repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
plotly/plotly.py
packages/python/plotly/plotly/express/__init__.py
1
2047
""" `plotly.express` is a terse, consistent, high-level wrapper around `plotly.graph_objects` for rapid data exploration and figure generation. Learn more at https://plotly.express/ """ from __future__ import absolute_import from plotly import optional_imports pd = optional_imports.get_module("pandas") if pd is None: raise ImportError( """\ Plotly express requires pandas to be installed.""" ) from ._imshow import imshow from ._chart_types import ( # noqa: F401 scatter, scatter_3d, scatter_polar, scatter_ternary, scatter_mapbox, scatter_geo, line, line_3d, line_polar, line_ternary, line_mapbox, line_geo, area, bar, timeline, bar_polar, violin, box, strip, histogram, scatter_matrix, parallel_coordinates, parallel_categories, choropleth, density_contour, density_heatmap, pie, sunburst, treemap, icicle, funnel, funnel_area, choropleth_mapbox, density_mapbox, ) from ._core import ( # noqa: F401 set_mapbox_access_token, defaults, get_trendline_results, NO_COLOR, ) from ._special_inputs import IdentityMap, Constant, Range # noqa: F401 from . import data, colors # noqa: F401 __all__ = [ "scatter", "scatter_3d", "scatter_polar", "scatter_ternary", "scatter_mapbox", "scatter_geo", "scatter_matrix", "density_contour", "density_heatmap", "density_mapbox", "line", "line_3d", "line_polar", "line_ternary", "line_mapbox", "line_geo", "parallel_coordinates", "parallel_categories", "area", "bar", "timeline", "bar_polar", "violin", "box", "strip", "histogram", "choropleth", "choropleth_mapbox", "pie", "sunburst", "treemap", "icicle", "funnel", "funnel_area", "imshow", "data", "colors", "set_mapbox_access_token", "get_trendline_results", "IdentityMap", "Constant", "Range", "NO_COLOR", ]
mit
jniediek/combinato
combinato/cluster/cluster.py
1
10242
# JN 2015-01-11 """ main program for spike sorting """ from __future__ import print_function, division, absolute_import import os import numpy as np # pylint: disable=E1101 from .. import SortingManager, SessionManager, options from time import strftime from getpass import getuser import matplotlib.pyplot as mpl from .wave_features import wavelet_features from .select_features import select_features from .define_clusters import define_clusters from .cluster_features import cluster_features, read_results from .dist import template_match from .artifacts import find_artifacts from .plot_temp import plot_temperatures USER = getuser() LOG_FNAME = 'log.txt' FIRST_MATCH_FACTOR = options['FirstMatchFactor'] def features_to_index(features, folder, name, overwrite=True): """ wrapper function """ clu = None if not overwrite: try: clu, tree = read_results(folder, name) print('Read clustering results from ' + folder) except IOError: # as error: print('Starting clustering ') # + error.strerror + ': ' + error.filename) overwrite = True if clu is not None: if features.shape[0] != clu.shape[1] - 2: print('Read outdated clustering, restarting') overwrite = True if overwrite: feat_idx = select_features(features) print('Clustering data in {}/{}'.format(folder, name)) cluster_features(features[:, feat_idx], folder, name) now = strftime('%Y-%m-%d_%H-%M-%S') log_fname = os.path.join(folder, LOG_FNAME) with open(log_fname, 'a') as fid_done: fid_done.write('{} {} ran {}\n'.format(now, USER, name)) fid_done.close() clu, tree = read_results(folder, name) idx, tree, used_points = define_clusters(clu, tree) return idx, tree, used_points def cluster_step(features, folder, sub_name, overwrite): """ one step in clustering """ res_idx, tree, used_points = features_to_index(features, folder, sub_name, overwrite) # save temperature plot here if wanted if options['plotTemps']: temp_fig = plot_temperatures(tree, used_points) temp_fname = os.path.join(folder, 'temp_' + sub_name + '.png') temp_fig.savefig(temp_fname) mpl.close(temp_fig) if options['Debug']: print('Cluster step {} returned'.format(sub_name)) for clid in np.unique(res_idx): print('{}: {} spikes'.format(clid, (res_idx == clid).sum())) return res_idx def iterative_sorter(features, spikes, n_iterations, name, overwrite=True): """ name is used to generate temporary filenames """ idx = np.zeros(features.shape[0], np.uint16) match_idx = np.zeros(features.shape[0], bool) for i in range(n_iterations): # input to clustering are the spikes that have no index so far sub_idx = idx == 0 sub_name = 'sort_' + str(i) if sub_idx.sum() < options['MinInputSize']: if options['Debug']: print('Stopping iteration, {} spikes left' .format(sub_idx.sum())) break if options['Debug']: print('Clustering {} spikes'.format(sub_idx.sum())) # res_idx contains a number for each cluster generated from clustering res_idx = cluster_step(features[sub_idx], name, sub_name, overwrite) if options['Debug']: print('Iteration {}, new classes: {}'. format(i, np.unique(res_idx))) print('Iteration {}, old classes: {}'.format(i, np.unique(idx))) clustered_idx = res_idx > 0 prev_idx_max = idx.max() res_idx[clustered_idx] += prev_idx_max idx[sub_idx] = res_idx # now idx contains the new spike numbers # feed new, sufficiently big clusters into clustering again # (to reduce under-clustering) if options['ReclusterClusters']: clids = np.unique(res_idx[clustered_idx]) for clid in clids: recluster_idx = idx == clid cluster_size = recluster_idx.sum() if cluster_size < options['MinInputSizeRecluster']: if options['Debug']: print('Not reclustering cluster {} ({} spikes)' .format(clid, cluster_size)) continue else: if options['Debug']: print('Reclustering cluster {} ({} spikes)' .format(clid, cluster_size)) sub_sub_name = '{}_{:02d}'.format(sub_name, clid) recluster_res_idx = cluster_step(features[recluster_idx], name, sub_sub_name, overwrite) # make sure to increase the cluster numbers enough biggest_clid = idx.max() recluster_res_idx[recluster_res_idx != 0] += biggest_clid idx[recluster_idx] = recluster_res_idx # conservative template matching here template_match(spikes, idx, match_idx, FIRST_MATCH_FACTOR) return idx, match_idx def sort_spikes(spikes, folder, overwrite=False, sign='pos'): """ function organizes code """ n_iterations = options['RecursiveDepth'] if options['Debug']: print('Recursive depth is {}.'.format(n_iterations)) # it is suboptimal that we calculate the features # even when reading clusters from disk all_features = wavelet_features(spikes) # sorting includes template match sorted_idx, match_idx = iterative_sorter(all_features, spikes, n_iterations, folder, overwrite=overwrite) # identify artifact clusters class_ids = np.unique(sorted_idx) if options['MarkArtifactClasses']: invert = True if sign == 'neg' else False _, artifact_ids = find_artifacts(spikes, sorted_idx, class_ids, invert) else: artifact_ids = [] return sorted_idx, match_idx, artifact_ids def main(data_fname, session_fname, sign, overwrite=False): """ sort spikes from given session """ sort_man = SortingManager(data_fname) session = SessionManager(session_fname) idx = session.index spikes = sort_man.get_data_by_name_and_index('spikes', idx, sign) sort_idx, match_idx, artifact_ids =\ sort_spikes(spikes, session.session_dir, overwrite=overwrite, sign=sign) all_ids = np.unique(sort_idx) artifact_scores = np.zeros((len(all_ids), 2), np.uint8) artifact_scores[:, 0] = all_ids for cl_id in all_ids: idx = artifact_scores[:, 0] == cl_id artifact_score = 1 if cl_id in artifact_ids else 0 artifact_scores[idx, 1] = artifact_score session.update_classes(sort_idx) session.update_sorting_data(match_idx, artifact_scores) session.h5file.close() def sort_helper(args): """ usual multiprocessing helper, used to un """ main(args[0], args[2], args[1], options['overwrite']) def write_options(fname='css-cluster-log.txt'): """ save options to log file """ print('Writing options to file {}'.format(fname)) msg = strftime('%Y-%m-%d_%H-%M-%S') + ' ' + USER + '\n' for key in sorted(options.keys()): if key in ['density_hist_bins', 'cmap']: continue msg += '{}: {}\n'.format(key, options[key]) msg += 60 * '-' + '\n' with open(fname, 'a') as fid: fid.write(msg) fid.close() def test_joblist(joblist): """ simple test to detect whether the same job is requested more than once """ unique_joblist = set(joblist) if len(joblist) != len(unique_joblist): # there are duplicates! counter = dict() for item in joblist: if item in counter: counter[item] += 1 else: counter[item] = 1 for key, val in counter.items(): if val > 1: print('Job {} requested {} times'.format(key, val)) raise ValueError('Duplicate jobs requested') def argument_parser(): """ standard argument parsing """ from argparse import ArgumentParser, FileType, ArgumentError from multiprocessing import Pool, cpu_count parser = ArgumentParser('css-cluster', description='Combinato Spike Sorter. This is the' ' main clustering executable. Specify' ' either a jobfile or datafile and ' 'sessions.', epilog='Johannes Niediek ([email protected])') parser.add_argument('--jobs', type=FileType('r')) parser.add_argument('--datafile', nargs=1) parser.add_argument('--sessions', nargs='+') parser.add_argument('--single', default=False, action='store_true') # possibilities: # 1) jobs is supplied, and neither datafile nor session # 2) datafile and sessions are supplied args = parser.parse_args() if args.jobs is None: if None in (args.datafile, args.sessions): raise ArgumentError(args.jobs, 'Specify either jobs or datafile and sessions') else: joblist = [] for session in args.sessions: sign = 'neg' if 'neg' in session else 'pos' joblist.append([args.datafile[0], sign, session]) else: jobdata = args.jobs.read().splitlines() joblist = tuple((tuple(line.split()) for line in jobdata)) test_joblist(joblist) n_cores = 1 if args.single else cpu_count() + 1 print('Starting {} jobs with {} workers'. format(len(joblist), n_cores)) write_options() if n_cores == 1: [sort_helper(job) for job in joblist] else: pool = Pool(n_cores) pool.map(sort_helper, joblist)
mit
decvalts/cartopy
lib/cartopy/examples/regridding_arrows.py
4
1656
""" Regridding vectors with quiver ------------------------------ This example demonstrates the regridding functionality in quiver (there exists equivalent functionality in :meth:`cartopy.mpl.geoaxes.GeoAxes.barbs`). Regridding can be an effective way of visualising a vector field, particularly if the data is dense or warped. """ __tags__ = ['Vector data'] import matplotlib.pyplot as plt import numpy as np import cartopy.crs as ccrs def sample_data(shape=(20, 30)): """ Return ``(x, y, u, v, crs)`` of some vector data computed mathematically. The returned CRS will be a North Polar Stereographic projection, meaning that the vectors will be unevenly spaced in a PlateCarree projection. """ crs = ccrs.NorthPolarStereo() scale = 1e7 x = np.linspace(-scale, scale, shape[1]) y = np.linspace(-scale, scale, shape[0]) x2d, y2d = np.meshgrid(x, y) u = 10 * np.cos(2 * x2d / scale + 3 * y2d / scale) v = 20 * np.cos(6 * x2d / scale) return x, y, u, v, crs def main(): fig = plt.figure(figsize=(8, 10)) x, y, u, v, vector_crs = sample_data(shape=(50, 50)) ax1 = fig.add_subplot(2, 1, 1, projection=ccrs.PlateCarree()) ax1.coastlines('50m') ax1.set_extent([-45, 55, 20, 80], ccrs.PlateCarree()) ax1.quiver(x, y, u, v, transform=vector_crs) ax2 = fig.add_subplot(2, 1, 2, projection=ccrs.PlateCarree()) ax2.set_title('The same vector field regridded') ax2.coastlines('50m') ax2.set_extent([-45, 55, 20, 80], ccrs.PlateCarree()) ax2.quiver(x, y, u, v, transform=vector_crs, regrid_shape=20) plt.show() if __name__ == '__main__': main()
gpl-3.0
magne-max/zipline-ja
tests/finance/test_slippage.py
1
24499
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Unit tests for finance.slippage ''' import datetime import pytz from nose_parameterized import parameterized import pandas as pd from pandas.tslib import normalize_date from zipline.finance.slippage import VolumeShareSlippage from zipline.protocol import DATASOURCE_TYPE from zipline.finance.blotter import Order from zipline.data.data_portal import DataPortal from zipline.protocol import BarData from zipline.testing import tmp_bcolz_equity_minute_bar_reader from zipline.testing.fixtures import ( WithDataPortal, WithSimParams, ZiplineTestCase, ) class SlippageTestCase(WithSimParams, WithDataPortal, ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-05 14:31', tz='utc') END_DATE = pd.Timestamp('2006-01-05 14:36', tz='utc') SIM_PARAMS_CAPITAL_BASE = 1.0e5 SIM_PARAMS_DATA_FREQUENCY = 'minute' SIM_PARAMS_EMISSION_RATE = 'daily' ASSET_FINDER_EQUITY_SIDS = (133,) ASSET_FINDER_EQUITY_START_DATE = pd.Timestamp('2006-01-05', tz='utc') ASSET_FINDER_EQUITY_END_DATE = pd.Timestamp('2006-01-07', tz='utc') minutes = pd.DatetimeIndex( start=START_DATE, end=END_DATE - pd.Timedelta('1 minute'), freq='1min' ) @classmethod def make_equity_minute_bar_data(cls): yield 133, pd.DataFrame( { 'open': [3.0, 3.0, 3.5, 4.0, 3.5], 'high': [3.15, 3.15, 3.15, 3.15, 3.15], 'low': [2.85, 2.85, 2.85, 2.85, 2.85], 'close': [3.0, 3.5, 4.0, 3.5, 3.0], 'volume': [2000, 2000, 2000, 2000, 2000], }, index=cls.minutes, ) @classmethod def init_class_fixtures(cls): super(SlippageTestCase, cls).init_class_fixtures() cls.ASSET133 = cls.env.asset_finder.retrieve_asset(133) def test_volume_share_slippage(self): assets = ( (133, pd.DataFrame( { 'open': [3.00], 'high': [3.15], 'low': [2.85], 'close': [3.00], 'volume': [200], }, index=[self.minutes[0]], )), ) days = pd.date_range( start=normalize_date(self.minutes[0]), end=normalize_date(self.minutes[-1]) ) with tmp_bcolz_equity_minute_bar_reader(self.trading_calendar, days, assets) \ as reader: data_portal = DataPortal( self.env.asset_finder, self.trading_calendar, first_trading_day=reader.first_trading_day, equity_minute_reader=reader, ) slippage_model = VolumeShareSlippage() open_orders = [ Order( dt=datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), amount=100, filled=0, sid=self.ASSET133 ) ] bar_data = BarData(data_portal, lambda: self.minutes[0], 'minute', self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.0001875), 'dt': datetime.datetime( 2006, 1, 5, 14, 31, tzinfo=pytz.utc), 'amount': int(5), 'sid': int(133), 'commission': None, 'type': DATASOURCE_TYPE.TRANSACTION, 'order_id': open_orders[0].id } self.assertIsNotNone(txn) # TODO: Make expected_txn an Transaction object and ensure there # is a __eq__ for that class. self.assertEquals(expected_txn, txn.__dict__) open_orders = [ Order( dt=datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), amount=100, filled=0, sid=self.ASSET133 ) ] # Set bar_data to be a minute ahead of last trade. # Volume share slippage should not execute when there is no trade. bar_data = BarData(data_portal, lambda: self.minutes[1], 'minute', self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) def test_orders_limit(self): slippage_model = VolumeShareSlippage() slippage_model.data_portal = self.data_portal # long, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': self.ASSET133, 'limit': 3.5}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[3], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) # long, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': self.ASSET133, 'limit': 3.5}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[3], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) # long, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': self.ASSET133, 'limit': 3.6}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[3], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 1) txn = orders_txns[0][1] expected_txn = { 'price': float(3.50021875), 'dt': datetime.datetime( 2006, 1, 5, 14, 34, tzinfo=pytz.utc), # we ordered 100 shares, but default volume slippage only allows # for 2.5% of the volume. 2.5% * 2000 = 50 shares 'amount': int(50), 'sid': int(133), 'order_id': open_orders[0].id } self.assertIsNotNone(txn) for key, value in expected_txn.items(): self.assertEquals(value, txn[key]) # short, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': self.ASSET133, 'limit': 3.5}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[0], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) # short, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': self.ASSET133, 'limit': 3.5}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[0], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) # short, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': self.ASSET133, 'limit': 3.4}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[1], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.49978125), 'dt': datetime.datetime( 2006, 1, 5, 14, 32, tzinfo=pytz.utc), 