code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
class Tape: <NEW_LINE> <INDENT> def __init__(self): <NEW_LINE> <INDENT> self.reset() <NEW_LINE> <DEDENT> def inc_val(self): <NEW_LINE> <INDENT> self.cells[self.pointer] += 1 <NEW_LINE> <DEDENT> def dec_val(self): <NEW_LINE> <INDENT> self.cells[self.pointer] -= 1 <NEW_LINE> <DEDENT> def move_right(self): <NEW_LINE> <INDENT> self.pointer += 1 <NEW_LINE> if self.pointer == len(self.cells): <NEW_LINE> <INDENT> self.cells.append(0) <NEW_LINE> <DEDENT> <DEDENT> def move_left(self): <NEW_LINE> <INDENT> if self.pointer == 0: <NEW_LINE> <INDENT> raise Error("Cannot move past the start of the tape") <NEW_LINE> <DEDENT> self.pointer -= 1 <NEW_LINE> <DEDENT> def get_val(self): <NEW_LINE> <INDENT> return self.cells[self.pointer] <NEW_LINE> <DEDENT> def set_val(self, val): <NEW_LINE> <INDENT> self.cells[self.pointer] = val <NEW_LINE> <DEDENT> def reset(self): <NEW_LINE> <INDENT> self.cells = [0] <NEW_LINE> self.pointer = 0 | A generic implementation of a record tape for a Turing Machine.
It's bounded on the left side and unbounded on the right side.
It stores only Python integers. | 6259906529b78933be26ac6b |
class Normalize(object): <NEW_LINE> <INDENT> def __init__(self, vmin=None, vmax=None, clip=False): <NEW_LINE> <INDENT> self.vmin = vmin <NEW_LINE> self.vmax = vmax <NEW_LINE> self.clip = clip <NEW_LINE> <DEDENT> @staticmethod <NEW_LINE> def process_value(value): <NEW_LINE> <INDENT> is_scalar = not cbook.iterable(value) <NEW_LINE> if is_scalar: <NEW_LINE> <INDENT> value = [value] <NEW_LINE> <DEDENT> dtype = np.min_scalar_type(value) <NEW_LINE> dtype = (np.float32 if dtype.itemsize <= 2 else np.promote_types(dtype, float)) <NEW_LINE> result = np.ma.array(value, dtype=dtype, copy=True) <NEW_LINE> return result, is_scalar <NEW_LINE> <DEDENT> def __call__(self, value, clip=None): <NEW_LINE> <INDENT> if clip is None: <NEW_LINE> <INDENT> clip = self.clip <NEW_LINE> <DEDENT> result, is_scalar = self.process_value(value) <NEW_LINE> self.autoscale_None(result) <NEW_LINE> vmin, vmax = self.vmin, self.vmax <NEW_LINE> if vmin == vmax: <NEW_LINE> <INDENT> result.fill(0) <NEW_LINE> <DEDENT> elif vmin > vmax: <NEW_LINE> <INDENT> raise ValueError("minvalue must be less than or equal to maxvalue") <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if clip: <NEW_LINE> <INDENT> mask = np.ma.getmask(result) <NEW_LINE> result = np.ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) <NEW_LINE> <DEDENT> resdat = np.asarray(result.data) <NEW_LINE> resdat -= vmin <NEW_LINE> resdat /= (vmax - vmin) <NEW_LINE> result = np.ma.array(resdat, mask=result.mask, copy=False) <NEW_LINE> <DEDENT> if is_scalar: <NEW_LINE> <INDENT> result = result[0] <NEW_LINE> <DEDENT> return result <NEW_LINE> <DEDENT> def inverse(self, value): <NEW_LINE> <INDENT> if not self.scaled(): <NEW_LINE> <INDENT> raise ValueError("Not invertible until scaled") <NEW_LINE> <DEDENT> vmin, vmax = self.vmin, self.vmax <NEW_LINE> if cbook.iterable(value): <NEW_LINE> <INDENT> val = np.ma.asarray(value) <NEW_LINE> return vmin + val * (vmax - vmin) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return vmin + value * (vmax - vmin) <NEW_LINE> <DEDENT> <DEDENT> def autoscale(self, A): <NEW_LINE> <INDENT> self.vmin = np.ma.min(A) <NEW_LINE> self.vmax = np.ma.max(A) <NEW_LINE> <DEDENT> def autoscale_None(self, A): <NEW_LINE> <INDENT> if self.vmin is None and np.size(A) > 0: <NEW_LINE> <INDENT> self.vmin = np.ma.min(A) <NEW_LINE> <DEDENT> if self.vmax is None and np.size(A) > 0: <NEW_LINE> <INDENT> self.vmax = np.ma.max(A) <NEW_LINE> <DEDENT> <DEDENT> def scaled(self): <NEW_LINE> <INDENT> return (self.vmin is not None and self.vmax is not None) | A class which, when called, can normalize data into
the ``[0.0, 1.0]`` interval. | 625990657cff6e4e811b7195 |
class Payment(Operation): <NEW_LINE> <INDENT> _XDR_OPERATION_TYPE: stellar_xdr.OperationType = stellar_xdr.OperationType.PAYMENT <NEW_LINE> def __init__( self, destination: str, asset: Asset, amount: Union[str, Decimal], source: str = None, ) -> None: <NEW_LINE> <INDENT> super().__init__(source) <NEW_LINE> check_amount(amount) <NEW_LINE> check_ed25519_public_key(destination) <NEW_LINE> self._destination: str = destination <NEW_LINE> self._destination_muxed: Optional[stellar_xdr.MuxedAccount] = None <NEW_LINE> self.asset: Asset = asset <NEW_LINE> self.amount: Union[str, Decimal] = amount <NEW_LINE> <DEDENT> @property <NEW_LINE> def destination(self) -> str: <NEW_LINE> <INDENT> return self._destination <NEW_LINE> <DEDENT> @destination.setter <NEW_LINE> def destination(self, value: str): <NEW_LINE> <INDENT> check_ed25519_public_key(value) <NEW_LINE> self._destination_muxed = None <NEW_LINE> self._destination = value <NEW_LINE> <DEDENT> def _to_operation_body(self) -> stellar_xdr.OperationBody: <NEW_LINE> <INDENT> asset = self.asset.to_xdr_object() <NEW_LINE> if self._destination_muxed is not None: <NEW_LINE> <INDENT> destination = self._destination_muxed <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> destination = Keypair.from_public_key(self._destination).xdr_muxed_account() <NEW_LINE> <DEDENT> amount = stellar_xdr.Int64(Operation.to_xdr_amount(self.amount)) <NEW_LINE> payment_op = stellar_xdr.PaymentOp(destination, asset, amount) <NEW_LINE> body = stellar_xdr.OperationBody( type=self._XDR_OPERATION_TYPE, payment_op=payment_op ) <NEW_LINE> return body <NEW_LINE> <DEDENT> @classmethod <NEW_LINE> def from_xdr_object(cls, xdr_object: stellar_xdr.Operation) -> "Payment": <NEW_LINE> <INDENT> source = Operation.get_source_from_xdr_obj(xdr_object) <NEW_LINE> assert xdr_object.body.payment_op is not None <NEW_LINE> destination = parse_ed25519_account_id_from_muxed_account_xdr_object( xdr_object.body.payment_op.destination ) <NEW_LINE> asset = Asset.from_xdr_object(xdr_object.body.payment_op.asset) <NEW_LINE> amount = Operation.from_xdr_amount(xdr_object.body.payment_op.amount.int64) <NEW_LINE> op = cls(source=source, destination=destination, asset=asset, amount=amount) <NEW_LINE> op._destination_muxed = xdr_object.body.payment_op.destination <NEW_LINE> op._source_muxed = Operation.get_source_muxed_from_xdr_obj(xdr_object) <NEW_LINE> return op <NEW_LINE> <DEDENT> def __str__(self): <NEW_LINE> <INDENT> return ( f"<Payment [destination={self.destination}, asset={self.asset}, " f"amount={self.amount}, source={self.source}]>" ) | The :class:`Payment` object, which represents a Payment operation on
Stellar's network.
Sends an amount in a specific asset to a destination account.
Threshold: Medium
:param destination: The destination account ID.
:param asset: The asset to send.
:param amount: The amount to send.
:param source: The source account for the payment. Defaults to the
transaction's source account. | 62599065a17c0f6771d5d74d |
class GlobalNotification(rdf_structs.RDFProtoStruct): <NEW_LINE> <INDENT> protobuf = jobs_pb2.GlobalNotification <NEW_LINE> def __init__(self, *args, **kwargs): <NEW_LINE> <INDENT> super(GlobalNotification, self).__init__(*args, **kwargs) <NEW_LINE> if not self.duration: <NEW_LINE> <INDENT> self.duration = rdfvalue.Duration("2w") <NEW_LINE> <DEDENT> if not self.show_from: <NEW_LINE> <INDENT> self.show_from = rdfvalue.RDFDatetime.Now() <NEW_LINE> <DEDENT> <DEDENT> @property <NEW_LINE> def hash(self): <NEW_LINE> <INDENT> return hash(self) <NEW_LINE> <DEDENT> @property <NEW_LINE> def type_name(self): <NEW_LINE> <INDENT> return self.Type.reverse_enum[self.type] | Global notification shown to all the users of GRR. | 62599065379a373c97d9a76c |
class UnsupportedProxyURI(PublisherError): <NEW_LINE> <INDENT> def __str__(self): <NEW_LINE> <INDENT> if self.data: <NEW_LINE> <INDENT> scheme = urlsplit(self.data, allow_fragments=0)[0] <NEW_LINE> return _("The proxy URI '{uri}' uses the unsupported " "scheme '{scheme}'. Currently the only supported " "scheme is http://.").format( uri=self.data, scheme=scheme) <NEW_LINE> <DEDENT> return _("The specified proxy URI uses an unsupported scheme." " Currently the only supported scheme is: http://.") | Used to indicate that the specified proxy URI is unsupported. | 625990659c8ee82313040d2f |
class OutputTests(unittest.TestCase): <NEW_LINE> <INDENT> def test_mad_dots(self): <NEW_LINE> <INDENT> for identifier in ["example", "example.1a", "example.1.2", "example.1-2"]: <NEW_LINE> <INDENT> old = SeqRecord( Seq("ACGT"), id=identifier, name=identifier, description="mad dots", annotations={"molecule_type": "DNA"}, ) <NEW_LINE> new = SeqIO.read(StringIO(old.format("gb")), "gb") <NEW_LINE> self.assertEqual(old.id, new.id) <NEW_LINE> self.assertEqual(old.name, new.name) <NEW_LINE> self.assertEqual(old.description, new.description) <NEW_LINE> self.assertEqual(old.seq, new.seq) <NEW_LINE> <DEDENT> <DEDENT> def test_seqrecord_default_description(self): <NEW_LINE> <INDENT> old = SeqRecord( Seq("ACGT"), id="example", name="short", annotations={"molecule_type": "DNA"}, ) <NEW_LINE> self.assertEqual(old.description, "<unknown description>") <NEW_LINE> txt = old.format("gb") <NEW_LINE> self.assertIn("DEFINITION .\n", txt) <NEW_LINE> new = SeqIO.read(StringIO(txt), "gb") <NEW_LINE> self.assertEqual(old.id, new.id) <NEW_LINE> self.assertEqual(old.name, new.name) <NEW_LINE> self.assertEqual("", new.description) <NEW_LINE> self.assertEqual(old.seq, new.seq) <NEW_LINE> <DEDENT> def test_000_write_invalid_but_parsed_locus_line(self): <NEW_LINE> <INDENT> path = "GenBank/NC_005816.gb" <NEW_LINE> with open(path) as handle: <NEW_LINE> <INDENT> lines = handle.readlines() <NEW_LINE> <DEDENT> invalid_line = ( "LOCUS NC_005816 9609 bp dna circular BCT" " 21-JUL-2008\n" ) <NEW_LINE> lines[0] = invalid_line <NEW_LINE> fake_handle = StringIO("".join(lines)) <NEW_LINE> with warnings.catch_warnings(record=True) as caught: <NEW_LINE> <INDENT> warnings.simplefilter("always") <NEW_LINE> rec = SeqIO.read(fake_handle, "genbank") <NEW_LINE> self.assertEqual(len(caught), 1) <NEW_LINE> self.assertEqual(caught[0].category, BiopythonParserWarning) <NEW_LINE> self.assertEqual( str(caught[0].message), "Non-upper case molecule type in LOCUS line: dna", ) <NEW_LINE> <DEDENT> out_handle = StringIO() <NEW_LINE> ret = SeqIO.write([rec], out_handle, "genbank") <NEW_LINE> self.assertEqual(ret, 1) <NEW_LINE> out_handle.seek(0) <NEW_LINE> out_lines = out_handle.readlines() <NEW_LINE> self.assertEqual(out_lines[0], invalid_line) <NEW_LINE> <DEDENT> def test_write_tsa_data_division(self): <NEW_LINE> <INDENT> with open("GenBank/tsa_acropora.gb") as infile: <NEW_LINE> <INDENT> rec = SeqIO.read(infile, "genbank") <NEW_LINE> infile.seek(0) <NEW_LINE> first_line = infile.readline() <NEW_LINE> <DEDENT> outfile = StringIO() <NEW_LINE> SeqIO.write([rec], outfile, "genbank") <NEW_LINE> outfile.seek(0) <NEW_LINE> first_line_written = outfile.readline() <NEW_LINE> original_division = first_line.split()[-2] <NEW_LINE> written_division = first_line_written.split()[-2] <NEW_LINE> self.assertEqual(original_division, written_division) | GenBank output tests. | 62599065f548e778e596ccd8 |
class MixFeatures(FeatureExtractBase): <NEW_LINE> <INDENT> def __init__(self, features_list): <NEW_LINE> <INDENT> self.features_list = features_list <NEW_LINE> <DEDENT> def extract(self, instance): <NEW_LINE> <INDENT> feature_class_dict = {"ARFeatures":ARFeatures, "FFTFeatures":FFTFeatures, "PLVFeatures":PLVFeatures, "RandomFeatures":RandomFeatures, "SEFeatures":SEFeatures, "LyapunovFeatures":LyapunovFeatures, "StatsFeatures":StatsFeatures} <NEW_LINE> extracted_features_list = [] <NEW_LINE> for feature_string in self.features_list: <NEW_LINE> <INDENT> if feature_string['name'] in feature_class_dict: <NEW_LINE> <INDENT> kwargs = feature_string['args'] <NEW_LINE> feature_object = feature_class_dict[feature_string['name']](**kwargs) <NEW_LINE> extracted_features_list.append(np.hstack(feature_object.extract(instance))) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print("feature not in list !!!") <NEW_LINE> <DEDENT> <DEDENT> return np.hstack(extracted_features_list) | Class to concatenate output of individual feature classes.
