SAS Code
stringclasses 30
values | Converted Python Code
stringclasses 30
values |
---|---|
PROC IMPORT DATAFILE = "/path/to/dataset.csv"
DBMS = CSV OUT = WORK.MYDATA;
RUN;
|
import pandas as pd
df = pd.read_csv('/path/to/dataset.csv')
|
PROC EXPORT DATA = WORK.MYDATA
OUTFILE = "/path/to/output.csv"
DBMS = CSV;
RUN;
|
df.to_csv('/path/to/output.csv')
|
PROC PRINT DATA = WORK.MYDATA(OBS=5);
RUN;
|
df.head(5)
|
PROC CONTENTS DATA = WORK.MYDATA;
RUN;
|
df.info()
|
PROC SQL;
SELECT COUNT(*) FROM WORK.MYDATA;
QUIT;
|
df.shape[0]
|
PROC DATASETS LIB=WORK;
MODIFY MYDATA;
RENAME old_name = new_name;
QUIT;
|
df.rename(columns={'old_name': 'new_name'}, inplace=True)
|
DATA WORK.MYDATA2;
SET WORK.MYDATA;
KEEP col1 col2 col3;
RUN;
|
df2 = df[['col1', 'col2', 'col3']]
|
DATA WORK.MYDATA2;
SET WORK.MYDATA;
WHERE col1 > 0 AND col2 < 0;
RUN;
|
df2 = df[(df['col1'] > 0) & (df['col2'] < 0)]
|
DATA WORK.MYDATA2;
SET WORK.MYDATA;
new_col = col1 + col2;
RUN;
|
df['new_col'] = df['col1'] + df['col2']
|
PROC SORT DATA = WORK.MYDATA;
BY descending col1;
RUN;
|
df.sort_values('col1', ascending=False, inplace=True)
|
DATA WORK.MYDATA_TOTAL;
MERGE WORK.MYDATA1 WORK.MYDATA2;
BY key_col;
RUN;
|
df_total = pd.merge(df1, df2, on='key_col')
|
DATA MYDATA_SQRT;
SET MYDATA;
SQRT_VAL = sqrt(VALUE);
RUN;
|
df['sqrt_val'] = df['value'].apply(np.sqrt)
|
PROC SQL;
SELECT DISTINCT COL1
FROM MYDATA;
QUIT;
|
df['col1'].unique()
|
PROC SQL;
SELECT COL1, COUNT(*)
FROM MYDATA
GROUP BY COL1;
QUIT;
|
df['col1'].value_counts()
|
DATA MYDATA;
SET MYDATA;
IF COL1 = 'OLD' THEN COL1 = 'NEW';
RUN;
|
df['col1'].replace('OLD', 'NEW', inplace=True)
|
PROC SQL;
DELETE FROM WORK.MYDATA
WHERE col1 < 0;
QUIT;
|
df = df[df['col1'] >= 0]
|
DATA WORK.MYDATA;
SET WORK.MYDATA;
DROP col1;
RUN;
|
df.drop('col1', axis=1, inplace=True)
|
PROC TRANSPOSE DATA=WORK.MYDATA OUT=WORK.TRANPOSED;
BY subject;
VAR scores;
RUN;
|
transposed = df.pivot(index='subject', columns='scores')
|
DATA MYDATA;
SET MYDATA;
IF COL1 > 0 THEN NEW_COL = 'POSITIVE';
ELSE IF COL1 < 0 THEN NEW_COL = 'NEGATIVE';
ELSE NEW_COL = 'NEUTRAL';
RUN;
|
conditions = [(df['col1'] > 0), (df['col1'] < 0)]
choices = ['POSITIVE', 'NEGATIVE']
df['new_col'] = np.select(conditions, choices, default='NEUTRAL')
|
PROC STDIZE DATA=WORK.MYDATA OUT=WORK.NEW_MYDATA
REPLEV=MISSING METHOD=MEAN;
RUN;
|
df.fillna(df.mean(), inplace=True)
|
PROC GLMMOD DATA=WORK.MYDATA OUTDESIGN=WORK.DESIGN;
CLASS COL1;
MODEL COL2 = COL1 / SOLUTION;
RUN;
|
design = pd.get_dummies(df, columns=['col1'])
|
PROC FREQ DATA=WORK.MYDATA;
TABLES COL1;
RUN;
|
pd.crosstab(index=df['col1'], columns="count")
|
DATA MYDATA_SUB;
SET MYDATA;
IF COL1 > 0 AND COL2 <= 50;
RUN;
|
df_sub = df[(df['col1'] > 0) & (df['col2'] <= 50)]
|
PROC CONTENTS DATA=MYDATA OUT=COLNAMES(KEEP=NAME);
RUN;
|
colnames = df.columns.tolist()
|
PROC MEANS DATA=MYDATA MEAN MIN MAX;
VAR COL1;
RUN;
|
df['col1'].describe()
|
PROC SQL;
SELECT A, B, MEAN(C)
FROM MYDATA
GROUP BY A, B;
QUIT;
|
df.groupby(['A', 'B'])['C'].mean().reset_index()
|
PROC SQL;
SELECT A, SUM(B)
FROM MYDATA
GROUP BY A;
QUIT;
|
df.groupby('A')['B'].sum().reset_index()
|
DATA MYDATA;
SET MYDATA;
COL1_NUM = INPUT(COL1, BEST.);
RUN;
|
df['col1_num'] = df['col1'].astype(int)
|
DATA MYDATA;
SET MYDATA;
IF MISSING(COL1) THEN COL1 = 0;
RUN;
|
df['col1'].fillna(0, inplace=True)
|
DATA MYDATA;
SET MYDATA1 MYDATA2 MYDATA3;
RUN;
|
df = pd.concat([df1, df2, df3])
|
README.md exists but content is empty.
- Downloads last month
- 38