language
stringclasses 2
values | func_code_string
stringlengths 63
466k
|
---|---|
python | def sdm2ms(sdmfile, msfile, scan, inttime='0'):
""" Converts sdm to ms format for a single scan.
msfile defines the name template for the ms. Should end in .ms,
but "s<scan>" will be put in.
scan is string of (sdm counted) scan number.
inttime is string to feed to split command.
gives option of integrated data down in time.
"""
# fill ms file
if os.path.exists(msfile):
logger.debug('%s already set.' % msfile)
else:
logger.info('No %s found. Creating anew.' % msfile)
if inttime != '0':
logger.info('Filtering by int time.')
call(['asdm2MS', '--ocm', 'co',
'--icm', 'co', '--lazy', '--scans',
scan, sdmfile, msfile + '.tmp'])
cfg = tasklib.SplitConfig() # configure split
cfg.vis = msfile + '.tmp'
cfg.out = msfile
cfg.timebin = inttime
cfg.col = 'data'
cfg.antenna = '*&*' # discard autos
tasklib.split(cfg) # run task
# clean up
rmtree(msfile+'.tmp')
else:
call(['asdm2MS', '--ocm', 'co',
'--icm', 'co', '--lazy', '--scans',
scan, sdmfile, msfile])
return msfile |
python | def render_pep440_bare(pieces):
"""TAG[.DISTANCE[.dev0]] .
The ".dev0" means dirty.
Eexceptions:
1: no tags. 0.DISTANCE[.dev0]
"""
if pieces["closest-tag"]:
rendered = pieces["closest-tag"]
if pieces["distance"] or pieces["dirty"]:
rendered += ".%d" % pieces["distance"]
if pieces["dirty"]:
rendered += ".dev0"
else:
# exception #1
rendered = "0.%d" % pieces["distance"]
if pieces["dirty"]:
rendered += ".dev0"
return rendered |
python | def _verbose_print(self, desc, init, arr):
"""Internal verbose print function
Parameters
----------
desc : InitDesc or str
name of the array
init : str
initializer pattern
arr : NDArray
initialized array
"""
if self._verbose and self._print_func:
logging.info('Initialized %s as %s: %s', desc, init, self._print_func(arr)) |
python | def get_config_value_from_file(key, config_path=None, default=None):
"""Return value if key exists in file.
Return default if key not in config.
"""
config = _get_config_dict_from_file(config_path)
if key not in config:
return default
return config[key] |
java | public static <K, V> HashMap<K, V> sizedHashMap(final int size) {
return new HashMap<K, V>(size);
} |
java | @Override
public JFieldVar apply(String nodeName, JsonNode node, JsonNode parent, JFieldVar field, Schema currentSchema) {
boolean defaultPresent = node != null && isNotEmpty(node.asText());
String fieldType = field.type().fullName();
if (defaultPresent && !field.type().isPrimitive() && node.isNull()) {
field.init(JExpr._null());
} else if (fieldType.startsWith(List.class.getName())) {
field.init(getDefaultList(field.type(), node));
} else if (fieldType.startsWith(Set.class.getName())) {
field.init(getDefaultSet(field.type(), node));
} else if (fieldType.startsWith(String.class.getName()) && node != null ) {
field.init(getDefaultValue(field.type(), node));
} else if (defaultPresent) {
field.init(getDefaultValue(field.type(), node));
}
return field;
} |
java | public void assertExecuteMethodResponseDefined(ActionResponse response) {
if (response.isUndefined()) {
final ExceptionMessageBuilder br = new ExceptionMessageBuilder();
br.addNotice("Cannot return undefined resopnse from the execute method.");
br.addItem("Advice");
br.addElement("Not allowed to return undefined() in execute method.");
br.addElement("If you want to return response as empty body,");
br.addElement("use asEmptyBody() like this:");
br.addElement(" @Execute");
br.addElement(" public HtmlResponse index() {");
br.addElement(" return HtmlResponse.asEmptyBody();");
br.addElement(" }");
br.addItem("Action Execute");
br.addElement(execute);
final String msg = br.buildExceptionMessage();
throw new ExecuteMethodReturnUndefinedResponseException(msg);
}
} |
java | @SuppressWarnings("unchecked")
public void writeObjectField(final EnMember member, Object obj) {
Object value = member.attribute.get(obj);
if (value == null) return;
if (tiny()) {
if (member.istring) {
if (((CharSequence) value).length() == 0) return;
} else if (member.isbool) {
if (!((Boolean) value)) return;
}
}
this.writeFieldName(member);
member.encoder.convertTo(this, value);
this.comma = true;
} |
python | def get_possible_initializer_keys(cls, num_layers):
"""Returns the keys the dictionary of variable initializers may contain.
The set of all possible initializer keys are:
wt: weight for input -> T gate
wh: weight for input -> H gate
wtL: weight for prev state -> T gate for layer L (indexed from 0)
whL: weight for prev state -> H gate for layer L (indexed from 0)
btL: bias for prev state -> T gate for layer L (indexed from 0)
bhL: bias for prev state -> H gate for layer L (indexed from 0)
Args:
num_layers: (int) Number of highway layers.
Returns:
Set with strings corresponding to the strings that may be passed to the
constructor.
"""
keys = [cls.WT, cls.WH]
for layer_index in xrange(num_layers):
layer_str = str(layer_index)
keys += [
cls.WT + layer_str,
cls.BT + layer_str,
cls.WH + layer_str,
cls.BH + layer_str]
return set(keys) |
python | def eigvec_to_eigdispl(v, q, frac_coords, mass):
"""
Converts a single eigenvector to an eigendisplacement in the primitive cell
according to the formula::
exp(2*pi*i*(frac_coords \\dot q) / sqrt(mass) * v
Compared to the modulation option in phonopy, here all the additional
multiplicative and phase factors are set to 1.
Args:
v: the vector that should be converted. A 3D complex numpy array.
q: the q point in fractional coordinates
frac_coords: the fractional coordinates of the atom
mass: the mass of the atom
"""
c = np.exp(2j * np.pi * np.dot(frac_coords, q)) / np.sqrt(mass)
return c*v |
java | public java.util.List<ProductCode> getProductCodes() {
if (productCodes == null) {
productCodes = new com.amazonaws.internal.SdkInternalList<ProductCode>();
}
return productCodes;
} |
java | private Comparator<String> getInitedAliasComparator() {
if (MapUtil.isEmpty(this.headerAlias)) {
return null;
}
Comparator<String> aliasComparator = this.aliasComparator;
if (null == aliasComparator) {
Set<String> keySet = this.headerAlias.keySet();
aliasComparator = new IndexedComparator<>(keySet.toArray(new String[keySet.size()]));
this.aliasComparator = aliasComparator;
}
return aliasComparator;
} |
java | private void encodeMarkup(final FacesContext context, final Social social) throws IOException {
final ResponseWriter writer = context.getResponseWriter();
final String clientId = social.getClientId(context);
final String widgetVar = social.resolveWidgetVar();
final String styleClass = social.getTheme() + " " + StringUtils.defaultString(social.getStyleClass());
writer.startElement("div", social);
writer.writeAttribute("id", clientId, "id");
writer.writeAttribute(HTML.WIDGET_VAR, widgetVar, null);
writer.writeAttribute("class", styleClass, "styleClass");
if (social.getStyle() != null) {
writer.writeAttribute("style", social.getStyle(), "style");
}
writer.endElement("div");
} |
java | private int doBatchKmeans () {
System.out.println("\nBegining a new iteration of K-Means...");
int numReassigned = 0;
/* Clear records for incremental k-means */
for (int i = 0; i < this.centroids.length; ++i) {
this.newClusters[i] = new ArrayList<Instance>();
this.newCentroids[i] = new HashSparseVector();
this.newQualities[i] = 0.0f;
}
for (int clusterNum = 0; clusterNum < this.centroids.length; ++clusterNum) { // iterate over clusters
for (int docNum = 0; docNum < this.assignedClusters[clusterNum].size(); ++docNum) { // iterate over docs
/*
* Store the document the loops have selected in the 'doc' variable.
* Store is vector in the 'docVec' variable for easy access.
*/
Instance doc = this.assignedClusters[clusterNum].get(docNum);
HashSparseVector docVec = (HashSparseVector) doc.getData();
int bestClusterNum = clusterNum; // Assume we are already in the best cluster.
double distanceToCurrentCentroid =
this.centroids[clusterNum].distanceEuclidean(docVec);
double squareDistanceOfBestCluster = distanceToCurrentCentroid;
for (int i = 0; i < this.centroids.length; ++i) {
double distance = 0.0;
// see which centroid is closest to docVec
if (clusterNum == i) { // We know the distance in its' current cluster.
distance = distanceToCurrentCentroid;
} else {
distance = this.centroids[i].distanceEuclidean(docVec);
}
if (distance < squareDistanceOfBestCluster) {
squareDistanceOfBestCluster = distance;
bestClusterNum = i;
}
}
if (bestClusterNum != clusterNum) { // we moved a document!
++numReassigned;
}
this.newClusters[bestClusterNum].add(doc);
this.newCentroids[bestClusterNum].plus(docVec);
}
}
// Calculate the centroids of the clusters
for (int i = 0; i < newClusters.length; ++i) {
this.newCentroids[i].scaleDivide(this.newClusters[i].size());
this.newQualities[i] = this.calculateClusterQuality(this.newClusters[i],
this.newCentroids[i]);
System.out.println("new cluster " + i + " Viarances: " +
this.newQualities[i] + " Num: "+ newClusters[i].size());
}
return (numReassigned);
} |
java | double string2Fraction(CharSequence cs, int readed) {
if (cs.length() > 16) {
throw new JsonParseException("Number string is too long.", readed);
}
double d = 0.0;
for (int i = 0; i < cs.length(); i++) {
int n = cs.charAt(i) - '0';
d = d + (n == 0 ? 0 : n / Math.pow(10, i + 1));
}
return d;
} |
java | public static boolean zipFolder(File folder, String fileName){
boolean success = false;
if(!folder.isDirectory()){
return false;
}
if(fileName == null){
fileName = folder.getAbsolutePath()+ZIP_EXT;
}
ZipArchiveOutputStream zipOutput = null;
try {
zipOutput = new ZipArchiveOutputStream(new File(fileName));
success = addFolderContentToZip(folder,zipOutput,"");
zipOutput.close();
} catch (IOException e) {
e.printStackTrace();
return false;
}
finally{
try {
if(zipOutput != null){
zipOutput.close();
}
} catch (IOException e) {}
}
return success;
} |
python | def fetch_image(self, path, dest, user='root'):
"""Store in the user home directory an image from a remote location.
