rem
stringlengths
1
322k
add
stringlengths
0
2.05M
context
stringlengths
4
228k
meta
stringlengths
156
215
ocs = csr_matrix(other)
ocs = other.tocsc()
def __rmul__(self, other): # other * self if isspmatrix(other): ocs = csr_matrix(other) return occ.matmat(self) elif isscalar(other): new = self.copy() new.data = other * new.data new._dtypechar = new.data.dtypechar new.ftype = _transtabl[new._dtypechar] return new else: return transpose(self.rmatvec(transpose(other),conj=0))
bdabf856b614694a8ef20c73a7d82bda3a7cf386 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bdabf856b614694a8ef20c73a7d82bda3a7cf386/sparse.py
new.data = -new.data
new.data *= -1
def __neg__(self): new = self.copy() new.data = -new.data return new
bdabf856b614694a8ef20c73a7d82bda3a7cf386 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bdabf856b614694a8ef20c73a7d82bda3a7cf386/sparse.py
ocs = csr_matrix(other)
if isscalar(other): raise NotImplementedError('subtracting a scalar from a sparse matrix is not yet supported') elif isspmatrix(other): ocs = other.tocsr() if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar, ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,-data2,other.colind,other.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N) def __rsub__(self, other): ocs = other.tocsr()
def __sub__(self, other): ocs = csr_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,other._dtypechar)] data1, data2 = _convert_data(self.data, other.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,-data2,other.colind,other.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N)
bdabf856b614694a8ef20c73a7d82bda3a7cf386 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bdabf856b614694a8ef20c73a7d82bda3a7cf386/sparse.py
dtypechar = _coerce_rules[(self._dtypechar,other._dtypechar)] data1, data2 = _convert_data(self.data, other.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,-data2,other.colind,other.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N) def __rsub__(self, other): ocs = csr_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,other._dtypechar)] data1, data2 = _convert_data(self.data, other.data, dtypechar)
dtypechar = _coerce_rules[(self._dtypechar, ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar)
def __sub__(self, other): ocs = csr_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,other._dtypechar)] data1, data2 = _convert_data(self.data, other.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscadd') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,-data2,other.colind,other.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N)
bdabf856b614694a8ef20c73a7d82bda3a7cf386 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bdabf856b614694a8ef20c73a7d82bda3a7cf386/sparse.py
ocs = csr_matrix(other)
ocs = other.tocsr()
def __pow__(self, other): """ Element-by-element power (unless other is a scalar, in which case return the matrix power.) """ if isscalar(other): new = self.copy() new.data = new.data ** other new._dtypechar = new.data.dtypechar new.ftype = _transtabl[new._dtypechar] return new else: ocs = csr_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscmul') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,data2,ocs.colind,ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N)
bdabf856b614694a8ef20c73a7d82bda3a7cf386 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bdabf856b614694a8ef20c73a7d82bda3a7cf386/sparse.py
dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)]
dtypechar = _coerce_rules[(self._dtypechar, ocs._dtypechar)]
def __pow__(self, other): """ Element-by-element power (unless other is a scalar, in which case return the matrix power.) """ if isscalar(other): new = self.copy() new.data = new.data ** other new._dtypechar = new.data.dtypechar new.ftype = _transtabl[new._dtypechar] return new else: ocs = csr_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscmul') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,data2,ocs.colind,ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N)
bdabf856b614694a8ef20c73a7d82bda3a7cf386 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bdabf856b614694a8ef20c73a7d82bda3a7cf386/sparse.py
c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,data2,ocs.colind,ocs.indptr)
c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,data2, ocs.colind, ocs.indptr)
def __pow__(self, other): """ Element-by-element power (unless other is a scalar, in which case return the matrix power.) """ if isscalar(other): new = self.copy() new.data = new.data ** other new._dtypechar = new.data.dtypechar new.ftype = _transtabl[new._dtypechar] return new else: ocs = csr_matrix(other) if (ocs.shape != self.shape): raise ValueError, "Inconsistent shapes." dtypechar = _coerce_rules[(self._dtypechar,ocs._dtypechar)] data1, data2 = _convert_data(self.data, ocs.data, dtypechar) func = getattr(sparsetools,_transtabl[dtypechar]+'cscmul') c,colc,ptrc,ierr = func(data1,self.colind,self.indptr,data2,ocs.colind,ocs.indptr) if ierr: raise ValueError, "Ran out of space (but shouldn't have happened)." M, N = self.shape return csr_matrix.Construct(c,(colc,ptrc),M=M,N=N)
bdabf856b614694a8ef20c73a7d82bda3a7cf386 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bdabf856b614694a8ef20c73a7d82bda3a7cf386/sparse.py
if isinstance(other, dok_matrix):
if isscalar(other): raise NotImplementedError('adding a scalar to a sparse matrix is not yet supported') elif isinstance(other, dok_matrix):
def __add__(self, other): if isinstance(other, dok_matrix): res = dok_matrix() res.update(self) res.shape = self.shape res.nnz = self.nnz for key in other.keys(): res[key] += other[key] else: csc = self.tocsc() res = csc + other return res
bdabf856b614694a8ef20c73a7d82bda3a7cf386 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bdabf856b614694a8ef20c73a7d82bda3a7cf386/sparse.py
if isinstance(other, dok_matrix):
if isscalar(other): raise NotImplementedError('subtracting a scalar from a sparse matrix is not yet supported') elif isinstance(other, dok_matrix):
def __sub__(self, other): if isinstance(other, dok_matrix): res = dok_matrix() res.update(self) res.shape = self.shape res.nnz = self.nnz for key in other.keys(): res[key] -= other[key] else: csc = self.tocsc() res = csc - other return res
bdabf856b614694a8ef20c73a7d82bda3a7cf386 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bdabf856b614694a8ef20c73a7d82bda3a7cf386/sparse.py
if isinstance(other, spmatrix):
if isspmatrix(other):
def __mul__(self, other): if isinstance(other, spmatrix): return self.matmat(other) other = asarray(other) if rank(other) > 0: return self.matvec(other) res = dok_matrix() for key in self.keys(): res[key] = other * self[key] return res
bdabf856b614694a8ef20c73a7d82bda3a7cf386 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bdabf856b614694a8ef20c73a7d82bda3a7cf386/sparse.py
def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std.
def bayes_mvs(data,alpha=0.90): """Return Bayesian confidence intervals for the mean, var, and std.
def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std. Assumes 1-d data all has same mean and variance and uses Jeffrey's prior for variance and std. alpha gives the probability that the returned interval contains the true parameter. """ x = ravel(data) n = len(x) assert(n > 1) n = float(n) xbar = sb.add.reduce(x)/n C = sb.add.reduce(x*x)/n - xbar*xbar # fac = sqrt(C/(n-1)) tval = distributions.t.ppf((1+alpha)/2.0,n-1) delta = fac*tval ma = xbar - delta mb = xbar + delta # q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0 fac = n*C/2.0 va = fac*distributions.invgamma.ppf(q1,a) vb = fac*distributions.invgamma.ppf(q2,a) # return (ma,mb),(va,vb),(sqrt(va),sqrt(vb))
8eb9a24ddb25de152b74631da8a514f5ff59eb4f /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/8eb9a24ddb25de152b74631da8a514f5ff59eb4f/morestats.py
alpha gives the probability that the returned interval contains the true parameter.
alpha gives the probability that the returned interval contains the true parameter. Uses peak of conditional pdf as starting center.