@author V&J | 625990657047854f46340b02 |
class SPLexRank(ya_summarizer): <NEW_LINE> <INDENT> def __init__(self,q,words): <NEW_LINE> <INDENT> self.question = q <NEW_LINE> self.words_limit = words <NEW_LINE> print(q.get_author()) <NEW_LINE> nbest_total_words = 0 <NEW_LINE> nbest = q.get_nbest() <NEW_LINE> for ans in nbest: <NEW_LINE> <INDENT> content = ans.get_content() <NEW_LINE> nbest_total_words += nlp.sentence_length(content) <NEW_LINE> <DEDENT> self.word_limit = min(int(nbest_total_words/3),150) <NEW_LINE> print("词数限制",self.word_limit) <NEW_LINE> print("文章题目",self.question.get_title()) <NEW_LINE> <DEDENT> def extract(self): <NEW_LINE> <INDENT> title_text = self.question.get_title() <NEW_LINE> answer_text = self.question.get_nbest_content() <NEW_LINE> print('句子重要性排名,开始分句..') <NEW_LINE> self.nlp = NLP() <NEW_LINE> sent_tokens = self.nlp.sent_tokenize(answer_text) <NEW_LINE> print('获得句子列表,开始计算tfidf..') <NEW_LINE> self.N = len(sent_tokens) <NEW_LINE> self.tfidf = TFIDF(sent_tokens).matrix <NEW_LINE> print('获得tfidf矩阵,开始构建图结构..') <NEW_LINE> nodes = [idx for idx in range(self.N)] <NEW_LINE> self.lex_graph = nx.Graph() <NEW_LINE> self.lex_graph.add_nodes_from(nodes) <NEW_LINE> for i in range(self.N): <NEW_LINE> <INDENT> for j in range(self.N): <NEW_LINE> <INDENT> sim = self.get_cos(self.tfidf[i],self.tfidf[j]) <NEW_LINE> self.lex_graph.add_edge(i,j,weight=sim) <NEW_LINE> <DEDENT> <DEDENT> print('图构建完成,开始计算lexrankscore..') <NEW_LINE> cal_lexrank = nx.pagerank(self.lex_graph) <NEW_LINE> print('计算完成,开始摘要..') <NEW_LINE> orders = sorted(cal_lexrank,key=cal_lexrank.get,reverse=True) <NEW_LINE> k_th = self.get_sum_sents(sent_tokens,orders) <NEW_LINE> str_tmp_list = [] <NEW_LINE> for sidx in range(k_th): <NEW_LINE> <INDENT> str_tmp = sent_tokens[orders[sidx]] <NEW_LINE> str_tmp += '[%.4f]'%(cal_lexrank[sidx]) <NEW_LINE> str_tmp_list.append(str_tmp) <NEW_LINE> <DEDENT> for i in str_tmp_list: <NEW_LINE> <INDENT> print(i) <NEW_LINE> <DEDENT> self.abstrct_text = ' '.join([sent_tokens[orders[ith]] for ith in range(k_th)]) <NEW_LINE> print('摘要完成..') <NEW_LINE> print("写入文件") <NEW_LINE> wp = self.question.get_author() <NEW_LINE> fname = as_res+wp.split("|")[0]+".res" <NEW_LINE> print(fname) <NEW_LINE> f = open(fname,"w") <NEW_LINE> f.write(self.abstrct_text) <NEW_LINE> f.close() <NEW_LINE> return fname <NEW_LINE> <DEDENT> def abstract_output(self,result): <NEW_LINE> <INDENT> print('successfully.') <NEW_LINE> <DEDENT> def get_sum_sents(self,sents,orders): <NEW_LINE> <INDENT> total_num = 0 <NEW_LINE> idx = 0 <NEW_LINE> while(total_num <= self.words_limit and idx < len(sents)): <NEW_LINE> <INDENT> total_num += len(self.nlp.word_tokenize(sents[orders[idx]])) <NEW_LINE> if (total_num > self.words_limit): <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> idx += 1 <NEW_LINE> <DEDENT> return idx <NEW_LINE> <DEDENT> def get_cos(self,vec1,vec2): <NEW_LINE> <INDENT> return dot(vec1,vec2) / (norm(vec1) * norm(vec2)) | tfidf matrix => graph => pagerank => lexrank scores | 6259906521bff66bcd7243b4 |
class PavoException(Exception): <NEW_LINE> <INDENT> def __init__(self, message: Optional[str] = None): <NEW_LINE> <INDENT> super().__init__(message or self.__doc__) | Pavo's BaseException-like Exception class, uses docstrings to set default error messages. | 625990658e71fb1e983bd214 |
class TestConfiguration(unittest.TestCase): <NEW_LINE> <INDENT> def test_defaults(self): <NEW_LINE> <INDENT> _, temp_config_path = tempfile.mkstemp() <NEW_LINE> self.addCleanup(os.remove, temp_config_path) <NEW_LINE> with open(temp_config_path, 'w') as temp_config: <NEW_LINE> <INDENT> temp_config.write(yaml.dump({})) <NEW_LINE> <DEDENT> with mock.patch.dict( 'os.environ', {'LMODP_CONFIG': temp_config_path}, clear=True ): <NEW_LINE> <INDENT> import lmod_proxy.config <NEW_LINE> imp.reload(lmod_proxy.config) <NEW_LINE> import lmod_proxy.web <NEW_LINE> imp.reload(lmod_proxy.web) <NEW_LINE> self.assertDictContainsSubset( lmod_proxy.config.CONFIG_KEYS, dict(lmod_proxy.web.app.config) ) <NEW_LINE> <DEDENT> <DEDENT> def test_file_config_precedence_(self): <NEW_LINE> <INDENT> test_cert = 'testing' <NEW_LINE> env_test_cert = 'env_testing' <NEW_LINE> _, temp_config_path = tempfile.mkstemp() <NEW_LINE> self.addCleanup(os.remove, temp_config_path) <NEW_LINE> with open(temp_config_path, 'w') as temp_config: <NEW_LINE> <INDENT> temp_config.write(yaml.dump({'LMODP_CERT': test_cert})) <NEW_LINE> <DEDENT> with mock.patch.dict( 'os.environ', {'LMODP_CONFIG': temp_config_path}, clear=True ): <NEW_LINE> <INDENT> import lmod_proxy.config <NEW_LINE> imp.reload(lmod_proxy.config) <NEW_LINE> self.assertEqual( lmod_proxy.config._configure()['LMODP_CERT'], test_cert ) <NEW_LINE> <DEDENT> with mock.patch.dict( 'os.environ', { 'LMODP_CONFIG': temp_config_path, 'LMODP_CERT': env_test_cert, }, clear=True ): <NEW_LINE> <INDENT> import lmod_proxy.config <NEW_LINE> imp.reload(lmod_proxy.config) <NEW_LINE> self.assertEqual( lmod_proxy.config._configure()['LMODP_CERT'], env_test_cert ) <NEW_LINE> <DEDENT> <DEDENT> def test_htpasswd_to_file(self): <NEW_LINE> <INDENT> self.addCleanup(os.remove, '.htpasswd') <NEW_LINE> with open(get_htpasswd_path()) as htpasswd_file: <NEW_LINE> <INDENT> htpasswd = htpasswd_file.read() <NEW_LINE> <DEDENT> with mock.patch.dict( 'os.environ', {'LMODP_HTPASSWD': htpasswd}, clear=True ): <NEW_LINE> <INDENT> import lmod_proxy.config <NEW_LINE> imp.reload(lmod_proxy.config) <NEW_LINE> self.assertTrue(os.path.isfile('.htpasswd')) <NEW_LINE> with open('.htpasswd') as htpasswd_file: <NEW_LINE> <INDENT> self.assertEqual(htpasswd, htpasswd_file.read()) <NEW_LINE> <DEDENT> self.assertEqual( lmod_proxy.config._configure()['LMODP_HTPASSWD_PATH'], os.path.abspath('.htpasswd') ) <NEW_LINE> <DEDENT> <DEDENT> def test_cert_string_to_file(self): <NEW_LINE> <INDENT> self.addCleanup(os.remove, '.cert.pem') <NEW_LINE> cert_string = 'hello cert!' <NEW_LINE> with mock.patch.dict( 'os.environ', {'LMODP_CERT_STRING': cert_string}, clear=True ): <NEW_LINE> <INDENT> import lmod_proxy.config <NEW_LINE> imp.reload(lmod_proxy.config) <NEW_LINE> self.assertTrue(os.path.isfile('.cert.pem')) <NEW_LINE> with open('.cert.pem') as cert_file: <NEW_LINE> <INDENT> self.assertEqual(cert_string, cert_file.read()) <NEW_LINE> <DEDENT> self.assertEqual( lmod_proxy.config._configure()['LMODP_CERT'], os.path.abspath('.cert.pem') ) | Test out configuration defaults, loading yaml/environ config,
etc. | 62599065b7558d5895464ad6 |
class _DirectoryBase(object): <NEW_LINE> <INDENT> def walk(self, top=None, class_pattern=None): <NEW_LINE> <INDENT> return utils.walk(self, top, class_pattern=class_pattern) <NEW_LINE> <DEDENT> def __getattr__(self, attr): <NEW_LINE> <INDENT> return self.Get(attr) <NEW_LINE> <DEDENT> def __getitem__(self, name): <NEW_LINE> <INDENT> return self.Get(name) <NEW_LINE> <DEDENT> @wrap_path_handling <NEW_LINE> def Get(self, name): <NEW_LINE> <INDENT> thing = asrootpy(self.__class__.__bases__[-1].Get(self, name)) <NEW_LINE> if not thing: <NEW_LINE> <INDENT> raise DoesNotExist <NEW_LINE> <DEDENT> return thing <NEW_LINE> <DEDENT> @wrap_path_handling <NEW_LINE> def GetDirectory(self, name): <NEW_LINE> <INDENT> dir = asrootpy(self.__class__.__bases__[-1].GetDirectory(self, name)) <NEW_LINE> if not dir: <NEW_LINE> <INDENT> raise DoesNotExist <NEW_LINE> <DEDENT> return dir | A mixin (can't stand alone). To be improved. | 6259906597e22403b383c65c |
class Histogram(object): <NEW_LINE> <INDENT> def __init__(self, data, scale=20, formatter=None): <NEW_LINE> <INDENT> self.data = data <NEW_LINE> self.scale = scale <NEW_LINE> self.formatter = formatter or str <NEW_LINE> self.max_key_len = max([len(str(key)) for key, count in self.data]) <NEW_LINE> self.total = sum([count for key, count in self.data]) <NEW_LINE> <DEDENT> @staticmethod <NEW_LINE> def FromCountDict(count_dict, scale=20, formatter=None, key_names=None): <NEW_LINE> <INDENT> namer = None <NEW_LINE> if key_names: <NEW_LINE> <INDENT> namer = lambda key: key_names[key] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> namer = lambda key: key <NEW_LINE> <DEDENT> hist = [(namer(key), count) for key, count in count_dict.items()] <NEW_LINE> return Histogram(hist, scale, formatter) <NEW_LINE> <DEDENT> @staticmethod <NEW_LINE> def FromKeyList(key_list, scale=20, formatter=None, key_names=None): <NEW_LINE> <INDENT> count_dict = defaultdict(int) <NEW_LINE> for key in key_list: <NEW_LINE> <INDENT> count_dict[key] += 1 <NEW_LINE> <DEDENT> return Histogram.FromCountDict(count_dict, scale, formatter, key_names) <NEW_LINE> <DEDENT> def __str__(self): <NEW_LINE> <INDENT> hist_lines = [] <NEW_LINE> hist_bar = '|' <NEW_LINE> for key, count in self.data: <NEW_LINE> <INDENT> if self.total: <NEW_LINE> <INDENT> bar_len = count * self.scale // self.total <NEW_LINE> hist_bar = '|%s|' % ('#' * bar_len).ljust(self.scale) <NEW_LINE> <DEDENT> line = '%s %s %s' % ( str(key).ljust(self.max_key_len), hist_bar, self.formatter(count)) <NEW_LINE> percent_str = format_utils.NumToPercent(count, self.total) <NEW_LINE> if percent_str: <NEW_LINE> <INDENT> line += ' (%s)' % percent_str <NEW_LINE> <DEDENT> hist_lines.append(line) <NEW_LINE> <DEDENT> return '\n'.join(hist_lines) <NEW_LINE> <DEDENT> def GetKeys(self): <NEW_LINE> <INDENT> return [key for key, _ in self.data] | A histogram generating object.
This object serves the sole purpose of formatting (key, val) pairs as an
ASCII histogram, including bars and percentage markers, and taking care of
label alignment, scaling, etc. In addition to the standard __init__
interface, two static methods are provided for conveniently converting data
in different formats into a histogram. Histogram generation is exported via
its __str__ method, and looks as follows:
Yes |################ | 5 (83.3%)
No |### | 1 (16.6%)
TODO(garnold) we may want to add actual methods for adding data or tweaking
the output layout and formatting. For now, though, this is fine. | 62599065097d151d1a2c27bb |
class TCPServer(object): <NEW_LINE> <INDENT> is_workflow = True <NEW_LINE> def __init__(self, network_endpoint): <NEW_LINE> <INDENT> self.network_endpoint = network_endpoint <NEW_LINE> self.established_connections = set() <NEW_LINE> <DEDENT> def wait_for_syns(self): <NEW_LINE> <INDENT> while True: <NEW_LINE> <INDENT> source, message = self.poll_interface() <NEW_LINE> if message is not None and message is "SYN": <NEW_LINE> <INDENT> self.send_syn_ack(source) <NEW_LINE> self.wait_for_ack() <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> def wait_for_ack(self): <NEW_LINE> <INDENT> while True: <NEW_LINE> <INDENT> source_address, message = self.poll_interface() <NEW_LINE> if message is "ACK": <NEW_LINE> <INDENT> self.established_connections.add(source_address) <NEW_LINE> break <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> @default_cost(1) <NEW_LINE> def poll_interface(self): <NEW_LINE> <INDENT> return self.network_endpoint.read_message() <NEW_LINE> <DEDENT> @default_cost(1) <NEW_LINE> def send_syn_ack(self, source): <NEW_LINE> <INDENT> self.network_endpoint.send_message(source, "SYN_ACK") | Models the tasks and state fof a TCP server. | 625990654f88993c371f10c6 |
class EMM_STATUS(Layer3NASEMM): <NEW_LINE> <INDENT> constructorList = [ie for ie in EMMHeader(Type=96)] + [ Int('EMMCause', Pt=0, Type='uint8', Dict=EMMCause_dict)] | Net <-> UE
Local | 62599065462c4b4f79dbd155 |
class PointerType(ScalarType): <NEW_LINE> <INDENT> def __init__(self, datatype, label_get): <NEW_LINE> <INDENT> super().__init__('pointer', constant=None) <NEW_LINE> self.datatype = datatype <NEW_LINE> self.label_get = label_get <NEW_LINE> <DEDENT> def from_data(self, rom, offset, project, context, parents): <NEW_LINE> <INDENT> data_offset = super().from_data(rom, offset, project, context, parents) <NEW_LINE> if data_offset is None: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> datatype = project.model[self.datatype] <NEW_LINE> return datatype.from_data(rom, data_offset, project, context, parents) <NEW_LINE> <DEDENT> def to_assembly(self, data, project, context, parents, label=None, alignment=None, global_label=None): <NEW_LINE> <INDENT> if data is None: <NEW_LINE> <INDENT> return super().to_assembly(data, project, context, parents, label=label, alignment=alignment, global_label=global_label) <NEW_LINE> <DEDENT> data_label, data_alignment, data_global_label = self.label_get(project, context, parents) <NEW_LINE> assembly, additional_blocks = super().to_assembly(data_label, project, context, parents, label=label, alignment=alignment, global_label=global_label) <NEW_LINE> datatype = project.model[self.datatype] <NEW_LINE> data_assembly, data_additional_blocks = datatype.to_assembly(data, project, context, parents, label=data_label, alignment=data_alignment, global_label=data_global_label) <NEW_LINE> additional_blocks.append(data_assembly) <NEW_LINE> additional_blocks += data_additional_blocks <NEW_LINE> return assembly, additional_blocks <NEW_LINE> <DEDENT> def __call__(self, project, context, parents): <NEW_LINE> <INDENT> datatype = project.model[self.datatype] <NEW_LINE> return datatype(project, context, parents) <NEW_LINE> <DEDENT> def get_constants(self, data, project, context, parents): <NEW_LINE> <INDENT> datatype = project.model[self.datatype] <NEW_LINE> if data is None: <NEW_LINE> <INDENT> return set() <NEW_LINE> <DEDENT> return datatype.get_constants(data, project, context, parents) | Class to models pointers. | 62599065f548e778e596ccd9 |
class LocationEvent(BaseEvent): <NEW_LINE> <INDENT> event = "location" <NEW_LINE> latitude = FloatField("Latitude", 0.0) <NEW_LINE> longitude = FloatField("Longitude", 0.0) <NEW_LINE> precision = FloatField("Precision", 0.0) | 上报地理位置事件
详情请参阅
https://developers.weixin.qq.com/doc/offiaccount/Message_Management/Receiving_event_pushes.html | 62599065baa26c4b54d509f4 |
class DistillKL(nn.Module): <NEW_LINE> <INDENT> def __init__(self, T): <NEW_LINE> <INDENT> super(DistillKL, self).__init__() <NEW_LINE> self.T = T <NEW_LINE> <DEDENT> def forward(self, y_s, y_t): <NEW_LINE> <INDENT> p_s = F.log_softmax(y_s/self.T, dim=1) <NEW_LINE> p_t = F.softmax(y_t/self.T, dim=1) <NEW_LINE> loss = F.kl_div(p_s, p_t, size_average=False) * (self.T**2) / y_s.shape[0] <NEW_LINE> return loss | KL divergence for distillation | 62599065d486a94d0ba2d718 |
