language
stringclasses 2
values | func_code_string
stringlengths 63
466k
|
---|---|
python | def row_contributions(self, X):
"""Returns the row contributions towards each principal component."""
utils.validation.check_is_fitted(self, 's_')
# Check input
if self.check_input:
utils.check_array(X, dtype=[str, np.number])
# Prepare input
X = self._prepare_input(X)
return super().row_contributions(self._build_X_global(X)) |
java | @Override
public Object eGet(int featureID, boolean resolve, boolean coreType) {
switch (featureID) {
case AfplibPackage.GCMRKRG__XPOS:
return getXPOS();
case AfplibPackage.GCMRKRG__YPOS:
return getYPOS();
}
return super.eGet(featureID, resolve, coreType);
} |
java | public static double det( DMatrix2x2 mat ) {
return mat.a11*mat.a22 - mat.a12*mat.a21;
} |
java | public boolean isJDBCDriver(String jdbcDriverName) throws Exception {
Address addr = Address.root().add(SUBSYSTEM, SUBSYSTEM_DATASOURCES);
String haystack = JDBC_DRIVER;
return null != findNodeInList(addr, haystack, jdbcDriverName);
} |
java | public PlacementDescription withAttributes(java.util.Map<String, String> attributes) {
setAttributes(attributes);
return this;
} |
java | public Word07Writer flush(OutputStream out, boolean isCloseOut) throws IORuntimeException {
Assert.isFalse(this.isClosed, "WordWriter has been closed!");
try {
this.doc.write(out);
out.flush();
} catch (IOException e) {
throw new IORuntimeException(e);
} finally {
if (isCloseOut) {
IoUtil.close(out);
}
}
return this;
} |
java | private void revertInsertRow(long id, int row, boolean reuseRow) {
// INFORM INSIDER
insider.uninserting(clazz, id);
idColl.cancelId(id); // UNDO CHANGE #1
if (reuseRow) {
deleted.add(row); // UNDO CHANGE #2
} else {
rows--; // UNDO CHANGE #3
}
idColl.delete(id); // UNDO CHANGE #4
size--; // UNDO CHANGE #5
ids.remove(id); // UNDO CHANGE #6
if (reuseRow) {
// NO NEED TO UNDO CHANGE #7a
} else {
records.remove(records.size() - 1); // UNDO CHANGE #7b
}
} |
java | @Nullable
public Animator createAnimator(@NonNull ViewGroup sceneRoot, @Nullable TransitionValues startValues,
@Nullable TransitionValues endValues) {
return null;
} |
python | def _set_frr_cspf_group_computation_mode(self, v, load=False):
"""
Setter method for frr_cspf_group_computation_mode, mapped from YANG variable /mpls_state/rsvp/sessions/psbs/frr_cspf_group_computation_mode (frr-cspf-group-computation-mode)
If this variable is read-only (config: false) in the
source YANG file, then _set_frr_cspf_group_computation_mode is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_frr_cspf_group_computation_mode() directly.
YANG Description: CSPF group computation mode
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'frr-cspf-group-comp-mode-add-penalty': {'value': 1}, u'frr-cspf-group-comp-mode-high-penalty': {'value': 3}, u'frr-cspf-group-comp-mode-exclude-groups': {'value': 2}, u'frr-cspf-group-comp-mode-disabled': {'value': 0}},), is_leaf=True, yang_name="frr-cspf-group-computation-mode", rest_name="frr-cspf-group-computation-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='frr-cspf-group-computation-mode', is_config=False)
except (TypeError, ValueError):
raise ValueError({
'error-string': """frr_cspf_group_computation_mode must be of a type compatible with frr-cspf-group-computation-mode""",
'defined-type': "brocade-mpls-operational:frr-cspf-group-computation-mode",
'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'frr-cspf-group-comp-mode-add-penalty': {'value': 1}, u'frr-cspf-group-comp-mode-high-penalty': {'value': 3}, u'frr-cspf-group-comp-mode-exclude-groups': {'value': 2}, u'frr-cspf-group-comp-mode-disabled': {'value': 0}},), is_leaf=True, yang_name="frr-cspf-group-computation-mode", rest_name="frr-cspf-group-computation-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='frr-cspf-group-computation-mode', is_config=False)""",
})
self.__frr_cspf_group_computation_mode = t
if hasattr(self, '_set'):
self._set() |
python | def _gpio_callback(self, gpio):
"""
Gets triggered whenever the the gpio state changes
:param gpio: Number of gpio that changed
:type gpio: int
:rtype: None
"""
self.debug(u"Triggered #{}".format(gpio))
try:
index = self.gpios.index(gpio)
except ValueError:
self.error(u"{} not present in GPIO list".format(gpio))
return
with self._people_lock:
person = self.people[index]
read_val = GPIO.input(gpio)
if read_val == person.sitting:
# Nothing changed?
time.sleep(self.gpio_bouncetime_sleep)
# Really sure?
read_val = GPIO.input(gpio)
if person.sitting != read_val:
person.sitting = read_val
self.debug(u"Person is now {}sitting".format(
"" if person.sitting else "not ")
)
try:
self.changer.on_person_update(self.people)
except:
self.exception(
u"Failed to update people (Person: {})".format(person)
)
else:
self.warning(u"Nothing changed on {}".format(gpio)) |
java | public void marshall(TypedLinkFacet typedLinkFacet, ProtocolMarshaller protocolMarshaller) {
if (typedLinkFacet == null) {
throw new SdkClientException("Invalid argument passed to marshall(...)");
}
try {
protocolMarshaller.marshall(typedLinkFacet.getName(), NAME_BINDING);
protocolMarshaller.marshall(typedLinkFacet.getAttributes(), ATTRIBUTES_BINDING);
protocolMarshaller.marshall(typedLinkFacet.getIdentityAttributeOrder(), IDENTITYATTRIBUTEORDER_BINDING);
} catch (Exception e) {
throw new SdkClientException("Unable to marshall request to JSON: " + e.getMessage(), e);
}
} |
python | def load_image(file) -> DataAndMetadata.DataAndMetadata:
"""
Loads the image from the file-like object or string file.
If file is a string, the file is opened and then read.
Returns a numpy ndarray of our best guess for the most important image
in the file.
"""
if isinstance(file, str) or isinstance(file, str):
with open(file, "rb") as f:
return load_image(f)
dmtag = parse_dm3.parse_dm_header(file)
dmtag = fix_strings(dmtag)
# display_keys(dmtag)
img_index = -1
image_tags = dmtag['ImageList'][img_index]
data = imagedatadict_to_ndarray(image_tags['ImageData'])
calibrations = []
calibration_tags = image_tags['ImageData'].get('Calibrations', dict())
for dimension in calibration_tags.get('Dimension', list()):
origin, scale, units = dimension.get('Origin', 0.0), dimension.get('Scale', 1.0), dimension.get('Units', str())
calibrations.append((-origin * scale, scale, units))
calibrations = tuple(reversed(calibrations))
if len(data.shape) == 3 and data.dtype != numpy.uint8:
if image_tags['ImageTags'].get('Meta Data', dict()).get("Format", str()).lower() in ("spectrum", "spectrum image"):
if data.shape[1] == 1:
data = numpy.squeeze(data, 1)
data = numpy.moveaxis(data, 0, 1)
data_descriptor = DataAndMetadata.DataDescriptor(False, 1, 1)
calibrations = (calibrations[2], calibrations[0])
else:
data = numpy.moveaxis(data, 0, 2)
data_descriptor = DataAndMetadata.DataDescriptor(False, 2, 1)
calibrations = tuple(calibrations[1:]) + (calibrations[0],)
else:
data_descriptor = DataAndMetadata.DataDescriptor(False, 1, 2)
elif len(data.shape) == 4 and data.dtype != numpy.uint8:
# data = numpy.moveaxis(data, 0, 2)
data_descriptor = DataAndMetadata.DataDescriptor(False, 2, 2)
elif data.dtype == numpy.uint8:
data_descriptor = DataAndMetadata.DataDescriptor(False, 0, len(data.shape[:-1]))
else:
data_descriptor = DataAndMetadata.DataDescriptor(False, 0, len(data.shape))
brightness = calibration_tags.get('Brightness', dict())
origin, scale, units = brightness.get('Origin', 0.0), brightness.get('Scale', 1.0), brightness.get('Units', str())
intensity = -origin * scale, scale, units
timestamp = None
timezone = None
timezone_offset = None
title = image_tags.get('Name')
properties = dict()
if 'ImageTags' in image_tags:
voltage = image_tags['ImageTags'].get('ImageScanned', dict()).get('EHT', dict())
if voltage:
properties.setdefault("hardware_source", dict())["autostem"] = { "high_tension_v": float(voltage) }
dm_metadata_signal = image_tags['ImageTags'].get('Meta Data', dict()).get('Signal')
if dm_metadata_signal and dm_metadata_signal.lower() == "eels":
properties.setdefault("hardware_source", dict())["signal_type"] = dm_metadata_signal
if image_tags['ImageTags'].get('Meta Data', dict()).get("Format", str()).lower() in ("spectrum", "spectrum image"):
data_descriptor.collection_dimension_count += data_descriptor.datum_dimension_count - 1
data_descriptor.datum_dimension_count = 1
if image_tags['ImageTags'].get('Meta Data', dict()).get("IsSequence", False) and data_descriptor.collection_dimension_count > 0:
data_descriptor.is_sequence = True
data_descriptor.collection_dimension_count -= 1
timestamp_str = image_tags['ImageTags'].get("Timestamp")
if timestamp_str:
timestamp = get_datetime_from_timestamp_str(timestamp_str)
timezone = image_tags['ImageTags'].get("Timezone")
timezone_offset = image_tags['ImageTags'].get("TimezoneOffset")
# to avoid having duplicate copies in Swift, get rid of these tags
image_tags['ImageTags'].pop("Timestamp", None)
image_tags['ImageTags'].pop("Timezone", None)
image_tags['ImageTags'].pop("TimezoneOffset", None)
# put the image tags into properties
properties.update(image_tags['ImageTags'])
dimensional_calibrations = [Calibration.Calibration(c[0], c[1], c[2]) for c in calibrations]
while len(dimensional_calibrations) < data_descriptor.expected_dimension_count:
dimensional_calibrations.append(Calibration.Calibration())
intensity_calibration = Calibration.Calibration(intensity[0], intensity[1], intensity[2])
return DataAndMetadata.new_data_and_metadata(data,
data_descriptor=data_descriptor,
dimensional_calibrations=dimensional_calibrations,
intensity_calibration=intensity_calibration,
metadata=properties,
timestamp=timestamp,
timezone=timezone,
timezone_offset=timezone_offset) |
java | public void setDayFormatter(DayFormatter formatter) {
adapter.setDayFormatter(formatter == null ? DayFormatter.DEFAULT : formatter);
} |
java | public void setCharacterStream(final int parameterIndex, final Reader reader) throws SQLException {
if(reader == null) {
setNull(parameterIndex, Types.BLOB);
return;
}
try {
setParameter(parameterIndex, new BufferedReaderParameter(reader));
} catch (IOException e) {
throw SQLExceptionMapper.getSQLException("Could not read reader", e);
}
} |
java | private void setXPathCharacteristics(IdentifierImpl identifier)
throws InvalidXPathSyntaxException
{
if (TraceComponent.isAnyTracingEnabled() && tc.isEntryEnabled())
tc.entry(cclass,
"setXPathCharacteristics",
"identifier: " + identifier);
// Need to set the domain to XPATH1.0
identifier.setSelectorDomain(2);
// Set the locationStep also
identifier.setStep(locationStep);
// Call XPath to compile the XPath1.0 expression and store the
// resultant XPathExpression in the Identifier.
