language
stringclasses 2
values | func_code_string
stringlengths 63
466k
|
---|---|
python | def calculate2d(self, force=True):
"""
recalculate 2d coordinates. currently rings can be calculated badly.
:param force: ignore existing coordinates of atoms
"""
for ml in (self.__reagents, self.__reactants, self.__products):
for m in ml:
m.calculate2d(force)
self.fix_positions() |
python | def connection(self) -> Iterator[amqp.Connection]:
"""Returns a new connection as a context manager."""
TCP_USER_TIMEOUT = 18 # constant is available on Python 3.6+.
socket_settings = {TCP_USER_TIMEOUT: self.config.TCP_USER_TIMEOUT}
if sys.platform.startswith('darwin'):
del socket_settings[TCP_USER_TIMEOUT]
conn = amqp.Connection(
host="%s:%s" % (self.config.RABBIT_HOST, self.config.RABBIT_PORT),
userid=self.config.RABBIT_USER,
password=self.config.RABBIT_PASSWORD,
virtual_host=self.config.RABBIT_VIRTUAL_HOST,
connect_timeout=self.config.RABBIT_CONNECT_TIMEOUT,
read_timeout=self.config.RABBIT_READ_TIMEOUT,
write_timeout=self.config.RABBIT_WRITE_TIMEOUT,
socket_settings=socket_settings,
heartbeat=self.config.RABBIT_HEARTBEAT,
)
conn.connect()
logger.info('Connected to RabbitMQ')
with _safe_close(conn):
yield conn |
java | public void marshall(EventDescription eventDescription, ProtocolMarshaller protocolMarshaller) {
if (eventDescription == null) {
throw new SdkClientException("Invalid argument passed to marshall(...)");
}
try {
protocolMarshaller.marshall(eventDescription.getLatestDescription(), LATESTDESCRIPTION_BINDING);
} catch (Exception e) {
throw new SdkClientException("Unable to marshall request to JSON: " + e.getMessage(), e);
}
} |
java | @Override
public String sendEmailMessage(final EmailMessage emailMessage) throws MessagingException
{
Transport.send(emailMessage);
return emailMessage.getMessageID();
} |
python | def set_ipcsem_params(self, ftok=None, persistent=None):
"""Sets ipcsem lock engine params.
:param str|unicode ftok: Set the ipcsem key via ftok() for avoiding duplicates.
:param bool persistent: Do not remove ipcsem's on shutdown.
"""
self._set('ftok', ftok)
self._set('persistent-ipcsem', persistent, cast=bool)
return self._section |
python | def bed(args):
"""
%prog bed bedfile bamfiles
Convert bam files to bed.
"""
p = OptionParser(bed.__doc__)
opts, args = p.parse_args(args)
if len(args) < 2:
sys.exit(not p.print_help())
bedfile = args[0]
bamfiles = args[1:]
for bamfile in bamfiles:
cmd = "bamToBed -i {0}".format(bamfile)
sh(cmd, outfile=bedfile, append=True) |
python | def build_body(self, template_file=INDEX):
"""
Params:
template_file (text): Path to an index.html template
Returns:
body (bytes): THe utf-8 encoded document body
"""
if self.params['error'] == 'access_denied':
message = docs.OAUTH_ACCESS_DENIED
elif self.params['error'] is not None:
message = docs.OAUTH_ERROR.format(error=self.params['error'])
elif self.params['state'] is None or self.params['code'] is None:
message = docs.OAUTH_INVALID
else:
message = docs.OAUTH_SUCCESS
with codecs.open(template_file, 'r', 'utf-8') as fp:
index_text = fp.read()
body = string.Template(index_text).substitute(message=message)
body = codecs.encode(body, 'utf-8')
return body |
java | private void pbOpenActionPerformed (java.awt.event.ActionEvent evt)//GEN-FIRST:event_pbOpenActionPerformed
{//GEN-HEADEREND:event_pbOpenActionPerformed
// Add your handling code here:
pbTestActionPerformed(evt);
if (theConnection != null)
{
synchronized(Main.getProperties())
{
int i = 0;
while (Main.getProperties().getProperty(Main.PROPERTY_JDBCDRIVER + i) != null)
{
Main.getProperties().remove(Main.PROPERTY_JDBCDRIVER + i);
i++;
}
while (Main.getProperties().getProperty(Main.PROPERTY_JDBCURL + i) != null)
{
Main.getProperties().remove(Main.PROPERTY_JDBCURL + i);
i++;
}
for (i = 0; i < cmbJDBCDriver.getModel().getSize(); i++)
Main.getProperties().setProperty(Main.PROPERTY_JDBCDRIVER + i, cmbJDBCDriver.getModel().getElementAt(i).toString());
for (i = 0; i < cmbJDBCURL.getModel().getSize(); i++)
Main.getProperties().setProperty(Main.PROPERTY_JDBCURL + i, cmbJDBCURL.getModel().getElementAt(i).toString());
Main.getProperties().setProperty(Main.PROPERTY_JDBCUSER, tfUsername.getText());
Main.getProperties().storeProperties("");
}
dispose();
}
} |
python | def _histogram_equalization_helper(valid_data, number_of_bins, clip_limit=None, slope_limit=None):
"""Calculate the simplest possible histogram equalization, using only valid data.
Returns:
cumulative distribution function and bin information
"""
# bucket all the selected data using np's histogram function
temp_histogram, temp_bins = np.histogram(valid_data, number_of_bins)
# if we have a clip limit and we should do our clipping before building
# the cumulative distribution function, clip off our histogram
if clip_limit is not None:
# clip our histogram and remember how much we removed
pixels_to_clip_at = int(clip_limit *
(valid_data.size / float(number_of_bins)))
mask_to_clip = temp_histogram > clip_limit
# num_bins_clipped = sum(mask_to_clip)
# num_pixels_clipped = sum(temp_histogram[mask_to_clip]) - (num_bins_clipped * pixels_to_clip_at)
temp_histogram[mask_to_clip] = pixels_to_clip_at
# calculate the cumulative distribution function
cumulative_dist_function = temp_histogram.cumsum()
# if we have a clip limit and we should do our clipping after building the
# cumulative distribution function, clip off our cdf
if slope_limit is not None:
# clip our cdf and remember how much we removed
pixel_height_limit = int(slope_limit *
(valid_data.size / float(number_of_bins)))
cumulative_excess_height = 0
num_clipped_pixels = 0
weight_metric = np.zeros(cumulative_dist_function.shape, dtype=float)
for pixel_index in range(1, cumulative_dist_function.size):
current_pixel_count = cumulative_dist_function[pixel_index]
diff_from_acceptable = (
current_pixel_count - cumulative_dist_function[pixel_index - 1]
- pixel_height_limit - cumulative_excess_height)
if diff_from_acceptable < 0:
weight_metric[pixel_index] = abs(diff_from_acceptable)
cumulative_excess_height += max(diff_from_acceptable, 0)
cumulative_dist_function[
pixel_index] = current_pixel_count - cumulative_excess_height
num_clipped_pixels = num_clipped_pixels + cumulative_excess_height
# now normalize the overall distribution function
cumulative_dist_function = (number_of_bins - 1) * cumulative_dist_function / cumulative_dist_function[-1]
# return what someone else will need in order to apply the equalization later
return cumulative_dist_function, temp_bins |
python | def check_perf():
"Suggest how to improve the setup to speed things up"
from PIL import features, Image
from packaging import version
print("Running performance checks.")
# libjpeg_turbo check
print("\n*** libjpeg-turbo status")
if version.parse(Image.PILLOW_VERSION) >= version.parse("5.3.9"):
if features.check_feature('libjpeg_turbo'):
print("โ libjpeg-turbo is on")
else:
print("โ libjpeg-turbo is not on. It's recommended you install libjpeg-turbo to speed up JPEG decoding. See https://docs.fast.ai/performance.html#libjpeg-turbo")
else:
print(f"โ libjpeg-turbo's status can't be derived - need Pillow(-SIMD)? >= 5.4.0 to tell, current version {Image.PILLOW_VERSION}")
# XXX: remove this check/note once Pillow and Pillow-SIMD 5.4.0 is available
pillow_ver_5_4_is_avail = pypi_module_version_is_available("Pillow", "5.4.0")
if pillow_ver_5_4_is_avail == False:
print("5.4.0 is not yet available, other than the dev version on github, which can be installed via pip from git+https://github.com/python-pillow/Pillow. See https://docs.fast.ai/performance.html#libjpeg-turbo")
# Pillow-SIMD check
print("\n*** Pillow-SIMD status")
if re.search(r'\.post\d+', Image.PILLOW_VERSION):
print(f"โ Running Pillow-SIMD {Image.PILLOW_VERSION}")
else:
print(f"โ Running Pillow {Image.PILLOW_VERSION}; It's recommended you install Pillow-SIMD to speed up image resizing and other operations. See https://docs.fast.ai/performance.html#pillow-simd")
# CUDA version check
# compatibility table: k: min nvidia ver is required for v: cuda ver
# note: windows nvidia driver version is slightly higher, see:
# https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
# note: add new entries if pytorch starts supporting new cudaXX
nvidia2cuda = {
"410.00": "10.0",
"384.81": "9.0",
"367.48": "8.0",
}
print("\n*** CUDA status")
if torch.cuda.is_available():
pynvml = load_pynvml_env()
nvidia_ver = (pynvml.nvmlSystemGetDriverVersion().decode('utf-8') if platform.system() != "Darwin" else "Cannot be determined on OSX yet")
cuda_ver = torch.version.cuda
max_cuda = "8.0"
for k in sorted(nvidia2cuda.keys()):
if version.parse(nvidia_ver) > version.parse(k): max_cuda = nvidia2cuda[k]
if version.parse(str(max_cuda)) <= version.parse(cuda_ver):
print(f"โ Running the latest CUDA {cuda_ver} with NVIDIA driver {nvidia_ver}")
else:
print(f"โ You are running pytorch built against cuda {cuda_ver}, your NVIDIA driver {nvidia_ver} supports cuda10. See https://pytorch.org/get-started/locally/ to install pytorch built against the faster CUDA version.")