def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std. Assumes 1-d data all has same mean and variance and uses Jeffrey's prior for variance and std. alpha gives the probability that the returned interval contains the true parameter. """ x = ravel(data) n = len(x) assert(n > 1) n = float(n) xbar = sb.add.reduce(x)/n C = sb.add.reduce(x*x)/n - xbar*xbar # fac = sqrt(C/(n-1)) tval = distributions.t.ppf((1+alpha)/2.0,n-1) delta = fac*tval ma = xbar - delta mb = xbar + delta # q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0 fac = n*C/2.0 va = fac*distributions.invgamma.ppf(q1,a) vb = fac*distributions.invgamma.ppf(q2,a) # return (ma,mb),(va,vb),(sqrt(va),sqrt(vb))
8eb9a24ddb25de152b74631da8a514f5ff59eb4f /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/8eb9a24ddb25de152b74631da8a514f5ff59eb4f/morestats.py
q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0
def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std. Assumes 1-d data all has same mean and variance and uses Jeffrey's prior for variance and std. alpha gives the probability that the returned interval contains the true parameter. """ x = ravel(data) n = len(x) assert(n > 1) n = float(n) xbar = sb.add.reduce(x)/n C = sb.add.reduce(x*x)/n - xbar*xbar # fac = sqrt(C/(n-1)) tval = distributions.t.ppf((1+alpha)/2.0,n-1) delta = fac*tval ma = xbar - delta mb = xbar + delta # q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0 fac = n*C/2.0 va = fac*distributions.invgamma.ppf(q1,a) vb = fac*distributions.invgamma.ppf(q2,a) # return (ma,mb),(va,vb),(sqrt(va),sqrt(vb))
8eb9a24ddb25de152b74631da8a514f5ff59eb4f /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/8eb9a24ddb25de152b74631da8a514f5ff59eb4f/morestats.py
va = fac*distributions.invgamma.ppf(q1,a)
peak = 2/(n+1.) a = (n-1)/2.0 F_peak = distributions.invgamma.cdf(peak,a) q1 = F_peak - alpha/2.0 q2 = F_peak + alpha/2.0 if (q1 < 0): q2 = alpha va = 0.0 else: va = fac*distributions.invgamma.ppf(q1,a)
def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std. Assumes 1-d data all has same mean and variance and uses Jeffrey's prior for variance and std. alpha gives the probability that the returned interval contains the true parameter. """ x = ravel(data) n = len(x) assert(n > 1) n = float(n) xbar = sb.add.reduce(x)/n C = sb.add.reduce(x*x)/n - xbar*xbar # fac = sqrt(C/(n-1)) tval = distributions.t.ppf((1+alpha)/2.0,n-1) delta = fac*tval ma = xbar - delta mb = xbar + delta # q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0 fac = n*C/2.0 va = fac*distributions.invgamma.ppf(q1,a) vb = fac*distributions.invgamma.ppf(q2,a) # return (ma,mb),(va,vb),(sqrt(va),sqrt(vb))
8eb9a24ddb25de152b74631da8a514f5ff59eb4f /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/8eb9a24ddb25de152b74631da8a514f5ff59eb4f/morestats.py
return (ma,mb),(va,vb),(sqrt(va),sqrt(vb))
fac = sqrt(fac) peak = sqrt(2./n) F_peak = distributions.gengamma.cdf(peak,a,-2) q1 = F_peak - alpha/2.0 q2 = F_peak + alpha/2.0 if (q1 < 0): q2 = alpha sta = 0.0 else: sta = fac*distributions.gengamma.ppf(q1,a,-2) stb = fac*distributions.gengamma.ppf(q2,a,-2) return (ma,mb),(va,vb),(sta,stb)
def bayes_mvs(data,alpha=0.95): """Return bayesian confidence intervals for the mean, var, and std. Assumes 1-d data all has same mean and variance and uses Jeffrey's prior for variance and std. alpha gives the probability that the returned interval contains the true parameter. """ x = ravel(data) n = len(x) assert(n > 1) n = float(n) xbar = sb.add.reduce(x)/n C = sb.add.reduce(x*x)/n - xbar*xbar # fac = sqrt(C/(n-1)) tval = distributions.t.ppf((1+alpha)/2.0,n-1) delta = fac*tval ma = xbar - delta mb = xbar + delta # q1 = (1-alpha)/2.0 q2 = (1+alpha)/2.0 a = (n-1)/2.0 fac = n*C/2.0 va = fac*distributions.invgamma.ppf(q1,a) vb = fac*distributions.invgamma.ppf(q2,a) # return (ma,mb),(va,vb),(sqrt(va),sqrt(vb))
8eb9a24ddb25de152b74631da8a514f5ff59eb4f /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/8eb9a24ddb25de152b74631da8a514f5ff59eb4f/morestats.py
return special.bdtr(k,n,pr)
sv = errp(0) vals = special.bdtr(k,n,pr) sv = errp(sv) return where(k>=0,vals,0.0)
def binomcdf(k, n, pr=0.5): return special.bdtr(k,n,pr)
1212fca291b906e7a58aa4b6ff07210ab8396548 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/1212fca291b906e7a58aa4b6ff07210ab8396548/distributions.py
return special.bdtrc(k,n,pr)
sv = errp(0) vals = special.bdtrc(k,n,pr) sv = errp(sv) return where(k>=0,vals,1.0)
def binomsf(k, n, pr=0.5): return special.bdtrc(k,n,pr)
1212fca291b906e7a58aa4b6ff07210ab8396548 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/1212fca291b906e7a58aa4b6ff07210ab8396548/distributions.py
cond2 = (pr >= 1) || (pr <=0)
cond2 = (pr >= 1) | (pr <=0)
def nbinompdf(k, n, pr=0.5): k = arr(k) cond2 = (pr >= 1) || (pr <=0) cond1 = arr((k > n) & (k == floor(k))) sv =errp(0) temp = special.nbdtr(k,n,pr) temp2 = special.nbdtr(k-1,n,pr) sv = errp(sv) return select([cond2,cond1,k==n], [scipy.nan,temp-temp2,temp],0.0)
1212fca291b906e7a58aa4b6ff07210ab8396548 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/1212fca291b906e7a58aa4b6ff07210ab8396548/distributions.py
k, K = 0, len(stream._buffer)
k, K = stream.linelist[0], len(stream._buffer)
def getcolumns(stream, columns, separator): comment = stream.comment lenc = stream.lencomment k, K = 0, len(stream._buffer) while k < K: firstline = stream._buffer[k] if firstline != '' and firstline[:lenc] != comment: break k = k + 1 if k == K: raise ValueError, "No data found in file." firstline = stream._buffer[k] N = len(columns) collist = [None]*N colsize = [None]*N for k in range(N): collist[k] = build_numberlist(columns[k]) val = process_line(firstline, separator, collist, [Numeric.Float]*N, 0) for k in range(N): colsize[k] = len(val[k]) return colsize, collist
2c7ddabac96db7f22e42a1a9842367473ecf7f28 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/2c7ddabac96db7f22e42a1a9842367473ecf7f28/array_import.py
raise ValueError, "No data found in file."
raise ValueError, "First line to read not within %d lines of top." % K
def getcolumns(stream, columns, separator): comment = stream.comment lenc = stream.lencomment k, K = 0, len(stream._buffer) while k < K: firstline = stream._buffer[k] if firstline != '' and firstline[:lenc] != comment: break k = k + 1 if k == K: raise ValueError, "No data found in file." firstline = stream._buffer[k] N = len(columns) collist = [None]*N colsize = [None]*N for k in range(N): collist[k] = build_numberlist(columns[k]) val = process_line(firstline, separator, collist, [Numeric.Float]*N, 0) for k in range(N): colsize[k] = len(val[k]) return colsize, collist
2c7ddabac96db7f22e42a1a9842367473ecf7f28 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/2c7ddabac96db7f22e42a1a9842367473ecf7f28/array_import.py
assert_array_almost_equal(row*M, row*M.todense())
def check_rmatvec(self): M = self.spmatrix(matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]])) assert_array_almost_equal([1,2,3,4]*M, dot([1,2,3,4], M.toarray())) row = matrix([[1,2,3,4]]) # This doesn't work since row*M computes incorrectly when row is 2d. # NumPy needs special hooks for this. # assert_array_almost_equal(row*M, row*M.todense())
8bd9c0df1a0f69f33a82dd75ce309f60bfaa670e /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/8bd9c0df1a0f69f33a82dd75ce309f60bfaa670e/test_sparse.py
assert_array_almost_equal((a*bsp).todense(), a*b)
def check_matmat(self): a = matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) a2 = array([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) b = matrix([[0,1],[1,0],[0,2]],'d') asp = self.spmatrix(a) bsp = self.spmatrix(b) assert_array_almost_equal((asp*bsp).todense(), a*b) assert_array_almost_equal((asp*b).todense(), a*b) # The following test fails, since the dense matrix a takes control # of the multiplication, calling numpy.dot(), which fouls up # our sparse matrix. NumPy needs special hooks for this. # assert_array_almost_equal((a*bsp).todense(), a*b)
8bd9c0df1a0f69f33a82dd75ce309f60bfaa670e /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/8bd9c0df1a0f69f33a82dd75ce309f60bfaa670e/test_sparse.py
assert_array_almost_equal((a*csp).todense(), a*c)
def check_matmat(self): a = matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) a2 = array([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) b = matrix([[0,1],[1,0],[0,2]],'d') asp = self.spmatrix(a) bsp = self.spmatrix(b) assert_array_almost_equal((asp*bsp).todense(), a*b) assert_array_almost_equal((asp*b).todense(), a*b) # The following test fails, since the dense matrix a takes control # of the multiplication, calling numpy.dot(), which fouls up # our sparse matrix. NumPy needs special hooks for this. # assert_array_almost_equal((a*bsp).todense(), a*b)
8bd9c0df1a0f69f33a82dd75ce309f60bfaa670e /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/8bd9c0df1a0f69f33a82dd75ce309f60bfaa670e/test_sparse.py
assert_array_almost_equal((a*csp).todense(), a*c)
def check_matmat(self): a = matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) a2 = array([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) b = matrix([[0,1],[1,0],[0,2]],'d') asp = self.spmatrix(a) bsp = self.spmatrix(b) assert_array_almost_equal((asp*bsp).todense(), a*b) assert_array_almost_equal((asp*b).todense(), a*b) # The following test fails, since the dense matrix a takes control # of the multiplication, calling numpy.dot(), which fouls up # our sparse matrix. NumPy needs special hooks for this. # assert_array_almost_equal((a*bsp).todense(), a*b)
8bd9c0df1a0f69f33a82dd75ce309f60bfaa670e /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/8bd9c0df1a0f69f33a82dd75ce309f60bfaa670e/test_sparse.py
assert_array_almost_equal((a*csp).todense(), a*c)
def check_matmat(self): a = matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) a2 = array([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]) b = matrix([[0,1],[1,0],[0,2]],'d') asp = self.spmatrix(a) bsp = self.spmatrix(b) assert_array_almost_equal((asp*bsp).todense(), a*b) assert_array_almost_equal((asp*b).todense(), a*b) # The following test fails, since the dense matrix a takes control # of the multiplication, calling numpy.dot(), which fouls up # our sparse matrix. NumPy needs special hooks for this. # assert_array_almost_equal((a*bsp).todense(), a*b)
8bd9c0df1a0f69f33a82dd75ce309f60bfaa670e /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/8bd9c0df1a0f69f33a82dd75ce309f60bfaa670e/test_sparse.py
z = self.dot(x) + self.dot(y) - 2*self.dot(x, y)
z = self.dot(x, x) + self.dot(y, y) - 2*self.dot(x, y)
def __call__(self, x, y): z = self.dot(x) + self.dot(y) - 2*self.dot(x, y) return N.exp(-self.gamma*z)
2b9d8523e995155e18bf5d5776dd3d9351dacdb9 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/2b9d8523e995155e18bf5d5776dd3d9351dacdb9/kernel.py
def blackman(M):
def triang(M,sym=1): """The M-point triangular window. """ if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M + 1 n = grid[1:(M+1)/2+1] if M % 2 == 0: w = (2*n-1.0)/M w = r_[w, w[::-1]] else: w = 2*n/(M+1.0) w = r_[w, w[-2::-1]] if not sym and not odd: w = w[:-1] return w def blackman(M,sym=1):
