code
stringlengths
1
46.1k
label
class label
1.18k classes
domain_label
class label
21 classes
index
stringlengths
4
5
is_leap_year () { declare -i year=$1 echo -n "$year ($2)-> " if (( $year % 4 == 0 )) then if (( $year % 400 == 0 )) then echo "This is a leap year" else if (( $year % 100 == 0 )) then echo "This is not a leap year" else echo "This is a leap year" fi fi else echo "This is not a leap year" fi } is_leap_year 1900 not is_leap_year 2000 is is_leap_year 2001 not is_leap_year 2003 not is_leap_year 2004 is
657Leap year
4bash
qcnxu
package main import ( "fmt" "sort" ) type matrix [][]int
658Latin Squares in reduced form
0go
7ipr2
import qualified Data.Map.Strict as Map import qualified Data.Set as Set import Data.Monoid ((<>)) triangles :: (Map.Map Int Int -> Int -> Int -> Int -> Int -> Maybe Int) -> Int -> [(Int, Int, Int)] triangles f n = let mapRoots = Map.fromList $ ((,) =<< (^ 2)) <$> [1 .. n] in Set.elems $ foldr (\(suma2b2, a, b) triSet -> (case f mapRoots suma2b2 (a * b) a b of Just c -> Set.insert (a, b, c) triSet _ -> triSet)) (Set.fromList []) ([1 .. n] >>= (\a -> (flip (,,) a =<< (a * a +) . (>>= id) (*)) <$> [1 .. a])) f90, f60, f60ne, f120 :: Map.Map Int Int -> Int -> Int -> Int -> Int -> Maybe Int f90 dct x2 ab a b = Map.lookup x2 dct f60 dct x2 ab a b = Map.lookup (x2 - ab) dct f120 dct x2 ab a b = Map.lookup (x2 + ab) dct f60ne dct x2 ab a b | a == b = Nothing | otherwise = Map.lookup (x2 - ab) dct main :: IO () main = do putStrLn (unlines $ "Triangles of maximum side 13\n": zipWith (\f n -> let solns = triangles f 13 in show (length solns) <> " solutions for " <> show n <> " degrees:\n" <> unlines (show <$> solns)) [f120, f90, f60] [120, 90, 60]) putStrLn "60 degrees - uneven triangles of maximum side 10000. Total:" print $ length $ triangles f60ne 10000
655Law of cosines - triples
8haskell
5sbug
def leo( n:Int, n1:Int=1, n2:Int=1, addnum:Int=1 ) : BigInt = n match { case 0 => n1 case 1 => n2 case n => leo(n - 1, n1, n2, addnum) + leo(n - 2, n1, n2, addnum) + addnum } { println( "The first 25 Leonardo Numbers:") (0 until 25) foreach { n => print( leo(n) + " " ) } println( "\n\nThe first 25 Fibonacci Numbers:") (0 until 25) foreach { n => print( leo(n, n1=0, n2=1, addnum=0) + " " ) } }
651Leonardo numbers
16scala
kfohk
import Data.List (permutations, (\\)) import Control.Monad (foldM, forM_) latinSquares :: Eq a => [a] -> [[[a]]] latinSquares [] = [] latinSquares set = map reverse <$> squares where squares = foldM addRow firstRow perm perm = tail (groupedPermutations set) firstRow = pure <$> set addRow tbl rows = [ zipWith (:) row tbl | row <- rows , and $ different (tail row) (tail tbl) ] different = zipWith $ (not .) . elem groupedPermutations :: Eq a => [a] -> [[[a]]] groupedPermutations lst = map (\x -> (x:) <$> permutations (lst \\ [x])) lst printTable :: Show a => [[a]] -> IO () printTable tbl = putStrLn $ unlines $ unwords . map show <$> tbl
658Latin Squares in reduced form
8haskell
8vf0z
public class LawOfCosines { public static void main(String[] args) { generateTriples(13); generateTriples60(10000); } private static void generateTriples(int max) { for ( int coeff : new int[] {0, -1, 1} ) { int count = 0; System.out.printf("Max side length%d, formula: a*a + b*b%s= c*c%n", max, coeff == 0 ? "" : (coeff<0 ? "-" : "+") + " a*b "); for ( int a = 1 ; a <= max ; a++ ) { for ( int b = 1 ; b <= a ; b++ ) { int val = a*a + b*b + coeff*a*b; int c = (int) (Math.sqrt(val) + .5d); if ( c > max ) { break; } if ( c*c == val ) { System.out.printf(" (%d,%d,%d)%n", a, b ,c); count++; } } } System.out.printf("%d triangles%n", count); } } private static void generateTriples60(int max) { int count = 0; System.out.printf("%nExtra Credit.%nMax side length%d, sides different length, formula: a*a + b*b - a*b = c*c%n", max); for ( int a = 1 ; a <= max ; a++ ) { for ( int b = 1 ; b < a ; b++ ) { int val = a*a + b*b - a*b; int c = (int) (Math.sqrt(val) + .5d); if ( c*c == val ) { count++; } } } System.out.printf("%d triangles%n", count); } }
655Law of cosines - triples
9java
91gmu
null
652Left factorials
11kotlin
13npd
package main import "fmt"
653Linear congruential generator
0go
pzobg
struct Leonardo: Sequence, IteratorProtocol { private let add: Int private var n0: Int private var n1: Int init(n0: Int = 1, n1: Int = 1, add: Int = 1) { self.n0 = n0 self.n1 = n1 self.add = add } mutating func next() -> Int? { let n = n0 n0 = n1 n1 += n + add return n } } print("First 25 Leonardo numbers:") print(Leonardo().prefix(25).map{String($0)}.joined(separator: " ")) print("First 25 Fibonacci numbers:") print(Leonardo(n0: 0, add: 0).prefix(25).map{String($0)}.joined(separator: " "))
651Leonardo numbers
17swift
g8x49
typedef struct { uint16_t index; char last_char, first_char; } Ref; Ref* longest_path_refs; size_t longest_path_refs_len; Ref* refs; size_t refs_len; size_t n_solutions; const char** longest_path; size_t longest_path_len; void search(size_t curr_len) { if (curr_len == longest_path_refs_len) { n_solutions++; } else if (curr_len > longest_path_refs_len) { n_solutions = 1; longest_path_refs_len = curr_len; memcpy(longest_path_refs, refs, curr_len * sizeof(Ref)); } intptr_t last_char = refs[curr_len - 1].last_char; for (size_t i = curr_len; i < refs_len; i++) if (refs[i].first_char == last_char) { Ref aux = refs[curr_len]; refs[curr_len] = refs[i]; refs[i] = aux; search(curr_len + 1); refs[i] = refs[curr_len]; refs[curr_len] = aux; } } void find_longest_chain(const char* items[], size_t items_len) { refs_len = items_len; refs = calloc(refs_len, sizeof(Ref)); longest_path_refs_len = 0; longest_path_refs = calloc(refs_len, sizeof(Ref)); for (size_t i = 0; i < items_len; i++) { size_t itemsi_len = strlen(items[i]); if (itemsi_len <= 1) exit(1); refs[i].index = (uint16_t)i; refs[i].last_char = items[i][itemsi_len - 1]; refs[i].first_char = items[i][0]; } for (size_t i = 0; i < items_len; i++) { Ref aux = refs[0]; refs[0] = refs[i]; refs[i] = aux; search(1); refs[i] = refs[0]; refs[0] = aux; } longest_path_len = longest_path_refs_len; longest_path = calloc(longest_path_len, sizeof(const char*)); for (size_t i = 0; i < longest_path_len; i++) longest_path[i] = items[longest_path_refs[i].index]; free(longest_path_refs); free(refs); } int main() { const char* pokemon[] = {, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , }; size_t pokemon_len = sizeof(pokemon) / sizeof(pokemon[0]); find_longest_chain(pokemon, pokemon_len); printf(, longest_path_len); printf(, n_solutions); printf(); for (size_t i = 0; i < longest_path_len; i += 7) { printf(); for (size_t j = i; j < (i+7) && j < longest_path_len; j++) printf(, longest_path[j]); printf(); } free(longest_path); return 0; }
659Last letter-first letter
5c
eysav
unsigned int lpd(unsigned int n) { if (n<=1) return 1; int i; for (i=n-1; i>0; i--) if (n%i == 0) return i; } int main() { int i; for (i=1; i<=100; i++) { printf(, lpd(i)); if (i % 10 == 0) printf(); } return 0; }
660Largest proper divisor of n
5c
x90wu
