code
stringlengths
1
46.1k
label
class label
1.18k classes
domain_label
class label
21 classes
index
stringlengths
4
5
def a(n): n += 2 return n*(n**2 + 1)/2 def inv_a(x): k = 0 while k*(k**2+1)/2+2 < x: k+=1 return k if __name__ == '__main__': print(); for n in range(1, 20): print(int(a(n)), end = ); print(,int(a(1000))); for e in range(1, 20): print(f'10^{e}: {inv_a(10**e)}');
601Magic constant
3python
hf2jw
use File::Path qw(make_path); make_path('path/to/dir')
595Make directory path
2perl
p3hb0
use strict; use warnings; use ntheory 'fromdigits'; my @sbox = ( [4, 10, 9, 2, 13, 8, 0, 14, 6, 11, 1, 12, 7, 15, 5, 3], [14, 11, 4, 12, 6, 13, 15, 10, 2, 3, 8, 1, 0, 7, 5, 9], [5, 8, 1, 13, 10, 3, 4, 2, 14, 15, 12, 7, 6, 0, 9, 11], [7, 13, 10, 1, 0, 8, 9, 15, 14, 4, 6, 12, 11, 2, 5, 3], [6, 12, 7, 1, 5, 15, 13, 8, 4, 10, 9, 14, 0, 3, 11, 2], [4, 11, 10, 0, 7, 2, 1, 13, 3, 6, 8, 5, 9, 12, 15, 14], [13, 11, 4, 1, 3, 15, 5, 9, 0, 10, 14, 7, 6, 8, 2, 12], [1, 15, 13, 0, 5, 7, 10, 4, 9, 2, 3, 14, 6, 11, 8, 12] ); sub rol32 { my($y, $n) = @_; ($y << $n) % 2**32 | ($y >> (32 - $n)) } sub GOST_round { my($R, $K) = @_; my $a = ($R + $K) % 2**32; my $b = fromdigits([map { $sbox[$_][($a >> (4*$_))%16] } reverse 0..7],16); rol32($b,11); } sub feistel_step { my($F, $L, $R, $K) = @_; $R, $L ^ &$F($R, $K) } my @input = (0x21, 0x04, 0x3B, 0x04, 0x30, 0x04, 0x32, 0x04); my @key = (0xF9, 0x04, 0xC1, 0xE2); my $R = fromdigits([reverse @input[0..3]], 256); my $L = fromdigits([reverse @input[4..7]], 256); my $K = fromdigits([reverse @key ], 256); ($L,$R) = feistel_step(\&GOST_round, $L, $R, $K); printf '%02X ', (($L << 32) + $R >> (8*$_))%256 for 0..7; print "\n";
596Main step of GOST 28147-89
2perl
qlax6
import java.util.ArrayList; import java.util.List; public class MagnanimousNumbers { public static void main(String[] args) { runTask("Find and display the first 45 magnanimous numbers.", 1, 45); runTask("241st through 250th magnanimous numbers.", 241, 250); runTask("391st through 400th magnanimous numbers.", 391, 400); } private static void runTask(String message, int startN, int endN) { int count = 0; List<Integer> nums = new ArrayList<>(); for ( int n = 0 ; count < endN ; n++ ) { if ( isMagnanimous(n) ) { nums.add(n); count++; } } System.out.printf("%s%n", message); System.out.printf("%s%n%n", nums.subList(startN-1, endN)); } private static boolean isMagnanimous(long n) { if ( n >= 0 && n <= 9 ) { return true; } long q = 11; for ( long div = 10 ; q >= 10 ; div *= 10 ) { q = n / div; long r = n % div; if ( ! isPrime(q+r) ) { return false; } } return true; } private static final int MAX = 100_000; private static final boolean[] primes = new boolean[MAX]; private static boolean SIEVE_COMPLETE = false; private static final boolean isPrimeTrivial(long test) { if ( ! SIEVE_COMPLETE ) { sieve(); SIEVE_COMPLETE = true; } return primes[(int) test]; } private static final void sieve() {
598Magnanimous numbers
9java
tj8f9
def Dijkstra(Graph, source): ''' + +---+---+ | 0 1 2 | +---+ + + | 3 4 | 5 +---+---+---+ >>> graph = ( ... (0,1,0,0,0,0,), ... (1,0,1,0,1,0,), ... (0,1,0,0,0,1,), ... (0,0,0,0,1,0,), ... (0,1,0,1,0,0,), ... (0,0,1,0,0,0,), ... ) ... >>> Dijkstra(graph, 0) ([0, 1, 2, 3, 2, 3], [1e+140, 0, 1, 4, 1, 2]) >>> display_solution([1e+140, 0, 1, 4, 1, 2]) 5<2<1<0 ''' infinity = float('infinity') n = len(graph) dist = [infinity]*n previous = [infinity]*n dist[source] = 0 Q = list(range(n)) while Q: u = min(Q, key=lambda n:dist[n]) Q.remove(u) if dist[u] == infinity: break for v in range(n): if Graph[u][v] and (v in Q): alt = dist[u] + Graph[u][v] if alt < dist[v]: dist[v] = alt previous[v] = u return dist,previous def display_solution(predecessor): cell = len(predecessor)-1 while cell: print(cell,end='<') cell = predecessor[cell] print(0)
587Maze solving
3python
0ufsq
import java.security.MessageDigest String.metaClass.md5Checksum = { MessageDigest.getInstance('md5').digest(delegate.bytes).collect { String.format("%02x", it) }.join('') }
590MD5
7groovy
amx1p
package main import ( "fmt" "log" ) func magicSquareOdd(n int) ([][]int, error) { if n < 3 || n%2 == 0 { return nil, fmt.Errorf("base must be odd and > 2") } value := 1 gridSize := n * n c, r := n/2, 0 result := make([][]int, n) for i := 0; i < n; i++ { result[i] = make([]int, n) } for value <= gridSize { result[r][c] = value if r == 0 { if c == n-1 { r++ } else { r = n - 1 c++ } } else if c == n-1 { r-- c = 0 } else if result[r-1][c+1] == 0 { r-- c++ } else { r++ } value++ } return result, nil } func magicSquareSinglyEven(n int) ([][]int, error) { if n < 6 || (n-2)%4 != 0 { return nil, fmt.Errorf("base must be a positive multiple of 4 plus 2") } size := n * n halfN := n / 2 subSquareSize := size / 4 subSquare, err := magicSquareOdd(halfN) if err != nil { return nil, err } quadrantFactors := [4]int{0, 2, 3, 1} result := make([][]int, n) for i := 0; i < n; i++ { result[i] = make([]int, n) } for r := 0; r < n; r++ { for c := 0; c < n; c++ { quadrant := r/halfN*2 + c/halfN result[r][c] = subSquare[r%halfN][c%halfN] result[r][c] += quadrantFactors[quadrant] * subSquareSize } } nColsLeft := halfN / 2 nColsRight := nColsLeft - 1 for r := 0; r < halfN; r++ { for c := 0; c < n; c++ { if c < nColsLeft || c >= n-nColsRight || (c == nColsLeft && r == nColsLeft) { if c == 0 && r == nColsLeft { continue } tmp := result[r][c] result[r][c] = result[r+halfN][c] result[r+halfN][c] = tmp } } } return result, nil } func main() { const n = 6 msse, err := magicSquareSinglyEven(n) if err != nil { log.Fatal(err) } for _, row := range msse { for _, x := range row { fmt.Printf("%2d ", x) } fmt.Println() } fmt.Printf("\nMagic constant:%d\n", (n*n+1)*n/2) }
600Magic squares of singly even order
0go
ayr1f
from errno import EEXIST from os import mkdir, curdir from os.path import split, exists def mkdirp(path, mode=0777): head, tail = split(path) if not tail: head, tail = split(head) if head and tail and not exists(head): try: mkdirp(head, mode) except OSError as e: if e.errno != EEXIST: raise if tail == curdir: return try: mkdir(path, mode) except OSError as e: if e.errno != EEXIST: raise
595Make directory path
3python
16kpc
int** doublyEvenMagicSquare(int n) { if (n < 4 || n % 4 != 0) return NULL; int bits = 38505; int size = n * n; int mult = n / 4,i,r,c,bitPos; int** result = (int**)malloc(n*sizeof(int*)); for(i=0;i<n;i++) result[i] = (int*)malloc(n*sizeof(int)); for (r = 0, i = 0; r < n; r++) { for (c = 0; c < n; c++, i++) { bitPos = c / mult + (r / mult) * 4; result[r][c] = (bits & (1 << bitPos)) != 0 ? i + 1 : size - i; } } return result; } int numDigits(int n){ int count = 1; while(n>=10){ n /= 10; count++; } return count; } void printMagicSquare(int** square,int rows){ int i,j,baseWidth = numDigits(rows*rows) + 3; printf(,rows,(rows * rows + 1) * rows / 2); for(i=0;i<rows;i++){ for(j=0;j<rows;j++){ printf(,baseWidth - numDigits(square[i][j]),,square[i][j]); } printf(); } } int main(int argC,char* argV[]) { int n; if(argC!=2||isdigit(argV[1][0])==0) printf(,argV[0]); else{ n = atoi(argV[1]); printMagicSquare(doublyEvenMagicSquare(n),n); } return 0; }
603Magic squares of doubly even order
5c
ql7xc
Matrix = {} function Matrix.new( dim_y, dim_x ) assert( dim_y and dim_x ) local matrix = {} local metatab = {} setmetatable( matrix, metatab ) metatab.__add = Matrix.Add metatab.__mul = Matrix.Mul metatab.__pow = Matrix.Pow matrix.dim_y = dim_y matrix.dim_x = dim_x matrix.data = {} for i = 1, dim_y do matrix.data[i] = {} end return matrix end function Matrix.Show( m ) for i = 1, m.dim_y do for j = 1, m.dim_x do io.write( tostring( m.data[i][j] ), " " ) end io.write( "\n" ) end end function Matrix.Add( m, n ) assert( m.dim_x == n.dim_x and m.dim_y == n.dim_y ) local r = Matrix.new( m.dim_y, m.dim_x ) for i = 1, m.dim_y do for j = 1, m.dim_x do r.data[i][j] = m.data[i][j] + n.data[i][j] end end return r end function Matrix.Mul( m, n ) assert( m.dim_x == n.dim_y ) local r = Matrix.new( m.dim_y, n.dim_x ) for i = 1, m.dim_y do for j = 1, n.dim_x do r.data[i][j] = 0 for k = 1, m.dim_x do r.data[i][j] = r.data[i][j] + m.data[i][k] * n.data[k][j] end end end return r end function Matrix.Pow( m, p ) assert( m.dim_x == m.dim_y ) local r = Matrix.new( m.dim_y, m.dim_x ) if p == 0 then for i = 1, m.dim_y do for j = 1, m.dim_x do if i == j then r.data[i][j] = 1 else r.data[i][j] = 0 end end end elseif p == 1 then for i = 1, m.dim_y do for j = 1, m.dim_x do r.data[i][j] = m.data[i][j] end end else r = m for i = 2, p do r = r * m end end return r end m = Matrix.new( 2, 2 ) m.data = { { 1, 2 }, { 3, 4 } } n = m^4; Matrix.Show( n )