def blackman(M): """The M-point Blackman window. """ n = arange(0,M) return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1))
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) def bartlett(M):
w = 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w def bartlett(M,sym=1):
def blackman(M): """The M-point Blackman window. """ n = arange(0,M) return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1))
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
return where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) def hanning(M):
w = where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) if not sym and not odd: w = w[:-1] return w def hanning(M,sym=1):
def bartlett(M): """The M-point Bartlett window. """ n = arange(0,M) return where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1))
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
return 0.5-0.5*cos(2.0*pi*n/(M-1)) def hamming(M):
w = 0.5-0.5*cos(2.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w def hamming(M,sym=1):
def hanning(M): """The M-point Hanning window. """ n = arange(0,M) return 0.5-0.5*cos(2.0*pi*n/(M-1))
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
n = arange(0,M) return 0.54-0.46*cos(2.0*pi*n/(M-1)) def kaiser(M,beta):
if M < 1: return Numeric.array([]) if M == 1: return Numeric.ones(1,'d') odd = M % 2 if not sym and not odd: M = M+1 n = arange(0,M) w = 0.54-0.46*cos(2.0*pi*n/(M-1)) if not sym and not odd: w = w[:-1] return w def kaiser(M,beta,sym=1):
def hamming(M): """The M-point Hamming window. """ n = arange(0,M) return 0.54-0.46*cos(2.0*pi*n/(M-1))
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
return special.i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/special.i0(beta) def gaussian(M,std):
w = special.i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/special.i0(beta) if not sym and not odd: w = w[:-1] return w def gaussian(M,std,sym=1):
def kaiser(M,beta): """Returns a Kaiser window of length M with shape parameter beta. """ n = arange(0,M) alpha = (M-1)/2.0 return special.i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/special.i0(beta)
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
return exp(-n**2 / sig2) def general_gaussian(M,p,sig):
w = exp(-n**2 / sig2) if not sym and not odd: w = w[:-1] return w def general_gaussian(M,p,sig,sym=1):
def gaussian(M,std): """Returns a Gaussian window of length M with standard-deviation std. """ n = arange(0,M)-(M-1.0)/2.0 sig2 = 2*std*std return exp(-n**2 / sig2)
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
return exp(-0.5*(n/sig)**(2*p))
w = exp(-0.5*(n/sig)**(2*p)) if not sym and not odd: w = w[:-1] return w
def general_gaussian(M,p,sig): """Returns a window with a generalized Gaussian shape. exp(-0.5*(x/sig)**(2*p)) half power point is at (2*log(2)))**(1/(2*p))*sig """ n = arange(0,M)-(M-1.0)/2.0 return exp(-0.5*(n/sig)**(2*p))
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1]
a(s) a[0] x**(N-1) + a[1] x**(N-2) + ... + a[N-1]
def invres(r,p,k,tol=1e-3,rtype='avg'): """Compute b(s) and a(s) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: residue, poly, polyval, unique_roots """ extra = k p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = r1array(poly(p)) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) b = polyadd(b,r[indx]*poly(t2)) indx += 1 b = real_if_close(b) while Numeric.allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1]
b(s) b[0] s**(M-1) + b[1] s**(M-2) + ... + b[M-1]
def residue(b,a,tol=1e-3,rtype='avg'): """Compute partial-fraction expansion of b(s) / a(s). If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: invres, poly, polyval, unique_roots """ b,a = map(asarray,(b,a)) k,b = polydiv(b,a) p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = r1array(poly(pn)) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig,0,-1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(an,1)) bn = polysub(term1,term2) an = polymul(an,an) r[indx+m-1] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += sig return r, p, k
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1]
a(s) a[0] s**(N-1) + a[1] s**(N-2) + ... + a[N-1]
def residue(b,a,tol=1e-3,rtype='avg'): """Compute partial-fraction expansion of b(s) / a(s). If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: invres, poly, polyval, unique_roots """ b,a = map(asarray,(b,a)) k,b = polydiv(b,a) p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = r1array(poly(pn)) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig,0,-1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(an,1)) bn = polysub(term1,term2) an = polymul(an,an) r[indx+m-1] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += sig return r, p, k
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
def residuez(b,a,tol=1e-3): pass def _get_window(window,Nx):
def residuez(b,a,tol=1e-3,rtype='avg'): """Compute partial-fraction expansion of b(z) / a(z). If M = len(b) and N = len(a) b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1) H(z) = ------ = ---------------------------------------------- a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1) r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n See also: invresz, poly, polyval, unique_roots """ b,a = map(asarray,(b,a)) gain = a[0] brev, arev = b[::-1],a[::-1] krev,brev = polydiv(brev,arev) k,b = krev[::-1],brev[::-1] p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) indx = 0 for n in range(len(pout)): bn = brev.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = r1array(poly(pn))[::-1] sig = mult[n] for m in range(sig,0,-1): if sig > m: term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(an,1)) bn = polysub(term1,term2) an = polymul(an,an) r[indx+m-1] = polyval(bn,1.0/pout[n]) / polyval(an,1.0/pout[n]) \ / factorial(sig-m) / (-pout[n])**(sig-m) indx += sig return r/gain, p, k def invresz(r,p,k,tol=1e-3,rtype='avg'): """Compute b(z) and a(z) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1) H(z) = ------ = ---------------------------------------------- a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1) r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n See also: residuez, poly, polyval, unique_roots """ extra = Numeric.asarray(k) p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = r1array(poly(p)) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 brev = asarray(b)[::-1] for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) brev = polyadd(brev,(r[indx]*poly(t2))[::-1]) indx += 1 b = real_if_close(brev[::-1]) return b, a def get_window(window,Nx,fftbins=1): """Return a window of length Nx and type window. If fftbins is 1, create a "periodic" window ready to use with ifftshift and be multiplied by the result of an fft (SEE ALSO fftfreq). Window types: boxcar, triang, blackman, hamming, hanning, bartlett, kaiser (needs beta), gaussian (needs std), general_gaussian (needs power, width). If the window requires no parameters, then it can be a string. If the window requires parameters, the window argument should be a tuple with the first argument the string name of the window, and the next arguments the needed parameters. If window is a floating point number, it is interpreted as the beta parameter of the kaiser window. """ sym = not fftbins
def residuez(b,a,tol=1e-3): pass
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
def _get_window(window,Nx): try: beta = float(window) except (TypeError, ValueError): args = () if isinstance(window, types.TupleType): winstr = window[0] if len(window) > 1: args = window[1:] elif isinstance(window, types.StringType): if window in ['kaiser', 'ksr', 'gaussian', 'gauss', 'gss', 'general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: raise ValueError, "That window needs a parameter -- pass a tuple" else: winstr = window if winstr in ['blackman', 'black', 'blk']: winfunc = blackman elif winstr in ['hamming', 'hamm', 'ham']: winfunc = hamming elif winstr in ['bartlett', 'bart', 'brt']: winfunc = bartlett elif winstr in ['hanning', 'hann', 'han']: winfunc = hanning elif winstr in ['kaiser', 'ksr']: winfunc = kaiser elif winstr in ['gaussian', 'gauss', 'gss']: winfunc = gaussian elif winstr in ['general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: winfunc = general_gaussian else: raise ValueError, "Unknown window type." params = (Nx,)+args else: winfunc = kaiser params = (Nx,beta) return winfunc(*params)
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
params = (Nx,)+args
params = (Nx,)+args + (sym,)
def _get_window(window,Nx): try: beta = float(window) except (TypeError, ValueError): args = () if isinstance(window, types.TupleType): winstr = window[0] if len(window) > 1: args = window[1:] elif isinstance(window, types.StringType): if window in ['kaiser', 'ksr', 'gaussian', 'gauss', 'gss', 'general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: raise ValueError, "That window needs a parameter -- pass a tuple" else: winstr = window if winstr in ['blackman', 'black', 'blk']: winfunc = blackman elif winstr in ['hamming', 'hamm', 'ham']: winfunc = hamming elif winstr in ['bartlett', 'bart', 'brt']: winfunc = bartlett elif winstr in ['hanning', 'hann', 'han']: winfunc = hanning elif winstr in ['kaiser', 'ksr']: winfunc = kaiser elif winstr in ['gaussian', 'gauss', 'gss']: winfunc = gaussian elif winstr in ['general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: winfunc = general_gaussian else: raise ValueError, "Unknown window type." params = (Nx,)+args else: winfunc = kaiser params = (Nx,beta) return winfunc(*params)
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
params = (Nx,beta)
params = (Nx,beta,sym)
def _get_window(window,Nx): try: beta = float(window) except (TypeError, ValueError): args = () if isinstance(window, types.TupleType): winstr = window[0] if len(window) > 1: args = window[1:] elif isinstance(window, types.StringType): if window in ['kaiser', 'ksr', 'gaussian', 'gauss', 'gss', 'general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: raise ValueError, "That window needs a parameter -- pass a tuple" else: winstr = window if winstr in ['blackman', 'black', 'blk']: winfunc = blackman elif winstr in ['hamming', 'hamm', 'ham']: winfunc = hamming elif winstr in ['bartlett', 'bart', 'brt']: winfunc = bartlett elif winstr in ['hanning', 'hann', 'han']: winfunc = hanning elif winstr in ['kaiser', 'ksr']: winfunc = kaiser elif winstr in ['gaussian', 'gauss', 'gss']: winfunc = gaussian elif winstr in ['general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: winfunc = general_gaussian else: raise ValueError, "Unknown window type." params = (Nx,)+args else: winfunc = kaiser params = (Nx,beta) return winfunc(*params)
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
def resample(x,num,axis=0,window=None):
def resample(x,num,t=None,axis=0,window=None):
def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
non, band-limited signals.
