|
--- |
|
license: apache-2.0 |
|
dataset_info: |
|
- config_name: arabic_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 338926883 |
|
dataset_size: 535572160 |
|
- config_name: chinese_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 339423173 |
|
dataset_size: 535572160 |
|
- config_name: dutch_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 338910473 |
|
dataset_size: 535572160 |
|
- config_name: english_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 339859952 |
|
dataset_size: 535572160 |
|
- config_name: french_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 339387465 |
|
dataset_size: 535572160 |
|
- config_name: german_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 338132277 |
|
dataset_size: 535572160 |
|
- config_name: hindi_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 339380999 |
|
dataset_size: 535572160 |
|
- config_name: indonesian_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 339703081 |
|
dataset_size: 535572160 |
|
- config_name: italian_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 339400584 |
|
dataset_size: 535572160 |
|
- config_name: japanese_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 337734717 |
|
dataset_size: 535572160 |
|
- config_name: portuguese_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 339626925 |
|
dataset_size: 535572160 |
|
- config_name: russian_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 338596435 |
|
dataset_size: 535572160 |
|
- config_name: sentence-transformers-msmarco-hard-negatives |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 846201448 |
|
num_examples: 502939 |
|
download_size: 662470387 |
|
dataset_size: 846201448 |
|
- config_name: sentence-transformers-msmarco-hard-negatives-bm25 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 213472888 |
|
num_examples: 502912 |
|
download_size: 176954469 |
|
dataset_size: 213472888 |
|
- config_name: spanish_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 535572160 |
|
num_examples: 502912 |
|
download_size: 339556153 |
|
dataset_size: 535572160 |
|
- config_name: vietnamese_bge-reranker-v2-m3 |
|
features: |
|
- name: qid |
|
dtype: int64 |
|
- name: pos |
|
sequence: int64 |
|
- name: neg |
|
sequence: int64 |
|
- name: pos.score |
|
sequence: float64 |
|
- name: neg.score |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 278081216 |
|
num_examples: 502912 |
|
download_size: 185789847 |
|
dataset_size: 278081216 |
|
configs: |
|
- config_name: arabic_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: arabic_bge-reranker-v2-m3/train-* |
|
- config_name: chinese_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: chinese_bge-reranker-v2-m3/train-* |
|
- config_name: dutch_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: dutch_bge-reranker-v2-m3/train-* |
|
- config_name: english_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: english_bge-reranker-v2-m3/train-* |
|
- config_name: french_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: french_bge-reranker-v2-m3/train-* |
|
- config_name: german_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: german_bge-reranker-v2-m3/train-* |
|
- config_name: hindi_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: hindi_bge-reranker-v2-m3/train-* |
|
- config_name: indonesian_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: indonesian_bge-reranker-v2-m3/train-* |
|
- config_name: italian_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: italian_bge-reranker-v2-m3/train-* |
|
- config_name: japanese_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: japanese_bge-reranker-v2-m3/train-* |
|
- config_name: portuguese_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: portuguese_bge-reranker-v2-m3/train-* |
|
- config_name: russian_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: russian_bge-reranker-v2-m3/train-* |
|
- config_name: sentence-transformers-msmarco-hard-negatives |
|
data_files: |
|
- split: train |
|
path: sentence-transformers-msmarco-hard-negatives/train-* |
|
- config_name: sentence-transformers-msmarco-hard-negatives-bm25 |
|
data_files: |
|
- split: train |
|
path: sentence-transformers-msmarco-hard-negatives-bm25/train-* |
|
- config_name: spanish_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: spanish_bge-reranker-v2-m3/train-* |
|
- config_name: vietnamese_bge-reranker-v2-m3 |
|
data_files: |
|
- split: train |
|
path: vietnamese_bge-reranker-v2-m3/train-* |
|
--- |
|
|
|
- `hotchpotch/mmarco-hard-negatives-reranker-score` |
|
|
|
This repository contains data from [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) scored using the reranker [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3). |
|
|
|
## Languages Covered |
|
|
|
``` |
|
target_languages = ["english", "chinese", "french", "german", "indonesian", "italian", "portuguese", "russian", "spanish", "arabic", "dutch", "hindi", "japanese", "vietnamese"] |
|
``` |
|
|
|
## Hard Negative Data |
|
|
|
The hard negative data is derived from [sentence-transformers-msmarco-hard-negatives-bm25](https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives), randomly sampling 32 or 64 instances for use. |
|
|
|
## License |
|
|
|
