File size: 2,414 Bytes
f22f40a 71e10a2 d706d88 71e10a2 f22f40a d706d88 71e10a2 4866b67 d706d88 f22f40a d706d88 71e10a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
language:
- bn
license: unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
task_categories:
- question-answering
dataset_info:
- config_name: additional
features:
- name: id
dtype: string
- name: question_stem
dtype: string
- name: choices
sequence:
- name: text
dtype: string
- name: label
dtype: string
---
## Data Summary
This is the Bangla-translated version of the [OpenBookQA](https://huggingface.co/datasets/allenai/openbookqa) dataset. The dataset was translated using a new method called Expressive Semantic Translation (EST), which combines Google Machine Translation with LLM-based rewriting modifications. This method enhances the semantic accuracy and expressiveness of the translated content. OpenBookQA focuses on advanced question-answering, requiring multi-step reasoning, additional common and commonsense knowledge, and rich text comprehension, similar to open-book exams.
## Data Details
### Data Instances
### Defaults
An example of a 'train' looks as follows:
```json
{
"question_stem": "রাতে যখন একটি গাড়ি আপনার কাছে আসছে",
"choices": {
"text": ["হেডলাইট আরো তীব্র হয়", "হেডলাইট অন্ধকারে ফিরে যায়", "হেডলাইট একটি ধ্রুবক থাকে", "হেডলাইট বন্ধ"],
"label": ["A", "B", "C", "D"]
},
"answerKey": "A"
}
```
### Data Fields
#### default
The data fields are the same among all splits.
- `id`: a `string` feature.
- `question_stem`: a `string` feature.
- `choices`: a dictionary feature containing:
- `text`: a `string` feature.
- `label`: a `string` feature.
- `answerKey`: a `string` feature.
## Data Split
| Split | Number |
| ---- | ----- |
| train | 4947 |
| validation | 500 |
| test | 497 |
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
## Citation Information
## Contributions |