else:
print(f"โ Running cpu-only torch version, CUDA check is not relevant")
print("\nRefer to https://docs.fast.ai/performance.html to make sense out of these checks and suggestions.") |
python | def do_lmfit(data, params, B=None, errs=None, dojac=True):
"""
Fit the model to the data
data may contain 'flagged' or 'masked' data with the value of np.NaN
Parameters
----------
data : 2d-array
Image data
params : lmfit.Parameters
Initial model guess.
B : 2d-array
B matrix to be used in residual calculations.
Default = None.
errs : 1d-array
dojac : bool
If true then an analytic jacobian will be passed to the fitting routine.
Returns
-------
result : ?
lmfit.minimize result.
params : lmfit.Params
Fitted model.
See Also
--------
:func:`AegeanTools.fitting.lmfit_jacobian`
"""
# copy the params so as not to change the initial conditions
# in case we want to use them elsewhere
params = copy.deepcopy(params)
data = np.array(data)
mask = np.where(np.isfinite(data))
def residual(params, **kwargs):
"""
The residual function required by lmfit
Parameters
----------
params: lmfit.Params
The parameters of the model being fit
Returns
-------
result : numpy.ndarray
Model - Data
"""
f = ntwodgaussian_lmfit(params) # A function describing the model
model = f(*mask) # The actual model
if B is None:
return model - data[mask]
else:
return (model - data[mask]).dot(B)
if dojac:
result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y': mask[1], 'B': B, 'errs': errs}, Dfun=lmfit_jacobian)
else:
result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y': mask[1], 'B': B, 'errs': errs})
# Remake the residual so that it is once again (model - data)
if B is not None:
result.residual = result.residual.dot(inv(B))
return result, params |
python | def resources(self):
""" Returns a list of all :class:`~plexapi.myplex.MyPlexResource` objects connected to the server. """
data = self.query(MyPlexResource.key)
return [MyPlexResource(self, elem) for elem in data] |
java | public IssueCategory getByID(String categoryID)
{
IssueCategory issueCategory = this.issueCategories.get(categoryID);
if (issueCategory == null)
{
// We do not have this one yet, so store it as a placeholder. It will presumably be loaded later on.
issueCategory = new IssueCategory(categoryID, "placeholder", categoryID, categoryID, 0, true);
this.issueCategories.put(categoryID, issueCategory);
}
return issueCategory;
} |
python | def asML(self):
"""
Convert this vector to the new mllib-local representation.
This does NOT copy the data; it copies references.
:return: :py:class:`pyspark.ml.linalg.SparseVector`
.. versionadded:: 2.0.0
"""
return newlinalg.SparseVector(self.size, self.indices, self.values) |
python | def webui_schematics_panels_panel_name(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
webui = ET.SubElement(config, "webui", xmlns="http://tail-f.com/ns/webui")
schematics = ET.SubElement(webui, "schematics")
panels = ET.SubElement(schematics, "panels")
panel = ET.SubElement(panels, "panel")
name = ET.SubElement(panel, "name")
name.text = kwargs.pop('name')
callback = kwargs.pop('callback', self._callback)
return callback(config) |
python | def set_rotation(self, rotation):
"""Set the rotation of the stereonet in degrees clockwise from North."""
self._rotation = np.radians(rotation)
self._polar.set_theta_offset(self._rotation + np.pi / 2.0)
self.transData.invalidate()
self.transAxes.invalidate()
self._set_lim_and_transforms() |
java | @Deprecated
public <T> Class<T> getPropertyAsClass(String key, Class<T> targetType) {
Optional<String> property = propertyResolver.getProperty(NameUtils.hyphenate(key), String.class);
if (property.isPresent()) {
Optional<Class> aClass = ClassUtils.forName(property.get(), Thread.currentThread().getContextClassLoader());
if (aClass.isPresent()) {
//noinspection unchecked
return aClass.get();
}
}
return null;
} |
python | def radlToSimple(radl_data):
"""
Return a list of maps whose values are only other maps or lists.
"""
aspects = (radl_data.ansible_hosts + radl_data.networks + radl_data.systems +
radl_data.configures + radl_data.deploys)
if radl_data.contextualize.items is not None:
aspects.append(radl_data.contextualize)
return [aspectToSimple(a) for a in aspects] |
python | def append(self, bs):
"""Append a bitstring to the current bitstring.
bs -- The bitstring to append.
"""
# The offset is a hint to make bs easily appendable.
bs = self._converttobitstring(bs, offset=(self.len + self._offset) % 8)
self._append(bs) |
java | public static NodeImpl setTypeParameter(final NodeImpl node, final Class<?> containerClass,
final Integer typeArgumentIndex) {
return new NodeImpl( //
node.name, //
node.parent, //
node.isIterableValue, //
node.index, //
node.key, //
node.kind, //
node.parameterTypes, //
node.parameterIndex, //
node.value, //
containerClass, //
typeArgumentIndex //
);
} |
python | def unload(module):
'''
Unload specified fault manager module
module: string
module to unload
CLI Example:
.. code-block:: bash
salt '*' fmadm.unload software-response
'''
ret = {}
fmadm = _check_fmadm()
cmd = '{cmd} unload {module}'.format(
cmd=fmadm,
module=module
)
res = __salt__['cmd.run_all'](cmd)
retcode = res['retcode']
result = {}
if retcode != 0:
result['Error'] = res['stderr']
else:
result = True
return result |
java | public MessageToSend prepareMessageToSend() {
originalMessage.getParts().clear();
originalMessage.getParts().addAll(publicParts);
return originalMessage;
} |
java | public final BatchCreateNotesResponse batchCreateNotes(
ProjectName parent, Map<String, Note> notes) {
BatchCreateNotesRequest request =
BatchCreateNotesRequest.newBuilder()
.setParent(parent == null ? null : parent.toString())
.putAllNotes(notes)
.build();
return batchCreateNotes(request);
} |
python | def serialize(ms, version=_default_version, properties=True,
pretty_print=False, color=False):
"""Serialize an MRS structure into a SimpleMRS string."""
delim = '\n' if pretty_print else _default_mrs_delim
output = delim.join(
_serialize_mrs(m, properties=properties,
version=version, pretty_print=pretty_print)
for m in ms
)
if color:
output = highlight(output)
return output |
java | public BoxAuthenticationInfo getAuthInfo(String userId, Context context) {
return userId == null ? null : getAuthInfoMap(context).get(userId);
} |
java | public static Properties splitArrayElementsIntoProperties(String[] array, String delimiter) {
return splitArrayElementsIntoProperties(array, delimiter, null);
} |
python | def _display_choices(self, choices):
"""Prints a mapping of numbers to choices and returns the
mapping as a dictionary.