591Matrix-exponentiation operator
1lua
nrfi8
extern crate rand; use rand::prelude::*; use std::io; fn main() { let mut input_line = String::new(); let colors_n; let code_len; let guesses_max; let colors_dup; loop { println!("Please enter the number of colors to be used in the game (2 - 20): "); input_line.clear(); io::stdin() .read_line(&mut input_line) .expect("The read line failed."); match (input_line.trim()).parse::<i32>() { Ok(n) => { if n >= 2 && n <= 20 { colors_n = n; break; } else { println!("Outside of range (2 - 20)."); } } Err(_) => println!("Invalid input."), } } let colors = &"ABCDEFGHIJKLMNOPQRST"[..colors_n as usize]; println!("Playing with colors {}.\n", colors); loop { println!("Are duplicated colors allowed in the code? (Y/N): "); input_line.clear(); io::stdin() .read_line(&mut input_line) .expect("The read line failed."); if ["Y", "N"].contains(&&input_line.trim().to_uppercase()[..]) { colors_dup = input_line.trim().to_uppercase() == "Y"; break; } else { println!("Invalid input."); } } println!( "Duplicated colors {}allowed.\n", if colors_dup { "" } else { "not " } ); loop { let min_len = if colors_dup { 4 } else { 4.min(colors_n) }; let max_len = if colors_dup { 10 } else { 10.min(colors_n) }; println!( "Please enter the length of the code ({} - {}): ", min_len, max_len ); input_line.clear(); io::stdin() .read_line(&mut input_line) .expect("The read line failed."); match (input_line.trim()).parse::<i32>() { Ok(n) => { if n >= min_len && n <= max_len { code_len = n; break; } else { println!("Outside of range ({} - {}).", min_len, max_len); } } Err(_) => println!("Invalid input."), } } println!("Code of length {}.\n", code_len); loop { println!("Please enter the number of guesses allowed (7 - 20): "); input_line.clear(); io::stdin() .read_line(&mut input_line) .expect("The read line failed."); match (input_line.trim()).parse::<i32>() { Ok(n) => { if n >= 7 && n <= 20 { guesses_max = n; break; } else { println!("Outside of range (7 - 20)."); } } Err(_) => println!("Invalid input."), } } println!("{} guesses allowed.\n", guesses_max); let mut rng = rand::thread_rng(); let mut code; if colors_dup { code = (0..code_len) .map(|_| ((65 + rng.gen_range(0, colors_n) as u8) as char)) .collect::<Vec<_>>(); } else { code = colors.chars().collect::<Vec<_>>(); code.shuffle(&mut rng); code = code[..code_len as usize].to_vec(); }
594Mastermind
15rust
m16ya
import Data.Digest.OpenSSL.MD5 (md5sum) import Data.ByteString (pack) import Data.Char (ord) main = do let message = "The quick brown fox jumped over the lazy dog's back" digest = (md5sum . pack . map (fromIntegral . ord)) message putStrLn digest
590MD5
8haskell
9e2mo
import qualified Data.Map.Strict as M import Data.List (transpose, intercalate) import Data.Maybe (fromJust, isJust) import Control.Monad (forM_) import Data.Monoid ((<>)) magic :: Int -> [[Int]] magic n = mapAsTable ((4 * n) + 2) (hiResMap n) hiResMap :: Int -> M.Map (Int, Int) Int hiResMap n = let mapLux = luxMap n mapSiam = siamMap n in M.fromList $ foldMap (\(xy, n) -> luxNums xy (fromJust (M.lookup xy mapLux)) ((4 * (n - 1)) + 1)) (M.toList mapSiam) luxNums :: (Int, Int) -> Char -> Int -> [((Int, Int), Int)] luxNums xy lux n = zipWith (\x d -> (x, n + d)) (hiRes xy) $ case lux of 'L' -> [3, 0, 1, 2] 'U' -> [0, 3, 1, 2] 'X' -> [0, 3, 2, 1] _ -> [0, 0, 0, 0] mapAsTable :: Int -> M.Map (Int, Int) Int -> [[Int]] mapAsTable nCols xyMap = let axis = [0 .. nCols - 1] in fmap (fromJust . flip M.lookup xyMap) <$> (axis >>= \y -> [axis >>= \x -> [(x, y)]]) luxMap :: Int -> M.Map (Int, Int) Char luxMap n = (M.fromList . concat) $ zipWith (\y xs -> (zipWith (\x c -> ((x, y), c)) [0 ..] xs)) [0 ..] (luxPattern n) luxPattern :: Int -> [String] luxPattern n = let d = (2 * n) + 1 [ls, us] = replicate n <$> "LU" [lRow, xRow] = replicate d <$> "LX" in replicate n lRow <> [ls <> ('U': ls)] <> [us <> ('L': us)] <> replicate (n - 1) xRow siamMap :: Int -> M.Map (Int, Int) Int siamMap n = let uBound = (2 * n) sPath uBound sMap (x, y) n = let newMap = M.insert (x, y) n sMap in if y == uBound && x == quot uBound 2 then newMap else sPath uBound newMap (nextSiam uBound sMap (x, y)) (n + 1) in sPath uBound (M.fromList []) (n, 0) 1 nextSiam :: Int -> M.Map (Int, Int) Int -> (Int, Int) -> (Int, Int) nextSiam uBound sMap (x, y) = let alt (a, b) | a > uBound && b < 0 = (uBound, 1) | a > uBound = (0, b) | b < 0 = (a, uBound) | isJust (M.lookup (a, b) sMap) = (a - 1, b + 2) | otherwise = (a, b) in alt (x + 1, y - 1) hiRes :: (Int, Int) -> [(Int, Int)] hiRes (x, y) = let [col, row] = (* 2) <$> [x, y] [col1, row1] = succ <$> [col, row] in [(col, row), (col1, row), (col, row1), (col1, row1)] checked :: [[Int]] -> (Int, Bool) checked square = (h, all (h ==) t) where diagonals = fmap (flip (zipWith (!!)) [0 ..]) . ((:) <*> (return . reverse)) h:t = sum <$> square <> transpose square <> diagonals square table :: String -> [[String]] -> [String] table delim rows = let justifyRight c n s = drop (length s) (replicate n c <> s) in intercalate delim <$> transpose ((fmap =<< justifyRight ' ' . maximum . fmap length) <$> transpose rows) main :: IO () main = forM_ [1, 2, 3] $ \n -> do let test = magic n putStrLn $ unlines (table " " (fmap show <$> test)) print $ checked test putStrLn ""
600Magic squares of singly even order
8haskell
zh0t0
require 'fileutils' FileUtils.mkdir_p()
595Make directory path
14ruby
empax
k8 = [ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 ] k7 = [ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 ] k6 = [ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 ] k5 = [ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 ] k4 = [ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 ] k3 = [ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 ] k2 = [ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 ] k1 = [ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 ] k87 = [0] * 256 k65 = [0] * 256 k43 = [0] * 256 k21 = [0] * 256 def kboxinit(): for i in range(256): k87[i] = k8[i >> 4] << 4 | k7[i & 15] k65[i] = k6[i >> 4] << 4 | k5[i & 15] k43[i] = k4[i >> 4] << 4 | k3[i & 15] k21[i] = k2[i >> 4] << 4 | k1[i & 15] def f(x): x = ( k87[x>>24 & 255] << 24 | k65[x>>16 & 255] << 16 | k43[x>> 8 & 255] << 8 | k21[x & 255] ) return x<<11 | x>>(32-11)
596Main step of GOST 28147-89
3python
s2eq9
-- Create Table -- Distinct combination --- R:Red, B:Blue, G: Green, V: Violet, O: Orange, Y: Yellow DROP TYPE IF EXISTS color cascade;CREATE TYPE color AS ENUM ('R', 'B', 'G', 'V', 'O', 'Y'); DROP TABLE IF EXISTS guesses cascade; CREATE TABLE guesses ( FIRST color, SECOND color, third color , fourth color ); CREATE TABLE mastermind () inherits (guesses); INSERT INTO mastermind VALUES ('G', 'B', 'R', 'V'); INSERT INTO guesses VALUES ('Y', 'Y', 'B', 'B'); INSERT INTO guesses VALUES ('V', 'R', 'R', 'Y'); INSERT INTO guesses VALUES ('G', 'V', 'G', 'Y'); INSERT INTO guesses VALUES ('R', 'R', 'V', 'Y'); INSERT INTO guesses VALUES ('B', 'R', 'G', 'V'); INSERT INTO guesses VALUES ('G', 'B', 'R', 'V'); --- Matches Black CREATE OR REPLACE FUNCTION check_black(guesses, mastermind) RETURNS INTEGER AS $$ SELECT ( ($1.FIRST = $2.FIRST)::INT + ($1.SECOND = $2.SECOND)::INT + ($1.third = $2.third)::INT + ($1.fourth = $2.fourth)::INT ); $$ LANGUAGE SQL; --- Matches White CREATE OR REPLACE FUNCTION check_white(guesses, mastermind) RETURNS INTEGER AS $$ SELECT ( CASE WHEN ($1.FIRST = $2.FIRST) THEN 0 ELSE 0 END + CASE WHEN ($1.SECOND = $2.SECOND) THEN 0 ELSE 0 END + CASE WHEN ($1.third = $2.third) THEN 0 ELSE 0 END + CASE WHEN ($1.fourth = $2.fourth) THEN 0 ELSE 0 END + CASE WHEN ($1.FIRST!= $2.FIRST) THEN ( $1.FIRST = $2.SECOND OR $1.FIRST = $2.third OR $1.FIRST = $2.fourth )::INT ELSE 0 END + CASE WHEN ($1.SECOND!= $2.SECOND) THEN ( $1.SECOND = $2.FIRST OR $1.SECOND = $2.third OR $1.SECOND = $2.fourth )::INT ELSE 0 END + CASE WHEN ($1.third!= $2.third) THEN ( $1.third = $2.FIRST OR $1.third = $2.SECOND OR $1.third = $2.fourth )::INT ELSE 0 END + CASE WHEN ($1.fourth!= $2.fourth) THEN ( $1.fourth = $2.FIRST OR $1.fourth = $2.SECOND OR $1.fourth = $2.third )::INT ELSE 0 END ) FROM guesses $$ LANGUAGE SQL; SELECT guesses, check_black(guesses.*, mastermind.*), check_white(guesses.*, mastermind.*) FROM guesses, mastermind