import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.List; public class LatinSquaresInReducedForm { public static void main(String[] args) { System.out.printf("Reduced latin squares of order 4:%n"); for ( LatinSquare square : getReducedLatinSquares(4) ) { System.out.printf("%s%n", square); } System.out.printf("Compute the number of latin squares from count of reduced latin squares:%n(Reduced Latin Square Count) * n! * (n-1)! = Latin Square Count%n"); for ( int n = 1 ; n <= 6 ; n++ ) { List<LatinSquare> list = getReducedLatinSquares(n); System.out.printf("Size =%d,%d *%d *%d =%,d%n", n, list.size(), fact(n), fact(n-1), list.size()*fact(n)*fact(n-1)); } } private static long fact(int n) { if ( n == 0 ) { return 1; } int prod = 1; for ( int i = 1 ; i <= n ; i++ ) { prod *= i; } return prod; } private static List<LatinSquare> getReducedLatinSquares(int n) { List<LatinSquare> squares = new ArrayList<>(); squares.add(new LatinSquare(n)); PermutationGenerator permGen = new PermutationGenerator(n); for ( int fillRow = 1 ; fillRow < n ; fillRow++ ) { List<LatinSquare> squaresNext = new ArrayList<>(); for ( LatinSquare square : squares ) { while ( permGen.hasMore() ) { int[] perm = permGen.getNext();
658Latin Squares in reduced form
9java
ey0a5
(() => { 'use strict';
655Law of cosines - triples
10javascript
uqkvb
bsd = tail . iterate (\n -> (n * 1103515245 + 12345) `mod` 2^31) msr = map (`div` 2^16) . tail . iterate (\n -> (214013 * n + 2531011) `mod` 2^31) main = do print $ take 10 $ bsd 0 print $ take 10 $ msr 0
653Linear congruential generator
8haskell
fr2d1
int main() { int num = 9876432,diff[] = {4,2,2,2},i,j,k=0; char str[10]; start:snprintf(str,10,,num); for(i=0;str[i+1]!=00;i++){ if(str[i]=='0'||str[i]=='5'||num%(str[i]-'0')!=0){ num -= diff[k]; k = (k+1)%4; goto start; } for(j=i+1;str[j]!=00;j++) if(str[i]==str[j]){ num -= diff[k]; k = (k+1)%4; goto start; } } printf(,num); return 0; }
661Largest number divisible by its digits
5c
yb96f
int frequency[26]; int ch; FILE* txt_file = fopen (, ); for (ch = 0; ch < 26; ch++) frequency[ch] = 0; while (1) { ch = fgetc(txt_file); if (ch == EOF) break; if ('a' <= ch && ch <= 'z') frequency[ch-'a']++; else if ('A' <= ch && ch <= 'Z') frequency[ch-'A']++; }
662Letter frequency
5c
vxu2o
null
652Left factorials
1lua
a6d1v
typealias Matrix = MutableList<MutableList<Int>> fun dList(n: Int, sp: Int): Matrix { val start = sp - 1
658Latin Squares in reduced form
11kotlin
kfeh3
null
655Law of cosines - triples
11kotlin
zj2ts
[(x,y,z) for x in xrange(1,n+1) for y in xrange(x,n+1) for z in xrange(y,n+1) if x**2 + y**2 == z**2]
650List comprehensions
3python
5swux
int is_leap_year(int year) { return (!(year % 4) && year % 100 || !(year % 400)) ? 1 : 0; } int main() { int test_case[] = {1900, 1994, 1996, 1997, 2000}, key, end, year; for (key = 0, end = sizeof(test_case)/sizeof(test_case[0]); key < end; ++key) { year = test_case[key]; printf(, year, (is_leap_year(year) == 1 ? : )); } }
657Leap year
5c
02fst
(ns rosetta-code.last-letter-first-letter (:require clojure.string)) (defn by-first-letter "Returns a map from letters to a set of words that start with that letter" [words] (into {} (map (fn [[k v]] [k (set v)])) (group-by first words))) (defn longest-path-from "Find a longest path starting at word, using only words-by-first-letter for successive words. Returns a pair of [length list-of-words] to describe the path." [word words-by-first-letter] (let [words-without-word (update words-by-first-letter (first word) disj word) next-words (words-without-word (last word))] (if (empty? next-words) [1 [word]] (let [sub-paths (map #(longest-path-from % words-without-word) next-words) [length words-of-path] (apply max-key first sub-paths)] [(inc length) (cons word words-of-path)])))) (defn longest-word-chain "Find a longest path among the words in word-list, by performing a longest path search starting at each word in the list." [word-list] (let [words-by-letter (by-first-letter word-list)] (apply max-key first (pmap #(longest-path-from % words-by-letter) word-list)))) (defn word-list-from-file [file-name] (let [contents (slurp file-name) words (clojure.string/split contents #"[ \n]")] (filter #(not (empty? %)) words))) (time (longest-word-chain (word-list-from-file "pokemon.txt")))
659Last letter-first letter
6clojure
02nsj
function solve(angle, maxlen, filter) local squares, roots, solutions = {}, {}, {} local cos2 = ({[60]=-1,[90]=0,[120]=1})[angle] for i = 1, maxlen do squares[i], roots[i^2] = i^2, i end for a = 1, maxlen do for b = a, maxlen do local lhs = squares[a] + squares[b] + cos2*a*b local c = roots[lhs] if c and (not filter or filter(a,b,c)) then solutions[#solutions+1] = {a=a,b=b,c=c} end end end print(angle.." on 1.."..maxlen.." has "..#solutions.." solutions") if not filter then for i,v in ipairs(solutions) do print("",v.a,v.b,v.c) end end end solve(90, 13) solve(60, 13) solve(120, 13) function fexcr(a,b,c) return a~=b or b~=c end solve(60, 10000, fexcr)
655Law of cosines - triples
1lua
3hvzo
x = (0:10) > x^2 [1] 0 1 4 9 16 25 36 49 64 81 100 > Reduce(function(y,z){return (y+z)},x) [1] 55 > x[x[(0:length(x))]%% 2==0] [1] 0 2 4 6 8 10
650List comprehensions
13r
lepce
import java.util.stream.IntStream; import static java.util.stream.IntStream.iterate; public class LinearCongruentialGenerator { final static int mask = (1 << 31) - 1; public static void main(String[] args) { System.out.println("BSD:"); randBSD(0).limit(10).forEach(System.out::println); System.out.println("\nMS:"); randMS(0).limit(10).forEach(System.out::println); } static IntStream randBSD(int seed) { return iterate(seed, s -> (s * 1_103_515_245 + 12_345) & mask).skip(1); } static IntStream randMS(int seed) { return iterate(seed, s -> (s * 214_013 + 2_531_011) & mask).skip(1) .map(i -> i >> 16); } }
653Linear congruential generator
9java
026se
(require '[clojure.string:as str]) (def the_base 16) (def digits (rest (range the_base))) (def primes []) (for [n digits] (if (= 1 (count (filter (fn[m] (and (< m n) (= 0 (mod n m)))) digits)) ) (def primes (conj primes n)))) (defn duplicity [n p partial] (if (= 0 (mod n p)) (duplicity (/ n p) p (conj partial p)) partial)) (defn factorize [n] (let [a (flatten (for [p (filter #(< % n) primes)] (remove #(= 1 %) (duplicity n p [1]))))] (if (= 0 (count a)) (lazy-seq [n]) a) )) (defn multiplicity [s n] (count (filter #(= n %) s))) (defn combine [x y] (concat x (flatten (for [w (dedupe y)] (repeat (- (multiplicity y w) (multiplicity x w)) w) )))) (defn lcm [s] (reduce * (reduce combine (map factorize s)))) (defn exp [x n] (reduce * (repeat n x))) (defn non_empty_subsets [s] (for [x (reverse (rest (range (exp 2 (count s)))))] (remove nil? (for [i (range (count s))] (if (bit-test x i) (nth s i)))))) (defn power_up [s] (reduce + (loop [idx (- (count s) 1) s_next s] (if (zero? idx) s_next (recur (dec idx) (map-indexed #(if (< %1 idx) (* %2 the_base) %2) s_next)))))) (defn max_for_digits [s] (power_up (sort #(> %1 %2) s))) (defn min_for_digits [s] (power_up (sort #(< %1 %2) s))) (defn log_base [x] (/ (Math/log x) (Math/log the_base))) (defn remove_zeros [s] (remove #(= % 0) s)) (defn first_multiple_not_after [n ub] (loop [m ub] (if (= 0 (mod m n)) m (recur (dec m))))) (defn representation [n] (let [full_power (int (log_base n))] (loop [power full_power place (exp the_base full_power) rep [] rem n ] (if (= power -1) rep (recur (dec power) (/ place the_base) (conj rep (int (/ rem place))) (- rem (* place (int (/ rem place))))))))) (defn digit_qualifies [m s] (let [rep_m (representation m)] (= (sort s) (sort rep_m)))) (defn find_s_largest_lb [s] (let [lb (min_for_digits s)] (let [m (lcm s)] (loop [v (first_multiple_not_after m (max_for_digits s))] (if (< v lb) [] (if (digit_qualifies v s) (representation v) (recur (- v m)))))))) (defn find_largest_lb [] (let [subsets (non_empty_subsets (reverse digits))] (loop [s_size (- the_base 1)] (let [hits (remove #(= (count %) 0) (map find_s_largest_lb (filter #(= (count %) s_size) subsets)))] (if (pos? (count hits)) (first (sort #(first (remove_zeros (map - %2 %1))) hits)) (recur (dec s_size))))))) (defn hex_digit [v] (case v 15 "F" 14 "E" 13 "D" 12 "C" 11 "B" 10 "A" (str v))) (find_largest_lb)
