($this->imaginary); $dst->imaginary = $er * sin($this->imaginary); return $dst; } }
858Fast Fourier transform
12php
jqi7z
function filter(t, func) local ret = {} for i, v in ipairs(t) do ret[#ret+1] = func(v) and v or nil end return ret end function even(a) return a % 2 == 0 end print(unpack(filter({1, 2, 3, 4 ,5, 6, 7, 8, 9, 10}, even)))
853Filter
1lua
f2kdp
from cmath import exp, pi def fft(x): N = len(x) if N <= 1: return x even = fft(x[0::2]) odd = fft(x[1::2]) T= [exp(-2j*pi*k/N)*odd[k] for k in range(N return [even[k] + T[k] for k in range(N [even[k] - T[k] for k in range(N print( ' '.join(% abs(f) for f in fft([1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0])) )
858Fast Fourier transform
3python
f2gde
>>> def fiblike(start): addnum = len(start) memo = start[:] def fibber(n): try: return memo[n] except IndexError: ans = sum(fibber(i) for i in range(n-addnum, n)) memo.append(ans) return ans return fibber >>> fibo = fiblike([1,1]) >>> [fibo(i) for i in range(10)] [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> lucas = fiblike([2,1]) >>> [lucas(i) for i in range(10)] [2, 1, 3, 4, 7, 11, 18, 29, 47, 76] >>> for n, name in zip(range(2,11), 'fibo tribo tetra penta hexa hepta octo nona deca'.split()): fibber = fiblike([1] + [2**i for i in range(n-1)]) print('n=%2i,%5snacci ->%s ...'% (n, name, ' '.join(str(fibber(i)) for i in range(15)))) n= 2, fibonacci -> 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... n= 3, tribonacci -> 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... n= 4, tetranacci -> 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... n= 5, pentanacci -> 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... n= 6, hexanacci -> 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... n= 7, heptanacci -> 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... n= 8, octonacci -> 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... n= 9, nonanacci -> 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... n=10, decanacci -> 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... >>>
859Fibonacci n-step number sequences
3python
ncuiz
fft(c(1,1,1,1,0,0,0,0))
858Fast Fourier transform
13r
omv84
for i = 1, 100 do if i % 15 == 0 then print("FizzBuzz") elseif i % 3 == 0 then print("Fizz") elseif i % 5 == 0 then print("Buzz") else print(i) end end
835FizzBuzz
1lua
34mzo
def fft(vec) return vec if vec.size <= 1 evens_odds = vec.partition.with_index{|_,i| i.even?} evens, odds = evens_odds.map{|even_odd| fft(even_odd)*2} evens.zip(odds).map.with_index do |(even, odd),i| even + odd * Math::E ** Complex(0, -2 * Math::PI * i / vec.size) end end fft([1,1,1,1,0,0,0,0]).each{|c| puts % c.rect}
858Fast Fourier transform
14ruby
zu7tw
extern crate num; use num::complex::Complex; use std::f64::consts::PI; const I: Complex<f64> = Complex { re: 0.0, im: 1.0 }; pub fn fft(input: &[Complex<f64>]) -> Vec<Complex<f64>> { fn fft_inner( buf_a: &mut [Complex<f64>], buf_b: &mut [Complex<f64>], n: usize,
858Fast Fourier transform
15rust
35jz8
import scala.math.{ Pi, cos, sin, cosh, sinh, abs } case class Complex(re: Double, im: Double) { def +(x: Complex): Complex = Complex(re + x.re, im + x.im) def -(x: Complex): Complex = Complex(re - x.re, im - x.im) def *(x: Double): Complex = Complex(re * x, im * x) def *(x: Complex): Complex = Complex(re * x.re - im * x.im, re * x.im + im * x.re) def /(x: Double): Complex = Complex(re / x, im / x) override def toString(): String = { val a = "%1.3f" format re val b = "%1.3f" format abs(im) (a,b) match { case (_, "0.000") => a case ("0.000", _) => b + "i" case (_, _) if im > 0 => a + " + " + b + "i" case (_, _) => a + " - " + b + "i" } } } def exp(c: Complex) : Complex = { val r = (cosh(c.re) + sinh(c.re)) Complex(cos(c.im), sin(c.im)) * r }