@skipIf(NO_MOCK, NO_MOCK_REASON) <NEW_LINE> @skipIf(not HAS_PYVMOMI, 'The \'pyvmomi\' library is missing') <NEW_LINE> class GetPropertiesOfManagedObjectTestCase(TestCase): <NEW_LINE> <INDENT> def setUp(self): <NEW_LINE> <INDENT> patches = ( ('salt.utils.vmware.get_service_instance_from_managed_object', MagicMock()), ('salt.utils.vmware.get_mors_with_properties', MagicMock(return_value=[MagicMock()])) ) <NEW_LINE> for mod, mock in patches: <NEW_LINE> <INDENT> patcher = patch(mod, mock) <NEW_LINE> patcher.start() <NEW_LINE> self.addCleanup(patcher.stop) <NEW_LINE> <DEDENT> self.mock_si = MagicMock() <NEW_LINE> self.fake_mo_ref = vim.ManagedEntity('Fake') <NEW_LINE> self.mock_props = MagicMock() <NEW_LINE> self.mock_item_name = {'name': 'fake_name'} <NEW_LINE> self.mock_item = MagicMock() <NEW_LINE> <DEDENT> def test_get_service_instance_from_managed_object_call(self): <NEW_LINE> <INDENT> mock_get_instance_from_managed_object = MagicMock() <NEW_LINE> with patch( 'salt.utils.vmware.get_service_instance_from_managed_object', mock_get_instance_from_managed_object): <NEW_LINE> <INDENT> salt.utils.vmware.get_properties_of_managed_object( self.fake_mo_ref, self.mock_props) <NEW_LINE> <DEDENT> mock_get_instance_from_managed_object.assert_called_once_with( self.fake_mo_ref) <NEW_LINE> <DEDENT> def test_get_mors_with_properties_calls(self): <NEW_LINE> <INDENT> mock_get_mors_with_properties = MagicMock(return_value=[MagicMock()]) <NEW_LINE> with patch( 'salt.utils.vmware.get_service_instance_from_managed_object', MagicMock(return_value=self.mock_si)): <NEW_LINE> <INDENT> with patch('salt.utils.vmware.get_mors_with_properties', mock_get_mors_with_properties): <NEW_LINE> <INDENT> salt.utils.vmware.get_properties_of_managed_object( self.fake_mo_ref, self.mock_props) <NEW_LINE> <DEDENT> <DEDENT> mock_get_mors_with_properties.assert_has_calls( [call(self.mock_si, vim.ManagedEntity, container_ref=self.fake_mo_ref, property_list=['name'], local_properties=True), call(self.mock_si, vim.ManagedEntity, container_ref=self.fake_mo_ref, property_list=self.mock_props, local_properties=True)]) <NEW_LINE> <DEDENT> def test_managed_object_no_name_property(self): <NEW_LINE> <INDENT> with patch('salt.utils.vmware.get_mors_with_properties', MagicMock(side_effect=[vmodl.query.InvalidProperty(), []])): <NEW_LINE> <INDENT> with self.assertRaises(VMwareApiError) as excinfo: <NEW_LINE> <INDENT> salt.utils.vmware.get_properties_of_managed_object( self.fake_mo_ref, self.mock_props) <NEW_LINE> <DEDENT> <DEDENT> self.assertEqual('Properties of managed object \'<unnamed>\' weren\'t ' 'retrieved', excinfo.exception.strerror) <NEW_LINE> <DEDENT> def test_no_items_named_object(self): <NEW_LINE> <INDENT> with patch('salt.utils.vmware.get_mors_with_properties', MagicMock(side_effect=[[self.mock_item_name], []])): <NEW_LINE> <INDENT> with self.assertRaises(VMwareApiError) as excinfo: <NEW_LINE> <INDENT> salt.utils.vmware.get_properties_of_managed_object( self.fake_mo_ref, self.mock_props) <NEW_LINE> <DEDENT> <DEDENT> self.assertEqual('Properties of managed object \'fake_name\' weren\'t ' 'retrieved', excinfo.exception.strerror) | Tests for salt.utils.get_properties_of_managed_object | 6259906545492302aabfdc2c |
class AlphabeticalIndex(Report): <NEW_LINE> <INDENT> def __init__(self, database, options, user): <NEW_LINE> <INDENT> Report.__init__(self, database, options, user) <NEW_LINE> self._user = user <NEW_LINE> menu = options.menu <NEW_LINE> <DEDENT> def write_report(self): <NEW_LINE> <INDENT> self.doc.insert_index() | This report class generates an alphabetical index for a book. | 6259906571ff763f4b5e8ef7 |
class _Col(object): <NEW_LINE> <INDENT> def __init__(self, data=None): <NEW_LINE> <INDENT> if data == None: <NEW_LINE> <INDENT> self.__data = [] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.__data = data <NEW_LINE> <DEDENT> <DEDENT> def __getitem__(self, key): <NEW_LINE> <INDENT> return self.__data[key] <NEW_LINE> <DEDENT> def __setitem__(self, key, val): <NEW_LINE> <INDENT> self.__data[key] = val | Please don't use this. | 62599065379a373c97d9a76e |
class FieldOrientedDrive(DriveInterface): <NEW_LINE> <INDENT> def __init__(self, interface, ahrs, offset=0.0): <NEW_LINE> <INDENT> self.interface = interface <NEW_LINE> self.ahrs = ahrs <NEW_LINE> self.origin = 0.0 <NEW_LINE> self.offset = offset <NEW_LINE> <DEDENT> def zero(self): <NEW_LINE> <INDENT> self.origin = self._getYawRadians() <NEW_LINE> <DEDENT> def drive(self, magnitude, direction, turn): <NEW_LINE> <INDENT> direction -= self.getRobotOffset() <NEW_LINE> return self.interface.drive(magnitude, direction, turn) <NEW_LINE> <DEDENT> def _getYawRadians(self): <NEW_LINE> <INDENT> return - math.radians(self.ahrs.getAngle()) <NEW_LINE> <DEDENT> def getRobotOffset(self): <NEW_LINE> <INDENT> return self._getYawRadians() - self.origin - self.offset | Wraps another drive interface, and provides field orientation. | 625990657c178a314d78e794 |
class BlameRepoState(Persistable): <NEW_LINE> <INDENT> TEMPLATE = {'sha_date_author': lambda: {}} | Repository level persisted data structures
Currently this is just sha_date_author. | 625990654428ac0f6e659c82 |
class Garlicoin(Bitcoin): <NEW_LINE> <INDENT> name = 'garlicoin' <NEW_LINE> symbols = ('GRLC', ) <NEW_LINE> seeds = ('dnsseed.brennanmcdonald.io', 'dnsseed.rshaw.space', ) <NEW_LINE> port = 42069 <NEW_LINE> message_start = b'\xd2\xc6\xb6\xdb' <NEW_LINE> base58_prefixes = { 'PUBKEY_ADDR': 38, 'SCRIPT_ADDR': 5, 'SECRET_KEY': 176 } | Class with all the necessary Garlicoin (GRLC) network information based on
https://github.com/GarlicoinOrg/Garlicoin/blob/master/src/chainparams.cpp
(date of access: 02/16/2018) | 6259906555399d3f05627c71 |
class TestTumDataloader(object): <NEW_LINE> <INDENT> path = "/home/akashsharma/Documents/datasets/tum/rgbd_dataset_freiburg1_xyz/" <NEW_LINE> sequence = "1" <NEW_LINE> def test_init(self): <NEW_LINE> <INDENT> with pytest.raises(AssertionError): <NEW_LINE> <INDENT> tum = loader.TumDataloader("/home/akashsharma/Documents/datasets/tum/rgbd_dataset_freiburg1_xyz/", "0") <NEW_LINE> <DEDENT> with pytest.raises(AssertionError): <NEW_LINE> <INDENT> tum = loader.TumDataloader("SomeRandomPath/path", "1") <NEW_LINE> <DEDENT> tum = loader.TumDataloader(TestTumDataloader.path, TestTumDataloader.sequence) <NEW_LINE> assert tum.sequence == 1 <NEW_LINE> assert len(tum._matches) <= len(tum._readFileList(tum.path / "rgb.txt")) <NEW_LINE> <DEDENT> def test_len(self): <NEW_LINE> <INDENT> tum = loader.TumDataloader(TestTumDataloader.path, TestTumDataloader.sequence) <NEW_LINE> assert len(tum) == len(tum._matches) <NEW_LINE> <DEDENT> def test_get_item(self): <NEW_LINE> <INDENT> tum = loader.TumDataloader(TestTumDataloader.path, TestTumDataloader.sequence) <NEW_LINE> for i in [0, len(tum)-1]: <NEW_LINE> <INDENT> data_dict = tum[i] <NEW_LINE> rgb = data_dict["rgb"] <NEW_LINE> depth = data_dict["depth"] <NEW_LINE> cam_params = data_dict["cam_params"] <NEW_LINE> assert rgb.dtype == np.uint8 <NEW_LINE> assert rgb.shape == (480, 640, 3) <NEW_LINE> assert depth.dtype == np.uint8 <NEW_LINE> assert depth.shape == (480, 640, 3) <NEW_LINE> cv2.imshow("test_get_item", rgb) <NEW_LINE> cv2.waitKey(100); <NEW_LINE> cv2.imshow("test_get_item", depth) <NEW_LINE> cv2.waitKey(100) <NEW_LINE> assert cam_params["intrinsic_matrix"].shape == (3, 3) | Docstring for TestTumDataloader. | 625990650c0af96317c57907 |
class GroupManager(models.Manager): <NEW_LINE> <INDENT> def get_queryset(self): <NEW_LINE> <INDENT> return GroupQuerySet(self.model, using=self._db) <NEW_LINE> <DEDENT> def active(self, *args, **kwargs): <NEW_LINE> <INDENT> return self.get_queryset().active(*args, **kwargs) <NEW_LINE> <DEDENT> def inactive(self, *args, **kwargs): <NEW_LINE> <INDENT> return self.get_queryset().inactive(*args, **kwargs) | Group model manager. | 625990656e29344779b01da0 |
class TwoLayerNet: <NEW_LINE> <INDENT> def __init__(self, n_input, n_output, hidden_layer_size, reg): <NEW_LINE> <INDENT> self.fcl1 = FullyConnectedLayer(n_input, hidden_layer_size) <NEW_LINE> self.fcl2 = FullyConnectedLayer(hidden_layer_size, n_output) <NEW_LINE> self.relu = ReLULayer() <NEW_LINE> self.reg = reg <NEW_LINE> self.w1 = self.fcl1.params()['W'] <NEW_LINE> self.w2 = self.fcl2.params()['W'] <NEW_LINE> self.b1 = self.fcl1.params()['B'] <NEW_LINE> self.b2 = self.fcl1.params()['B'] <NEW_LINE> <DEDENT> def compute_loss_and_gradients(self, X, y): <NEW_LINE> <INDENT> [self.params()[param].grad.fill(0) for param in self.params().keys()] <NEW_LINE> hidden_res_forward = self.fcl1.forward(X) <NEW_LINE> hidden_res_forward = self.relu.forward(hidden_res_forward) <NEW_LINE> output = self.fcl2.forward(hidden_res_forward) <NEW_LINE> loss, dprediction = softmax_with_cross_entropy(output, y) <NEW_LINE> hidden_res_backward = self.fcl2.backward(dprediction) <NEW_LINE> hidden_res_backward = self.relu.backward(hidden_res_backward) <NEW_LINE> self.fcl1.backward(hidden_res_backward) <NEW_LINE> for param in self.params().values(): <NEW_LINE> <INDENT> reg_loss, reg_grad = l2_regularization(param.value, self.reg) <NEW_LINE> loss += reg_loss <NEW_LINE> param.grad += reg_grad <NEW_LINE> <DEDENT> return loss <NEW_LINE> <DEDENT> def predict(self, X): <NEW_LINE> <INDENT> pred = np.zeros(X.shape[0], np.int) <NEW_LINE> pred = np.argmax(softmax(self.fcl2.forward(self.relu.forward(self.fcl1.forward(X)))), 1) <NEW_LINE> return pred <NEW_LINE> <DEDENT> def params(self): <NEW_LINE> <INDENT> result = {"W1": self.w1, "W2": self.w2, "B1": self.b1, "B2": self.b2} <NEW_LINE> return result | Neural network with two fully connected layers | 62599065442bda511e95d902 |
class RGetopt(RPackage): <NEW_LINE> <INDENT> homepage = "https://github.com/trevorld/getopt" <NEW_LINE> url = "https://cloud.r-project.org/src/contrib/getopt_1.20.1.tar.gz" <NEW_LINE> list_url = "https://cloud.r-project.org/src/contrib/Archive/getopt" <NEW_LINE> version('1.20.3', sha256='531f5fdfdcd6b96a73df2b39928418de342160ac1b0043861e9ea844f9fbf57f') <NEW_LINE> version('1.20.2', sha256='3d6c12d32d6cd4b2909be626e570e158b3ed960e4739510e3a251e7f172de38e') <NEW_LINE> version('1.20.1', sha256='1522c35b13e8546979725a68b75e3bc9d156fb06569067472405f6b8591d8654') | Package designed to be used with Rscript to write "#!" shebang scripts
that accept short and long flags/options. Many users will prefer using
instead the packages optparse or argparse which add extra features like
automatically generated help option and usage, support for default
values, positional argument support, etc. | 6259906545492302aabfdc2d |
class ReadResult(object): <NEW_LINE> <INDENT> def __init__(self, value=None, vector_clock=None,): <NEW_LINE> <INDENT> self.value = value <NEW_LINE> self.vector_clock = vector_clock <NEW_LINE> <DEDENT> def read(self, iprot): <NEW_LINE> <INDENT> if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: <NEW_LINE> <INDENT> iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) <NEW_LINE> return <NEW_LINE> <DEDENT> iprot.readStructBegin() <NEW_LINE> while True: <NEW_LINE> <INDENT> (fname, ftype, fid) = iprot.readFieldBegin() <NEW_LINE> if ftype == TType.STOP: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> if fid == 1: <NEW_LINE> <INDENT> if ftype == TType.STRING: <NEW_LINE> <INDENT> self.value = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> iprot.skip(ftype) <NEW_LINE> <DEDENT> <DEDENT> elif fid == 2: <NEW_LINE> <INDENT> if ftype == TType.MAP: <NEW_LINE> <INDENT> self.vector_clock = {} <NEW_LINE> (_ktype1, _vtype2, _size0) = iprot.readMapBegin() <NEW_LINE> for _i4 in range(_size0): <NEW_LINE> <INDENT> _key5 = iprot.readI32() <NEW_LINE> _val6 = iprot.readI32() <NEW_LINE> self.vector_clock[_key5] = _val6 <NEW_LINE> <DEDENT> iprot.readMapEnd() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> iprot.skip(ftype) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> iprot.skip(ftype) <NEW_LINE> <DEDENT> iprot.readFieldEnd() <NEW_LINE> <DEDENT> iprot.readStructEnd() <NEW_LINE> <DEDENT> def write(self, oprot): <NEW_LINE> <INDENT> if oprot._fast_encode is not None and self.thrift_spec is not None: <NEW_LINE> <INDENT> oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) <NEW_LINE> return <NEW_LINE> <DEDENT> oprot.writeStructBegin('ReadResult') <NEW_LINE> if self.value is not None: <NEW_LINE> <INDENT> oprot.writeFieldBegin('value', TType.STRING, 1) <NEW_LINE> oprot.writeString(self.value.encode('utf-8') if sys.version_info[0] == 2 else self.value) <NEW_LINE> oprot.writeFieldEnd() <NEW_LINE> <DEDENT> if self.vector_clock is not None: <NEW_LINE> <INDENT> oprot.writeFieldBegin('vector_clock', TType.MAP, 2) <NEW_LINE> oprot.writeMapBegin(TType.I32, TType.I32, len(self.vector_clock)) <NEW_LINE> for kiter7, viter8 in self.vector_clock.items(): <NEW_LINE> <INDENT> oprot.writeI32(kiter7) <NEW_LINE> oprot.writeI32(viter8) <NEW_LINE> <DEDENT> oprot.writeMapEnd() <NEW_LINE> oprot.writeFieldEnd() <NEW_LINE> <DEDENT> oprot.writeFieldStop() <NEW_LINE> oprot.writeStructEnd() <NEW_LINE> <DEDENT> def validate(self): <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> def __repr__(self): <NEW_LINE> <INDENT> L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] <NEW_LINE> return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) <NEW_LINE> <DEDENT> def __eq__(self, other): <NEW_LINE> <INDENT> return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ <NEW_LINE> <DEDENT> def __ne__(self, other): <NEW_LINE> <INDENT> return not (self == other) | Attributes:
- value
- vector_clock | 62599065d268445f2663a705 |
class NyRemoveGroupRoleEvent(object): <NEW_LINE> <INDENT> implements(INyRemoveGroupRoleEvent) <NEW_LINE> def __init__(self, context, group, roles): <NEW_LINE> <INDENT> super(NyRemoveGroupRoleEvent, self).__init__() <NEW_LINE> self.context, self.group, self.roles = context, group, roles | Group roles will be removed | 6259906566673b3332c31b4e |
class Tag(Base): <NEW_LINE> <INDENT> name = Column(String(64), unique = False, nullable = False) <NEW_LINE> opportunities = relationship('Opportunity', secondary = tags, back_populates = 'tags') <NEW_LINE> users_following = relationship('User', secondary = tags_following, back_populates = 'tags_following') <NEW_LINE> def __repr__(self): <NEW_LINE> <INDENT> return '<Tag ID: %d>' % self.id | Tag model to store a tag for an opportunity | 62599065d7e4931a7ef3d72e |
class Match(object): <NEW_LINE> <INDENT> def __init__(self, match_results): <NEW_LINE> <INDENT> if match_results.shape.ndims != 1: <NEW_LINE> <INDENT> raise ValueError('match_results should have rank 1') <NEW_LINE> <DEDENT> if match_results.dtype != tf.int32: <NEW_LINE> <INDENT> raise ValueError('match_results should be an int32 or int64 scalar ' 'tensor') <NEW_LINE> <DEDENT> self._match_results = match_results <NEW_LINE> <DEDENT> @property <NEW_LINE> def match_results(self): <NEW_LINE> <INDENT> return self._match_results <NEW_LINE> <DEDENT> def matched_column_indices(self): <NEW_LINE> <INDENT> return self._reshape_and_cast(tf.where(tf.greater(self._match_results, -1))) <NEW_LINE> <DEDENT> def matched_column_indicator(self): <NEW_LINE> <INDENT> return tf.greater_equal(self._match_results, 0) <NEW_LINE> <DEDENT> def num_matched_columns(self): <NEW_LINE> <INDENT> return tf.size(input=self.matched_column_indices()) <NEW_LINE> <DEDENT> def unmatched_column_indices(self): <NEW_LINE> <INDENT> return self._reshape_and_cast(tf.where(tf.equal(self._match_results, -1))) <NEW_LINE> <DEDENT> def unmatched_column_indicator(self): <NEW_LINE> <INDENT> return tf.equal(self._match_results, -1) <NEW_LINE> <DEDENT> def num_unmatched_columns(self): <NEW_LINE> <INDENT> return tf.size(input=self.unmatched_column_indices()) <NEW_LINE> <DEDENT> def ignored_column_indices(self): <NEW_LINE> <INDENT> return self._reshape_and_cast(tf.where(self.ignored_column_indicator())) <NEW_LINE> <DEDENT> def ignored_column_indicator(self): <NEW_LINE> <INDENT> return tf.equal(self._match_results, -2) <NEW_LINE> <DEDENT> def num_ignored_columns(self): <NEW_LINE> <INDENT> return tf.size(input=self.ignored_column_indices()) <NEW_LINE> <DEDENT> def unmatched_or_ignored_column_indices(self): <NEW_LINE> <INDENT> return self._reshape_and_cast(tf.where(tf.greater(0, self._match_results))) <NEW_LINE> <DEDENT> def matched_row_indices(self): <NEW_LINE> <INDENT> return self._reshape_and_cast( tf.gather(self._match_results, self.matched_column_indices())) <NEW_LINE> <DEDENT> def _reshape_and_cast(self, t): <NEW_LINE> <INDENT> return tf.cast(tf.reshape(t, [-1]), tf.int32) <NEW_LINE> <DEDENT> def gather_based_on_match(self, input_tensor, unmatched_value, ignored_value): <NEW_LINE> <INDENT> input_tensor = tf.concat([tf.stack([ignored_value, unmatched_value]), input_tensor], axis=0) <NEW_LINE> gather_indices = tf.maximum(self.match_results + 2, 0) <NEW_LINE> gathered_tensor = tf.gather(input_tensor, gather_indices) <NEW_LINE> return gathered_tensor | Class to store results from the matcher.