sampled signals you didn't intend to be interpreted as band-limited.
def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
from scipy import fft,ifft
def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
W = _get_window(window,Nx)
W = ifftshift(get_window(window,Nx)) newshape = ones(len(x.shape)) newshape[axis] = len(W) W.shape = newshape
def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
return y.real
y = y.real if t is None: return y
def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
return y
new_t = arange(0,num)*(t[1]-t[0])* Nx / float(num) + t[0] return y, new_t
def resample(x,num,axis=0,window=None): """Resample to num samples using Fourier method along the given axis. Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate ringing in the resampled values for non, band-limited signals. If window is a string then use the named window. If window is a float, then it represents a value of beta for a kaiser window. If window is a tuple, then the first component is a string representing the window, and the next arguments are parameters for that window. Possible windows are: 'blackman' ('black', 'blk') 'hamming' ('hamm', 'ham') 'bartlett' ('bart', 'brt') 'hanning' ('hann', 'han') 'kaiser' ('ksr') # requires parameter (beta) 'gaussian' ('gauss', 'gss') # requires parameter (std.) 'general gauss' ('general', 'ggs') # requires two parameters (power, width) """ x = asarray(x) from scipy import fft,ifft X = fft(x,axis=axis) Nx = x.shape[axis] if window is not None: W = _get_window(window,Nx) X = X*W sl = [slice(None)]*len(x.shape) newshape = list(x.shape) newshape[axis] = num N = int(Numeric.minimum(num,Nx)) Y = Numeric.zeros(newshape,'D') sl[axis] = slice(0,(N+1)/2) Y[sl] = X[sl] sl[axis] = slice(-(N-1)/2,None) Y[sl] = X[sl] y = ifft(Y,axis=axis)*(float(num)/float(Nx)) if x.typecode() not in ['F','D']: return y.real else: return y
c910a765560a2edce76e1be8b2a9eead5b434b0d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c910a765560a2edce76e1be8b2a9eead5b434b0d/signaltools.py
"""Triangular Distribution up-sloping line from loc to (loc + c*scale) and then downsloping for (loc + c*scale) to (loc+scale). standard form is in range [0,1] with c the mode location parameter shifts the start to loc scale changes the width from 1 to scale """
def _entropy(self): return 0.64472988584940017414
a8eec3d63a6c9d8f74c368b9fcf817909bb48d71 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/a8eec3d63a6c9d8f74c368b9fcf817909bb48d71/distributions.py
class truncnorm_gen(norm_gen):
class truncnorm_gen(rv_continuous):
def _entropy(self, b): eB = exp(b) return log(eB-1)+(1+eB*(b-1.0))/(1.0-eB)
a8eec3d63a6c9d8f74c368b9fcf817909bb48d71 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/a8eec3d63a6c9d8f74c368b9fcf817909bb48d71/distributions.py
self.nb = norm_gen._cdf(self,b) self.na = norm_gen._cdf(self,a)
self.nb = norm._cdf(b) self.na = norm._cdf(a)
def _argcheck(self, a, b): self.a = a self.b = b self.nb = norm_gen._cdf(self,b) self.na = norm_gen._cdf(self,a) return (a != b)
a8eec3d63a6c9d8f74c368b9fcf817909bb48d71 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/a8eec3d63a6c9d8f74c368b9fcf817909bb48d71/distributions.py
return norm_gen._pdf(self, x) / (self.nb - self.na)
return norm._pdf(x) / (self.nb - self.na)
def _pdf(self, x, a, b): return norm_gen._pdf(self, x) / (self.nb - self.na)
a8eec3d63a6c9d8f74c368b9fcf817909bb48d71 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/a8eec3d63a6c9d8f74c368b9fcf817909bb48d71/distributions.py
return (norm_gen._cdf(self, x) - self.na) / (self.nb - self.na)
return (norm._cdf(x) - self.na) / (self.nb - self.na)
def _cdf(self, x, a, b): return (norm_gen._cdf(self, x) - self.na) / (self.nb - self.na)
a8eec3d63a6c9d8f74c368b9fcf817909bb48d71 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/a8eec3d63a6c9d8f74c368b9fcf817909bb48d71/distributions.py
return norm_gen._ppf(self, q*self.nb + self.na*(1.0-q))
return norm._ppf(q*self.nb + self.na*(1.0-q))
def _ppf(self, q, a, b): return norm_gen._ppf(self, q*self.nb + self.na*(1.0-q))
a8eec3d63a6c9d8f74c368b9fcf817909bb48d71 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/a8eec3d63a6c9d8f74c368b9fcf817909bb48d71/distributions.py
pA, pB = norm_gen._pdf(self, a), norm_gen._pdf(self, b)
pA, pB = norm._pdf(a), norm._pdf(b)
def _stats(self, a, b): nA, nB = self.na, self.nb d = nB - nA pA, pB = norm_gen._pdf(self, a), norm_gen._pdf(self, b) mu = (pB - pA) / d mu2 = 1 + (a*pA - b*pB) / d - mu*mu return mu, mu2, None, None
a8eec3d63a6c9d8f74c368b9fcf817909bb48d71 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/a8eec3d63a6c9d8f74c368b9fcf817909bb48d71/distributions.py
Truncated Normal distribution
Truncated Normal distribution. The standard form of this distribution is a standard normal truncated to the range [a,b] --- notice that a and b are defined over the domain of the standard normal.