XPathExpression xpexp = null;
try
{
// Parse an expression up-front
Node node = null;
NodeList ns = null;
XPath xpath0 = XPathFactory.newInstance().newXPath();
// If a namespace context has been set then set it into the XPath env
if(namespaceContext != null)
xpath0.setNamespaceContext(namespaceContext);
xpexp = xpath0.compile(identifier.getName());
}
catch (Exception ex)
{
// No FFDC Code Needed.
// We don't FFDC because we'll catch this exception and then attempt
// to parse the entire expression. If that fails, then we FFDC.
if (TraceComponent.isAnyTracingEnabled() && tc.isEntryEnabled())
tc.exit(this,cclass, "setXPathCharacteristics", ex);
throw new InvalidXPathSyntaxException(identifier.getName());
}
// Store xpexp in the Identifier
identifier.setCompiledExpression(xpexp);
if (TraceComponent.isAnyTracingEnabled() && tc.isEntryEnabled())
tc.exit(this,cclass, "setXPathCharacteristics");
} |
python | def get(cls, whitelist_id, whitelist_result_id,
note_text_whitelist_result_id, monetary_account_id=None,
custom_headers=None):
"""
:type api_context: context.ApiContext
:type user_id: int
:type monetary_account_id: int
:type whitelist_id: int
:type whitelist_result_id: int
:type note_text_whitelist_result_id: int
:type custom_headers: dict[str, str]|None
:rtype: BunqResponseNoteTextWhitelistResult
"""
if custom_headers is None:
custom_headers = {}
api_client = client.ApiClient(cls._get_api_context())
endpoint_url = cls._ENDPOINT_URL_READ.format(cls._determine_user_id(),
cls._determine_monetary_account_id(
monetary_account_id),
whitelist_id,
whitelist_result_id,
note_text_whitelist_result_id)
response_raw = api_client.get(endpoint_url, {}, custom_headers)
return BunqResponseNoteTextWhitelistResult.cast_from_bunq_response(
cls._from_json(response_raw, cls._OBJECT_TYPE_GET)
) |
python | def get_model(self):
'''
`object` of model as a function approximator,
which has `lstm_model` whose type is `pydbm.rnn.lstm_model.LSTMModel`.
'''
class Model(object):
def __init__(self, lstm_model):
self.lstm_model = lstm_model
return Model(self.__lstm_model) |
python | def gnuplot_2d(x, y, filename, title='', x_label='', y_label=''):
'''
Function to produce a general 2D plot.
Args:
x (list): x points.
y (list): y points.
filename (str): Filename of the output image.
title (str): Title of the plot. Default is '' (no title).
x_label (str): x-axis label.
y_label (str): y-axis label.
'''
_, ext = os.path.splitext(filename)
if ext != '.png':
filename += '.png'
gnuplot_cmds = \
'''
set datafile separator ","
set term pngcairo size 30cm,25cm
set out filename
unset key
set border lw 1.5
set grid lt -1 lc rgb "gray80"
set title title
set xlabel x_label
set ylabel y_label
plot filename_data u 1:2 w lp pt 6 ps 0.5
'''
scr = _GnuplotScriptTemp(gnuplot_cmds)
data = _GnuplotDataTemp(x, y)
args_dict = {
'filename': filename,
'filename_data': data.name,
'title': title,
'x_label': x_label,
'y_label': y_label
}
gnuplot(scr.name, args_dict) |
python | def validate(self, value):
"""
Return True if the choice is an integer; False otherwise.
If the value was cast successfully to an int, set the choice that will
make its way into the answers dict to the cast int value, not the
string representation.
"""
try:
int_value = int(value)
self._choice = int_value
return True
except ValueError:
self.error_message = '%s is not a valid integer.' % value
return False |
java | public static Object extractWriteArray(final DeviceAttribute da, final AttrWriteType writeType,
final AttrDataFormat format) throws DevFailed {
if (da == null) {
throw DevFailedUtils.newDevFailed(ERROR_MSG_DA);
}
return InsertExtractFactory.getAttributeExtractor(da.getType()).extractWriteArray(da, writeType, format);
} |
python | def get_versio_versioning_scheme(full_class_path):
"""Return a class based on it's full path"""
module_path = '.'.join(full_class_path.split('.')[0:-1])
class_name = full_class_path.split('.')[-1]
try:
module = importlib.import_module(module_path)
except ImportError:
raise RuntimeError('Invalid specified Versio schema {}'.format(full_class_path))
try:
return getattr(module, class_name)
except AttributeError:
raise RuntimeError(
'Could not find Versio schema class {!r} inside {!r} module.'.format(
class_name, module_path)) |
python | def html(self, label, *msg):
"""
Prints html in notebook
"""
lbl = "[" + label + "] "
txt = lbl + " " + " ".join(list(msg))
if self.notebook is True:
html = HTML(txt)
display(lbl + html)
else:
print(lbl + txt) |
java | private boolean ignoreMethod(String name)
{
boolean result = false;
for (String ignoredName : IGNORED_METHODS)
{
if (name.matches(ignoredName))
{
result = true;
break;
}
}
return result;
} |
python | def update_reimburse(self, card_id, encrypt_code, reimburse_status):
"""
报销方更新发票信息
详情请参考
https://mp.weixin.qq.com/wiki?id=mp1496561749_f7T6D
:param card_id: 发票卡券的 Card ID
:param encrypt_code: 发票卡券的加密 Code
:param reimburse_status: 发票报销状态
"""
return self._post(
'reimburse/updateinvoicestatus',
data={
'card_id': card_id,
'encrypt_code': encrypt_code,
'reimburse_status': reimburse_status,
},
) |
java | public static <T, A> Answer<T> toAnswer(final Answer1<T, A> answer) {
return new Answer<T>() {
@SuppressWarnings("unchecked")
public T answer(InvocationOnMock invocation) throws Throwable {
return answer.answer((A)invocation.getArgument(0));
}
};
} |
python | def publishApp(self, app_info, map_info=None, fsInfo=None):
"""Publishes apps to AGOL/Portal
Args:
app_info (list): A list of JSON configuration apps to publish.
map_info (list): Defaults to ``None``.
fsInfo (list): Defaults to ``None``.
Returns:
dict: A dictionary of results objects.