"""
self.run('test -f %s || curl -L -s -o %s %s' % (dest, dest, path),
user=user, ignore_error=True) |
java | @Override
public T deserializeWrapped( JsonReader reader, JsonDeserializationContext ctx, JsonDeserializerParameters params,
IdentityDeserializationInfo identityInfo, TypeDeserializationInfo typeInfo, String typeInformation ) {
return instanceBuilder.newInstance( reader, ctx, params, null, null ).getInstance();
} |
python | def delete_nve_member(self, nexus_host, nve_int_num, vni):
"""Delete a member configuration on the NVE interface."""
starttime = time.time()
path_snip = snipp.PATH_VNI_UPDATE % (nve_int_num, vni)
self.client.rest_delete(path_snip, nexus_host)
self.capture_and_print_timeshot(
starttime, "delete_nve",
switch=nexus_host) |
java | public String getNodeDistributionRootUrl() {
String ret = nodeDistributionRootUrl;
if (nodeDistributionRootUrl == null) {
ret = Constants.NODE_DIST_ROOT_URL;
}
return ret;
} |
python | def _get_filename_from_url(url):
""" Return a filename from a URL
Args:
url (str): URL to extract filename from
Returns:
(str): Filename in URL
"""
parse = urlparse(url)
return os.path.basename(parse.path) |
python | def writeSAM(sam,SAMfile,header=None):
"""
Writes a pandas dataframe with the respective SAM columns: 'QNAME','FLAG','RNAME','POS','MAPQ','CIGAR','RNEXT','PNEXT','TLEN','SEQ','QUAL' into a sam file
:param sam: pandas dataframe to be writen
:param SAMfile: /path/to/file.sam
:returns: nothing
"""
def toNone(x):
if x=="None":
x=np.nan
return x
sam.reset_index(inplace=True,drop=True)
QUAL=pd.DataFrame(sam['QUAL'].str.split("\t").tolist())
cols=QUAL.columns.tolist()
for c in cols:
QUAL[c]=QUAL[c].apply(lambda x: toNone(x))
sam=sam.drop(['QUAL'],axis=1)
sam=pd.concat([sam,QUAL],axis=1)
sam=sam.astype(str)
sam=sam.as_matrix()
tfile=open(SAMfile, "w+")
if header != None:
for l in header:
tfile.write(l)
for l in sam:
l=[ s for s in l if s not in ['nan'] ]
l="\t".join(l)
tfile.write(l+"\n")
tfile.close() |
java | public void setAdjustmentTimeSeries(com.google.api.ads.admanager.axis.v201902.TimeSeries adjustmentTimeSeries) {
this.adjustmentTimeSeries = adjustmentTimeSeries;
} |
python | def update_user(self, id, **kwargs): # noqa: E501
"""Update user with given user groups and permissions. # noqa: E501
# noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.update_user(id, async_req=True)
>>> result = thread.get()
:param async_req bool
:param str id: (required)
:param UserRequestDTO body: Example Body: <pre>{ \"identifier\": \"[email protected]\", \"groups\": [ \"user_management\" ], \"userGroups\": [ \"8b23136b-ecd2-4cb5-8c92-62477dcc4090\" ] }</pre>
:return: UserModel
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.update_user_with_http_info(id, **kwargs) # noqa: E501
else:
(data) = self.update_user_with_http_info(id, **kwargs) # noqa: E501
return data |
python | def sampled_softmax(num_classes, num_samples, in_dim, inputs, weight, bias,
sampled_values, remove_accidental_hits=True):
""" Sampled softmax via importance sampling.
This under-estimates the full softmax and is only used for training.
"""
# inputs = (n, in_dim)
sample, prob_sample, prob_target = sampled_values
# (num_samples, )
sample = S.var('sample', shape=(num_samples,), dtype='float32')
# (n, )
label = S.var('label')
label = S.reshape(label, shape=(-1,), name="label_reshape")
# (num_samples+n, )
sample_label = S.concat(sample, label, dim=0)
# lookup weights and biases
# (num_samples+n, dim)
sample_target_w = S.sparse.Embedding(data=sample_label, weight=weight,
input_dim=num_classes, output_dim=in_dim,
sparse_grad=True)
# (num_samples+n, 1)
sample_target_b = S.sparse.Embedding(data=sample_label, weight=bias,
input_dim=num_classes, output_dim=1,
sparse_grad=True)
# (num_samples, dim)
sample_w = S.slice(sample_target_w, begin=(0, 0), end=(num_samples, None))
target_w = S.slice(sample_target_w, begin=(num_samples, 0), end=(None, None))
sample_b = S.slice(sample_target_b, begin=(0, 0), end=(num_samples, None))
target_b = S.slice(sample_target_b, begin=(num_samples, 0), end=(None, None))
# target
# (n, 1)
true_pred = S.sum(target_w * inputs, axis=1, keepdims=True) + target_b
# samples
# (n, num_samples)
sample_b = S.reshape(sample_b, (-1,))
sample_pred = S.FullyConnected(inputs, weight=sample_w, bias=sample_b,
num_hidden=num_samples)
# remove accidental hits
if remove_accidental_hits:
label_v = S.reshape(label, (-1, 1))
sample_v = S.reshape(sample, (1, -1))
neg = S.broadcast_equal(label_v, sample_v) * -1e37
sample_pred = sample_pred + neg
prob_sample = S.reshape(prob_sample, shape=(1, num_samples))
p_target = true_pred - S.log(prob_target)
p_sample = S.broadcast_sub(sample_pred, S.log(prob_sample))
# return logits and new_labels
# (n, 1+num_samples)
logits = S.concat(p_target, p_sample, dim=1)
new_targets = S.zeros_like(label)
return logits, new_targets |
java | public ServiceFuture<DataLakeAnalyticsAccountInner> beginUpdateAsync(String resourceGroupName, String accountName, UpdateDataLakeAnalyticsAccountParameters parameters, final ServiceCallback<DataLakeAnalyticsAccountInner> serviceCallback) {
return ServiceFuture.fromResponse(beginUpdateWithServiceResponseAsync(resourceGroupName, accountName, parameters), serviceCallback);
} |
java | private static <T> Constructor<T> lookupConstructor(Class<T> clazz, Object[] pArguments) throws NoSuchMethodException {
Class[] argTypes = extractArgumentTypes(pArguments);
return clazz.getConstructor(argTypes);
} |
python | def listen_many(*rooms):
"""Listen for changes in all registered listeners in all specified rooms"""
rooms = set(r.conn for r in rooms)
for room in rooms:
room.validate_listeners()
with ARBITRATOR.condition:
while any(r.connected for r in rooms):
ARBITRATOR.condition.wait()
rooms = [r for r in rooms if r.run_queues()]
if not rooms:
return |
python | async def deserialize(data: dict):
"""
Create the object from a previously serialized object.
:param data: The output of the "serialize" call
Example:
data = await connection1.serialize()
connection2 = await Connection.deserialize(data)
:return: A re-instantiated object
"""
return await Connection._deserialize("vcx_connection_deserialize",
json.dumps(data),
data.get('source_id')) |
java | private void processPropertySeq(LevState levState, short _prop,
int start, int limit) {
byte cell;
byte[][] impTab = levState.impTab;
short[] impAct = levState.impAct;
short oldStateSeq,actionSeq;
byte level, addLevel;
int start0, k;
start0 = start; /* save original start position */
oldStateSeq = levState.state;
cell = impTab[oldStateSeq][_prop];
levState.state = GetState(cell); /* isolate the new state */
actionSeq = impAct[GetAction(cell)]; /* isolate the action */
addLevel = impTab[levState.state][IMPTABLEVELS_RES];
if (actionSeq != 0) {
switch (actionSeq) {
case 1: /* init ON seq */
levState.startON = start0;
break;
case 2: /* prepend ON seq to current seq */
start = levState.startON;
break;
case 3: /* EN/AN after R+ON */
level = (byte)(levState.runLevel + 1);
setLevelsOutsideIsolates(levState.startON, start0, level);
break;
case 4: /* EN/AN before R for NUMBERS_SPECIAL */
level = (byte)(levState.runLevel + 2);
setLevelsOutsideIsolates(levState.startON, start0, level);
break;
case 5: /* L or S after possible relevant EN/AN */
/* check if we had EN after R/AL */
if (levState.startL2EN >= 0) {
addPoint(levState.startL2EN, LRM_BEFORE);
}
levState.startL2EN = -1; /* not within previous if since could also be -2 */
/* check if we had any relevant EN/AN after R/AL */
if ((insertPoints.points.length == 0) ||
(insertPoints.size <= insertPoints.confirmed)) {
/* nothing, just clean up */
levState.lastStrongRTL = -1;
/* check if we have a pending conditional segment */
level = impTab[oldStateSeq][IMPTABLEVELS_RES];
if ((level & 1) != 0 && levState.startON > 0) { /* after ON */
start = levState.startON; /* reset to basic run level */
}
if (_prop == _S) { /* add LRM before S */
addPoint(start0, LRM_BEFORE);
insertPoints.confirmed = insertPoints.size;
}
break;
}
/* reset previous RTL cont to level for LTR text */
for (k = levState.lastStrongRTL + 1; k < start0; k++) {
/* reset odd level, leave runLevel+2 as is */
levels[k] = (byte)((levels[k] - 2) & ~1);
}
/* mark insert points as confirmed */
insertPoints.confirmed = insertPoints.size;
levState.lastStrongRTL = -1;
if (_prop == _S) { /* add LRM before S */
addPoint(start0, LRM_BEFORE);
insertPoints.confirmed = insertPoints.size;
}
break;
case 6: /* R/AL after possible relevant EN/AN */
/* just clean up */
if (insertPoints.points.length > 0)
/* remove all non confirmed insert points */
insertPoints.size = insertPoints.confirmed;
levState.startON = -1;
levState.startL2EN = -1;
levState.lastStrongRTL = limit - 1;
break;
case 7: /* EN/AN after R/AL + possible cont */
/* check for real AN */
if ((_prop == _AN) && (dirProps[start0] == AN) &&
(reorderingMode != REORDER_INVERSE_FOR_NUMBERS_SPECIAL))
{
/* real AN */
if (levState.startL2EN == -1) { /* if no relevant EN already found */
/* just note the rightmost digit as a strong RTL */
levState.lastStrongRTL = limit - 1;
break;
}
if (levState.startL2EN >= 0) { /* after EN, no AN */
addPoint(levState.startL2EN, LRM_BEFORE);
levState.startL2EN = -2;
}
/* note AN */
addPoint(start0, LRM_BEFORE);
break;
}
/* if first EN/AN after R/AL */
if (levState.startL2EN == -1) {
levState.startL2EN = start0;
}
break;
case 8: /* note location of latest R/AL */
levState.lastStrongRTL = limit - 1;
levState.startON = -1;
break;
case 9: /* L after R+ON/EN/AN */
/* include possible adjacent number on the left */
for (k = start0-1; k >= 0 && ((levels[k] & 1) == 0); k--) {
}
if (k >= 0) {
addPoint(k, RLM_BEFORE); /* add RLM before */
insertPoints.confirmed = insertPoints.size; /* confirm it */
}
levState.startON = start0;
break;
case 10: /* AN after L */
/* AN numbers between L text on both sides may be trouble. */
/* tentatively bracket with LRMs; will be confirmed if followed by L */
addPoint(start0, LRM_BEFORE); /* add LRM before */
addPoint(start0, LRM_AFTER); /* add LRM after */
break;
case 11: /* R after L+ON/EN/AN */
/* false alert, infirm LRMs around previous AN */
insertPoints.size=insertPoints.confirmed;
if (_prop == _S) { /* add RLM before S */
addPoint(start0, RLM_BEFORE);
insertPoints.confirmed = insertPoints.size;
}
break;
case 12: /* L after L+ON/AN */
level = (byte)(levState.runLevel + addLevel);
for (k=levState.startON; k < start0; k++) {
if (levels[k] < level) {
levels[k] = level;
}
}
insertPoints.confirmed = insertPoints.size; /* confirm inserts */
levState.startON = start0;
break;
case 13: /* L after L+ON+EN/AN/ON */
level = levState.runLevel;
for (k = start0-1; k >= levState.startON; k--) {
if (levels[k] == level+3) {
while (levels[k] == level+3) {
levels[k--] -= 2;
}
while (levels[k] == level) {
k--;
}
}
if (levels[k] == level+2) {
levels[k] = level;
continue;
}
levels[k] = (byte)(level+1);
}
break;
case 14: /* R after L+ON+EN/AN/ON */
level = (byte)(levState.runLevel+1);
for (k = start0-1; k >= levState.startON; k--) {
if (levels[k] > level) {
levels[k] -= 2;
}
}
break;
default: /* we should never get here */
throw new IllegalStateException("Internal ICU error in processPropertySeq");
}
}
if ((addLevel) != 0 || (start < start0)) {
level = (byte)(levState.runLevel + addLevel);
if (start >= levState.runStart) {
for (k = start; k < limit; k++) {
levels[k] = level;
}
} else {
setLevelsOutsideIsolates(start, limit, level);
}
}
} |
python | def interpolate(features, hparams, decode_hp):
"""Interpolate between the first input frame and last target frame.