'amount': int(-50), 'sid': int(133) } self.assertIsNotNone(txn) for key, value in expected_txn.items(): self.assertEquals(value, txn[key]) STOP_ORDER_CASES = { # Stop orders can be long/short and have their price greater or # less than the stop. # # A stop being reached is conditional on the order direction. # Long orders reach the stop when the price is greater than the stop. # Short orders reach the stop when the price is less than the stop. # # Which leads to the following 4 cases: # # | long | short | # | price > stop | | | # | price < stop | | | # # Currently the slippage module acts according to the following table, # where 'X' represents triggering a transaction # | long | short | # | price > stop | | X | # | price < stop | X | | # # However, the following behavior *should* be followed. # # | long | short | # | price > stop | X | | # | price < stop | | X | 'long | price gt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 3.5 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 4.0, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 4.0, 'open': 3.5 }, 'expected': { 'transaction': { 'price': 4.00025, 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'amount': 50, 'sid': 133, } } }, 'long | price lt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 3.6 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 3.5, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 3.5, 'open': 4.0 }, 'expected': { 'transaction': None } }, 'short | price gt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.4 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 3.5, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 3.5, 'open': 3.0 }, 'expected': { 'transaction': None } }, 'short | price lt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.5 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 3.0, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 3.0, 'open': 3.0 }, 'expected': { 'transaction': { 'price': 2.9998125, 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'amount': -50, 'sid': 133, } } }, } @parameterized.expand([ (name, case['order'], case['event'], case['expected']) for name, case in STOP_ORDER_CASES.items() ]) def test_orders_stop(self, name, order_data, event_data, expected): data = order_data data['sid'] = self.ASSET133 order = Order(**data) assets = ( (133, pd.DataFrame( { 'open': [event_data['open']], 'high': [event_data['high']], 'low': [event_data['low']], 'close': [event_data['close']], 'volume': [event_data['volume']], }, index=[pd.Timestamp('2006-01-05 14:31', tz='UTC')], )), ) days = pd.date_range( start=normalize_date(self.minutes[0]), end=normalize_date(self.minutes[-1]) ) with tmp_bcolz_equity_minute_bar_reader(self.trading_calendar, days, assets) \ as reader: data_portal = DataPortal( self.env.asset_finder, self.trading_calendar, first_trading_day=reader.first_trading_day, equity_minute_reader=reader, ) slippage_model = VolumeShareSlippage() try: dt = pd.Timestamp('2006-01-05 14:31', tz='UTC') bar_data = BarData(data_portal, lambda: dt, 'minute', self.trading_calendar) _, txn = next(slippage_model.simulate( bar_data, self.ASSET133, [order], )) except StopIteration: txn = None if expected['transaction'] is None: self.assertIsNone(txn) else: self.assertIsNotNone(txn) for key, value in expected['transaction'].items(): self.assertEquals(value, txn[key]) def test_orders_stop_limit(self): slippage_model = VolumeShareSlippage() slippage_model.data_portal = self.data_portal # long, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': self.ASSET133, 'stop': 4.0, 'limit': 3.0}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[2], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) bar_data = BarData(self.data_portal, lambda: self.minutes[3], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) # long, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': self.ASSET133, 'stop': 4.0, 'limit': 3.5}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[2], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) bar_data = BarData(self.data_portal, lambda: self.minutes[3], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) # long, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': self.ASSET133, 