"""
if self.securityhandler is None:
print ("Security handler required")
return
appDet = None
try:
app_results = []
if isinstance(app_info, list):
for appDet in app_info:
app_results.append(self._publishAppLogic(appDet=appDet,map_info=map_info,fsInfo=fsInfo))
else:
app_results.append(self._publishAppLogic(appDet=app_info,map_info=map_info,fsInfo=fsInfo))
return app_results
except (common.ArcRestHelperError) as e:
raise e
except Exception as e:
line, filename, synerror = trace()
raise common.ArcRestHelperError({
"function": "publishApp",
"line": line,
"filename": filename,
"synerror": synerror,
})
finally:
appDet = None
del appDet
gc.collect() |
java | public void merge(ExtractionResult extractionResult) {
for (Result result : extractionResult.results) {
add(result.getObject(), result.getResultName());
}
} |
java | public static String getMD5Hash(String text) {
MessageDigest md;
byte[] md5hash = new byte[32];
try {
md = MessageDigest.getInstance("MD5");
md.update(text.getBytes("iso-8859-1"), 0, text.length());
md5hash = md.digest();
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
return convertToHex(md5hash);
} |
python | def get_parameters(self):
"""gets from all wrapped processors"""
d = {}
for p in self.processors:
parameter_names = list(p.PARAMETERS.keys())
parameter_values = [getattr(p, n) for n in parameter_names]
d.update(dict(zip(parameter_names, parameter_values)))
return d |
java | @Override
protected void internalExecute()
throws MojoExecutionException, MojoFailureException
{
if ( skipMain )
{
getLog().info( "Not compiling main sources" );
return;
}
super.internalExecute();
if ( outputDirectory.isDirectory() )
{
projectArtifact.setFile( outputDirectory );
}
} |
python | def approximate_controls(model, verbose=False, steady_state=None, eigmax=1.0-1e-6,
solve_steady_state=False, order=1):
"""Compute first order approximation of optimal controls
Parameters:
-----------
model: NumericModel
Model to be solved
verbose: boolean
If True: displays number of contracting eigenvalues
steady_state: ndarray
Use supplied steady-state value to compute the approximation.
The routine doesn't check whether it is really a solution or not.
solve_steady_state: boolean
Use nonlinear solver to find the steady-state
orders: {1}
Approximation order. (Currently, only first order is supported).
Returns:
--------
TaylorExpansion:
Decision Rule for the optimal controls around the steady-state.
"""
if order > 1:
raise Exception("Not implemented.")
f = model.functions['arbitrage']
g = model.functions['transition']
if steady_state is not None:
calib = steady_state
else:
calib = model.calibration
if solve_steady_state:
calib = find_deterministic_equilibrium(model)
p = calib['parameters']
s = calib['states']
x = calib['controls']
e = calib['shocks']
distrib = model.get_distribution()
sigma = distrib.sigma
l = g(s, x, e, p, diff=True)
[junk, g_s, g_x, g_e] = l[:4] # [el[0,...] for el in l[:4]]
l = f(s, x, e, s, x, p, diff=True)
[res, f_s, f_x, f_e, f_S, f_X] = l # [el[0,...] for el in l[:6]]
n_s = g_s.shape[0] # number of controls
n_x = g_x.shape[1] # number of states
n_e = g_e.shape[1]
n_v = n_s + n_x
A = row_stack([
column_stack([eye(n_s), zeros((n_s, n_x))]),
column_stack([-f_S , -f_X ])
])
B = row_stack([
column_stack([g_s, g_x]),
column_stack([f_s, f_x])
])
[S, T, Q, Z, eigval] = qzordered(A, B, 1.0-1e-8)
Q = Q.real # is it really necessary ?
Z = Z.real
diag_S = np.diag(S)
diag_T = np.diag(T)
tol_geneigvals = 1e-10
try:
ok = sum((abs(diag_S) < tol_geneigvals) *
(abs(diag_T) < tol_geneigvals)) == 0
assert(ok)
except Exception as e:
raise GeneralizedEigenvaluesError(diag_S=diag_S, diag_T=diag_T)
if max(eigval[:n_s]) >= 1 and min(eigval[n_s:]) < 1:
# BK conditions are met
pass
else:
eigval_s = sorted(eigval, reverse=True)
ev_a = eigval_s[n_s-1]
ev_b = eigval_s[n_s]
cutoff = (ev_a - ev_b)/2
if not ev_a > ev_b:
raise GeneralizedEigenvaluesSelectionError(
A=A, B=B, eigval=eigval, cutoff=cutoff,
diag_S=diag_S, diag_T=diag_T, n_states=n_s
)
import warnings
if cutoff > 1:
warnings.warn("Solution is not convergent.")
else:
warnings.warn("There are multiple convergent solutions. The one with the smaller eigenvalues was selected.")
[S, T, Q, Z, eigval] = qzordered(A, B, cutoff)
Z11 = Z[:n_s, :n_s]
# Z12 = Z[:n_s, n_s:]
Z21 = Z[n_s:, :n_s]
# Z22 = Z[n_s:, n_s:]
# S11 = S[:n_s, :n_s]
# T11 = T[:n_s, :n_s]
# first order solution
# P = (solve(S11.T, Z11.T).T @ solve(Z11.T, T11.T).T)
C = solve(Z11.T, Z21.T).T
Q = g_e
s = s.ravel()
x = x.ravel()
A = g_s + g_x @ C
B = g_e
dr = CDR([s, x, C])
dr.A = A
dr.B = B
dr.sigma = sigma
return dr |
python | def add_episode(db, aid, episode):
"""Add an episode."""
values = {
'aid': aid,
'type': episode.type,
'number': episode.number,
'title': episode.title,
'length': episode.length,
}
upsert(db, 'episode', ['aid', 'type', 'number'], values) |
java | public static <T1, T2, T3> TriPredicate<T1, T2, T3> spy1st(TriPredicate<T1, T2, T3> predicate, Box<T1> param1) {
return spy(predicate, Box.<Boolean>empty(), param1, Box.<T2>empty(), Box.<T3>empty());
} |
java | public DateEnd setDateEnd(Date dateEnd, boolean hasTime) {
DateEnd prop = (dateEnd == null) ? null : new DateEnd(dateEnd, hasTime);
setDateEnd(prop);
return prop;
} |
java | @Override
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException, ServletException {
HttpServletRequest req = HttpServletRequest.class.cast(request);
String url = req.getRequestURI();
LoggerFactory.getLogger(getClass()).debug("Request started: {}", url);
long start = System.currentTimeMillis();
try {
chain.doFilter(request, response);
} finally {
long delta = System.currentTimeMillis() - start;
LoggerFactory.getLogger(getClass()).info("Request completed in {}ms: {}", delta, url);
}
} |
java | @Override
public CPOptionValue findByC_ERC(long companyId,
String externalReferenceCode) throws NoSuchCPOptionValueException {
CPOptionValue cpOptionValue = fetchByC_ERC(companyId,
externalReferenceCode);
if (cpOptionValue == null) {
StringBundler msg = new StringBundler(6);
msg.append(_NO_SUCH_ENTITY_WITH_KEY);
msg.append("companyId=");
msg.append(companyId);
msg.append(", externalReferenceCode=");
msg.append(externalReferenceCode);
msg.append("}");
if (_log.isDebugEnabled()) {
_log.debug(msg.toString());
}
throw new NoSuchCPOptionValueException(msg.toString());
}
return cpOptionValue;
} |
python | def compile_resource(resource):
"""
Return compiled regex for resource matching
"""
return re.compile("^" + trim_resource(re.sub(r":(\w+)", r"(?P<\1>[\w-]+?)",
resource)) + r"(\?(?P<querystring>.*))?$") |
java | @Override
public void open(Configuration configuration) throws Exception {
// determine the offset commit mode
this.offsetCommitMode = OffsetCommitModes.fromConfiguration(
getIsAutoCommitEnabled(),
enableCommitOnCheckpoints,
((StreamingRuntimeContext) getRuntimeContext()).isCheckpointingEnabled());
// create the partition discoverer
this.partitionDiscoverer = createPartitionDiscoverer(
topicsDescriptor,
getRuntimeContext().getIndexOfThisSubtask(),
getRuntimeContext().getNumberOfParallelSubtasks());
this.partitionDiscoverer.open();
subscribedPartitionsToStartOffsets = new HashMap<>();
final List<KafkaTopicPartition> allPartitions = partitionDiscoverer.discoverPartitions();
if (restoredState != null) {
for (KafkaTopicPartition partition : allPartitions) {
if (!restoredState.containsKey(partition)) {
restoredState.put(partition, KafkaTopicPartitionStateSentinel.EARLIEST_OFFSET);
}
}
for (Map.Entry<KafkaTopicPartition, Long> restoredStateEntry : restoredState.entrySet()) {
if (!restoredFromOldState) {
// seed the partition discoverer with the union state while filtering out
// restored partitions that should not be subscribed by this subtask
if (KafkaTopicPartitionAssigner.assign(
restoredStateEntry.getKey(), getRuntimeContext().getNumberOfParallelSubtasks())
== getRuntimeContext().getIndexOfThisSubtask()){
subscribedPartitionsToStartOffsets.put(restoredStateEntry.getKey(), restoredStateEntry.getValue());
}
} else {
// when restoring from older 1.1 / 1.2 state, the restored state would not be the union state;
// in this case, just use the restored state as the subscribed partitions
subscribedPartitionsToStartOffsets.put(restoredStateEntry.getKey(), restoredStateEntry.getValue());
}
}
if (filterRestoredPartitionsWithCurrentTopicsDescriptor) {
subscribedPartitionsToStartOffsets.entrySet().removeIf(entry -> {
if (!topicsDescriptor.isMatchingTopic(entry.getKey().getTopic())) {
LOG.warn(
"{} is removed from subscribed partitions since it is no longer associated with topics descriptor of current execution.",
entry.getKey());
return true;
}
return false;
});
}
LOG.info("Consumer subtask {} will start reading {} partitions with offsets in restored state: {}",
getRuntimeContext().getIndexOfThisSubtask(), subscribedPartitionsToStartOffsets.size(), subscribedPartitionsToStartOffsets);
} else {
// use the partition discoverer to fetch the initial seed partitions,
// and set their initial offsets depending on the startup mode.