This class is used to store the results from the matcher. It provides
convenient methods to query the matching results. | 62599065cb5e8a47e493cd2d |
class CsvContainer(object): <NEW_LINE> <INDENT> def __init__(self): <NEW_LINE> <INDENT> self._name = '' <NEW_LINE> self._telephone = None <NEW_LINE> reload(sys) <NEW_LINE> sys.setdefaultencoding("utf-8") <NEW_LINE> <DEDENT> @property <NEW_LINE> def name(self): <NEW_LINE> <INDENT> return self._name <NEW_LINE> <DEDENT> @name.setter <NEW_LINE> def name(self, val): <NEW_LINE> <INDENT> self._name = str(val) <NEW_LINE> <DEDENT> @property <NEW_LINE> def telephone(self): <NEW_LINE> <INDENT> return self._telephone <NEW_LINE> <DEDENT> @telephone.setter <NEW_LINE> def telephone(self, val): <NEW_LINE> <INDENT> self._telephone = val | CSVの定形フォーマットで保持するクラス | 625990653539df3088ecd9f0 |
class PkgStatus(BASE): <NEW_LINE> <INDENT> __tablename__ = 'pkg_status' <NEW_LINE> status = sa.Column(sa.String(50), primary_key=True) <NEW_LINE> def __init__(self, status): <NEW_LINE> <INDENT> self.status = status <NEW_LINE> <DEDENT> @classmethod <NEW_LINE> def all_txt(cls, session): <NEW_LINE> <INDENT> return [ item.status for item in session.query(cls).order_by(cls.status).all()] | Table storing the statuses a package can have. | 6259906556b00c62f0fb401f |
class GitPathTool(object): <NEW_LINE> <INDENT> _cwd = None <NEW_LINE> _root = None <NEW_LINE> @classmethod <NEW_LINE> def set_cwd(cls, cwd): <NEW_LINE> <INDENT> if isinstance(cwd, six.binary_type): <NEW_LINE> <INDENT> cwd = cwd.decode(sys.getdefaultencoding()) <NEW_LINE> <DEDENT> cls._cwd = cwd <NEW_LINE> cls._root = cls._git_root() <NEW_LINE> <DEDENT> @classmethod <NEW_LINE> def relative_path(cls, git_diff_path): <NEW_LINE> <INDENT> root_rel_path = os.path.relpath(cls._cwd, cls._root) <NEW_LINE> rel_path = os.path.relpath(git_diff_path, root_rel_path) <NEW_LINE> return rel_path <NEW_LINE> <DEDENT> @classmethod <NEW_LINE> def absolute_path(cls, src_path): <NEW_LINE> <INDENT> return os.path.join(cls._root, src_path) <NEW_LINE> <DEDENT> @classmethod <NEW_LINE> def _git_root(cls): <NEW_LINE> <INDENT> command = ['git', 'rev-parse', '--show-toplevel', '--encoding=utf-8'] <NEW_LINE> git_root = execute(command)[0] <NEW_LINE> return git_root.split('\n')[0] if git_root else u'' | Converts `git diff` paths to absolute paths or relative paths to cwd.
This class should be used throughout the project to change paths from
the paths yielded by `git diff` to correct project paths | 625990655166f23b2e244b22 |
class _LSE(ABC): <NEW_LINE> <INDENT> @abstractmethod <NEW_LINE> def solve(self, coeficients, results): <NEW_LINE> <INDENT> ... | Interface for Least Square Estimation methods | 625990652ae34c7f260ac839 |
class VolumeAttachment(BASE, CinderBase): <NEW_LINE> <INDENT> __tablename__ = 'volume_attachment' <NEW_LINE> id = sa.Column(sa.String(36), primary_key=True) <NEW_LINE> volume_id = sa.Column( sa.String(36), sa.ForeignKey('volumes.id'), nullable=False, index=True ) <NEW_LINE> volume = relationship( Volume, backref="volume_attachment", foreign_keys=volume_id, primaryjoin='and_(' 'VolumeAttachment.volume_id == Volume.id,' 'VolumeAttachment.deleted == False)', ) <NEW_LINE> instance_uuid = sa.Column(sa.String(36)) <NEW_LINE> attached_host = sa.Column(sa.String(255)) <NEW_LINE> mountpoint = sa.Column(sa.String(255)) <NEW_LINE> attach_time = sa.Column(sa.DateTime) <NEW_LINE> detach_time = sa.Column(sa.DateTime) <NEW_LINE> attach_status = sa.Column(sa.String(255)) <NEW_LINE> attach_mode = sa.Column(sa.String(36)) <NEW_LINE> connection_info = sa.Column(sa.Text) <NEW_LINE> connector = sa.Column(sa.Text) <NEW_LINE> @staticmethod <NEW_LINE> def delete_values(): <NEW_LINE> <INDENT> now = timeutils.utcnow() <NEW_LINE> return {'deleted': True, 'deleted_at': now, 'attach_status': 'detached', 'detach_time': now} | Represents a volume attachment for a vm. | 625990652ae34c7f260ac83a |
class CountingAI(AIMixin): <NEW_LINE> <INDENT> ... | Representation
==============
Count number of pieces of all players in each megatile. Use the representation
of the megatile the AI should play in linked to the number of pieces in the
other megatiles as a key to learn.
E.g. (this is probably an illegal board)
| | | | | | | |
-+-+- | -+-+- | -+-+-
X| |X | |O| | |O|
-+-+- | -+-+- | -+-+-
|X| | |X| | |O|
| |
------+-------+------
| |
X| | | O|O|X | | |
-+-+- | -+-+- | -+-+-
| |X | |X|O | O| |
-+-+- | -+-+- | -+-+-
| | | O| | | | |
| |
------+-------+------
|+-----+|
| | || | | || | |
-+-+- ||-+-+-|| -+-+-
| | || |O| || | |
-+-+- ||-+-+-|| -+-+-
| |X ||X| | || |O|
+-----+ ^
^ ^ O's last move
^ X's next move
Will be represented something like:
| |
| |
3 0|1 1|0 2
-----+-----+-----
| |
| O |
2 0|2 4|0 1
-----+-----+-----
| |
X | |
1 0|1 1|0 1
This will result in (10!) ** 9 * 3 ** 9 =about 10 ** 63 possibilities,
which renders it quite impossible to use.
Learning
========
during the game:
If a board hasn't been encountered before, each of the nine cells will
get a certain initial value.
A weighted random choice is made between the cells
and is saved to the history of this game (i.e. a board with a choice
will be saved).
If the game ends in a victory:
all choices will be "rewarded" by increasing the value assigned to that
choice.
If the game end in a loss:
all choices will be "punished" by decreasing the value assigned to that
choice.
If the game is a draw:
I have no idea what works best yet. | 62599065aad79263cf42ff0f |
class StorageVolumeManager(BaseManager): <NEW_LINE> <INDENT> def __init__(self, storage_group): <NEW_LINE> <INDENT> query_props = [ 'name', 'fulfillment-state', 'maximum-size', 'minimum-size', 'usage', ] <NEW_LINE> super(StorageVolumeManager, self).__init__( resource_class=StorageVolume, class_name=RC_STORAGE_VOLUME, session=storage_group.manager.session, parent=storage_group, base_uri='{}/storage-volumes'.format(storage_group.uri), oid_prop='element-id', uri_prop='element-uri', name_prop='name', query_props=query_props) <NEW_LINE> <DEDENT> @property <NEW_LINE> def storage_group(self): <NEW_LINE> <INDENT> return self._parent <NEW_LINE> <DEDENT> @logged_api_call <NEW_LINE> def list(self, full_properties=False, filter_args=None): <NEW_LINE> <INDENT> resource_obj_list = [] <NEW_LINE> resource_obj = self._try_optimized_lookup(filter_args) <NEW_LINE> if resource_obj: <NEW_LINE> <INDENT> resource_obj_list.append(resource_obj) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> query_parms, client_filters = divide_filter_args( self._query_props, filter_args) <NEW_LINE> resources_name = 'storage-volumes' <NEW_LINE> uri = '{}/{}{}'.format(self.storage_group.uri, resources_name, query_parms) <NEW_LINE> result = self.session.get(uri) <NEW_LINE> if result: <NEW_LINE> <INDENT> props_list = result[resources_name] <NEW_LINE> for props in props_list: <NEW_LINE> <INDENT> resource_obj = self.resource_class( manager=self, uri=props[self._uri_prop], name=props.get(self._name_prop, None), properties=props) <NEW_LINE> if matches_filters(resource_obj, client_filters): <NEW_LINE> <INDENT> resource_obj_list.append(resource_obj) <NEW_LINE> if full_properties: <NEW_LINE> <INDENT> resource_obj.pull_full_properties() <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> <DEDENT> self._name_uri_cache.update_from(resource_obj_list) <NEW_LINE> return resource_obj_list <NEW_LINE> <DEDENT> @logged_api_call <NEW_LINE> def create(self, properties, email_to_addresses=None, email_cc_addresses=None, email_insert=None): <NEW_LINE> <INDENT> volreq_obj = copy.deepcopy(properties) <NEW_LINE> volreq_obj['operation'] = 'create' <NEW_LINE> body = { 'storage-volumes': [volreq_obj], } <NEW_LINE> if email_to_addresses: <NEW_LINE> <INDENT> body['email-to-addresses'] = email_to_addresses <NEW_LINE> if email_cc_addresses: <NEW_LINE> <INDENT> body['email-cc-addresses'] = email_cc_addresses <NEW_LINE> <DEDENT> if email_insert: <NEW_LINE> <INDENT> body['email-insert'] = email_insert <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> if email_cc_addresses: <NEW_LINE> <INDENT> raise ValueError("email_cc_addresses must not be specified if " "there is no email_to_addresses: %r" % email_cc_addresses) <NEW_LINE> <DEDENT> if email_insert: <NEW_LINE> <INDENT> raise ValueError("email_insert must not be specified if " "there is no email_to_addresses: %r" % email_insert) <NEW_LINE> <DEDENT> <DEDENT> result = self.session.post( self.storage_group.uri + '/operations/modify', body=body) <NEW_LINE> uri = result['element-uris'][0] <NEW_LINE> storage_volume = self.resource_object(uri, properties) <NEW_LINE> return storage_volume | Manager providing access to the :term:`storage volumes <storage volume>`
in a particular :term:`storage group`.
Derived from :class:`~zhmcclient.BaseManager`; see there for common methods
and attributes.
Objects of this class are not directly created by the user; they are
accessible via the following instance variable of a
:class:`~zhmcclient.StorageGroup` object:
* :attr:`~zhmcclient.StorageGroup.storage_volumes` | 625990657047854f46340b06 |
@six.add_metaclass(ABCMeta) <NEW_LINE> class Protocol(object): <NEW_LINE> <INDENT> @abstractmethod <NEW_LINE> def data_received(self, data): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> @abstractmethod <NEW_LINE> def connection_made(self): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> @abstractmethod <NEW_LINE> def connection_lost(self, reason): <NEW_LINE> <INDENT> pass | Interface for various protocols.
Protocol usually encloses a transport/connection/socket to
peer/client/server and encodes and decodes communication/messages. Protocol
can also maintain any related state machine, protocol message encoding or
decoding utilities. This interface identifies minimum methods to support to
facilitate or provide hooks to sub-classes to override behavior as
appropriate. | 62599065f548e778e596ccdc |
class MetricDefinition(msrest.serialization.Model): <NEW_LINE> <INDENT> _attribute_map = { 'resource_id': {'key': 'resourceId', 'type': 'str'}, 'resource_uri': {'key': 'resourceUri', 'type': 'str'}, 'name': {'key': 'name', 'type': 'LocalizableString'}, 'category': {'key': 'category', 'type': 'str'}, 'unit': {'key': 'unit', 'type': 'str'}, 'start_time': {'key': 'startTime', 'type': 'iso-8601'}, 'end_time': {'key': 'endTime', 'type': 'iso-8601'}, 'primary_aggregation_type': {'key': 'primaryAggregationType', 'type': 'str'}, 'supported_aggregation_types': {'key': 'supportedAggregationTypes', 'type': '[str]'}, 'metric_availabilities': {'key': 'metricAvailabilities', 'type': '[MetricAvailability]'}, 'id': {'key': 'id', 'type': 'str'}, } <NEW_LINE> def __init__( self, *, resource_id: Optional[str] = None, resource_uri: Optional[str] = None, name: Optional["LocalizableString"] = None, category: Optional[str] = None, unit: Optional[Union[str, "Unit"]] = None, start_time: Optional[datetime.datetime] = None, end_time: Optional[datetime.datetime] = None, primary_aggregation_type: Optional[Union[str, "AggregationType"]] = None, supported_aggregation_types: Optional[List[Union[str, "AggregationType"]]] = None, metric_availabilities: Optional[List["MetricAvailability"]] = None, id: Optional[str] = None, **kwargs ): <NEW_LINE> <INDENT> super(MetricDefinition, self).__init__(**kwargs) <NEW_LINE> self.resource_id = resource_id <NEW_LINE> self.resource_uri = resource_uri <NEW_LINE> self.name = name <NEW_LINE> self.category = category <NEW_LINE> self.unit = unit <NEW_LINE> self.start_time = start_time <NEW_LINE> self.end_time = end_time <NEW_LINE> self.primary_aggregation_type = primary_aggregation_type <NEW_LINE> self.supported_aggregation_types = supported_aggregation_types <NEW_LINE> self.metric_availabilities = metric_availabilities <NEW_LINE> self.id = id | Metric definition class specifies the metadata for a metric.
