code
stringlengths 1
46.1k
⌀ | label
class label 1.18k
classes | domain_label
class label 21
classes | index
stringlengths 4
5
|
---|---|---|---|
calcRPN :: String -> [Double]
calcRPN = foldl interprete [] . words
interprete s x
| x `elem` ["+","-","*","/","^"] = operate x s
| otherwise = read x:s
where
operate op (x:y:s) = case op of
"+" -> x + y:s
"-" -> y - x:s
"*" -> x * y:s
"/" -> y / x:s
"^" -> y ** x:s | 479Parsing/RPN calculator algorithm
| 8haskell
| bm0k2 |
null | 474Pascal matrix generation
| 11kotlin
| 0gcsf |
partially.apply <- function(f, ...) {
capture <- list(...)
function(...) {
do.call(f, c(capture, list(...)))
}
}
fs <- function(f, ...) sapply(list(...), f)
f1 <- function(x) 2*x
f2 <- function(x) x^2
fsf1 <- partially.apply(fs, f1)
fsf2 <- partially.apply(fs, f2)
fsf1(0:3)
fsf2(0:3)
fsf1(seq(2,8,2))
fsf2(seq(2,8,2)) | 468Partial function application
| 13r
| 1c9pn |
import Foundation
import CryptoKit
extension String {
func hexdata() -> Data {
Data(stride(from: 0, to: count, by: 2).map {
let a = index(startIndex, offsetBy: $0)
let b = index(after: a)
return UInt8(self[a ... b], radix: 16)!
})
}
}
DispatchQueue.concurrentPerform(iterations: 26) { (a) in
let goal1 = "1115dd800feaacefdf481f1f9070374a2a81e27880f187396db67958b207cbad".hexdata()
let goal2 = "3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b".hexdata()
let goal3 = "74e1bb62f8dabb8125a58852b63bdf6eaef667cb56ac7f7cdba6d7305c50a22f".hexdata()
var letters: [UInt8] = [(UInt8)(a + 97), 0, 0, 0, 0]
for b: UInt8 in 97...122 {
letters[1] = b
for c: UInt8 in 97...122 {
letters[2] = c
for d: UInt8 in 97...122 {
letters[3] = d
for e: UInt8 in 97...122 {
letters[4] = e
let digest = SHA256.hash(data: letters)
if digest == goal1 || digest == goal2 || digest == goal3 {
let password = String(bytes: letters, encoding: .ascii)!
let hexhash = digest.map { String(format: "%02x", $0) }.joined()
print("\(password) => \(hexhash)")
}
}
}
}
}
} | 476Parallel brute force
| 17swift
| mxjyk |
MAX_N = 500
BRANCH = 4
def tree(br, n, l=n, sum=1, cnt=1)
for b in br+1 .. BRANCH
sum += n
return if sum >= MAX_N
return if l * 2 >= sum and b >= BRANCH
if b == br + 1
c = $ra[n] * cnt
else
c = c * ($ra[n] + (b - br - 1)) / (b - br)
end
$unrooted[sum] += c if l * 2 < sum
next if b >= BRANCH
$ra[sum] += c
(1...n).each {|m| tree(b, m, l, sum, c)}
end
end
def bicenter(s)
return if s.odd?
aux = $ra[s / 2]
$unrooted[s] += aux * (aux + 1) / 2
end
$ra = [0] * MAX_N
$unrooted = [0] * MAX_N
$ra[0] = $ra[1] = $unrooted[0] = $unrooted[1] = 1
for n in 1...MAX_N
tree(0, n)
bicenter(n)
puts % [n, $unrooted[n]]
end | 478Paraffins
| 14ruby
| mxryj |
function factorial (n)
local f = 1
for i = 2, n do
f = f * i
end
return f
end
function binomial (n, k)
if k > n then return 0 end
return factorial(n) / (factorial(k) * factorial(n - k))
end
function pascalMatrix (form, size)
local matrix = {}
for row = 1, size do
matrix[row] = {}
for col = 1, size do
if form == "upper" then
matrix[row][col] = binomial(col - 1, row - 1)
end
if form == "lower" then
matrix[row][col] = binomial(row - 1, col - 1)
end
if form == "symmetric" then
matrix[row][col] = binomial(row + col - 2, col - 1)
end
end
end
matrix.form = form:sub(1, 1):upper() .. form:sub(2, -1)
return matrix
end
function show (mat)
print(mat.form .. ":")
for i = 1, #mat do
for j = 1, #mat[i] do
io.write(mat[i][j] .. "\t")
end
print()
end
print()
end
for _, form in pairs({"upper", "lower", "symmetric"}) do
show(pascalMatrix(form, 5))
end | 474Pascal matrix generation
| 1lua
| 8rl0e |
rpn = RPNExpression.new()
infix = rpn.to_infix
ruby = rpn.to_ruby | 472Parsing/RPN to infix conversion
| 14ruby
| l0ecl |
null | 473Parallel calculations
| 15rust
| uixvj |
import java.util.LinkedList;
public class RPN{
public static void main(String[] args) {
evalRPN("3 4 2 * 1 5 - 2 3 ^ ^ / +");
}
private static void evalRPN(String expr){
LinkedList<Double> stack = new LinkedList<Double>();
System.out.println("Input\tOperation\tStack after");
for (String token: expr.split("\\s")){
System.out.print(token + "\t");
if (token.equals("*")) {
System.out.print("Operate\t\t");
double secondOperand = stack.pop();
double firstOperand = stack.pop();
stack.push(firstOperand * secondOperand);
} else if (token.equals("/")) {
System.out.print("Operate\t\t");
double secondOperand = stack.pop();
double firstOperand = stack.pop();
stack.push(firstOperand / secondOperand);
} else if (token.equals("-")) {
System.out.print("Operate\t\t");
double secondOperand = stack.pop();
double firstOperand = stack.pop();
stack.push(firstOperand - secondOperand);
} else if (token.equals("+")) {
System.out.print("Operate\t\t");
double secondOperand = stack.pop();
double firstOperand = stack.pop();
stack.push(firstOperand + secondOperand);
} else if (token.equals("^")) {
System.out.print("Operate\t\t");
double secondOperand = stack.pop();
double firstOperand = stack.pop();
stack.push(Math.pow(firstOperand, secondOperand));
} else {
System.out.print("Push\t\t");
try {
stack.push(Double.parseDouble(token+""));
} catch (NumberFormatException e) {
System.out.println("\nError: invalid token " + token);
return;
}
}
System.out.println(stack);
}
if (stack.size() > 1) {
System.out.println("Error, too many operands: " + stack);
return;
}
System.out.println("Final answer: " + stack.pop());
}
} | 479Parsing/RPN calculator algorithm
| 9java
| gfa4m |
use strict;
use warnings;
use feature 'say';
use constant Inf => 1e10;
sub is_p_gapful {
my($d,$n) = @_;
return '' unless 0 == $n % 11;
my @digits = split //, $n;
$d eq $digits[0] and (0 == $n % ($digits[0].$digits[-1])) and $n eq join '', reverse @digits;
}
for ([1, 20], [86, 15]) {
my($offset, $count) = @$_;
say "Palindromic gapful numbers starting at $offset:";
for my $d ('1'..'9') {
my $n = 0; my $out = "$d: ";
$out .= do { $n+1 < $count+$offset ? (is_p_gapful($d,$_) and ++$n and $n >= $offset and "$_ ") : last } for 100 .. Inf;
say $out
}
say ''
} | 480Palindromic gapful numbers
| 2perl
| 8r30w |
from collections import namedtuple
from pprint import pprint as pp
OpInfo = namedtuple('OpInfo', 'prec assoc')
L, R = 'Left Right'.split()
ops = {
'^': OpInfo(prec=4, assoc=R),
'*': OpInfo(prec=3, assoc=L),
'/': OpInfo(prec=3, assoc=L),
'+': OpInfo(prec=2, assoc=L),
'-': OpInfo(prec=2, assoc=L),
'(': OpInfo(prec=9, assoc=L),
')': OpInfo(prec=0, assoc=L),
}
NUM, LPAREN, RPAREN = 'NUMBER ( )'.split()
def get_input(inp = None):
'Inputs an expression and returns list of (TOKENTYPE, tokenvalue)'
if inp is None:
inp = input('expression: ')
tokens = inp.strip().split()
tokenvals = []
for token in tokens:
if token in ops:
tokenvals.append((token, ops[token]))
else:
tokenvals.append((NUM, token))
return tokenvals
def shunting(tokenvals):
outq, stack = [], []
table = ['TOKEN,ACTION,RPN OUTPUT,OP STACK,NOTES'.split(',')]
for token, val in tokenvals:
note = action = ''
if token is NUM:
action = 'Add number to output'
outq.append(val)
table.append( (val, action, ' '.join(outq), ' '.join(s[0] for s in stack), note) )
elif token in ops:
t1, (p1, a1) = token, val
v = t1
note = 'Pop ops from stack to output'