Args:
features: dict of tensors
hparams: HParams, training hparams.
decode_hp: HParams, decode hparams.
Returns:
images: interpolated images, 4-D Tensor, shape=(num_interp, H, W, C)
first_frame: image, 3-D Tensor, shape=(1, H, W, C)
last_frame: image, 3-D Tensor, shape=(1, H, W, C)
"""
inputs, targets = features["inputs"], features["targets"]
inputs = tf.unstack(inputs, axis=1)
targets = tf.unstack(targets, axis=1)
coeffs = np.linspace(0.0, 1.0, decode_hp.num_interp)
# (X_1, X_t) -> (z_1, z_t)
first_frame, last_frame = inputs[0], targets[-1]
first_top_z, first_level_eps = frame_to_latents(first_frame, hparams)
last_top_z, last_level_eps = frame_to_latents(last_frame, hparams)
# Interpolate latents at all levels.
first_lats = first_level_eps + [first_top_z]
last_lats = last_level_eps + [last_top_z]
interp_lats = []
lat_iterator = enumerate(zip(first_lats, last_lats))
for level_ind, (first_lat, last_lat) in lat_iterator:
if level_ind in decode_hp.level_interp:
if decode_hp.channel_interp == "all":
interp_lat = glow_ops.linear_interpolate(first_lat, last_lat, coeffs)
else:
interp_lat = glow_ops.linear_interpolate_rank(
first_lat, last_lat, coeffs, decode_hp.rank_interp)
else:
interp_lat = tf.tile(first_lat, [decode_hp.num_interp, 1, 1, 1])
interp_lats.append(interp_lat)
level_eps_interp = interp_lats[:hparams.n_levels-1]
z_top_interp = interp_lats[-1]
images = latents_to_frames(z_top_interp, level_eps_interp, hparams)
return images, first_frame, last_frame |
python | def save_intermediate_array(self, array, name):
"""Save intermediate array object as FITS."""
if self.intermediate_results:
fits.writeto(name, array, overwrite=True) |
java | public void set(String propName, Object value) {
if (propName.equals(PROP_IDENTIFIER)) {
setIdentifier(((IdentifierType) value));
}
if (propName.equals(PROP_VIEW_IDENTIFIERS)) {
getViewIdentifiers().add(((com.ibm.wsspi.security.wim.model.ViewIdentifierType) value));
}
if (propName.equals(PROP_PARENT)) {
setParent(((Entity) value));
}
if (propName.equals(PROP_CHILDREN)) {
getChildren().add(((com.ibm.wsspi.security.wim.model.Entity) value));
}
if (propName.equals(PROP_GROUPS)) {
getGroups().add(((com.ibm.wsspi.security.wim.model.Group) value));
}
if (propName.equals(PROP_CREATE_TIMESTAMP)) {
setCreateTimestamp(((Date) value));
}
if (propName.equals(PROP_MODIFY_TIMESTAMP)) {
setModifyTimestamp(((Date) value));
}
if (propName.equals(PROP_ENTITLEMENT_INFO)) {
setEntitlementInfo(((EntitlementInfoType) value));
}
if (propName.equals(PROP_CHANGE_TYPE)) {
setChangeType(((String) value));
}
} |
python | def cdate_range(start=None, end=None, periods=None, freq='C', tz=None,
normalize=True, name=None, closed=None, **kwargs):
"""
Return a fixed frequency DatetimeIndex, with CustomBusinessDay as the
default frequency
.. deprecated:: 0.21.0
Parameters
----------
start : string or datetime-like, default None
Left bound for generating dates
end : string or datetime-like, default None
Right bound for generating dates
periods : integer, default None
Number of periods to generate
freq : string or DateOffset, default 'C' (CustomBusinessDay)
Frequency strings can have multiples, e.g. '5H'
tz : string, default None
Time zone name for returning localized DatetimeIndex, for example
Asia/Beijing
normalize : bool, default False
Normalize start/end dates to midnight before generating date range
name : string, default None
Name of the resulting DatetimeIndex
weekmask : string, Default 'Mon Tue Wed Thu Fri'
weekmask of valid business days, passed to ``numpy.busdaycalendar``
holidays : list
list/array of dates to exclude from the set of valid business days,
passed to ``numpy.busdaycalendar``
closed : string, default None
Make the interval closed with respect to the given frequency to
the 'left', 'right', or both sides (None)
Notes
-----
Of the three parameters: ``start``, ``end``, and ``periods``, exactly two
must be specified.
To learn more about the frequency strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__.
Returns
-------
rng : DatetimeIndex
"""
warnings.warn("cdate_range is deprecated and will be removed in a future "
"version, instead use pd.bdate_range(..., freq='{freq}')"
.format(freq=freq), FutureWarning, stacklevel=2)
if freq == 'C':
holidays = kwargs.pop('holidays', [])
weekmask = kwargs.pop('weekmask', 'Mon Tue Wed Thu Fri')
freq = CDay(holidays=holidays, weekmask=weekmask)
return date_range(start=start, end=end, periods=periods, freq=freq,
tz=tz, normalize=normalize, name=name,
closed=closed, **kwargs) |
java | public int moveIndex(int delta) {
int x = Math.max(0, Math.min(getIndex() + delta, getLength()));
setIndex(x);
return x;
} |
python | def assign_handler(query, category):
"""assign_handler(query, category) -- assign the user's query to a
particular category, and call the appropriate handler.
"""
if(category == 'count lines'):
handler.lines(query)
elif(category == 'count words'):
handler.words(query)
elif(category == 'weather'):
web.weather(query)
elif(category == 'no match'):
web.generic(query)
elif(category == 'file info'):
handler.file_info(query)
elif(category == 'executable'):
handler.make_executable(query)
elif(category == 'search'):
handler.search(query)
elif(category == 'path'):
handler.add_to_path(query)
elif(category == 'uname'):
handler.system_info(query)
else:
print 'I\'m not able to understand your query' |
java | protected void initTableInfoForeignKeys(final Connection _con,
final String _sql,
final Map<String, TableInformation> _cache4Name)
throws SQLException
{
Statement stmt = null;
final ResultSet rs;
if (_sql == null) {
rs = _con.getMetaData().getImportedKeys(null, null, "%");
} else {
stmt = _con.createStatement();
rs = stmt.executeQuery(_sql);
}
try {
while (rs.next()) {
final String tableName = rs.getString("TABLE_NAME").toUpperCase();
if (_cache4Name.containsKey(tableName)) {
final String fkName = rs.getString("FK_NAME").toUpperCase();
final String colName = rs.getString("FKCOLUMN_NAME").toUpperCase();
final String refTableName = rs.getString("PKTABLE_NAME").toUpperCase();
final String refColName = rs.getString("PKCOLUMN_NAME").toUpperCase();
final boolean cascade = rs.getInt("DELETE_RULE") == DatabaseMetaData.importedKeyCascade;
_cache4Name.get(tableName).addForeignKey(fkName, colName, refTableName, refColName, cascade);
}
}
} finally {
rs.close();
if (stmt != null) {
stmt.close();
}
}
} |
java | @Override
public T addAsWebResource(Asset resource, String target) throws IllegalArgumentException {
Validate.notNull(resource, "Resource should be specified");
Validate.notNull(target, "Target should be specified");
return addAsWebResource(resource, new BasicPath(target));
} |
java | private Object serializeCollection(Collection pArg) {
JSONArray array = new JSONArray();
for (Object value : ((Collection) pArg)) {
array.add(serializeArgumentToJson(value));
}
return array;
} |
java | @Override
public String key(String key, Object[] args) {
if (hasConfigValue(key)) {
return getConfigValue(key, args);
}
return m_messages.key(key, args);
} |
python | def send(self, to, subject=None, body=None, reply_to=None, template=None, **kwargs):
"""
To send email
:param to: the recipients, list or string
:param subject: the subject
:param body: the body
:param reply_to: reply_to
:param template: template, will use the templates instead
:param kwargs: context args
:return: bool - True if everything is ok
"""
sender = self.config.get("MAIL_SENDER")
recipients = [to] if not isinstance(to, list) else to
kwargs.update({
"subject": subject,
"body": body,
"reply_to": reply_to
})
if not self.validated:
abort("MailmanConfigurationError")
if self.provider == "SES":
kwargs["to"] = recipients
if template:
self.mail.send_template(template=template, **kwargs)
else:
self.mail.send(**kwargs)
elif self.provider == "SMTP":
if template:
data = self._template(template=template, **kwargs)
kwargs["subject"] = data["subject"]
kwargs["body"] = data["body"]
kwargs["recipients"] = recipients
kwargs["sender"] = sender
# Remove invalid Messages keys
_safe_keys = ["recipients", "subject", "body", "html", "alts",
"cc", "bcc", "attachments", "reply_to", "sender",
"date", "charset", "extra_headers", "mail_options",
"rcpt_options"]
for k in kwargs.copy():
if k not in _safe_keys:
del kwargs[k]
message = flask_mail.Message(**kwargs)
self.mail.send(message)
else:
abort("MailmanUnknownProviderError") |
python | def handle_items(repo, **kwargs):
""":return: repo.files()"""
log.info('items: %s %s' %(repo, kwargs))
if not hasattr(repo, 'items'):
return []
return [i.serialize() for i in repo.items(**kwargs)] |
java | private static PBXObjectRef createPBXSourcesBuildPhase(final int buildActionMask, final List files,
final boolean runOnly) {
final Map map = new HashMap();
map.put("buildActionMask", String.valueOf(buildActionMask));
map.put("files", files);
map.put("isa", "PBXSourcesBuildPhase");
map.put("runOnlyForDeploymentPostprocessing", toString(runOnly));
return new PBXObjectRef(map);
} |
java | public static Color colorWithoutAlpha( Color color ) {
return new Color(color.getRed(), color.getGreen(), color.getBlue());
} |
python | def configure_containers(self, current_options):
""" Configures the container dict """
containers = [
("default", "Default container. For Bash and Python 2 tasks"),
("cpp", "Contains gcc and g++ for compiling C++"),
("java7", "Contains Java 7"),
("java8scala", "Contains Java 8 and Scala"),
("mono", "Contains Mono, which allows to run C#, F# and many other languages"),
("oz", "Contains Mozart 2, an implementation of the Oz multi-paradigm language, made for education"),
("php", "Contains PHP 5"),
("pythia0compat", "Compatibility container for Pythia 0"),
("pythia1compat", "Compatibility container for Pythia 1"),
("r", "Can run R scripts"),
("sekexe", "Can run an user-mode-linux for advanced tasks")
]
default_download = ["default"]
self._display_question(
"The tool will now propose to download some base container image for multiple languages.")