"""
print("Choose the number of the correct choice:")
choice_map = {}
for i, choice in enumerate(choices):
i = str(i)
print('{}) {}'.format(i, format.indent(choice,
' ' * (len(i) + 2)).strip()))
choice = format.normalize(choice)
choice_map[i] = choice
return choice_map |
python | def _convert_service_properties_to_xml(logging, hour_metrics, minute_metrics,
cors, target_version=None, delete_retention_policy=None, static_website=None):
'''
<?xml version="1.0" encoding="utf-8"?>
<StorageServiceProperties>
<Logging>
<Version>version-number</Version>
<Delete>true|false</Delete>
<Read>true|false</Read>
<Write>true|false</Write>
<RetentionPolicy>
<Enabled>true|false</Enabled>
<Days>number-of-days</Days>
</RetentionPolicy>
</Logging>
<HourMetrics>
<Version>version-number</Version>
<Enabled>true|false</Enabled>
<IncludeAPIs>true|false</IncludeAPIs>
<RetentionPolicy>
<Enabled>true|false</Enabled>
<Days>number-of-days</Days>
</RetentionPolicy>
</HourMetrics>
<MinuteMetrics>
<Version>version-number</Version>
<Enabled>true|false</Enabled>
<IncludeAPIs>true|false</IncludeAPIs>
<RetentionPolicy>
<Enabled>true|false</Enabled>
<Days>number-of-days</Days>
</RetentionPolicy>
</MinuteMetrics>
<Cors>
<CorsRule>
<AllowedOrigins>comma-separated-list-of-allowed-origins</AllowedOrigins>
<AllowedMethods>comma-separated-list-of-HTTP-verb</AllowedMethods>
<MaxAgeInSeconds>max-caching-age-in-seconds</MaxAgeInSeconds>
<ExposedHeaders>comma-seperated-list-of-response-headers</ExposedHeaders>
<AllowedHeaders>comma-seperated-list-of-request-headers</AllowedHeaders>
</CorsRule>
</Cors>
<DeleteRetentionPolicy>
<Enabled>true|false</Enabled>
<Days>number-of-days</Days>
</DeleteRetentionPolicy>
<StaticWebsite>
<Enabled>true|false</Enabled>
<IndexDocument></IndexDocument>
<ErrorDocument404Path></ErrorDocument404Path>
</StaticWebsite>
</StorageServiceProperties>
'''
service_properties_element = ETree.Element('StorageServiceProperties')
# Logging
if logging:
logging_element = ETree.SubElement(service_properties_element, 'Logging')
ETree.SubElement(logging_element, 'Version').text = logging.version
ETree.SubElement(logging_element, 'Delete').text = str(logging.delete)
ETree.SubElement(logging_element, 'Read').text = str(logging.read)
ETree.SubElement(logging_element, 'Write').text = str(logging.write)
retention_element = ETree.SubElement(logging_element, 'RetentionPolicy')
_convert_retention_policy_to_xml(logging.retention_policy, retention_element)
# HourMetrics
if hour_metrics:
hour_metrics_element = ETree.SubElement(service_properties_element, 'HourMetrics')
_convert_metrics_to_xml(hour_metrics, hour_metrics_element)
# MinuteMetrics
if minute_metrics:
minute_metrics_element = ETree.SubElement(service_properties_element, 'MinuteMetrics')
_convert_metrics_to_xml(minute_metrics, minute_metrics_element)
# CORS
# Make sure to still serialize empty list
if cors is not None:
cors_element = ETree.SubElement(service_properties_element, 'Cors')
for rule in cors:
cors_rule = ETree.SubElement(cors_element, 'CorsRule')
ETree.SubElement(cors_rule, 'AllowedOrigins').text = ",".join(rule.allowed_origins)
ETree.SubElement(cors_rule, 'AllowedMethods').text = ",".join(rule.allowed_methods)
ETree.SubElement(cors_rule, 'MaxAgeInSeconds').text = str(rule.max_age_in_seconds)
ETree.SubElement(cors_rule, 'ExposedHeaders').text = ",".join(rule.exposed_headers)
ETree.SubElement(cors_rule, 'AllowedHeaders').text = ",".join(rule.allowed_headers)
# Target version
if target_version:
ETree.SubElement(service_properties_element, 'DefaultServiceVersion').text = target_version
# DeleteRetentionPolicy
if delete_retention_policy:
policy_element = ETree.SubElement(service_properties_element, 'DeleteRetentionPolicy')
ETree.SubElement(policy_element, 'Enabled').text = str(delete_retention_policy.enabled)
if delete_retention_policy.enabled:
ETree.SubElement(policy_element, 'Days').text = str(delete_retention_policy.days)
# StaticWebsite
if static_website:
static_website_element = ETree.SubElement(service_properties_element, 'StaticWebsite')
ETree.SubElement(static_website_element, 'Enabled').text = str(static_website.enabled)
if static_website.enabled:
if static_website.index_document is not None:
ETree.SubElement(static_website_element, 'IndexDocument').text = str(static_website.index_document)
if static_website.error_document_404_path is not None:
ETree.SubElement(static_website_element, 'ErrorDocument404Path').text = \
str(static_website.error_document_404_path)
# Add xml declaration and serialize
try:
stream = BytesIO()
ETree.ElementTree(service_properties_element).write(stream, xml_declaration=True, encoding='utf-8',
method='xml')
except:
raise
finally:
output = stream.getvalue()
stream.close()
return output |
python | def permute(self, idx):
"""Permutes the columns of the factor matrices inplace
"""
# Check that input is a true permutation
if set(idx) != set(range(self.rank)):
raise ValueError('Invalid permutation specified.')
# Update factors
self.factors = [f[:, idx] for f in self.factors]
return self.factors |
java | private void selectNode(final Object key, final Handler<AsyncResult<String>> doneHandler) {
context.execute(new Action<String>() {
@Override
public String perform() {
String address = nodeSelectors.get(key);
if (address != null) {
return address;
}
Set<String> nodes = new HashSet<>();
for (String group : groups.keySet()) {
nodes.addAll(groups.get(group));
}
int index = new Random().nextInt(nodes.size());
int i = 0;
for (String node : nodes) {
if (i == index) {
nodeSelectors.put(key, node);
return node;
}
i++;
}
return null;
}
}, doneHandler);
} |
java | public IScheduler getScheduler (final String schedName) throws SchedulerException
{
final SchedulerRepository schedRep = SchedulerRepository.getInstance ();
return schedRep.lookup (schedName);
} |
java | public void setCollections(java.util.Collection<CurrentMetricData> collections) {
if (collections == null) {
this.collections = null;
return;
}
this.collections = new java.util.ArrayList<CurrentMetricData>(collections);
} |
python | def _GetEventIdentifiers(self, event):
"""Retrieves different identifiers of the event.
Every event contains event data, which consists of attributes and values.
These attributes and values can be represented as a string and used for
sorting and uniquely identifying events. This function determines multiple
identifiers:
* an identifier of the attributes and values without the timestamp
description (or usage). This is referred to as the MACB group
identifier.
* an identifier of the attributes and values including the timestamp
description (or usage). This is referred to as the event content
identifier.
The identifier without the timestamp description can be used to group
events that have the same MACB (modification, access, change, birth)
timestamps. The PsortEventHeap will store these events individually and
relies on PsortMultiProcessEngine to do the actual grouping of events.
Args:
event (EventObject): event.
Returns:
tuple: containing:
str: identifier of the event MACB group or None if the event cannot
be grouped.
str: identifier of the event content.
"""
attributes = []
attribute_string = 'data_type: {0:s}'.format(event.data_type)
attributes.append(attribute_string)
for attribute_name, attribute_value in sorted(event.GetAttributes()):
if attribute_name in self._IDENTIFIER_EXCLUDED_ATTRIBUTES:
continue
if not attribute_value:
continue
if attribute_name == 'pathspec':
attribute_value = attribute_value.comparable
elif isinstance(attribute_value, dict):
attribute_value = sorted(attribute_value.items())
elif isinstance(attribute_value, set):
attribute_value = sorted(list(attribute_value))
elif isinstance(attribute_value, py2to3.BYTES_TYPE):
attribute_value = repr(attribute_value)
try:
attribute_string = '{0:s}: {1!s}'.format(
attribute_name, attribute_value)
except UnicodeDecodeError:
logger.error('Failed to decode attribute {0:s}'.format(
attribute_name))
attributes.append(attribute_string)
# The 'atime', 'ctime', 'crtime', 'mtime' are included for backwards
# compatibility with the filestat parser.
if event.timestamp_desc in (
'atime', 'ctime', 'crtime', 'mtime',
definitions.TIME_DESCRIPTION_LAST_ACCESS,
definitions.TIME_DESCRIPTION_CHANGE,
definitions.TIME_DESCRIPTION_CREATION,
definitions.TIME_DESCRIPTION_MODIFICATION):
macb_group_identifier = ', '.join(attributes)
else:
macb_group_identifier = None
attributes.insert(0, event.timestamp_desc)
content_identifier = ', '.join(attributes)
return macb_group_identifier, content_identifier |
python | def bind_extensions(app):
"""Configure extensions.
Args:
app (Flask): initialized Flask app instance
"""
# bind plugin to app object
app.db = app.config['PUZZLE_BACKEND']
app.db.init_app(app)
# bind bootstrap blueprints
bootstrap.init_app(app)
markdown(app)
@app.template_filter('islist')
def islist(object):
return isinstance(object, (tuple, list)) |
python | def gaussian_distribution(mean, stdev, num_pts=50):
""" get an x and y numpy.ndarray that spans the +/- 4
standard deviation range of a gaussian distribution with
a given mean and standard deviation. useful for plotting
Parameters
----------
mean : float
the mean of the distribution
stdev : float
the standard deviation of the distribution
num_pts : int
the number of points in the returned ndarrays.
