File size: 4,535 Bytes
84d5665 feb2a33 84d5665 feb2a33 84d5665 87c1edf 84d5665 feb2a33 84d5665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: mit
task_categories:
- text-classification
- text-generation
language:
- de
tags:
- legal
pretty_name: Clean Open Legal Data
size_categories:
- 100K<n<1M
configs:
- config_name: cases
data_files:
- split: main
path: data/cases.jsonl.gz
---
<h1 align="center">Clean Open Legal Data</h1>
<h4 align="center">
<p>
<a href=#overview>Overview</a> |
<a href=#dataset-structure>Dataset Structure</a> |
<a href=#key-fields>Key Fields</a> |
<a href=#example-entry>Example Entry</a> |
<a href=#using-the-dataset-with-python>Using the Dataset with Python</a> |
<a href=#license>License</a>
<p>
</h4>
## Overview
This dataset is a comprehensive collection of open legal case records in JSONL format. It comprises **251,038** cases extracted and processed from the [Open Legal Data dump](https://static.openlegaldata.io/dumps/de/2022-10-18/) (as of _2022-10-18_). The dataset is designed for legal research, data science, and natural language processing applications. While the majority of entries (especially _tenor_, _tatbestand_, _gründe_, and _entscheidungsgründe_) have been carefully separated and extracted, approximately **1,176** (**0.47%** of total) cases have been flagged as "_messy_" due to extraction or formatting issues. These messy entries are included for full transparency, and their "_slug_" IDs are available in [`problematic_case_slugs.txt`](https://huggingface.co/datasets/harshildarji/openlegaldata/blob/main/problematic_case_slugs.txt) so users can decide whether to filter them out or work with them. In references, law references and case references are also separated, as shown in the [example entry](#example-entry).
## Dataset Structure
```
├── README.md
├── data
│ └── cases.jsonl.gz
└── problematic_case_slugs.txt
```
- **Language:** German
- **Format:** JSONL
- **Total Cases:** 251,038
## Key Fields
- **id:** Unique identifier for the record.
- **file_number:** Identifier for the case (e.g., `"1 A 2639/20"`).
- **slug:** URL-friendly unique identifier (e.g., `"ovgnrw-2022-03-25-1-a-263920"`).
- **ecli:** European Case Law Identifier.
- **date:** Date of the decision in `YYYY-MM-DD` format.
- **court:** JSON object with court details (e.g., _name_, _city_, _state_, _jurisdiction_).
- **type:** Type of legal decision (e.g., "Beschluss").
- **tenor:** List of summary statements of the decision.
- **tatbestand:** List of factual background details.
- **gründe:** List of reasoning or legal arguments provided.
- **entscheidungsgründe:** Detailed decision reasons.
- **references:** Contains references to laws and related cases.
## Example Entry
Below is an example entry from the JSONL file:
```json
{
"id": 344319,
"file_number": "1 A 2639/20",
"slug": "ovgnrw-2022-03-25-1-a-263920",
"ecli": "ECLI:DE:OVGNRW:2022:0325.1A2639.20.00",
"date": "2022-03-25",
"court": {
"id": 823,
"name": "Oberverwaltungsgericht Nordrhein-Westfalen",
"slug": "ovgnrw",
"city": "Unspecified",
"state": "Nordrhein-Westfalen",
"jurisdiction": "Verwaltungsgerichtsbarkeit",
"level_of_appeal": null
},
"type": "Beschluss",
"tenor": [
"Der Antrag wird abgelehnt.",
"...",
"Der Streitwert wird auch für das Zulassungsverfahren auf 7.500,00 Euro festgesetzt."
],
"tatbestand": [],
"gründe": [
"Der Antrag des Klägers auf Zulassung der Berufung hat keinen Erfolg.",
"...",
"Das angefochtene Urteil ist nunmehr rechtskräftig, § 124a Abs. 5 Satz 4 VwGO."
],
"entscheidungsgründe": [],
"references": {
"law": [
"§ 124a Abs. 4 Satz 4 VwGO",
"§ 124a Abs. 5 Satz 4 VwGO",
"..."
],
"case": [
"1 A 5162/05",
"1 KR 87/11",
"..."
]
}
}
```
## Using the Dataset with Python
Below is an example of how to load and explore the dataset using Python with the [🤗 Datasets](https://huggingface.co/docs/hub/datasets-usage) library:
```python
import json
from datasets import load_dataset
# Load cases
cases = load_dataset("harshildarji/openlegaldata", "cases", split="main")
# Total cases
print(len(cases))
# View first case
print(json.dumps(cases[0], indent=4, default=str, ensure_ascii=False))
```
## License
This dataset is released under the MIT license, same license as the [Open Legal Data platform](https://github.com/openlegaldata/oldp). |