while stack:
t2, (p2, a2) = stack[-1]
if (a1 == L and p1 <= p2) or (a1 == R and p1 < p2):
if t1 != RPAREN:
if t2 != LPAREN:
stack.pop()
action = '(Pop op)'
outq.append(t2)
else:
break
else:
if t2 != LPAREN:
stack.pop()
action = '(Pop op)'
outq.append(t2)
else:
stack.pop()
action = '(Pop & discard )'
table.append( (v, action, ' '.join(outq), ' '.join(s[0] for s in stack), note) )
break
table.append( (v, action, ' '.join(outq), ' '.join(s[0] for s in stack), note) )
v = note = ''
else:
note = ''
break
note = ''
note = ''
if t1 != RPAREN:
stack.append((token, val))
action = 'Push op token to stack'
else:
action = 'Discard '
table.append( (v, action, ' '.join(outq), ' '.join(s[0] for s in stack), note) )
note = 'Drain stack to output'
while stack:
v = ''
t2, (p2, a2) = stack[-1]
action = '(Pop op)'
stack.pop()
outq.append(t2)
table.append( (v, action, ' '.join(outq), ' '.join(s[0] for s in stack), note) )
v = note = ''
return table
if __name__ == '__main__':
infix = '3 + 4 * 2 / ( 1 - 5 ) ^ 2 ^ 3'
print( 'For infix expression:%r\n'% infix )
rp = shunting(get_input(infix))
maxcolwidths = [len(max(x, key=len)) for x in zip(*rp)]
row = rp[0]
print( ' '.join('{cell:^{width}}'.format(width=width, cell=cell) for (width, cell) in zip(maxcolwidths, row)))
for row in rp[1:]:
print( ' '.join('{cell:<{width}}'.format(width=width, cell=cell) for (width, cell) in zip(maxcolwidths, row)))
print('\n The final output RPN is:%r'% rp[-1][2]) | 471Parsing/Shunting-yard algorithm
| 3python
| 4d85k |
object Paraffins extends App {
val (nMax, nBranches) = (250, 4)
val rooted, unrooted = Array.tabulate(nMax + 1)(i => if (i < 2) BigInt(1) else BigInt(0))
val (unrooted, c) = (rooted.clone(), new Array[BigInt](nBranches))
for (n <- 1 to nMax) {
def tree(br: Int, n: Int, l: Int, inSum: Int, cnt: BigInt): Unit = {
var sum = inSum
for (b <- br + 1 to nBranches) {
sum += n
if (sum > nMax || (l * 2 >= sum && b >= nBranches)) return
if (b == br + 1) c(br) = rooted(n) * cnt
else {
c(br) = c(br) * (rooted(n) + BigInt(b - br - 1))
c(br) = c(br) / BigInt(b - br)
}
if (l * 2 < sum) unrooted(sum) = unrooted(sum) + c(br)
if (b < nBranches) rooted(sum) = rooted(sum) + c(br)
for (m <- n - 1 to 1 by -1) tree(b, m, l, sum, c(br))
}
}
def bicenter(s: Int): Unit = if ((s & 1) == 0) {
val halves = rooted(s / 2)
unrooted(s) = unrooted(s) + ((halves + BigInt(1)) * halves >> 1)
}
tree(0, n, n, 1, BigInt(1))
bicenter(n)
println(f"$n%3d: ${unrooted(n)}%s")
}
} | 478Paraffins
| 16scala
| 28klb |
ARRS = [(..).to_a,
(..).to_a,
(..).to_a,
%q(! quote to reset clumsy code colorizer
ALL = ARRS.flatten
def generate_pwd(size, num)
raise ArgumentError, unless size >= ARRS.size
num.times.map do
arr = ARRS.map(&:sample)
(size - ARRS.size).times{ arr << ALL.sample}
arr.shuffle.join
end
end
puts generate_pwd(8,3) | 463Password generator
| 14ruby
| fbedr |
const e = '3 4 2 * 1 5 - 2 3 ^ ^ / +';
const s = [], tokens = e.split(' ');
for (const t of tokens) {
const n = Number(t);
if (!isNaN(n)) {
s.push(n);
} else {
if (s.length < 2) {
throw new Error(`${t}: ${s}: insufficient operands.`);
}
const o2 = s.pop(), o1 = s.pop();
switch (t) {
case '+': s.push(o1 + o2); break;
case '-': s.push(o1 - o2); break;
case '*': s.push(o1 * o2); break;
case '/': s.push(o1 / o2); break;
case '^': s.push(Math.pow(o1, o2)); break;
default: throw new Error(`Unrecognized operator: [${t}]`);
}
}
console.log(`${t}: ${s}`);
}
if (s.length > 1) {
throw new Error(`${s}: insufficient operators.`);
} | 479Parsing/RPN calculator algorithm
| 10javascript
| kyshq |
fs = proc { |f, s| s.map &f }
f1 = proc { |n| n * 2 }
f2 = proc { |n| n ** 2 }
fsf1 = fs.curry[f1]
fsf2 = fs.curry[f2]
[0..3, (2..8).step(2)].each do |e|
p fsf1[e]
p fsf2[e]
end | 468Partial function application
| 14ruby
| s45qw |
import BigInt
import Foundation
extension BinaryInteger {
@inlinable
public func primeDecomposition() -> [Self] {
guard self > 1 else { return [] }
func step(_ x: Self) -> Self {
return 1 + (x << 2) - ((x >> 1) << 1)
}
let maxQ = Self(Double(self).squareRoot())
var d: Self = 1
var q: Self = self & 1 == 0? 2: 3
while q <= maxQ && self% q!= 0 {
q = step(d)
d += 1
}
return q <= maxQ? [q] + (self / q).primeDecomposition(): [self]
}
}
let numbers = [
112272537195293,
112582718962171,
112272537095293,
115280098190773,
115797840077099,
1099726829285419,
1275792312878611,
BigInt("64921987050997300559")
]
func findLargestMinFactor<T: BinaryInteger>(for nums: [T], then: @escaping ((n: T, factors: [T])) -> ()) {
let waiter = DispatchSemaphore(value: 0)
let lock = DispatchSemaphore(value: 1)
var factors = [(n: T, factors: [T])]()
DispatchQueue.concurrentPerform(iterations: nums.count) {i in
let n = nums[i]
print("Factoring \(n)")
let nFacs = n.primeDecomposition().sorted()
print("Factored \(n)")
lock.wait()
factors.append((n, nFacs))
if factors.count == nums.count {
waiter.signal()
}
lock.signal()
}
waiter.wait()
then(factors.sorted(by: { $0.factors.first! > $1.factors.first! }).first!)
}
findLargestMinFactor(for: numbers) {res in
let (n, factors) = res
print("Number with largest min prime factor: \(n); factors: \(factors)")
exit(0)
}
dispatchMain() | 473Parallel calculations
| 17swift
| 28elj |
null | 479Parsing/RPN calculator algorithm
| 11kotlin
| 28hli |
def fs[X](f:X=>X)(s:Seq[X]) = s map f
def f1(x:Int) = x * 2
def f2(x:Int) = x * x
def fsf[X](f:X=>X) = fs(f) _
val fsf1 = fsf(f1) | 468Partial function application
| 16scala
| ij7ox |
use rand::distributions::Alphanumeric;
use rand::prelude::IteratorRandom;
use rand::{thread_rng, Rng};
use std::iter;
use std::process;
use structopt::StructOpt;
const OTHER_VALUES: &str = "!\"#$%&'()*+,-./:;<=>?@[]^_{|}~"; | 463Password generator
| 15rust
| tpwfd |
from itertools import count
from pprint import pformat
import re
import heapq
def pal_part_gen(odd=True):
for i in count(1):
fwd = str(i)
rev = fwd[::-1][1:] if odd else fwd[::-1]
yield int(fwd + rev)
def pal_ordered_gen():
yield from heapq.merge(pal_part_gen(odd=True), pal_part_gen(odd=False))
def is_gapful(x):
return (x% (int(str(x)[0]) * 10 + (x% 10)) == 0)
if __name__ == '__main__':
start = 100
for mx, last in [(20, 20), (100, 15), (1_000, 10)]:
print(f
f)
bin = {i: [] for i in range(1, 10)}
gen = (i for i in pal_ordered_gen() if i >= start and is_gapful(i))
while any(len(val) < mx for val in bin.values()):
g = next(gen)
val = bin[g% 10]
if len(val) < mx:
val.append(g)
b = {k:v[-last:] for k, v in bin.items()}
txt = pformat(b, width=220)
print('', re.sub(r, '', txt)) | 480Palindromic gapful numbers
| 3python
| o7681 |
object makepwd extends App {
def newPassword( salt:String = "", length:Int = 13, strong:Boolean = true ) = {
val saltHash = salt.hashCode & ~(1 << 31)
import java.util.Calendar._
val cal = java.util.Calendar.getInstance()
val rand = new scala.util.Random((cal.getTimeInMillis+saltHash).toLong)
val lower = ('a' to 'z').mkString
val upper = ('A' to 'Z').mkString
val nums = ('0' to '9').mkString
val strongs = "!\"#$%&'()*+,-./:;<=>?@[]^_{|}~"
val unwanted = if( strong ) "" else "0Ol"
val pool = (lower + upper + nums + (if( strong ) strongs else "")).