Default is 50
Returns
-------
x : numpy.ndarray
the x-values of the distribution
y : numpy.ndarray
the y-values of the distribution
"""
warnings.warn("pyemu.helpers.gaussian_distribution() has moved to plot_utils",PyemuWarning)
from pyemu import plot_utils
return plot_utils.gaussian_distribution(mean=mean,stdev=stdev,num_pts=num_pts) |
java | public HostName toCanonicalHostName() {
HostName host = canonicalHost;
if(host == null) {
if(isMultiple()) {
throw new IncompatibleAddressException(this, "ipaddress.error.unavailable.numeric");
}
InetAddress inetAddress = toInetAddress();
String hostStr = inetAddress.getCanonicalHostName();//note: this does not return ipv6 addresses enclosed in brackets []
if(hostStr.equals(inetAddress.getHostAddress())) {
//we got back the address, so the host is me
host = new HostName(hostStr, new ParsedHost(hostStr, getProvider()));
host.resolvedAddress = this;
} else {
//the reverse lookup succeeded in finding a host string
//we might not be the default resolved address for the host, so we don't set that field
host = new HostName(hostStr);
}
}
return host;
} |
java | private JTextField getTextFieldContextName() {
if (txtContextName == null) {
txtContextName = new JTextField();
txtContextName.setText(SOABase.DEFAULT_NAME);
txtContextName.setColumns(10);
}
return txtContextName;
} |
java | private int findSmallestFrom(int startId, List<String> sortFlds, List<Integer> sortDirs) {
int minId = startId;
moveToId(startId);
while (super.next()) {
int id = currentId();
if (minId < 0 || compareRecords(minId, id, sortFlds, sortDirs) > 0)
minId = id;
moveToId(id);
}
return minId;
} |
java | public static <T> T max(Iterator<T> self) {
return max((Iterable<T>)toList(self));
} |
python | def wind_shear(shear: str, unit_alt: str = 'ft', unit_wind: str = 'kt') -> str:
"""
Format wind shear string into a spoken word string
"""
unit_alt = SPOKEN_UNITS.get(unit_alt, unit_alt)
unit_wind = SPOKEN_UNITS.get(unit_wind, unit_wind)
return translate.wind_shear(shear, unit_alt, unit_wind, spoken=True) or 'Wind shear unknown' |
java | public void setCustomRules(java.util.Collection<CustomRule> customRules) {
if (customRules == null) {
this.customRules = null;
return;
}
this.customRules = new java.util.ArrayList<CustomRule>(customRules);
} |
python | def _prune_edges(G, X, traj_lengths, pruning_thresh=0.1, verbose=False):
'''Prune edges in graph G via cosine distance with trajectory edges.'''
W = G.matrix('dense', copy=True)
degree = G.degree(kind='out', weighted=False)
i = 0
num_bad = 0
for n in traj_lengths:
s, t = np.nonzero(W[i:i+n-1])
graph_edges = X[t] - X[s+i]
traj_edges = np.diff(X[i:i+n], axis=0)
traj_edges = np.repeat(traj_edges, degree[i:i+n-1], axis=0)
theta = paired_distances(graph_edges, traj_edges, 'cosine')
bad_edges = theta > pruning_thresh
s, t = s[bad_edges], t[bad_edges]
if verbose: # pragma: no cover
num_bad += np.count_nonzero(W[s,t])
W[s,t] = 0
i += n
if verbose: # pragma: no cover
print('removed %d bad edges' % num_bad)
return Graph.from_adj_matrix(W) |
java | public EClass getIfcCompositeCurveSegment() {
if (ifcCompositeCurveSegmentEClass == null) {
ifcCompositeCurveSegmentEClass = (EClass) EPackage.Registry.INSTANCE.getEPackage(Ifc2x3tc1Package.eNS_URI)
.getEClassifiers().get(93);
}
return ifcCompositeCurveSegmentEClass;
} |
python | def prompt_gui(path):
"""Prompt for a new filename via GUI."""
import subprocess
filepath, extension = os.path.splitext(path)
basename = os.path.basename(filepath)
dirname = os.path.dirname(filepath)
retry_text = 'Sorry, please try again...'
icon = 'video-x-generic'
# detect and configure dialog program
if have('yad'):
args = ['yad',
'--borders=5',
'--entry',
'--entry-label=Filename:',
'--entry-text=' + basename,
'--title=Batch Tool',
'--window-icon=' + icon]
retry_args = args + ['--text=<b>' + retry_text + '</b>',
'--text-align=center']
elif have('zenity'):
base = ['zenity',
'--entry',
'--entry-text=' + basename,
'--title=Batch Tool',
'--window-icon=info']
args = base + ['--text=Filename:']
retry_args = base + ['--text=' + retry_text]
else:
fatal('Please install yad (or zenity)')
# display filename prompt
try:
new_basename = subprocess.check_output(
args, universal_newlines=True).strip()
except subprocess.CalledProcessError:
sys.exit(1)
# retry prompt if new filename already exists
while os.path.exists(os.path.join(dirname, new_basename + extension)) and \
new_basename != basename:
try:
new_basename = subprocess.check_output(
retry_args, universal_newlines=True).strip()
except subprocess.CalledProcessError:
sys.exit(1)
if new_basename == '':
new_basename = basename
return os.path.join(dirname, new_basename + extension) |
python | def rename_categories(self, key: str, categories: Sequence[Any]):
"""Rename categories of annotation ``key`` in
:attr:`obs`, :attr:`var` and :attr:`uns`.
Only supports passing a list/array-like ``categories`` argument.
Besides calling ``self.obs[key].cat.categories = categories`` -
similar for :attr:`var` - this also renames categories in unstructured
annotation that uses the categorical annotation ``key``.
Parameters
----------
key
Key for observations or variables annotation.
categories
New categories, the same number as the old categories.
"""
if isinstance(categories, Mapping):
raise ValueError('Only list-like `categories` is supported.')
if key in self.obs:
old_categories = self.obs[key].cat.categories.tolist()
self.obs[key].cat.rename_categories(categories, inplace=True)
elif key in self.var:
old_categories = self.var[key].cat.categories.tolist()
self.var[key].cat.rename_categories(categories, inplace=True)
else:
raise ValueError('{} is neither in `.obs` nor in `.var`.'
.format(key))
# this is not a good solution
# but depends on the scanpy conventions for storing the categorical key
# as `groupby` in the `params` slot
for k1, v1 in self.uns.items():
if isinstance(v1, Mapping):
if 'params' in v1 and 'groupby' in v1['params']:
if v1['params']['groupby'] == key:
for k2, v2 in v1.items():
# picks out the recarrays that are named according to the old
# categories
if isinstance(v2, np.ndarray) and v2.dtype.names is not None:
if list(v2.dtype.names) == old_categories:
self.uns[k1][k2].dtype.names = categories
else:
logger.warning(
'Omitting {}/{} as old categories do not match.'
.format(k1, k2)) |
java | synchronized void register(LogWithPatternAndLevel log, Duration period) {
// if we haven't seen this period before, we'll need to add a schedule to the ScheduledExecutorService
// to perform a counter reset with that periodicity, otherwise we can count on the existing schedule
// taking care of it.
boolean needToScheduleReset = false;
ConcurrentHashMap<LogWithPatternAndLevel, Boolean> logLinesForPeriod = registry.get(period);
if (logLinesForPeriod == null) {
needToScheduleReset = true;
logLinesForPeriod = new ConcurrentHashMap<>();
registry.put(period, logLinesForPeriod);
} else {
if (logLinesForPeriod.get(log) != null) {
return; // this has already been registered
}
}
logLinesForPeriod.put(log, Boolean.TRUE);
if (needToScheduleReset) {
final ConcurrentHashMap<LogWithPatternAndLevel, Boolean> finalLogLinesForPeriod = logLinesForPeriod;
resetScheduler.scheduleWithFixedDelay(() -> {
try {
resetAllCounters(finalLogLinesForPeriod);
} catch (Exception e) {
logger.warn("failed to reset counters: " + e, e);
// but carry on in the next iteration
}
}, period.toMillis(), period.toMillis(), TimeUnit.MILLISECONDS);
}
} |
python | def _filterByPaddingNum(cls, iterable, num):
"""
Yield only path elements from iterable which have a frame
padding that matches the given target padding number
Args:
iterable (collections.Iterable):
num (int):
Yields:
str:
"""
_check = DISK_RE.match
for item in iterable:
# Add a filter for paths that don't match the frame
# padding of a given number
matches = _check(item)
if not matches:
if num <= 0:
# Not a sequence pattern, but we were asked
# to match on a zero padding
yield item
continue
frame = matches.group(3) or ''
if not frame:
if num <= 0:
# No frame value was parsed, but we were asked
# to match on a zero padding
yield item
continue
# We have a frame number
if frame[0] == '0' or frame[:2] == '-0':
if len(frame) == num:
# A frame leading with '0' is explicitly
# padded and can only be a match if its exactly
# the target padding number
yield item
continue
if len(frame) >= num:
# A frame that does not lead with '0' can match
# a padding width >= to the target padding number
yield item
continue |
python | def membership_vector(clusterer, points_to_predict):
"""Predict soft cluster membership. The result produces a vector
for each point in ``points_to_predict`` that gives a probability that
the given point is a member of a cluster for each of the selected clusters
of the ``clusterer``.