self._display_question(
"Please note that the download of these images can take a lot of time, so choose only the images you need")
to_download = []
for container_name, description in containers:
if self._ask_boolean("Download %s (%s) ?" % (container_name, description),
container_name in default_download):
to_download.append("ingi/inginious-c-%s" % container_name)
self.download_containers(to_download, current_options)
wants = self._ask_boolean("Do you want to manually add some images?", False)
while wants:
image = self._ask_with_default("Container image name (leave this field empty to skip)", "")
if image == "":
break
self._display_info("Configuration of the containers done.") |
python | def _get_series_list(self, others, ignore_index=False):
"""
Auxiliary function for :meth:`str.cat`. Turn potentially mixed input
into a list of Series (elements without an index must match the length
of the calling Series/Index).
Parameters
----------
others : Series, Index, DataFrame, np.ndarray, list-like or list-like
of objects that are Series, Index or np.ndarray (1-dim)
ignore_index : boolean, default False
Determines whether to forcefully align others with index of caller
Returns
-------
tuple : (others transformed into list of Series,
boolean whether FutureWarning should be raised)
"""
# Once str.cat defaults to alignment, this function can be simplified;
# will not need `ignore_index` and the second boolean output anymore
from pandas import Index, Series, DataFrame
# self._orig is either Series or Index
idx = self._orig if isinstance(self._orig, Index) else self._orig.index
err_msg = ('others must be Series, Index, DataFrame, np.ndarrary or '
'list-like (either containing only strings or containing '
'only objects of type Series/Index/list-like/np.ndarray)')
# Generally speaking, all objects without an index inherit the index
# `idx` of the calling Series/Index - i.e. must have matching length.
# Objects with an index (i.e. Series/Index/DataFrame) keep their own
# index, *unless* ignore_index is set to True.
if isinstance(others, Series):
warn = not others.index.equals(idx)
# only reconstruct Series when absolutely necessary
los = [Series(others.values, index=idx)
if ignore_index and warn else others]
return (los, warn)
elif isinstance(others, Index):
warn = not others.equals(idx)
los = [Series(others.values,
index=(idx if ignore_index else others))]
return (los, warn)
elif isinstance(others, DataFrame):
warn = not others.index.equals(idx)
if ignore_index and warn:
# without copy, this could change "others"
# that was passed to str.cat
others = others.copy()
others.index = idx
return ([others[x] for x in others], warn)
elif isinstance(others, np.ndarray) and others.ndim == 2:
others = DataFrame(others, index=idx)
return ([others[x] for x in others], False)
elif is_list_like(others, allow_sets=False):
others = list(others) # ensure iterators do not get read twice etc
# in case of list-like `others`, all elements must be
# either one-dimensional list-likes or scalars
if all(is_list_like(x, allow_sets=False) for x in others):
los = []
join_warn = False
depr_warn = False
# iterate through list and append list of series for each
# element (which we check to be one-dimensional and non-nested)
while others:
nxt = others.pop(0) # nxt is guaranteed list-like by above
# GH 21950 - DeprecationWarning
# only allowing Series/Index/np.ndarray[1-dim] will greatly
# simply this function post-deprecation.
if not (isinstance(nxt, (Series, Index)) or
(isinstance(nxt, np.ndarray) and nxt.ndim == 1)):
depr_warn = True
if not isinstance(nxt, (DataFrame, Series,
Index, np.ndarray)):
# safety for non-persistent list-likes (e.g. iterators)
# do not map indexed/typed objects; info needed below
nxt = list(nxt)
# known types for which we can avoid deep inspection
no_deep = ((isinstance(nxt, np.ndarray) and nxt.ndim == 1)
or isinstance(nxt, (Series, Index)))
# nested list-likes are forbidden:
# -> elements of nxt must not be list-like
is_legal = ((no_deep and nxt.dtype == object)
or all(not is_list_like(x) for x in nxt))
# DataFrame is false positive of is_legal
# because "x in df" returns column names
if not is_legal or isinstance(nxt, DataFrame):
raise TypeError(err_msg)
nxt, wnx = self._get_series_list(nxt,
ignore_index=ignore_index)
los = los + nxt
join_warn = join_warn or wnx
if depr_warn:
warnings.warn('list-likes other than Series, Index, or '
'np.ndarray WITHIN another list-like are '
'deprecated and will be removed in a future '
'version.', FutureWarning, stacklevel=3)
return (los, join_warn)
elif all(not is_list_like(x) for x in others):
return ([Series(others, index=idx)], False)
raise TypeError(err_msg) |
python | def filter_genes_dispersion(data, flavor='seurat', min_disp=None, max_disp=None, min_mean=None, max_mean=None,
n_bins=20, n_top_genes=None, log=True, copy=False):
"""Extract highly variable genes.
The normalized dispersion is obtained by scaling with the mean and standard
deviation of the dispersions for genes falling into a given bin for mean
expression of genes. This means that for each bin of mean expression, highly
variable genes are selected.
Parameters
----------
data : :class:`~anndata.AnnData`, `np.ndarray`, `sp.sparse`
The (annotated) data matrix of shape `n_obs` × `n_vars`. Rows correspond
to cells and columns to genes.
flavor : {'seurat', 'cell_ranger', 'svr'}, optional (default: 'seurat')
Choose the flavor for computing normalized dispersion. If choosing
'seurat', this expects non-logarithmized data - the logarithm of mean
and dispersion is taken internally when `log` is at its default value
`True`. For 'cell_ranger', this is usually called for logarithmized data
- in this case you should set `log` to `False`. In their default
workflows, Seurat passes the cutoffs whereas Cell Ranger passes
`n_top_genes`.
min_mean=0.0125, max_mean=3, min_disp=0.5, max_disp=`None` : `float`, optional
If `n_top_genes` unequals `None`, these cutoffs for the means and the
normalized dispersions are ignored.
n_bins : `int` (default: 20)
Number of bins for binning the mean gene expression. Normalization is
done with respect to each bin. If just a single gene falls into a bin,
the normalized dispersion is artificially set to 1. You'll be informed
about this if you set `settings.verbosity = 4`.
n_top_genes : `int` or `None` (default: `None`)
Number of highly-variable genes to keep.
log : `bool`, optional (default: `True`)
Use the logarithm of the mean to variance ratio.
copy : `bool`, optional (default: `False`)
If an :class:`~anndata.AnnData` is passed, determines whether a copy
is returned.
Returns
-------
If an AnnData `adata` is passed, returns or updates `adata` depending on \
`copy`. It filters the `adata` and adds the annotations
"""
adata = data.copy() if copy else data
set_initial_size(adata)
if n_top_genes is not None and adata.n_vars < n_top_genes:
logg.info('Skip filtering by dispersion since number of variables are less than `n_top_genes`')
else:
if flavor is 'svr':
mu = adata.X.mean(0).A1 if issparse(adata.X) else adata.X.mean(0)
sigma = np.sqrt(adata.X.multiply(adata.X).mean(0).A1 - mu ** 2) if issparse(adata.X) else adata.X.std(0)
log_mu = np.log2(mu)
log_cv = np.log2(sigma / mu)
from sklearn.svm import SVR
clf = SVR(gamma=150. / len(mu))
clf.fit(log_mu[:, None], log_cv)
score = log_cv - clf.predict(log_mu[:, None])
nth_score = np.sort(score)[::-1][n_top_genes]
adata._inplace_subset_var(score >= nth_score)
else:
from scanpy.api.pp import filter_genes_dispersion
filter_genes_dispersion(adata, flavor=flavor, min_disp=min_disp, max_disp=max_disp, min_mean=min_mean,
max_mean=max_mean, n_bins=n_bins, n_top_genes=n_top_genes, log=log)
return adata if copy else None |
python | def uninstall(self, pkgname, *args, **kwargs):
"""A context manager which allows uninstallation of packages from the virtualenv
:param str pkgname: The name of a package to uninstall
>>> venv = VirtualEnv("/path/to/venv/root")
>>> with venv.uninstall("pytz", auto_confirm=True, verbose=False) as uninstaller:
cleaned = uninstaller.paths
>>> if cleaned:
print("uninstalled packages: %s" % cleaned)
"""
auto_confirm = kwargs.pop("auto_confirm", True)
verbose = kwargs.pop("verbose", False)
with self.activated():
pathset_base = self.get_monkeypatched_pathset()
dist = next(
iter(filter(lambda d: d.project_name == pkgname, self.get_working_set())),
None
)
pathset = pathset_base.from_dist(dist)
if pathset is not None:
pathset.remove(auto_confirm=auto_confirm, verbose=verbose)
try:
yield pathset
except Exception as e:
if pathset is not None:
pathset.rollback()
else:
if pathset is not None:
pathset.commit()
if pathset is None:
return |
java | public byte minValue() {
if (data.length == 0)
return 0;
byte min = Byte.MAX_VALUE;
for (byte b : data)
if (b < min)
min = b;
return min;
} |
python | def describe(self, tablename, refresh=False, metrics=False, require=False):
""" Get the :class:`.TableMeta` for a table """
table = self.cached_descriptions.get(tablename)
if refresh or table is None or (metrics and not table.consumed_capacity):
desc = self.connection.describe_table(tablename)
if desc is None:
if require:
raise RuntimeError("Table %r not found" % tablename)
else:
return None
table = TableMeta.from_description(desc)
self.cached_descriptions[tablename] = table
if metrics:
read, write = self.get_capacity(tablename)
table.consumed_capacity["__table__"] = {"read": read, "write": write}
for index_name in table.global_indexes:
read, write = self.get_capacity(tablename, index_name)
table.consumed_capacity[index_name] = {"read": read, "write": write}
return table |
python | def teams(self, page=None, year=None, simple=False, keys=False):
"""
Get list of teams.