filterNot( c => unwanted.contains(c) )
val pwdStream = Stream.continually( (for( n <- 1 to length; c = pool(rand.nextInt(pool.length) ) ) yield c).mkString ) | 463Password generator
| 16scala
| 6es31 |
rpn = RPNExpression.from_infix() | 471Parsing/Shunting-yard algorithm
| 14ruby
| rtigs |
type Number = f64;
#[derive(Debug, Copy, Clone, PartialEq)]
struct Operator {
token: char,
operation: fn(Number, Number) -> Number,
precedence: u8,
is_left_associative: bool,
}
#[derive(Debug, Clone, PartialEq)]
enum Token {
Digit(Number),
Operator(Operator),
LeftParen,
RightParen,
}
impl Operator {
fn new_token(
token: char,
precedence: u8,
is_left_associative: bool,
operation: fn(Number, Number) -> Number,
) -> Token {
Token::Operator(Operator {
token: token,
operation: operation,
precedence: precedence,
is_left_associative,
})
}
fn apply(&self, x: Number, y: Number) -> Number {
(self.operation)(x, y)
}
}
trait Stack<T> {
fn top(&self) -> Option<T>;
}
impl<T: Clone> Stack<T> for Vec<T> {
fn top(&self) -> Option<T> {
if self.is_empty() {
return None;
}
self.last().cloned()
}
}
fn lex_token(input: char) -> Result<Token, char> {
let ret = match input {
'0'...'9' => Token::Digit(input.to_digit(10).unwrap() as Number),
'+' => Operator::new_token('+', 1, true, |x, y| x + y),
'-' => Operator::new_token('-', 1, true, |x, y| x - y),
'*' => Operator::new_token('*', 2, true, |x, y| x * y),
'/' => Operator::new_token('/', 2, true, |x, y| x / y),
'^' => Operator::new_token('^', 3, false, |x, y| x.powf(y)),
'(' => Token::LeftParen,
')' => Token::RightParen,
_ => return Err(input),
};
Ok(ret)
}
fn lex(input: String) -> Result<Vec<Token>, char> {
input
.chars()
.filter(|c|!c.is_whitespace())
.map(lex_token)
.collect()
}
fn tilt_until(operators: &mut Vec<Token>, output: &mut Vec<Token>, stop: Token) -> bool {
while let Some(token) = operators.pop() {
if token == stop {
return true;
}
output.push(token)
}
false
}
fn shunting_yard(tokens: Vec<Token>) -> Result<Vec<Token>, String> {
let mut output: Vec<Token> = Vec::new();
let mut operators: Vec<Token> = Vec::new();
for token in tokens {
match token {
Token::Digit(_) => output.push(token),
Token::LeftParen => operators.push(token),
Token::Operator(operator) => {
while let Some(top) = operators.top() {
match top {
Token::LeftParen => break,
Token::Operator(top_op) => {
let p = top_op.precedence;
let q = operator.precedence;
if (p > q) || (p == q && operator.is_left_associative) {
output.push(operators.pop().unwrap());
} else {
break;
}
}
_ => unreachable!("{:?} must not be on operator stack", token),
}
}
operators.push(token);
}
Token::RightParen => {
if!tilt_until(&mut operators, &mut output, Token::LeftParen) {
return Err(String::from("Mismatched ')'"));
}
}
}
}
if tilt_until(&mut operators, &mut output, Token::LeftParen) {
return Err(String::from("Mismatched '('"));
}
assert!(operators.is_empty());
Ok(output)
}
fn calculate(postfix_tokens: Vec<Token>) -> Result<Number, String> {
let mut stack = Vec::new();
for token in postfix_tokens {
match token {
Token::Digit(number) => stack.push(number),
Token::Operator(operator) => {
if let Some(y) = stack.pop() {
if let Some(x) = stack.pop() {
stack.push(operator.apply(x, y));
continue;
}
}
return Err(format!("Missing operand for operator '{}'", operator.token));
}
_ => unreachable!("Unexpected token {:?} during calculation", token),
}
}
assert!(stack.len() == 1);
Ok(stack.pop().unwrap())
}
fn run(input: String) -> Result<Number, String> {
let tokens = match lex(input) {
Ok(tokens) => tokens,
Err(c) => return Err(format!("Invalid character: {}", c)),
};
let postfix_tokens = match shunting_yard(tokens) {
Ok(tokens) => tokens,
Err(message) => return Err(message),
};
calculate(postfix_tokens)
} | 471Parsing/Shunting-yard algorithm
| 15rust
| 7znrc |
use warnings;
use strict;
use feature qw{ say };
sub upper {
my ($i, $j) = @_;
my @m;
for my $x (0 .. $i - 1) {
for my $y (0 .. $j - 1) {
$m[$x][$y] = $x > $y ? 0
: ! $x || $x == $y ? 1
: $m[$x-1][$y-1] + $m[$x][$y-1];
}
}
return \@m
}
sub lower {
my ($i, $j) = @_;
my @m;
for my $x (0 .. $i - 1) {
for my $y (0 .. $j - 1) {
$m[$x][$y] = $x < $y ? 0
: ! $x || $x == $y ? 1
: $m[$x-1][$y-1] + $m[$x-1][$y];
}
}
return \@m
}
sub symmetric {
my ($i, $j) = @_;
my @m;
for my $x (0 .. $i - 1) {
for my $y (0 .. $j - 1) {
$m[$x][$y] = ! $x || ! $y ? 1
: $m[$x-1][$y] + $m[$x][$y-1];
}
}
return \@m
}
sub pretty {
my $m = shift;
for my $row (@$m) {
say join ', ', @$row;
}
}
pretty(upper(5, 5));
say '-' x 14;
pretty(lower(5, 5));
say '-' x 14;
pretty(symmetric(5, 5)); | 474Pascal matrix generation
| 2perl
| 5nxu2 |
local stack = {}
function push( a ) table.insert( stack, 1, a ) end
function pop()
if #stack == 0 then return nil end
return table.remove( stack, 1 )
end
function writeStack()
for i = #stack, 1, -1 do
io.write( stack[i], " " )
end
print()
end
function operate( a )
local s
if a == "+" then
push( pop() + pop() )
io.write( a .. "\tadd\t" ); writeStack()
elseif a == "-" then
s = pop(); push( pop() - s )
io.write( a .. "\tsub\t" ); writeStack()
elseif a == "*" then
push( pop() * pop() )
io.write( a .. "\tmul\t" ); writeStack()
elseif a == "/" then
s = pop(); push( pop() / s )
io.write( a .. "\tdiv\t" ); writeStack()
elseif a == "^" then
s = pop(); push( pop() ^ s )
io.write( a .. "\tpow\t" ); writeStack()
elseif a == "%" then
s = pop(); push( pop() % s )
io.write( a .. "\tmod\t" ); writeStack()
else
push( tonumber( a ) )
io.write( a .. "\tpush\t" ); writeStack()
end
end
function calc( s )
local t, a = "", ""
print( "\nINPUT", "OP", "STACK" )
for i = 1, #s do
a = s:sub( i, i )
if a == " " then operate( t ); t = ""
else t = t .. a
end
end
if a ~= "" then operate( a ) end
print( string.format( "\nresult:%.13f", pop() ) )
end | 479Parsing/RPN calculator algorithm
| 1lua
| vok2x |
echo "enter a string"
read input
size=${
count=0
while (($count < $size))
do
array[$count]=${input:$count:1}
(( count+=1 ))
done
count=0
for ((i=0; i < $size; i+=1))
do
if [ "${array[$i]}" == "${array[$size - $i - 1]}" ]
then
(( count += 1 ))
fi
done
if (( $count == $size ))
then
echo "$input is a palindrome"
fi | 483Palindrome detection
| 4bash
| 28gl0 |
#include <stdlib.h>
#include <time.h>
void initRandom(const unsigned int seed){
if(seed==0){
srand((unsigned) time(NULL));
}
else{
srand(seed);
}
}
int getRand(const int upperBound){
return rand() % upperBound;
} | 463Password generator
| 17swift
| dkanh |
import Foundation | 471Parsing/Shunting-yard algorithm
| 17swift
| gfo49 |
def palindromesgapful(digit, pow)
r1 = digit * (10**pow + 1)
r2 = 10**pow * (digit + 1)
nn = digit * 11
(r1...r2).select { |i| n = i.to_s; n == n.reverse && i % nn == 0 }
end
def digitscount(digit, count)
pow = 2
nums = []
while nums.size < count
nums += palindromesgapful(digit, pow)