858Fast Fourier transform
16scala
mrbyc
def anynacci(start_sequence, count) n = start_sequence.length result = start_sequence.dup (count-n).times do result << result.last(n).sum end result end naccis = { lucas: [2,1], fibonacci: [1,1], tribonacci: [1,1,2], tetranacci: [1,1,2,4], pentanacci: [1,1,2,4,8], hexanacci: [1,1,2,4,8,16], heptanacci: [1,1,2,4,8,16,32], octonacci: [1,1,2,4,8,16,32,64], nonanacci: [1,1,2,4,8,16,32,64,128], decanacci: [1,1,2,4,8,16,32,64,128,256] } naccis.each {|name, seq| puts % [name, anynacci(seq, 15)]}
859Fibonacci n-step number sequences
14ruby
f24dr
struct GenFibonacci { buf: Vec<u64>, sum: u64, idx: usize, } impl Iterator for GenFibonacci { type Item = u64; fn next(&mut self) -> Option<u64> { let result = Some(self.sum); self.sum -= self.buf[self.idx]; self.buf[self.idx] += self.sum; self.sum += self.buf[self.idx]; self.idx = (self.idx + 1)% self.buf.len(); result } } fn print(buf: Vec<u64>, len: usize) { let mut sum = 0; for &elt in buf.iter() { sum += elt; print!("\t{}", elt); } let iter = GenFibonacci { buf: buf, sum: sum, idx: 0 }; for x in iter.take(len) { print!("\t{}", x); } } fn main() { print!("Fib2:"); print(vec![1,1], 10 - 2); print!("\nFib3:"); print(vec![1,1,2], 10 - 3); print!("\nFib4:"); print(vec![1,1,2,4], 10 - 4); print!("\nLucas:"); print(vec![2,1], 10 - 2); }
859Fibonacci n-step number sequences
15rust
tvgfd
long long fibb(long long a, long long b, int n) { return (--n>0)?(fibb(b, a+b, n)):(a); }
862Fibonacci sequence
5c
tvuf4
null
859Fibonacci n-step number sequences
16scala
64j31
import Foundation import Numerics typealias Complex = Numerics.Complex<Double> extension Complex { var exp: Complex { Complex(cos(imaginary), sin(imaginary)) * Complex(cosh(real), sinh(real)) } var pretty: String { let fmt = { String(format: "%1.3f", $0) } let re = fmt(real) let im = fmt(abs(imaginary)) if im == "0.000" { return re } else if re == "0.000" { return im } else if imaginary > 0 { return re + " + " + im + "i" } else { return re + " - " + im + "i" } } } func fft(_ array: [Complex]) -> [Complex] { _fft(array, direction: Complex(0.0, 2.0), scalar: 1) } func rfft(_ array: [Complex]) -> [Complex] { _fft(array, direction: Complex(0.0, -2.0), scalar: 2) } private func _fft(_ arr: [Complex], direction: Complex, scalar: Double) -> [Complex] { guard arr.count > 1 else { return arr } let n = arr.count let cScalar = Complex(scalar, 0) precondition(n% 2 == 0, "The Cooley-Tukey FFT algorithm only works when the length of the input is even.") var (evens, odds) = arr.lazy.enumerated().reduce(into: ([Complex](), [Complex]()), {res, cur in if cur.offset & 1 == 0 { res.0.append(cur.element) } else { res.1.append(cur.element) } }) evens = _fft(evens, direction: direction, scalar: scalar) odds = _fft(odds, direction: direction, scalar: scalar) let (left, right) = (0 ..< n / 2).map({i -> (Complex, Complex) in let offset = (direction * Complex((.pi * Double(i) / Double(n)), 0)).exp * odds[i] / cScalar let base = evens[i] / cScalar return (base + offset, base - offset) }).reduce(into: ([Complex](), [Complex]()), {res, cur in res.0.append(cur.0) res.1.append(cur.1) }) return left + right } let dat = [Complex(1.0, 0.0), Complex(1.0, 0.0), Complex(1.0, 0.0), Complex(1.0, 0.0), Complex(0.0, 0.0), Complex(0.0, 2.0), Complex(0.0, 0.0), Complex(0.0, 0.0)] print(fft(dat).map({ $0.pretty })) print(rfft(f).map({ $0.pretty }))
858Fast Fourier transform
17swift
tvrfl
(defn fibs [] (map first (iterate (fn [[a b]] [b (+ a b)]) [0 1])))
862Fibonacci sequence
6clojure
mr7yq