594Mastermind
19sql
us2vq
public class MagicSquareSinglyEven { public static void main(String[] args) { int n = 6; for (int[] row : magicSquareSinglyEven(n)) { for (int x : row) System.out.printf("%2s ", x); System.out.println(); } System.out.printf("\nMagic constant:%d ", (n * n + 1) * n / 2); } public static int[][] magicSquareOdd(final int n) { if (n < 3 || n % 2 == 0) throw new IllegalArgumentException("base must be odd and > 2"); int value = 0; int gridSize = n * n; int c = n / 2, r = 0; int[][] result = new int[n][n]; while (++value <= gridSize) { result[r][c] = value; if (r == 0) { if (c == n - 1) { r++; } else { r = n - 1; c++; } } else if (c == n - 1) { r--; c = 0; } else if (result[r - 1][c + 1] == 0) { r--; c++; } else { r++; } } return result; } static int[][] magicSquareSinglyEven(final int n) { if (n < 6 || (n - 2) % 4 != 0) throw new IllegalArgumentException("base must be a positive " + "multiple of 4 plus 2"); int size = n * n; int halfN = n / 2; int subSquareSize = size / 4; int[][] subSquare = magicSquareOdd(halfN); int[] quadrantFactors = {0, 2, 3, 1}; int[][] result = new int[n][n]; for (int r = 0; r < n; r++) { for (int c = 0; c < n; c++) { int quadrant = (r / halfN) * 2 + (c / halfN); result[r][c] = subSquare[r % halfN][c % halfN]; result[r][c] += quadrantFactors[quadrant] * subSquareSize; } } int nColsLeft = halfN / 2; int nColsRight = nColsLeft - 1; for (int r = 0; r < halfN; r++) for (int c = 0; c < n; c++) { if (c < nColsLeft || c >= n - nColsRight || (c == nColsLeft && r == nColsLeft)) { if (c == 0 && r == nColsLeft) continue; int tmp = result[r][c]; result[r][c] = result[r + halfN][c]; result[r + halfN][c] = tmp; } } return result; } }
600Magic squares of singly even order
9java
o5a8d
use std::fs; fn main() { fs::create_dir_all("./path/to/dir").expect("An Error Occured!") }
595Make directory path
15rust
w91e4
new java.io.File("/path/to/dir").mkdirs
595Make directory path
16scala
s2wqo
use strict; use warnings; use feature 'say'; use ntheory 'is_prime'; sub magnanimous { my($n) = @_; my $last; for my $c (1 .. length($n) - 1) { ++$last and last unless is_prime substr($n,0,$c) + substr($n,$c) } not $last; } my @M; for ( my $i = 0, my $count = 0; $count < 400; $i++ ) { ++$count and push @M, $i if magnanimous($i); } say "First 45 magnanimous numbers\n". (sprintf "@{['%4d' x 45]}", @M[0..45-1]) =~ s/(.{60})/$1\n/gr; say "241st through 250th magnanimous numbers\n" . join ' ', @M[240..249]; say "\n391st through 400th magnanimous numbers\n". join ' ', @M[390..399];
598Magnanimous numbers
2perl
gol4e
use 5.10.0; use List::Util 'max'; my @sum; while (<>) { my @x = split; @sum = ($x[0] + $sum[0], map($x[$_] + max(@sum[$_-1, $_]), 1 .. @x-2), $x[-1] + $sum[-1]); } say max(@sum);
588Maximum triangle path sum
2perl
85f0w
null
600Magic squares of singly even order
11kotlin
xchws
typedef double * const __restrict MAT_OUT_t; typedef double * const restrict MAT_OUT_t; typedef const double * const MAT_IN_t; static inline void mat_mult( const int m, const int n, const int p, MAT_IN_t a, MAT_IN_t b, MAT_OUT_t c) { for (int row=0; row<m; row++) { for (int col=0; col<p; col++) { c[MAT_ELEM(m,p,row,col)] = 0; for (int i=0; i<n; i++) { c[MAT_ELEM(m,p,row,col)] += a[MAT_ELEM(m,n,row,i)]*b[MAT_ELEM(n,p,i,col)]; } } } } static inline void mat_show( const int m, const int p, MAT_IN_t a) { for (int row=0; row<m;row++) { for (int col=0; col<p;col++) { printf(, a[MAT_ELEM(m,p,row,col)]); } putchar('\n'); } } int main(void) { double a[4*4] = {1, 1, 1, 1, 2, 4, 8, 16, 3, 9, 27, 81, 4, 16, 64, 256}; double b[4*3] = { 4.0, -3.0, 4.0/3, -13.0/3, 19.0/4, -7.0/3, 3.0/2, -2.0, 7.0/6, -1.0/6, 1.0/4, -1.0/6}; double c[4*3] = {0}; mat_mult(4,4,3,a,b,c); mat_show(4,3,c); return 0; }
604Matrix multiplication
5c
3kxza
class Maze def solve reset_visiting_state @queue = [] enqueue_cell([], @start_x, @start_y) path = nil until path || @queue.empty? path = solve_visit_cell end if path for x, y in path @path[x][y] = true end else puts end end private def solve_visit_cell path = @queue.shift x, y = path.last return path if x == @end_x && y == @end_y @visited[x][y] = true for dx, dy in DIRECTIONS if dx.nonzero? new_x = x + dx if move_valid?(new_x, y) &&!@vertical_walls[ [x, new_x].min ][y] enqueue_cell(path, new_x, y) end else new_y = y + dy if move_valid?(x, new_y) &&!@horizontal_walls[x][ [y, new_y].min ] enqueue_cell(path, x, new_y) end end end nil end def enqueue_cell(path, x, y) @queue << path + [[x, y]] end end maze = Maze.new 20, 10 maze.solve maze.print
587Maze solving
14ruby
o4z8v
import sequtils, strutils type Square = seq[seq[int]] func magicSquareOdd(n: Positive): Square = ## Build a magic square of odd order. assert n >= 3 and (n and 1)!= 0, "base must be odd and greater than 2." result = newSeqWith(n, newSeq[int](n)) var r = 0 c = n div 2 value = 0 while value < n * n: inc value result[r][c] = value if r == 0: if c == n - 1: inc r else: r = n - 1 inc c elif c == n - 1: dec r c = 0 elif result[r - 1][c + 1] == 0: dec r inc c else: inc r func magicSquareSinglyEven(n: int): Square = ## Build a magic square of singly even order. assert n >= 6 and ((n - 2) and 3) == 0, "base must be a positive multiple of 4 plus 2." result = newSeqWith(n, newSeq[int](n)) let halfN = n div 2 subSquareSize = n * n div 4 subSquare = magicSquareOdd(halfN) const QuadrantFactors = [0, 2, 3, 1] for r in 0..<n: for c in 0..<n: let quadrant = r div halfN * 2 + c div halfN result[r][c] = subSquare[r mod halfN][c mod halfN] + QuadrantFactors[quadrant] * subSquareSize let nColsLeft = halfN div 2 nColsRight = nColsLeft - 1 for r in 0..<halfN: for c in 0..<n: if c < nColsLeft or c >= n - nColsRight or (c == nColsLeft and r == nColsLeft): if c!= 0 or r!= nColsLeft: swap result[r][c], result[r + halfN][c] func `$`(square: Square): string = ## Return the string representation of a magic square. let length = len($(square.len * square.len)) for row in square: result.add row.mapIt(($it).align(length)).join(" ") & '\n' when isMainModule: let n = 6 echo magicSquareSinglyEven(n) echo "Magic constant = ", n * (n * n + 1) div 2
600Magic squares of singly even order
1lua
qlkx0
null
600Magic squares of singly even order
2perl
2xzlf
use std::convert::TryInto; use std::env; use std::num::Wrapping; const REPLACEMENT_TABLE: [[u8; 16]; 8] = [ [4, 10, 9, 2, 13, 8, 0, 14, 6, 11, 1, 12, 7, 15, 5, 3], [14, 11, 4, 12, 6, 13, 15, 10, 2, 3, 8, 1, 0, 7, 5, 9], [5, 8, 1, 13, 10, 3, 4, 2, 14, 15, 12, 7, 6, 0, 9, 11], [7, 13, 10, 1, 0, 8, 9, 15, 14, 4, 6, 12, 11, 2, 5, 3], [6, 12, 7, 1, 5, 15, 13, 8, 4, 10, 9, 14, 0, 3, 11, 2], [4, 11, 10, 0, 7, 2, 1, 13, 3, 6, 8, 5, 9, 12, 15, 14], [13, 11, 4, 1, 3, 15, 5, 9, 0, 10, 14, 7, 6, 8, 2, 12], [1, 15, 13, 0, 5, 7, 10, 4, 9, 2, 3, 14, 6, 11, 8, 12], ]; const KEYS: [u32; 8] = [ 0xE2C1_04F9, 0xE41D_7CDE, 0x7FE5_E857, 0x0602_65B4, 0x281C_CC85, 0x2E2C_929A, 0x4746_4503, 0xE00_CE510, ]; fn main() { let args: Vec<String> = env::args().collect(); if args.len() < 2 { let plain_text: Vec<u8> = vec![0x04, 0x3B, 0x04, 0x21, 0x04, 0x32, 0x04, 0x30]; println!( "Before one step: {}\n", plain_text .iter() .cloned() .fold("".to_string(), |b, y| b + &format!("{:02X} ", y)) ); let encoded_text = main_step(plain_text, KEYS[0]); println!( "After one step: {}\n", encoded_text .iter() .cloned() .fold("".to_string(), |b, y| b + &format!("{:02X} ", y)) ); } else { let mut t = args[1].clone();
596Main step of GOST 28147-89
15rust
o5q83
use rand::{thread_rng, Rng, rngs::ThreadRng}; const WIDTH: usize = 16; const HEIGHT: usize = 16; #[derive(Clone, Copy, PartialEq)] struct Cell { col: usize, row: usize, } impl Cell { fn from(col: usize, row: usize) -> Cell { Cell {col, row} } } struct Maze { cells: [[bool; HEIGHT]; WIDTH],