def _stats(self, a, b): nA, nB = self.na, self.nb d = nB - nA pA, pB = norm_gen._pdf(self, a), norm_gen._pdf(self, b) mu = (pB - pA) / d mu2 = 1 + (a*pA - b*pB) / d - mu*mu return mu, mu2, None, None
a8eec3d63a6c9d8f74c368b9fcf817909bb48d71 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/a8eec3d63a6c9d8f74c368b9fcf817909bb48d71/distributions.py
def integ(p): return log(pow(p,lam-1)+pow(1-p,lam-1))
a8eec3d63a6c9d8f74c368b9fcf817909bb48d71 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/a8eec3d63a6c9d8f74c368b9fcf817909bb48d71/distributions.py
nbd = NA.zeros((n,), NA.Int)
nbd = NA.zeros((n,), NA.Int32)
def func_and_grad(x): f = func(x, *args) g = fprime(x, *args) return f, g
4f45d3d90a3ca78491a1a589df0d34c7a011e42d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/4f45d3d90a3ca78491a1a589df0d34c7a011e42d/lbfgsb.py
iwa = NA.zeros((3*n,), NA.Int)
iwa = NA.zeros((3*n,), NA.Int32)
def func_and_grad(x): f = func(x, *args) g = fprime(x, *args) return f, g
4f45d3d90a3ca78491a1a589df0d34c7a011e42d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/4f45d3d90a3ca78491a1a589df0d34c7a011e42d/lbfgsb.py
lsave = NA.zeros((4,), NA.Int) isave = NA.zeros((44,), NA.Int)
lsave = NA.zeros((4,), NA.Int32) isave = NA.zeros((44,), NA.Int32)
def func_and_grad(x): f = func(x, *args) g = fprime(x, *args) return f, g
4f45d3d90a3ca78491a1a589df0d34c7a011e42d /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/4f45d3d90a3ca78491a1a589df0d34c7a011e42d/lbfgsb.py
v v v v v v v ^ ^ ^ ^ ^ ^ ^
def complex(a, b): c = zeros(a.shape, dtype=complex_) c.real = a c.imag = b return c
3c827c0dae0868310f46bb6461df6f4fd5baa007 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/3c827c0dae0868310f46bb6461df6f4fd5baa007/test_numexpr.py
v v v v v v v ^ ^ ^ ^ ^ ^ ^
def complex(a, b): c = zeros(a.shape, dtype=complex_) c.real = a c.imag = b return c
3c827c0dae0868310f46bb6461df6f4fd5baa007 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/3c827c0dae0868310f46bb6461df6f4fd5baa007/test_numexpr.py
v v v v v v v ^ ^ ^ ^ ^ ^ ^
def complex(a, b): c = zeros(a.shape, dtype=complex_) c.real = a c.imag = b return c
3c827c0dae0868310f46bb6461df6f4fd5baa007 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/3c827c0dae0868310f46bb6461df6f4fd5baa007/test_numexpr.py
v v v v v v v ^ ^ ^ ^ ^ ^ ^
def complex(a, b): c = zeros(a.shape, dtype=complex_) c.real = a c.imag = b return c
3c827c0dae0868310f46bb6461df6f4fd5baa007 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/3c827c0dae0868310f46bb6461df6f4fd5baa007/test_numexpr.py
v v v v v v v ^ ^ ^ ^ ^ ^ ^
def complex(a, b): c = zeros(a.shape, dtype=complex_) c.real = a c.imag = b return c
3c827c0dae0868310f46bb6461df6f4fd5baa007 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/3c827c0dae0868310f46bb6461df6f4fd5baa007/test_numexpr.py
idx = numpy.where(m.mask == False) if len(idx) != 0 and len(idx[0]) != 0: idx = idx[0][relpos]
if m.mask is ma.nomask: return 0
def __unmasked(m, get_val, relpos): idx = numpy.where(m.mask == False) if len(idx) != 0 and len(idx[0]) != 0: idx = idx[0][relpos] else: idx = None if get_val: if idx is None: return ma.masked else: return m[idx] else: return idx
38fb194d7a54336da6e7ef8abde138ea3a9cda2f /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/38fb194d7a54336da6e7ef8abde138ea3a9cda2f/corelib.py
idx = None if get_val: if idx is None: return ma.masked else: return m[idx] else: return idx
idx = numpy.where(m.mask == False) if len(idx) != 0 and len(idx[0]) != 0: idx = idx[0][relpos] else: idx = None if get_val: if idx is None: return ma.masked else: return m[idx] else: return idx
def __unmasked(m, get_val, relpos): idx = numpy.where(m.mask == False) if len(idx) != 0 and len(idx[0]) != 0: idx = idx[0][relpos] else: idx = None if get_val: if idx is None: return ma.masked else: return m[idx] else: return idx
38fb194d7a54336da6e7ef8abde138ea3a9cda2f /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/38fb194d7a54336da6e7ef8abde138ea3a9cda2f/corelib.py
return 0.0
shape = list(a.shape) del shape[axis] if shape: return np.zeros(shape, dtype=float) else: return np.float64(0.0)
def moment(a, moment=1, axis=0): """Calculates the nth moment about the mean for a sample. Generally used to calculate coefficients of skewness and kurtosis. Parameters ---------- a : array moment : int axis : int or None Returns ------- The appropriate moment along the given axis or over all values if axis is None. """ a, axis = _chk_asarray(a, axis) if moment == 1: # By definition the first moment about the mean is 0. return 0.0 else: mn = np.expand_dims(np.mean(a,axis),axis) s = np.power((a-mn), moment) return np.mean(s,axis)
e3d105196833281d415e401e3cfd7b50cfd474b3 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/e3d105196833281d415e401e3cfd7b50cfd474b3/stats.py
mn = np.expand_dims(np.mean(a,axis),axis)
mn = np.expand_dims(np.mean(a,axis), axis)
def moment(a, moment=1, axis=0): """Calculates the nth moment about the mean for a sample. Generally used to calculate coefficients of skewness and kurtosis. Parameters ---------- a : array moment : int axis : int or None Returns ------- The appropriate moment along the given axis or over all values if axis is None. """ a, axis = _chk_asarray(a, axis) if moment == 1: # By definition the first moment about the mean is 0. return 0.0 else: mn = np.expand_dims(np.mean(a,axis),axis) s = np.power((a-mn), moment) return np.mean(s,axis)
e3d105196833281d415e401e3cfd7b50cfd474b3 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/e3d105196833281d415e401e3cfd7b50cfd474b3/stats.py
return np.mean(s,axis)
return np.mean(s, axis)
def moment(a, moment=1, axis=0): """Calculates the nth moment about the mean for a sample. Generally used to calculate coefficients of skewness and kurtosis. Parameters ---------- a : array moment : int axis : int or None Returns ------- The appropriate moment along the given axis or over all values if axis is None. """ a, axis = _chk_asarray(a, axis) if moment == 1: # By definition the first moment about the mean is 0. return 0.0 else: mn = np.expand_dims(np.mean(a,axis),axis) s = np.power((a-mn), moment) return np.mean(s,axis)
e3d105196833281d415e401e3cfd7b50cfd474b3 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/e3d105196833281d415e401e3cfd7b50cfd474b3/stats.py
wxPython_thread = ppimport_attr(ppimport('gui_thread'),wxPython_thread)
wxPython_thread = ppimport_attr(ppimport('gui_thread'),'wxPython_thread')
def _import_packages(): """ Import packages in scipy directory that implement info_<packagename>.py. See DEVELOPERS.txt for more info. """ from glob import glob import os frame = sys._getframe(1) for info_file in glob(os.path.join(__path__[0],'*','info_*.py')): package_name = os.path.basename(os.path.dirname(info_file)) if package_name != os.path.splitext(os.path.basename(info_file))[0][5:]: print ' !! Mismatch of package name %r and %s' \ % (package_name, info_file) continue sys.path.insert(0,os.path.dirname(info_file)) # TODO: catch exceptions here: exec 'import info_%s as info_module' % (package_name) del sys.path[0] if getattr(info_module,'ignore',0): continue global_symbols = getattr(info_module,'global_symbols',[]) if getattr(info_module,'postpone_import',1): code = '%s = ppimport(%r)' % (package_name,package_name) for name in global_symbols: code += '\n%s = ppimport_attr(%s,%r)' % (name,package_name,name) else: code = 'import %s' % (package_name) # XXX: Should we check the existence of package.test? Warn? code += '\n%s.test = ScipyTest(%s).test' % (package_name,package_name) if global_symbols: code += '\nfrom '+package_name+' import '+','.join(global_symbols) # XXX: Should we catch exceptions here?? exec (code, frame.f_globals,frame.f_locals) _level_docs(info_module) # XXX: Ugly hack to fix package name: code = '_level_docs()[-1] = (%s.__name__,_level_docs()[-1][1])' \ % (package_name) exec (code, frame.f_globals,frame.f_locals)
c47b7b679a60504deb11b7cfbfe6a41f163f262a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c47b7b679a60504deb11b7cfbfe6a41f163f262a/__init__.py
if self.iter >= GeneralizedLinearModel.niter:
if self.iter >= Model.niter:
def cont(self, results, tol=1.0e-05): """ Continue iterating, or has convergence been obtained? """ if self.iter >= GeneralizedLinearModel.niter: return False
3cf47dd5efca0dca776237d624ba4c2ee4f314f1 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/3cf47dd5efca0dca776237d624ba4c2ee4f314f1/glm.py
self.mu = lband self.ml = uband
self.mu = uband self.ml = lband
def __init__(self, method = 'adams', with_jacobian = 0, rtol=1e-6,atol=1e-12, lband=None,uband=None, order = 12, nsteps = 500, max_step = 0.0, # corresponds to infinite min_step = 0.0, first_step = 0.0, # determined by solver ):
d5d4b86accb2c99855ee07df55d89758b0af0d82 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/d5d4b86accb2c99855ee07df55d89758b0af0d82/ode.py
print "x = ", x print "f = ", f
def calcfc(x, con): f = func(x, *args) k = 0 print "x = ", x print "f = ", f for constraints in cons: con[k] = constraints(x, *consargs) k += 1 print "con = ", con return f