661Largest number divisible by its digits
6clojure
2wul1
use strict; use warnings; my $n = 0; my $count; our @perms; while( ++$n <= 7 ) { $count = 0; @perms = perm( my $start = join '', 1 .. $n ); find( $start ); print "order $n size $count total @{[$count * fact($n) * fact($n-1)]}\n\n"; } sub find { @_ >= $n and return $count += ($n != 4) || print join "\n", @_, "\n"; local @perms = grep 0 == ($_[-1] ^ $_) =~ tr/\0//, @perms; my $row = @_ + 1; find( @_, $_ ) for grep /^$row/, @perms; } sub fact { $_[0] > 1 ? $_[0] * fact($_[0] - 1) : 1 } sub perm { my $s = shift; length $s <= 1 ? $s : map { my $f = $_; map "$f$_", perm( $s =~ s/$_//r ) } split //, $s; }
658Latin Squares in reduced form
2perl
3hczs
(println (sort-by second > (frequencies (map #(java.lang.Character/toUpperCase %) (filter #(java.lang.Character/isLetter %) (slurp "text.txt"))))))
662Letter frequency
6clojure
ro7g2
use utf8; binmode STDOUT, "utf8:"; use Sort::Naturally; sub triples { my($n,$angle) = @_; my(@triples,%sq); $sq{$_**2}=$_ for 1..$n; for $a (1..$n-1) { for $b ($a+1..$n) { my $ab = $a*$a + $b*$b; my $cos = $angle == 60 ? $ab - $a * $b : $angle == 120 ? $ab + $a * $b : $ab; if ($angle == 60) { push @triples, "$a $sq{$cos} $b" if exists $sq{$cos}; } else { push @triples, "$a $b $sq{$cos}" if exists $sq{$cos}; } } } @triples; } $n = 13; print "Integer triangular triples for sides 1..$n:\n"; for my $angle (120, 90, 60) { my @itt = triples($n,$angle); if ($angle == 60) { push @itt, "$_ $_ $_" for 1..$n } printf "Angle%3d has%2d solutions:%s\n", $angle, scalar @itt, join ', ', nsort @itt; } printf "Non-equilateral n=10000/60:%d\n", scalar triples(10000,60);
655Law of cosines - triples
2perl
btsk4
use 5.010; use strict; use warnings; use bigint; sub leftfact { my ($n) = @_; state $cached = 0; state $factorial = 1; state $leftfact = 0; if( $n < $cached ) { ($cached, $factorial, $leftfact) = (0, 1, 0); } while( $n > $cached ) { $leftfact += $factorial; $factorial *= ++$cached; } return $leftfact; } printf "!%d =%s\n", $_, leftfact($_) for 0 .. 10, map $_*10, 2..11; printf "!%d has%d digits.\n", $_, length leftfact($_) for map $_*1000, 1..10;
652Left factorials
2perl
mp7yz
(defn leap-year? [y] (and (zero? (mod y 4)) (or (pos? (mod y 100)) (zero? (mod y 400)))))
657Leap year
6clojure
dgynb
typedef int bool; int next_in_cycle(int *c, int len, int index) { return c[index % len]; } void kolakoski(int *c, int *s, int clen, int slen) { int i = 0, j, k = 0; while (TRUE) { s[i] = next_in_cycle(c, clen, k); if (s[k] > 1) { for (j = 1; j < s[k]; ++j) { if (++i == slen) return; s[i] = s[i - 1]; } } if (++i == slen) return; k++; } } bool possible_kolakoski(int *s, int len) { int i, j = 0, prev = s[0], count = 1; int *rle = calloc(len, sizeof(int)); bool result = TRUE; for (i = 1; i < len; ++i) { if (s[i] == prev) { count++; } else { rle[j++] = count; count = 1; prev = s[i]; } } for (i = 0; i < j; i++) { if (rle[i] != s[i]) { result = FALSE; break; } } free(rle); return result; } void print_array(int *a, int len) { int i; printf(); for (i = 0; i < len; ++i) { printf(, a[i]); if (i < len - 1) printf(); } printf(); } int main() { int i, clen, slen, *s; int c0[2] = {1, 2}; int c1[2] = {2, 1}; int c2[4] = {1, 3, 1, 2}; int c3[4] = {1, 3, 2, 1}; int *cs[4] = {c0, c1, c2, c3}; bool p; int clens[4] = {2, 2, 4, 4}; int slens[4] = {20, 20, 30, 30}; for (i = 0; i < 4; ++i) { clen = clens[i]; slen = slens[i]; s = calloc(slen, sizeof(int)); kolakoski(cs[i], s, clen, slen); printf(, slen); print_array(cs[i], clen); printf(); print_array(s, slen); printf(); p = possible_kolakoski(s, slen); printf(, p ? : ); free(s); } return 0; }
663Kolakoski sequence
5c
uquv4
uint64_t factorial(uint64_t n) { uint64_t res = 1; if (n == 0) return res; while (n > 0) res *= n--; return res; } uint64_t lah(uint64_t n, uint64_t k) { if (k == 1) return factorial(n); if (k == n) return 1; if (k > n) return 0; if (k < 1 || n < 1) return 0; return (factorial(n) * factorial(n - 1)) / (factorial(k) * factorial(k - 1)) / factorial(n - k); } int main() { int row, i; printf(); printf(); for (i = 0; i < 13; i++) { printf(, i); } printf(); for (row = 0; row < 13; row++) { printf(, row); for (i = 0; i < row + 1; i++) { uint64_t l = lah(row, i); printf(, l); } printf(); } return 0; }
664Lah numbers
5c
g0545
package main import "fmt" func largestProperDivisor(n int) int { for i := 2; i*i <= n; i++ { if n%i == 0 { return n / i } } return 1 } func main() { fmt.Println("The largest proper divisors for numbers in the interval [1, 100] are:") fmt.Print(" 1 ") for n := 2; n <= 100; n++ { if n%2 == 0 { fmt.Printf("%2d ", n/2) } else { fmt.Printf("%2d ", largestProperDivisor(n)) } if n%10 == 0 { fmt.Println() } } }
660Largest proper divisor of n
0go
leucw
def dList(n, start): start -= 1 a = range(n) a[start] = a[0] a[0] = start a[1:] = sorted(a[1:]) first = a[1] r = [] def recurse(last): if (last == first): for j,v in enumerate(a[1:]): if j + 1 == v: return b = [x + 1 for x in a] r.append(b) return for i in xrange(last, 0, -1): a[i], a[last] = a[last], a[i] recurse(last - 1) a[i], a[last] = a[last], a[i] recurse(n - 1) return r def printSquare(latin,n): for row in latin: print row print def reducedLatinSquares(n,echo): if n <= 0: if echo: print [] return 0 elif n == 1: if echo: print [1] return 1 rlatin = [None] * n for i in xrange(n): rlatin[i] = [None] * n for j in xrange(0, n): rlatin[0][j] = j + 1 class OuterScope: count = 0 def recurse(i): rows = dList(n, i) for r in xrange(len(rows)): rlatin[i - 1] = rows[r] justContinue = False k = 0 while not justContinue and k < i - 1: for j in xrange(1, n): if rlatin[k][j] == rlatin[i - 1][j]: if r < len(rows) - 1: justContinue = True break if i > 2: return k += 1 if not justContinue: if i < n: recurse(i + 1) else: OuterScope.count += 1 if echo: printSquare(rlatin, n) recurse(2) return OuterScope.count def factorial(n): if n == 0: return 1 prod = 1 for i in xrange(2, n + 1): prod *= i return prod print reducedLatinSquares(4,True) print print for n in xrange(1, 7): size = reducedLatinSquares(n, False) f = factorial(n - 1) f *= f * n * size print % (n, size, n, n - 1, f)
658Latin Squares in reduced form
3python
6kl3w
null
653Linear congruential generator
11kotlin
eyda4
import Data.List.Split (chunksOf) import Text.Printf (printf) lpd :: Int -> Int lpd 1 = 1 lpd n = head [x | x <- [n -1, n -2 .. 1], n `mod` x == 0] main :: IO () main = (putStr . unlines . map concat . chunksOf 10) $ printf "%3d" . lpd <$> [1 .. 100]
660Largest proper divisor of n
8haskell
13wps
n = 20 r = ((1..n).flat_map { |x| (x..n).flat_map { |y| (y..n).flat_map { |z| [[x, y, z]].keep_if { x * x + y * y == z * z }}}}) p r
650List comprehensions
14ruby
g8q4q
package main import "fmt" var g = [][]int{ 0: {1}, 1: {2}, 2: {0}, 3: {1, 2, 4}, 4: {3, 5}, 5: {2, 6}, 6: {5}, 7: {4, 6, 7}, } func main() { fmt.Println(kosaraju(g)) } func kosaraju(g [][]int) []int {
665Kosaraju
0go
q9exz