This project adheres to the same license as mMARCO: **Apache License 2.0**. |
|
|
|
# Example |
|
|
|
|
|
```python |
|
# target languages => ["english", "chinese", "french", "german", "indonesian", "italian", "portuguese", "russian", "spanish", "arabic", "dutch", "hindi", "japanese", "vietnamese"] |
|
|
|
lang = "spanish" |
|
repo_id = "hotchpotch/mmarco-hard-negatives-reranker-score" |
|
reranker = "bge-reranker-v2-m3" |
|
subset = f"{lang}_{reranker}" |
|
mapping = f"mappings/{lang}_joblib.pkl.gz" |
|
|
|
from datasets import load_dataset |
|
import joblib |
|
from huggingface_hub import hf_hub_download |
|
|
|
queries_ds = load_dataset( |
|
"unicamp-dl/mmarco", "queries-" + lang, split="train", trust_remote_code=True |
|
) |
|
collection_ds = load_dataset( |
|
"unicamp-dl/mmarco", |
|
"collection-" + lang, |
|
split="collection", |
|
trust_remote_code=True, |
|
) |
|
score_ds = load_dataset(repo_id, subset, split="train") |
|
|
|
|
|
mapping_file = hf_hub_download(repo_type="dataset", repo_id=repo_id, filename=mapping) |
|
|
|
index_mapping_dict = joblib.load(mapping_file) |
|
query_id_dict = index_mapping_dict["query_id_dict"] |
|
collection_id_dict = index_mapping_dict["collection_id_dict"] |
|
|
|
|
|
def get_query_text(query_id) -> str: |
|
idx = query_id_dict[query_id] |
|
return queries_ds[idx]["text"] # type: ignore |
|
|
|
|
|
def get_collection_text(doc_id) -> str: |
|
idx = collection_id_dict[doc_id] |
|
return collection_ds[idx]["text"] # type: ignore |
|
|
|
for i in range(5): |
|
qid: int = score_ds[i]["qid"] |
|
pos: list[int] = score_ds[i]["pos"] |
|
pos_score: list[float] = score_ds[i]["pos.score"] |
|
neg: list[int] = score_ds[i]["neg"] |
|
neg_score: list[float] = score_ds[i]["neg.score"] |
|
query = get_query_text(qid) |
|
pos_docs = [get_collection_text(doc_id)[0:64] for doc_id in pos] |
|
neg_docs = [get_collection_text(doc_id)[0:64] for doc_id in neg] |
|
print(f"# Query: {query}") |
|
print("## Positive docs:") |
|
for doc, score in zip(pos_docs, pos_score): |
|
print(f" {doc} ({score})") |
|
print("## Negative docs:") |
|
for doc, score in list(zip(neg_docs, neg_score))[0:5]: |
|
print(f" {doc} ({score})") |
|
print("-------") |
|
``` |
|
|
|
output |
|
|
|
``` |
|
# Query: ¿Qué son las artes liberales? |
|
## Positive docs: |
|
Artes liberales. 1. el curso académico de instrucción en una uni (0.99770385) |
|
## Negative docs: |
|
Grandes Ligas. Puede elegir entre una variedad de especializacio (0.69760895) |
|
BA = Licenciatura en Artes BS = Licenciatura en Ciencias Creo qu (0.24364243) |
|
¿Qué es una Licenciatura en Artes (B.A.)? Un programa de licenci (0.20641373) |
|
¿Qué significa LCSW? / Human and Social ... / Liberal Arts y ... (0.0140636265) |
|
definición de artes liberales Las áreas de aprendizaje que culti (0.9963924) |
|
------- |
|
# Query: ¿Cuál es el mecanismo de acción de los fármacos fibrinolíticos o trombolíticos? |
|
## Positive docs: |
|
Hematología clínica de BailliÃÆ'¨re. 6 Mecanismo de acción d (0.966347) |
|
## Negative docs: |
|
Definición y ejemplos de mecanismos de acción. Más en Trastorno (0.3598139) |
|
¿Qué es losartán y cómo funciona (mecanismo de acción)? ¿Qué mar (0.0031480708) |
|
ActivaseÃ⠀ šÃ,® Una propietaria trombolítico, que puede à ¢ (0.83237296) |
|
La terapia fibrinolítica, también llamada a veces "terapia tromb (0.92590266) |
|
Diazepam Valium Mecanismo de acción Valium Mecanismo de acción E (0.040162582) |
|
------- |
|
# Query: ¿Qué es el recuento normal de plataformas? |
|
## Positive docs: |
|
78 seguidores. R. Las plaquetas son glóbulos diminutos que ayuda (0.10105592) |
|
## Negative docs: |
|
¿Qué es la trombocitopenia (recuento bajo de plaquetas)? Las pla (0.047337715) |
|
Calificación Más reciente Más antiguo. Mejor respuesta: Nancy: e (0.03179867) |
|
1 Tarifas de solicitud ࢠ€Â⠀ œ $ 80 por una plataform (0.001044386) |
|
Conteo sanguíneo de MCV. Mi recuento sanguíneo de MCV está en 98 (0.011115014) |
|
¿Cuáles son los niveles normales de hemograma para una mujer adu (0.015247591) |
|
------- |
|
# Query: promedio de costo en dólares explicado |
|
## Positive docs: |
|
El promedio del costo en dólares es simplemente un método para c (0.96771675) |
|
## Negative docs: |
|
El promedio del costo en dólares es una técnica simple que le pe (0.9859364) |
|
Anteriormente en Free from Broke, Glen ha abordado el tema del c (0.89274967) |
|
(TMFMathGuy). 19 de noviembre de 2014 a las 2:15 p.m. El promedi (0.98421544) |
|
Comprar acciones por valor de $ 2,000 en el primer mes, a $ 14.2 (0.36624968) |
|
DEFINICIÓN de 'Valor Promedio'. Una estrategia de inversión que (0.3941427) |
|
------- |
|
# Query: alimentos que ayudan a combatir la gota |
|
## Positive docs: |
|
Además de seguir una dieta bien balanceada para promover la salu (0.9874721) |
|
## Negative docs: |
|
Alimentos para la gota: anacardos y gota. Los anacardos y la got (0.84606963) |
|
Alimentos que debe evitar si tiene gota La gota es un tipo de ar (0.016979992) |
|
El puerto causa gota. Estos son solo algunos tratamientos natura (0.30850264) |
|
20 alimentos ricos en purina que debe evitar: alterar su dieta p (0.4324828) |
|
Alimentos que combaten el cáncer por BÃÆ' © liveau & Gingras (0.010408314) |
|
------- |
|
|
|
``` |