:param page: Page of teams to view. Each page contains 500 teams.
:param year: View teams from a specific year.
:param simple: Get only vital data.
:param keys: Set to true if you only want the teams' keys rather than full data on them.
:return: List of Team objects or string keys.
"""
# If the user has requested a specific page, get that page.
if page is not None:
if year:
if keys:
return self._get('teams/%s/%s/keys' % (year, page))
else:
return [Team(raw) for raw in self._get('teams/%s/%s%s' % (year, page, '/simple' if simple else ''))]
else:
if keys:
return self._get('teams/%s/keys' % page)
else:
return [Team(raw) for raw in self._get('teams/%s%s' % (page, '/simple' if simple else ''))]
# If no page was specified, get all of them and combine.
else:
teams = []
target = 0
while True:
page_teams = self.teams(page=target, year=year, simple=simple, keys=keys)
if page_teams:
teams.extend(page_teams)
else:
break
target += 1
return teams |
python | def create_vpnservice(subnet, router, name, admin_state_up=True, profile=None):
'''
Creates a new VPN service
CLI Example:
.. code-block:: bash
salt '*' neutron.create_vpnservice router-name name
:param subnet: Subnet unique identifier for the VPN service deployment
:param router: Router unique identifier for the VPN service
:param name: Set a name for the VPN service
:param admin_state_up: Set admin state up to true or false,
default:True (Optional)
:param profile: Profile to build on (Optional)
:return: Created VPN service information
'''
conn = _auth(profile)
return conn.create_vpnservice(subnet, router, name, admin_state_up) |
java | public void marshall(AdminListUserAuthEventsRequest adminListUserAuthEventsRequest, ProtocolMarshaller protocolMarshaller) {
if (adminListUserAuthEventsRequest == null) {
throw new SdkClientException("Invalid argument passed to marshall(...)");
}
try {
protocolMarshaller.marshall(adminListUserAuthEventsRequest.getUserPoolId(), USERPOOLID_BINDING);
protocolMarshaller.marshall(adminListUserAuthEventsRequest.getUsername(), USERNAME_BINDING);
protocolMarshaller.marshall(adminListUserAuthEventsRequest.getMaxResults(), MAXRESULTS_BINDING);
protocolMarshaller.marshall(adminListUserAuthEventsRequest.getNextToken(), NEXTTOKEN_BINDING);
} catch (Exception e) {
throw new SdkClientException("Unable to marshall request to JSON: " + e.getMessage(), e);
}
} |
java | @Override
public SubsetMove getRandomMove(SubsetSolution solution, Random rnd) {
// check size limit
if(maxSizeReached(solution)){
// size limit would be exceeded
return null;
}
// get set of candidate IDs for addition (possibly fixed IDs are discarded)
Set<Integer> addCandidates = getAddCandidates(solution);
// check if addition is possible
if(addCandidates.isEmpty()){
return null;
}
// select random ID to add to selection
int add = SetUtilities.getRandomElement(addCandidates, rnd);
// create and return addition move
return new AdditionMove(add);
} |
java | public static String paragraph(int sentenceCount, boolean supplemental, int randomSentencesToAdd) {
String paragraphString = sentences(sentenceCount + RandomUtils.nextInt(randomSentencesToAdd), supplemental);
return paragraphString;
} |
java | public static IType getByRelativeName( String relativeName, ITypeUsesMap typeUses ) throws ClassNotFoundException
{
return CommonServices.getTypeSystem().getByRelativeName(relativeName, typeUses);
} |
java | private void measureFloater() {
int specWidth = View.MeasureSpec.makeMeasureSpec(screenSize.x, View.MeasureSpec.EXACTLY);
int specHeight = View.MeasureSpec.makeMeasureSpec(screenSize.y, View.MeasureSpec.AT_MOST);
mPopupView.measure(specWidth, specHeight);
} |
java | private FileDetails getOldestInactive() {
for (FileDetails curFd : fileList) {
if (curFd.pid == null)
return curFd ;
synchronized(activeFilesMap) {
FileDetails cur4Pid = activeFilesMap.get(curFd.pid) ;
if ( cur4Pid == null || cur4Pid != curFd) {
return curFd ;
}
}
}
return null ;
} |
java | public static Date getRandomDate(Date begin, Date end, Random random) {
long delay = end.getTime() - begin.getTime();
return new Date(begin.getTime() + (Math.abs(random.nextLong() % delay)));
} |
java | @Override
public ListTrafficPoliciesResult listTrafficPolicies(ListTrafficPoliciesRequest request) {
request = beforeClientExecution(request);
return executeListTrafficPolicies(request);
} |
python | def move_group(self, group, parent, index=None):
"""
Move group to be a child of new parent.
:param group: The group to move.
:type group: :class:`keepassdb.model.Group`
:param parent: The new parent for the group.
:type parent: :class:`keepassdb.model.Group`
:param index: The 0-based index within the parent (defaults to appending
group to end of parent's children).
:type index: int
"""
if not isinstance(group, Group):
raise TypeError("group param must be of type Group")
if parent is not None and not isinstance(parent, Group):
raise TypeError("parent param must be of type Group")
if group is parent:
raise ValueError("group and parent are the same")
if parent is None:
parent = self.root
elif parent not in self.groups:
raise exc.UnboundModelError("Parent group doesn't exist / is not bound to this database.")
if group not in self.groups:
raise exc.UnboundModelError("Group doesn't exist / is not bound to this database.")
curr_parent = group.parent
curr_parent.children.remove(group)
if index is None:
parent.children.append(group)
self.log.debug("Moving {0!r} to child of {1!r}, (appending)".format(group, parent))
else:
parent.children.insert(index, group)
self.log.debug("Moving {0!r} to child of {1!r}, (at position {2!r})".format(group, parent, index))
#Recurse down and reset level of all moved nodes
def set_level(g):
g.level = g.parent.level + 1
for child in g.children:
set_level(child)
group.parent = parent
set_level(group)
group.modified = util.now()
self._rebuild_groups() |
java | public String haikunate() {
if (tokenHex) {
tokenChars = "0123456789abcdef";
}
String adjective = randomString(adjectives);
String noun = randomString(nouns);
StringBuilder token = new StringBuilder();
if (tokenChars != null && tokenChars.length() > 0) {
for (int i = 0; i < tokenLength; i++) {
token.append(tokenChars.charAt(random.nextInt(tokenChars.length())));
}
}
return Stream.of(adjective, noun, token.toString())
.filter(s -> s != null && !s.isEmpty())
.collect(joining(delimiter));
} |
java | @XmlElementDecl(namespace = "http://www.opengis.net/gml", name = "MultiSolidCoverage", substitutionHeadNamespace = "http://www.opengis.net/gml", substitutionHeadName = "_DiscreteCoverage")
public JAXBElement<MultiSolidCoverageType> createMultiSolidCoverage(MultiSolidCoverageType value) {
return new JAXBElement<MultiSolidCoverageType>(_MultiSolidCoverage_QNAME, MultiSolidCoverageType.class, null, value);
} |
python | def validate(self):
"""
Perform options validation.
"""
# TODO: at the moment only required_languages is validated.
# Maybe check other options as well?
if self.required_languages:
if isinstance(self.required_languages, (tuple, list)):
self._check_languages(self.required_languages)
else:
self._check_languages(self.required_languages.keys(), extra=('default',))
for fieldnames in self.required_languages.values():
if any(f not in self.fields for f in fieldnames):
raise ImproperlyConfigured(
'Fieldname in required_languages which is not in fields option.') |
python | def sync_hue_db(self, *servers):
"""
Synchronize the Hue server's database.
@param servers: Name of Hue Server roles to synchronize. Not required starting with API v10.
@return: List of submitted commands.
"""
actual_version = self._get_resource_root().version
if actual_version < 10:
return self._role_cmd('hueSyncDb', servers)
return self._cmd('hueSyncDb', api_version=10) |
java | @Override
public <T> T onlyOne(Class<T> serviceClass) {
Collection<T> all = all(serviceClass);
if (all.size() == 1) {
return all.iterator().next();
}
if (all.size() > 1) {
throw new IllegalStateException(
"Multiple service implementations found for " + serviceClass + ": " + toClassString(all));
}
return null;
} |
java | protected boolean internalEquals(ValueData another)
{
if (another instanceof LongValueData)
{
return ((LongValueData)another).value == value;
}
return false;
} |
python | def _translate_src_oprnd(self, operand):
"""Translate source operand to a SMT expression.
"""
if isinstance(operand, ReilRegisterOperand):
return self._translate_src_register_oprnd(operand)
elif isinstance(operand, ReilImmediateOperand):
return smtsymbol.Constant(operand.size, operand.immediate)
else:
raise Exception("Invalid operand type") |
java | public DeviceData command_inout(TacoTangoDevice tacoDevice, String command, DeviceData argin) throws DevFailed {
Except.throw_exception("Api_TacoFailed",
"Taco protocol not supported",
"TacoTangoDeviceDAODefaultImpl.command_inout()");
return null;
} |
python | def _multicall(hook_impls, caller_kwargs, firstresult=False):
"""Execute a call into multiple python functions/methods and return the
result(s).
``caller_kwargs`` comes from _HookCaller.__call__().