Parameters
----------
clusterer : HDBSCAN
A clustering object that has been fit to the data and
either had ``prediction_data=True`` set, or called the
``generate_prediction_data`` method after the fact.
points_to_predict : array, or array-like (n_samples, n_features)
The new data points to predict cluster labels for. They should
have the same dimensionality as the original dataset over which
clusterer was fit.
Returns
-------
membership_vectors : array (n_samples, n_clusters)
The probability that point ``i`` is a member of cluster ``j`` is
in ``membership_vectors[i, j]``.
See Also
--------
:py:func:`hdbscan.predict.predict`
:py:func:`hdbscan.predict.all_points_membership_vectors`
"""
points_to_predict = points_to_predict.astype(np.float64)
clusters = np.array(
sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp)
result = np.empty((points_to_predict.shape[0], clusters.shape[0]),
dtype=np.float64)
min_samples = clusterer.min_samples or clusterer.min_cluster_size
neighbor_distances, neighbor_indices = \
clusterer.prediction_data_.tree.query(points_to_predict,
k=2 * min_samples)
for i in range(points_to_predict.shape[0]):
# We need to find where in the tree the new point would go
# for the purposes of outlier membership approximation
nearest_neighbor, lambda_ = \
_find_neighbor_and_lambda(
neighbor_indices[i],
neighbor_distances[i],
clusterer.prediction_data_.core_distances,
min_samples)
neighbor_tree_row = get_tree_row_with_child(
clusterer.condensed_tree_._raw_tree, nearest_neighbor)
if neighbor_tree_row['lambda_val'] <= lambda_:
lambda_ = neighbor_tree_row['lambda_val']
distance_vec = dist_membership_vector(
points_to_predict[i],
clusterer.prediction_data_.exemplars,
clusterer.prediction_data_.dist_metric)
outlier_vec = outlier_membership_vector(
nearest_neighbor,
lambda_,
clusters,
clusterer.condensed_tree_._raw_tree,
clusterer.prediction_data_.leaf_max_lambdas,
clusterer.prediction_data_.cluster_tree)
result[i] = distance_vec ** 0.5 * outlier_vec ** 2.0
result[i] /= result[i].sum()
result[i] *= prob_in_some_cluster(
nearest_neighbor,
lambda_,
clusters,
clusterer.condensed_tree_._raw_tree,
clusterer.prediction_data_.leaf_max_lambdas,
clusterer.prediction_data_.cluster_tree)
return result |
python | def doublewell_eigs(n_grid, lag_time=1):
"""Analytic eigenvalues/eigenvectors for the doublwell system
TODO: DOCUMENT ME
"""
return _brownian_eigs(n_grid, lag_time, DOUBLEWELL_GRAD_POTENTIAL,
-np.pi, np.pi, reflect_bc=True) |
python | def apply(db, op):
"""
Apply operation in db
"""
dbname = op['ns'].split('.')[0] or "admin"
opts = bson.CodecOptions(uuid_representation=bson.binary.STANDARD)
db[dbname].command("applyOps", [op], codec_options=opts) |
python | def flip_ctrlpts2d_file(file_in='', file_out='ctrlpts_flip.txt'):
""" Flips u and v directions of a 2D control points file and saves flipped coordinates to a file.
:param file_in: name of the input file (to be read)
:type file_in: str
:param file_out: name of the output file (to be saved)
:type file_out: str
:raises IOError: an error occurred reading or writing the file
"""
# Read control points
ctrlpts2d, size_u, size_v = _read_ctrltps2d_file(file_in)
# Flip control points array
new_ctrlpts2d = flip_ctrlpts2d(ctrlpts2d, size_u, size_v)
# Save new control points
_save_ctrlpts2d_file(new_ctrlpts2d, size_u, size_v, file_out) |
python | def _get_ssl_sock(self):
"""Get raw SSL socket."""
assert self.scheme == u"https", self
raw_connection = self.url_connection.raw._connection
if raw_connection.sock is None:
# sometimes the socket is not yet connected
# see https://github.com/kennethreitz/requests/issues/1966
raw_connection.connect()
return raw_connection.sock |
python | def onMessageUnsent(
self,
mid=None,
author_id=None,
thread_id=None,
thread_type=None,
ts=None,
msg=None,
):
"""
Called when the client is listening, and someone unsends (deletes for everyone) a message
:param mid: ID of the unsent message
:param author_id: The ID of the person who unsent the message
:param thread_id: Thread ID that the action was sent to. See :ref:`intro_threads`
:param thread_type: Type of thread that the action was sent to. See :ref:`intro_threads`
:param ts: A timestamp of the action
:param msg: A full set of the data recieved
:type thread_type: models.ThreadType
"""
log.info(
"{} unsent the message {} in {} ({}) at {}s".format(
author_id, repr(mid), thread_id, thread_type.name, ts / 1000
)
) |
python | def _generate_signature_for_function(self, func):
"""Given a function, returns a string representing its args."""
args_list = []
argspec = inspect.getargspec(func)
first_arg_with_default = (
len(argspec.args or []) - len(argspec.defaults or []))
for arg in argspec.args[:first_arg_with_default]:
if arg == "self":
# Python documentation typically skips `self` when printing method
# signatures.
continue
args_list.append(arg)
# TODO(mrry): This is a workaround for documenting signature of
# functions that have the @contextlib.contextmanager decorator.
# We should do something better.
if argspec.varargs == "args" and argspec.keywords == "kwds":
original_func = func.__closure__[0].cell_contents
return self._generate_signature_for_function(original_func)
if argspec.defaults:
for arg, default in zip(
argspec.args[first_arg_with_default:], argspec.defaults):
if callable(default):
args_list.append("%s=%s" % (arg, default.__name__))
else:
args_list.append("%s=%r" % (arg, default))
if argspec.varargs:
args_list.append("*" + argspec.varargs)
if argspec.keywords:
args_list.append("**" + argspec.keywords)
return "(" + ", ".join(args_list) + ")" |
java | public FieldValue evaluate(int index){
if(this.indexedNames == null){
throw new IllegalStateException();
}
FieldValue value = this.indexedValues[index];
if(value == EvaluationContext.UNDECLARED_VALUE){
FieldName name = this.indexedNames[index];
value = evaluate(name);
this.indexedValues[index] = value;
}
return value;
} |
python | def should_see_link(self, link_url):
"""Assert a link with the provided URL is visible on the page."""
elements = ElementSelector(
world.browser,
str('//a[@href="%s"]' % link_url),
filter_displayed=True,
)
if not elements:
raise AssertionError("Expected link not found.") |
python | def seek_to(self, position):
"""Move the Shard's iterator to the earliest record after the :class:`~datetime.datetime` time.
Returns the first records at or past ``position``. If the list is empty,
the seek failed to find records, either because the Shard is exhausted or it
reached the HEAD of an open Shard.
:param position: The position in time to move to.
:type position: :class:`~datetime.datetime`
:returns: A list of the first records found after ``position``. May be empty.
"""
# 0) We have no way to associate the date with a position,
# so we have to scan the shard from the beginning.
self.jump_to(iterator_type="trim_horizon")
position = int(position.timestamp())
while (not self.exhausted) and (self.empty_responses < CALLS_TO_REACH_HEAD):
records = self.get_records()
# We can skip the whole record set if the newest (last) record isn't new enough.
if records and records[-1]["meta"]["created_at"].timestamp() >= position:
# Looking for the first number *below* the position.
for offset, record in enumerate(reversed(records)):
if record["meta"]["created_at"].timestamp() < position:
index = len(records) - offset
return records[index:]
return records
# Either exhausted the Shard or caught up to HEAD.
return [] |
java | private void adaptForInsert(final ITreeData paramNewNode, final boolean addAsFirstChild) throws TTException {
assert paramNewNode != null;
if (paramNewNode instanceof ITreeStructData) {
final ITreeStructData strucNode = (ITreeStructData)paramNewNode;
final ITreeStructData parent = (ITreeStructData)getPtx().getData(paramNewNode.getParentKey());
parent.incrementChildCount();
if (addAsFirstChild) {
parent.setFirstChildKey(paramNewNode.getDataKey());
}
getPtx().setData(parent);
if (strucNode.hasRightSibling()) {
final ITreeStructData rightSiblingNode =
(ITreeStructData)getPtx().getData(strucNode.getRightSiblingKey());
rightSiblingNode.setLeftSiblingKey(paramNewNode.getDataKey());
getPtx().setData(rightSiblingNode);
}
if (strucNode.hasLeftSibling()) {
final ITreeStructData leftSiblingNode =
(ITreeStructData)getPtx().getData(strucNode.getLeftSiblingKey());
leftSiblingNode.setRightSiblingKey(paramNewNode.getDataKey());
getPtx().setData(leftSiblingNode);
}
}
} |
java | @BetaApi
public final Operation patchNetwork(
ProjectGlobalNetworkName network, Network networkResource, List<String> fieldMask) {
PatchNetworkHttpRequest request =
PatchNetworkHttpRequest.newBuilder()
.setNetwork(network == null ? null : network.toString())
.setNetworkResource(networkResource)
.addAllFieldMask(fieldMask)
.build();
return patchNetwork(request);
} |
python | def draw_image(self, metric, limit=5):
"""Display a series of images at different time steps."""