587Maze solving
15rust
ig3od
void transpose(void *dest, void *src, int src_h, int src_w) { int i, j; double (*d)[src_h] = dest, (*s)[src_w] = src; for (i = 0; i < src_h; i++) for (j = 0; j < src_w; j++) d[j][i] = s[i][j]; } int main() { int i, j; double a[3][5] = {{ 0, 1, 2, 3, 4 }, { 5, 6, 7, 8, 9 }, { 1, 0, 0, 0, 42}}; double b[5][3]; transpose(b, a, 3, 5); for (i = 0; i < 5; i++) for (j = 0; j < 3; j++) printf(, b[i][j], j == 2 ? '\n' : ' '); return 0; }
605Matrix transposition
5c
ri3g7
enum errors: Error {
587Maze solving
17swift
85t0v
import java.nio.charset.StandardCharsets; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; public class Digester { public static void main(String[] args) { System.out.println(hexDigest("Rosetta code", "MD5")); } static String hexDigest(String str, String digestName) { try { MessageDigest md = MessageDigest.getInstance(digestName); byte[] digest = md.digest(str.getBytes(StandardCharsets.UTF_8)); char[] hex = new char[digest.length * 2]; for (int i = 0; i < digest.length; i++) { hex[2 * i] = "0123456789abcdef".charAt((digest[i] & 0xf0) >> 4); hex[2 * i + 1] = "0123456789abcdef".charAt(digest[i] & 0x0f); } return new String(hex); } catch (NoSuchAlgorithmException e) { throw new IllegalStateException(e); } } }
590MD5
9java
th6f9
import math from sys import stdout LOG_10 = 2.302585092994 def build_oms(s): if s% 2 == 0: s += 1 q = [[0 for j in range(s)] for i in range(s)] p = 1 i = s j = 0 while p <= (s * s): q[i][j] = p ti = i + 1 if ti >= s: ti = 0 tj = j - 1 if tj < 0: tj = s - 1 if q[ti][tj] != 0: ti = i tj = j + 1 i = ti j = tj p = p + 1 return q, s def build_sems(s): if s% 2 == 1: s += 1 while s% 4 == 0: s += 2 q = [[0 for j in range(s)] for i in range(s)] z = s b = z * z c = 2 * b d = 3 * b o = build_oms(z) for j in range(0, z): for i in range(0, z): a = o[0][i][j] q[i][j] = a q[i + z][j + z] = a + b q[i + z][j] = a + c q[i][j + z] = a + d lc = z rc = lc for j in range(0, z): for i in range(0, s): if i < lc or i > s - rc or (i == lc and j == lc): if not (i == 0 and j == lc): t = q[i][j] q[i][j] = q[i][j + z] q[i][j + z] = t return q, s def format_sqr(s, l): for i in range(0, l - len(s)): s = + s return s + def display(q): s = q[1] print(.format(s, s)) k = 1 + math.floor(math.log(s * s) / LOG_10) for j in range(0, s): for i in range(0, s): stdout.write(format_sqr(.format(q[0][i][j]), k)) print() print(.format(s * ((s * s) + 1) stdout.write() display(build_sems(6))
600Magic squares of singly even order
3python
vq329
package main import ( "fmt" "log" "strings" ) const dimensions int = 8 func setupMagicSquareData(d int) ([][]int, error) { var output [][]int if d < 4 || d%4 != 0 { return [][]int{}, fmt.Errorf("Square dimension must be a positive number which is divisible by 4") } var bits uint = 0x9669
603Magic squares of doubly even order
0go
2xdl7
require magnanimouses = Enumerator.new do |y| (0..).each {|n| y << n if (1..n.digits.size-1).all? {|k| n.divmod(10**k).sum.prime?} } end puts puts magnanimouses.first(45).join(' ') puts puts magnanimouses.first(250).last(10).join(' ') puts puts magnanimouses.first(400).last(10).join(' ')
598Magnanimous numbers
14ruby
jdu7x
use strict; package SquareMatrix; use Carp; use overload ( '""' => \&_string, '*' => \&_mult, '*=' => \&_mult, '**' => \&_expo, '=' => \&_copy, ); sub make { my $cls = shift; my $n = @_; for (@_) { confess "Bad data @$_: matrix must be square " if @$_ != $n; } bless [ map [@$_], @_ ] } sub identity { my $self = shift; my $n = @$self - 1; my @rows = map [ (0) x $_, 1, (0) x ($n - $_) ], 0 .. $n; bless \@rows } sub zero { my $self = shift; my $n = @$self; bless [ map [ (0) x $n ], 1 .. $n ] } sub _string { "[ ".join("\n " => map join(" " => map(sprintf("%12.6g", $_), @$_)), @{+shift} )." ]\n"; } sub _mult { my ($a, $b) = @_; my $x = $a->zero; my @idx = (0 .. $ for my $j (@idx) { my @col = map($a->[$_][$j], @idx); for my $i (@idx) { my $row = $b->[$i]; $x->[$i][$j] += $row->[$_] * $col[$_] for @idx; } } $x } sub _expo { my ($self, $n) = @_; confess "matrix **: must be non-negative integer power" unless $n >= 0 && $n == int($n); my ($tmp, $out) = ($self, $self->identity); do { $out *= $tmp if $n & 1; $tmp *= $tmp; } while $n >>= 1; $out } sub _copy { bless [ map [ @$_ ], @{+shift} ] } package main; my $m = SquareMatrix->make( [1, 2, 0], [0, 3, 1], [1, 0, 0] ); print " $m = SquareMatrix->make( [ 1.0001, 0, 0, 1 ], [ 0, 1.001, 0, 0 ], [ 0, 0, 1, 0.99998 ], [ 1e-8, 0, 0, 1.0002 ]); print "\n print "\n print "\n print "\n print "\n $m->identity ** 1_000_000_000_000;
591Matrix-exponentiation operator
2perl
rnjgd
> magic(6) [,1] [,2] [,3] [,4] [,5] [,6] [1,] 35 1 6 26 19 24 [2,] 3 32 7 21 23 25 [3,] 31 9 2 22 27 20 [4,] 8 28 33 17 10 15 [5,] 30 5 34 12 14 16 [6,] 4 36 29 13 18 11
600Magic squares of singly even order
13r
9admg
def odd_magic_square(n) n.times.map{|i| n.times.map{|j| n*((i+j+1+n/2)%n) + ((i+2*j-5)%n) + 1} } end def single_even_magic_square(n) raise ArgumentError, unless (n-2) % 4 == 0 raise ArgumentError, if n == 2 order = (n-2)/4 odd_square = odd_magic_square(n/2) to_add = (0..3).map{|f| f*n*n/4} quarts = to_add.map{|f| odd_square.dup.map{|row|row.map{|el| el+f}} } sq = [] quarts[0].zip(quarts[2]){|d1,d2| sq << [d1,d2].flatten} quarts[3].zip(quarts[1]){|d1,d2| sq << [d1,d2].flatten} sq = sq.transpose order.times{|i| sq[i].rotate!(n/2)} swap(sq[0][order], sq[0][-order-1]) swap(sq[order][order], sq[order][-order-1]) (order-1).times{|i| sq[-(i+1)].rotate!(n/2)} randomize(sq) end def swap(a,b) a,b = b,a end def randomize(square) square.shuffle.transpose.shuffle end def to_string(square) n = square.size fmt = * n square.inject(){|str,row| str << fmt % row << } end puts to_string(single_even_magic_square(6))
600Magic squares of singly even order
14ruby
50yuj
import Data.List (transpose, unfoldr, intercalate) import Data.List.Split (chunksOf) import Data.Bool (bool) import Control.Monad (forM_) magicSquare :: Int -> [[Int]] magicSquare n | rem n 4 > 0 = [] | otherwise = chunksOf n $ zipWith (flip (bool =<< (-) limit)) series [1 .. sqr] where sqr = n * n limit = sqr + 1 series | isPowerOf 2 n = magicSeries $ floor (logBase 2 (fromIntegral sqr)) | otherwise = concat . concat . concat . scale $ scale <$> chunksOf 4 (magicSeries 4) where scale = replicate $ quot n 4 magicSeries :: Int -> [Bool] magicSeries = (iterate ((++) <*> fmap not) [True] !!) isPowerOf :: Int -> Int -> Bool isPowerOf k n = until ((0 /=) . flip rem k) (`quot` k) n == 1 checked :: [[Int]] -> (Int, Bool) checked square = let diagonals = fmap (flip (zipWith (!!)) [0 ..]) . ((:) <*> (return . reverse)) h:t = sum <$> square ++ transpose square ++ diagonals square in (h, all (h ==) t) table :: String -> [[String]] -> [String] table delim rows = let justifyRight c n s = drop (length s) (replicate n c ++ s) in intercalate delim <$> transpose ((fmap =<< justifyRight ' ' . maximum . fmap length) <$> transpose rows) main :: IO () main = forM_ [4, 8, 16] $ \n -> do let test = magicSquare n putStrLn $ unlines (table " " (fmap show <$> test)) print $ checked test putStrLn []
603Magic squares of doubly even order
8haskell
ay51g
fn is_prime(n: u32) -> bool { if n < 2 { return false; } if n% 2 == 0 { return n == 2; } if n% 3 == 0 { return n == 3; } let mut p = 5; while p * p <= n { if n% p == 0 { return false; } p += 2; if n% p == 0 { return false; } p += 4; } true } fn is_magnanimous(n: u32) -> bool { let mut p: u32 = 10; while n >= p { if!is_prime(n% p + n / p) { return false; } p *= 10; } true } fn main() { let mut m = (0..).filter(|x| is_magnanimous(*x)).take(400); println!("First 45 magnanimous numbers:"); for (i, n) in m.by_ref().take(45).enumerate() { if i > 0 && i% 15 == 0 { println!(); } print!("{:3} ", n); } println!("\n\n241st through 250th magnanimous numbers:"); for n in m.by_ref().skip(195).take(10) { print!("{} ", n); } println!("\n\n391st through 400th magnanimous numbers:"); for n in m.by_ref().skip(140) { print!("{} ", n); } println!(); }
598Magnanimous numbers
15rust
hf5j2