pow += 1
end
nums[0...count]
end
count = 20
puts
(1..9).each { |digit| print }
count = 100
puts
(1..9).each { |digit| print }
count = 1000
puts
(1..9).each { |digit| print } | 480Palindromic gapful numbers
| 14ruby
| nhmit |
This version uses number->string then string->number conversions to create palindromes. | 480Palindromic gapful numbers
| 15rust
| dk9ny |
from pprint import pprint as pp
def pascal_upp(n):
s = [[0] * n for _ in range(n)]
s[0] = [1] * n
for i in range(1, n):
for j in range(i, n):
s[i][j] = s[i-1][j-1] + s[i][j-1]
return s
def pascal_low(n):
return [list(x) for x in zip(*pascal_upp(n))]
def pascal_sym(n):
s = [[1] * n for _ in range(n)]
for i in range(1, n):
for j in range(1, n):
s[i][j] = s[i-1][j] + s[i][j-1]
return s
if __name__ == :
n = 5
print()
pp(pascal_upp(n))
print()
pp(pascal_low(n))
print()
pp(pascal_sym(n)) | 474Pascal matrix generation
| 3python
| 4dq5k |
lower.pascal <- function(n) {
a <- matrix(0, n, n)
a[, 1] <- 1
if (n > 1) {
for (i in 2:n) {
j <- 2:i
a[i, j] <- a[i - 1, j - 1] + a[i - 1, j]
}
}
a
}
lower.pascal.alt <- function(n) {
a <- matrix(0, n, n)
a[, 1] <- 1
if (n > 1) {
for (j in 2:n) {
i <- j:n
a[i, j] <- cumsum(a[i - 1, j - 1])
}
}
a
}
upper.pascal <- function(n) t(lower.pascal(n))
symm.pascal <- function(n) {
a <- matrix(0, n, n)
a[, 1] <- 1
for (i in 2:n) {
a[, i] <- cumsum(a[, i - 1])
}
a
} | 474Pascal matrix generation
| 13r
| 28alg |
package main
import "fmt"
func main() {
for _, s := range []string{
"The quick brown fox jumps over the lazy dog.",
`Watch "Jeopardy!", Alex Trebek's fun TV quiz game.`,
"Not a pangram.",
} {
if pangram(s) {
fmt.Println("Yes:", s)
} else {
fmt.Println("No: ", s)
}
}
}
func pangram(s string) bool {
var missing uint32 = (1 << 26) - 1
for _, c := range s {
var index uint32
if 'a' <= c && c <= 'z' {
index = uint32(c - 'a')
} else if 'A' <= c && c <= 'Z' {
index = uint32(c - 'A')
} else {
continue
}
missing &^= 1 << index
if missing == 0 {
return true
}
}
return false
} | 482Pangram checker
| 0go
| s4dqa |
import Data.Char (toLower)
import Data.List ((\\))
pangram :: String -> Bool
pangram = null . (['a' .. 'z'] \\) . map toLower
main = print $ pangram "How razorback-jumping frogs can level six piqued gymnasts!" | 482Pangram checker
| 8haskell
| 9q5mo |
require 'pp'
ng = (g = 0..4).collect{[]}
g.each{|i| g.each{|j| ng[i][j] = i==0? 1: j<i? 0: ng[i-1][j-1]+ng[i][j-1]}}
pp ng; puts
g.each{|i| g.each{|j| ng[i][j] = j==0? 1: i<j? 0: ng[i-1][j-1]+ng[i-1][j]}}
pp ng; puts
g.each{|i| g.each{|j| ng[i][j] = (i==0 or j==0)? 1: ng[i-1][j ]+ng[i][j-1]}}
pp ng | 474Pascal matrix generation
| 14ruby
| rt0gs |
use strict;
use warnings;
use feature 'say';
my $number = '[+-]?(?:\.\d+|\d+(?:\.\d*)?)';
my $operator = '[-+*/^]';
my @tests = ('3 4 2 * 1 5 - 2 3 ^ ^ / +');
for (@tests) {
while (
s/ \s* ((?<left>$number))
\s+ ((?<right>$number))
\s+ ((?<op>$operator))
(?:\s+|$)
/
' '.evaluate().' '
/ex
) {}
say;
}
sub evaluate {
(my $a = "($+{left})$+{op}($+{right})") =~ s/\^/**/;
say $a;
eval $a;
} | 479Parsing/RPN calculator algorithm
| 2perl
| s4zq3 |
int palindrome(const char *s)
{
int i,l;
l = strlen(s);
for(i=0; i<l/2; i++)
{
if ( s[i] != s[l-i-1] ) return 0;
}
return 1;
} | 483Palindrome detection
| 5c
| ui7v4 |
null | 474Pascal matrix generation
| 16scala
| kynhk |
public class Pangram {
public static boolean isPangram(String test){
for (char a = 'A'; a <= 'Z'; a++)
if ((test.indexOf(a) < 0) && (test.indexOf((char)(a + 32)) < 0))
return false;
return true;
}
public static void main(String[] args){
System.out.println(isPangram("the quick brown fox jumps over the lazy dog")); | 482Pangram checker
| 9java
| tp9f9 |
<?php
function rpn($postFix){
$stack = Array();
echo ;
$token = explode(, trim($postFix));
$count = count($token);
for($i = 0 ; $i<$count;$i++)
{
echo $token[$i] .;
$tokenNum = ;
if (is_numeric($token[$i])) {
echo ;
array_push($stack,$token[$i]);
}
else
{
echo ;
$secondOperand = end($stack);
array_pop($stack);
$firstOperand = end($stack);
array_pop($stack);
if ($token[$i] == )
array_push($stack,$firstOperand * $secondOperand);
else if ($token[$i] == )
array_push($stack,$firstOperand / $secondOperand);
else if ($token[$i] == )
array_push($stack,$firstOperand - $secondOperand);
else if ($token[$i] == )
array_push($stack,$firstOperand + $secondOperand);
else if ($token[$i] == )
array_push($stack,pow($firstOperand,$secondOperand));
else {
die();
}
}
echo . implode(, $stack) . ;
}
return end($stack);
}
echo . rpn();
?> | 479Parsing/RPN calculator algorithm
| 12php
| uibv5 |
function isPangram(s) {
var letters = "zqxjkvbpygfwmucldrhsnioate" | 482Pangram checker
| 10javascript
| mxuyv |
(defn palindrome? [s]
(= s (clojure.string/reverse s))) | 483Palindrome detection
| 6clojure
| 7zpr0 |
null | 482Pangram checker
| 11kotlin
| o7z8z |
package main
import "fmt"
func printTriangle(n int) { | 481Pascal's triangle
| 0go
| 1c0p5 |
require"lpeg"
S, C = lpeg.S, lpeg.C
function ispangram(s)
return #(C(S(s)^0):match"abcdefghijklmnopqrstuvwxyz") == 26
end
print(ispangram"waltz, bad nymph, for quick jigs vex")
print(ispangram"bobby")
print(ispangram"long sentence") | 482Pangram checker
| 1lua
| ij3ot |
def pascal
pascal = { n -> (n <= 1) ? [1]: [[0] + pascal(n - 1), pascal(n - 1) + [0]].transpose().collect { it.sum() } } | 481Pascal's triangle
| 7groovy
| j3e7o |
def op_pow(stack):
b = stack.pop(); a = stack.pop()
stack.append( a ** b )
def op_mul(stack):
b = stack.pop(); a = stack.pop()
stack.append( a * b )
def op_div(stack):
b = stack.pop(); a = stack.pop()
stack.append( a / b )
def op_add(stack):
b = stack.pop(); a = stack.pop()
stack.append( a + b )
def op_sub(stack):
b = stack.pop(); a = stack.pop()
stack.append( a - b )
def op_num(stack, num):
stack.append( num )
ops = {
'^': op_pow,
'*': op_mul,
'/': op_div,
'+': op_add,
'-': op_sub,
}
def get_input(inp = None):
'Inputs an expression and returns list of tokens'
if inp is None:
inp = input('expression: ')
tokens = inp.strip().split()
return tokens
def rpn_calc(tokens):
stack = []
table = ['TOKEN,ACTION,STACK'.split(',')]
for token in tokens:
if token in ops:
action = 'Apply op to top of stack'
ops[token](stack)
table.append( (token, action, ' '.join(str(s) for s in stack)) )
else:
action = 'Push num onto top of stack'
op_num(stack, eval(token))
table.append( (token, action, ' '.join(str(s) for s in stack)) )
return table
if __name__ == '__main__':
rpn = '3 4 2 * 1 5 - 2 3 ^ ^ / +'
print( 'For RPN expression:%r\n'% rpn )
rp = rpn_calc(get_input(rpn))
maxcolwidths = [max(len(y) for y in x) for x in zip(*rp)]
row = rp[0]
print( ' '.join('{cell:^{width}}'.format(width=width, cell=cell) for (width, cell) in zip(maxcolwidths, row)))
for row in rp[1:]:
print( ' '.join('{cell:<{width}}'.format(width=width, cell=cell) for (width, cell) in zip(maxcolwidths, row)))
print('\n The final output value is:%r'% rp[-1][2]) | 479Parsing/RPN calculator algorithm
| 3python
| 0g3sq |
zapWith :: (a -> a -> a) -> [a] -> [a] -> [a]
zapWith f xs [] = xs
zapWith f [] ys = ys
zapWith f (x:xs) (y:ys) = f x y: zapWith f xs ys | 481Pascal's triangle
| 8haskell
| tpcf7 |
rpn = RPNExpression()
value = rpn.eval | 479Parsing/RPN calculator algorithm
| 14ruby
| o7y8v |
fn rpn(text: &str) -> f64 {
let tokens = text.split_whitespace();
let mut stack: Vec<f64> = vec![];
println!("input operation stack");
for token in tokens {
print!("{:^5} ", token);
match token.parse() {
Ok(num) => {
stack.push(num);
println!("push {:?}", stack);
}
Err(_) => {
match token {
"+" => {
let b = stack.pop().expect("missing first operand");
let a = stack.pop().expect("missing second operand");
stack.push(a + b);
}
"-" => {
let b = stack.pop().expect("missing first operand");
let a = stack.pop().expect("missing second operand");
stack.push(a - b);
}
"*" => {
let b = stack.pop().expect("missing first operand");
let a = stack.pop().expect("missing second operand");
stack.push(a * b);
}
"/" => {
let b = stack.pop().expect("missing first operand");
let a = stack.pop().expect("missing second operand");
stack.push(a / b);
}
"^" => {
let b = stack.pop().expect("missing first operand");
let a = stack.pop().expect("missing second operand");
stack.push(a.powf(b));
}
_ => panic!("unknown operator {}", token),
}
println!("calculate {:?}", stack);
}
}
}
stack.pop().unwrap_or(0.0)
}
fn main() {
let text = "3 4 2 * 1 5 - 2 3 ^ ^ / +";
println!("\nresult: {}", rpn(text));
} | 479Parsing/RPN calculator algorithm
| 15rust
| ijmod |
bool isPalindrome(String s){
for(int i = 0; i < s.length/2;i++){
if(s[i]!= s[(s.length-1) -i])
return false;
}
return true;
} | 483Palindrome detection
| 18dart
| mxvyb |
object RPN {
val PRINT_STACK_CONTENTS: Boolean = true
def main(args: Array[String]): Unit = {
val result = evaluate("3 4 2 * 1 5 - 2 3 ^ ^ / +".split(" ").toList)
println("Answer: " + result)
}
def evaluate(tokens: List[String]): Double = {
import scala.collection.mutable.Stack
val stack: Stack[Double] = new Stack[Double]
for (token <- tokens) {
if (isOperator(token)) token match {
case "+" => stack.push(stack.pop + stack.pop)
case "-" => val x = stack.pop; stack.push(stack.pop - x)
case "*" => stack.push(stack.pop * stack.pop)
case "/" => val x = stack.pop; stack.push(stack.pop / x)
case "^" => val x = stack.pop; stack.push(math.pow(stack.pop, x))
case _ => throw new RuntimeException( s""""$token" is not an operator""")
}
else stack.push(token.toDouble)
if (PRINT_STACK_CONTENTS) {
print("Input: " + token)
print(" Stack: ")
for (element <- stack.seq.reverse) print(element + " ");
println("")
}
}
stack.pop
}
def isOperator(token: String): Boolean = {
token match {
case "+" => true; case "-" => true; case "*" => true; case "/" => true; case "^" => true
case _ => false
}
}
} | 479Parsing/RPN calculator algorithm
| 16scala
| fbld4 |
let opa = [
"^": (prec: 4, rAssoc: true),
"*": (prec: 3, rAssoc: false),
"/": (prec: 3, rAssoc: false),
"+": (prec: 2, rAssoc: false),
"-": (prec: 2, rAssoc: false),
]
func rpn(tokens: [String]) -> [String] {
var rpn: [String] = []
var stack: [String] = [] | 479Parsing/RPN calculator algorithm
| 17swift
| 8r60v |
import java.util.ArrayList;
... | 481Pascal's triangle
| 9java
| 8rz06 |
null | 481Pascal's triangle
| 10javascript
| fb9dg |
use strict;
use warnings;
use feature 'say';
sub pangram1 {
my($str,@set) = @_;
use List::MoreUtils 'all';
all { $str =~ /$_/i } @set;
}
sub pangram2 {
my($str,@set) = @_;
'' eq (join '',@set) =~ s/[$str]//gir;
}
my @alpha = 'a' .. 'z';
for (
'Cozy Lummox Gives Smart Squid Who Asks For Job Pen.',
'Crabby Lummox Gives Smart Squid Who Asks For Job Pen.'
) {
say pangram1($_,@alpha) ? 'Yes' : 'No';
say pangram2($_,@alpha) ? 'Yes' : 'No';
} | 482Pangram checker
| 2perl
| gfb4e |
function isPangram($text) {
foreach (str_split($text) as $c) {
if ($c >= 'a' && $c <= 'z')
$bitset |= (1 << (ord($c) - ord('a')));
else if ($c >= 'A' && $c <= 'Z')
$bitset |= (1 << (ord($c) - ord('A')));
}
return $bitset == 0x3ffffff;
}
$test = array(
,
,
,
,
);
foreach ($test as $str)
echo , isPangram($str)? 'T' : 'F', '</br>'; | 482Pangram checker
| 12php
| nh6ig |
fun pas(rows: Int) {
for (i in 0..rows - 1) {
for (j in 0..i)
print(ncr(i, j).toString() + " ")
println()
}
}
fun ncr(n: Int, r: Int) = fact(n) / (fact(r) * fact(n - r))
fun fact(n: Int): Long {
var ans = 1.toLong()
for (i in 2..n)
ans *= i
return ans
}
fun main(args: Array<String>) = pas(args[0].toInt()) | 481Pascal's triangle
| 11kotlin
| wviek |
import string, sys
if sys.version_info[0] < 3:
input = raw_input
def ispangram(sentence, alphabet=string.ascii_lowercase):
alphaset = set(alphabet)
return alphaset <= set(sentence.lower())
print ( ispangram(input('Sentence: ')) ) | 482Pangram checker
| 3python
| rtpgq |
checkPangram <- function(sentence){
my.letters <- tolower(unlist(strsplit(sentence, "")))
is.pangram <- all(letters%in% my.letters)
if (is.pangram){
cat("\"", sentence, "\" is a pangram! \n", sep="")
} else {
cat("\"", sentence, "\" is not a pangram! \n", sep="")
}
} | 482Pangram checker
| 13r
| uijvx |
import Data.Ratio
import Data.List (find)
import GHC.TypeLits
import Padic
pSqrt :: KnownNat p => Rational -> Padic p
pSqrt r = res
where
res = maybe Null mkUnit series
(a, b) = (numerator r, denominator r)
series = case modulo res of
2 | eqMod 4 a 3 -> Nothing
| not (eqMod 8 a 1) -> Nothing
| otherwise -> Just $ 1: 0: go 8 1
where
go pk x =
let q = ((b*x*x - a) `div` pk) `mod` 2
in q: go (2*pk) (x + q * (pk `div` 2))
p -> do
y <- find (\x -> eqMod p (b*x*x) a) [1..p-1]
df <- recipMod p (2*b*y)
let go pk x =
let f = (b*x*x - a) `div` pk
d = (f * (p - df)) `mod` p
in x `div` (pk `div` p): go (p*pk) (x + d*pk)
Just $ go p y
eqMod :: Integral a => a -> a -> a -> Bool
eqMod p a b = a `mod` p == b `mod` p | 484P-Adic square roots
| 8haskell
| vog2k |
function nextrow(t)
local ret = {}
t[0], t[#t+1] = 0, 0
for i = 1, #t do ret[i] = t[i-1] + t[i] end
return ret
end
function triangle(n)
t = {1}
for i = 1, n do
print(unpack(t))
t = nextrow(t)
end
end | 481Pascal's triangle
| 1lua
| xunwz |
def pangram?(sentence)
s = sentence.downcase
('a'..'z').all? {|char| s.include? (char) }
end
p pangram?('this is a sentence')
p pangram?('The quick brown fox jumps over the lazy dog.') | 482Pangram checker
| 14ruby
| j3a7x |
#![feature(test)]
extern crate test;
use std::collections::HashSet;
pub fn is_pangram_via_bitmask(s: &str) -> bool { | 482Pangram checker
| 15rust
| h6ej2 |
def is_pangram(sentence: String) = sentence.toLowerCase.filter(c => c >= 'a' && c <= 'z').toSet.size == 26 | 482Pangram checker