"""
__tracebackhide__ = True
results = []
excinfo = None
try: # run impl and wrapper setup functions in a loop
teardowns = []
try:
for hook_impl in reversed(hook_impls):
try:
args = [caller_kwargs[argname] for argname in hook_impl.argnames]
except KeyError:
for argname in hook_impl.argnames:
if argname not in caller_kwargs:
raise HookCallError(
"hook call must provide argument %r" % (argname,)
)
if hook_impl.hookwrapper:
try:
gen = hook_impl.function(*args)
next(gen) # first yield
teardowns.append(gen)
except StopIteration:
_raise_wrapfail(gen, "did not yield")
else:
res = hook_impl.function(*args)
if res is not None:
results.append(res)
if firstresult: # halt further impl calls
break
except BaseException:
excinfo = sys.exc_info()
finally:
if firstresult: # first result hooks return a single value
outcome = _Result(results[0] if results else None, excinfo)
else:
outcome = _Result(results, excinfo)
# run all wrapper post-yield blocks
for gen in reversed(teardowns):
try:
gen.send(outcome)
_raise_wrapfail(gen, "has second yield")
except StopIteration:
pass
return outcome.get_result() |
java | public UserManagedCacheBuilder<K, V, T> withValueSerializingCopier() {
UserManagedCacheBuilder<K, V, T> otherBuilder = new UserManagedCacheBuilder<>(this);
otherBuilder.valueCopier = null;
otherBuilder.useValueSerializingCopier = true;
return otherBuilder;
} |
java | public String getLicenseKey() {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(new HazelcastRuntimePermission("com.hazelcast.config.Config.getLicenseKey"));
}
return licenseKey;
} |
python | def rebase_all_branches(self):
""" Rebase all branches, if possible. """
col_width = max(len(b.name) for b in self.branches) + 1
if self.repo.head.is_detached:
raise GitError("You're not currently on a branch. I'm exiting"
" in case you're in the middle of something.")
original_branch = self.repo.active_branch
with self.git.stasher() as stasher:
for branch in self.branches:
target = self.target_map[branch.name]
# Print branch name
if branch.name == original_branch.name:
attrs = ['bold']
else:
attrs = []
print(colored(branch.name.ljust(col_width), attrs=attrs),
end=' ')
# Check, if target branch exists
try:
if target.name.startswith('./'):
# Check, if local branch exists
self.git.rev_parse(target.name[2:])
else:
# Check, if remote branch exists
_ = target.commit
except (ValueError, GitError):
# Remote branch doesn't exist!
print(colored('error: remote branch doesn\'t exist', 'red'))
self.states.append('remote branch doesn\'t exist')
continue
# Get tracking branch
if target.is_local:
target = find(self.repo.branches,
lambda b: b.name == target.name[2:])
# Check status and act appropriately
if target.commit.hexsha == branch.commit.hexsha:
print(colored('up to date', 'green'))
self.states.append('up to date')
continue # Do not do anything
base = self.git.merge_base(branch.name, target.name)
if base == target.commit.hexsha:
print(colored('ahead of upstream', 'cyan'))
self.states.append('ahead')
continue # Do not do anything
fast_fastforward = False
if base == branch.commit.hexsha:
print(colored('fast-forwarding...', 'yellow'), end='')
self.states.append('fast-forwarding')
# Don't fast fast-forward the currently checked-out branch
fast_fastforward = (branch.name !=
self.repo.active_branch.name)
elif not self.settings['rebase.auto']:
print(colored('diverged', 'red'))
self.states.append('diverged')
continue # Do not do anything
else:
print(colored('rebasing', 'yellow'), end='')
self.states.append('rebasing')
if self.settings['rebase.show-hashes']:
print(' {}..{}'.format(base[0:7],
target.commit.hexsha[0:7]))
else:
print()
self.log(branch, target)
if fast_fastforward:
branch.commit = target.commit
else:
stasher()
self.git.checkout(branch.name)
self.git.rebase(target)
if (self.repo.head.is_detached # Only on Travis CI,
# we get a detached head after doing our rebase *confused*.
# Running self.repo.active_branch would fail.
or not self.repo.active_branch.name == original_branch.name):
print(colored('returning to {0}'.format(original_branch.name),
'magenta'))
original_branch.checkout() |
java | public void onUnknownHost(String host, SshPublicKey pk) {
try {
System.out.println("The host " + host
+ " is currently unknown to the system");
System.out.println("The MD5 host key " + "(" + pk.getAlgorithm()
+ ") fingerprint is: " + pk.getFingerprint());
System.out.println("The SHA1 host key "
+ "("
+ pk.getAlgorithm()
+ ") fingerprint is: "
+ SshKeyFingerprint.getFingerprint(pk.getEncoded(),
SshKeyFingerprint.SHA1_FINGERPRINT));
try {
System.out.println("The SHA256 host key "
+ "("
+ pk.getAlgorithm()
+ ") fingerprint is: "
+ SshKeyFingerprint.getFingerprint(pk.getEncoded(),
SshKeyFingerprint.SHA256_FINGERPRINT));
} catch (Exception ex) {
}
getResponse(host, pk);
} catch (Exception e) {
e.printStackTrace();
}
} |
python | def rasterToPolygon(raster_file, polygon_file):
"""
Converts watershed raster to polygon and then dissolves it.
It dissolves features based on the LINKNO attribute.
"""
log("Process: Raster to Polygon ...")
time_start = datetime.utcnow()
temp_polygon_file = \
"{0}_temp.shp".format(
os.path.splitext(os.path.basename(polygon_file))[0])
GDALGrid(raster_file).to_polygon(out_shapefile=temp_polygon_file,
fieldname="LINKNO",
self_mask=True)
log("Time to convert to polygon: {0}"
.format(datetime.utcnow()-time_start))
log("Dissolving ...")
time_start_dissolve = datetime.utcnow()
ogr_polygin_shapefile = ogr.Open(temp_polygon_file)
ogr_polygon_shapefile_lyr = ogr_polygin_shapefile.GetLayer()
number_of_features = ogr_polygon_shapefile_lyr.GetFeatureCount()
polygon_rivid_list = np.zeros(number_of_features, dtype=np.int32)
for feature_idx, catchment_feature in \
enumerate(ogr_polygon_shapefile_lyr):
polygon_rivid_list[feature_idx] = \
catchment_feature.GetField('LINKNO')
shp_drv = ogr.GetDriverByName('ESRI Shapefile')
# Remove output shapefile if it already exists
if os.path.exists(polygon_file):
shp_drv.DeleteDataSource(polygon_file)
dissolve_shapefile = shp_drv.CreateDataSource(polygon_file)
dissolve_layer = \
dissolve_shapefile.CreateLayer(
'',
ogr_polygon_shapefile_lyr.GetSpatialRef(),
ogr.wkbPolygon)
dissolve_layer.CreateField(ogr.FieldDefn('LINKNO', ogr.OFTInteger))
dissolve_layer_defn = dissolve_layer.GetLayerDefn()
for unique_rivid in np.unique(polygon_rivid_list):
# get indices where it is in the polygon
feature_indices = np.where(polygon_rivid_list == unique_rivid)[0]
new_feat = ogr.Feature(dissolve_layer_defn)
new_feat.SetField('LINKNO', int(unique_rivid))
if len(feature_indices) == 1:
# write feature to file
feature = \
ogr_polygon_shapefile_lyr.GetFeature(feature_indices[0])
new_feat.SetGeometry(feature.GetGeometryRef())
else:
# dissolve
dissolve_poly_list = []
for feature_index in feature_indices:
feature = \
ogr_polygon_shapefile_lyr.GetFeature(feature_index)
feat_geom = feature.GetGeometryRef()
dissolve_poly_list.append(
shapely_loads(feat_geom.ExportToWkb()))
dissolve_polygon = cascaded_union(dissolve_poly_list)
new_feat.SetGeometry(
ogr.CreateGeometryFromWkb(dissolve_polygon.wkb))
dissolve_layer.CreateFeature(new_feat)
# clean up
shp_drv.DeleteDataSource(temp_polygon_file)
log("Time to dissolve: {0}".format(datetime.utcnow() -
time_start_dissolve))
log("Total time to convert: {0}".format(datetime.utcnow() -
time_start)) |
java | public void init(final String path) throws IOException
{
SecurityHelper.doPrivilegedIOExceptionAction(new PrivilegedExceptionAction<Object>()
{
public Object run() throws Exception
{
baseDir = new File(path);
return null;
}
});
} |
python | def parse_runtime_limit(value, now=None):
"""Parsing CLI option for runtime limit, supplied as VALUE.
Value could be something like: Sunday 23:00-05:00, the format being
[Wee[kday]] [hh[:mm][-hh[:mm]]].
The function will return two valid time ranges. The first could be in the
past, containing the present or in the future. The second is always in the
future.