import Foundation func isPrime(_ n: Int) -> Bool { if n < 2 { return false } if n% 2 == 0 { return n == 2 } if n% 3 == 0 { return n == 3 } var p = 5 while p * p <= n { if n% p == 0 { return false } p += 2 if n% p == 0 { return false } p += 4 } return true } func isMagnanimous(_ n: Int) -> Bool { var p = 10; while n >= p { if!isPrime(n% p + n / p) { return false } p *= 10 } return true } let m = (0...).lazy.filter{isMagnanimous($0)}.prefix(400); print("First 45 magnanimous numbers:"); for (i, n) in m.prefix(45).enumerated() { if i > 0 && i% 15 == 0 { print() } print(String(format: "%3d", n), terminator: " ") } print("\n\n241st through 250th magnanimous numbers:"); for n in m.dropFirst(240).prefix(10) { print(n, terminator: " ") } print("\n\n391st through 400th magnanimous numbers:"); for n in m.dropFirst(390) { print(n, terminator: " ") } print()
598Magnanimous numbers
17swift
7nvrq
use std::env; fn main() { let n: usize = match env::args().nth(1).and_then(|arg| arg.parse().ok()).ok_or( "Please specify the size of the magic square, as a positive multiple of 4 plus 2.", ) { Ok(arg) if arg% 2 == 1 || arg >= 6 && (arg - 2)% 4 == 0 => arg, Err(e) => panic!(e), _ => panic!("Argument must be a positive multiple of 4 plus 2."), }; let (ms, mc) = magic_square_singly_even(n); println!("n: {}", n); println!("Magic constant: {}\n", mc); let width = (n * n).to_string().len() + 1; for row in ms { for elem in row { print!("{e:>w$}", e = elem, w = width); } println!(); } } fn magic_square_singly_even(n: usize) -> (Vec<Vec<usize>>, usize) { let size = n * n; let half = n / 2; let sub_square_size = size / 4; let sub_square = magic_square_odd(half); let quadrant_factors = [0, 2, 3, 1]; let cols_left = half / 2; let cols_right = cols_left - 1; let ms = (0..n) .map(|r| { (0..n) .map(|c| { let localr = if (c < cols_left || c >= n - cols_right || c == cols_left && r% half == cols_left) &&!(c == 0 && r% half == cols_left) { if r >= half { r - half } else { r + half } } else { r }; let quadrant = localr / half * 2 + c / half; let v = sub_square[localr% half][c% half]; v + quadrant_factors[quadrant] * sub_square_size }) .collect() }) .collect::<Vec<Vec<_>>>(); (ms, (n * n + 1) * n / 2) } fn magic_square_odd(n: usize) -> Vec<Vec<usize>> { (0..n) .map(|r| { (0..n) .map(|c| { n * (((c + 1) + (r + 1) - 1 + (n >> 1))% n) + (((c + 1) + (2 * (r + 1)) - 2)% n) + 1 }) .collect::<Vec<_>>() }) .collect::<Vec<Vec<_>>>() }
600Magic squares of singly even order
15rust
48m5u
int f(int n, int x, int y) { return (x + y*2 + 1)%n; } int main(int argc, char **argv) { int i, j, n; if(argc!=2) return 1; n = atoi(argv[1]); if (n < 3 || (n%2) == 0) return 2; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) printf(, f(n, n - j - 1, i)*n + f(n, j, i) + 1); putchar('\n'); } printf(, (n*n+1)/2*n); return 0; }
606Magic squares of odd order
5c
8u704
(defn transpose [s] (apply map vector s)) (defn nested-for [f x y] (map (fn [a] (map (fn [b] (f a b)) y)) x)) (defn matrix-mult [a b] (nested-for (fn [x y] (reduce + (map * x y))) a (transpose b))) (def ma [[1 1 1 1] [2 4 8 16] [3 9 27 81] [4 16 64 256]]) (def mb [[4 -3 4/3 -1/4] [-13/3 19/4 -7/3 11/24] [3/2 -2 7/6 -1/4] [-1/6 1/4 -1/6 1/24]])
604Matrix multiplication
6clojure
ceo9b
public class MagicSquareDoublyEven { public static void main(String[] args) { int n = 8; for (int[] row : magicSquareDoublyEven(n)) { for (int x : row) System.out.printf("%2s ", x); System.out.println(); } System.out.printf("\nMagic constant:%d ", (n * n + 1) * n / 2); } static int[][] magicSquareDoublyEven(final int n) { if (n < 4 || n % 4 != 0) throw new IllegalArgumentException("base must be a positive " + "multiple of 4");
603Magic squares of doubly even order
9java
jd97c
(defmulti matrix-transpose "Switch rows with columns." class) (defmethod matrix-transpose clojure.lang.PersistentList [mtx] (apply map list mtx)) (defmethod matrix-transpose clojure.lang.PersistentVector [mtx] (apply mapv vector mtx))
605Matrix transposition
6clojure
bzckz
>>> from operator import mul >>> def matrixMul(m1, m2): return map( lambda row: map( lambda *column: sum(map(mul, row, column)), *m2), m1) >>> def identity(size): size = range(size) return [[(i==j)*1 for i in size] for j in size] >>> def matrixExp(m, pow): assert pow>=0 and int(pow)==pow, accumulator = identity(len(m)) for i in range(pow): accumulator = matrixMul(accumulator, m) return accumulator >>> def printtable(data): for row in data: print ' '.join('%-5s'% ('%s'% cell) for cell in row) >>> m = [[3,2], [2,1]] >>> for i in range(5): print '\n%i:'% i printtable( matrixExp(m, i) ) 0: 1 0 0 1 1: 3 2 2 1 2: 13 8 8 5 3: 55 34 34 21 4: 233 144 144 89 >>> printtable( matrixExp(m, 10) ) 1346269 832040 832040 514229 >>>
591Matrix-exponentiation operator
3python
7dhrm
def solve(tri): while len(tri) > 1: t0 = tri.pop() t1 = tri.pop() tri.append([max(t0[i], t0[i+1]) + t for i,t in enumerate(t1)]) return tri[0][0] data = print solve([map(int, row.split()) for row in data.splitlines()])
588Maximum triangle path sum
3python
o4t81
null
590MD5
11kotlin
o4d8z
(() => { 'use strict';
603Magic squares of doubly even order
10javascript
16up7
library(Biodem) m <- matrix(c(3,2,2,1), nrow=2) mtx.exp(m, 0) mtx.exp(m, 1) mtx.exp(m, 2) mtx.exp(m, 3) mtx.exp(m, 10)
591Matrix-exponentiation operator
13r
58guy
package main import ( "bytes" "fmt" "math/rand" "time" ) type maze struct { c []byte
597Maze generation
0go
go24n
int main() { int iX,iY; const int iXmax = 800; const int iYmax = 800; double Cx,Cy; const double CxMin=-2.5; const double CxMax=1.5; const double CyMin=-2.0; const double CyMax=2.0; double PixelWidth=(CxMax-CxMin)/iXmax; double PixelHeight=(CyMax-CyMin)/iYmax; const int MaxColorComponentValue=255; FILE * fp; char *filename=; char *comment=; static unsigned char color[3]; double Zx, Zy; double Zx2, Zy2; int Iteration; const int IterationMax=200; const double EscapeRadius=2; double ER2=EscapeRadius*EscapeRadius; fp= fopen(filename,); fprintf(fp,,comment,iXmax,iYmax,MaxColorComponentValue); for(iY=0;iY<iYmax;iY++) { Cy=CyMin + iY*PixelHeight; if (fabs(Cy)< PixelHeight/2) Cy=0.0; for(iX=0;iX<iXmax;iX++) { Cx=CxMin + iX*PixelWidth; Zx=0.0; Zy=0.0; Zx2=Zx*Zx; Zy2=Zy*Zy; for (Iteration=0;Iteration<IterationMax && ((Zx2+Zy2)<ER2);Iteration++) { Zy=2*Zx*Zy + Cy; Zx=Zx2-Zy2 +Cx; Zx2=Zx*Zx; Zy2=Zy*Zy; }; if (Iteration==IterationMax) { color[0]=0; color[1]=0; color[2]=0; } else { color[0]=255; color[1]=255; color[2]=255; }; fwrite(color,1,3,fp); } } fclose(fp); return 0; }
607Mandelbrot set
5c
s24q5
null
603Magic squares of doubly even order
11kotlin
50zua
package main import "fmt" func a(k int, x1, x2, x3, x4, x5 func() int) int { var b func() int b = func() int { k-- return a(k, b, x1, x2, x3, x4) } if k <= 0 { return x4() + x5() } return b() } func main() { x := func(i int) func() int { return func() int { return i } } fmt.Println(a(10, x(1), x(-1), x(-1), x(1), x(0))) }
599Man or boy test
0go
emja6
import Data.Array.ST (STArray, freeze, newArray, readArray, writeArray) import Data.STRef (STRef, newSTRef, readSTRef, writeSTRef) import System.Random (Random(..), getStdGen, StdGen) import Control.Monad (forM_, unless) import Control.Monad.ST (ST, stToIO) import Data.Array (Array, (!), bounds) import Data.Bool (bool) rand :: Random a => (a, a) -> STRef s StdGen -> ST s a rand range gen = do (a, g) <- randomR range <$> readSTRef gen gen `writeSTRef` g return a data Maze = Maze { rightWalls, belowWalls :: Array (Int, Int) Bool } maze :: Int -> Int -> StdGen -> ST s Maze maze width height gen = do visited <- mazeArray False rWalls <- mazeArray True bWalls <- mazeArray True gen <- newSTRef gen (,) <$> rand (0, maxX) gen <*> rand (0, maxY) gen >>= visit gen visited rWalls bWalls Maze <$> freeze rWalls <*> freeze bWalls where visit gen visited rWalls bWalls here = do writeArray visited here True let ns = neighbors here i <- rand (0, length ns - 1) gen forM_ (ns !! i: take i ns ++ drop (i + 1) ns) $ \there -> do seen <- readArray visited there unless seen $ do removeWall here there visit gen visited rWalls bWalls there where removeWall (x1, y1) (x2, y2) = writeArray (bool rWalls bWalls (x1 == x2)) (min x1 x2, min y1 y2) False neighbors (x, y) = bool [(x - 1, y)] [] (0 == x) ++ bool [(x + 1, y)] [] (maxX == x) ++ bool [(x, y - 1)] [] (0 == y) ++ bool [(x, y + 1)] [] (maxY == y) maxX = width - 1 maxY = height - 1 mazeArray = newArray ((0, 0), (maxX, maxY)) :: Bool -> ST s (STArray s (Int, Int) Bool) printMaze :: Maze -> IO () printMaze (Maze rWalls bWalls) = do putStrLn $ '+': concat (replicate (maxX + 1) " forM_ [0 .. maxY] $ \y -> do putStr "|" forM_ [0 .. maxX] $ \x -> do putStr " " putStr $ bool " " "|" (rWalls ! (x, y)) putStrLn "" forM_ [0 .. maxX] $ \x -> do putStr "+" putStr $ bool " " " putStrLn "+" where maxX = fst (snd $ bounds rWalls) maxY = snd (snd $ bounds rWalls) main :: IO () main = getStdGen >>= stToIO . maze 11 8 >>= printMaze