rows = 1
cols = limit
self.ax.axis("off")
# Take the Axes gridspec and divide it into a grid
gs = matplotlib.gridspec.GridSpecFromSubplotSpec(
rows, cols, subplot_spec=self.gs)
# Loop through images in last few steps
for i, image in enumerate(metric.data[-cols:]):
ax = self.figure.add_subplot(gs[0, i])
ax.axis('off')
ax.set_title(metric.formatted_steps[-cols:][i])
ax.imshow(norm(image)) |
python | def get_distributed_session_creator(server):
"""
Args:
server (tf.train.Server):
Returns:
tf.train.SessionCreator
"""
server_def = server.server_def
is_chief = (server_def.job_name == 'worker') and (server_def.task_index == 0)
init_op = tf.global_variables_initializer()
local_init_op = tf.local_variables_initializer()
ready_op = tf.report_uninitialized_variables()
ready_for_local_init_op = tf.report_uninitialized_variables(tf.global_variables())
sm = tf.train.SessionManager(
local_init_op=local_init_op,
ready_op=ready_op,
ready_for_local_init_op=ready_for_local_init_op,
graph=tf.get_default_graph())
# to debug wrong variable collection
# from pprint import pprint
# print("GLOBAL:")
# pprint([(k.name, k.device) for k in tf.global_variables()])
# print("LOCAL:")
# pprint([(k.name, k.device) for k in tf.local_variables()])
class _Creator(tf.train.SessionCreator):
def create_session(self):
if is_chief:
return sm.prepare_session(master=server.target, init_op=init_op)
else:
tf.logging.set_verbosity(tf.logging.INFO) # print message about uninitialized vars
ret = sm.wait_for_session(master=server.target)
tf.logging.set_verbosity(tf.logging.WARN)
return ret
return _Creator() |
java | public static Method[] getAllMethods(Class<?> clz) {
Set<Method> set = new HashSet<>();
List<Class<?>> classes = new ArrayList<>();
classes.add(clz);
classes.addAll(Arrays.asList(getAllSuperClasses(clz)));
classes.addAll(Arrays.asList(getAllInterfaces(clz)));
for (Class<?> c : classes) {
set.addAll(Arrays.asList(c.getDeclaredMethods()));
}
return set.toArray(new Method[set.size()]);
} |
java | boolean shouldExecuteOnProject() {
File report = pathResolver.relativeFile(fileSystem.baseDir(), configuration.getItReportPath());
boolean foundReport = report.exists() && report.isFile();
boolean shouldExecute = configuration.shouldExecuteOnProject(foundReport);
if (!foundReport && shouldExecute) {
JaCoCoExtensions.logger().info(this.toString() + ": JaCoCo IT report not found.");
}
return shouldExecute;
} |
java | private static Class<?> getInvalidBusinessExtends(Class<?> wrapperInterface)
{
if ((EJBLocalObject.class).isAssignableFrom(wrapperInterface))
return EJBLocalObject.class;
if ((EJBLocalHome.class).isAssignableFrom(wrapperInterface))
return EJBLocalHome.class;
if ((EJBObject.class).isAssignableFrom(wrapperInterface))
return EJBObject.class;
if ((EJBHome.class).isAssignableFrom(wrapperInterface))
return EJBHome.class;
return null;
} |
python | def AddClientKeywords(self, client_id, keywords):
"""Associates the provided keywords with the client."""
if client_id not in self.metadatas:
raise db.UnknownClientError(client_id)
for kw in keywords:
self.keywords.setdefault(kw, {})
self.keywords[kw][client_id] = rdfvalue.RDFDatetime.Now() |
python | def add_children_gos(self, gos):
"""Return children of input gos plus input gos."""
lst = []
obo_dag = self.obo_dag
get_children = lambda go_obj: list(go_obj.get_all_children()) + [go_obj.id]
for go_id in gos:
go_obj = obo_dag[go_id]
lst.extend(get_children(go_obj))
return set(lst) |
java | @Override
public void stage3CreateKAMstore(final DBConnection db, String schemaName)
throws CreateKAMFailure {
if (db == null) {
throw new InvalidArgument("db", db);
}
try {
ksss.setupKAMStoreSchema(db, schemaName);
} catch (IOException e) {
throw new CreateKAMFailure(db, e.getMessage());
} catch (SQLException e) {
throw new CreateKAMFailure(db, e.getMessage());
}
} |
java | public boolean isNamespacePresent(final String requestedNamespace) {
checkArgument(requestedNamespace.length() > 0);
checkArgument(!requestedNamespace.endsWith(DELIM));
final String probe = requestedNamespace + DELIM;
return Iterables.any(params.keySet(), StringUtils.startsWith(probe));
} |
python | def _add_sections(self):
'''Add the found and required sections to the templ_dict.'''
for section in self.template_sections:
try:
sec_start = self._get_section_start_index(section)
except NonextantSectionException:
if section in self.sections_not_required:
continue
raise
sec_end = self._get_section_end_index(section, sec_start)
section_value = self.template_str[sec_start+1:sec_end].strip()
section, section_value = self._transform_key_value(
section,
section_value,
self.section_map
)
self.templ_dict['actions']['definition'][section] = section_value
self.template_str = self.template_str[:sec_start+1] + \
self.template_str[sec_end:] |
python | def getStates(self):
'''
Calculates updated values of normalized market resources and permanent income level.
Uses pLvlNow, aNrmNow, PermShkNow, TranShkNow.
Parameters
----------
None
Returns
-------
None
'''
pLvlPrev = self.pLvlNow
aNrmPrev = self.aNrmNow
# Calculate new states: normalized market resources and permanent income level
self.pLvlNow = pLvlPrev*self.PermShkNow # Same as in IndShockConsType
self.kNrmNow = aNrmPrev/self.PermShkNow
self.yNrmNow = self.kNrmNow**self.CapShare*self.TranShkNow**(1.-self.CapShare)
self.Rfree = 1. + self.CapShare*self.kNrmNow**(self.CapShare-1.)*self.TranShkNow**(1.-self.CapShare) - self.DeprFac
self.wRte = (1.-self.CapShare)*self.kNrmNow**self.CapShare*self.TranShkNow**(-self.CapShare)
self.mNrmNow = self.Rfree*self.kNrmNow + self.wRte*self.TranShkNow |
python | def jsLocal(self, time_zone=''):
''' a method to report a javascript string from a labDT object
:param time_zone: [optional] string with timezone to report in
:return: string with date and time info
'''
# validate inputs
js_format = '%a %b %d %Y %H:%M:%S GMT%z (%Z)'
title = 'Timezone input for labDT.jsLocal'
get_tz = get_localzone()
if time_zone:
# if time_zone.lower() in ('utc', 'uct', 'universal', 'zulu'):
# raise ValueError('time_zone cannot be UTC. %s requires a local timezone value. Try:\nfor tz in pytz.all_timezones:\n print tz' % title)
try:
get_tz = tz.gettz(time_zone)
except:
raise ValueError('\n%s is not a valid timezone format. Try:\nfor tz in pytz.all_timezones:\n print tz' % title)
# construct javascript datetime from labDT
dtLocal = self.astimezone(get_tz)
return format(dtLocal, js_format) |
java | public CompletableFuture<SubscriptionRuntimeInfo> getSubscriptionRuntimeInfoAsync(String topicPath, String subscriptionName) {
EntityNameHelper.checkValidTopicName(topicPath);
EntityNameHelper.checkValidSubscriptionName(subscriptionName);
String path = EntityNameHelper.formatSubscriptionPath(topicPath, subscriptionName);
CompletableFuture<String> contentFuture = getEntityAsync(path, null, true);
CompletableFuture<SubscriptionRuntimeInfo> sdFuture = new CompletableFuture<>();
contentFuture.handleAsync((content, ex) -> {
if (ex != null) {
sdFuture.completeExceptionally(ex);
} else {
try {
sdFuture.complete(SubscriptionRuntimeInfoSerializer.parseFromContent(topicPath, content));
} catch (MessagingEntityNotFoundException e) {
sdFuture.completeExceptionally(e);
}
}
return null;
}, MessagingFactory.INTERNAL_THREAD_POOL);
return sdFuture;
} |
python | def _create_board_image_cv(self, board=None):
"""Return a cv image of the board or empty board if not provided."""
board = board or base.Board() # empty board by default
tile_h, tile_w = self._TILE_SHAPE[0:2]
board_shape = tile_h * 8, tile_w * 8, 3
board_image = numpy.zeros(board_shape, dtype=numpy.uint8)
# place each tile on the image
for (row, col), tile in board.positions_with_tile():
tile_image = self._tile_images[tile._type]
t, l = row * tile_h, col * tile_w
b, r = t + tile_h, l + tile_w
board_image[t:b, l:r] = tile_image
return board_image |
java | public OvhSubscription subscription_subscriptionType_GET(String subscriptionType) throws IOException {
String qPath = "/me/subscription/{subscriptionType}";
StringBuilder sb = path(qPath, subscriptionType);
String resp = exec(qPath, "GET", sb.toString(), null);
return convertTo(resp, OvhSubscription.class);
} |
java | public Config setWanReplicationConfigs(Map<String, WanReplicationConfig> wanReplicationConfigs) {
this.wanReplicationConfigs.clear();
this.wanReplicationConfigs.putAll(wanReplicationConfigs);
for (final Entry<String, WanReplicationConfig> entry : this.wanReplicationConfigs.entrySet()) {
entry.getValue().setName(entry.getKey());
}
return this;
} |
python | def send(self, strict_validation=True):
"""Send the request and return the response or raise SearchAPIError.