:param resource_id: The resource identifier of the resource that emitted the metric.
:type resource_id: str
:param resource_uri: The resource identifier of the resource that emitted the metric.
:type resource_uri: str
:param name: the name and the display name of the metric, i.e. it is a localizable string.
:type name: ~$(python-base-namespace).v2015_07_01.models.LocalizableString
:param category: The category of this metric.
:type category: str
:param unit: the unit of the metric. Possible values include: "Count", "Bytes", "Seconds",
"CountPerSecond", "BytesPerSecond", "Percent", "MilliSeconds".
:type unit: str or ~$(python-base-namespace).v2015_07_01.models.Unit
:param start_time: Start time of the metadata request timespan.
:type start_time: ~datetime.datetime
:param end_time: End time of the metadata request timespan.
:type end_time: ~datetime.datetime
:param primary_aggregation_type: the primary aggregation type value defining how to use the
values for display. Possible values include: "None", "Average", "Count", "Minimum", "Maximum",
"Total".
:type primary_aggregation_type: str or
~$(python-base-namespace).v2015_07_01.models.AggregationType
:param supported_aggregation_types: List of all aggregations that are applicable for this
metric.
:type supported_aggregation_types: list[str or
~$(python-base-namespace).v2015_07_01.models.AggregationType]
:param metric_availabilities: the collection of what aggregation intervals are available to be
queried.
:type metric_availabilities:
list[~$(python-base-namespace).v2015_07_01.models.MetricAvailability]
:param id: the resource identifier of the metric definition.
:type id: str | 625990657c178a314d78e795 |
class Guild: <NEW_LINE> <INDENT> @classmethod <NEW_LINE> async def convert(cls, ctx, arg): <NEW_LINE> <INDENT> guild = None <NEW_LINE> if arg.isdigit(): <NEW_LINE> <INDENT> guild = ctx.bot.get_guild(int(arg)) <NEW_LINE> <DEDENT> if not guild: <NEW_LINE> <INDENT> guild = ctx.bot.find_guild(arg) <NEW_LINE> <DEDENT> return guild | Convert Guild object by ID or name.
Returns
--------
:class:`discord.Guild` | 62599065fff4ab517ebcef6e |
class QueryInputSet(InputSet): <NEW_LINE> <INDENT> def set_Components(self, value): <NEW_LINE> <INDENT> super(QueryInputSet, self)._set_input('Components', value) <NEW_LINE> <DEDENT> def set_SetID(self, value): <NEW_LINE> <INDENT> super(QueryInputSet, self)._set_input('SetID', value) | An InputSet with methods appropriate for specifying the inputs to the Query
Choreo. The InputSet object is used to specify input parameters when executing this Choreo. | 6259906532920d7e50bc7799 |
class C51ClassicControlPreset(Preset): <NEW_LINE> <INDENT> def __init__(self, env, name, device, **hyperparameters): <NEW_LINE> <INDENT> super().__init__(name, device, hyperparameters) <NEW_LINE> self.model = hyperparameters['model_constructor'](env, atoms=hyperparameters['atoms']).to(device) <NEW_LINE> self.n_actions = env.action_space.n <NEW_LINE> <DEDENT> def agent(self, writer=DummyWriter(), train_steps=float('inf')): <NEW_LINE> <INDENT> optimizer = Adam(self.model.parameters(), lr=self.hyperparameters['lr']) <NEW_LINE> q = QDist( self.model, optimizer, self.n_actions, self.hyperparameters['atoms'], v_min=self.hyperparameters['v_min'], v_max=self.hyperparameters['v_max'], target=FixedTarget(self.hyperparameters['target_update_frequency']), writer=writer, ) <NEW_LINE> replay_buffer = ExperienceReplayBuffer( self.hyperparameters['replay_buffer_size'], device=self.device ) <NEW_LINE> return C51( q, replay_buffer, exploration=LinearScheduler( self.hyperparameters['initial_exploration'], self.hyperparameters['final_exploration'], 0, self.hyperparameters["final_exploration_step"] - self.hyperparameters["replay_start_size"], name="epsilon", writer=writer, ), discount_factor=self.hyperparameters["discount_factor"], minibatch_size=self.hyperparameters["minibatch_size"], replay_start_size=self.hyperparameters["replay_start_size"], update_frequency=self.hyperparameters["update_frequency"], writer=writer ) <NEW_LINE> <DEDENT> def test_agent(self): <NEW_LINE> <INDENT> q_dist = QDist( copy.deepcopy(self.model), None, self.n_actions, self.hyperparameters['atoms'], v_min=self.hyperparameters['v_min'], v_max=self.hyperparameters['v_max'], ) <NEW_LINE> return C51TestAgent(q_dist, self.n_actions, self.hyperparameters["test_exploration"]) | Categorical DQN (C51) Atari preset.
Args:
env (all.environments.AtariEnvironment): The environment for which to construct the agent.
name (str): A human-readable name for the preset.
device (torch.device): The device on which to load the agent.
Keyword Args:
discount_factor (float): Discount factor for future rewards.
lr (float): Learning rate for the Adam optimizer.
minibatch_size (int): Number of experiences to sample in each training update.
update_frequency (int): Number of timesteps per training update.
target_update_frequency (int): Number of timesteps between updates the target network.
replay_start_size (int): Number of experiences in replay buffer when training begins.
replay_buffer_size (int): Maximum number of experiences to store in the replay buffer.
initial_exploration (float): Initial probability of choosing a random action,
decayed over course of training.
final_exploration (float): Final probability of choosing a random action.
final_exploration_step (int): The step at which exploration decay is finished
test_exploration (float): The exploration rate of the test Agent
atoms (int): The number of atoms in the categorical distribution used to represent
the distributional value function.
v_min (int): The expected return corresponding to the smallest atom.
v_max (int): The expected return correspodning to the larget atom.
model_constructor (function): The function used to construct the neural model. | 62599065009cb60464d02c8b |
class WHavenSpider: <NEW_LINE> <INDENT> def __init__(self,topic_url): <NEW_LINE> <INDENT> self.topic_url = topic_url <NEW_LINE> <DEDENT> def getHtml(self,url): <NEW_LINE> <INDENT> req = requests.get(url) <NEW_LINE> html = req.content <NEW_LINE> return html <NEW_LINE> <DEDENT> def selectPartlist(self,html): <NEW_LINE> <INDENT> soup = BeautifulSoup(html,'lxml') <NEW_LINE> part_list = soup.find('section',class_='thumb-listing-page').find("ul").find_all('a',class_='preview') <NEW_LINE> return part_list <NEW_LINE> <DEDENT> def selectImg(self,img_html): <NEW_LINE> <INDENT> img_soup = BeautifulSoup(img_html,'lxml') <NEW_LINE> img = img_soup.find('main').find('section',id='showcase').find("img")['src'] <NEW_LINE> img_url = 'https:' + img <NEW_LINE> return img_url <NEW_LINE> <DEDENT> def download(self,name,pic_html): <NEW_LINE> <INDENT> f = open("/home/lmile/Documents/DotaImg/"+name,'wb') <NEW_LINE> f.write(pic_html) <NEW_LINE> f.close <NEW_LINE> <DEDENT> def work(self): <NEW_LINE> <INDENT> topic_html = self.getHtml(self.topic_url) <NEW_LINE> for url in self.getTopic(topic_html): <NEW_LINE> <INDENT> html = self.getHtml(url) <NEW_LINE> part_list = self.selectPartlist(html) <NEW_LINE> for part in part_list: <NEW_LINE> <INDENT> page_url = part['href'] <NEW_LINE> page_html = self.getHtml(page_url) <NEW_LINE> img_url = self.selectImg(page_html) <NEW_LINE> name = img_url[-10:] <NEW_LINE> img_html = self.getHtml(img_url) <NEW_LINE> self.download(name,img_html) <NEW_LINE> print("==========%s图片下载完毕=========="%name) <NEW_LINE> <DEDENT> print("==========第%s页下载完毕=========="%url.rpartition('=')[-1]) <NEW_LINE> <DEDENT> <DEDENT> def getTopic(self,topic_html): <NEW_LINE> <INDENT> topic_soup = BeautifulSoup(topic_html,'lxml') <NEW_LINE> num_generator = topic_soup.h2.strings <NEW_LINE> num_list = list(num_generator) <NEW_LINE> num = num_list[-1].split(' ')[-1] <NEW_LINE> for i in range(1,int(num)): <NEW_LINE> <INDENT> topic_url = self.topic_url + 'page=' + str(i) <NEW_LINE> yield topic_url | 用于爬取WallHaven高清壁纸 | 625990650a50d4780f706969 |
class LyricMode(InputMode): <NEW_LINE> <INDENT> pass | A \lyricmode, \lyrics or \addlyrics expression. | 62599065097d151d1a2c27bf |
class AuthenticationError(Exception): <NEW_LINE> <INDENT> pass | Error authenticating | 625990658da39b475be0493c |
class AttributesEqual(Validator): <NEW_LINE> <INDENT> message = u"{a} and {b} must be equal." <NEW_LINE> def __init__(self, a, b): <NEW_LINE> <INDENT> self.a = a <NEW_LINE> self.b = b <NEW_LINE> <DEDENT> def validate(self, element, context): <NEW_LINE> <INDENT> if (not self.is_unusable(element) and getattr(element, self.a[1]).value == getattr(element, self.b[1]).value ): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> self.note_error( element, self.message, substitutions={"a": self.a[0], "b": self.b[0]} ) <NEW_LINE> return False | Validator that fails with :attr:`message` if two attributes of the value
are unequal.
Similar to :class:`ItemsEqual` the attributes are defined with the tuples
`a` and `b` each of which consists of two element in the form ``(label,
attribute_name)``. `attribute_name` is used to determine the attributes to
compare and the `label` is used for substitution in the message. | 625990654e4d562566373b5a |
class Context(object): <NEW_LINE> <INDENT> def __init__(self, handle_error): <NEW_LINE> <INDENT> print('__init__({})'.format(handle_error)) <NEW_LINE> self.handle_error = handle_error <NEW_LINE> <DEDENT> def __enter__(self): <NEW_LINE> <INDENT> print('__enter__()') <NEW_LINE> return self <NEW_LINE> <DEDENT> def __exit__(self, exc_type, exc_val, exc_tb): <NEW_LINE> <INDENT> print('__exit__({}, {}, {})'.format(exc_type, exc_val, exc_tb)) <NEW_LINE> if exc_type == ZeroDivisionError: <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return False | from Doug Hellmann, PyMOTW
http://pymotw.com/2/contextlib/#module-contextlib | 62599065a219f33f346c7f5a |
class InputReader(TokenReader): <NEW_LINE> <INDENT> def next_token(self): <NEW_LINE> <INDENT> return input() | Token reader that reads tokens from standard input. | 6259906501c39578d7f142de |
class InvalidMerchant(ValueError): <NEW_LINE> <INDENT> pass | Provided order belongs to a different merchant! | 625990651f5feb6acb16433f |
class ExtraUploadForm(UploadForm): <NEW_LINE> <INDENT> author_name = forms.CharField( label=_('Author name'), required=False, help_text=_('Leave empty for using currently logged in user.') ) <NEW_LINE> author_email = forms.EmailField( label=_('Author email'), required=False, help_text=_('Leave empty for using currently logged in user.') ) | Advanced upload form for users who can override authorship. | 62599065f548e778e596ccdd |
class pg_functions(functions): <NEW_LINE> <INDENT> class svg(BaseFunction): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> class kml(BaseFunction): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> class gml(BaseFunction): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> class geojson(BaseFunction): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> class expand(BaseFunction): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> class simplify(BaseFunction): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> class estimated_extent(BaseFunction): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> @staticmethod <NEW_LINE> def _within_distance(compiler, geom1, geom2, distance, *args): <NEW_LINE> <INDENT> return and_(func.ST_Expand(geom2, distance).op('&&')(geom1), func.ST_Expand(geom1, distance).op('&&')(geom2), func.ST_Distance(geom1, geom2) <= distance) | Functions only supported by PostGIS
| 625990652c8b7c6e89bd4f42 |
@command_lib.CommandRegexParser(r's ' r'/?(?:"(.+?)"|([\S]+))' r'/(?:"(.*?)"|([\S]*))' r'(?:/(.*?))?' r' ([\s\S]+?)') <NEW_LINE> class SubCommand(command_lib.BaseCommand): <NEW_LINE> <INDENT> @command_lib.MainChannelOnly <NEW_LINE> @command_lib.LimitPublicLines() <NEW_LINE> def _Handle(self, channel: Channel, user: str, multi_word_search: str, single_word_search: str, multi_word_replace: str, single_word_replace: str, options: str, message: str) -> hypecore.MessageType: <NEW_LINE> <INDENT> search_str = multi_word_search or single_word_search <NEW_LINE> replace_str = multi_word_replace or single_word_replace or '' <NEW_LINE> haystack = message.split('\n') <NEW_LINE> replies = [] <NEW_LINE> flags = 0 <NEW_LINE> if options and 'i' in options.lower(): <NEW_LINE> <INDENT> flags = re.IGNORECASE <NEW_LINE> <DEDENT> for stalk in haystack: <NEW_LINE> <INDENT> replies.append(re.sub(search_str, replace_str, stalk, flags=flags)) <NEW_LINE> <DEDENT> return replies | Substitute lines according to a pattern. | 625990654a966d76dd5f0649 |
class ReceiveSignal(QtCore.QObject): <NEW_LINE> <INDENT> sig_mqtt_message = QtCore.pyqtSignal(mqtt.MQTTMessage) | Why a whole new class? See here:
https://stackoverflow.com/a/25930966/2441026 | 62599065baa26c4b54d509f8 |
class ActionList(Receiver): <NEW_LINE> <INDENT> def __init__(self, actions=None): <NEW_LINE> <INDENT> if isinstance(actions, (str, dict)): <NEW_LINE> <INDENT> actions = [actions] <NEW_LINE> <DEDENT> self.actions = tuple(Action.make(a) for a in actions or ()) <NEW_LINE> <DEDENT> def set_project(self, project): <NEW_LINE> <INDENT> for a in self.actions: <NEW_LINE> <INDENT> a.set_project(project) <NEW_LINE> <DEDENT> <DEDENT> def receive(self, msg): <NEW_LINE> <INDENT> values = tuple(msg.values()) <NEW_LINE> for action in self.actions: <NEW_LINE> <INDENT> action.receive(values) <NEW_LINE> <DEDENT> <DEDENT> def __bool__(self): <NEW_LINE> <INDENT> return bool(self.actions) <NEW_LINE> <DEDENT> def __str__(self): <NEW_LINE> <INDENT> return ' + '.join(str(a) for a in self.actions) | A list of Actions. | 6259906576e4537e8c3f0cd6 |
class TvShow(Video): <NEW_LINE> <INDENT> VALID_RATINGS = ["TV-Y", "TV-Y7", "TV-G", "TV-PG", "TV-14", "TV-MA"] <NEW_LINE> def __init__(self, details): <NEW_LINE> <INDENT> Video.__init__(self, details) <NEW_LINE> self.seasons = details['seasons'] <NEW_LINE> self.network_url = details['network_url'] <NEW_LINE> self.rating = Video.get_rating(self, TvShow.VALID_RATINGS, details['rating']) | Holds and provides information on a Television show. | 62599065d7e4931a7ef3d72f |
class InitFromCheckpointHook(tf.estimator.SessionRunHook): <NEW_LINE> <INDENT> def __init__(self, model_dir, ckpt_to_init_from, vars_to_restore_fn=None): <NEW_LINE> <INDENT> self._ckpt = None if tf.train.latest_checkpoint( model_dir) else ckpt_to_init_from <NEW_LINE> self._vars_to_restore_fn = vars_to_restore_fn <NEW_LINE> <DEDENT> def begin(self): <NEW_LINE> <INDENT> if not self._ckpt: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> logging.info('%s will be used for initialization.', self._ckpt) <NEW_LINE> self._reset_step = None <NEW_LINE> if tf.train.get_global_step() is not None: <NEW_LINE> <INDENT> self._reset_step = tf.train.get_global_step().assign(0) <NEW_LINE> <DEDENT> if not self._vars_to_restore_fn: <NEW_LINE> <INDENT> logging.info( 'All variables will be initialized form the checkpoint.') <NEW_LINE> self._saver = tf.get_collection(tf.GraphKeys.SAVERS)[0] <NEW_LINE> return <NEW_LINE> <DEDENT> vars_to_restore = self._vars_to_restore_fn() <NEW_LINE> restored_vars_string = ( 'The following variables are to be initialized from the checkpoint:\n') <NEW_LINE> for ckpt_name in sorted(vars_to_restore): <NEW_LINE> <INDENT> restored_vars_string += '%s --> %s\n' % ( ckpt_name, vars_to_restore[ckpt_name].op.name) <NEW_LINE> <DEDENT> logging.info(restored_vars_string) <NEW_LINE> self._saver = tf.train.Saver(vars_to_restore) <NEW_LINE> <DEDENT> def after_create_session(self, session, coord): <NEW_LINE> <INDENT> del coord <NEW_LINE> if not self._ckpt: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> self._saver.restore(session, self._ckpt) <NEW_LINE> self._saver.restore(session, self._ckpt) <NEW_LINE> if self._reset_step is not None: <NEW_LINE> <INDENT> session.run(self._reset_step) | A hook for initializing training from a checkpoint.