'stop': 4.0, 'limit': 3.6}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[2], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) bar_data = BarData(self.data_portal, lambda: self.minutes[3], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.50021875), 'dt': datetime.datetime( 2006, 1, 5, 14, 34, tzinfo=pytz.utc), 'amount': int(50), 'sid': int(133) } for key, value in expected_txn.items(): self.assertEquals(value, txn[key]) # short, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': self.ASSET133, 'stop': 3.0, 'limit': 4.0}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[0], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) bar_data = BarData(self.data_portal, lambda: self.minutes[1], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) # short, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': self.ASSET133, 'stop': 3.0, 'limit': 3.5}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[0], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) bar_data = BarData(self.data_portal, lambda: self.minutes[1], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) # short, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': self.ASSET133, 'stop': 3.0, 'limit': 3.4}) ] bar_data = BarData(self.data_portal, lambda: self.minutes[0], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 0) bar_data = BarData(self.data_portal, lambda: self.minutes[1], self.sim_params.data_frequency, self.trading_calendar) orders_txns = list(slippage_model.simulate( bar_data, self.ASSET133, open_orders, )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.49978125), 'dt': datetime.datetime( 2006, 1, 5, 14, 32, tzinfo=pytz.utc), 'amount': int(-50), 'sid': int(133) } for key, value in expected_txn.items(): self.assertEquals(value, txn[key])
apache-2.0
pramodh-bn/learn-data-edx
Final/t13.py
1
6049
# -*- coding: utf-8 -*- """ Created on Wed Dec 4 17:11:46 2013 @author: pramodh """ import numpy as np from sklearn import svm, cluster def getPoints(numberOfPoints): pointList = np.c_[np.random.uniform(-1,1.00,numberOfPoints),np.random.uniform(-1,1.00,numberOfPoints)] return pointList def applyFunction(points): return np.sign(points[:,1]-points[:,0]+0.25*np.sin(np.pi * points[:,0])) def doAssignment13(): experiments = 1000 gama = 1.5 numPoints = 100 clf = svm.SVC(C= np.inf , kernel="rbf", coef0=1, gamma=gama) Ein0 = 0 for i in range(experiments): X = getPoints(numPoints) y = applyFunction(X) clf.fit(X,y) #print(clf.score(X,y)) if(1-clf.score(X,y)==0): #print("here") Ein0 += 1 print(1-float(Ein0)/experiments) def doAssignment14(): gama = 1.5 numPoints = 100 k = 9 experiments = 20 #km = cluster.KMeans(n_clusters=k, init='k-means++', n_init=5) km = cluster.KMeans(n_clusters=k) clf = svm.SVC(C= np.inf , kernel="rbf", coef0=1, gamma=gama) for j in range(10): montelist = [] for i in range(experiments): X = getPoints(numPoints) y = applyFunction(X) u = km.fit(X).cluster_centers_ theta = rbfTransform(X, u, gama) w = np.linalg.lstsq(theta, y)[0] clf.fit(X,y) k = [doMonteCarlo(w, clf, 1000, u, gama) for i in range(100)] ar = np.array(k) #print(float(len(ar)-np.sum(ar[:,0]-ar[:,1] > 0))/len(ar)) montelist.append(float(len(ar)-np.sum(ar[:,0]-ar[:,1] > 0))/len(ar)) print(np.mean(montelist)) def doAssignment15(): gama = 1.5 numPoints = 100 k = 12 experiments = 20 #km = cluster.KMeans(n_clusters=k, init='k-means++', n_init=5) km = cluster.KMeans(n_clusters=k) clf = svm.SVC(C= np.inf , kernel="rbf", coef0=1, gamma=gama) for j in range(10): montelist = [] for i in range(experiments): X = getPoints(numPoints) y = applyFunction(X) u = km.fit(X).cluster_centers_ theta = rbfTransform(X, u, gama) w = np.linalg.lstsq(theta, y)[0] clf.fit(X,y) k = [doMonteCarlo(w, clf, 1000, u, gama) for i in range(100)] ar = np.array(k) #print(float(len(ar)-np.sum(ar[:,0]-ar[:,1] > 0))/len(ar)) montelist.append(float(len(ar)-np.sum(ar[:,0]-ar[:,1] > 0))/len(ar)) print(np.mean(montelist)) def dist2(x): return x.T.dot(x) def rbfTransform(X, U, gamma): Fi = np.array([[np.exp(-gamma * dist2(x - u)) for u in U] for x in X]) #print("Fi", Fi) return np.insert(Fi, 