597Maze generation
8haskell
s2aqk
$ irb irb(main):001:0> require 'matrix' => true irb(main):002:0> m=Matrix[[3,2],[2,1]] => Matrix[[3, 2], [2, 1]] irb(main):003:0> m**0 => Matrix[[1, 0], [0, 1]] irb(main):004:0> m ** 1 => Matrix[[3, 2], [2, 1]] irb(main):005:0> m ** 2 => Matrix[[13, 8], [8, 5]] irb(main):006:0> m ** 5 => Matrix[[987, 610], [610, 377]] irb(main):007:0> m ** 10 => Matrix[[1346269, 832040], [832040, 514229]]
591Matrix-exponentiation operator
14ruby
htbjx
use std::fmt; use std::ops; const WIDTH: usize = 6; #[derive(Clone)] struct SqMat { data: Vec<Vec<i64>>, } impl fmt::Debug for SqMat { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut row = "".to_string(); for i in &self.data { for j in i { row += &format!("{:>w$} ", j, w = WIDTH); } row += &"\n"; } write!(f, "{}", row) } } impl ops::BitXor<u32> for SqMat { type Output = Self; fn bitxor(self, n: u32) -> Self::Output { let mut aux = self.data.clone(); let mut ans: SqMat = SqMat { data: vec![vec![0; aux.len()]; aux.len()], }; for i in 0..aux.len() { ans.data[i][i] = 1; } let mut b = n; while b > 0 { if b & 1 > 0 {
591Matrix-exponentiation operator
15rust
kzph5
include "NSLog.incl" local fn MapRange( s as double, a1 as double, a2 as double, b1 as double, b2 as double ) as double end fn = b1+(s-a1)*(b2-b1)/(a2-a1) NSInteger i for i = 0 to 10 NSLog( @"%2d maps to%5.1f", i, fn MapRange( i, 0, 10, -1, 0 ) ) next HandleEvents
602Map range
0go
8ub0g
package main import "fmt" type rangeBounds struct { b1, b2 float64 } func mapRange(x, y rangeBounds, n float64) float64 { return y.b1 + (n - x.b1) * (y.b2 - y.b1) / (x.b2 - x.b1) } func main() { r1 := rangeBounds{0, 10} r2 := rangeBounds{-1, 0} for n := float64(0); n <= 10; n += 2 { fmt.Println(n, "maps to", mapRange(r1, r2, n)) } }
602Map range
0go
8ub0g
import bitops, sequtils, strutils type Square = seq[seq[int]] func magicSquareDoublyEven(n: int): Square = ## Build a magic square of doubly even order. assert n >= 4 and (n and 3) == 0, "base must be a positive multiple of 4." result = newSeqWith(n, newSeq[int](n)) const bits = 0b1001_0110_0110_1001 # Pattern of count-up vs count-down zones. let size = n * n let mult = n div 4 # How many multiples of 4. var i = 0 for r in 0..<n: for c in 0..<n: let bitPos = c div mult + r div mult * 4 result[r][c] = if bits.testBit(bitPos): i + 1 else: size - i inc i func `$`(square: Square): string = ## Return the string representation of a magic square. let length = len($(square.len * square.len)) for row in square: result.add row.mapIt(($it).align(length)).join(" ") & '\n' when isMainModule: let n = 8 echo magicSquareDoublyEven(n) echo "Magic constant = ", n * (n * n + 1) div 2
603Magic squares of doubly even order
1lua
4835c
def a; a = { k, x1, x2, x3, x4, x5 -> def b; b = { a (--k, b, x1, x2, x3, x4) } k <= 0 ? x4() + x5(): b() } def x = { n -> { it -> n } }
599Man or boy test
7groovy
kt5h7
class Matrix[T](matrix:Array[Array[T]])(implicit n: Numeric[T], m: ClassManifest[T]) { import n._ val rows=matrix.size val cols=matrix(0).size def row(i:Int)=matrix(i) def col(i:Int)=matrix map (_(i)) def *(other: Matrix[T]):Matrix[T] = new Matrix( Array.tabulate(rows, other.cols)((row, col) => (this.row(row), other.col(col)).zipped.map(_*_) reduceLeft (_+_) )) def **(x: Int)=x match { case 0 => createIdentityMatrix case 1 => this case 2 => this * this case _ => List.fill(x)(this) reduceLeft (_*_) } def createIdentityMatrix=new Matrix(Array.tabulate(rows, cols)((row,col) => if (row == col) one else zero) ) override def toString = matrix map (_.mkString("[", ", ", "]")) mkString "\n" } object MatrixTest { def main(args:Array[String])={ val m=new Matrix[BigInt](Array(Array(3,2), Array(2,1))) println("-- m --\n"+m) Seq(0,1,2,3,4,10,20,50) foreach {x => println("-- m**"+x+" --") println(m**x) } } }
591Matrix-exponentiation operator
16scala
1yepf
def mapRange(a1, a2, b1, b2, s) { b1 + ((s - a1) * (b2 - b1)) / (a2 - a1) } (0..10).each { s -> println(s + " in [0, 10] maps to " + mapRange(0, 10, -1, 0, s) + " in [-1, 0].") }
602Map range
7groovy
w9rel
import Data.Ratio import Text.Printf (PrintfType, printf) mapRange :: Fractional a => (a, a) -> (a, a) -> a -> a mapRange (a1, a2) (b1, b2) s = b1 + (s - a1) * (b2 - b1) / (a2 - a1) main :: IO () main = do putStrLn " mapM_ (\n -> prtD n . mapRange (0, 10) (-1, 0) $ fromIntegral n) [0 .. 10] putStrLn " mapM_ (\n -> prtR n . mapRange (0, 10) (-1, 0) $ n % 1) [0 .. 10] where prtD :: PrintfType r => Integer -> Double -> r prtD = printf "%2d ->%6.3f\n" prtR :: PrintfType r => Integer -> Rational -> r prtR n x = printf "%2d ->%s\n" n (show x)
602Map range
8haskell
lwdch
null
603Magic squares of doubly even order
2perl
o5b8x
import Data.IORef (modifyIORef, newIORef, readIORef) a :: (Enum a, Num b, Num a, Ord a) => a -> IO b -> IO b -> IO b -> IO b -> IO b -> IO b a k x1 x2 x3 x4 x5 = do r <- newIORef k let b = do k <- pred ! r a k b x1 x2 x3 x4 if k <= 0 then (+) <$> x4 <*> x5 else b where f !r = modifyIORef r f >> readIORef r main :: IO () main = a 10 # 1 # (-1) # (-1) # 1 # 0 >>= print where ( # ) f = f . return
599Man or boy test
8haskell
3kozj
triangle = ar = triangle.each_line.map{|line| line.split.map(&:to_i)} puts ar.inject([]){|res,x| maxes = [0, *res, 0].each_cons(2).map(&:max) x.zip(maxes).map{|a,b| a+b} }.max
588Maximum triangle path sum
14ruby
nr3it
require "md5"
590MD5
1lua
igfot
public class Range { public static void main(String[] args){ for(float s = 0;s <= 10; s++){ System.out.println(s + " in [0, 10] maps to "+ mapRange(0, 10, -1, 0, s)+" in [-1, 0]."); } } public static double mapRange(double a1, double a2, double b1, double b2, double s){ return b1 + ((s - a1)*(b2 - b1))/(a2 - a1); } }
602Map range
9java
3kszg
use std::cmp::max; fn max_path(vector: &mut Vec<Vec<u32>>) -> u32 { while vector.len() > 1 { let last = vector.pop().unwrap(); let ante = vector.pop().unwrap(); let mut new: Vec<u32> = Vec::new(); for (i, value) in ante.iter().enumerate() { new.push(max(last[i], last[i+1]) + value); }; vector.push(new); }; vector[0][0] } fn main() { let mut data = "55 94 48 95 30 96 77 71 26 67 97 13 76 38 45 07 36 79 16 37 68 48 07 09 18 70 26 06 18 72 79 46 59 79 29 90 20 76 87 11 32 07 07 49 18 27 83 58 35 71 11 25 57 29 85 14 64 36 96 27 11 58 56 92 18 55 02 90 03 60 48 49 41 46 33 36 47 23 92 50 48 02 36 59 42 79 72 20 82 77 42 56 78 38 80 39 75 02 71 66 66 01 03 55 72 44 25 67 84 71 67 11 61 40 57 58 89 40 56 36 85 32 25 85 57 48 84 35 47 62 17 01 01 99 89 52 06 71 28 75 94 48 37 10 23 51 06 48 53 18 74 98 15 27 02 92 23 08 71 76 84 15 52 92 63 81 10 44 10 69 93"; let mut vector = data.split("\n").map(|x| x.split(" ").map(|s: &str| s.parse::<u32>().unwrap()) .collect::<Vec<u32>>()).collect::<Vec<Vec<u32>>>(); let max_value = max_path(&mut vector); println!("{}", max_value);
588Maximum triangle path sum
15rust
d76ny
package org.rosettacode; import java.util.Collections; import java.util.Arrays; public class MazeGenerator { private final int x; private final int y; private final int[][] maze; public MazeGenerator(int x, int y) { this.x = x; this.y = y; maze = new int[this.x][this.y]; generateMaze(0, 0); } public void display() { for (int i = 0; i < y; i++) {
597Maze generation
9java
16jp2
null
602Map range
10javascript
cen9j
object MaximumTrianglePathSum extends App {
588Maximum triangle path sum
16scala
zk9tr