// for SPECIFIC_OFFSETS and TIMESTAMP modes, we set the specific offsets now;
// for other modes (EARLIEST, LATEST, and GROUP_OFFSETS), the offset is lazily determined
// when the partition is actually read.
switch (startupMode) {
case SPECIFIC_OFFSETS:
if (specificStartupOffsets == null) {
throw new IllegalStateException(
"Startup mode for the consumer set to " + StartupMode.SPECIFIC_OFFSETS +
", but no specific offsets were specified.");
}
for (KafkaTopicPartition seedPartition : allPartitions) {
Long specificOffset = specificStartupOffsets.get(seedPartition);
if (specificOffset != null) {
// since the specified offsets represent the next record to read, we subtract
// it by one so that the initial state of the consumer will be correct
subscribedPartitionsToStartOffsets.put(seedPartition, specificOffset - 1);
} else {
// default to group offset behaviour if the user-provided specific offsets
// do not contain a value for this partition
subscribedPartitionsToStartOffsets.put(seedPartition, KafkaTopicPartitionStateSentinel.GROUP_OFFSET);
}
}
break;
case TIMESTAMP:
if (startupOffsetsTimestamp == null) {
throw new IllegalStateException(
"Startup mode for the consumer set to " + StartupMode.TIMESTAMP +
", but no startup timestamp was specified.");
}
for (Map.Entry<KafkaTopicPartition, Long> partitionToOffset
: fetchOffsetsWithTimestamp(allPartitions, startupOffsetsTimestamp).entrySet()) {
subscribedPartitionsToStartOffsets.put(
partitionToOffset.getKey(),
(partitionToOffset.getValue() == null)
// if an offset cannot be retrieved for a partition with the given timestamp,
// we default to using the latest offset for the partition
? KafkaTopicPartitionStateSentinel.LATEST_OFFSET
// since the specified offsets represent the next record to read, we subtract
// it by one so that the initial state of the consumer will be correct
: partitionToOffset.getValue() - 1);
}
break;
default:
for (KafkaTopicPartition seedPartition : allPartitions) {
subscribedPartitionsToStartOffsets.put(seedPartition, startupMode.getStateSentinel());
}
}
if (!subscribedPartitionsToStartOffsets.isEmpty()) {
switch (startupMode) {
case EARLIEST:
LOG.info("Consumer subtask {} will start reading the following {} partitions from the earliest offsets: {}",
getRuntimeContext().getIndexOfThisSubtask(),
subscribedPartitionsToStartOffsets.size(),
subscribedPartitionsToStartOffsets.keySet());
break;
case LATEST:
LOG.info("Consumer subtask {} will start reading the following {} partitions from the latest offsets: {}",
getRuntimeContext().getIndexOfThisSubtask(),
subscribedPartitionsToStartOffsets.size(),
subscribedPartitionsToStartOffsets.keySet());
break;
case TIMESTAMP:
LOG.info("Consumer subtask {} will start reading the following {} partitions from timestamp {}: {}",
getRuntimeContext().getIndexOfThisSubtask(),
subscribedPartitionsToStartOffsets.size(),
startupOffsetsTimestamp,
subscribedPartitionsToStartOffsets.keySet());
break;
case SPECIFIC_OFFSETS:
LOG.info("Consumer subtask {} will start reading the following {} partitions from the specified startup offsets {}: {}",
getRuntimeContext().getIndexOfThisSubtask(),
subscribedPartitionsToStartOffsets.size(),
specificStartupOffsets,
subscribedPartitionsToStartOffsets.keySet());
List<KafkaTopicPartition> partitionsDefaultedToGroupOffsets = new ArrayList<>(subscribedPartitionsToStartOffsets.size());
for (Map.Entry<KafkaTopicPartition, Long> subscribedPartition : subscribedPartitionsToStartOffsets.entrySet()) {
if (subscribedPartition.getValue() == KafkaTopicPartitionStateSentinel.GROUP_OFFSET) {
partitionsDefaultedToGroupOffsets.add(subscribedPartition.getKey());
}
}
if (partitionsDefaultedToGroupOffsets.size() > 0) {
LOG.warn("Consumer subtask {} cannot find offsets for the following {} partitions in the specified startup offsets: {}" +
"; their startup offsets will be defaulted to their committed group offsets in Kafka.",
getRuntimeContext().getIndexOfThisSubtask(),
partitionsDefaultedToGroupOffsets.size(),
partitionsDefaultedToGroupOffsets);
}
break;
case GROUP_OFFSETS:
LOG.info("Consumer subtask {} will start reading the following {} partitions from the committed group offsets in Kafka: {}",
getRuntimeContext().getIndexOfThisSubtask(),
subscribedPartitionsToStartOffsets.size(),
subscribedPartitionsToStartOffsets.keySet());
}
} else {
LOG.info("Consumer subtask {} initially has no partitions to read from.",
getRuntimeContext().getIndexOfThisSubtask());
}
}
} |
python | def simple_repr(obj: Any, attrnames: List[str],
with_addr: bool = False, joiner: str = COMMA_SPACE) -> str:
"""
Convenience function for :func:`__repr__`.
Works its way through a list of attribute names, and creates a ``repr()``
representation assuming that parameters to the constructor have the same
names.
Args:
obj: object to display
attrnames: names of attributes to include
with_addr: include the memory address of ``obj``
joiner: string with which to join the elements
Returns:
string: :func:`repr`-style representation
"""
elements = ["{}={}".format(name, repr(getattr(obj, name)))
for name in attrnames]
return repr_result(obj, elements, with_addr=with_addr, joiner=joiner) |
python | def argsort2(indexable, key=None, reverse=False):
"""
Returns the indices that would sort a indexable object.
This is similar to np.argsort, but it is written in pure python and works
on both lists and dictionaries.
Args:
indexable (list or dict): indexable to sort by
Returns:
list: indices: list of indices such that sorts the indexable
Example:
>>> # DISABLE_DOCTEST
>>> import utool as ut
>>> # argsort works on dicts
>>> dict_ = indexable = {'a': 3, 'b': 2, 'c': 100}
>>> indices = ut.argsort2(indexable)
>>> assert list(ut.take(dict_, indices)) == sorted(dict_.values())
>>> # argsort works on lists
>>> indexable = [100, 2, 432, 10]
>>> indices = ut.argsort2(indexable)
>>> assert list(ut.take(indexable, indices)) == sorted(indexable)
>>> # argsort works on iterators
>>> indexable = reversed(range(100))
>>> indices = ut.argsort2(indexable)
>>> assert indices[0] == 99
"""
# Create an iterator of value/key pairs
if isinstance(indexable, dict):
vk_iter = ((v, k) for k, v in indexable.items())
else:
vk_iter = ((v, k) for k, v in enumerate(indexable))
# Sort by values and extract the keys
if key is None:
indices = [k for v, k in sorted(vk_iter, reverse=reverse)]
else:
indices = [k for v, k in sorted(vk_iter, key=lambda vk: key(vk[0]),
reverse=reverse)]
return indices |
python | def get_model_class( klass, api = None, use_request_api = True):
"""
Generates the Model Class based on the klass
loads automatically the corresponding json schema file form schemes folder
:param klass: json schema filename
:param use_request_api: if True autoinitializes request class if api is None
:param api: the transportation api
if none the default settings are taken an instantiated
"""
if api is None and use_request_api:
api = APIClient()
_type = klass
if isinstance(klass, dict):
_type = klass['type']
schema = loaders.load_schema_raw(_type)
model_cls = model_factory(schema, base_class = RemoteResource)
model_cls.__api__ = api
return model_cls |
java | public static String canonicalize(String str) {
if (str == null) return null;
int length = str.length();
char ch;
StringBuffer buf = new StringBuffer(length);
for (int i=0;i<length;i++) {
ch = str.charAt(i);
if (ch == '_') continue;
buf.append( Character.toLowerCase(ch) );
}
return buf.toString();
} |
python | def binary(self):
"""
return encoded representation
"""
if isinstance(self.value, int):
return b_chr(_TAG_ATOM_CACHE_REF) + b_chr(self.value)
elif isinstance(self.value, TypeUnicode):
value_encoded = self.value.encode('utf-8')
length = len(value_encoded)
if length <= 255:
return (
b_chr(_TAG_SMALL_ATOM_UTF8_EXT) +
b_chr(length) + value_encoded
)
elif length <= 65535:
return (
b_chr(_TAG_ATOM_UTF8_EXT) +
struct.pack(b'>H', length) + value_encoded
)
else:
raise OutputException('uint16 overflow')
elif isinstance(self.value, bytes):
length = len(self.value)
if length <= 255:
return b_chr(_TAG_SMALL_ATOM_EXT) + b_chr(length) + self.value
elif length <= 65535:
return (
b_chr(_TAG_ATOM_EXT) +
struct.pack(b'>H', length) + self.value
)
else:
raise OutputException('uint16 overflow')
else:
raise OutputException('unknown atom type') |
python | def precise_diff(d1, d2):
"""
Calculate a precise difference between two datetimes.