Calling this method blocks the program until the response is returned,
if you want the request to be sent asynchronously please refer to the
send_async method.
The response is returned as a SearchAPIResponse object.
`strict_vailidation` is a bool argument that's passed to the
validate_query_params method.
Raises ValueError (raised from validate_query_params),
HttpError/URLError and SearchAPIError (when the response is returned
but contains an error).
Example:
>>> from osrframework.thirdparties.pipl_com.lib.search import SearchAPIRequest, SearchAPIError
>>> request = SearchAPIRequest('samplekey', email='[email protected]')
>>> try:
... response = request.send()
... except SearchAPIError as e:
... print e.http_status_code, e
"""
self.validate_query_params(strict=strict_validation)
query = {
'key': self.api_key or default_api_key,
'person': self.person.to_json(),
'query_params_mode': self.query_params_mode,
'exact_name': self.exact_name,
'prioritize_records_by': ','.join(self._prioritize_records_by),
'filter_records_by': self._filter_records_by,
}
request = urllib2.Request(url=SearchAPIRequest.BASE_URL, data=urllib.urlencode(query, True), headers=SearchAPIRequest.HEADERS)
try:
json_response = urllib2.urlopen(request).read()
except urllib2.HTTPError as e:
json_error = e.read()
if not json_error:
raise e
try:
raise SearchAPIError.from_json(json_error)
except ValueError:
raise e
return SearchAPIResponse.from_json(json_response) |
java | public void unregisterWorkflowDef(String name, Integer version) {
Preconditions.checkArgument(StringUtils.isNotBlank(name), "Workflow name cannot be blank");
Preconditions.checkNotNull(version, "Version cannot be null");
delete("metadata/workflow/{name}/{version}", name, version);
} |
java | public static Speed of(final double speed, final Unit unit) {
requireNonNull(unit);
return new Speed(Unit.METERS_PER_SECOND.convert(speed, unit));
} |
java | @Override
public Pair<T, I> get(int index) {
return indexToPair(matrix.get(index));
} |
java | public void marshall(UpdatePartitionRequest updatePartitionRequest, ProtocolMarshaller protocolMarshaller) {
if (updatePartitionRequest == null) {
throw new SdkClientException("Invalid argument passed to marshall(...)");
}
try {
protocolMarshaller.marshall(updatePartitionRequest.getCatalogId(), CATALOGID_BINDING);
protocolMarshaller.marshall(updatePartitionRequest.getDatabaseName(), DATABASENAME_BINDING);
protocolMarshaller.marshall(updatePartitionRequest.getTableName(), TABLENAME_BINDING);
protocolMarshaller.marshall(updatePartitionRequest.getPartitionValueList(), PARTITIONVALUELIST_BINDING);
protocolMarshaller.marshall(updatePartitionRequest.getPartitionInput(), PARTITIONINPUT_BINDING);
} catch (Exception e) {
throw new SdkClientException("Unable to marshall request to JSON: " + e.getMessage(), e);
}
} |
java | public void fatalError(SAXParseException e) throws SAXException
{
if(null != m_errorHandler)
{
try
{
m_errorHandler.fatalError(e);
}
catch(SAXParseException se)
{
// ignore
}
// clearCoRoutine(e);
}
// This is not great, but we really would rather have the error
// handler be the error listener if it is a error handler. Coroutine's fatalError
// can't really be configured, so I think this is the best thing right now
// for error reporting. Possibly another JAXP 1.1 hole. -sb
javax.xml.transform.ErrorListener errorListener = m_transformer.getErrorListener();
if(errorListener instanceof ErrorHandler)
{
((ErrorHandler)errorListener).fatalError(e);
if(null != m_errorHandler)
m_errorHandler.fatalError(e); // may not be called.
}
else
{
try
{
errorListener.fatalError(new javax.xml.transform.TransformerException(e));
if(null != m_errorHandler)
m_errorHandler.fatalError(e); // may not be called.
}
catch(javax.xml.transform.TransformerException te)
{
throw e;
}
}
} |
java | public static <T> T implement(Class<T> type, Object object)
{
if (type.isInstance(object)) return type.cast(object);
return type.cast(Proxy.newProxyInstance(type.getClassLoader(),
new Class[]{type}, new DuckType(object)));
} |
python | def move_in(self, session, space, offset, length, width, extended=False):
"""Moves a block of data to local memory from the specified address space and offset.
Corresponds to viMoveIn* functions of the VISA library.
:param session: Unique logical identifier to a session.
:param space: Specifies the address space. (Constants.*SPACE*)
:param offset: Offset (in bytes) of the address or register from which to read.
:param length: Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.
:param width: Number of bits to read per element.
:param extended: Use 64 bits offset independent of the platform.
:return: Data read from the bus, return value of the library call.
:rtype: list, :class:`pyvisa.constants.StatusCode`
"""
if width == 8:
return self.move_in_8(session, space, offset, length, extended)
elif width == 16:
return self.move_in_16(session, space, offset, length, extended)
elif width == 32:
return self.move_in_32(session, space, offset, length, extended)
elif width == 64:
return self.move_in_64(session, space, offset, length, extended)
raise ValueError('%s is not a valid size. Valid values are 8, 16, 32 or 64' % width) |
java | public Object getValue(InternalWorkingMemory workingMemory,
Object object) {
return MVELSafeHelper.getEvaluator().executeExpression( mvelExpression,
object );
} |
java | public static SingleInputSemanticProperties readSingleConstantAnnotations(UserCodeWrapper<?> udf) {
// get constantSet annotation from stub
AllFieldsConstants allConstants = udf.getUserCodeAnnotation(AllFieldsConstants.class);
ConstantFields constantSet = udf.getUserCodeAnnotation(ConstantFields.class);
ConstantFieldsExcept notConstantSet = udf.getUserCodeAnnotation(ConstantFieldsExcept.class);
if (notConstantSet != null && (constantSet != null || allConstants != null)) {
throw new RuntimeException("Either ConstantFields or ConstantFieldsExcept can be specified, not both.");
}
// extract notConstantSet from annotation
if (notConstantSet != null) {
FieldSet nonConstant = new FieldSet(notConstantSet.value());
return new ImplicitlyForwardingSingleInputSemanticProperties(nonConstant);
}
// extract notConstantSet from annotation
if (allConstants != null) {
FieldSet nonConstant = new FieldSet();
return new ImplicitlyForwardingSingleInputSemanticProperties(nonConstant);
}
SingleInputSemanticProperties semanticProperties = new SingleInputSemanticProperties();
// extract constantSet from annotation
if (constantSet != null) {
for (int value: constantSet.value()) {
semanticProperties.addForwardedField(value,value);
}
}
return semanticProperties;
} |
java | private static Element execute(SourceRange sourceRange, Property a,
Property b) {
assert (a != null);
assert (b != null);
Element result = null;
if ((a instanceof LongProperty) && (b instanceof LongProperty)) {
long l1 = ((Long) a.getValue()).longValue();
long l2 = ((Long) b.getValue()).longValue();
result = LongProperty.getInstance(l1 + l2);
} else if ((a instanceof NumberProperty)
&& (b instanceof NumberProperty)) {
double d1 = ((NumberProperty) a).doubleValue();
double d2 = ((NumberProperty) b).doubleValue();
result = DoubleProperty.getInstance(d1 + d2);
} else if ((a instanceof StringProperty)
&& (b instanceof StringProperty)) {
String s1 = (String) a.getValue();
String s2 = (String) b.getValue();
result = StringProperty.getInstance(s1 + s2);
} else {
throw new EvaluationException(MessageUtils
.format(MSG_MISMATCHED_ARGS_ADD), sourceRange);
}
return result;
} |
python | def get_distribution_dir(catalog_id, dataset_id, distribution_id,
catalogs_dir=CATALOGS_DIR, use_short_path=False):
"""Genera el path estรกndar de un catรกlogo en un filesystem."""
if use_short_path:
catalog_path = os.path.join(catalogs_dir, "catalog", catalog_id)
distribution_dir = os.path.join(catalog_path, dataset_id)
else:
catalog_path = os.path.join(catalogs_dir, "catalog", catalog_id)
dataset_path = os.path.join(catalog_path, "dataset", dataset_id)
distribution_dir = os.path.join(
dataset_path, "distribution", distribution_id)
return os.path.abspath(distribution_dir) |
python | def handle(self, *args, **options):
"""
By default, we're going to do this in chunks. This way, if there ends up being an error,
we can check log messages and continue from that point after fixing the issue.