Although the Estimator framework supports initialization from a checkpoint via
https://www.tensorflow.org/api_docs/python/tf/estimator/WarmStartSettings,
the only way to build mapping between the variables and the checkpoint names
is via providing a regex. This class provides the same functionality, but the
mapping can be built by a callback, which provides more flexibility and
readability. | 625990657b25080760ed888b |
class AvrStaticInfoMessage(AvrMessage): <NEW_LINE> <INDENT> def __init__(self, state): <NEW_LINE> <INDENT> super().__init__('static_info', {}, state) | An AvrMessage containing the static avr information | 62599065627d3e7fe0e085de |
class SpatialAnalysisOperationFocus(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): <NEW_LINE> <INDENT> CENTER = "center" <NEW_LINE> BOTTOM_CENTER = "bottomCenter" <NEW_LINE> FOOTPRINT = "footprint" | The operation focus type.
| 625990657c178a314d78e796 |
class UserCustomAction(BaseEntity): <NEW_LINE> <INDENT> @property <NEW_LINE> def client_side_component_id(self): <NEW_LINE> <INDENT> return self.properties.get("ClientSideComponentId", None) <NEW_LINE> <DEDENT> @property <NEW_LINE> def script_block(self): <NEW_LINE> <INDENT> return self.properties.get("ScriptBlock", None) <NEW_LINE> <DEDENT> @script_block.setter <NEW_LINE> def script_block(self, value): <NEW_LINE> <INDENT> self.set_property("ScriptBlock", value) <NEW_LINE> <DEDENT> @property <NEW_LINE> def script_src(self): <NEW_LINE> <INDENT> return self.properties.get("ScriptSrc", None) <NEW_LINE> <DEDENT> @script_src.setter <NEW_LINE> def script_src(self, value): <NEW_LINE> <INDENT> self.set_property("ScriptSrc", value) <NEW_LINE> <DEDENT> @property <NEW_LINE> def url(self): <NEW_LINE> <INDENT> return self.properties.get("Url", None) | Represents a custom action associated with a SharePoint list, Web site, or subsite. | 62599065fff4ab517ebcef70 |
class CustomerFollowUp(models.Model): <NEW_LINE> <INDENT> customer = models.ForeignKey("Customer", on_delete=models.CASCADE) <NEW_LINE> content = models.TextField(verbose_name="跟进内容") <NEW_LINE> consultant = models.ForeignKey("UserProfile", on_delete=models.CASCADE) <NEW_LINE> intention_choices = ((0, '2周内报名'), (1, '1个月内报名'), (2, '近期无报名计划'), (3, '已在其它机构报名'), (4, '已报名'), (5, '已拉黑'),) <NEW_LINE> intention = models.SmallIntegerField(choices=intention_choices) <NEW_LINE> date = models.DateTimeField(auto_now_add=True) <NEW_LINE> def __str__(self): <NEW_LINE> <INDENT> return "%s" %self.customer.qq <NEW_LINE> <DEDENT> class Meta: <NEW_LINE> <INDENT> verbose_name_plural="客户跟进表" | 客户跟进表 | 625990656e29344779b01da4 |
class BoreholeForm(ModelForm): <NEW_LINE> <INDENT> class Meta: <NEW_LINE> <INDENT> model = Borehole <NEW_LINE> fields = [ "borehole_reference", "borehole_northing", "borehole_easting", "ground_level", "drilling_equipment", "borehole_diameter" ] | Form for creating and updating borehole details. | 625990658e71fb1e983bd21a |
class Colorstr(str): <NEW_LINE> <INDENT> def __init__(self, msg): <NEW_LINE> <INDENT> self._msg = str(msg) <NEW_LINE> super().__init__() <NEW_LINE> <DEDENT> @staticmethod <NEW_LINE> def from_built_in_type(o: object): <NEW_LINE> <INDENT> return Colorstr(print(o, raw=True)) <NEW_LINE> <DEDENT> def __add__(self, other): <NEW_LINE> <INDENT> return Colorstr(str(self) + str(other)) <NEW_LINE> <DEDENT> def __radd__(self, other): <NEW_LINE> <INDENT> return Colorstr(str(other) + str(self)) <NEW_LINE> <DEDENT> def __mul__(self, other): <NEW_LINE> <INDENT> return Colorstr(super().__mul__(other)) <NEW_LINE> <DEDENT> def __rmul__(self, other): <NEW_LINE> <INDENT> return self.__mul__(other) | 带颜色的字符串类 | 62599065442bda511e95d904 |
class SkipTestException(TestException): <NEW_LINE> <INDENT> pass | Exception class for reporting skipped test cases. | 62599065009cb60464d02c8d |
class UpdateCommentV1(UpdateMessage): <NEW_LINE> <INDENT> body_schema = { 'id': f'{SCHEMA_URL}/v1/bodhi.update.comment#', '$schema': 'http://json-schema.org/draft-04/schema#', 'description': 'Schema for message sent when a comment is added to an update', 'type': 'object', 'properties': { 'comment': { 'type': 'object', 'description': 'The comment added to an update', 'properties': { 'karma': { 'type': 'integer', 'description': 'The karma associated with the comment', }, 'text': { 'type': 'string', 'description': 'The text of the comment', }, 'timestamp': { 'type': 'string', 'description': 'The timestamp that the comment was left on.' }, 'update': UpdateV1.schema(), 'user': UserV1.schema(), }, 'required': ['karma', 'text', 'timestamp', 'update', 'user'], }, }, 'required': ['comment'], 'definitions': { 'build': BuildV1.schema(), } } <NEW_LINE> topic = "bodhi.update.comment" <NEW_LINE> def __str__(self) -> str: <NEW_LINE> <INDENT> return self.body['comment']['text'] <NEW_LINE> <DEDENT> @property <NEW_LINE> def karma(self) -> int: <NEW_LINE> <INDENT> return self.body['comment']['karma'] <NEW_LINE> <DEDENT> @property <NEW_LINE> def summary(self) -> str: <NEW_LINE> <INDENT> return (f"{self.user.name} commented on bodhi update {self.update.alias} " f"(karma: {self.karma})") <NEW_LINE> <DEDENT> @property <NEW_LINE> def agent(self) -> str: <NEW_LINE> <INDENT> return self.user.name <NEW_LINE> <DEDENT> @property <NEW_LINE> def user(self) -> UserV1: <NEW_LINE> <INDENT> return UserV1(self.body['comment']['user']['name']) <NEW_LINE> <DEDENT> @property <NEW_LINE> def _update(self) -> dict: <NEW_LINE> <INDENT> return self.body['comment']['update'] | Sent when a comment is made on an update. | 62599065462c4b4f79dbd15b |
class State(Base): <NEW_LINE> <INDENT> __tablename__ = "states" <NEW_LINE> id = Column(Integer, nullable=False, primary_key=True) <NEW_LINE> name = Column(String(128), nullable=False) | State Class containing id and name definitions | 625990651f037a2d8b9e5415 |
class ListarEmpresasView(generics.ListAPIView): <NEW_LINE> <INDENT> serializer_class = ClienteSerializer <NEW_LINE> queryset = Cliente.objects.all() | Permite listar empresas. | 625990654f88993c371f10c9 |
class SubmissionTracker(object): <NEW_LINE> <INDENT> def __init__(self, analysis_client, task_completion=None): <NEW_LINE> <INDENT> self.__analysis_client = analysis_client <NEW_LINE> if not task_completion: <NEW_LINE> <INDENT> task_completion = TaskCompletion(analysis_client) <NEW_LINE> <DEDENT> self.__task_completion = task_completion <NEW_LINE> self.__tracked_uuids = set() <NEW_LINE> self.__min_timestamp = None <NEW_LINE> <DEDENT> @property <NEW_LINE> def min_timestamp(self): <NEW_LINE> <INDENT> return self.__min_timestamp <NEW_LINE> <DEDENT> @property <NEW_LINE> def num_tracked_uuids(self): <NEW_LINE> <INDENT> return len(self.__tracked_uuids) <NEW_LINE> <DEDENT> def get_tracked_uuids(self): <NEW_LINE> <INDENT> return set(self.__tracked_uuids) <NEW_LINE> <DEDENT> def track_submission(self, task_uuid, submission_utc_timestamp): <NEW_LINE> <INDENT> self.__tracked_uuids.add(task_uuid) <NEW_LINE> if self.__min_timestamp: <NEW_LINE> <INDENT> self.__min_timestamp = min( self.__min_timestamp, submission_utc_timestamp) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.__min_timestamp = submission_utc_timestamp <NEW_LINE> <DEDENT> <DEDENT> def get_completed(self): <NEW_LINE> <INDENT> if not self.__tracked_uuids: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> assert self.__min_timestamp is not None, "SubmissionTracker has no min_timestamp!" <NEW_LINE> after = self.__min_timestamp <NEW_LINE> before = self.__analysis_client.get_api_utc_timestamp() <NEW_LINE> for completed_task in self.__task_completion.get_completed(after, before): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> self.__tracked_uuids.remove(completed_task.task_uuid) <NEW_LINE> yield completed_task <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> self.__min_timestamp = before | Helper class to track the state of submissions until they're completed
:param analysis_client: analysis_apiclient.AnalysisClientBase
:param task_completion: analysis_apiclient.TaskCompletion or None
If not provided, will create one from the analysis_client.
Providing this parameter explicitly is mainly for testing.
- `track_submission()` is used to add the submission to the list of tasks
that we are keeping track of.
- `get_completed()` is used to get the results of tracked submissions
that have completed so far
Invocations of the two methods can be interleaved to add new tasks to keep
track of while others are still waiting to be completed. | 62599065a219f33f346c7f5b |
class PFDataset(Dataset): <NEW_LINE> <INDENT> def __init__(self, csv_file, training_image_path,output_size=(240,240),transform=None): <NEW_LINE> <INDENT> self.out_h, self.out_w = output_size <NEW_LINE> self.train_data = pd.read_csv(csv_file) <NEW_LINE> self.img_A_names = self.train_data.iloc[:,0] <NEW_LINE> self.img_B_names = self.train_data.iloc[:,1] <NEW_LINE> self.point_A_coords = self.train_data.iloc[:, 2:22].as_matrix().astype('float') <NEW_LINE> self.point_B_coords = self.train_data.iloc[:, 22:].as_matrix().astype('float') <NEW_LINE> self.training_image_path = training_image_path <NEW_LINE> self.transform = transform <NEW_LINE> self.affineTnf = GeometricTnf(out_h=self.out_h, out_w=self.out_w, use_cuda = False) <NEW_LINE> <DEDENT> def __len__(self): <NEW_LINE> <INDENT> return len(self.train_data) <NEW_LINE> <DEDENT> def __getitem__(self, idx): <NEW_LINE> <INDENT> image_A,im_size_A = self.get_image(self.img_A_names,idx) <NEW_LINE> image_B,im_size_B = self.get_image(self.img_B_names,idx) <NEW_LINE> point_A_coords = self.get_points(self.point_A_coords,idx) <NEW_LINE> point_B_coords = self.get_points(self.point_B_coords,idx) <NEW_LINE> L_pck = torch.FloatTensor([torch.max(point_A_coords.max(1)[0]-point_A_coords.min(1)[0])]) <NEW_LINE> sample = {'source_image': image_A, 'target_image': image_B, 'source_im_size': im_size_A, 'target_im_size': im_size_B, 'source_points': point_A_coords, 'target_points': point_B_coords, 'L_pck': L_pck} <NEW_LINE> if self.transform: <NEW_LINE> <INDENT> sample = self.transform(sample) <NEW_LINE> <DEDENT> return sample <NEW_LINE> <DEDENT> def get_image(self,img_name_list,idx): <NEW_LINE> <INDENT> img_name = os.path.join(self.training_image_path, img_name_list[idx]) <NEW_LINE> image = io.imread(img_name) <NEW_LINE> im_size = np.asarray(image.shape) <NEW_LINE> image = np.expand_dims(image.transpose((2,0,1)),0) <NEW_LINE> image = torch.Tensor(image.astype(np.float32)) <NEW_LINE> image_var = Variable(image,requires_grad=False) <NEW_LINE> image = self.affineTnf(image_var).data.squeeze(0) <NEW_LINE> im_size = torch.Tensor(im_size.astype(np.float32)) <NEW_LINE> return (image, im_size) <NEW_LINE> <DEDENT> def get_points(self,point_coords_list,idx): <NEW_LINE> <INDENT> point_coords = point_coords_list[idx, :].reshape(2,10) <NEW_LINE> point_coords = torch.Tensor(point_coords.astype(np.float32)) <NEW_LINE> return point_coords | Proposal Flow image pair dataset
Args:
csv_file (string): Path to the csv file with image names and transformations.
training_image_path (string): Directory with the images.
output_size (2-tuple): Desired output size
transform (callable): Transformation for post-processing the training pair (eg. image normalization)
| 62599065435de62698e9d55e |
class TCPServer(socketserver.ForkingTCPServer): <NEW_LINE> <INDENT> def server_bind(self): <NEW_LINE> <INDENT> self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) <NEW_LINE> self.socket.bind(self.server_address) | Our server with custom server_bind() | 62599065ac7a0e7691f73c3a |
class InlineResponse20012(object): <NEW_LINE> <INDENT> swagger_types = { 'params': 'InlineResponse20012Params' } <NEW_LINE> attribute_map = { 'params': 'params' } <NEW_LINE> def __init__(self, params=None): <NEW_LINE> <INDENT> self._params = None <NEW_LINE> self.discriminator = None <NEW_LINE> if params is not None: <NEW_LINE> <INDENT> self.params = params <NEW_LINE> <DEDENT> <DEDENT> @property <NEW_LINE> def params(self): <NEW_LINE> <INDENT> return self._params <NEW_LINE> <DEDENT> @params.setter <NEW_LINE> def params(self, params): <NEW_LINE> <INDENT> self._params = params <NEW_LINE> <DEDENT> def to_dict(self): <NEW_LINE> <INDENT> result = {} <NEW_LINE> for attr, _ in six.iteritems(self.swagger_types): <NEW_LINE> <INDENT> value = getattr(self, attr) <NEW_LINE> if isinstance(value, list): <NEW_LINE> <INDENT> result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) <NEW_LINE> <DEDENT> elif hasattr(value, "to_dict"): <NEW_LINE> <INDENT> result[attr] = value.to_dict() <NEW_LINE> <DEDENT> elif isinstance(value, dict): <NEW_LINE> <INDENT> result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> result[attr] = value <NEW_LINE> <DEDENT> <DEDENT> return result <NEW_LINE> <DEDENT> def to_str(self): <NEW_LINE> <INDENT> return pprint.pformat(self.to_dict()) <NEW_LINE> <DEDENT> def __repr__(self): <NEW_LINE> <INDENT> return self.to_str() <NEW_LINE> <DEDENT> def __eq__(self, other): <NEW_LINE> <INDENT> if not isinstance(other, InlineResponse20012): <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> return self.__dict__ == other.__dict__ <NEW_LINE> <DEDENT> def __ne__(self, other): <NEW_LINE> <INDENT> return not self == other | NOTE: This class is auto generated by the swagger code generator program.