:param d1: The first datetime
:type d1: datetime.datetime or datetime.date
:param d2: The second datetime
:type d2: datetime.datetime or datetime.date
:rtype: PreciseDiff
"""
sign = 1
if d1 == d2:
return PreciseDiff(0, 0, 0, 0, 0, 0, 0, 0)
tzinfo1 = d1.tzinfo if isinstance(d1, datetime.datetime) else None
tzinfo2 = d2.tzinfo if isinstance(d2, datetime.datetime) else None
if (
tzinfo1 is None
and tzinfo2 is not None
or tzinfo2 is None
and tzinfo1 is not None
):
raise ValueError(
"Comparison between naive and aware datetimes is not supported"
)
if d1 > d2:
d1, d2 = d2, d1
sign = -1
d_diff = 0
hour_diff = 0
min_diff = 0
sec_diff = 0
mic_diff = 0
total_days = _day_number(d2.year, d2.month, d2.day) - _day_number(
d1.year, d1.month, d1.day
)
in_same_tz = False
tz1 = None
tz2 = None
# Trying to figure out the timezone names
# If we can't find them, we assume different timezones
if tzinfo1 and tzinfo2:
if hasattr(tzinfo1, "name"):
# Pendulum timezone
tz1 = tzinfo1.name
elif hasattr(tzinfo1, "zone"):
# pytz timezone
tz1 = tzinfo1.zone
if hasattr(tzinfo2, "name"):
tz2 = tzinfo2.name
elif hasattr(tzinfo2, "zone"):
tz2 = tzinfo2.zone
in_same_tz = tz1 == tz2 and tz1 is not None
if isinstance(d2, datetime.datetime):
if isinstance(d1, datetime.datetime):
# If we are not in the same timezone
# we need to adjust
#
# We also need to adjust if we do not
# have variable-length units
if not in_same_tz or total_days == 0:
offset1 = d1.utcoffset()
offset2 = d2.utcoffset()
if offset1:
d1 = d1 - offset1
if offset2:
d2 = d2 - offset2
hour_diff = d2.hour - d1.hour
min_diff = d2.minute - d1.minute
sec_diff = d2.second - d1.second
mic_diff = d2.microsecond - d1.microsecond
else:
hour_diff = d2.hour
min_diff = d2.minute
sec_diff = d2.second
mic_diff = d2.microsecond
if mic_diff < 0:
mic_diff += 1000000
sec_diff -= 1
if sec_diff < 0:
sec_diff += 60
min_diff -= 1
if min_diff < 0:
min_diff += 60
hour_diff -= 1
if hour_diff < 0:
hour_diff += 24
d_diff -= 1
y_diff = d2.year - d1.year
m_diff = d2.month - d1.month
d_diff += d2.day - d1.day
if d_diff < 0:
year = d2.year
month = d2.month
if month == 1:
month = 12
year -= 1
else:
month -= 1
leap = int(is_leap(year))
days_in_last_month = DAYS_PER_MONTHS[leap][month]
days_in_month = DAYS_PER_MONTHS[int(is_leap(d2.year))][d2.month]
if d_diff < days_in_month - days_in_last_month:
# We don't have a full month, we calculate days
if days_in_last_month < d1.day:
d_diff += d1.day
else:
d_diff += days_in_last_month
elif d_diff == days_in_month - days_in_last_month:
# We have exactly a full month
# We remove the days difference
# and add one to the months difference
d_diff = 0
m_diff += 1
else:
# We have a full month
d_diff += days_in_last_month
m_diff -= 1
if m_diff < 0:
m_diff += 12
y_diff -= 1
return PreciseDiff(
sign * y_diff,
sign * m_diff,
sign * d_diff,
sign * hour_diff,
sign * min_diff,
sign * sec_diff,
sign * mic_diff,
sign * total_days,
) |
java | public Regex group(String name) {
return re("(" + (StringUtils.isNotNullOrBlank(name) ? "?<" + name + ">" : StringUtils.EMPTY) + pattern + ")");
} |
python | def send_short_lpp_packet(self, dest_id, data):
"""
Send ultra-wide-band LPP packet to dest_id
"""
pk = CRTPPacket()
pk.port = CRTPPort.LOCALIZATION
pk.channel = self.GENERIC_CH
pk.data = struct.pack('<BB', self.LPS_SHORT_LPP_PACKET, dest_id) + data
self._cf.send_packet(pk) |
python | def join(self):
"""
Wait for all task to finish
"""
pending = set()
exceptions = set()
while len(self._tasks) > 0 or len(pending) > 0:
while len(self._tasks) > 0 and len(pending) < self._concurrency:
task, args, kwargs = self._tasks.pop(0)
pending.add(task(*args, **kwargs))
(done, pending) = yield from asyncio.wait(pending, return_when=asyncio.FIRST_COMPLETED)
for task in done:
if task.exception():
exceptions.add(task.exception())
if len(exceptions) > 0:
raise exceptions.pop() |
python | async def get_participant(self, p_id: int, force_update=False) -> Participant:
""" get a participant by its id
|methcoro|
Args:
p_id: participant id
force_update (dfault=False): True to force an update to the Challonge API
Returns:
Participant: None if not found
Raises:
APIException
"""
found_p = self._find_participant(p_id)
if force_update or found_p is None:
await self.get_participants()
found_p = self._find_participant(p_id)
return found_p |
java | @Override
public Request<DeleteLaunchTemplateVersionsRequest> getDryRunRequest() {
Request<DeleteLaunchTemplateVersionsRequest> request = new DeleteLaunchTemplateVersionsRequestMarshaller().marshall(this);
request.addParameter("DryRun", Boolean.toString(true));
return request;
} |
python | def _url_for_email(endpoint, base_url=None, **kw):
"""
Create an external url_for by using a custom base_url different from the domain we
are on
:param endpoint:
:param base_url:
:param kw:
:return:
"""
base_url = base_url or config("MAIL_EXTERNAL_BASE_URL")
_external = True if not base_url else False
url = url_for(endpoint, _external=_external, **kw)
if base_url and not _external:
url = "%s/%s" % (base_url.strip("/"), url.lstrip("/"))
return url |
python | def fast_sync_inspect_snapshot( snapshot_path ):
"""
Inspect a snapshot
Return useful information
Return {'status': True, 'signatures': ..., 'payload_size': ..., 'sig_append_offset': ..., 'hash': ...} on success
Return {'error': ...} on error
"""
with open(snapshot_path, 'r') as f:
info = fast_sync_inspect( f )
if 'error' in info:
log.error("Failed to inspect snapshot {}: {}".format(snapshot_path, info['error']))
return {'error': 'Failed to inspect snapshot'}
# get the hash of the file
hash_hex = get_file_hash(f, hashlib.sha256, fd_len=info['payload_size'])
info['hash'] = hash_hex
return info |
java | public void start()
{
Preconditions.checkState(Thread.currentThread().equals(ourThread), "Not in the correct thread");
client.addParentWatcher(watcher);
} |
python | def _ParseProcessingOptions(self, options):
"""Parses the processing options.
Args:
options (argparse.Namespace): command line arguments.
Raises:
BadConfigOption: if the options are invalid.