328715caec5294fd0f0dc7d91b5592780c14c50e /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/328715caec5294fd0f0dc7d91b5592780c14c50e/cobyla.py
print "con = ", con
def calcfc(x, con): f = func(x, *args) k = 0 print "x = ", x print "f = ", f for constraints in cons: con[k] = constraints(x, *consargs) k += 1 print "con = ", con return f
328715caec5294fd0f0dc7d91b5592780c14c50e /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/328715caec5294fd0f0dc7d91b5592780c14c50e/cobyla.py
def __init__(self, momtype=1, a=None, b=None, xa=-10.0, xb=10.0, xtol=1e-14, badvalue=None, name=None)
def __init__(self, momtype=1, a=None, b=None, xa=-10.0, xb=10.0, xtol=1e-14, badvalue=None, name=None):
def __init__(self, momtype=1, a=None, b=None, xa=-10.0, xb=10.0, xtol=1e-14, badvalue=None, name=None) if badvalue is None: badvalue = nan self.badvalue = badvalue self.name = name self.a = a self.b = b if a is None: self.a = -scipy.inf if b is None: self.b = scipy.inf self.xa = xa self.xb = xb self.xtol = xtol self._size = 1 self.m = 0.0 self.moment_type = momtype self.vecfunc = new.instancemethod(sgf(self._ppf_single_call), self, rv_continuous) self.expandarr = 1 if momtype == 0: self.generic_moment = new.instancemethod(sgf(self._mom0_sc), self, rv_continuous) else: self.generic_moment = new.instancemethod(sgf(self._mom1_sc), self, rv_continuous) cdf_signature = inspect.getargspec(self._cdf.im_func) numargs1 = len(cdf_signature[0]) - 2 pdf_signature = inspect.getargspec(self._pdf.im_func) numargs2 = len(pdf_signature[0]) - 2 self.numargs = max(numargs1, numargs2)
bbab7a0e318679ec7ec23e8ef47d19a91d90721c /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bbab7a0e318679ec7ec23e8ef47d19a91d90721c/distributions.py
alpha = alpha_gen(a=0.0,name='alpha',d1='this',d2='is',d3='a test')
alpha = alpha_gen(a=0.0,name='alpha')
def _stats(self): return [scipy.inf]*2 + [scipy.nan]*2
bbab7a0e318679ec7ec23e8ef47d19a91d90721c /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/bbab7a0e318679ec7ec23e8ef47d19a91d90721c/distributions.py
result = result + cast[imag.typecode()](1j) * imag
try: result = result + _unit_imag[imag.typecode()] * imag except KeyError: result = result + 1j*imag
def _parse_mimatrix(fid,bytes): dclass, cmplx, nzmax =_parse_array_flags(fid) dims = _get_element(fid)[0] name = ''.join(asarray(_get_element(fid)[0]).astype('c')) tupdims = tuple(dims[::-1]) if dclass in mxArrays: result, unused =_get_element(fid) if type == mxCHAR_CLASS: result = ''.join(asarray(result).astype('c')) else: if cmplx: imag, unused =_get_element(fid) result = result + cast[imag.typecode()](1j) * imag result = squeeze(transpose(reshape(result,tupdims))) elif dclass == mxCELL_CLASS: length = product(dims) result = zeros(length, PyObject) for i in range(length): sa, unused = _get_element(fid) result[i]= sa result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() elif dclass == mxSTRUCT_CLASS: length = product(dims) result = zeros(length, PyObject) namelength = _get_element(fid)[0] # get field names names = _get_element(fid)[0] splitnames = [names[i:i+namelength] for i in \ xrange(0,len(names),namelength)] fieldnames = [''.join(asarray(x).astype('c')).strip('\x00') for x in splitnames] for i in range(length): result[i] = mat_struct() for element in fieldnames: val,unused = _get_element(fid) result[i].__dict__[element] = val result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() # object is like a structure with but with a class name elif dclass == mxOBJECT_CLASS: class_name = ''.join(asarray(_get_element(fid)[0]).astype('c')) length = product(dims) result = zeros(length, PyObject) namelength = _get_element(fid)[0] # get field names names = _get_element(fid)[0] splitnames = [names[i:i+namelength] for i in \ xrange(0,len(names),namelength)] fieldnames = [''.join(asarray(x).astype('c')).strip('\x00') for x in splitnames] for i in range(length): result[i] = mat_obj() result[i]._classname = class_name for element in fieldnames: val,unused = _get_element(fid) result[i].__dict__[element] = val result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() elif dclass == mxSPARSE_CLASS: rowind, unused = _get_element(fid) colind, unused = _get_element(fid) res, unused = _get_element(fid) if cmplx: imag, unused = _get_element(fid) res = res + cast[imag.typecode()](1j)*imag if have_sparse: spmat = scipy.sparse.csc_matrix(res, (rowind[:len(res)], colind), M=dims[0],N=dims[1]) result = spmat else: result = (dims, rowind, colind, res) return result, name
82336923e46646b284fc869728411818f823ced2 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/82336923e46646b284fc869728411818f823ced2/mio.py
res = res + cast[imag.typecode()](1j)*imag
try: res = res + _unit_imag[imag.typecode()] * imag except KeyError: res = res + 1j*imag
def _parse_mimatrix(fid,bytes): dclass, cmplx, nzmax =_parse_array_flags(fid) dims = _get_element(fid)[0] name = ''.join(asarray(_get_element(fid)[0]).astype('c')) tupdims = tuple(dims[::-1]) if dclass in mxArrays: result, unused =_get_element(fid) if type == mxCHAR_CLASS: result = ''.join(asarray(result).astype('c')) else: if cmplx: imag, unused =_get_element(fid) result = result + cast[imag.typecode()](1j) * imag result = squeeze(transpose(reshape(result,tupdims))) elif dclass == mxCELL_CLASS: length = product(dims) result = zeros(length, PyObject) for i in range(length): sa, unused = _get_element(fid) result[i]= sa result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() elif dclass == mxSTRUCT_CLASS: length = product(dims) result = zeros(length, PyObject) namelength = _get_element(fid)[0] # get field names names = _get_element(fid)[0] splitnames = [names[i:i+namelength] for i in \ xrange(0,len(names),namelength)] fieldnames = [''.join(asarray(x).astype('c')).strip('\x00') for x in splitnames] for i in range(length): result[i] = mat_struct() for element in fieldnames: val,unused = _get_element(fid) result[i].__dict__[element] = val result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() # object is like a structure with but with a class name elif dclass == mxOBJECT_CLASS: class_name = ''.join(asarray(_get_element(fid)[0]).astype('c')) length = product(dims) result = zeros(length, PyObject) namelength = _get_element(fid)[0] # get field names names = _get_element(fid)[0] splitnames = [names[i:i+namelength] for i in \ xrange(0,len(names),namelength)] fieldnames = [''.join(asarray(x).astype('c')).strip('\x00') for x in splitnames] for i in range(length): result[i] = mat_obj() result[i]._classname = class_name for element in fieldnames: val,unused = _get_element(fid) result[i].__dict__[element] = val result = squeeze(transpose(reshape(result,tupdims))) if rank(result)==0: result = result.toscalar() elif dclass == mxSPARSE_CLASS: rowind, unused = _get_element(fid) colind, unused = _get_element(fid) res, unused = _get_element(fid) if cmplx: imag, unused = _get_element(fid) res = res + cast[imag.typecode()](1j)*imag if have_sparse: spmat = scipy.sparse.csc_matrix(res, (rowind[:len(res)], colind), M=dims[0],N=dims[1]) result = spmat else: result = (dims, rowind, colind, res) return result, name
82336923e46646b284fc869728411818f823ced2 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/82336923e46646b284fc869728411818f823ced2/mio.py
a = ConstantNode(a)
a = ConstantNode(a)
def sum_func(a, axis=-1): axis = encode_axis(axis) if isinstance(a, ConstantNode): return a if isinstance(a, (bool, int, float, complex)): a = ConstantNode(a) kind = a.astKind if kind == 'bool': kind = 'int' return FuncNode('sum', [a, axis], kind=kind)
2d37c93cfa01f8fde8d1d373288e726c9b10203a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/2d37c93cfa01f8fde8d1d373288e726c9b10203a/expressions.py
a = ConstantNode(a)
a = ConstantNode(a)
def prod_func(a, axis=-1): axis = encode_axis(axis) if isinstance(a, (bool, int, float, complex)): a = ConstantNode(a) if isinstance(a, ConstantNode): return a kind = a.astKind if kind == 'bool': kind = 'int' return FuncNode('prod', [a, axis], kind=kind)
2d37c93cfa01f8fde8d1d373288e726c9b10203a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/2d37c93cfa01f8fde8d1d373288e726c9b10203a/expressions.py
xplt_path = os.path.join(local_path,'xplt')
xplt_path = os.path.join(dot_join(parent_package,'xplt'))
def configuration(parent_package=''): """ gist only works with an X-windows server This will install *.gs and *.gp files to '%spython%s/site-packages/scipy/xplt' % (sys.prefix,sys.version[:3]) """ x11 = x11_info().get_info() if not x11: return config = default_config_dict('xplt',parent_package) local_path = get_path(__name__) sources = ['gistCmodule.c'] sources = [os.path.join(local_path,x) for x in sources] ext_arg = {'name':dot_join(parent_package,'xplt.gistC'), 'sources':sources} dict_append(ext_arg,**x11) dict_append(ext_arg,libraries=['m']) ext = Extension (**ext_arg) config['ext_modules'].append(ext) from glob import glob gist = glob(os.path.join(local_path,'gist','*.c')) # libraries are C static libraries config['libraries'].append(('gist',{'sources':gist, 'macros':[('STDC_HEADERS',1)]})) file_ext = ['*.gs','*.gp', '*.ps', '*.help'] xplt_files = [glob(os.path.join(local_path,x)) for x in file_ext] xplt_files = reduce(lambda x,y:x+y,xplt_files,[]) xplt_path = os.path.join(local_path,'xplt') config['data_files'].extend( [(xplt_path,xplt_files)]) return config