int catcmp(const void *a, const void *b) { char ab[32], ba[32]; sprintf(ab, , *(int*)a, *(int*)b); sprintf(ba, , *(int*)b, *(int*)a); return strcmp(ba, ab); } void maxcat(int *a, int len) { int i; qsort(a, len, sizeof(int), catcmp); for (i = 0; i < len; i++) printf(, a[i]); putchar('\n'); } int main(void) { int x[] = {1, 34, 3, 98, 9, 76, 45, 4}; int y[] = {54, 546, 548, 60}; maxcat(x, sizeof(x)/sizeof(x[0])); maxcat(y, sizeof(y)/sizeof(y[0])); return 0; }
666Largest int from concatenated ints
5c
n50i6
int gcd(int m, int n) { int tmp; while(m) { tmp = m; m = n % m; n = tmp; } return n; } int lcm(int m, int n) { return m / gcd(m, n) * n; } int main() { printf(, lcm(21,35)); return 0; }
667Least common multiple
5c
ji570
def printSquare(a) for row in a print row, end print end def dList(n, start) start = start - 1 a = Array.new(n) {|i| i} a[0], a[start] = a[start], a[0] a[1..] = a[1..].sort first = a[1] r = [] recurse = lambda {|last| if last == first then a[1..].each_with_index {|v, j| if j + 1 == v then return end } b = a.map { |i| i + 1 } r << b return end i = last while i >= 1 do a[i], a[last] = a[last], a[i] recurse.call(last - 1) a[i], a[last] = a[last], a[i] i = i - 1 end } recurse.call(n - 1) return r end def reducedLatinSquares(n, echo) if n <= 0 then if echo then print end return 0 end if n == 1 then if echo then print end return 1 end rlatin = Array.new(n) { Array.new(n, Float::NAN)} for j in 0 .. n - 1 rlatin[0][j] = j + 1 end count = 0 recurse = lambda {|i| rows = dList(n, i) for r in 0 .. rows.length - 1 rlatin[i - 1] = rows[r].dup catch (:outer) do for k in 0 .. i - 2 for j in 1 .. n - 1 if rlatin[k][j] == rlatin[i - 1][j] then if r < rows.length - 1 then throw :outer end if i > 2 then return end end end end if i < n then recurse.call(i + 1) else count = count + 1 if echo then printSquare(rlatin) end end end end } recurse.call(2) return count end def factorial(n) if n == 0 then return 1 end prod = 1 for i in 2 .. n prod = prod * i end return prod end print reducedLatinSquares(4, true) print print for n in 1 .. 6 size = reducedLatinSquares(n, false) f = factorial(n - 1) f = f * f * n * size print % [n, size, n, n - 1, f] end
658Latin Squares in reduced form
14ruby
mpvyj
N = 13 def method1(N=N): squares = [x**2 for x in range(0, N+1)] sqrset = set(squares) tri90, tri60, tri120 = (set() for _ in range(3)) for a in range(1, N+1): a2 = squares[a] for b in range(1, a + 1): b2 = squares[b] c2 = a2 + b2 if c2 in sqrset: tri90.add(tuple(sorted((a, b, int(c2**0.5))))) ab = a * b c2 -= ab if c2 in sqrset: tri60.add(tuple(sorted((a, b, int(c2**0.5))))) c2 += 2 * ab if c2 in sqrset: tri120.add(tuple(sorted((a, b, int(c2**0.5))))) return sorted(tri90), sorted(tri60), sorted(tri120) if __name__ == '__main__': print(f'Integer triangular triples for sides 1..{N}:') for angle, triples in zip([90, 60, 120], method1(N)): print(f' {angle:3} has {len(triples)} solutions:\n {triples}') _, t60, _ = method1(10_000) notsame = sum(1 for a, b, c in t60 if a != b or b != c) print('Extra credit:', notsame)
655Law of cosines - triples
3python
pz0bm
fn pyth(n: u32) -> impl Iterator<Item = [u32; 3]> { (1..=n).flat_map(move |x| { (x..=n).flat_map(move |y| { (y..=n).filter_map(move |z| { if x.pow(2) + y.pow(2) == z.pow(2) { Some([x, y, z]) } else { None } }) }) }) }
650List comprehensions
15rust
rosg5
local RNG = { new = function(class, a, c, m, rand) local self = setmetatable({}, class) local state = 0 self.rnd = function() state = (a * state + c) % m return rand and rand(state) or state end self.seed = function(new_seed) state = new_seed % m end return self end } bsd = RNG:new(1103515245, 12345, 1<<31) ms = RNG:new(214013, 2531011, 1<<31, function(s) return s>>16 end) print"BSD:" for _ = 1,10 do print(("\t%10d"):format(bsd.rnd())) end print"Microsoft:" for _ = 1,10 do print(("\t%10d"):format(ms.rnd())) end
653Linear congruential generator
1lua
wmfea
import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.concurrent.atomic.AtomicInteger; import java.util.function.BiConsumer; import java.util.function.IntConsumer; import java.util.stream.Collectors; public class Kosaraju { static class Recursive<I> { I func; } private static List<Integer> kosaraju(List<List<Integer>> g) {
665Kosaraju
9java
fgidv
typedef struct{ int row, col; }cell; int ROW,COL,SUM=0; unsigned long raiseTo(int base,int power){ if(power==0) return 1; else return base*raiseTo(base,power-1); } cell* kroneckerProduct(char* inputFile,int power){ FILE* fp = fopen(inputFile,); int i,j,k,l; unsigned long prod; int** matrix; cell *coreList,*tempList,*resultList; fscanf(fp,,&ROW,&COL); matrix = (int**)malloc(ROW*sizeof(int*)); for(i=0;i<ROW;i++){ matrix[i] = (int*)malloc(COL*sizeof(int)); for(j=0;j<COL;j++){ fscanf(fp,,&matrix[i][j]); if(matrix[i][j]==1) SUM++; } } coreList = (cell*)malloc(SUM*sizeof(cell)); resultList = (cell*)malloc(SUM*sizeof(cell)); k = 0; for(i=0;i<ROW;i++){ for(j=0;j<COL;j++){ if(matrix[i][j]==1){ coreList[k].row = i+1; coreList[k].col = j+1; resultList[k].row = i+1; resultList[k].col = j+1; k++; } } } prod = k; for(i=2;i<=power;i++){ tempList = (cell*)malloc(prod*k*sizeof(cell)); l = 0; for(j=0;j<prod;j++){ for(k=0;k<SUM;k++){ tempList[l].row = (resultList[j].row-1)*ROW + coreList[k].row; tempList[l].col = (resultList[j].col-1)*COL + coreList[k].col; l++; } } free(resultList); prod *= k; resultList = (cell*)malloc(prod*sizeof(cell)); for(j=0;j<prod;j++){ resultList[j].row = tempList[j].row; resultList[j].col = tempList[j].col; } free(tempList); } return resultList; } int main(){ char fileName[100]; int power,i,length; cell* resultList; printf(); scanf(,fileName); printf(); scanf(,&power); resultList = kroneckerProduct(fileName,power); initwindow(raiseTo(ROW,power),raiseTo(COL,power),); length = raiseTo(SUM,power); for(i=0;i<length;i++){ putpixel(resultList[i].row,resultList[i].col,15); } getch(); closegraph(); return 0; }
668Kronecker product based fractals
5c
a3j11
package main import ( "fmt" "strings" ) var pokemon = `audino bagon baltoy...67 names omitted...` func main() {
659Last letter-first letter
0go
91vmt
package main import ( "fmt" "strconv" "strings" ) func divByAll(num int, digits []byte) bool { for _, digit := range digits { if num%int(digit-'0') != 0 { return false } } return true } func main() { magic := 9 * 8 * 7 high := 9876432 / magic * magic for i := high; i >= magic; i -= magic { if i%10 == 0 { continue
661Largest number divisible by its digits
0go
13ep5
(defn gcd [a b] (if (zero? b) a (recur b, (mod a b)))) (defn lcm [a b] (/ (* a b) (gcd a b))) (defn lcmv [& v] (reduce lcm v))
667Least common multiple
6clojure
1zjpy
inputs <- cbind(combn(1:13, 2), rbind(seq_len(13), seq_len(13))) inputs <- cbind(A = inputs[1, ], B = inputs[2, ])[sort.list(inputs[1, ]),] Pythagoras <- inputs[, "A"]^2 + inputs[, "B"]^2 AtimesB <- inputs[, "A"] * inputs[, "B"] CValues <- sqrt(cbind("C (90)" = Pythagoras, "C (60)" = Pythagoras - AtimesB, "C (120)" = Pythagoras + AtimesB)) CValues[!t(apply(CValues, MARGIN = 1, function(x) x %in% 1:13))] <- NA output <- cbind(inputs, CValues)[!apply(CValues, MARGIN = 1, function(x) all(is.na(x))),] rownames(output) <- paste0("Solution ", seq_len(nrow(output)), ":") print(output, na.print = "") cat("There are", sum(!is.na(output[, 3])), "solutions in the 90 case,", sum(!is.na(output[, 4])), "solutions in the 60 case, and", sum(!is.na(output[, 5])), "solutions in the 120 case.")