Do not edit the class manually. | 625990654e4d562566373b5d |
class DataSourceCSVSignal(DataSource): <NEW_LINE> <INDENT> def __init__(self, data, **kwargs): <NEW_LINE> <INDENT> assert isinstance(data, csv.DictReader) <NEW_LINE> self.data = data <NEW_LINE> self.source_id = kwargs.get("source_id", None) <NEW_LINE> self.start = kwargs.get('start') <NEW_LINE> self.end = kwargs.get('end') <NEW_LINE> self.sids = kwargs.get('sids', None) <NEW_LINE> self.sid_filter = kwargs.get('sid_filter', None) <NEW_LINE> self.arg_string = hash_args(data, **kwargs) <NEW_LINE> self._raw_data = None <NEW_LINE> <DEDENT> @property <NEW_LINE> def instance_hash(self): <NEW_LINE> <INDENT> return self.arg_string <NEW_LINE> <DEDENT> def raw_data_gen(self): <NEW_LINE> <INDENT> previous_ts = None <NEW_LINE> for row in self.data: <NEW_LINE> <INDENT> dt64 = pd.Timestamp(np.datetime64(row["dt"])) <NEW_LINE> ts = pd.Timestamp(dt64).tz_localize(self.tz_in).tz_convert('utc') <NEW_LINE> if ts < self.start or ts > self.end: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> if previous_ts is None or ts.date() != previous_ts.date(): <NEW_LINE> <INDENT> start_ts = gen_ts(ts.date(), self.start_time) <NEW_LINE> end_ts = gen_ts(ts.date(), self.end_time) <NEW_LINE> <DEDENT> volumes = {} <NEW_LINE> price_volumes = {} <NEW_LINE> sid = row["sid"] <NEW_LINE> if self.sid_filter and sid in self.sid_filter: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> elif self.sids is None or sid in self.sids: <NEW_LINE> <INDENT> if sid not in volumes: <NEW_LINE> <INDENT> volumes[sid] = 0 <NEW_LINE> price_volumes[sid] = 0 <NEW_LINE> <DEDENT> if ts < start_ts or ts > end_ts: <NEW_LINE> <INDENT> continue <NEW_LINE> event = {"sid": sid, "type": "CUSTOM", "dt": ts, "signal": row["signal"]} <NEW_LINE> yield event <NEW_LINE> <DEDENT> <DEDENT> previous_ts = ts <NEW_LINE> <DEDENT> <DEDENT> @property <NEW_LINE> def raw_data(self): <NEW_LINE> <INDENT> if not self._raw_data: <NEW_LINE> <INDENT> self._raw_data = self.raw_data_gen() <NEW_LINE> <DEDENT> return self._raw_data <NEW_LINE> <DEDENT> @property <NEW_LINE> def mapping(self): <NEW_LINE> <INDENT> return { 'sid': (lambda x: x, 'symbol'), 'dt': (lambda x: x, 'dt'), 'signal': (lambda x: x, 'signal'), } | expects dictReader for a csv file in form with header
dt, sid, signal
dt expected in ISO format | 62599065dd821e528d6da52c |
class ClusterProbabilityPrediction(ClusterPrediction): <NEW_LINE> <INDENT> def predict(self, test: pd.DataFrame) -> pd.DataFrame: <NEW_LINE> <INDENT> indx_clusters = [] <NEW_LINE> for i in range(self.n_clusters): <NEW_LINE> <INDENT> cluster = test.loc[self.clusters_test == i, :] <NEW_LINE> prediction = self.models[i].predict_proba(cluster.values) <NEW_LINE> indx_clusters.append((cluster.index, prediction)) <NEW_LINE> <DEDENT> nclasses = indx_cluster[0][1].shape[1] <NEW_LINE> dfs = [pd.DataFrame(p, index=indx_cluster, columns=[f'p_{i}' for i in range(nclasses)]) for indx_cluster, p in indx_clusters] <NEW_LINE> predictions = pd.concat(dfs).sort_index().values <NEW_LINE> return predictions | Predict the probability for each class using clustering | 6259906538b623060ffaa3fc |
class MissingConfigValue(Exception): <NEW_LINE> <INDENT> pass | General exception catch all for missing config values | 625990658a43f66fc4bf38e6 |
class EventList(object): <NEW_LINE> <INDENT> def __init__(self): <NEW_LINE> <INDENT> self.events = [] <NEW_LINE> <DEDENT> def add(self, event): <NEW_LINE> <INDENT> self.events.append(event) <NEW_LINE> <DEDENT> def unprocessed_events(self): <NEW_LINE> <INDENT> return [e for e in self.events if not e.is_processed] <NEW_LINE> <DEDENT> def process(self): <NEW_LINE> <INDENT> for event in self.unprocessed_events(): <NEW_LINE> <INDENT> event.process() | see http://martinfowler.com/eaaDev/AgreementDispatcher.html | 625990655166f23b2e244b26 |
class InvalidRequest(Exception): <NEW_LINE> <INDENT> pass | invalid request argument | 625990652ae34c7f260ac83d |
class Darker(Density): <NEW_LINE> <INDENT> _name = 'darker' <NEW_LINE> def __init__(self, override_name=None, bit_depth=8, max_output_value=None, eps=1e-5, data_mean=None): <NEW_LINE> <INDENT> Density.__init__(self, override_name=override_name, bit_depth=bit_depth, max_output_value=max_output_value, dmin=0, mmult=40, eps=eps, data_mean=data_mean) | The density remap using parameters for darker results. | 625990652ae34c7f260ac83e |
class EntityFieldsMetaClass(type): <NEW_LINE> <INDENT> def __new__(mcs, class_name, bases, class_attrs): <NEW_LINE> <INDENT> schema = class_attrs.get("_schema") <NEW_LINE> if schema: <NEW_LINE> <INDENT> for f_name, f in schema.fields.items(): <NEW_LINE> <INDENT> class_attrs[f_name] = EntityFieldDescriptor(f_name) <NEW_LINE> <DEDENT> <DEDENT> entity_methods = [] <NEW_LINE> for base in bases: <NEW_LINE> <INDENT> entity_methods.extend(getattr(base, "_entity_methods", [])) <NEW_LINE> <DEDENT> entity_methods.extend(class_attrs.get("_entity_methods", [])) <NEW_LINE> for m_name in entity_methods: <NEW_LINE> <INDENT> class_attrs[m_name] = ReadOnlyFieldDescriptor(m_name) <NEW_LINE> <DEDENT> return type.__new__(mcs, class_name, bases, class_attrs) | Magic: we take fields info from class._schema and attach EntityFieldDescriptor
to Resource classes | 62599065f548e778e596cce0 |
class LocalizedString(fields.String): <NEW_LINE> <INDENT> def format(self, value): <NEW_LINE> <INDENT> return fields.String.format(self, _(value)) | Custom LocalizedString to return localized strings | 625990657c178a314d78e797 |
class GroupPipelineSearch(): <NEW_LINE> <INDENT> __groupRank__ = {'CBC' :1, 'Burst':0, } <NEW_LINE> __pipelineRank__ = {'gstlal' :0, 'MBTAOnline' :0, 'pycbc' :0, 'gstlal-spiir':0, 'CWB' :0, 'LIB' :0, } <NEW_LINE> __searchRank__ = {'LowMass' :1, 'HighMass':1, 'AllSky' :1, '' :0, None :0, } <NEW_LINE> def __init__(self, group, pipeline, search=None): <NEW_LINE> <INDENT> self.group = group <NEW_LINE> if self.__groupRank__.has_key(group): <NEW_LINE> <INDENT> self.groupRank = self.__groupRank__[group] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.groupRank = -1 <NEW_LINE> <DEDENT> self.pipeline = pipeline <NEW_LINE> if self.__pipelineRank__.has_key(pipeline): <NEW_LINE> <INDENT> self.pipelineRank = self.__pipelineRank__[pipeline] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.pipelineRank = -1 <NEW_LINE> <DEDENT> self.search = search <NEW_LINE> if self.__searchRank__.has_key(search): <NEW_LINE> <INDENT> self.searchRank = self.__searchRank__[search] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.searchRank = -1 <NEW_LINE> <DEDENT> <DEDENT> def __str__(self): <NEW_LINE> <INDENT> return "%s, %s, %s : %d, %d, %d"%(self.group, self.pipeline, self.search, self.groupRank, self.pipelineRank, self.searchRank) <NEW_LINE> <DEDENT> def __repr__(self): <NEW_LINE> <INDENT> return str(self) <NEW_LINE> <DEDENT> def __eq__(self, other): <NEW_LINE> <INDENT> return (self.groupRank==other.groupRank) and (self.pipelineRank==other.pipelineRank) and (self.searchRank==other.searchRank) <NEW_LINE> <DEDENT> def __neq__(self, other): <NEW_LINE> <INDENT> return (not self==other) <NEW_LINE> <DEDENT> def __lt__(self, other): <NEW_LINE> <INDENT> if self.groupRank == other.groupRank: <NEW_LINE> <INDENT> if self.pipelineRank == other.pipelineRank: <NEW_LINE> <INDENT> return self.searchRank < other.searchRank <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return self.pipelineRank < other.pipelineRank <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> return self.groupRank < other.groupRank <NEW_LINE> <DEDENT> <DEDENT> def __gt__(self, other): <NEW_LINE> <INDENT> if self.groupRank == other.groupRank: <NEW_LINE> <INDENT> if self.pipelineRank == other.pipelineRank: <NEW_LINE> <INDENT> return self.searchRank > other.searchRank <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return self.pipelineRank > other.pipelineRank <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> return self.groupRank > other.groupRank <NEW_LINE> <DEDENT> <DEDENT> def __ge__(self, other): <NEW_LINE> <INDENT> return (not self < other) <NEW_LINE> <DEDENT> def __le__(self, other): <NEW_LINE> <INDENT> return (not self > other) | a simple wrapper for the group_pipeline_search combinations that knows how to compare them and find a preference
this is done by mapping group, pipeline, search combinations into integers and then comparing the integers
NOTE: bigger things are more preferred and the relative ranking is hard coded into immutable attributes of this class
comparison is done first by group. If that is inconclusive, we then compare pipelines. If that is inconclusive, we then check search.
we prefer:
cbc over burst
no pipeline is prefered
events with 'search' specified are preferred over events without 'search' specified
WARNING: if we do not know about a pariticular group, pipeline, or search, we assign a rank of -infty because we don't know about this type of event | 62599065fff4ab517ebcef72 |
class ToTensor(object): <NEW_LINE> <INDENT> def __call__(self, sample): <NEW_LINE> <INDENT> image, category = sample['image'], sample['category'] <NEW_LINE> if len(image.shape) == 2: <NEW_LINE> <INDENT> image = image.reshape(image.shape[0], image.shape[1], 1) <NEW_LINE> <DEDENT> image = image.transpose((2, 0, 1)) <NEW_LINE> return {'image': torch.from_numpy(image), 'category': category} | Convert ndarrays to Tensors | 62599065009cb60464d02c8f |
class Events(models.Model): <NEW_LINE> <INDENT> title = models.CharField(max_length=50) <NEW_LINE> date = models.DateField(default=timezone.now) <NEW_LINE> image_url = models.CharField(max_length=1000) <NEW_LINE> description = models.CharField(max_length=1000) <NEW_LINE> link = models.URLField() <NEW_LINE> def __unicode__(self): <NEW_LINE> <INDENT> return self.title | The Events and Happenings model
:fields:
* Title : The title of the event
* date : The date of the event
* image_url : The url of the image inside the event
* description : The description of the event
* link : The link of the event/ What the event Redirects to
:Functions:
* __unicode__ : Returns the Event title of calling the python object. | 62599065442bda511e95d905 |
class AccountDetailSerializer(serializers.ModelSerializer): <NEW_LINE> <INDENT> user = UserDetailSerializer() <NEW_LINE> class Meta: <NEW_LINE> <INDENT> model = Account <NEW_LINE> fields = [ 'number', 'user', 'balance', 'is_active', 'created_at' ] | Retrieve serializer class for Account model | 62599065f548e778e596cce1 |
class Microplay: <NEW_LINE> <INDENT> def __init__(self): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> @staticmethod <NEW_LINE> def scraper_dealer(url): <NEW_LINE> <INDENT> url_pages = [] <NEW_LINE> http = tools.get_html(url) <NEW_LINE> html = http[2] <NEW_LINE> http_code = http[1] <NEW_LINE> if html is not None: <NEW_LINE> <INDENT> pages = html.cssselect('#contenido > div.ficha > div.barra-filtros > div.paginar > div > span > a') <NEW_LINE> if pages: <NEW_LINE> <INDENT> max = len(pages) <NEW_LINE> for i in range(1,max): <NEW_LINE> <INDENT> url_pages.append('{0}/page:{1}'.format(url,i)) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return url_pages, http_code <NEW_LINE> <DEDENT> @staticmethod <NEW_LINE> def scraper_links(url): <NEW_LINE> <INDENT> urls = [] <NEW_LINE> http = tools.get_html(url) <NEW_LINE> html = http[2] <NEW_LINE> http_code = http[1] <NEW_LINE> if html is not None: <NEW_LINE> <INDENT> links = html.cssselect('#contenido > div.ficha > div.juegos-similares.lista > ul > li > h2 > a') <NEW_LINE> if links: <NEW_LINE> <INDENT> for l in links: <NEW_LINE> <INDENT> urls.append(l.get('href')) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return urls, http_code <NEW_LINE> <DEDENT> @staticmethod <NEW_LINE> def scraper_info(url): <NEW_LINE> <INDENT> http = tools.get_html(url) <NEW_LINE> html = http[2] <NEW_LINE> http_code = http[1] <NEW_LINE> product = MicorplayInfo() <NEW_LINE> name = html.cssselect('#contenido > div.ficha > h1') <NEW_LINE> if name: <NEW_LINE> <INDENT> name = name[0].text_content().strip() <NEW_LINE> product.name = tools.clear_name(name) <NEW_LINE> <DEDENT> platform = html.cssselect('#contenido > div.titulo-seccion.prod > h2') <NEW_LINE> if platform: <NEW_LINE> <INDENT> platform = platform[0].text_content() <NEW_LINE> product.platform = tools.clear_platform(platform).upper() <NEW_LINE> <DEDENT> price = html.cssselect('#contenido > div.ficha > div.informacion > div > div.precios > strong') <NEW_LINE> if price: <NEW_LINE> <INDENT> product.price = price[0].text_content().split('$')[1].replace('.', '').strip() <NEW_LINE> <DEDENT> product.stock = '' <NEW_LINE> product.url = url <NEW_LINE> product.image_url = Microplay.get_image(url, html) <NEW_LINE> return product, http_code <NEW_LINE> <DEDENT> @staticmethod <NEW_LINE> def get_image(url, html): <NEW_LINE> <INDENT> if html is None: <NEW_LINE> <INDENT> http = tools.get_html(url) <NEW_LINE> html = http[2] <NEW_LINE> <DEDENT> image_url = html.cssselect('#contenido > div.ficha > div.img-portada > img') <NEW_LINE> if image_url: <NEW_LINE> <INDENT> image_url = image_url[0].get('src') <NEW_LINE> <DEDENT> if image_url == []: <NEW_LINE> <INDENT> image_url = '' <NEW_LINE> <DEDENT> return image_url | Scrapping for www.microplay.cl | 625990654e4d562566373b5f |
class KaggleHubmapTestConfig(tfds.core.BuilderConfig): <NEW_LINE> <INDENT> def __init__(self, size, kaggle_data_version, **kwargs): <NEW_LINE> <INDENT> super(KaggleHubmapTestConfig, self).__init__(**kwargs) <NEW_LINE> self.size = size <NEW_LINE> self.kaggle_data_version = kaggle_data_version | BuilderConfig for KaggleHubmapTest. | 62599066009cb60464d02c90 |
class VirtualMachine(Node, object): <NEW_LINE> <INDENT> def __init__(self, freq=1, name=None, vm_size=1): <NEW_LINE> <INDENT> super(VirtualMachine, self).__init__(name) <NEW_LINE> self.phys_parent = None <NEW_LINE> self.size = vm_size <NEW_LINE> self.freq = freq <NEW_LINE> self.pair = None <NEW_LINE> <DEDENT> def replicate(self): <NEW_LINE> <INDENT> vm = VirtualMachine(freq=self.freq, name=self.name, vm_size=self.size) <NEW_LINE> vm.assign_pair(self.pair) <NEW_LINE> return vm <NEW_LINE> <DEDENT> def assign_pair(self, vm_pair): <NEW_LINE> <INDENT> if type(vm_pair) is VirtualMachine: <NEW_LINE> <INDENT> self.pair = vm_pair <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError("Pair of this Virtual Machine should be another Virtual Machine") <NEW_LINE> <DEDENT> <DEDENT> def assign_parent(self, parent): <NEW_LINE> <INDENT> self.phys_parent = parent <NEW_LINE> <DEDENT> def get_parent(self): <NEW_LINE> <INDENT> return self.phys_parent <NEW_LINE> <DEDENT> def get_size(self): <NEW_LINE> <INDENT> return self.size | Represents a virtual machine in a topology.