88da5d766bfcfe1c85800c1b8ab53033fafec032 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/88da5d766bfcfe1c85800c1b8ab53033fafec032/setup_xplt.py
from scipy import real_if_close def invres(r,p,k,tol=1e-3):
from scipy import real_if_close, r1array def invres(r,p,k,tol=1e-3,rtype='avg'):
def unique_roots(p,tol=1e-3,rtype='min'): """Determine the unique roots and their multiplicities in two lists Inputs: p -- The list of roots tol --- The tolerance for two roots to be considered equal. rtype --- How to determine the returned root from the close ones: 'max': pick the maximum 'min': pick the minimum 'avg': average roots Outputs: (pout, mult) pout -- The list of sorted roots mult -- The multiplicity of each root """ if rtype in ['max','maximum']: comproot = scipy.max elif rtype in ['min','minimum']: comproot = scipy.min elif rtype in ['avg','mean']: comproot = scipy.mean p = asarray(p)*1.0 tol = abs(tol) p, indx = cmplx_sort(p) pout = [] mult = [] indx = -1 curp = p[0] + 5*tol sameroots = [] for k in range(len(p)): tr = p[k] if abs(tr-curp) < tol: sameroots.append(tr) curp = comproot(sameroots) pout[indx] = curp mult[indx] += 1 else: pout.append(tr) curp = tr sameroots = [tr] indx += 1 mult.append(1) return array(pout), array(mult)
5ad9293154026a38dcb1bb1e97c174ebe011b29a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/5ad9293154026a38dcb1bb1e97c174ebe011b29a/signaltools.py
See also: residue, poly, polyval
See also: residue, poly, polyval, unique_roots
def invres(r,p,k,tol=1e-3): """Compute b(s) and a(s) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: residue, poly, polyval """ extra = k p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = poly(p) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) b = polyadd(b,r[indx]*poly(t2)) indx += 1 b = real_if_close(b) while Numeric.allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a
5ad9293154026a38dcb1bb1e97c174ebe011b29a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/5ad9293154026a38dcb1bb1e97c174ebe011b29a/signaltools.py
pout, mult = unique_roots(p,tol=tol,rtype='avg')
pout, mult = unique_roots(p,tol=tol,rtype=rtype)
def invres(r,p,k,tol=1e-3): """Compute b(s) and a(s) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: residue, poly, polyval """ extra = k p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = poly(p) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) b = polyadd(b,r[indx]*poly(t2)) indx += 1 b = real_if_close(b) while Numeric.allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a
5ad9293154026a38dcb1bb1e97c174ebe011b29a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/5ad9293154026a38dcb1bb1e97c174ebe011b29a/signaltools.py
a = poly(p)
a = r1array(poly(p))
def invres(r,p,k,tol=1e-3): """Compute b(s) and a(s) from partial fraction expansion: r,p,k If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: residue, poly, polyval """ extra = k p, indx = cmplx_sort(p) r = Numeric.take(r,indx) pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for k in range(len(pout)): p.extend([pout[k]]*mult[k]) a = poly(p) if len(extra) > 0: b = polymul(extra,a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]]*mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]]*(mult[k]-m-1)) b = polyadd(b,r[indx]*poly(t2)) indx += 1 b = real_if_close(b) while Numeric.allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a
5ad9293154026a38dcb1bb1e97c174ebe011b29a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/5ad9293154026a38dcb1bb1e97c174ebe011b29a/signaltools.py
def residue(b,a,tol=1e-3):
def residue(b,a,tol=1e-3,rtype='avg'):
def residue(b,a,tol=1e-3): """Compute partial-fraction expansion of b(s) / a(s). If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: invres, poly, polyval """ b,a = map(asarray,(b,a)) k,b = polydiv(b,a) p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = poly(pn) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig,0,-1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(dn)) bn = polysub(term1,term2) an = polymul(an,an) r[indx] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += 1 return r, p, k
5ad9293154026a38dcb1bb1e97c174ebe011b29a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/5ad9293154026a38dcb1bb1e97c174ebe011b29a/signaltools.py
See also: invres, poly, polyval
See also: invres, poly, polyval, unique_roots
def residue(b,a,tol=1e-3): """Compute partial-fraction expansion of b(s) / a(s). If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: invres, poly, polyval """ b,a = map(asarray,(b,a)) k,b = polydiv(b,a) p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = poly(pn) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig,0,-1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(dn)) bn = polysub(term1,term2) an = polymul(an,an) r[indx] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += 1 return r, p, k
5ad9293154026a38dcb1bb1e97c174ebe011b29a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/5ad9293154026a38dcb1bb1e97c174ebe011b29a/signaltools.py
pout, mult = unique_roots(p,tol=tol,rtype='avg')
pout, mult = unique_roots(p,tol=tol,rtype=rtype)
def residue(b,a,tol=1e-3): """Compute partial-fraction expansion of b(s) / a(s). If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: invres, poly, polyval """ b,a = map(asarray,(b,a)) k,b = polydiv(b,a) p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = poly(pn) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig,0,-1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(dn)) bn = polysub(term1,term2) an = polymul(an,an) r[indx] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += 1 return r, p, k
5ad9293154026a38dcb1bb1e97c174ebe011b29a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/5ad9293154026a38dcb1bb1e97c174ebe011b29a/signaltools.py
an = poly(pn)
an = r1array(poly(pn))
def residue(b,a,tol=1e-3): """Compute partial-fraction expansion of b(s) / a(s). If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: invres, poly, polyval """ b,a = map(asarray,(b,a)) k,b = polydiv(b,a) p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = poly(pn) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig,0,-1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(dn)) bn = polysub(term1,term2) an = polymul(an,an) r[indx] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += 1 return r, p, k
5ad9293154026a38dcb1bb1e97c174ebe011b29a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/5ad9293154026a38dcb1bb1e97c174ebe011b29a/signaltools.py
term2 = polymul(bn,polyder(dn))
term2 = polymul(bn,polyder(an,1))
def residue(b,a,tol=1e-3): """Compute partial-fraction expansion of b(s) / a(s). If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: invres, poly, polyval """ b,a = map(asarray,(b,a)) k,b = polydiv(b,a) p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = poly(pn) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig,0,-1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(dn)) bn = polysub(term1,term2) an = polymul(an,an) r[indx] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += 1 return r, p, k
5ad9293154026a38dcb1bb1e97c174ebe011b29a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/5ad9293154026a38dcb1bb1e97c174ebe011b29a/signaltools.py
r[indx] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += 1
r[indx+m-1] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += sig
def residue(b,a,tol=1e-3): """Compute partial-fraction expansion of b(s) / a(s). If M = len(b) and N = len(a) b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] H(s) = ------ = ---------------------------------------------- a(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1] r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n See also: invres, poly, polyval """ b,a = map(asarray,(b,a)) k,b = polydiv(b,a) p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype='avg') p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = poly(pn) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig,0,-1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(dn)) bn = polysub(term1,term2) an = polymul(an,an) r[indx] = polyval(bn,pout[n]) / polyval(an,pout[n]) \ / factorial(sig-m) indx += 1 return r, p, k
5ad9293154026a38dcb1bb1e97c174ebe011b29a /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/5ad9293154026a38dcb1bb1e97c174ebe011b29a/signaltools.py
dc.SetClippingRegion(int(gb.left()-1),int(gb.top()-1)), int(gb.width()+2),int(gb.height()+2)))
dc.SetClippingRegion(int(gb.left()-1),int(gb.top()-1), int(gb.width()+2),int(gb.height()+2))
def draw_graph_area(self,dc=None): if not dc: dc = wx.wxClientDC(self) self.layout_data() # just to check how real time plot would go...