"""
def extract_time(value):
value = _RE_RUNTIMELIMIT_HOUR.search(value).groupdict()
return timedelta(hours=int(value['hours']),
minutes=int(value['minutes']))
def extract_weekday(value):
key = value[:3].lower()
try:
return {
'mon': 0,
'tue': 1,
'wed': 2,
'thu': 3,
'fri': 4,
'sat': 5,
'sun': 6,
}[key]
except KeyError:
raise ValueError("%s is not a good weekday name." % value)
if now is None:
now = datetime.now()
today = now.date()
g = _RE_RUNTIMELIMIT_FULL.search(value)
if not g:
raise ValueError('"%s" does not seem to be correct format for '
'parse_runtime_limit() '
'[Wee[kday]] [hh[:mm][-hh[:mm]]]).' % value)
pieces = g.groupdict()
if pieces['weekday_begin'] is None:
# No weekday specified. So either today or tomorrow
first_occasion_day = timedelta(days=0)
next_occasion_delta = timedelta(days=1)
else:
# If given 'Mon' then we transform it to 'Mon-Mon'
if pieces['weekday_end'] is None:
pieces['weekday_end'] = pieces['weekday_begin']
# Day range
weekday_begin = extract_weekday(pieces['weekday_begin'])
weekday_end = extract_weekday(pieces['weekday_end'])
if weekday_begin <= today.weekday() <= weekday_end:
first_occasion_day = timedelta(days=0)
else:
days = (weekday_begin - today.weekday()) % 7
first_occasion_day = timedelta(days=days)
weekday = (now + first_occasion_day).weekday()
if weekday < weekday_end:
# Fits in the same week
next_occasion_delta = timedelta(days=1)
else:
# The week after
days = weekday_begin - weekday + 7
next_occasion_delta = timedelta(days=days)
if pieces['hour_begin'] is None:
pieces['hour_begin'] = '00:00'
if pieces['hour_end'] is None:
pieces['hour_end'] = '00:00'
beginning_time = extract_time(pieces['hour_begin'])
ending_time = extract_time(pieces['hour_end'])
if not ending_time:
ending_time = beginning_time + timedelta(days=1)
elif beginning_time and ending_time and beginning_time > ending_time:
ending_time += timedelta(days=1)
start_time = real_datetime.combine(today, real_time(hour=0, minute=0))
current_range = (
start_time + first_occasion_day + beginning_time,
start_time + first_occasion_day + ending_time
)
if now > current_range[1]:
current_range = tuple(t + next_occasion_delta for t in current_range)
future_range = (
current_range[0] + next_occasion_delta,
current_range[1] + next_occasion_delta
)
return current_range, future_range |
python | def inference(self, kern, X, likelihood, Y, Y_metadata=None):
"""
Returns a GridPosterior class containing essential quantities of the posterior
"""
N = X.shape[0] #number of training points
D = X.shape[1] #number of dimensions
Kds = np.zeros(D, dtype=object) #vector for holding covariance per dimension
Qs = np.zeros(D, dtype=object) #vector for holding eigenvectors of covariance per dimension
QTs = np.zeros(D, dtype=object) #vector for holding transposed eigenvectors of covariance per dimension
V_kron = 1 # kronecker product of eigenvalues
# retrieve the one-dimensional variation of the designated kernel
oneDkernel = kern.get_one_dimensional_kernel(D)
for d in range(D):
xg = list(set(X[:,d])) #extract unique values for a dimension
xg = np.reshape(xg, (len(xg), 1))
oneDkernel.lengthscale = kern.lengthscale[d]
Kds[d] = oneDkernel.K(xg)
[V, Q] = np.linalg.eig(Kds[d])
V_kron = np.kron(V_kron, V)
Qs[d] = Q
QTs[d] = Q.T
noise = likelihood.variance + 1e-8
alpha_kron = self.kron_mvprod(QTs, Y)
V_kron = V_kron.reshape(-1, 1)
alpha_kron = alpha_kron / (V_kron + noise)
alpha_kron = self.kron_mvprod(Qs, alpha_kron)
log_likelihood = -0.5 * (np.dot(Y.T, alpha_kron) + np.sum((np.log(V_kron + noise))) + N*log_2_pi)
# compute derivatives wrt parameters Thete
derivs = np.zeros(D+2, dtype='object')
for t in range(len(derivs)):
dKd_dTheta = np.zeros(D, dtype='object')
gamma = np.zeros(D, dtype='object')
gam = 1
for d in range(D):
xg = list(set(X[:,d]))
xg = np.reshape(xg, (len(xg), 1))
oneDkernel.lengthscale = kern.lengthscale[d]
if t < D:
dKd_dTheta[d] = oneDkernel.dKd_dLen(xg, (t==d), lengthscale=kern.lengthscale[t]) #derivative wrt lengthscale
elif (t == D):
dKd_dTheta[d] = oneDkernel.dKd_dVar(xg) #derivative wrt variance
else:
dKd_dTheta[d] = np.identity(len(xg)) #derivative wrt noise
gamma[d] = np.diag(np.dot(np.dot(QTs[d], dKd_dTheta[d].T), Qs[d]))
gam = np.kron(gam, gamma[d])
gam = gam.reshape(-1,1)
kappa = self.kron_mvprod(dKd_dTheta, alpha_kron)
derivs[t] = 0.5*np.dot(alpha_kron.T,kappa) - 0.5*np.sum(gam / (V_kron + noise))
# separate derivatives
dL_dLen = derivs[:D]
dL_dVar = derivs[D]
dL_dThetaL = derivs[D+1]
return GridPosterior(alpha_kron=alpha_kron, QTs=QTs, Qs=Qs, V_kron=V_kron), \
log_likelihood, {'dL_dLen':dL_dLen, 'dL_dVar':dL_dVar, 'dL_dthetaL':dL_dThetaL} |
python | def draw_tree_grid(self,
nrows=None,
ncols=None,
start=0,
fixed_order=False,
shared_axis=False,
**kwargs):
"""
Draw a slice of x*y trees into a x,y grid non-overlapping.
Parameters:
-----------
x (int):
Number of grid cells in x dimension. Default=automatically set.
y (int):
Number of grid cells in y dimension. Default=automatically set.
start (int):
Starting index of tree slice from .treelist.
kwargs (dict):
Toytree .draw() arguments as a dictionary.
"""
# return nothing if tree is empty
if not self.treelist:
print("Treelist is empty")
return None, None
# make a copy of the treelist so we don't modify the original
if not fixed_order:
treelist = self.copy().treelist
else:
if fixed_order is True:
fixed_order = self.treelist[0].get_tip_labels()
treelist = [
ToyTree(i, fixed_order=fixed_order)
for i in self.copy().treelist
]
# apply kwargs styles to the individual tree styles
for tree in treelist:
tree.style.update(kwargs)
# get reasonable values for x,y given treelist length
if not (ncols or nrows):
ncols = 5
nrows = 1
elif not (ncols and nrows):
if ncols:
if ncols == 1:
if self.ntrees <= 5:
nrows = self.ntrees
else:
nrows = 2
else:
if self.ntrees <= 10:
nrows = 2
else:
nrows = 3
if nrows:
if nrows == 1:
if self.ntrees <= 5:
ncols = self.ntrees
else:
ncols = 5
else:
if self.ntrees <= 10:
ncols = 5
else:
ncols = 3
else:
pass
# Return TereGrid object for debugging
draw = TreeGrid(treelist)
if kwargs.get("debug"):
return draw
# Call update to draw plot. Kwargs still here for width, height, axes
canvas, axes = draw.update(nrows, ncols, start, shared_axis, **kwargs)
return canvas, axes |
java | public static void run(final Properties properties) throws IOException {
// read parameters for output (do this at the beginning to avoid unnecessary reading)
File outputFile = new File(properties.getProperty(OUTPUT_FILE));
Boolean overwrite = Boolean.parseBoolean(properties.getProperty(OUTPUT_OVERWRITE, "false"));
PrintStream outStatistics = null;
if (outputFile.exists() && !overwrite) {
throw new IllegalArgumentException("Cannot generate statistics because " + outputFile + " exists and overwrite is " + overwrite);
} else {
outStatistics = new PrintStream(outputFile, "UTF-8");
}
// read format
String format = properties.getProperty(INPUT_FORMAT);
// read users to avoid
String[] usersToAvoidArray = properties.getProperty(AVOID_USERS, "").split(",");
Set<String> usersToAvoid = new HashSet<String>();
for (String u : usersToAvoidArray) {
usersToAvoid.add(u);
}
try {
// read baseline <-- this file is mandatory
File baselineFile = new File(properties.getProperty(BASELINE_FILE));
Map<String, Map<String, Double>> baselineMapMetricUserValues = readMetricFile(baselineFile, format, usersToAvoid);
// read methods <-- at least one file should be provided
String[] methodFiles = properties.getProperty(TEST_METHODS_FILES).split(",");
if (methodFiles.length < 1) {
throw new IllegalArgumentException("At least one test file should be provided!");
}
Map<String, Map<String, Map<String, Double>>> methodsMapMetricUserValues = new HashMap<String, Map<String, Map<String, Double>>>();
for (String m : methodFiles) {
File file = new File(m);
Map<String, Map<String, Double>> mapMetricUserValues = readMetricFile(file, format, usersToAvoid);
methodsMapMetricUserValues.put(m, mapMetricUserValues);
}
run(properties, outStatistics, baselineFile.getName(), baselineMapMetricUserValues, methodsMapMetricUserValues);
} finally {
// close files
outStatistics.close();
}
} |
java | @Override
public QueryObjectsResult queryObjects(QueryObjectsRequest request) {
request = beforeClientExecution(request);
return executeQueryObjects(request);
} |
python | def split_pulls(all_issues, project="arokem/python-matlab-bridge"):
"""split a list of closed issues into non-PR Issues and Pull Requests"""
pulls = []
issues = []
for i in all_issues:
if is_pull_request(i):
pull = get_pull_request(project, i['number'], auth=True)
pulls.append(pull)
else:
issues.append(i)
return issues, pulls |
java | public void init(FilterConfig filterConfig) throws ServletException {
// need the Context for Logging, instantiating ClassLoader, etc
ServletContextAccess sca=new ServletContextAccess(filterConfig);
if(access==null) {
access = sca;
}
// Set Protected getter with base Access, for internal class instantiations
init(new FCGet(access, sca.context(), filterConfig));
} |
java | @Pure
public boolean isTemporaryChange() {
final Object src = getSource();
if (src instanceof MapLayer) {
return ((MapLayer) src).isTemporaryLayer();
}
return false;
} |
python | def violin(adata, keys, groupby=None, log=False, use_raw=None, stripplot=True, jitter=True,
size=1, scale='width', order=None, multi_panel=None, show=None,
xlabel='', rotation=None, save=None, ax=None, **kwds):
"""\
Violin plot.
Wraps `seaborn.violinplot` for :class:`~anndata.AnnData`.
Parameters
----------
adata : :class:`~anndata.AnnData`
Annotated data matrix.
keys : `str` or list of `str`
Keys for accessing variables of `.var_names` or fields of `.obs`.
groupby : `str` or `None`, optional (default: `None`)
The key of the observation grouping to consider.
log : `bool`, optional (default: `False`)
Plot on logarithmic axis.
use_raw : `bool`, optional (default: `None`)
Use `raw` attribute of `adata` if present.
multi_panel : `bool`, optional (default: `False`)
Display keys in multiple panels also when `groupby is not None`.
stripplot : `bool` optional (default: `True`)
Add a stripplot on top of the violin plot.
See `seaborn.stripplot`.
jitter : `float` or `bool`, optional (default: `True`)
Add jitter to the stripplot (only when stripplot is True)
See `seaborn.stripplot`.
size : int, optional (default: 1)
Size of the jitter points.
order : list of str, optional (default: `True`)
Order in which to show the categories.
scale : {{'area', 'count', 'width'}}, optional (default: 'width')
The method used to scale the width of each violin. If 'area', each
violin will have the same area. If 'count', the width of the violins
will be scaled by the number of observations in that bin. If 'width',
each violin will have the same width.
xlabel : `str`, optional (default: `''`)
Label of the x axis. Defaults to `groupby` if `rotation` is `None`,
otherwise, no label is shown.
rotation : `float`, optional (default: `None`)
Rotation of xtick labels.
{show_save_ax}
**kwds : keyword arguments
Are passed to `seaborn.violinplot`.
Returns
-------
A :class:`~matplotlib.axes.Axes` object if `ax` is `None` else `None`.