655Law of cosines - triples
13r
jnw78
def pythagoranTriangles(n: Int) = for { x <- 1 to 21 y <- x to 21 z <- y to 21 if x * x + y * y == z * z } yield (x, y, z)
650List comprehensions
16scala
hdoja
class Leap { bool leapYear(num year) { return (year% 400 == 0) || (( year% 100!= 0) && (year% 4 == 0)); bool isLeapYear(int year) => (year% 4 == 0) && ((year% 100!= 0) || (year% 400 == 0));
657Leap year
18dart
a601h
null
665Kosaraju
11kotlin
82q0q
package main import "fmt" func nextInCycle(c []int, index int) int { return c[index % len(c)] } func kolakoski(c []int, slen int) []int { s := make([]int, slen) i, k := 0, 0 for { s[i] = nextInCycle(c, k) if s[k] > 1 { for j := 1; j < s[k]; j++ { i++ if i == slen { return s } s[i] = s[i - 1] } } i++ if i == slen { return s } k++ } } func possibleKolakoski(s []int) bool { slen := len(s) rle := make([]int, 0, slen) prev := s[0] count := 1 for i := 1; i < slen; i++ { if s[i] == prev { count++ } else { rle = append(rle, count) count = 1 prev = s[i] } }
663Kolakoski sequence
0go
020sk
import Data.List import qualified Data.ByteString.Char8 as B allPokemon :: [B.ByteString] allPokemon = map B.pack $ words "audino bagon baltoy banette bidoof braviary bronzor carracosta charmeleon \ \cresselia croagunk darmanitan deino emboar emolga exeggcute gabite \ \girafarig gulpin haxorus heatmor heatran ivysaur jellicent jumpluff kangaskhan \ \kricketune landorus ledyba loudred lumineon lunatone machamp magnezone mamoswine \ \nosepass petilil pidgeotto pikachu pinsir poliwrath poochyena porygon2 \ \porygonz registeel relicanth remoraid rufflet sableye scolipede scrafty seaking \ \sealeo silcoon simisear snivy snorlax spoink starly tirtouga trapinch treecko \ \tyrogue vigoroth vulpix wailord wartortle whismur wingull yamask" growChains :: [[B.ByteString]] -> [B.ByteString] growChains pcs | nextChainSet == [] = head pcs | otherwise = growChains nextChainSet where nextChainSet = pcs >>= findLinks findLinks pc = map (\x -> pc ++ [x]) $ filter (isLink $ last pc) (allPokemon \\ pc) isLink pl pr = B.last pl == B.head pr main = mapM_ B.putStrLn $ growChains $ map (\x -> [x]) allPokemon
659Last letter-first letter
8haskell
btek2
import Data.List (maximumBy, permutations, delete) import Data.Ord (comparing) import Data.Bool (bool) unDigits :: [Int] -> Int unDigits = foldl ((+) . (10 *)) 0 ds :: [Int] ds = [1, 2, 3, 4, 6, 7, 8, 9] lcmDigits :: Int lcmDigits = foldr1 lcm ds sevenDigits :: [[Int]] sevenDigits = (`delete` ds) <$> [1, 4, 7] main :: IO () main = print $ maximumBy (comparing (bool 0 <*> (0 ==) . (`rem` lcmDigits))) (unDigits <$> concat (permutations <$> sevenDigits))
661Largest number divisible by its digits
8haskell
t73f7
use strict; use warnings; use ntheory 'divisors'; use List::AllUtils <max natatime>; sub proper_divisors { my $n = shift; return 1 if $n == 0; my @d = divisors($n); pop @d; @d; } my @range = 1 .. 100; print "GPD for $range[0] through $range[-1]:\n"; my $iter = natatime 10, @range; while( my @batch = $iter->() ) { printf '%3d', $_ == 1 ? 1 : max proper_divisors($_) for @batch; print "\n"; }
660Largest proper divisor of n
2perl
8vn0w
from itertools import islice def lfact(): yield 0 fact, summ, n = 1, 0, 1 while 1: fact, summ, n = fact*n, summ + fact, n + 1 yield summ print('first 11:\n %r'% [lf for i, lf in zip(range(11), lfact())]) print('20 through 110 (inclusive) by tens:') for lf in islice(lfact(), 20, 111, 10): print(lf) print('Digits in 1,000 through 10,000 (inclusive) by thousands:\n %r' % [len(str(lf)) for lf in islice(lfact(), 1000, 10001, 1000)] )
652Left factorials
3python
91jmf
struct s_env { unsigned int n, i; size_t size; void *sample; }; void s_of_n_init(struct s_env *s_env, size_t size, unsigned int n) { s_env->i = 0; s_env->n = n; s_env->size = size; s_env->sample = malloc(n * size); } void sample_set_i(struct s_env *s_env, unsigned int i, void *item) { memcpy(s_env->sample + i * s_env->size, item, s_env->size); } void *s_of_n(struct s_env *s_env, void *item) { s_env->i++; if (s_env->i <= s_env->n) sample_set_i(s_env, s_env->i - 1, item); else if ((rand() % s_env->i) < s_env->n) sample_set_i(s_env, rand() % s_env->n, item); return s_env->sample; } int *test(unsigned int n, int *items_set, unsigned int num_items) { int i; struct s_env s_env; s_of_n_init(&s_env, sizeof(items_set[0]), n); for (i = 0; i < num_items; i++) { s_of_n(&s_env, (void *) &items_set[i]); } return (int *)s_env.sample; } int main() { unsigned int i, j; unsigned int n = 3; unsigned int num_items = 10; unsigned int *frequencies; int *items_set; srand(time(NULL)); items_set = malloc(num_items * sizeof(int)); frequencies = malloc(num_items * sizeof(int)); for (i = 0; i < num_items; i++) { items_set[i] = i; frequencies[i] = 0; } for (i = 0; i < 100000; i++) { int *res = test(n, items_set, num_items); for (j = 0; j < n; j++) { frequencies[res[j]]++; } free(res); } for (i = 0; i < num_items; i++) { printf(, frequencies[i]); } puts(); return 0; }
669Knuth's algorithm S
5c
iuwo2
function write_array(a) io.write("[") for i=0,#a do if i>0 then io.write(", ") end io.write(tostring(a[i])) end io.write("]") end function kosaraju(g)
665Kosaraju
1lua
ovs8h
import Data.List (group) import Control.Monad (forM_) replicateAtLeastOne :: Int -> a -> [a] replicateAtLeastOne n x = x: replicate (n-1) x zipWithLazy :: (a -> b -> c) -> [a] -> [b] -> [c] zipWithLazy f ~(x:xs) ~(y:ys) = f x y: zipWithLazy f xs ys kolakoski :: [Int] -> [Int] kolakoski items = s where s = concat $ zipWithLazy replicateAtLeastOne s $ cycle items rle :: Eq a => [a] -> [Int] rle = map length . group sameAsRleUpTo :: Int -> [Int] -> Bool sameAsRleUpTo n s = r == take (length r) prefix where prefix = take n s r = init $ rle prefix main :: IO () main = forM_ [([1, 2], 20), ([2, 1], 20), ([1, 3, 1, 2], 30), ([1, 3, 2, 1], 30)] $ \(items, n) -> do putStrLn $ "First " ++ show n ++ " members of the sequence generated by " ++ show items ++ ":" let s = kolakoski items print $ take n s putStrLn $ "Possible Kolakoski sequence? " ++ show (sameAsRleUpTo n s) putStrLn ""
663Kolakoski sequence
8haskell
cac94
library(gmp) left_factorial <- function(n) { if (n == 0) return(0) result <- as.bigz(0) adder <- as.bigz(1) for (k in 1:n) { result <- result + adder adder <- adder * k } result } digit_count <- function(n) { nchar(as.character(n)) } for (n in 0:10) { cat("!",n," = ",sep = "") cat(as.character(left_factorial(n))) cat("\n") } for (n in seq(20,110,10)) { cat("!",n," = ",sep = "") cat(as.character(left_factorial(n))) cat("\n") } for (n in seq(1000,10000,1000)) { cat("!",n," has ",digit_count(left_factorial(n))," digits\n", sep = "") }
652Left factorials
13r
3h4zt
package main import ( "fmt" "math/big" ) var ( p = map[int]int{1: 0} lvl = [][]int{[]int{1}} ) func path(n int) []int { if n == 0 { return []int{} } for { if _, ok := p[n]; ok { break } var q []int for _, x := range lvl[0] { for _, y := range path(x) { z := x + y if _, ok := p[z]; ok { break } p[z] = x q = append(q, z) } } lvl[0] = q } r := path(p[n]) r = append(r, n) return r } func treePow(x float64, n int) *big.Float { r := map[int]*big.Float{0: big.NewFloat(1), 1: big.NewFloat(x)} p := 0 for _, i := range path(n) { temp := new(big.Float).SetPrec(320) temp.Mul(r[i-p], r[p]) r[i] = temp p = i } return r[n] } func showPow(x float64, n int, isIntegral bool) { fmt.Printf("%d:%v\n", n, path(n)) f := "%f" if isIntegral { f = "%.0f" } fmt.Printf(f, x) fmt.Printf(" ^%d = ", n) fmt.Printf(f+"\n\n", treePow(x, n)) } func main() { for n := 0; n <= 17; n++ { showPow(2, n, true) } showPow(1.1, 81, false) showPow(3, 191, true) }
670Knuth's power tree
0go
scbqa