| 16scala
| p9qbj |
import Foundation
let str = "the quick brown fox jumps over the lazy dog"
func isPangram(str:String) -> Bool {
let stringArray = Array(str.lowercaseString)
for char in "abcdefghijklmnopqrstuvwxyz" {
if (find(stringArray, char) == nil) {
return false
}
}
return true
}
isPangram(str) | 482Pangram checker
| 17swift
| 7z1rq |
package main
import "fmt" | 485P-Adic numbers, basic
| 0go
| q58xz |
void padovanN(int n, size_t t, int *p) {
int i, j;
if (n < 2 || t < 3) {
for (i = 0; i < t; ++i) p[i] = 1;
return;
}
padovanN(n-1, t, p);
for (i = n + 1; i < t; ++i) {
p[i] = 0;
for (j = i - 2; j >= i - n - 1; --j) p[i] += p[j];
}
}
int main() {
int n, i;
const size_t t = 15;
int p[t];
printf(, t);
for (n = 2; n <= 8; ++n) {
for (i = 0; i < t; ++i) p[i] = 0;
padovanN(n, t, p);
printf(, n);
for (i = 0; i < t; ++i) printf(, p[i]);
printf();
}
return 0;
} | 486Padovan n-step number sequences
| 5c
| nhfi6 |
module Padic where
import Data.Ratio
import Data.List (genericLength)
import GHC.TypeLits
data Padic (n :: Nat) = Null
| Padic { unit :: [Int], order :: Int }
modulo :: (KnownNat p, Integral i) => Padic p -> i
modulo = fromIntegral . natVal
pZero :: KnownNat p => Padic p
pZero = Padic (repeat 0) 0
mkPadic :: (KnownNat p, Integral i) => [i] -> Int -> Padic p
mkPadic u k = go 0 (fromIntegral <$> u)
where
go 17 _ = pZero
go i (0:u) = go (i+1) u
go i u = Padic u (k-i)
mkUnit :: (KnownNat p, Integral i) => [i] -> Padic p
mkUnit u = mkPadic u 0
isZero :: KnownNat p => Padic p -> Bool
isZero (Padic u _) = all (== 0) (take 17 u)
isZero _ = False
pNorm :: KnownNat p => Padic p -> Ratio Int
pNorm Null = undefined
pNorm p = fromIntegral (modulo p) ^^ (- order p)
isInteger :: KnownNat p => Padic p -> Bool
isInteger Null = False
isInteger (Padic s k) = case splitAt k s of
([],i) -> length (takeWhile (==0) $ reverse (take 20 i)) > 3
_ -> False
instance KnownNat p => Show (Padic p) where
show Null = "Null"
show x@(Padic u k) =
show (modulo x) ++ "-adic: " ++
(case si of {[] -> "0"; _ -> si})
++ "." ++
(case f of {[] -> "0"; _ -> sf})
where
(f,i) = case compare k 0 of
LT -> ([], replicate (-k) 0 ++ u)
EQ -> ([], u)
GT -> splitAt k (u ++ repeat 0)
sf = foldMap showD $ reverse $ take 17 f
si = foldMap showD $ dropWhile (== 0) $ reverse $ take 17 i
el s = if length s > 16 then "" else ""
showD n = [(['0'..'9']++['a'..'z']) !! n]
instance KnownNat p => Eq (Padic p) where
a == b = isZero (a - b)
instance KnownNat p => Ord (Padic p) where
compare = error "Ordering is undefined fo p-adics."
instance KnownNat p => Num (Padic p) where
fromInteger 0 = pZero
fromInteger n = pAdic (fromInteger n)
x@(Padic a ka) + Padic b kb = mkPadic s k
where
k = ka `max` kb
s = addMod (modulo x)
(replicate (k-ka) 0 ++ a)
(replicate (k-kb) 0 ++ b)
_ + _ = Null
x@(Padic a ka) * Padic b kb =
mkPadic (mulMod (modulo x) a b) (ka + kb)
_ * _ = Null
negate x@(Padic u k) =
case map (\y -> modulo x - 1 - y) u of
n:ns -> Padic ((n+1):ns) k
[] -> pZero
negate _ = Null
abs p = pAdic (pNorm p)
signum = undefined
instance KnownNat p => Fractional (Padic p) where
fromRational = pAdic
recip Null = Null
recip x@(Padic (u:us) k)
| isZero x = Null
| gcd p u /= 1 = Null
| otherwise = mkPadic res (-k)
where
p = modulo x
res = longDivMod p (1:repeat 0) (u:us)
pAdic :: (Show i, Integral i, KnownNat p)
=> Ratio i -> Padic p
pAdic 0 = pZero
pAdic x = res
where
p = modulo res
(k, q) = getUnit p x
(n, d) = (numerator q, denominator q)
res = maybe Null process $ recipMod p d
process r = mkPadic (series n) k
where
series n
| n == 0 = repeat 0
| n `mod` p == 0 = 0: series (n `div` p)
| otherwise =
let m = (n * r) `mod` p
in m: series ((n - m * d) `div` p)
instance KnownNat p => Real (Padic p) where
toRational Null = error "no rational representation!"
toRational x@(Padic s k) = res
where
p = modulo x
res = case break isInteger $ take 10000 $ iterate (x +) x of
(_,[]) -> - toRational (- x)
(d, i:_) -> (fromBase p (unit i) * (p^(- order i))) % (genericLength d + 1)
fromBase p = foldr (\x r -> r*p + x) 0 .
take 20 . map fromIntegral
getUnit :: Integral i => i -> Ratio i -> (Int, Ratio i)
getUnit p x = (genericLength k1 - genericLength k2, c)
where
(k1,b:_) = span (\n -> denominator n `mod` p == 0) $
iterate (* fromIntegral p) x
(k2,c:_) = span (\n -> numerator n `mod` p == 0) $
iterate (/ fromIntegral p) b
recipMod :: Integral i => i -> i -> Maybe i
recipMod p 1 = Just 1
recipMod p a | gcd p a == 1 = Just $ go 0 1 p a
| otherwise = Nothing
where
go t _ _ 0 = t `mod` p
go t nt r nr =
let q = r `div` nr
in go nt (t - q*nt) nr (r - q*nr)
addMod p = go 0
where
go 0 [] ys = ys
go 0 xs [] = xs
go s [] ys = go 0 [s] ys
go s xs [] = go 0 xs [s]
go s (x:xs) (y:ys) =
let (q, r) = (x + y + s) `divMod` p
in r: go q xs ys
subMod p a (b:bs) = addMod p a $ (p-b): ((p - 1 -) <$> bs)
mulMod p as [b] = mulMod p [b] as
mulMod p as bs = case as of
[0] -> repeat 0
[1] -> bs
[a] -> go 0 bs
where
go s [] = [s]
go s (b:bs) =
let (q, r) = (a * b + s) `divMod` p
in r: go q bs
as -> go bs
where
go [] = []
go (b:bs) =
let c:cs = mulMod p [b] as
in c: addMod p (go bs) cs
longDivMod p a (b:bs) = case recipMod p b of
Nothing -> error $
show b ++ " is not invertible modulo " ++ show p
Just r -> go a
where
go [] = []
go (0:xs) = 0: go xs
go (x:xs) =
let m = (x*r) `mod` p
_:zs = subMod p (x:xs) (mulMod p [m] (b:bs))
in m: go zs | 485P-Adic numbers, basic
| 8haskell
| mxlyf |
package main
import "fmt"
func padovanN(n, t int) []int {
if n < 2 || t < 3 {
ones := make([]int, t)
for i := 0; i < t; i++ {
ones[i] = 1
}
return ones
}
p := padovanN(n-1, t)
for i := n + 1; i < t; i++ {
p[i] = 0
for j := i - 2; j >= i-n-1; j-- {
p[i] += p[j]
}
}
return p
}
func main() {
t := 15
fmt.Println("First", t, "terms of the Padovan n-step number sequences:")
for n := 2; n <= 8; n++ {
fmt.Printf("%d:%3d\n", n, padovanN(n, t))
}
} | 486Padovan n-step number sequences
| 0go
| rtjgm |
import Data.Bifunctor (second)
import Data.List (transpose, uncons, unfoldr)
padovans :: Int -> [Int]
padovans n
| 0 > n = []
| otherwise = unfoldr (recurrence n) $ take (succ n) xs
where
xs
| 3 > n = repeat 1
| otherwise = padovans $ pred n
recurrence :: Int -> [Int] -> Maybe (Int, [Int])
recurrence n =
( fmap
. second
. flip (<>)
. pure
. sum
. take n
)
<*> uncons
main :: IO ()
main =
putStrLn $
"Padovan N-step series:\n\n"
<> spacedTable
justifyRight
( fmap
( \n ->
[show n <> " -> "]
<> fmap show (take 15 $ padovans n)
)
[2 .. 8]
)
spacedTable ::
(Int -> Char -> String -> String) -> [[String]] -> String
spacedTable aligned rows =
unlines $
fmap
(unwords . zipWith (`aligned` ' ') columnWidths)
rows
where
columnWidths =
fmap
(maximum . fmap length)
(transpose rows)
justifyRight :: Int -> a -> [a] -> [a]