0, 1, 1) def getMisMatches(X, y, weights, centers, gama): results = [] for x in X: k = [weights[i] * np.exp(-gama * dist2(x - centers[i-1])) for i in range(1, len(weights))] #print(sum(k)+weights[0]) results.append(np.sign(sum(k)+weights[0])) return float(len(X) - np.sum(np.sign(results) == np.sign(y)))/len(X) def doMonteCarlo(w, clf, numPoints, centers, gama): X = getPoints(numPoints) y = applyFunction(X) eout_hard = 1.0-clf.score(X,y) eout_reg = getMisMatches(X, y, w, centers, gama) return (eout_hard, eout_reg) def doMonteCarloReg(w9, w12, numPoints, centers9, centers12, gama): X = getPoints(numPoints) y = applyFunction(X) return (getMisMatches(X, y, w9, centers9, gama),getMisMatches(X,y,w12,centers12, gama)) if __name__ == '__main__': gama = 1.5 numPoints = 100 experiments = 100 Ein = [] Eout = [] km9 = cluster.KMeans(n_clusters=9, n_init=1) km12 = cluster.KMeans(n_clusters=12, n_init=1) for i in range(experiments): X = getPoints(numPoints) y = applyFunction(X) u9 = km9.fit(X).cluster_centers_ u12 = km12.fit(X).cluster_centers_ theta9 = rbfTransform(X, u9, gama) theta12 = rbfTransform(X, u12, gama) w9 = np.linalg.lstsq(theta9, y)[0] w12 = np.linalg.lstsq(theta12, y)[0] Ein.append((getMisMatches(X,y,w9, u9, gama), getMisMatches(X,y, w12, u12, gama))) kl = [doMonteCarloReg(w9, w12, 1000, u9, u12, gama) for i in range(100)] ar = np.array(kl) #print(ar) Eout.append((np.mean(ar[:,0]), np.mean(ar[:,1]))) #print(np.mean(montelist)) #print(Ein) #print(Eout) '''for i in range(len(Ein)): inE = Ein[i] outE = Eout[i] strout = '' if(inE[0] - inE[1] == 0): strout += 'Same,' elif(inE[0] - inE[1] > 0): strout += 'Down, ' else: strout += 'Up, ' if(outE[0] - outE[1] == 0): strout += 'Same' elif(outE[0] - outE[1] > 0): strout += 'Down' else: strout += 'Up' print(strout)''' winnerlist = [] for i in range(len(Ein)): inE = Ein[i] outE = Eout[i] E_in_12 = inE[1] E_in_9 = inE[0] E_out_12 = outE[1] E_out_9 = outE[0] if E_in_12 == E_in_9 and E_out_12 == E_out_9: winnerlist.append('e') elif E_in_12 < E_in_9 and E_out_12 > E_out_9: winnerlist.append('a') elif E_in_12 > E_in_9 and E_out_12 < E_out_9: winnerlist.append('b') elif E_in_12 > E_in_9 and E_out_12 > E_out_9: winnerlist.append('c') elif E_in_12 < E_in_9 and E_out_12 < E_out_9: winnerlist.append('d') else: winnerlist.append('f') print("a", float(winnerlist.count('a'))/len(winnerlist)) print("b", float(winnerlist.count('b'))/len(winnerlist)) print("c", float(winnerlist.count('c'))/len(winnerlist)) print("d", float(winnerlist.count('d'))/len(winnerlist)) print("e", float(winnerlist.count('e'))/len(winnerlist)) print("f", float(winnerlist.count('f'))/len(winnerlist))
unlicense
oliverlee/sympy
doc/ext/docscrape_sphinx.py
51
9709
from __future__ import division, absolute_import, print_function import sys import re import inspect import textwrap import pydoc import sphinx import collections from docscrape import NumpyDocString, FunctionDoc, ClassDoc if sys.version_info[0] >= 3: sixu = lambda s: s else: sixu = lambda s: unicode(s, 'unicode_escape') class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): NumpyDocString.__init__(self, docstring, config=config) self.load_config(config) def load_config(self, config): self.use_plots = config.get('use_plots', False) self.class_members_toctree = config.get('class_members_toctree', True) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_returns(self, name='Returns'): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent([param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent(['**%s**' % param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix # Lines that are commented out are used to make the # autosummary:: table. Since SymPy does not use the # autosummary:: functionality, it is easiest to just comment it # out. # autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() # Check if the referenced member can have a docstring or not param_obj = getattr(self._obj, param, None) if not (callable(param_obj) or isinstance(param_obj, property) or inspect.isgetsetdescriptor(param_obj)): param_obj = None # if param_obj and (pydoc.getdoc(param_obj) or not desc): # # Referenced object