(ns mandelbrot (:refer-clojure :exclude [+ * <]) (:use (clojure.contrib complex-numbers) (clojure.contrib.generic [arithmetic :only [+ *]] [comparison :only [<]] [math-functions :only [abs]]))) (defn mandelbrot? [z] (loop [c 1 m (iterate #(+ z (* % %)) 0)] (if (and (> 20 c) (< (abs (first m)) 2) ) (recur (inc c) (rest m)) (if (= 20 c) true false)))) (defn mandelbrot [] (for [y (range 1 -1 -0.05) x (range -2 0.5 0.0315)] (if (mandelbrot? (complex x y)) "#" " "))) (println (interpose \newline (map #(apply str %) (partition 80 (mandelbrot)))))
607Mandelbrot set
6clojure
nghik
def MagicSquareDoublyEven(order): sq = [range(1+n*order,order + (n*order)+1) for n in range(order) ] n1 = order/4 for r in range(n1): r1 = sq[r][n1:-n1] r2 = sq[order -r - 1][n1:-n1] r1.reverse() r2.reverse() sq[r][n1:-n1] = r2 sq[order -r - 1][n1:-n1] = r1 for r in range(n1, order-n1): r1 = sq[r][:n1] r2 = sq[order -r - 1][order-n1:] r1.reverse() r2.reverse() sq[r][:n1] = r2 sq[order -r - 1][order-n1:] = r1 return sq def printsq(s): n = len(s) bl = len(str(n**2))+1 for i in range(n): print ''.join( [ (+str(bl)+)%(str(x)) for x in s[i]] ) print %sum(s[0]) printsq(MagicSquareDoublyEven(8))
603Magic squares of doubly even order
3python
i4pof
import java.util.function.DoubleSupplier; public class ManOrBoy { static double A(int k, DoubleSupplier x1, DoubleSupplier x2, DoubleSupplier x3, DoubleSupplier x4, DoubleSupplier x5) { DoubleSupplier B = new DoubleSupplier() { int m = k; public double getAsDouble() { return A(--m, this, x1, x2, x3, x4); } }; return k <= 0 ? x4.getAsDouble() + x5.getAsDouble() : B.getAsDouble(); } public static void main(String[] args) { System.out.println(A(10, () -> 1.0, () -> -1.0, () -> -1.0, () -> 1.0, () -> 0.0)); } }
599Man or boy test
9java
i4wos
function maze(x,y) { var n=x*y-1; if (n<0) {alert("illegal maze dimensions");return;} var horiz =[]; for (var j= 0; j<x+1; j++) horiz[j]= [], verti =[]; for (var j= 0; j<x+1; j++) verti[j]= [], here = [Math.floor(Math.random()*x), Math.floor(Math.random()*y)], path = [here], unvisited = []; for (var j = 0; j<x+2; j++) { unvisited[j] = []; for (var k= 0; k<y+1; k++) unvisited[j].push(j>0 && j<x+1 && k>0 && (j != here[0]+1 || k != here[1]+1)); } while (0<n) { var potential = [[here[0]+1, here[1]], [here[0],here[1]+1], [here[0]-1, here[1]], [here[0],here[1]-1]]; var neighbors = []; for (var j = 0; j < 4; j++) if (unvisited[potential[j][0]+1][potential[j][1]+1]) neighbors.push(potential[j]); if (neighbors.length) { n = n-1; next= neighbors[Math.floor(Math.random()*neighbors.length)]; unvisited[next[0]+1][next[1]+1]= false; if (next[0] == here[0]) horiz[next[0]][(next[1]+here[1]-1)/2]= true; else verti[(next[0]+here[0]-1)/2][next[1]]= true; path.push(here = next); } else here = path.pop(); } return {x: x, y: y, horiz: horiz, verti: verti}; } function display(m) { var text= []; for (var j= 0; j<m.x*2+1; j++) { var line= []; if (0 == j%2) for (var k=0; k<m.y*4+1; k++) if (0 == k%4) line[k]= '+'; else if (j>0 && m.verti[j/2-1][Math.floor(k/4)]) line[k]= ' '; else line[k]= '-'; else for (var k=0; k<m.y*4+1; k++) if (0 == k%4) if (k>0 && m.horiz[(j-1)/2][k/4-1]) line[k]= ' '; else line[k]= '|'; else line[k]= ' '; if (0 == j) line[1]= line[2]= line[3]= ' '; if (m.x*2-1 == j) line[4*m.y]= ' '; text.push(line.join('')+'\r\n'); } return text.join(''); }
597Maze generation
10javascript
ql1x8
magic <- function(n) { if (n%% 2 == 1) { p <- (n + 1)%/% 2 - 2 ii <- seq(n) outer(ii, ii, function(i, j) n * ((i + j + p)%% n) + (i + 2 * (j - 1))%% n + 1) } else if (n%% 4 == 0) { p <- n * (n + 1) + 1 ii <- seq(n) outer(ii, ii, function(i, j) ifelse((i%/% 2 - j%/% 2)%% 2 == 0, p - n * i - j, n * (i - 1) + j)) } else { p <- n%/% 2 q <- p * p k <- (n - 2)%/% 4 + 1 a <- Recall(p) a <- rbind(cbind(a, a + 2 * q), cbind(a + 3 * q, a + q)) ii <- seq(p) jj <- c(seq(k - 1), seq(length.out=k - 2, to=n)) m <- a[ii, jj]; a[ii, jj] <- a[ii + p, jj]; a[ii + p, jj] <- m jj <- c(1, k) m <- a[k, jj]; a[k, jj] <- a[k + p, jj]; a[k + p, jj] <- m a } }
603Magic squares of doubly even order
13r
s2jqy
function a(k, x1, x2, x3, x4, x5) { function b() { k -= 1; return a(k, b, x1, x2, x3, x4); } return (k > 0) ? b() : x4() + x5(); }
599Man or boy test
10javascript
zh8t2
null
602Map range
11kotlin
ngaij
package main import ( "fmt" "log" ) func ms(n int) (int, []int) { M := func(x int) int { return (x + n - 1) % n } if n <= 0 || n&1 == 0 { n = 5 log.Println("forcing size", n) } m := make([]int, n*n) i, j := 0, n/2 for k := 1; k <= n*n; k++ { m[i*n+j] = k if m[M(i)*n+M(j)] != 0 { i = (i + 1) % n } else { i, j = M(i), M(j) } } return n, m } func main() { n, m := ms(5) i := 2 for j := 1; j <= n*n; j *= 10 { i++ } f := fmt.Sprintf("%%%dd", i) for i := 0; i < n; i++ { for j := 0; j < n; j++ { fmt.Printf(f, m[i*n+j]) } fmt.Println() } }
606Magic squares of odd order
0go
50dul
import java.util.* class MazeGenerator(val x: Int, val y: Int) { private val maze = Array(x) { IntArray(y) } fun generate(cx: Int, cy: Int) { Direction.values().shuffle().forEach { val nx = cx + it.dx val ny = cy + it.dy if (between(nx, x) && between(ny, y) && maze[nx][ny] == 0) { maze[cx][cy] = maze[cx][cy] or it.bit maze[nx][ny] = maze[nx][ny] or it.opposite!!.bit generate(nx, ny) } } } fun display() { for (i in 0..y - 1) {
597Maze generation
11kotlin
jd57r
import Data.List type Var = (Int, Int, Int, Int) magicSum :: Int -> Int magicSum x = ((x * x + 1) `div` 2) * x wrapInc :: Int -> Int -> Int wrapInc max x | x + 1 == max = 0 | otherwise = x + 1 wrapDec :: Int -> Int -> Int wrapDec max x | x == 0 = max - 1 | otherwise = x - 1 isZero :: [[Int]] -> Int -> Int -> Bool isZero m x y = m !! x !! y == 0 setAt :: (Int,Int) -> Int -> [[Int]] -> [[Int]] setAt (x, y) val table | (upper, current: lower) <- splitAt x table, (left, this: right) <- splitAt y current = upper ++ (left ++ val: right): lower | otherwise = error "Outside" create :: Int -> [[Int]] create x = replicate x $ replicate x 0 cells :: [[Int]] -> Int cells m = x*x where x = length m fill :: Var -> [[Int]] -> [[Int]] fill (sx, sy, sz, c) m | c < cells m = if isZero m sx sy then fill ((wrapInc sz sx), (wrapDec sz sy), sz, c + 1) (setAt (sx, sy) (c + 1) m) else fill ((wrapDec sz sx), (wrapInc sz(wrapInc sz sy)), sz, c) m | otherwise = m magicNumber :: Int -> [[Int]] magicNumber d = transpose $ fill (d `div` 2, 0, d, 0) (create d) display :: [[Int]] -> String display (x:xs) | null xs = vdisplay x | otherwise = vdisplay x ++ ('\n': display xs) vdisplay :: [Int] -> String vdisplay (x:xs) | null xs = show x | otherwise = show x ++ " " ++ vdisplay xs magicSquare x = do putStr "Magic Square of " putStr $ show x putStr " = " putStrLn $ show $ magicSum x putStrLn $ display $ magicNumber x
606Magic squares of odd order
8haskell
xc5w4
def double_even_magic_square(n) raise ArgumentError, if n%4 > 0 block_size, max = n/4, n*n pre_pat = [true, false, false, true, false, true, true, false] pre_pat += pre_pat.reverse pattern = pre_pat.flat_map{|b| [b] * block_size} * block_size flat_ar = pattern.each_with_index.map{|yes, num| yes? num+1: max-num} flat_ar.each_slice(n).to_a end def to_string(square) n = square.size fmt = * n square.inject(){|str,row| str << fmt % row << } end puts to_string(double_even_magic_square(8))
603Magic squares of doubly even order
14ruby
drans
use std::env; fn main() { let n: usize = match env::args() .nth(1) .and_then(|arg| arg.parse().ok()) .ok_or("Please specify the size of the magic square, as a positive multiple of 4.") { Ok(arg) if arg >= 4 && arg% 4 == 0 => arg, Err(e) => panic!(e), _ => panic!("Argument must be a positive multiple of 4."), }; let mc = (n * n + 1) * n / 2; println!("Magic constant: {}\n", mc); let bits = 0b1001_0110_0110_1001u32; let size = n * n; let width = size.to_string().len() + 1; let mult = n / 4; let mut i = 0; for r in 0..n { for c in 0..n { let bit_pos = c / mult + (r / mult) * 4; print!( "{e:>w$}", e = if bits & (1 << bit_pos)!= 0 { i + 1 } else { size - i }, w = width ); i += 1; } println!(); } }
603Magic squares of doubly even order
15rust
f7ed6
null
599Man or boy test
11kotlin
qlbx1
math.randomseed( os.time() )
597Maze generation
1lua
hf4j8
object MagicSquareDoublyEven extends App { private val n = 8 private def magicSquareDoublyEven(n: Int): Array[Array[Int]] = { require(n >= 4 || n % 4 == 0, "Base must be a positive multiple of 4.")
