haoningwu commited on
Commit
f1fba65
·
1 Parent(s): d4d099b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -1,11 +1,11 @@
1
- # MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities
2
  This repository contains the curated MedGen-1M dataset proposed in MRGen: https://arxiv.org/abs/2412.04106/.
3
 
4
  ## Some Information
5
- [Project Page](https://haoningwu3639.github.io/MRGen/) $\cdot$ [Paper](https://arxiv.org/abs/2412.04106/) $\cdot$ [Dataset](https://huggingface.co/datasets/haoningwu/MedGen-1M) $\cdot$ [Checkpoints](https://huggingface.co/haoningwu/MRGen)
6
 
7
  ## Dataset
8
- Please check out [MedGen-1M](https://huggingface.co/datasets/haoningwu/MedGen-1M) to download our curated dataset, including two parts: `radiopaedia_data` and `conditional_dataset`.
9
 
10
  For the conditional dataset, we have directly provided our processed data, including the raw image, mask annotations, and text descriptions.
11
 
@@ -13,14 +13,14 @@ As described in our paper, considering the data privacy concerns of [Radiopaedia
13
  For each case, the format is represented as `./radiopaedia/{patient_id}/{case_id}/{volume_id}/{slice_id}.jpeg`, for example, `./radiopaedia/2564/1/MRI_4/1.jpeg`.
14
  This format allows you to locate the corresponding original volume through the `link` provided in our json files.
15
  After obtaining official authorization from Radiopaedia, you may download the data corresponding to the JSON file on your own.
16
- Alternatively, you can send the authorization via email to us (`[email protected]` or `[email protected]`) to obtain the download link for the image data in our MedGen-1M.
17
 
18
  ## Citation
19
  If you use this dataset for your research or project, please cite:
20
 
21
  @misc{wu2024mrgen,
22
  author = {Wu, Haoning and Zhao, Ziheng and Zhang, Ya and Xie, Weidi and Wang, Yanfeng},
23
- title = {MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities},
24
  journal = {arXiv preprint arXiv:2412.04106},
25
  year = {2024},
26
  }
 
1
+ # MRGen: Segmentation Data Engine For Underrepresented MRI Modalities
2
  This repository contains the curated MedGen-1M dataset proposed in MRGen: https://arxiv.org/abs/2412.04106/.
3
 
4
  ## Some Information
5
+ [Project Page](https://haoningwu3639.github.io/MRGen/) $\cdot$ [Paper](https://arxiv.org/abs/2412.04106/) $\cdot$ [Dataset](https://huggingface.co/datasets/haoningwu/MRGen-DB) $\cdot$ [Checkpoints](https://huggingface.co/haoningwu/MRGen)
6
 
7
  ## Dataset
8
+ Please check out [MRGen-DB](https://huggingface.co/datasets/haoningwu/MRGen-DB) to download our curated dataset, including two parts: `radiopaedia_data` and `conditional_dataset`.
9
 
10
  For the conditional dataset, we have directly provided our processed data, including the raw image, mask annotations, and text descriptions.
11
 
 
13
  For each case, the format is represented as `./radiopaedia/{patient_id}/{case_id}/{volume_id}/{slice_id}.jpeg`, for example, `./radiopaedia/2564/1/MRI_4/1.jpeg`.
14
  This format allows you to locate the corresponding original volume through the `link` provided in our json files.
15
  After obtaining official authorization from Radiopaedia, you may download the data corresponding to the JSON file on your own.
16
+ Alternatively, you can send the authorization via email to us (`[email protected]` or `[email protected]`) to obtain the download link for the image data in our MRGen-DB.
17
 
18
  ## Citation
19
  If you use this dataset for your research or project, please cite:
20
 
21
  @misc{wu2024mrgen,
22
  author = {Wu, Haoning and Zhao, Ziheng and Zhang, Ya and Xie, Weidi and Wang, Yanfeng},
23
+ title = {MRGen: Segmentation Data Engine For Underrepresented MRI Modalities},
24
  journal = {arXiv preprint arXiv:2412.04106},
25
  year = {2024},
26
  }