"""
# Note that by taking last_id here, we're going to miss any submissions created *during* the command execution
# But that's okay! All new entries have already been created using the new style, no acion needed there
last_id = Submission._objects.all().aggregate(Max('id'))['id__max']
log.info("Beginning uuid update")
current = options['start']
while current < last_id:
end_chunk = current + options['chunk'] if last_id - options['chunk'] >= current else last_id
log.info("Updating entries in range [{}, {}]".format(current, end_chunk))
with transaction.atomic():
for submission in Submission._objects.filter(id__gte=current, id__lte=end_chunk).iterator():
submission.save(update_fields=['uuid'])
time.sleep(options['wait'])
current = end_chunk + 1 |
python | def get_field(brain_or_object, name, default=None):
"""Return the named field
"""
fields = get_fields(brain_or_object)
return fields.get(name, default) |
python | def decode(cls, line):
"""Remove backslash escaping from line.value."""
if line.encoded:
encoding = getattr(line, 'encoding_param', None)
if encoding and encoding.upper() == cls.base64string:
line.value = b64decode(line.value)
else:
line.value = stringToTextValues(line.value)[0]
line.encoded = False |
java | public static String getShortName(final ZoneId self, Locale locale) {
return self.getDisplayName(TextStyle.SHORT, locale);
} |
java | public void setReplyToAddresses(java.util.Collection<String> replyToAddresses) {
if (replyToAddresses == null) {
this.replyToAddresses = null;
return;
}
this.replyToAddresses = new com.amazonaws.internal.SdkInternalList<String>(replyToAddresses);
} |
java | public static <T> T last(Iterable<T> iterable) {
if (iterable instanceof List<?>) {
List<T> list = (List<T>) iterable;
if (list.isEmpty())
return null;
return list.get(list.size() - 1);
} else if (iterable instanceof SortedSet) {
SortedSet<T> sortedSet = (SortedSet<T>) iterable;
if (sortedSet.isEmpty())
return null;
return sortedSet.last();
} else {
return IteratorExtensions.last(iterable.iterator());
}
} |
python | def get_injectable_func_source_data(name):
"""
Return data about an injectable function's source, including file name,
line number, and source code.
Parameters
----------
name : str
Returns
-------
filename : str
lineno : int
The line number on which the function starts.
source : str
"""
if injectable_type(name) != 'function':
raise ValueError('injectable {!r} is not a function'.format(name))
inj = get_raw_injectable(name)
if isinstance(inj, _InjectableFuncWrapper):
return utils.func_source_data(inj._func)
elif hasattr(inj, '__wrapped__'):
return utils.func_source_data(inj.__wrapped__)
else:
return utils.func_source_data(inj) |
python | def render_GET(self, request):
"""Renders a GET request, by showing this nodes stats and children."""
fullPath = request.path.split('/')
if not fullPath[-1]:
fullPath = fullPath[:-1]
parts = fullPath[2:]
statDict = util.lookup(scales.getStats(), parts)
if statDict is None:
request.setResponseCode(404)
return "Path not found."
if 'query' in request.args:
query = request.args['query'][0]
else:
query = None
if 'format' in request.args and request.args['format'][0] == 'json':
request.headers['content-type'] = 'text/javascript; charset=UTF-8'
formats.jsonFormat(request, statDict, query)
elif 'format' in request.args and request.args['format'][0] == 'prettyjson':
request.headers['content-type'] = 'text/javascript; charset=UTF-8'
formats.jsonFormat(request, statDict, query, pretty=True)
else:
formats.htmlHeader(request, '/' + '/'.join(parts), self.serverName, query)
formats.htmlFormat(request, tuple(parts), statDict, query)
return '' |
python | def drop_duplicates(self, subset=None, keep='first', inplace=False):
"""
Return DataFrame with duplicate rows removed, optionally only
considering certain columns. Indexes, including time indexes
are ignored.
Parameters
----------
subset : column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by
default use all of the columns
keep : {'first', 'last', False}, default 'first'
- ``first`` : Drop duplicates except for the first occurrence.
- ``last`` : Drop duplicates except for the last occurrence.
- False : Drop all duplicates.
inplace : boolean, default False
Whether to drop duplicates in place or to return a copy
Returns
-------
DataFrame
"""
if self.empty:
return self.copy()
inplace = validate_bool_kwarg(inplace, 'inplace')
duplicated = self.duplicated(subset, keep=keep)
if inplace:
inds, = (-duplicated)._ndarray_values.nonzero()
new_data = self._data.take(inds)
self._update_inplace(new_data)
else:
return self[-duplicated] |
java | public boolean remove(Object key, Object value) {
Set<V> values = map.get(key);
// If the key was not mapped to any values
if (values == null)
return false;
boolean removed = values.remove(value);
if (removed)
range--;
// if this was the last value mapping for this key, remove the
// key altogether
if (values.size() == 0)
map.remove(key);
return removed;
} |
python | def log_entry_generator(log_instance):
"""
:yield: The next LogEntry from the REST API
:raise: StopIteration when there are no more log entries to show, please
note that if you call this again at a later time the REST API
could have different results and more data could be returned
"""
current_page_num = 0
while True:
has_results = False
for log_entry in log_instance.get_page(current_page_num):
has_results = True
yield log_entry
if not has_results:
break
current_page_num += 1 |
python | def getPopUpURL(self, CorpNum, NTSConfirmNum, UserID=None):
""" ํํ์ค ์ ์์ธ๊ธ๊ณ์ฐ์ ๋ณด๊ธฐ ํ์
URL
args
CorpNum : ํ๋นํ์ ์ฌ์
์๋ฒํธ
NTSConfirmNum : ๊ตญ์ธ์ฒญ ์น์ธ ๋ฒํธ
UserID : ํ๋นํ์ ์์ด๋
return
์ ์์ธ๊ธ๊ณ์ฐ์ ๋ณด๊ธฐ ํ์
URL ๋ฐํ
raise
PopbillException
"""
if NTSConfirmNum == None or len(NTSConfirmNum) != 24:
raise PopbillException(-99999999, "๊ตญ์ธ์ฒญ์น์ธ๋ฒํธ(NTSConfirmNum)๊ฐ ์ฌ๋ฐ๋ฅด์ง ์์ต๋๋ค.")
return self._httpget('/HomeTax/Taxinvoice/' + NTSConfirmNum + '/PopUp', CorpNum, UserID).url |
python | def set_orthogonal_selection(self, selection, value, fields=None):
"""Modify data via a selection for each dimension of the array.
Parameters
----------
selection : tuple
A selection for each dimension of the array. May be any combination of int,
slice, integer array or Boolean array.
value : scalar or array-like
Value to be stored into the array.
fields : str or sequence of str, optional
For arrays with a structured dtype, one or more fields can be specified to set
data for.
Examples
--------
Setup a 2-dimensional array::
>>> import zarr
>>> import numpy as np
>>> z = zarr.zeros((5, 5), dtype=int)
Set data for a selection of rows::
>>> z.set_orthogonal_selection(([1, 4], slice(None)), 1)
>>> z[...]
array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1]])
Set data for a selection of columns::
>>> z.set_orthogonal_selection((slice(None), [1, 4]), 2)
>>> z[...]
array([[0, 2, 0, 0, 2],
[1, 2, 1, 1, 2],
[0, 2, 0, 0, 2],
[0, 2, 0, 0, 2],
[1, 2, 1, 1, 2]])
Set data for a selection of rows and columns::
>>> z.set_orthogonal_selection(([1, 4], [1, 4]), 3)
>>> z[...]
array([[0, 2, 0, 0, 2],
[1, 3, 1, 1, 3],
[0, 2, 0, 0, 2],
[0, 2, 0, 0, 2],
[1, 3, 1, 1, 3]])
For convenience, this functionality is also available via the `oindex` property.
E.g.::
>>> z.oindex[[1, 4], [1, 4]] = 4
>>> z[...]
array([[0, 2, 0, 0, 2],
[1, 4, 1, 1, 4],
[0, 2, 0, 0, 2],
[0, 2, 0, 0, 2],
[1, 4, 1, 1, 4]])
Notes
-----
Orthogonal indexing is also known as outer indexing.
Slices with step > 1 are supported, but slices with negative step are not.
See Also
--------
get_basic_selection, set_basic_selection, get_mask_selection, set_mask_selection,
get_coordinate_selection, set_coordinate_selection, get_orthogonal_selection,
vindex, oindex, __getitem__, __setitem__
"""
# guard conditions
if self._read_only:
err_read_only()
# refresh metadata
if not self._cache_metadata:
self._load_metadata_nosync()
# setup indexer
indexer = OrthogonalIndexer(selection, self)
self._set_selection(indexer, value, fields=fields) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.