"""
sanitize_anndata(adata)
if use_raw is None and adata.raw is not None: use_raw = True
if isinstance(keys, str): keys = [keys]
obs_keys = False
for key in keys:
if key in adata.obs_keys(): obs_keys = True
if obs_keys and key not in set(adata.obs_keys()):
raise ValueError(
'Either use observation keys or variable names, but do not mix. '
'Did not find {} in adata.obs_keys().'.format(key))
if obs_keys:
obs_df = adata.obs
else:
if groupby is None: obs_df = pd.DataFrame()
else: obs_df = pd.DataFrame(adata.obs[groupby])
for key in keys:
if adata.raw is not None and use_raw:
X_col = adata.raw[:, key].X
else:
X_col = adata[:, key].X
obs_df[key] = X_col
if groupby is None:
obs_tidy = pd.melt(obs_df, value_vars=keys)
x = 'variable'
ys = ['value']
else:
obs_tidy = obs_df
x = groupby
ys = keys
if multi_panel:
if groupby is None and len(ys) == 1:
# This is a quick and dirty way for adapting scales across several
# keys if groupby is None.
y = ys[0]
g = sns.FacetGrid(obs_tidy, col=x, col_order=keys, sharey=False)
# don't really know why this gives a warning without passing `order`
g = g.map(sns.violinplot, y, inner=None, orient='vertical',
scale=scale, order=keys, **kwds)
if stripplot:
g = g.map(sns.stripplot, y, orient='vertical', jitter=jitter, size=size, order=keys,
color='black')
if log:
g.set(yscale='log')
g.set_titles(col_template='{col_name}').set_xlabels('')
if rotation is not None:
for ax in g.axes[0]:
ax.tick_params(labelrotation=rotation)
else:
if ax is None:
axs, _, _, _ = setup_axes(
ax=ax, panels=['x'] if groupby is None else keys, show_ticks=True, right_margin=0.3)
else:
axs = [ax]
for ax, y in zip(axs, ys):
ax = sns.violinplot(x, y=y, data=obs_tidy, inner=None, order=order,
orient='vertical', scale=scale, ax=ax, **kwds)
if stripplot:
ax = sns.stripplot(x, y=y, data=obs_tidy, order=order,
jitter=jitter, color='black', size=size, ax=ax)
if xlabel == '' and groupby is not None and rotation is None:
xlabel = groupby.replace('_', ' ')
ax.set_xlabel(xlabel)
if log:
ax.set_yscale('log')
if rotation is not None:
ax.tick_params(labelrotation=rotation)
utils.savefig_or_show('violin', show=show, save=save)
if show is False:
if multi_panel:
return g
elif len(axs) == 1:
return axs[0]
else:
return axs |
java | public void setLabel(java.lang.String label) {
getStateHelper().put(PropertyKeys.label, label);
} |
java | protected void writeEntityMetawidget(final Map<Object, Object> context, final int entityMetawidgetIndent,
final Map<String, String> existingNamespaces)
{
StringWriter stringWriter = new StringWriter();
this.entityMetawidget.write(stringWriter, entityMetawidgetIndent);
context.put("metawidget", stringWriter.toString().trim());
Map<String, String> namespaces = this.entityMetawidget.getNamespaces();
namespaces.keySet().removeAll(existingNamespaces.keySet());
context.put("metawidgetNamespaces", namespacesToString(namespaces));
} |
python | def GetDateRange(self):
"""Return the range over which this ServicePeriod is valid.
The range includes exception dates that add service outside of
(start_date, end_date), but doesn't shrink the range if exception
dates take away service at the edges of the range.
Returns:
A tuple of "YYYYMMDD" strings, (start date, end date) or (None, None) if
no dates have been given.
"""
start = self.start_date
end = self.end_date
for date, (exception_type, _) in self.date_exceptions.items():
if exception_type == self._EXCEPTION_TYPE_REMOVE:
continue
if not start or (date < start):
start = date
if not end or (date > end):
end = date
if start is None:
start = end
elif end is None:
end = start
# If start and end are None we did a little harmless shuffling
return (start, end) |
java | boolean isAuthorized(String accountId) {
try {
DataStore<StoredCredential> sc = StoredCredential.getDefaultDataStore(dataStoreFactory);
return sc.containsKey(accountId);
} catch (IOException e) {
return false;
}
} |
python | def delete_rater(self):
"""Action: create dialog to delete rater."""
answer = QInputDialog.getText(self, 'Delete Rater',
'Enter rater\'s name')
if answer[1]:
self.annot.remove_rater(answer[0])
self.display_notes()
self.parent.create_menubar() |
python | def set_cognitive_process(self, grade_id):
"""Sets the cognitive process.
arg: grade_id (osid.id.Id): the new cognitive process
raise: InvalidArgument - ``grade_id`` is invalid
raise: NoAccess - ``grade_id`` cannot be modified
raise: NullArgument - ``grade_id`` is ``null``
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for osid.resource.ResourceForm.set_avatar_template
if self.get_cognitive_process_metadata().is_read_only():
raise errors.NoAccess()
if not self._is_valid_id(grade_id):
raise errors.InvalidArgument()
self._my_map['cognitiveProcessId'] = str(grade_id) |
python | def get_used_in_func(node):
'''Get names, but ignore variables names to the left hand side
That is to say, in case of
a = b + 1
we consider b as "being accessed", while a is not.
'''
if isinstance(node, ast.FunctionDef):
return {node.name: get_accessed(node.body)}
names = {}
for node in ast.iter_child_nodes(node):
names.update(get_used_in_func(node))
return names |
java | public OvhOrder dedicated_nasha_new_duration_POST(String duration, OvhNasHAZoneEnum datacenter, OvhNasHAOfferEnum model) throws IOException {
String qPath = "/order/dedicated/nasha/new/{duration}";
StringBuilder sb = path(qPath, duration);
HashMap<String, Object>o = new HashMap<String, Object>();
addBody(o, "datacenter", datacenter);
addBody(o, "model", model);
String resp = exec(qPath, "POST", sb.toString(), o);
return convertTo(resp, OvhOrder.class);
} |
python | def encode(self, name, as_map_key=False):
"""Returns the name the first time and the key after that"""
if name in self.key_to_value:
return self.key_to_value[name]
return self.encache(name) if is_cacheable(name, as_map_key) else name |
python | def do_decode(cls, obj, obj_type):
# type: (Any, ConjureTypeType) -> Any
"""Decodes json into the specified type
Args:
obj: the json object to decode
element_type: a class object which is the type we're decoding into.
"""
if inspect.isclass(obj_type) and issubclass( # type: ignore
obj_type, ConjureBeanType
):
return cls.decode_conjure_bean_type(obj, obj_type) # type: ignore
elif inspect.isclass(obj_type) and issubclass( # type: ignore
obj_type, ConjureUnionType
):
return cls.decode_conjure_union_type(obj, obj_type)
elif inspect.isclass(obj_type) and issubclass( # type: ignore
obj_type, ConjureEnumType
):
return cls.decode_conjure_enum_type(obj, obj_type)
elif isinstance(obj_type, DictType):
return cls.decode_dict(obj, obj_type.key_type, obj_type.value_type)
elif isinstance(obj_type, ListType):
return cls.decode_list(obj, obj_type.item_type)
elif isinstance(obj_type, OptionalType):
return cls.decode_optional(obj, obj_type.item_type)
return cls.decode_primitive(obj, obj_type) |
java | private int getToolbarHeightAdjustment(boolean bToolbarShown) {
int adjustAmount = 0;
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
boolean translucentStatus = false;
// check theme attrs to see if translucent statusbar is set explicitly
int[] attrs = {android.R.attr.windowTranslucentStatus};
TypedArray a = getTheme().obtainStyledAttributes(attrs);
try {
translucentStatus = a.getBoolean(0, false);
} finally {
a.recycle();
}
// also check window flags in case translucent statusbar is set implicitly
WindowManager.LayoutParams winParams = getWindow().getAttributes();
int bits = WindowManager.LayoutParams.FLAG_TRANSLUCENT_STATUS;
if ((winParams.flags & bits) != 0) {
translucentStatus = true;
}
if (translucentStatus) {
if (bToolbarShown) {
int resourceId = getResources().getIdentifier("status_bar_height", "dimen", "android");
if (resourceId > 0) {
adjustAmount = getResources().getDimensionPixelSize(resourceId);
}
}
/* Add layout listener to ensure keyboard launch resize the screen when android:windowTranslucentStatus=true
* Fixing workaround found here:
* http://stackoverflow.com/questions/8398102/androidwindowsoftinputmode-adjustresize-doesnt-make-any-difference
*/
decorView = getWindow().getDecorView();
contentView = decorView.findViewById(android.R.id.content);
decorView.getViewTreeObserver().addOnGlobalLayoutListener(keyboardPresencelLayoutListener);
}
}
return adjustAmount;
} |
java | private int nextChar() {
String filter = mFilter;
int pos = mPos;
int c = (pos >= filter.length()) ? -1 : mFilter.charAt(pos);
mPos = pos + 1;
return c;
} |
java | public static double loss(double pred, double y)
{
final double x = -y * pred;
if (x >= 30)//as x -> inf, L(x) -> x. At 30 exp(x) is O(10^13), getting unstable. L(x)-x at this value is O(10^-14), also avoids exp and log ops
return x;
else if (x <= -30)
return 0;
return log(1 + exp(x));
} |
python | def vagalume(song):
"""
Returns the lyrics found in vagalume.com.br for the specified mp3 file or
an empty string if not found.
"""
translate = {
'@': 'a',
URLESCAPE: '',
' ': '-'
}
artist = song.artist.lower()
artist = normalize(artist, translate)
artist = re.sub(r'\-{2,}', '-', artist)
title = song.title.lower()
title = normalize(title, translate)
title = re.sub(r'\-{2,}', '-', title)
url = 'https://www.vagalume.com.br/{}/{}.html'.format(artist, title)
soup = get_url(url)
body = soup.select('div#lyrics')
if body == []:
return ''
content = body[0]
for br in content.find_all('br'):
br.replace_with('\n')
return content.get_text().strip() |
java | private IMolecularFormulaSet returnOrdered(double mass, IMolecularFormulaSet formulaSet) {
IMolecularFormulaSet solutions_new = null;
if (formulaSet.size() != 0) {
double valueMin = 100;
int i_final = 0;
solutions_new = formulaSet.getBuilder().newInstance(IMolecularFormulaSet.class);
List<Integer> listI = new ArrayList<Integer>();
for (int j = 0; j < formulaSet.size(); j++) {
for (int i = 0; i < formulaSet.size(); i++) {
if (listI.contains(i)) continue;
double value = MolecularFormulaManipulator.getTotalExactMass(formulaSet.getMolecularFormula(i));
double diff = Math.abs(mass - Math.abs(value));
if (valueMin > diff) {
valueMin = diff;
i_final = i;
}
}
valueMin = 100;
solutions_new.addMolecularFormula(formulaSet.getMolecularFormula(i_final));
listI.add(i_final);
}
}
return solutions_new;
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.