"""
self._single_process_mode = getattr(options, 'single_process', False)
argument_helper_names = [
'process_resources', 'temporary_directory', 'workers', 'zeromq']
helpers_manager.ArgumentHelperManager.ParseOptions(
options, self, names=argument_helper_names) |
java | public <S extends Storable> void resync(Class<S> type,
double desiredSpeed,
String filter,
Object... filterValues)
throws RepositoryException
{
resync(type, null, desiredSpeed, filter, filterValues);
} |
java | protected List<OUT> executeOnCollections(RuntimeContext ctx, ExecutionConfig executionConfig) throws Exception {
@SuppressWarnings("unchecked")
InputFormat<OUT, InputSplit> inputFormat = (InputFormat<OUT, InputSplit>) this.formatWrapper.getUserCodeObject();
//configure the input format
inputFormat.configure(this.parameters);
//open the input format
if (inputFormat instanceof RichInputFormat) {
((RichInputFormat) inputFormat).setRuntimeContext(ctx);
((RichInputFormat) inputFormat).openInputFormat();
}
List<OUT> result = new ArrayList<OUT>();
// splits
InputSplit[] splits = inputFormat.createInputSplits(1);
TypeSerializer<OUT> serializer = getOperatorInfo().getOutputType().createSerializer(executionConfig);
for (InputSplit split : splits) {
inputFormat.open(split);
while (!inputFormat.reachedEnd()) {
OUT next = inputFormat.nextRecord(serializer.createInstance());
if (next != null) {
result.add(serializer.copy(next));
}
}
inputFormat.close();
}
//close the input format
if (inputFormat instanceof RichInputFormat) {
((RichInputFormat) inputFormat).closeInputFormat();
}
return result;
} |
java | @Override
public CommerceOrderItem fetchByC_S_First(long commerceOrderId,
boolean subscription,
OrderByComparator<CommerceOrderItem> orderByComparator) {
List<CommerceOrderItem> list = findByC_S(commerceOrderId, subscription,
0, 1, orderByComparator);
if (!list.isEmpty()) {
return list.get(0);
}
return null;
} |
python | def delete(self, id: int):
""" Delete asset class """
assert isinstance(id, int)
self.open_session()
to_delete = self.get(id)
self.session.delete(to_delete)
self.save() |
python | def solve(self,b,overwrite_b=False,check_finite=True, p=None):
"""
solve A \ b
"""
if p is None:
assert b.shape[:2]==(len(self.solver),self.dof_any)
solution = np.empty(b.shape)
#This is trivially parallelizable:
for p in range(self.P):
solution[p] = self.solver[p].solve(b=b[p])
return solution
else:
return self.solver[p].solve(b=b) |
python | def check_and_set_unreachability(self, hosts, services):
"""
Check if all dependencies are down, if yes set this object
as unreachable.
todo: this function do not care about execution_failure_criteria!
:param hosts: hosts objects, used to get object in act_depend_of
:type hosts: alignak.objects.host.Hosts
:param services: services objects, used to get object in act_depend_of
:type services: alignak.objects.service.Services
:return: None
"""
parent_is_down = []
for (dep_id, _, _, _) in self.act_depend_of:
if dep_id in hosts:
dep = hosts[dep_id]
else:
dep = services[dep_id]
if dep.state in ['d', 'DOWN', 'c', 'CRITICAL', 'u', 'UNKNOWN', 'x', 'UNREACHABLE']:
parent_is_down.append(True)
else:
parent_is_down.append(False)
if False in parent_is_down:
return
# all parents down
self.set_unreachable() |
java | public long[] asEpochSecondArray(ZoneOffset offset) {
long[] output = new long[data.size()];
for (int i = 0; i < data.size(); i++) {
LocalDateTime dateTime = PackedLocalDateTime.asLocalDateTime(data.getLong(i));
if (dateTime == null) {
output[i] = Long.MIN_VALUE;
} else {
output[i] = dateTime.toEpochSecond(offset);
}
}
return output;
} |
java | public void copyVendorExtensions(Schema source, Schema target) {
if (source.getExtensions() != null) {
Map<String, Object> vendorExtensions = source.getExtensions();
for (String extName : vendorExtensions.keySet()) {
((SchemaImpl) target).addExtension_compat(extName, vendorExtensions.get(extName));
}
}
} |
java | public String compile(JoinableResourceBundle bundle, String content, String path, GeneratorContext context) {
JawrLessSource source = new JawrLessSource(bundle, content, path, rsHandler);
try {
CompilationResult result = compiler.compile(source, lessConfig);
addLinkedResources(path, context, source.getLinkedResources());
return result.getCss();
} catch (Less4jException e) {
throw new BundlingProcessException("Unable to generate content for resource path : '" + path + "'", e);
}
} |
python | def SLICE_0(self, instr):
'obj[:]'
value = self.ast_stack.pop()
kw = dict(lineno=instr.lineno, col_offset=0)
slice = _ast.Slice(lower=None, step=None, upper=None, **kw)
subscr = _ast.Subscript(value=value, slice=slice, ctx=_ast.Load(), **kw)
self.ast_stack.append(subscr) |
python | def read32(bytestream):
"""Read 4 bytes from bytestream as an unsigned 32-bit integer."""
dt = np.dtype(np.uint32).newbyteorder('>')
return np.frombuffer(bytestream.read(4), dtype=dt)[0] |
python | def plot(self, x, y, **kw):
"""plot x, y values (erasing old plot),
for method options see PlotPanel.plot.
"""
return self.frame.plot(x,y,**kw) |
python | def stop_recording(self):
""" Stops writing video to file. """
if not self._recording:
raise Exception("Cannot stop a video recording when it's not recording!")
self._cmd_q.put(('stop',))
self._recording = False |
java | @Override
public com.liferay.commerce.user.segment.model.CommerceUserSegmentCriterion deleteCommerceUserSegmentCriterion(
com.liferay.commerce.user.segment.model.CommerceUserSegmentCriterion commerceUserSegmentCriterion)
throws com.liferay.portal.kernel.exception.PortalException {
return _commerceUserSegmentCriterionLocalService.deleteCommerceUserSegmentCriterion(commerceUserSegmentCriterion);
} |
python | def pipe_count(context=None, _INPUT=None, conf=None, **kwargs):
"""An operator that counts the number of _INPUT items and yields it
forever. Not loopable.
Parameters
----------
context : pipe2py.Context object
_INPUT : pipe2py.modules pipe like object (iterable of items)
conf : not used
Yields
------
_OUTPUT : number of items in the feed
Examples
--------
>>> generator = (x for x in xrange(5))
>>> count = pipe_count(_INPUT=generator)
>>> count #doctest: +ELLIPSIS
<generator object pipe_count at 0x...>
>>> count.next()
5
"""
count = len(list(_INPUT))
# todo: check all operators (not placeable in loops)
while True:
yield count |
python | def remove(self, rel_path, propagate=False):
'''Delete the file from the cache, and from the upstream'''
repo_path = os.path.join(self.cache_dir, rel_path)
if os.path.exists(repo_path):
os.remove(repo_path)
if self.upstream and propagate:
self.upstream.remove(rel_path, propagate) |
java | public static <L> Builder<L> builder(Resource<L> template) {
return new Builder<L>(template);
} |
python | def apply_color(self, arr, state):
"""Apply color formula to an array."""
ops = self.cmd(state)
for func in parse_operations(ops):
arr = func(arr)
return arr |
java | public void into(@NonNull RemoteViews remoteViews, @IdRes int viewId, int notificationId,
@NonNull Notification notification, @Nullable String notificationTag) {
into(remoteViews, viewId, notificationId, notification, notificationTag, null);
} |
python | def parent(self):
"Get this object's parent"
if self._parent:
return self._parent
# auto-compute parent if needed
elif getattr(self, '__parent_type__', None):
return self._get_subfolder('..' if self._url[2].endswith('/')
else '.', self.__parent_type__)
else:
raise AttributeError("%r has no parent attribute" % type(self)) |
python | def bioul_tags_to_spans(tag_sequence: List[str],
classes_to_ignore: List[str] = None) -> List[TypedStringSpan]:
"""
Given a sequence corresponding to BIOUL tags, extracts spans.
Spans are inclusive and can be of zero length, representing a single word span.
Ill-formed spans are not allowed and will raise ``InvalidTagSequence``.
This function works properly when the spans are unlabeled (i.e., your labels are
simply "B", "I", "O", "U", and "L").
Parameters
----------
tag_sequence : ``List[str]``, required.
The tag sequence encoded in BIOUL, e.g. ["B-PER", "L-PER", "O"].
classes_to_ignore : ``List[str]``, optional (default = None).
A list of string class labels `excluding` the bio tag
which should be ignored when extracting spans.
Returns
-------
spans : ``List[TypedStringSpan]``
The typed, extracted spans from the sequence, in the format (label, (span_start, span_end)).
"""
spans = []
classes_to_ignore = classes_to_ignore or []
index = 0
while index < len(tag_sequence):
label = tag_sequence[index]
if label[0] == 'U':
spans.append((label.partition('-')[2], (index, index)))
elif label[0] == 'B':
start = index
while label[0] != 'L':
index += 1
if index >= len(tag_sequence):
raise InvalidTagSequence(tag_sequence)
label = tag_sequence[index]
if not (label[0] == 'I' or label[0] == 'L'):
raise InvalidTagSequence(tag_sequence)
spans.append((label.partition('-')[2], (start, index)))
else:
if label != 'O':
raise InvalidTagSequence(tag_sequence)
index += 1
return [span for span in spans if span[0] not in classes_to_ignore] |
java | private String createURLs( String jsonString ) {
String urlPattern = "(?:(?:https?|file)://)[^\"\\r\\n]+";
jsonString = jsonString.replaceAll(urlPattern, "<a href=$0>$0</a>");
return jsonString;
} |
python | def loadUnStructuredGrid(filename): # not tested
"""Load a ``vtkunStructuredGrid`` object from file and return a ``Actor(vtkActor)`` object."""
reader = vtk.vtkUnstructuredGridReader()
reader.SetFileName(filename)
reader.Update()
gf = vtk.vtkUnstructuredGridGeometryFilter()
gf.SetInputConnection(reader.GetOutputPort())
gf.Update()
return Actor(gf.GetOutput()) |
python | def FromManagedObject(self):
"""
Method creates and returns an object of _GenericMO class using the classId and other information from the
managed object.