justifyRight n c = drop . length <*> (replicate n c <>) | 486Padovan n-step number sequences
| 8haskell
| 0gos7 |
(() => {
"use strict"; | 486Padovan n-step number sequences
| 10javascript
| s48qz |
int next_perm(int size, int * nums)
{
int *l, *k, tmp;
for (k = nums + size - 2; k >= nums && k[0] >= k[1]; k--) {};
if (k < nums) return 0;
for (l = nums + size - 1; *l <= *k; l--) {};
tmp = *k; *k = *l; *l = tmp;
for (l = nums + size - 1, k++; k < l; k++, l--) {
tmp = *k; *k = *l; *l = tmp;
}
return 1;
}
void make_part(int n, int * sizes)
{
int x[1024], i, j, *ptr, len = 0;
for (ptr = x, i = 0; i < n; i++)
for (j = 0, len += sizes[i]; j < sizes[i]; j++, *(ptr++) = i);
do {
for (i = 0; i < n; i++) {
printf();
for (j = 0; j < len; j++)
if (x[j] == i) printf(, j);
printf();
}
printf();
} while (next_perm(len, x));
}
int main()
{
int s1[] = {2, 0, 2};
int s2[] = {1, 2, 3, 4};
printf();
make_part(3, s1);
printf();
make_part(4, s2);
return 1;
} | 487Ordered partitions
| 5c
| j3h70 |
package pal
func IsPal(s string) bool {
mid := len(s) / 2
last := len(s) - 1
for i := 0; i < mid; i++ {
if s[i] != s[last-i] {
return false
}
}
return true
} | 483Palindrome detection
| 0go
| 0gdsk |
use strict;
use warnings;
use feature <state say>;
use List::Util 'sum';
use List::Lazy 'lazy_list';
say 'Padovan N-step sequences; first 25 terms:';
for our $N (2..8) {
my $pad_n = lazy_list {
state $n = 2;
state @pn = (1, 1, 1);
push @pn, sum @pn[ grep { $_ >= 0 } $n-$N .. $n++ - 1 ];
$pn[-4]
};
print "N = $N |";
print ' ' . $pad_n->next() for 1..25;
print "\n"
} | 486Padovan n-step number sequences
| 2perl
| z16tb |
def isPalindrome = { String s ->
s == s?.reverse()
} | 483Palindrome detection
| 7groovy
| e20al |
is_palindrome x = x == reverse x | 483Palindrome detection
| 8haskell
| cs594 |
def pad_like(max_n=8, t=15):
start = [[], [1, 1, 1]]
for n in range(2, max_n+1):
this = start[n-1][:n+1]
while len(this) < t:
this.append(sum(this[i] for i in range(-2, -n - 2, -1)))
start.append(this)
return start[2:]
def pr(p):
print('''
:::: {| style= border= cellpadding= cellspacing=
|+ Padovan <math>n</math>-step sequences
|- style=
! <math>n</math>!! Values
|-
'''.strip())
for n, seq in enumerate(p, 2):
print(f)
print('|}')
if __name__ == '__main__':
p = pad_like()
pr(p) | 486Padovan n-step number sequences
| 3python
| 3ayzc |
fn padovan(n: u64, x: u64) -> u64 {
if n < 2 {
return 0;
}
match n {
2 if x <= n + 1 => 1,
2 => padovan(n, x - 2) + padovan(n, x - 3),
_ if x <= n + 1 => padovan(n - 1, x),
_ => ((x - n - 1)..(x - 1)).fold(0, |acc, value| acc + padovan(n, value)),
}
}
fn main() {
(2..=8).for_each(|n| {
print!("\nN={}: ", n);
(1..=15).for_each(|x| print!("{},", padovan(n, x)))
});
} | 486Padovan n-step number sequences
| 15rust
| mxcya |
sub pascal {
my $rows = shift;
my @next = (1);
for my $n (1 .. $rows) {
print "@next\n";
@next = (1, (map $next[$_]+$next[$_+1], 0 .. $n-2), 1);
}
} | 481Pascal's triangle
| 2perl
| l0rc5 |
bool is_palindrome(const char* str) {
size_t n = strlen(str);
for (size_t i = 0; i + 1 < n; ++i, --n) {
if (str[i] != str[n - 1])
return false;
}
return true;
}
int main() {
time_t timestamp = time(0);
const int seconds_per_day = 24*60*60;
int count = 15;
char str[32];
printf(, count);
for (; count > 0; timestamp += seconds_per_day) {
struct tm* ptr = gmtime(×tamp);
strftime(str, sizeof(str), , ptr);
if (is_palindrome(str)) {
strftime(str, sizeof(str), , ptr);
printf(, str);
--count;
}
}
return 0;
} | 488Palindrome dates
| 5c
| ala11 |
<?php
function tre($n) {
$ck=1;
$kn=$n+1;
if($kn%2==0) {
$kn=$kn/2;
$i=0;
}
else
{
$kn+=1;
$kn=$kn/2;
$i= 1;
}
for ($k = 1; $k <= $kn-1; $k++) {
$ck = $ck/$k*($n-$k+1);
$arr[] = $ck;
echo . $ck ;
}
if ($kn>1) {
echo $arr[i];
$arr=array_reverse($arr);
for ($i; $i<= $kn-1; $i++) {
echo . $arr[$i] ;
}
}
}
while ($n<=20) {
++$n;
echo tre($n);
echo ;
}
?> | 481Pascal's triangle
| 12php
| q5dx3 |
public static boolean pali(String testMe){
StringBuilder sb = new StringBuilder(testMe);
return testMe.equals(sb.reverse().toString());
} | 483Palindrome detection
| 9java
| z19tq |
package main
import (
"fmt"
"os"
"strconv"
)
func gen_part(n, res []int, pos int) {
if pos == len(res) {
x := make([][]int, len(n))
for i, c := range res {
x[c] = append(x[c], i+1)
}
fmt.Println(x)
return
}
for i := range n {
if n[i] == 0 {
continue
}
n[i], res[pos] = n[i]-1, i
gen_part(n, res, pos+1)
n[i]++
}
}
func ordered_part(n_parts []int) {
fmt.Println("Ordered", n_parts)
sum := 0
for _, c := range n_parts {
sum += c
}
gen_part(n_parts, make([]int, sum), 0)
}
func main() {
if len(os.Args) < 2 {
ordered_part([]int{2, 0, 2})
return
}
n := make([]int, len(os.Args)-1)
var err error
for i, a := range os.Args[1:] {
n[i], err = strconv.Atoi(a)
if err != nil {
fmt.Println(err)
return
}
if n[i] < 0 {
fmt.Println("negative partition size not meaningful")
return
}
}
ordered_part(n)
} | 487Ordered partitions
| 0go
| fbtd0 |
int pRec(int n) {
static int *memo = NULL;
static size_t curSize = 0;
if (curSize <= (size_t) n) {
size_t lastSize = curSize;
while (curSize <= (size_t) n) curSize += 1024 * sizeof(int);
memo = realloc(memo, curSize * sizeof(int));
memset(memo + lastSize, 0, (curSize - lastSize) * sizeof(int));
}
if (memo[n] == 0) {
if (n<=2) memo[n] = 1;
else memo[n] = pRec(n-2) + pRec(n-3);
}
return memo[n];
}
int pFloor(int n) {
long double p = 1.324717957244746025960908854;
long double s = 1.0453567932525329623;
return powl(p, n-1)/s + 0.5;
}
void nextLSystem(const char *prev, char *buf) {
while (*prev) {
switch (*prev++) {
case 'A': *buf++ = 'B'; break;
case 'B': *buf++ = 'C'; break;
case 'C': *buf++ = 'A'; *buf++ = 'B'; break;
}
}
*buf = '\0';
}
int main() {
char buf1[BUFSZ], buf2[BUFSZ];
int i;
printf();
for (i=0; i<20; i++) printf(, pRec(i));
printf();
printf();
for (i=0; i<64; i++) {
if (pRec(i) != pFloor(i)) {
printf(,
i, pRec(i), pFloor(i));
break;
}
}
if (i == 64) {
printf();
}
printf();
for (strcpy(buf1, ), i=0; i<10; i++) {
printf(, buf1);
strcpy(buf2, buf1);
nextLSystem(buf2, buf1);
}
printf();
for (strcpy(buf1, ), i=0; i<32; i++) {
if ((int)strlen(buf1) != pFloor(i)) {
printf(,
i, (int)strlen(buf1), pFloor(i));
break;
}
strcpy(buf2, buf1);
nextLSystem(buf2, buf1);
}
if (i == 32) {
printf();
}
return 0;
} | 489Padovan sequence
| 5c
| i78o2 |
function isPalindrome(str) {
return str === str.split("").reverse().join("");
}
console.log(isPalindrome("ingirumimusnocteetconsumimurigni")); | 483Palindrome detection
| 10javascript
| 9quml |
(defn valid-date? [[y m d]]
(and (<= 1 m 12)
(<= 1 d 31)))
(defn date-str [[y m d]]
(format "%4d-%02d-%02d" y m d))
(defn yr->date [y]
(let [[_ m d] (re-find #"(..)(..)" (apply str (reverse (str y))))]
[y (Long. m) (Long. d)]))
(defn palindrome-dates [start-yr n]
(->> (iterate inc start-yr)
(map yr->date)
(filter valid-date?)