Args:
self.phys_parent (PhysicalHost): the host that stores this VM
self.size (int): the number of memory units needed to store this VM
self.freq (int): the frequency this VM communicates with its pair
self.pair (VirtualMachine): the other VM paired up with this VM | 625990668a43f66fc4bf38e8 |
class ClothesConfig(Config): <NEW_LINE> <INDENT> NAME = "clothes" <NEW_LINE> GPU_COUNT = 1 <NEW_LINE> IMAGES_PER_GPU = 2 <NEW_LINE> NUM_CLASSES = 1+5 <NEW_LINE> NUM_KPS = 24 <NEW_LINE> IMAGE_MIN_DIM = 512 <NEW_LINE> IMAGE_MAX_DIM = 512 <NEW_LINE> MINI_MASK_SHAPE = (56, 56) <NEW_LINE> KP_MASK_POOL_SIZE = 28 <NEW_LINE> KP_MASK_SHAPE = [56, 56] <NEW_LINE> MAX_GT_INSTANCES = 32 <NEW_LINE> RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) <NEW_LINE> TRAIN_ROIS_PER_IMAGE = 12 <NEW_LINE> STEPS_PER_EPOCH = 2000 <NEW_LINE> VALIDATION_STEPS = 200 | Configuration for training on the toy shapes dataset.
Derives from the base Config class and overrides values specific
to the toy shapes dataset. | 62599066a17c0f6771d5d752 |
class BlinkSensor(SensorEntity): <NEW_LINE> <INDENT> def __init__(self, data, camera, description: SensorEntityDescription): <NEW_LINE> <INDENT> self.entity_description = description <NEW_LINE> self._attr_name = f"{DOMAIN} {camera} {description.name}" <NEW_LINE> self.data = data <NEW_LINE> self._camera = data.cameras[camera] <NEW_LINE> self._attr_unique_id = f"{self._camera.serial}-{description.key}" <NEW_LINE> self._sensor_key = ( "temperature_calibrated" if description.key == "temperature" else description.key ) <NEW_LINE> self._attr_device_info = DeviceInfo( identifiers={(DOMAIN, self._camera.serial)}, name=camera, manufacturer=DEFAULT_BRAND, model=self._camera.camera_type, ) <NEW_LINE> <DEDENT> def update(self): <NEW_LINE> <INDENT> self.data.refresh() <NEW_LINE> try: <NEW_LINE> <INDENT> self._attr_native_value = self._camera.attributes[self._sensor_key] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> self._attr_native_value = None <NEW_LINE> _LOGGER.error( "%s not a valid camera attribute. Did the API change?", self._sensor_key ) | A Blink camera sensor. | 625990667047854f46340b0c |
class OmegaNocTestCase(unittest.TestCase): <NEW_LINE> <INDENT> def setUp(self): <NEW_LINE> <INDENT> app.config.from_pyfile(os.path.join(omeganoc_tests.__path__[0], 'test-config.cfg')) <NEW_LINE> app.config['TESTING'] = True <NEW_LINE> self.app = app.test_client() <NEW_LINE> self.create_db() <NEW_LINE> <DEDENT> def tearDown(self): <NEW_LINE> <INDENT> db.session.remove() <NEW_LINE> db.drop_all() <NEW_LINE> pass <NEW_LINE> <DEDENT> def create_db(self): <NEW_LINE> <INDENT> db.drop_all() <NEW_LINE> db.create_all() <NEW_LINE> user = User('admin', 'admin', True) <NEW_LINE> db.session.add(user) <NEW_LINE> db.session.commit() | Base class for all unit tests | 62599066fff4ab517ebcef73 |
class TesneniTyp4(Tesneni): <NEW_LINE> <INDENT> r_2 = 0 <NEW_LINE> fi_G = 0 <NEW_LINE> def calcb_Gifirst(self): <NEW_LINE> <INDENT> self.b_Gi = (12 * self.r_2 * cos(self.fi_G) * self.b_Gt * self.Q_smax / self.E[0])**(1/2) <NEW_LINE> <DEDENT> def calcb_Gi(self,obj1,obj2,F_G0): <NEW_LINE> <INDENT> self.b_Gi = ((12 * self.r_2 * cos(self.fi_G) * F_G0)/(pi * self.d_Ge * self.E_G0) + (F_G0 / (pi * self.d_Ge * self.Q_smax))**2)**(1/2) <NEW_LINE> <DEDENT> def calcd_Ge(self): <NEW_LINE> <INDENT> self.d_Ge = self.d_Gt <NEW_LINE> <DEDENT> def calcE_Gm(self,F_G0): <NEW_LINE> <INDENT> pass | description of class | 6259906655399d3f05627c79 |
class Credentials: <NEW_LINE> <INDENT> def __init__(self, name=None, usage=None): <NEW_LINE> <INDENT> self.host = name.host if name else '' <NEW_LINE> self.server = usage == 'accept' <NEW_LINE> <DEDENT> @property <NEW_LINE> def mechs(self): <NEW_LINE> <INDENT> if self.server: <NEW_LINE> <INDENT> return [0] if 'unknown_mech' in self.host else [1, 2] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return [2] | Stub class for GSS credentials | 6259906621bff66bcd7243be |
class IPilgrimage(model.Schema): <NEW_LINE> <INDENT> title = schema.TextLine( title=_(u"Title"), required=False, ) <NEW_LINE> description = schema.Text( title=_(u"Description"), required=False, ) <NEW_LINE> body = RichTextField( title=_(u"Body"), required=False, ) | Pilgrimage Type | 625990660c0af96317c5790b |
class AutomaticSpinner(object): <NEW_LINE> <INDENT> def __init__(self, label, show_time=True): <NEW_LINE> <INDENT> self.label = label <NEW_LINE> self.show_time = show_time <NEW_LINE> self.shutdown_event = multiprocessing.Event() <NEW_LINE> self.subprocess = multiprocessing.Process(target=self._target) <NEW_LINE> <DEDENT> def __enter__(self): <NEW_LINE> <INDENT> self.subprocess.start() <NEW_LINE> <DEDENT> def __exit__(self, exc_type=None, exc_value=None, traceback=None): <NEW_LINE> <INDENT> self.shutdown_event.set() <NEW_LINE> self.subprocess.join() <NEW_LINE> <DEDENT> def _target(self): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> timer = Timer() if self.show_time else None <NEW_LINE> with Spinner(label=self.label, timer=timer) as spinner: <NEW_LINE> <INDENT> while not self.shutdown_event.is_set(): <NEW_LINE> <INDENT> spinner.step() <NEW_LINE> spinner.sleep() <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> except KeyboardInterrupt: <NEW_LINE> <INDENT> pass | Show a spinner on the terminal that automatically starts animating.
This class shows a spinner on the terminal (just like :class:`Spinner`
does) that automatically starts animating. This class should be used as a
context manager using the :keyword:`with` statement. The animation
continues for as long as the context is active.
:class:`AutomaticSpinner` provides an alternative to :class:`Spinner`
for situations where it is not practical for the caller to periodically
call :func:`~Spinner.step()` to advance the animation, e.g. because
you're performing a blocking call and don't fancy implementing threading or
subprocess handling just to provide some user feedback.
This works using the :mod:`multiprocessing` module by spawning a
subprocess to render the spinner while the main process is busy doing
something more useful. By using the :keyword:`with` statement you're
guaranteed that the subprocess is properly terminated at the appropriate
time. | 62599066b7558d5895464adb |
class Snakemake(PythonPackage): <NEW_LINE> <INDENT> homepage = "https://snakemake.readthedocs.io/en/stable/" <NEW_LINE> url = "https://pypi.io/packages/source/s/snakemake/snakemake-3.11.2.tar.gz" <NEW_LINE> version('3.11.2', '6bf834526078522b38d271fdf73e6b22') <NEW_LINE> depends_on('[email protected]:') <NEW_LINE> depends_on('py-requests', type=('build', 'run')) <NEW_LINE> depends_on('py-setuptools', type=('build', 'run')) <NEW_LINE> depends_on('py-wrapt', type=('build', 'run')) | Snakemake is an MIT-licensed workflow management system. | 6259906699fddb7c1ca6397b |
class JSONEncoder(json.JSONEncoder): <NEW_LINE> <INDENT> def default(self, o): <NEW_LINE> <INDENT> if isinstance(o, datetime): <NEW_LINE> <INDENT> return str(round(datetime.timestamp(o))) <NEW_LINE> <DEDENT> elif isinstance(o, set): <NEW_LINE> <INDENT> return list(o) <NEW_LINE> <DEDENT> elif hasattr(o, 'as_dict'): <NEW_LINE> <INDENT> return o.as_dict() <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> return json.JSONEncoder.default(self, o) <NEW_LINE> <DEDENT> except TypeError: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> return [self.default(child_obj) for child_obj in o] <NEW_LINE> <DEDENT> except TypeError: <NEW_LINE> <INDENT> return json.JSONEncoder.default(self, o) | JSONEncoder that supports Home Assistant objects. | 62599066442bda511e95d906 |
class HADES_UNAUTH_DHCP_LEASE_TIME(Option): <NEW_LINE> <INDENT> default = timedelta(minutes=2) <NEW_LINE> type = timedelta <NEW_LINE> static_check = check.greater_than(timedelta(0)) | DHCP lease time for unauth users
This lease time should be set rather short, so that unauthenticated will
quickly obtain a new address if they become authenticated. | 62599066097d151d1a2c27c5 |
class Form( BoxLayout ) : <NEW_LINE> <INDENT> shared_navigation_controller = ObjectProperty( None ) <NEW_LINE> title = StringProperty( '' ) <NEW_LINE> background_color = ListProperty( None ) <NEW_LINE> def __init__( self, **kargs ) : <NEW_LINE> <INDENT> if 'shared_navigation_controller' not in kargs.keys() : <NEW_LINE> <INDENT> raise ValueError( 'You MUST provide a valid controller for shared_navigation_controller' ) <NEW_LINE> <DEDENT> if 'background_color' not in kargs.keys() : <NEW_LINE> <INDENT> kargs['background_color'] = kargs['shared_navigation_controller'].background_color <NEW_LINE> <DEDENT> super( Form, self ).__init__( **kargs ) <NEW_LINE> <DEDENT> def push( self ) : <NEW_LINE> <INDENT> self.shared_navigation_controller.push( self, title=self.title ) <NEW_LINE> <DEDENT> def pop( self ) : <NEW_LINE> <INDENT> self.shared_navigation_controller.pop() <NEW_LINE> <DEDENT> def on_push( self, controller ) : <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> def on_pop( self, controller ) : <NEW_LINE> <INDENT> pass | Very simple class to manage you're app views.
Use it as if it were an Android's Activity or and iOS's View Controller. | 6259906667a9b606de54764f |
class ProductPatchRequest(BaseModel): <NEW_LINE> <INDENT> doc_repo: Optional[HttpUrl] = None <NEW_LINE> title: Optional[str] = None <NEW_LINE> class Config: <NEW_LINE> <INDENT> extra = "forbid" | Model for a PATCH /products/<slug> request body. | 62599066d268445f2663a709 |
class MessageRedirector: <NEW_LINE> <INDENT> def __init__(self, info=None, warn='stdout', errr='stdout'): <NEW_LINE> <INDENT> if info is None: <NEW_LINE> <INDENT> info = '' <NEW_LINE> <DEDENT> if not isinstance(info, str): <NEW_LINE> <INDENT> raise error('wrong info argument for MessageRedirector constructor') <NEW_LINE> <DEDENT> elif info in {'stdout', 'stderr', 'cout', 'cerr'}: <NEW_LINE> <INDENT> self.info = pysirfreg.newTextPrinter(info) <NEW_LINE> self.info_case = 0 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.info = pysirfreg.newTextWriter(info) <NEW_LINE> self.info_case = 1 <NEW_LINE> <DEDENT> pysirfreg.openChannel(0, self.info) <NEW_LINE> if warn is None: <NEW_LINE> <INDENT> warn = '' <NEW_LINE> <DEDENT> if not isinstance(warn, str): <NEW_LINE> <INDENT> raise error('wrong warn argument for MessageRedirector constructor') <NEW_LINE> <DEDENT> elif warn in {'stdout', 'stderr', 'cout', 'cerr'}: <NEW_LINE> <INDENT> self.warn = pysirfreg.newTextPrinter(warn) <NEW_LINE> self.warn_case = 0 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.warn = pysirfreg.newTextWriter(warn) <NEW_LINE> self.warn_case = 1 <NEW_LINE> <DEDENT> pysirfreg.openChannel(1, self.warn) <NEW_LINE> if errr is None: <NEW_LINE> <INDENT> errr = '' <NEW_LINE> <DEDENT> if not isinstance(errr, str): <NEW_LINE> <INDENT> raise error('wrong errr argument for MessageRedirector constructor') <NEW_LINE> <DEDENT> elif errr in {'stdout', 'stderr', 'cout', 'cerr'}: <NEW_LINE> <INDENT> self.errr = pysirfreg.newTextPrinter(errr) <NEW_LINE> self.errr_case = 0 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.errr = pysirfreg.newTextWriter(errr) <NEW_LINE> self.errr_case = 1 <NEW_LINE> <DEDENT> pysirfreg.openChannel(2, self.errr) <NEW_LINE> <DEDENT> def __del__(self): <NEW_LINE> <INDENT> if self.info_case == 0: <NEW_LINE> <INDENT> try_calling(pysirfreg.deleteTextPrinter(self.info)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> try_calling(pysirfreg.deleteTextWriter(self.info)) <NEW_LINE> <DEDENT> pysirfreg.closeChannel(0, self.info) <NEW_LINE> if self.warn_case == 0: <NEW_LINE> <INDENT> try_calling(pysirfreg.deleteTextPrinter(self.warn)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> try_calling(pysirfreg.deleteTextWriter(self.warn)) <NEW_LINE> <DEDENT> pysirfreg.closeChannel(1, self.warn) <NEW_LINE> if self.errr_case == 0: <NEW_LINE> <INDENT> try_calling(pysirfreg.deleteTextPrinter(self.errr)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> try_calling(pysirfreg.deleteTextWriter(self.errr)) <NEW_LINE> <DEDENT> pysirfreg.closeChannel(2, self.errr) | Class for SIRFReg printing redirection to files/stdout/stderr. | 62599066f548e778e596cce3 |
class HQFormData(FormDataBase): <NEW_LINE> <INDENT> domain = models.CharField(max_length=200) <NEW_LINE> username = models.CharField(max_length=200, blank=True) <NEW_LINE> @property <NEW_LINE> def app_id(self): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> return XFormInstance.get(self.instanceID).app_id <NEW_LINE> <DEDENT> except (ResourceNotFound, AttributeError, KeyError): <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> <DEDENT> def _get_username(self): <NEW_LINE> <INDENT> if self.userID: <NEW_LINE> <INDENT> return user_id_to_username(self.userID) or "" <NEW_LINE> <DEDENT> return "" <NEW_LINE> <DEDENT> def update(self, instance): <NEW_LINE> <INDENT> super(HQFormData, self).update(instance) <NEW_LINE> if not hasattr(instance, "domain") or not instance.domain: <NEW_LINE> <INDENT> raise InvalidFormUpdateException("No domain found in instance %s!" % (instance.get_id)) <NEW_LINE> <DEDENT> self.domain = instance.domain <NEW_LINE> self.username = self._get_username() <NEW_LINE> <DEDENT> def matches_exact(self, instance): <NEW_LINE> <INDENT> return super(HQFormData, self).matches_exact(instance) and self.domain == instance.domain | HQ's implementation of FormData. In addition to the standard attributes
we save additional HQ-specific things like the domain of the form, and
some additional user data. | 62599066e5267d203ee6cf6b |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.