603Magic squares of doubly even order
16scala
3kqzy
function a(k,x1,x2,x3,x4,x5) local function b() k = k - 1 return a(k,b,x1,x2,x3,x4) end if k <= 0 then return x4() + x5() else return b() end end function K(n) return function() return n end end print(a(10, K(1), K(-1), K(-1), K(1), K(0)))
599Man or boy test
1lua
s2pq8
function map_range( a1, a2, b1, b2, s ) return b1 + (s-a1)*(b2-b1)/(a2-a1) end for i = 0, 10 do print( string.format( "f(%d) =%f", i, map_range( 0, 10, -1, 0, i ) ) ) end
602Map range
1lua
drenq
class Complex { double _r,_i; Complex(this._r,this._i); double get r => _r; double get i => _i; String toString() => "($r,$i)"; Complex operator +(Complex other) => new Complex(r+other.r,i+other.i); Complex operator *(Complex other) => new Complex(r*other.r-i*other.i,r*other.i+other.r*i); double abs() => r*r+i*i; } void main() { double start_x=-1.5; double start_y=-1.0; double step_x=0.03; double step_y=0.1; for(int y=0;y<20;y++) { String line=""; for(int x=0;x<70;x++) { Complex c=new Complex(start_x+step_x*x,start_y+step_y*y); Complex z=new Complex(0.0, 0.0); for(int i=0;i<100;i++) { z=z*(z)+c; if(z.abs()>2) { break; } } line+=z.abs()>2? " ": "*"; } print(line); } }
607Mandelbrot set
18dart
16cp0
public class MagicSquare { public static void main(String[] args) { int n = 5; for (int[] row : magicSquareOdd(n)) { for (int x : row) System.out.format("%2s ", x); System.out.println(); } System.out.printf("\nMagic constant:%d ", (n * n + 1) * n / 2); } public static int[][] magicSquareOdd(final int base) { if (base % 2 == 0 || base < 3) throw new IllegalArgumentException("base must be odd and > 2"); int[][] grid = new int[base][base]; int r = 0, number = 0; int size = base * base; int c = base / 2; while (number++ < size) { grid[r][c] = number; if (r == 0) { if (c == base - 1) { r++; } else { r = base - 1; c++; } } else { if (c == base - 1) { r--; c = 0; } else { if (grid[r - 1][c + 1] == 0) { r--; c++; } else { r++; } } } } return grid; } }
606Magic squares of odd order
9java
bz9k3
(function () {
606Magic squares of odd order
10javascript
w9ue2
null
606Magic squares of odd order
11kotlin
rizgo
rp[v_, pos_]:= RotateRight[v, (Length[v] + 1)/2 - pos]; rho[m_]:= MapIndexed[rp, m]; magic[n_]:= rho[Transpose[rho[Table[i*n + j, {i, 0, n - 1}, {j, 1, n}]]]]; square = magic[11] // Grid Print["Magic number is ", Total[square[[1, 1]]]]
606Magic squares of odd order
1lua
7n3ru
sub A { my ($k, $x1, $x2, $x3, $x4, $x5) = @_; my($B); $B = sub { A(--$k, $B, $x1, $x2, $x3, $x4) }; $k <= 0 ? &$x4 + &$x5 : &$B; } print A(10, sub{1}, sub {-1}, sub{-1}, sub{1}, sub{0} ), "\n";
599Man or boy test
2perl
vq620
use List::Util 'max'; my ($w, $h) = @ARGV; $w ||= 26; $h ||= 127; my $avail = $w * $h; my @cell = (map([(('1') x $w), 0], 1 .. $h), [('') x ($w + 1)]); my @ver = map([("| ") x $w], 1 .. $h); my @hor = map([("+--") x $w], 0 .. $h); sub walk { my ($x, $y) = @_; $cell[$y][$x] = ''; $avail-- or return; my @d = ([-1, 0], [0, 1], [1, 0], [0, -1]); while (@d) { my $i = splice @d, int(rand @d), 1; my ($x1, $y1) = ($x + $i->[0], $y + $i->[1]); $cell[$y1][$x1] or next; if ($x == $x1) { $hor[ max($y1, $y) ][$x] = '+ ' } if ($y == $y1) { $ver[$y][ max($x1, $x) ] = ' ' } walk($x1, $y1); } } walk(int rand $w, int rand $h); for (0 .. $h) { print @{$hor[$_]}, "+\n"; print @{$ver[$_]}, "|\n" if $_ < $h; }
597Maze generation
2perl
tjofg
use strict ; sub mapValue { my ( $range1 , $range2 , $number ) = @_ ; return ( $range2->[ 0 ] + (( $number - $range1->[ 0 ] ) * ( $range2->[ 1 ] - $range2->[ 0 ] ) ) / ( $range1->[ -1 ] - $range1->[ 0 ] ) ) ; } my @numbers = 0..10 ; my @interval = ( -1 , 0 ) ; print "The mapped value for $_ is " . mapValue( \@numbers , \@interval , $_ ) . "!\n" foreach @numbers ;
602Map range
2perl
7n9rh
<?php function A($k,$x1,$x2,$x3,$x4,$x5) { $b = function () use (&$b,&$k,$x1,$x2,$x3,$x4) { return A(--$k,$b,$x1,$x2,$x3,$x4); }; return $k <= 0? $x4() + $x5() : $b(); } echo A(10, function () { return 1; }, function () { return -1; }, function () { return -1; }, function () { return 1; }, function () { return 0; }) . ; ?>
599Man or boy test
12php
0v1sp
<?php class Maze { protected $width; protected $height; protected $grid; protected $path; protected $horWalls; protected $vertWalls; protected $dirs; protected $isDebug; public function __construct($x, $y, $debug = false) { $this->width = $x; $this->height = $y; $this->path = []; $this->dirs = [ [0, -1], [0, 1], [-1, 0], [1, 0]]; $this->horWalls = []; $this->vertWalls = []; $this->isDebug = $debug; $this->generate(); } protected function generate() { $this->initMaze(); $this->walk(mt_rand(0, $this->width-1), mt_rand(0, $this->height-1)); } public function printOut() { $this->log(, json_encode($this->horWalls)); $this->log(, json_encode($this->vertWalls)); $northDoor = mt_rand(0,$this->width-1); $eastDoor = mt_rand(0, $this->height-1); $str = '+'; for ($i=0;$i<$this->width;$i++) { $str .= ($northDoor == $i)? ' +' : '---+'; } $str .= PHP_EOL; for ($i=0; $i<$this->height; $i++) { for ($j=0; $j<$this->width; $j++) { $str .= (!empty($this->vertWalls[$j][$i])? $this->vertWalls[$j][$i] : '| '); } $str .= ($i == $eastDoor? ' ' : '|').PHP_EOL.'+'; for ($j=0; $j<$this->width; $j++) { $str .= (!empty($this->horWalls[$j][$i])? $this->horWalls[$j][$i] : '---+'); } $str .= PHP_EOL; } echo $str; } protected function log(...$params) { if ($this->isDebug) { echo vsprintf(array_shift($params), $params).PHP_EOL; } } private function walk($x, $y) { $this->log('Entering cell%d,%d', $x, $y); $this->grid[$x][$y] = true; $this->path[] = [$x, $y]; $neighbors = $this->getNeighbors($x, $y); $this->log(, json_encode($neighbors)); if(empty($neighbors)) { $this->log(, json_encode($this->path)); array_pop($this->path); if (!empty($this->path)) { $next = array_pop($this->path); return $this->walk($next[0], $next[1]); } } else { shuffle($neighbors); foreach ($neighbors as $n) { $nextX = $n[0]; $nextY = $n[1]; if ($nextX == $x) { $wallY = max($nextY, $y); $this->log(, $nextX, $nextY, $x, $wallY); $this->horWalls[$x][min($nextY, $y)] = ; } if ($nextY == $y) { $wallX = max($nextX, $x); $this->log(, $nextX, $nextY, $wallX, $y); $this->vertWalls[$wallX][$y] = ; } return $this->walk($nextX, $nextY); } } } private function initMaze() { for ($i=0;$i<$this->width;$i++) { for ($j = 0;$j<$this->height;$j++) { $this->grid[$i][$j] = false; } } } private function getNeighbors($x, $y) { $neighbors = []; foreach ($this->dirs as $dir) { $nextX = $dir[0] + $x; $nextY = $dir[1] + $y; if (($nextX >= 0 && $nextX < $this->width && $nextY >= 0 && $nextY < $this->height) && !$this->grid[$nextX][$nextY]) { $neighbors[] = [$nextX, $nextY]; } } return $neighbors; } } $maze = new Maze(10,10); $maze->printOut();
597Maze generation
12php
ktghv