c7a02282f03c8695b99f79899d765f2659322c17 /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/c7a02282f03c8695b99f79899d765f2659322c17/wxplt.py
}
'cblas':['generic_cblas.pyf', 'generic_cblas1.pyf'], 'flapack':['generic_flapack.pyf'], 'clapack':['generic_clapack.pyf']}
def configuration(parent_package=''): from interface_gen import generate_interface config = default_config_dict('linalg',parent_package) local_path = get_path(__name__) test_path = os.path.join(local_path,'tests') config['packages'].append(dot_join(parent_package,'linalg.tests')) config['package_dir']['linalg.tests'] = test_path atlas_info = get_info('atlas') if not atlas_info: raise AtlasNotFoundError,AtlasNotFoundError.__doc__ mod_sources = {'fblas':['generic_fblas.pyf', 'generic_fblas1.pyf', 'generic_fblas2.pyf', 'generic_fblas3.pyf', os.path.join('src','fblaswrap.f'), ], } #'cblas':['generic_cblas.pyf', # 'generic_cblas1.pyf'], #'flapack':['generic_flapack.pyf'], #'clapack':['generic_clapack.pyf']} for mod_name,sources in mod_sources.items(): sources = [os.path.join(local_path,s) for s in sources] mod_file = os.path.join(local_path,mod_name+'.pyf') if dep_util.newer_group(sources,mod_file): generate_interface(mod_name,sources[0],mod_file) sources = filter(lambda s:s[-4:]!='.pyf',sources) ext_args = {'name':dot_join(parent_package,'linalg',mod_name), 'sources':[mod_file]+sources} dict_append(ext_args,**atlas_info) ext = Extension(**ext_args) ext.need_fcompiler_opts = 1 config['ext_modules'].append(ext) flinalg = [] for f in ['det.f','lu.f', #'wrappers.c','inv.f', ]: flinalg.append(os.path.join(local_path,'src',f)) ext_args = {'name':dot_join(parent_package,'linalg','_flinalg'), 'sources':flinalg} dict_append(ext_args,**atlas_info) config['ext_modules'].append(Extension(**ext_args)) ext_args = {'name':dot_join(parent_package,'linalg','calc_lwork'), 'sources':[os.path.join(local_path,'src','calc_lwork.f')], } dict_append(ext_args,**atlas_info) config['ext_modules'].append(Extension(**ext_args)) return config
2016f4d99fc02e616a8aeb36054f9b4429dd30ab /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/2016f4d99fc02e616a8aeb36054f9b4429dd30ab/setup_linalg.py
k,b = krev[::-1],brev[::-1]
if krev == []: k = [] else: k = krev[::-1] b = brev[::-1]
def residuez(b,a,tol=1e-3,rtype='avg'): """Compute partial-fraction expansion of b(z) / a(z). If M = len(b) and N = len(a) b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1) H(z) = ------ = ---------------------------------------------- a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1) r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n See also: invresz, poly, polyval, unique_roots """ b,a = map(asarray,(b,a)) gain = a[0] brev, arev = b[::-1],a[::-1] krev,brev = polydiv(brev,arev) k,b = krev[::-1],brev[::-1] p = roots(a) r = p*0.0 pout, mult = unique_roots(p,tol=tol,rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]]*mult[n]) p = asarray(p) # Compute the residue from the general formula (for discrete-time) # the polynomial is in z**(-1) and the multiplication is by terms # like this (1-p[i] z**(-1))**mult[i]. After differentiation, # we must divide by (-p[i])**(m-k) as well as (m-k)! indx = 0 for n in range(len(pout)): bn = brev.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]]*mult[l]) an = r1array(poly(pn))[::-1] # bn(z) / an(z) is (1-po[n] z**(-1))**Nn * b(z) / a(z) where Nn is # multiplicity of pole at po[n] and b(z) and a(z) are polynomials. sig = mult[n] for m in range(sig,0,-1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn,1),an) term2 = polymul(bn,polyder(an,1)) bn = polysub(term1,term2) an = polymul(an,an) r[indx+m-1] = polyval(bn,1.0/pout[n]) / polyval(an,1.0/pout[n]) \ / factorial(sig-m) / (-pout[n])**(sig-m) indx += sig return r/gain, p, k
e7d3c56f5ce76ef6fec431cd6376da6d821b989b /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/e7d3c56f5ce76ef6fec431cd6376da6d821b989b/signaltools.py
fc = gc = 0
def zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, phi, derphi, phi0, derphi0, c1, c2): fc = gc = 0 maxiter = 10 i = 0 while 1: # interpolate to find a trial step length between a_lo and a_hi A = phi_lo; B = derphi_lo; dalpha = a_hi-a_lo; C = (phi_hi - phi_lo - dalpha*derphi_lo)/dalpha**2; if (c<=0) or (i%3)==2): # Use bisection a_j = a_lo + 0.5*dalpha; else: # Use min of quadratic a_j = a_lo - 0.5*B/C; phi_aj = phi(a_j) fc += 1 if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): a_hi = a_j phi_hi = phi_aj else: derphi_aj = derphi(a_j) gc += 1 if abs(derphi_aj) <= -c2*derphi0: a_star = a_j break if derphi_aj*(a_hi - a_lo) >= 0: a_hi = a_lo phi_hi = phi_lo a_lo = a_j phi_lo = phi_aj derphi_lo = derphi_aj i += 1 if (i > maxiter): a_star = a_j break return a_star, fc, gc
d00f433519cbe9ce0d4306fb9512ac79d655e1fc /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/d00f433519cbe9ce0d4306fb9512ac79d655e1fc/optimize.py
if (c<=0) or (i%3)==2):
if (C<=0) or ((i%3)==2):
def zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, phi, derphi, phi0, derphi0, c1, c2): fc = gc = 0 maxiter = 10 i = 0 while 1: # interpolate to find a trial step length between a_lo and a_hi A = phi_lo; B = derphi_lo; dalpha = a_hi-a_lo; C = (phi_hi - phi_lo - dalpha*derphi_lo)/dalpha**2; if (c<=0) or (i%3)==2): # Use bisection a_j = a_lo + 0.5*dalpha; else: # Use min of quadratic a_j = a_lo - 0.5*B/C; phi_aj = phi(a_j) fc += 1 if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): a_hi = a_j phi_hi = phi_aj else: derphi_aj = derphi(a_j) gc += 1 if abs(derphi_aj) <= -c2*derphi0: a_star = a_j break if derphi_aj*(a_hi - a_lo) >= 0: a_hi = a_lo phi_hi = phi_lo a_lo = a_j phi_lo = phi_aj derphi_lo = derphi_aj i += 1 if (i > maxiter): a_star = a_j break return a_star, fc, gc
d00f433519cbe9ce0d4306fb9512ac79d655e1fc /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/d00f433519cbe9ce0d4306fb9512ac79d655e1fc/optimize.py
fc += 1
def zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, phi, derphi, phi0, derphi0, c1, c2): fc = gc = 0 maxiter = 10 i = 0 while 1: # interpolate to find a trial step length between a_lo and a_hi A = phi_lo; B = derphi_lo; dalpha = a_hi-a_lo; C = (phi_hi - phi_lo - dalpha*derphi_lo)/dalpha**2; if (c<=0) or (i%3)==2): # Use bisection a_j = a_lo + 0.5*dalpha; else: # Use min of quadratic a_j = a_lo - 0.5*B/C; phi_aj = phi(a_j) fc += 1 if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): a_hi = a_j phi_hi = phi_aj else: derphi_aj = derphi(a_j) gc += 1 if abs(derphi_aj) <= -c2*derphi0: a_star = a_j break if derphi_aj*(a_hi - a_lo) >= 0: a_hi = a_lo phi_hi = phi_lo a_lo = a_j phi_lo = phi_aj derphi_lo = derphi_aj i += 1 if (i > maxiter): a_star = a_j break return a_star, fc, gc
d00f433519cbe9ce0d4306fb9512ac79d655e1fc /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/d00f433519cbe9ce0d4306fb9512ac79d655e1fc/optimize.py
gc += 1
def zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, phi, derphi, phi0, derphi0, c1, c2): fc = gc = 0 maxiter = 10 i = 0 while 1: # interpolate to find a trial step length between a_lo and a_hi A = phi_lo; B = derphi_lo; dalpha = a_hi-a_lo; C = (phi_hi - phi_lo - dalpha*derphi_lo)/dalpha**2; if (c<=0) or (i%3)==2): # Use bisection a_j = a_lo + 0.5*dalpha; else: # Use min of quadratic a_j = a_lo - 0.5*B/C; phi_aj = phi(a_j) fc += 1 if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): a_hi = a_j phi_hi = phi_aj else: derphi_aj = derphi(a_j) gc += 1 if abs(derphi_aj) <= -c2*derphi0: a_star = a_j break if derphi_aj*(a_hi - a_lo) >= 0: a_hi = a_lo phi_hi = phi_lo a_lo = a_j phi_lo = phi_aj derphi_lo = derphi_aj i += 1 if (i > maxiter): a_star = a_j break return a_star, fc, gc
d00f433519cbe9ce0d4306fb9512ac79d655e1fc /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/d00f433519cbe9ce0d4306fb9512ac79d655e1fc/optimize.py
return a_star, fc, gc def line_search(f, fprime, xk, pk, gfk, args=(), c1=1e-4, c2=0.9, amax=50):
return a_star, val_star def line_search(f, fprime, xk, pk, gfk, old_fval, old_old_fval, args=(), c1=1e-4, c2=0.9, amax=50):
def zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, phi, derphi, phi0, derphi0, c1, c2): fc = gc = 0 maxiter = 10 i = 0 while 1: # interpolate to find a trial step length between a_lo and a_hi A = phi_lo; B = derphi_lo; dalpha = a_hi-a_lo; C = (phi_hi - phi_lo - dalpha*derphi_lo)/dalpha**2; if (c<=0) or (i%3)==2): # Use bisection a_j = a_lo + 0.5*dalpha; else: # Use min of quadratic a_j = a_lo - 0.5*B/C; phi_aj = phi(a_j) fc += 1 if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): a_hi = a_j phi_hi = phi_aj else: derphi_aj = derphi(a_j) gc += 1 if abs(derphi_aj) <= -c2*derphi0: a_star = a_j break if derphi_aj*(a_hi - a_lo) >= 0: a_hi = a_lo phi_hi = phi_lo a_lo = a_j phi_lo = phi_aj derphi_lo = derphi_aj i += 1 if (i > maxiter): a_star = a_j break return a_star, fc, gc
d00f433519cbe9ce0d4306fb9512ac79d655e1fc /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/d00f433519cbe9ce0d4306fb9512ac79d655e1fc/optimize.py
fc = 0 gc = 0 alpha0 = 1.0 phi0 = f(xk,*args) phi_a0 = phi(alpha0) fc = fc + 2
alpha0 = 0 phi0 = old_fval
def phiprime(alpha): return Num.dot(fprime(xk+alpha*pk,*args),pk)
d00f433519cbe9ce0d4306fb9512ac79d655e1fc /local1/tlutelli/issta_data/temp/all_python//python/2006_temp/2006/12971/d00f433519cbe9ce0d4306fb9512ac79d655e1fc/optimize.py