use strict; use warnings; use feature 'say'; sub kosaraju { our(%k) = @_; our %g = (); our %h; my $i = 0; $g{$_} = $i++ for sort keys %k; $h{$g{$_}} = $_ for keys %g; our(%visited, @stack, @transpose, @connected); sub visit { my($u) = @_; unless ($visited{$u}) { $visited{$u} = 1; for my $v (@{$k{$u}}) { visit($v); push @{$transpose[$g{$v}]}, $u; } push @stack, $u; } } sub assign { my($u, $root) = @_; if ($visited{$u}) { $visited{$u} = 0; $connected[$g{$u}] = $root; assign($_, $root) for @{$transpose[$g{$u}]}; } } visit($_) for sort keys %g; assign($_, $_) for reverse @stack; my %groups; for my $i (0..$ my $id = $g{$connected[$i]}; push @{$groups{$id}}, $h{$i}; } say join ' ', @{$groups{$_}} for sort keys %groups; } my %test1 = ( 0 => [1], 1 => [2], 2 => [0], 3 => [1, 2, 4], 4 => [3, 5], 5 => [2, 6], 6 => [5], 7 => [4, 6, 7] ); my %test2 = ( 'Andy' => ['Bart'], 'Bart' => ['Carl'], 'Carl' => ['Andy'], 'Dave' => [<Bart Carl Earl>], 'Earl' => [<Dave Fred>], 'Fred' => [<Carl Gary>], 'Gary' => ['Fred'], 'Hank' => [<Earl Gary Hank>] ); kosaraju(%test1); say ''; kosaraju(%test2);
665Kosaraju
2perl
4sv5d
import java.util.Arrays; public class Kolakoski { private static class Crutch { final int len; int[] s; int i; Crutch(int len) { this.len = len; s = new int[len]; i = 0; } void repeat(int count) { for (int j = 0; j < count; j++) { if (++i == len) return; s[i] = s[i - 1]; } } } private static int nextInCycle(final int[] self, int index) { return self[index % self.length]; } private static int[] kolakoski(final int[] self, int len) { Crutch c = new Crutch(len); int k = 0; while (c.i < len) { c.s[c.i] = nextInCycle(self, k); if (c.s[k] > 1) { c.repeat(c.s[k] - 1); } if (++c.i == len) return c.s; k++; } return c.s; } private static boolean possibleKolakoski(final int[] self) { int[] rle = new int[self.length]; int prev = self[0]; int count = 1; int pos = 0; for (int i = 1; i < self.length; i++) { if (self[i] == prev) { count++; } else { rle[pos++] = count; count = 1; prev = self[i]; } }
663Kolakoski sequence
9java
zjztq
int main(int c, char *v[]) { int days[] = {31,29,31,30,31,30,31,31,30,31,30,31}; int m, y, w; if (c < 2 || (y = atoi(v[1])) <= 1700) return 1; days[1] -= (y % 4) || (!(y % 100) && (y % 400)); w = y * 365 + (y - 1) / 4 - (y - 1) / 100 + (y - 1) / 400 + 6; for(m = 0; m < 12; m++) { w = (w + days[m]) % 7; printf(, y, m + 1, days[m] + (w < 5 ? -2 : 5) - w); } return 0; }
671Last Friday of each month
5c
9pnm1
package main import ( "fmt" "math/big" ) func main() { limit := 100 last := 12 unsigned := true l := make([][]*big.Int, limit+1) for n := 0; n <= limit; n++ { l[n] = make([]*big.Int, limit+1) for k := 0; k <= limit; k++ { l[n][k] = new(big.Int) } l[n][n].SetInt64(int64(1)) if n != 1 { l[n][1].MulRange(int64(2), int64(n)) } } var t big.Int for n := 1; n <= limit; n++ { for k := 1; k <= n; k++ { t.Mul(l[n][1], l[n-1][1]) t.Quo(&t, l[k][1]) t.Quo(&t, l[k-1][1]) t.Quo(&t, l[n-k][1]) l[n][k].Set(&t) if !unsigned && (n%2 == 1) { l[n][k].Neg(l[n][k]) } } } fmt.Println("Unsigned Lah numbers: l(n, k):") fmt.Printf("n/k") for i := 0; i <= last; i++ { fmt.Printf("%10d ", i) } fmt.Printf("\n--") for i := 0; i <= last; i++ { fmt.Printf("-----------") } fmt.Println() for n := 0; n <= last; n++ { fmt.Printf("%2d ", n) for k := 0; k <= n; k++ { fmt.Printf("%10d ", l[n][k]) } fmt.Println() } fmt.Println("\nMaximum value from the l(100, *) row:") max := new(big.Int).Set(l[limit][0]) for k := 1; k <= limit; k++ { if l[limit][k].Cmp(max) > 0 { max.Set(l[limit][k]) } } fmt.Println(max) fmt.Printf("which has%d digits.\n", len(max.String())) }
664Lah numbers
0go
iu8og
(defn maxcat [coll] (read-string (apply str (sort (fn [x y] (apply compare (map read-string [(str y x) (str x y)]))) coll)))) (prn (map maxcat [[1 34 3 98 9 76 45 4] [54 546 548 60]]))
666Largest int from concatenated ints
6clojure
3jdzr
public class LynchBell { static String s = ""; public static void main(String args[]) {
661Largest number divisible by its digits
9java
8vi06
grouped = (1..13).to_a.repeated_permutation(3).group_by do |a,b,c| sumaabb, ab = a*a + b*b, a*b case c*c when sumaabb then 90 when sumaabb - ab then 60 when sumaabb + ab then 120 end end grouped.delete(nil) res = grouped.transform_values{|v| v.map(&:sort).uniq } res.each do |k,v| puts puts v.inspect, end
655Law of cosines - triples
14ruby
a6o1s
typedef struct{ double x,y; }point; void kochCurve(point p1,point p2,int times){ point p3,p4,p5; double theta = pi/3; if(times>0){ p3 = (point){(2*p1.x+p2.x)/3,(2*p1.y+p2.y)/3}; p5 = (point){(2*p2.x+p1.x)/3,(2*p2.y+p1.y)/3}; p4 = (point){p3.x + (p5.x - p3.x)*cos(theta) + (p5.y - p3.y)*sin(theta),p3.y - (p5.x - p3.x)*sin(theta) + (p5.y - p3.y)*cos(theta)}; kochCurve(p1,p3,times-1); kochCurve(p3,p4,times-1); kochCurve(p4,p5,times-1); kochCurve(p5,p2,times-1); } else{ line(p1.x,p1.y,p2.x,p2.y); } } int main(int argC, char** argV) { int w,h,r; point p1,p2; if(argC!=4){ printf(,argV[0]); } else{ w = atoi(argV[1]); h = atoi(argV[2]); r = atoi(argV[3]); initwindow(w,h,); p1 = (point){10,h-10}; p2 = (point){w-10,h-10}; kochCurve(p1,p2,r); getch(); closegraph(); } return 0; }
672Koch curve
5c
mboys
(defn s-of-n-fn-creator [n] (fn [[sample iprev] item] (let [i (inc iprev)] (if (<= i n) [(conj sample item) i] (let [r (rand-int i)] (if (< r n) [(assoc sample r item) i] [sample i])))))) (def s-of-3-fn (s-of-n-fn-creator 3)) (->> #(reduce s-of-3-fn [[] 0] (range 10)) (repeatedly 100000) (map first) flatten frequencies sort println)
669Knuth's algorithm S
6clojure
z78tj
class PowerTree { private static Map<Integer, Integer> p = new HashMap<>() private static List<List<Integer>> lvl = new ArrayList<>() static { p[1] = 0 List<Integer> temp = new ArrayList<Integer>() temp.add 1 lvl.add temp } private static List<Integer> path(int n) { if (n == 0) return new ArrayList<Integer>() while (!p.containsKey(n)) { List<Integer> q = new ArrayList<>() for (Integer x in lvl.get(0)) { for (Integer y in path(x)) { if (p.containsKey(x + y)) break p[x + y] = x q.add x + y } } lvl[0].clear() lvl[0].addAll q } List<Integer> temp = path p[n] temp.add n temp } private static BigDecimal treePow(double x, int n) { Map<Integer, BigDecimal> r = new HashMap<>() r[0] = BigDecimal.ONE r[1] = BigDecimal.valueOf(x) int p = 0 for (Integer i in path(n)) { r[i] = r[i - p] * r[p] p = i } r[n] } private static void showPos(double x, int n, boolean isIntegral) { printf("%d:%s\n", n, path(n)) String f = isIntegral ? "%.0f": "%f" printf(f, x) printf(" ^%d = ", n) printf(f, treePow(x, n)) println() println() } static void main(String[] args) { for (int n = 0; n <= 17; ++n) { showPos 2.0, n, true } showPos 1.1, 81, false showPos 3.0, 191, true } }
670Knuth's power tree
7groovy
a3r1p
int main(){ char input[100],output[100]; int i,j,k,l,rowA,colA,rowB,colB,rowC,colC,startRow,startCol; double **matrixA,**matrixB,**matrixC; printf(); fscanf(stdin,,input); printf(); fscanf(stdin,,output); FILE* inputFile = fopen(input,); fscanf(inputFile,,&rowA,&colA); matrixA = (double**)malloc(rowA * sizeof(double*)); for(i=0;i<rowA;i++){ matrixA[i] = (double*)malloc(colA*sizeof(double)); for(j=0;j<colA;j++){ fscanf(inputFile,,&matrixA[i][j]); } } fscanf(inputFile,,&rowB,&colB); matrixB = (double**)malloc(rowB * sizeof(double*)); for(i=0;i<rowB;i++){ matrixB[i] = (double*)malloc(colB*sizeof(double)); for(j=0;j<colB;j++){ fscanf(inputFile,,&matrixB[i][j]); } } fclose(inputFile); rowC = rowA*rowB; colC = colA*colB; matrixC = (double**)malloc(rowC*sizeof(double*)); for(i=0;i<rowA*rowB;i++){ matrixC[i] = (double*)malloc(colA*colB*sizeof(double)); } for(i=0;i<rowA;i++){ for(j=0;j<colA;j++){ startRow = i*rowB; startCol = j*colB; for(k=0;k<rowB;k++){ for(l=0;l<colB;l++){ matrixC[startRow+k][startCol+l] = matrixA[i][j]*matrixB[k][l]; } } } } FILE* outputFile = fopen(output,); for(i=0;i<rowC;i++){ for(j=0;j<colC;j++){ fprintf(outputFile,,matrixC[i][j]); } fprintf(outputFile,); } fclose(outputFile); printf(,output); }
673Kronecker product
5c
4s35t
null
663Kolakoski sequence
11kotlin
i5io4