(map date-str)
(take n))) | 488Palindrome dates
| 6clojure
| s4sqr |
def partitions = { int... sizes ->
int n = (sizes as List).sum()
def perms = n == 0 ? [[]]: (1..n).permutations()
Set parts = perms.collect { p -> sizes.collect { s -> (0..<s).collect { p.pop() } as Set } }
parts.sort{ a, b ->
if (!a) return 0
def comp = [a,b].transpose().find { aa, bb -> aa != bb }
if (!comp) return 0
def recomp = comp.collect{ it as List }.transpose().find { aa, bb -> aa != bb }
if (!recomp) return 0
return recomp[0] <=> recomp[1]
}
} | 487Ordered partitions
| 7groovy
| 8ro0b |
import Data.List ((\\))
comb :: Int -> [a] -> [[a]]
comb 0 _ = [[]]
comb _ [] = []
comb k (x:xs) = map (x:) (comb (k-1) xs) ++ comb k xs
partitions :: [Int] -> [[[Int]]]
partitions xs = p [1..sum xs] xs
where p _ [] = [[]]
p xs (k:ks) = [ cs:rs | cs <- comb k xs, rs <- p (xs \\ cs) ks ]
main = print $ partitions [2,0,2] | 487Ordered partitions
| 8haskell
| 4dg5s |
(def padovan (map first (iterate (fn [[a b c]] [b c (+ a b)]) [1 1 1])))
(def pad-floor
(let [p 1.324717957244746025960908854
s 1.0453567932525329623]
(map (fn [n] (int (Math/floor (+ (/ (Math/pow p (dec n)) s) 0.5)))) (range))))
(def pad-l
(iterate (fn f [[c & s]]
(case c
\A (str "B" (f s))
\B (str "C" (f s))
\C (str "AB" (f s))
(str "")))
"A"))
(defn comp-seq [n seqa seqb]
(= (take n seqa) (take n seqb)))
(defn comp-all [n]
(= (map count (vec (take n pad-l)))
(take n padovan)
(take n pad-floor)))
(defn padovan-print [& args]
((print "The first 20 items with recursion relation are: ")
(println (take 20 padovan))
(println)
(println (str
"The recurrence and floor based algorithms "
(if (comp-seq 64 padovan pad-floor) "match" "not match")
" to n=64"))
(println)
(println "The first 10 L-system strings are:")
(println (take 10 pad-l))
(println)
(println (str
"The L-system, recurrence and floor based algorithms "
(if (comp-all 32) "match" "not match")
" to n=32")))) | 489Padovan sequence
| 6clojure
| zpftj |
(function () {
'use strict'; | 487Ordered partitions
| 10javascript
| 5n4ur |
package main
import (
"fmt"
"time"
)
func reverse(s string) string {
chars := []rune(s)
for i, j := 0, len(chars)-1; i < j; i, j = i+1, j-1 {
chars[i], chars[j] = chars[j], chars[i]
}
return string(chars)
}
func main() {
const (
layout = "20060102"
layout2 = "2006-01-02"
)
fmt.Println("The next 15 palindromic dates in yyyymmdd format after 20200202 are:")
date := time.Date(2020, 2, 2, 0, 0, 0, 0, time.UTC)
count := 0
for count < 15 {
date = date.AddDate(0, 0, 1)
s := date.Format(layout)
r := reverse(s)
if r == s {
fmt.Println(date.Format(layout2))
count++
}
}
} | 488Palindrome dates
| 0go
| mxmyi |
package main
import (
"fmt"
"math"
"math/big"
"strings"
)
func padovanRecur(n int) []int {
p := make([]int, n)
p[0], p[1], p[2] = 1, 1, 1
for i := 3; i < n; i++ {
p[i] = p[i-2] + p[i-3]
}
return p
}
func padovanFloor(n int) []int {
var p, s, t, u = new(big.Rat), new(big.Rat), new(big.Rat), new(big.Rat)
p, _ = p.SetString("1.324717957244746025960908854")
s, _ = s.SetString("1.0453567932525329623")
f := make([]int, n)
pow := new(big.Rat).SetInt64(1)
u = u.SetFrac64(1, 2)
t.Quo(pow, p)
t.Quo(t, s)
t.Add(t, u)
v, _ := t.Float64()
f[0] = int(math.Floor(v))
for i := 1; i < n; i++ {
t.Quo(pow, s)
t.Add(t, u)
v, _ = t.Float64()
f[i] = int(math.Floor(v))
pow.Mul(pow, p)
}
return f
}
type LSystem struct {
rules map[string]string
init, current string
}
func step(lsys *LSystem) string {
var sb strings.Builder
if lsys.current == "" {
lsys.current = lsys.init
} else {
for _, c := range lsys.current {
sb.WriteString(lsys.rules[string(c)])
}
lsys.current = sb.String()
}
return lsys.current
}
func padovanLSys(n int) []string {
rules := map[string]string{"A": "B", "B": "C", "C": "AB"}
lsys := &LSystem{rules, "A", ""}
p := make([]string, n)
for i := 0; i < n; i++ {
p[i] = step(lsys)
}
return p
} | 489Padovan sequence
| 0go
| gd54n |
import Data.Time.Calendar (Day, fromGregorianValid)
import Data.List.Split (chunksOf)
import Data.List (unfoldr)
import Data.Tuple (swap)
import Data.Bool (bool)
import Data.Maybe (mapMaybe)
palinDates :: [Day]
palinDates = mapMaybe palinDay [2021 .. 9999]
palinDay :: Integer -> Maybe Day
palinDay y = fromGregorianValid y m d
where
[m, d] = unDigits <$> chunksOf 2 (reversedDecimalDigits (fromInteger y))
reversedDecimalDigits :: Int -> [Int]
reversedDecimalDigits =
unfoldr ((flip bool Nothing . Just . swap . flip quotRem 10) <*> (0 ==))
unDigits :: [Int] -> Int
unDigits = foldl ((+) . (10 *)) 0
main :: IO ()
main = do
let n = length palinDates
putStrLn $ "Count of palindromic dates [2021..9999]: " ++ show n
putStrLn "\nFirst 15:"
mapM_ print $ take 15 palinDates
putStrLn "\nLast 15:"
mapM_ print $ take 15 (drop (n - 15) palinDates) | 488Palindrome dates
| 8haskell
| kykh0 |
null | 487Ordered partitions
| 11kotlin
| 3a6z5 |
pRec = map (\(a,_,_) -> a) $ iterate (\(a,b,c) -> (b,c,a+b)) (1,1,1)
pSelfRef = 1: 1: 1: zipWith (+) pSelfRef (tail pSelfRef)
pFloor = map f [0..]
where f n = floor $ p**fromInteger (pred n) / s + 0.5
p = 1.324717957244746025960908854
s = 1.0453567932525329623
lSystem = iterate f "A"
where f [] = []
f ('A':s) = 'B':f s
f ('B':s) = 'C':f s
f ('C':s) = 'A':'B':f s
checkN n as bs = take n as == take n bs
main = do
putStr "P_0 .. P_19: "
putStrLn $ unwords $ map show $ take 20 pRec
putStr "The floor- and recurrence-based functions "
putStr $ if checkN 64 pRec pFloor then "match" else "do not match"
putStr " from P_0 to P_63.\n"
putStr "The self-referential- and recurrence-based functions "
putStr $ if checkN 64 pRec pSelfRef then "match" else "do not match"
putStr " from P_0 to P_63.\n\n"
putStr "The first 10 L-system strings are:\n"
putStrLn $ unwords $ take 10 lSystem
putStr "\nThe floor- and L-system-based functions "
putStr $ if checkN 32 pFloor (map length lSystem)
then "match" else "do not match"
putStr " from P_0 to P_31.\n" | 489Padovan sequence
| 8haskell
| s5xqk |
null | 483Palindrome detection
| 11kotlin
| ijzo4 |
import java.time.LocalDate;
import java.time.format.DateTimeFormatter;
public class PalindromeDates {
public static void main(String[] args) {
LocalDate date = LocalDate.of(2020, 2, 3);
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyyMMdd");
DateTimeFormatter formatterDash = DateTimeFormatter.ofPattern("yyyy-MM-dd");
System.out.printf("First 15 palindrome dates after 2020-02-02 are:%n");
for ( int count = 0 ; count < 15 ; date = date.plusDays(1) ) {
String dateFormatted = date.format(formatter);
if ( dateFormatted.compareTo(new StringBuilder(dateFormatted).reverse().toString()) == 0 ) {
count++;
System.out.printf("date =%s%n", date.format(formatterDash));
}
}
}
} | 488Palindrome dates
| 9java
| 4d458 |
null | 487Ordered partitions
| 1lua
| 6ey39 |
def pascal(n):
row = [1]
k = [0]
for x in range(max(n,0)):
print row
row=[l+r for l,r in zip(row+k,k+row)]
return n>=1 | 481Pascal's triangle
| 3python
| 287lz |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.