package main import "fmt" func main() { printFactors(-1) printFactors(0) printFactors(1) printFactors(2) printFactors(3) printFactors(53) printFactors(45) printFactors(64) printFactors(600851475143) printFactors(999999999999999989) } func printFactors(nr int64) { if nr < 1 { fmt.Println("\nFactors of", nr, "not computed") return } fmt.Printf("\nFactors of%d: ", nr) fs := make([]int64, 1) fs[0] = 1 apf := func(p int64, e int) { n := len(fs) for i, pp := 0, p; i < e; i, pp = i+1, pp*p { for j := 0; j < n; j++ { fs = append(fs, fs[j]*pp) } } } e := 0 for ; nr & 1 == 0; e++ { nr >>= 1 } apf(2, e) for d := int64(3); nr > 1; d += 2 { if d*d > nr { d = nr } for e = 0; nr%d == 0; e++ { nr /= d } if e > 0 { apf(d, e) } } fmt.Println(fs) fmt.Println("Number of factors =", len(fs)) }
861Factors of an integer
0go
yg764
def factorize = { long target -> if (target == 1) return [1L] if (target < 4) return [1L, target] def targetSqrt = Math.sqrt(target) def lowfactors = (2L..targetSqrt).grep { (target % it) == 0 } if (lowfactors == []) return [1L, target] def nhalf = lowfactors.size() - ((lowfactors[-1] == targetSqrt) ? 1: 0) [1] + lowfactors + (0..<nhalf).collect { target.intdiv(lowfactors[it]) }.reverse() + [target] }
861Factors of an integer
7groovy
f2udn
import HFM.Primes (primePowerFactors) import Control.Monad (mapM) import Data.List (product) factors = map product . mapM (\(p,m)-> [p^i | i<-[0..m]]) . primePowerFactors
861Factors of an integer
8haskell
hs8ju
my @a = (1, 2, 3, 4, 5, 6); my @even = grep { $_%2 == 0 } @a;
853Filter
2perl
jqz7f
public static TreeSet<Long> factors(long n) { TreeSet<Long> factors = new TreeSet<Long>(); factors.add(n); factors.add(1L); for(long test = n - 1; test >= Math.sqrt(n); test--) if(n % test == 0) { factors.add(test); factors.add(n / test); } return factors; }
861Factors of an integer
9java
51euf
$arr = range(1,5); $evens = array(); foreach ($arr as $val){ if ($val % 2 == 0) $evens[] = $val); } print_r($evens);
853Filter
12php
tvbf1
int fib(int n) { if (n==0 || n==1) { return n; } var prev=1; var current=1; for (var i=2; i<n; i++) { var next = prev + current; prev = current; current = next; } return current; } int fibRec(int n) => n==0 || n==1? n: fibRec(n-1) + fibRec(n-2); main() { print(fib(11)); print(fibRec(11)); }
862Fibonacci sequence
18dart
8ym0y
function factors(num) { var n_factors = [], i; for (i = 1; i <= Math.floor(Math.sqrt(num)); i += 1) if (num % i === 0) { n_factors.push(i); if (num / i !== i) n_factors.push(num / i); } n_factors.sort(function(a, b){return a - b;});
861Factors of an integer
10javascript
jq07n
fun printFactors(n: Int) { if (n < 1) return print("$n => ") (1..n / 2) .filter { n % it == 0 } .forEach { print("$it ") } println(n) } fun main(args: Array<String>) { val numbers = intArrayOf(11, 21, 32, 45, 67, 96) for (number in numbers) printFactors(number) }
861Factors of an integer
11kotlin
cjk98
values = range(10) evens = [x for x in values if not x & 1] ievens = (x for x in values if not x & 1) evens = filter(lambda x: not x & 1, values)
853Filter
3python
hs3jw
function Factors( n ) local f = {} for i = 1, n/2 do if n % i == 0 then f[#f+1] = i end end f[#f+1] = n return f end
861Factors of an integer
1lua
lhbck
a <- 1:100 evennums <- a[ a%%2 == 0 ] print(evennums)
853Filter
13r
ged47
ary = [1, 2, 3, 4, 5, 6] even_ary = ary.select {|elem| elem.even?} p even_ary range = 1..6 even_ary = range.select {|elem| elem.even?} p even_ary
853Filter
14ruby
b8ykq
fn main() { println!("new vec filtered: "); let nums: Vec<i32> = (1..20).collect(); let evens: Vec<i32> = nums.iter().cloned().filter(|x| x% 2 == 0).collect(); println!("{:?}", evens);
853Filter
15rust
pombu