import Text.Printf (printf) import Control.Monad (when) factorial :: Integral n => n -> n factorial 0 = 1 factorial n = product [1..n] lah :: Integral n => n -> n -> n lah n k | k == 1 = factorial n | k == n = 1 | k > n = 0 | k < 1 || n < 1 = 0 | otherwise = f n `div` f k `div` factorial (n - k) where f = (*) =<< (^ 2) . factorial . pred printLah :: (Word, Word) -> IO () printLah (n, k) = do when (k == 0) (printf "\n%3d" n) printf "%11d" (lah n k) main :: IO () main = do printf "Unsigned Lah numbers: L(n, k):\nn/k" mapM_ (printf "%11d") zeroToTwelve mapM_ printLah $ (,) <$> zeroToTwelve <*> zeroToTwelve printf "\nMaximum value from the L(100, *) row:\n%d\n" (maximum $ lah 100 <$> ([0..100] :: [Integer])) where zeroToTwelve = [0..12]
664Lah numbers
8haskell
vwl2k
null
659Last letter-first letter
9java
g8h4m
def lpd(n): for i in range(n-1,0,-1): if n%i==0: return i return 1 for i in range(1,101): print(.format(lpd(i)), end=i%10==0 and '\n' or '')
660Largest proper divisor of n
3python
oud81
main() { int x=8; int y=12; int z= gcd(x,y); var lcm=(x*y)/z; print('$lcm'); } int gcd(int a,int b) { if(b==0) return a; if(b!=0) return gcd(b,a%b); }
667Least common multiple
18dart
ux9vs
typealias F1 = (Int) -> [(Int, Int, Int)] typealias F2 = (Int) -> Bool func pythagoreanTriples(n: Int) -> [(Int, Int, Int)] { (1...n).flatMap({x in (x...n).flatMap({y in (y...n).filter({z in x * x + y * y == z * z } as F2).map({ (x, y, $0) }) } as F1) } as F1) } print(pythagoreanTriples(n: 20))
650List comprehensions
17swift
40x5g
use strict; package LCG; use overload '0+' => \&get; use integer; sub gen_bsd { (1103515245 * shift() + 12345) % (1 << 31) } sub gen_ms { my $s = (214013 * shift() + 2531011) % (1 << 31); $s, $s / (1 << 16) } sub set { $_[0]->{seed} = $_[1] } sub get { my $o = shift; ($o->{seed}, my $r) = $o->{meth}->($o->{seed}); $r //= $o->{seed} } sub new { my $cls = shift; my %opts = @_; bless { seed => $opts{seed}, meth => $opts{meth} eq 'MS' ? \&gen_ms : \&gen_bsd, }, ref $cls || $cls; } package main; my $rand = LCG->new; print "BSD:\n"; print "$rand\n" for 1 .. 10; $rand = LCG->new(meth => 'MS'); print "\nMS:\n"; print "$rand\n" for 1 .. 10;
653Linear congruential generator
2perl
caj9a
module Rosetta.PowerTree ( Natural , powerTree , power ) where import Data.Foldable (toList) import Data.Map.Strict (Map) import qualified Data.Map.Strict as Map import Data.Maybe (fromMaybe) import Data.List (foldl') import Data.Sequence (Seq (..), (|>)) import qualified Data.Sequence as Seq import Numeric.Natural (Natural) type M = Map Natural S type S = Seq Natural levels:: [M] levels = let s = Seq.singleton 1 in fst <$> iterate step (Map.singleton 1 s, s) step:: (M, S) -> (M, S) step (m, xs) = foldl' f (m, Empty) xs where f :: (M, S) -> Natural -> (M, S) f (m', ys) n = foldl' g (m', ys) ns where ns:: S ns = m' Map.! n g :: (M, S) -> Natural -> (M, S) g (m'', zs) k = let l = n + k in case Map.lookup l m'' of Nothing -> (Map.insert l (ns |> l) m'', zs |> l) Just _ -> (m'', zs) powerTree :: Natural -> [Natural] powerTree n | n <= 0 = [] | otherwise = go levels where go :: [M] -> [Natural] go [] = error "impossible branch" go (m: ms) = fromMaybe (go ms) $ toList <$> Map.lookup n m power :: forall a. Num a => a -> Natural -> a power _ 0 = 1 power a n = go a 1 (Map.singleton 1 a) $ tail $ powerTree n where go :: a -> Natural -> Map Natural a -> [Natural] -> a go b _ _ [] = b go b k m (l: ls) = let b' = b * m Map.! (l - k) m' = Map.insert l b' m in go b' l m' ls
670Knuth's power tree
8haskell
9pdmo
def kosaraju(g): class nonlocal: pass size = len(g) vis = [False]*size l = [0]*size nonlocal.x = size t = [[]]*size def visit(u): if not vis[u]: vis[u] = True for v in g[u]: visit(v) t[v] = t[v] + [u] nonlocal.x = nonlocal.x - 1 l[nonlocal.x] = u for u in range(len(g)): visit(u) c = [0]*size def assign(u, root): if vis[u]: vis[u] = False c[u] = root for v in t[u]: assign(v, root) for u in l: assign(u, u) return c g = [[1], [2], [0], [1,2,4], [3,5], [2,6], [5], [4,6,7]] print kosaraju(g)
665Kosaraju
3python
g0u4h
function next_in_cycle(c,length,index) local pos = index % length return c[pos] end function kolakoski(c,s,clen,slen) local i = 0 local k = 0 while true do s[i] = next_in_cycle(c,clen,k) if s[k] > 1 then for j=1,s[k]-1 do i = i + 1 if i == slen then return nil end s[i] = s[i - 1] end end i = i + 1 if i == slen then return nil end k = k + 1 end return nil end function possible_kolakoski(s,length) local j = 0 local prev = s[0] local count = 1 local rle = {} local result = "True" for i=0,length do rle[i] = 0 end for i=1,length-1 do if s[i] == prev then count = count + 1 else rle[j] = count j = j + 1 count = 1 prev = s[i] end end
663Kolakoski sequence
1lua
n4ni8
import java.math.BigInteger; import java.util.HashMap; import java.util.Map; public class LahNumbers { public static void main(String[] args) { System.out.println("Show the unsigned Lah numbers up to n = 12:"); for ( int n = 0 ; n <= 12 ; n++ ) { System.out.printf("%5s", n); for ( int k = 0 ; k <= n ; k++ ) { System.out.printf("%12s", lahNumber(n, k)); } System.out.printf("%n"); } System.out.println("Show the maximum value of L(100, k):"); int n = 100; BigInteger max = BigInteger.ZERO; for ( int k = 0 ; k <= n ; k++ ) { max = max.max(lahNumber(n, k)); } System.out.printf("%s", max); } private static Map<String,BigInteger> CACHE = new HashMap<>(); private static BigInteger lahNumber(int n, int k) { String key = n + "," + k; if ( CACHE.containsKey(key) ) { return CACHE.get(key); }
664Lah numbers
9java
yk36g
const endsWith = word => word[word.length - 1]; const getCandidates = (words, used) => words.filter(e => !used.includes(e)); const buildLookup = words => { const lookup = new Map(); words.forEach(e => { const start = e[0]; lookup.set(start, [...(lookup.get(start) || []), e]); }); return lookup; }; const findPaths = names => { const t0 = process.hrtime(); console.log('Checking:', names.length, 'names'); const lookup = buildLookup(names); let maxNum = 0; let maxPaths = []; const parseResult = arr => { if (typeof arr[0] === 'object') { arr.forEach(el => parseResult(el)) } else { if (arr.length > maxNum) { maxNum = arr.length; maxPaths = [arr]; } if (arr.length === maxNum) { maxPaths.push(arr) } } }; const searchWords = (word, res) => { const cs = getCandidates(lookup.get(endsWith(word)) || [], res); return cs.length ? cs.map(e => searchWords(e, [...res, e])) : res; }; names.forEach(word => { const res = searchWords(word, [word]); parseResult(res); }); const t1 = process.hrtime(t0); console.info('Execution time (hr):%ds%dms', t1[0], t1[1] / 1000000); console.log('Max Path:', maxNum); console.log('Matching Paths:', maxPaths.length); console.log('Example Path:', maxPaths[0]); }; const pokimon = ["audino", "bagon", "baltoy", "banette", "bidoof", "braviary", "bronzor", "carracosta", "charmeleon", "cresselia", "croagunk", "darmanitan", "deino", "emboar", "emolga", "exeggcute", "gabite", "girafarig", "gulpin", "haxorus", "heatmor", "heatran", "ivysaur", "jellicent", "jumpluff", "kangaskhan", "kricketune", "landorus", "ledyba", "loudred", "lumineon", "lunatone", "machamp", "magnezone", "mamoswine", "nosepass", "petilil", "pidgeotto", "pikachu", "pinsir", "poliwrath", "poochyena", "porygon2", "porygonz", "registeel", "relicanth", "remoraid", "rufflet", "sableye", "scolipede", "scrafty", "seaking", "sealeo", "silcoon", "simisear", "snivy", "snorlax", "spoink", "starly", "tirtouga", "trapinch", "treecko", "tyrogue", "vigoroth", "vulpix", "wailord", "wartortle", "whismur", "wingull", "yamask"]; findPaths(pokimon);
659Last letter-first letter
10javascript
kfahq
null
661Largest number divisible by its digits
11kotlin
wmqek