"""
import os
if (isinstance(self.mo, ManagedObject) == True):
self.classId = self.mo.classId
if self.mo.getattr('Dn'):
self.dn = self.mo.getattr('Dn')
if self.mo.getattr('Rn'):
self.rn = self.mo.getattr('Rn')
elif self.dn:
self.rn = os.path.basename(self.dn)
for property in UcsUtils.GetUcsPropertyMetaAttributeList(self.mo.classId):
self.properties[property] = self.mo.getattr(property)
if len(self.mo.child):
for ch in self.mo.child:
if not ch.getattr('Dn'):
_Dn = self.mo.getattr('Dn') + "/" + ch.getattr('Rn')
ch.setattr('Dn', _Dn)
gmo = _GenericMO(mo=ch)
self.child.append(gmo) |
java | @Override
public ListQualificationRequestsResult listQualificationRequests(ListQualificationRequestsRequest request) {
request = beforeClientExecution(request);
return executeListQualificationRequests(request);
} |
java | public ServiceFuture<ExpressRoutePortInner> beginCreateOrUpdateAsync(String resourceGroupName, String expressRoutePortName, ExpressRoutePortInner parameters, final ServiceCallback<ExpressRoutePortInner> serviceCallback) {
return ServiceFuture.fromResponse(beginCreateOrUpdateWithServiceResponseAsync(resourceGroupName, expressRoutePortName, parameters), serviceCallback);
} |
python | def accept_project_transfers(access_level,queue,org,share_with_org=None):
"""
Args:
access_level: `str`. Permissions level the new member should have on transferred projects. Should
be one of ["VIEW","UPLOAD","CONTRIBUTE","ADMINISTER"]. See
https://wiki.dnanexus.com/API-Specification-v1.0.0/Project-Permissions-and-Sharing for more details on access levels.
queue: `str`. The value of the queue property on a DNAnexus project. Only projects that are
pending transfer that have this value for the queue property will be transferred to the
specified org.
org: `str`. The name of the DNAnexus org under which to accept the project transfers for projects
that have their queue property set to the value of the 'queue' argument.
share_with_org: `str`. Set this argument if you'd like to share the transferred projects
with the org so that all users of the org will have access to the project. The value you
supply should be the access level that members of the org will have.
Returns:
`dict`: The projects that were transferred to the specified billing account. Keys are the
project IDs, and values are the project names.
"""
dx_username = gbsc_dnanexus.utils.get_dx_username()
#gbsc_dnanexus.utils.log_into_dnanexus(dx_username)
org = gbsc_dnanexus.utils.add_dx_orgprefix(org)
pending_transfers = gbsc_dnanexus.utils.pending_transfers(dx_username)
#pending_transfers is a list of project IDs
transferred = {}
for proj_id in pending_transfers:
dx_proj = dxpy.DXProject(proj_id)
props = dx_proj.describe(input_params={"properties": True})["properties"]
try:
project_queue = props["queue"]
except KeyError:
raise DxProjectMissingQueueProperty("DNAnexus project {proj_name} ({proj_id}) is missing the queue property.".format(proj_name=dx_proj.name,proj_id=proj_id))
if queue != project_queue:
continue
msg = "Accepting project transfer of {proj_name} ({proj_id}) for user {user}, to be billed under the org {org}.".format(proj_name=dx_proj.name,proj_id=proj_id,user=dx_username,org=org)
debug_logger.debug(msg)
dxpy.DXHTTPRequest("/" + proj_id + "/acceptTransfer", {"billTo": org })
success_logger.info(msg)
transferred[proj_id] = dx_proj.name
if share_with_org:
msg = "Sharing project {proj_id} with {org} with access level {share_with_org}.".format(proj_id=proj_id,org=org,share_with_org=share_with_org)
debug_logger.debug(msg)
share_with_org(project_ids=[proj_id], org=org, access_level=share_with_org)
dxpy.api.project_invite(object_id=proj_id,input_params={"invitee": org,"level": share_with_org,"suppressEmailNotification": True})
success_logger.info(msg)
return transferred |
java | @Override
protected void logIncrementalStatsByAccount(String account, RunStats stats) {
DuplicationRunStats dstats = (DuplicationRunStats) stats;
log.info("Session stats by account (incremental): account={} dups={} deletes={}",
account, dstats.getDups(), dstats.getDeletes());
} |
java | public Response createCharsetResponse(CloseableHttpResponse httpResponse) throws IOException {
HttpEntity entity = httpResponse.getEntity();
Charset charset = ContentType.getOrDefault(httpResponse.getEntity()).getCharset();
charset = (charset == null) ? Charset.defaultCharset() : charset;
return Response
.status(httpResponse.getStatusLine().getStatusCode())
.entity(entity != null ? IOUtils.toString(entity.getContent(), charset) : null)
.build();
} |
java | public void uploadDirectoryWithRetries(final String ftpServer, final String username, final String password,
final String sourceDirectory, final String targetDirectory,
final int maxRetryCount) throws MojoExecutionException {
int retryCount = 0;
while (retryCount < maxRetryCount) {
retryCount++;
log.info(UPLOAD_START + ftpServer);
if (uploadDirectory(ftpServer, username, password, sourceDirectory, targetDirectory)) {
log.info(UPLOAD_SUCCESS + ftpServer);
return;
} else {
log.warn(String.format(UPLOAD_FAILURE, retryCount, maxRetryCount));
}
}
// Reaching here means all retries failed.
throw new MojoExecutionException(String.format(UPLOAD_RETRY_FAILURE, maxRetryCount));
} |
python | def main(argv=None):
"""Run a Tensorflow model on the Iris dataset."""
args = parse_arguments(sys.argv if argv is None else argv)
tf.logging.set_verbosity(tf.logging.INFO)
learn_runner.run(
experiment_fn=get_experiment_fn(args),
output_dir=args.job_dir) |
python | def list_tickets(self, **kwargs):
"""List all tickets, optionally filtered by a view. Specify filters as
keyword arguments, such as:
filter_name = one of ['all_tickets', 'new_my_open', 'spam', 'deleted',
None]
(defaults to 'all_tickets'; passing None uses the default)
Multiple filters are AND'd together.
"""
filter_name = 'all_tickets'
if 'filter_name' in kwargs and kwargs['filter_name'] is not None:
filter_name = kwargs['filter_name']
del kwargs['filter_name']
url = 'helpdesk/tickets/filter/%s?format=json' % filter_name
page = 1
tickets = []
# Skip pagination by looping over each page and adding tickets
while True:
this_page = self._api._get(url + '&page=%d' % page, kwargs)
if len(this_page) == 0:
break
tickets += this_page
page += 1
return [self.get_ticket(t['display_id']) for t in tickets] |
python | def lemmatize(self):
"""Return the lemma of each word in this WordList.
Currently using NLTKPunktTokenizer() for all lemmatization
tasks. This might cause slightly different tokenization results
compared to the TextBlob.words property.
"""
_lemmatizer = PatternParserLemmatizer(tokenizer=NLTKPunktTokenizer())
# WordList object --> Sentence.string
# add a period (improves parser accuracy)
_raw = " ".join(self) + "."
_lemmas = _lemmatizer.lemmatize(_raw)
return self.__class__([Word(l, t) for l, t in _lemmas]) |
python | def reasoning_routine(self, groups, check, priority_flag=3,
_top_level=True):
"""
print routine performed
@param list groups: the Result groups
@param str check: checker name
@param int priority_flag: indicates the weight of the groups
@param bool _top_level: indicates the level of the group so as to
print out the appropriate header string
"""
sort_fn = lambda x: x.weight
groups_sorted = sorted(groups, key=sort_fn, reverse=True)
# create dict of the groups -> {level: [reasons]}
result = {key: [v for v in valuesiter if v.value[0] != v.value[1]]
for key, valuesiter in itertools.groupby(groups_sorted,
key=sort_fn)}
priorities = self.checkers[check]._cc_display_headers
def process_table(res, check):
"""Recursively calls reasoning_routine to parse out child reasons
from the parent reasons.