function isDivisible(n) local t = n local a = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} while t ~= 0 do local r = t % 10 if r == 0 then return false end if n % r ~= 0 then return false end if a[r + 1] > 0 then return false end a[r + 1] = 1 t = math.floor(t / 10) end return true end for i=9999999999,0,-1 do if isDivisible(i) then print(i) break end end
661Largest number divisible by its digits
1lua
x9swz
largest_proper_divisor <- function(n){ if(n == 1) return(1) lpd = 1 for(i in seq(1, n-1, 1)){ if(n%% i == 0) lpd = i } message(paste0("The largest proper divisor of ", n, " is ", lpd)) return(lpd) } for (i in 1:100){ largest_proper_divisor(i) }
660Largest proper divisor of n
13r
qc8xs
left_fact = Enumerator.new do |y| f, lf = 1, 0 1.step do |n| y << lf lf += f f *= n end end
652Left factorials
14ruby
lekcl
import java.math.BigDecimal; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; public class PowerTree { private static Map<Integer, Integer> p = new HashMap<>(); private static List<List<Integer>> lvl = new ArrayList<>(); static { p.put(1, 0); ArrayList<Integer> temp = new ArrayList<>(); temp.add(1); lvl.add(temp); } private static List<Integer> path(int n) { if (n == 0) return new ArrayList<>(); while (!p.containsKey(n)) { List<Integer> q = new ArrayList<>(); for (Integer x : lvl.get(0)) { for (Integer y : path(x)) { if (p.containsKey(x + y)) break; p.put(x + y, x); q.add(x + y); } } lvl.get(0).clear(); lvl.get(0).addAll(q); } List<Integer> temp = path(p.get(n)); temp.add(n); return temp; } private static BigDecimal treePow(double x, int n) { Map<Integer, BigDecimal> r = new HashMap<>(); r.put(0, BigDecimal.ONE); r.put(1, BigDecimal.valueOf(x)); int p = 0; for (Integer i : path(n)) { r.put(i, r.get(i - p).multiply(r.get(p))); p = i; } return r.get(n); } private static void showPow(double x, int n, boolean isIntegral) { System.out.printf("%d:%s\n", n, path(n)); String f = isIntegral ? "%.0f" : "%f"; System.out.printf(f, x); System.out.printf(" ^%d = ", n); System.out.printf(f, treePow(x, n)); System.out.println("\n"); } public static void main(String[] args) { for (int n = 0; n <= 17; ++n) { showPow(2.0, n, true); } showPow(1.1, 81, false); showPow(3.0, 191, true); } }
670Knuth's power tree
9java
trsf9
package main import "fmt" type matrix [][]int func (m1 matrix) kroneckerProduct(m2 matrix) matrix { m := len(m1) n := len(m1[0]) p := len(m2) q := len(m2[0]) rtn := m * p ctn := n * q r := make(matrix, rtn) for i := range r { r[i] = make([]int, ctn)
668Kronecker product based fractals
0go
mbfyi
sub kolakoski { my($terms,@seed) = @_; my @k; my $k = $seed[0] == 1 ? 1 : 0; if ($k == 1) { @k = (1, split //, (($seed[1]) x $seed[1])) } else { @k = ($seed[0]) x $seed[0] } do { $k++; push @k, ($seed[$k % @seed]) x $k[$k]; } until $terms <= @k; @k[0..$terms-1] } sub rle { (my $string = join '', @_) =~ s/((.)\2*)/length $1/eg; split '', $string } for ([20,1,2], [20,2,1], [30,1,3,1,2], [30,1,3,2,1]) { $terms = shift @$_; print "\n$terms members of the series generated from [@$_] is:\n"; print join(' ', @kolakoski = kolakoski($terms, @$_)) . "\n"; $status = join('', @rle = rle(@kolakoski)) eq join('', @kolakoski[0..$ print "Looks like a Kolakoski sequence?: $status\n"; }
663Kolakoski sequence
2perl
rorgd
(use '[clj-time.core:only [last-day-of-the-month day-of-week minus days]] '[clj-time.format:only [unparse formatters]]) (defn last-fridays [year] (let [last-days (map #(last-day-of-the-month year %) (range 1 13 1)) dow (map day-of-week last-days) relation (zipmap last-days dow)] (map #(minus (key %) (days (mod (+ (val %) 2) 7))) relation))) (defn last-fridays-formatted [year] (sort (map #(unparse (formatters:year-month-day) %) (last-fridays year))))
671Last Friday of each month
6clojure
ux3vi
#[cfg(target_pointer_width = "64")] type USingle = u32; #[cfg(target_pointer_width = "64")] type UDouble = u64; #[cfg(target_pointer_width = "64")] const WORD_LEN: i32 = 32; #[cfg(not(target_pointer_width = "64"))] type USingle = u16; #[cfg(not(target_pointer_width = "64"))] type UDouble = u32; #[cfg(not(target_pointer_width = "64"))] const WORD_LEN: i32 = 16; use std::cmp; #[derive(Debug,Clone)] struct BigNum {
652Left factorials
15rust
2wblt
<?php function bsd_rand($seed) { return function() use (&$seed) { return $seed = (1103515245 * $seed + 12345) % (1 << 31); }; } function msvcrt_rand($seed) { return function() use (&$seed) { return ($seed = (214013 * $seed + 2531011) % (1 << 31)) >> 16; }; } $lcg = bsd_rand(0); echo ; for ($i = 0; $i < 10; $i++) echo $lcg(), ; echo ; $lcg = msvcrt_rand(0); echo ; for ($i = 0; $i < 10; $i++) echo $lcg(), ; echo ; ?>
653Linear congruential generator
12php
x9tw5
import Reflex import Reflex.Dom import Data.Map as DM (Map, fromList) import Data.Text (Text, pack) import Data.List (transpose) main :: IO () main = mainWidget $ do elAttr "h1" ("style" =: "color:black") $ text "Kroneker Product Based Fractals" elAttr "a" ("href" =: "http://rosettacode.org/wiki/Kronecker_product_based_fractals#Haskell") $ text "Rosetta Code / Kroneker product based fractals / Haskell" el "br" $ return () elAttr "h2" ("style" =: "color:brown") $ text "Vicsek Fractal" showFractal [[0, 1, 0] ,[1, 1, 1] ,[0, 1, 0] ] el "br" $ return () elAttr "h2" ("style" =: "color:brown") $ text "Sierpinski Carpet Fractal" showFractal [[1, 1, 1] ,[1, 0, 1] ,[1, 1, 1] ] cellSize :: Int cellSize = 8 showFractal :: MonadWidget t m => [[Int]] -> m () showFractal seed = do let boardAttrs w h = fromList [ ("width" , pack $ show $ w * cellSize) , ("height", pack $ show $ h * cellSize) ] fractals = iterate (kronekerProduct seed) seed shown = fractals !! 3 w = length $ head shown h = length shown elSvgns "svg" (constDyn $ boardAttrs w h) $ showMatrix shown kronekerProduct :: Num a => [[a]] -> [[a]] -> [[a]] kronekerProduct xs ys = let m0 = flip $ fmap.fmap.(*) m1 = flip $ fmap.fmap.m0 in concat $ fmap (fmap concat.transpose) $ m1 xs ys showMatrix :: MonadWidget t m => [[Int]] -> m () showMatrix m = mapM_ showRow $ zip [0..] m showRow :: MonadWidget t m => (Int,[Int]) -> m () showRow (x,r) = mapM_ (showCell x) $ zip [0..] r showCell :: MonadWidget t m => Int -> (Int,Int) -> m () showCell x (y,on) = let boxAttrs (x,y) = fromList [ ("transform", pack $ "scale (" ++ show cellSize ++ ", " ++ show cellSize ++ ") " ++ "translate (" ++ show x ++ ", " ++ show y ++ ")" ) ] cellAttrs = fromList [ ( "cx", "0.5") , ( "cy", "0.5") , ( "r", "0.45") , ( "style", "fill:green") ] in if (on==1) then elSvgns "g" (constDyn $ boxAttrs (x,y)) $ elSvgns "circle" (constDyn $ cellAttrs) $ return () else return () elSvgns :: MonadWidget t m => Text -> Dynamic t (Map Text Text) -> m a -> m a elSvgns t m ma = do (el, val) <- elDynAttrNS' (Just "http://www.w3.org/2000/svg") t m ma return val
668Kronecker product based fractals
8haskell
kd4h0
import java.math.BigInteger fun factorial(n: BigInteger): BigInteger { if (n == BigInteger.ZERO) return BigInteger.ONE if (n == BigInteger.ONE) return BigInteger.ONE var prod = BigInteger.ONE var num = n while (num > BigInteger.ONE) { prod *= num num-- } return prod } fun lah(n: BigInteger, k: BigInteger): BigInteger { if (k == BigInteger.ONE) return factorial(n) if (k == n) return BigInteger.ONE if (k > n) return BigInteger.ZERO if (k < BigInteger.ONE || n < BigInteger.ONE) return BigInteger.ZERO return (factorial(n) * factorial(n - BigInteger.ONE)) / (factorial(k) * factorial(k - BigInteger.ONE)) / factorial(n - k) } fun main() { println("Unsigned Lah numbers: L(n, k):") print("n/k ") for (i in 0..12) { print("%10d ".format(i)) } println() for (row in 0..12) { print("%-3d".format(row)) for (i in 0..row) { val l = lah(BigInteger.valueOf(row.toLong()), BigInteger.valueOf(i.toLong())) print("%11d".format(l)) } println() } println("\nMaximum value from the L(100, *) row:") println((0..100).map { lah(BigInteger.valueOf(100.toLong()), BigInteger.valueOf(it.toLong())) }.max()) }
664Lah numbers
11kotlin
fgndo
null
659Last letter-first letter
11kotlin
2w4li