@param Result res: Result object
@param str check: checker name"""
issue = res.name
if not res.children:
reasons = res.msgs
else:
child_reasons = self.reasoning_routine(res.children,
check, _top_level=False)
# there shouldn't be messages if there are children
# is this a valid assumption?
reasons = child_reasons
return issue, reasons
# iterate in reverse to the min priority requested;
# the higher the limit, the more lenient the output
proc_strs = ""
for level in range(3, priority_flag - 1, -1):
level_name = priorities.get(level, level)
# print headers
proc_strs = []
# skip any levels that aren't in the result
if level not in result:
continue
# skip any empty result levels
if len(result[level]) > 0:
# only print priority headers at top level, i.e. non-child
# datasets
if _top_level:
width = 2 * self.col_width
print("\n")
print('{:^{width}}'.format(level_name, width=width))
print("-" * width)
data_issues = [process_table(res, check) for res in result[level]]
has_printed = False
for issue, reasons in data_issues:
# if this isn't the first printed issue, add a newline
# separating this and the previous level
if has_printed:
print("")
# join alphabetized reasons together
reason_str = "\n".join('* {}'.format(r) for r in sorted(reasons, key=lambda x: x[0]))
proc_str = "{}\n{}".format(issue, reason_str)
print(proc_str)
proc_strs.append(proc_str)
has_printed = True
return "\n".join(proc_strs) |
python | def _init_org(self):
""" Test and refresh credentials to the org specified. """
self.logger.info(
"Verifying and refreshing credentials for the specified org: {}.".format(
self.org_config.name
)
)
orig_config = self.org_config.config.copy()
# attempt to refresh the token, this can throw...
self.org_config.refresh_oauth_token(self.project_config.keychain)
if self.org_config.config != orig_config:
self.logger.info("Org info has changed, updating org in keychain")
self.project_config.keychain.set_org(self.org_config) |
java | protected String formatHTTPURLParameters(HTTPFaxClientSpi faxClientSpi,FaxJob faxJob)
{
//get URL parameters
String urlParametersTemplate=faxClientSpi.getHTTPURLParameters();
//format URL parameters
String urlParameters=SpiUtil.formatTemplate(urlParametersTemplate,faxJob,SpiUtil.URL_ENCODER,false,false);
return urlParameters;
} |
java | public static URI getRelativePath(final URI relativePath) {
final StringTokenizer tokenizer = new StringTokenizer(relativePath.toString(), URI_SEPARATOR);
final StringBuilder buffer = new StringBuilder();
if (tokenizer.countTokens() == 1) {
return null;
} else {
while(tokenizer.countTokens() > 1) {
tokenizer.nextToken();
buffer.append("..");
buffer.append(URI_SEPARATOR);
}
return toURI(buffer.toString());
}
} |
python | def _FormatSocketExToken(self, token_data):
"""Formats an extended socket token as a dictionary of values.
Args:
token_data (bsm_token_data_socket_ex): AUT_SOCKET_EX token data.
Returns:
dict[str, str]: token values.
"""
if token_data.socket_domain == 10:
local_ip_address = self._FormatPackedIPv6Address(
token_data.local_ip_address)
remote_ip_address = self._FormatPackedIPv6Address(
token_data.remote_ip_address)
else:
local_ip_address = self._FormatPackedIPv4Address(
token_data.local_ip_address)
remote_ip_address = self._FormatPackedIPv4Address(
token_data.remote_ip_address)
return {
'from': local_ip_address,
'from_port': token_data.local_port,
'to': remote_ip_address,
'to_port': token_data.remote_port} |
python | def validate_request(self, uri, http_method='GET',
body=None, headers=None):
"""Validate a signed OAuth request.
:param uri: The full URI of the token request.
:param http_method: A valid HTTP verb, i.e. GET, POST, PUT, HEAD, etc.
:param body: The request body as a string.
:param headers: The request headers as a dict.
:returns: A tuple of 2 elements.
1. True if valid, False otherwise.
2. An oauthlib.common.Request object.
"""
try:
request = self._create_request(uri, http_method, body, headers)
except errors.OAuth1Error as err:
log.info(
'Exception caught while validating request, %s.' % err)
return False, None
try:
self._check_transport_security(request)
self._check_mandatory_parameters(request)
except errors.OAuth1Error as err:
log.info(
'Exception caught while validating request, %s.' % err)
return False, request
if not self.request_validator.validate_timestamp_and_nonce(
request.client_key, request.timestamp, request.nonce, request):
log.debug('[Failure] verification failed: timestamp/nonce')
return False, request
# The server SHOULD return a 401 (Unauthorized) status code when
# receiving a request with invalid client credentials.
# Note: This is postponed in order to avoid timing attacks, instead
# a dummy client is assigned and used to maintain near constant
# time request verification.
#
# Note that early exit would enable client enumeration
valid_client = self.request_validator.validate_client_key(
request.client_key, request)
if not valid_client:
request.client_key = self.request_validator.dummy_client
valid_signature = self._check_signature(request)
# log the results to the validator_log
# this lets us handle internal reporting and analysis
request.validator_log['client'] = valid_client
request.validator_log['signature'] = valid_signature
# We delay checking validity until the very end, using dummy values for
# calculations and fetching secrets/keys to ensure the flow of every
# request remains almost identical regardless of whether valid values
# have been supplied. This ensures near constant time execution and
# prevents malicious users from guessing sensitive information
v = all((valid_client, valid_signature))
if not v:
log.info("[Failure] request verification failed.")
log.info("Valid client: %s", valid_client)
log.info("Valid signature: %s", valid_signature)
return v, request |
java | public static final String encode(String str, Charset charset)
{
return encode(str, charset.name());
} |
python | def list_scores(self, update_keys, session=None, lightweight=None):
"""
Returns a list of current scores for the given events.
:param list update_keys: The filter to select desired markets. All markets that match
the criteria in the filter are selected e.g. [{'eventId': '28205674', 'lastUpdateSequenceProcessed': 2}]
:param requests.session session: Requests session object
:param bool lightweight: If True will return dict not a resource
:rtype: list[resources.Score]
"""
params = clean_locals(locals())
method = '%s%s' % (self.URI, 'listScores')
(response, elapsed_time) = self.request(method, params, session)
return self.process_response(response, resources.Score, elapsed_time, lightweight) |
java | public SmtpProtocol createSmtpProtocolFromString(EDataType eDataType, String initialValue) {
SmtpProtocol result = SmtpProtocol.get(initialValue);
if (result == null)
throw new IllegalArgumentException("The value '" + initialValue + "' is not a valid enumerator of '" + eDataType.getName() + "'");
return result;
} |
java | public static Class requiredClassAttribute(
final XMLStreamReader reader,
final String namespace,
final String localName) throws XMLStreamException {
final String value = reader.getAttributeValue(namespace, localName);
if (value != null) {
try {
return Class.forName(value.toString());
} catch (final ClassNotFoundException e) {
throw createXMLStreamException(
MessageFormat.format("\"{0}\" is not a valid class name.", value),
reader,
e);
}
}
throw new XMLStreamException(
MessageFormat.format("Attribute {0}:{1} is required", namespace, localName));
} |
java | public ServiceCall<Grammar> getGrammar(GetGrammarOptions getGrammarOptions) {
Validator.notNull(getGrammarOptions, "getGrammarOptions cannot be null");
String[] pathSegments = { "v1/customizations", "grammars" };
String[] pathParameters = { getGrammarOptions.customizationId(), getGrammarOptions.grammarName() };
RequestBuilder builder = RequestBuilder.get(RequestBuilder.constructHttpUrl(getEndPoint(), pathSegments,
pathParameters));
Map<String, String> sdkHeaders = SdkCommon.getSdkHeaders("speech_to_text", "v1", "getGrammar");
for (Entry<String, String> header : sdkHeaders.entrySet()) {
builder.header(header.getKey(), header.getValue());
}
builder.header("Accept", "application/json");
return createServiceCall(builder.build(), ResponseConverterUtils.getObject(Grammar.class));
} |
java | public boolean isSpinnerTextSelected(String text)
{
if(config.commandLogging){
Log.d(config.commandLoggingTag, "isSpinnerTextSelected(\""+text+"\")");
}
return checker.isSpinnerTextSelected(text);
} |
python | def _get_query_argument(args, cell, env):
""" Get a query argument to a cell magic.
The query is specified with args['query']. We look that up and if it is a BQ query
just return it. If it is instead a SqlModule or SqlStatement it may have variable
references. We resolve those using the arg parser for the SqlModule, then override
the resulting defaults with either the Python code in cell, or the dictionary in
overrides. The latter is for if the overrides are specified with YAML or JSON and
eventually we should eliminate code in favor of this.
Args:
args: the dictionary of magic arguments.
cell: the cell contents which can be variable value overrides (if args has a 'query'
value) or inline SQL otherwise.
env: a dictionary that is used for looking up variable values.
Returns:
A Query object.
"""
sql_arg = args.get('query', None)
if sql_arg is None:
# Assume we have inline SQL in the cell
if not isinstance(cell, basestring):
raise Exception('Expected a --query argument or inline SQL')
return datalab.bigquery.Query(cell, values=env)
item = datalab.utils.commands.get_notebook_item(sql_arg)
if isinstance(item, datalab.bigquery.Query): # Queries are already expanded.
return item
# Create an expanded BQ Query.
config = datalab.utils.commands.parse_config(cell, env)
item, env = datalab.data.SqlModule.get_sql_statement_with_environment(item, config)
if cell:
env.update(config) # config is both a fallback and an override.
return datalab.bigquery.Query(item, values=env) |
python | def memory(self):
"""Property to provide reference to `MemoryCollection` instance
It is calculated once when the first time it is queried. On refresh,
this property gets reset.
"""
return memory.MemoryCollection(
self._conn, utils.get_subresource_path_by(self, 'Memory'),
redfish_version=self.redfish_version) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.