has a docstring # autosum += [" %s%s" % (prefix, param)] # else: others.append((param, param_type, desc)) # if autosum: # out += ['.. autosummary::'] # if self.class_members_toctree: # out += [' :toctree:'] # out += [''] + autosum if others: maxlen_0 = max(3, max([len(x[0]) for x in others])) hdr = sixu("=")*maxlen_0 + sixu(" ") + sixu("=")*10 fmt = sixu('%%%ds %%s ') % (maxlen_0,) out += ['', '', hdr] for param, param_type, desc in others: desc = sixu(" ").join(x.strip() for x in desc).strip() if param_type: desc = "(%s) %s" % (param_type, desc) out += [fmt % (param.strip(), desc)] out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default', '')] for section, references in idx.items(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex', ''] else: out += ['.. latexonly::', ''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() out += self._str_param_list('Parameters') out += self._str_returns('Returns') out += self._str_returns('Yields') for param_list in ('Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for s in self._other_keys: out += self._str_section(s) out += self._str_member_list('Attributes') out = self._str_indent(out, indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.load_config(config) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.load_config(config) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj self.load_config(config) SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause
frodo4fingers/gimod
mpl/magnetizedgrid.py
1
8227
from matplotlib.lines import Line2D # from numpy import allclose import numpy as np try: from PyQt5.QtWidgets import QApplication, QWidget from PyQt5.QtGui import QCursor from PyQt5.QtCore import Qt, QPoint except ImportError: from PyQt4.QtQui import QCursor, QApplication, QWidget from PyQt4.QtCore import Qt, QPoint import time class MagnetizedGrid(): """ Everything the grid resembles is stored here. The drawing, the magnetization and 'catching' and the scalability. Note ---- 4me: scrolling with ctrl+g should increase/decrease the density of lines drawn Todo ---- *[x] make grid *[x] make grid magnetized *[ ] make grid free scalable """ def __init__(self, parent=None): """Initialize the important variables.""" self.figure = parent.figure self.parent = parent # builder self.gimod = parent.parent dot, = self.figure.axis.plot([], [], 'o', c='#ff0000') self.dot = dot self.grid() self.getCanvasHeight() self.onMotion = self.onMotion def getCanvasHeight(self): """.""" _, self.height = self.figure.canvas.get_width_height() def connect(self): """.""" self.cid_p = self.figure.canvas.mpl_connect('button_press_event', self.onPress) self.cid_m = self.figure.canvas.mpl_connect('motion_notify_event', self.onMotion) self.cid_ae = self.figure.canvas.mpl_connect('axes_enter_event', self.axesEnter) self.cid_al = self.figure.canvas.mpl_connect('axes_leave_event', self.axesLeave) self.cid_r = self.figure.canvas.mpl_connect('button_release_event', self.onRelease) def axesLeave(self, event): QApplication.restoreOverrideCursor() def axesEnter(self, event): QApplication.setOverrideCursor(QCursor(Qt.ArrowCursor)) def disconnect(self): """.""" try: self.figure.canvas.mpl_disconnect(self.cid_p) self.figure.canvas.mpl_disconnect(self.cid_m) self.figure.canvas.mpl_disconnect(self.cid_ae) self.figure.canvas.mpl_disconnect(self.cid_al) self.figure.canvas.mpl_disconnect(self.cid_r) except AttributeError: # bc the grid might never be magnetized, thus not having any cid to disconnect pass def disable(self): """Disable the grid and reset the dot.""" self.figure.axis.grid(False) self.dot = self.figure.axis.plot([], [], 'o', c='#ff0000') self.figure.canvas.draw() def grid(self): """Establish the grid and save the grid positions.""" # set the actual grid self.figure.axis.grid() self.figure.canvas.draw() # get the axis ticks. returns a list of x,y-tuple x_ticks = [i.get_position()[0] for i in self.figure.axis.get_xticklabels()] y_ticks = [i.get_position()[1] for i in self.figure.axis.get_yticklabels()] # establish all cross sections as pixel position data self.crossings = [] for x in x_ticks: for y in y_ticks: self.crossings.append(tuple(self.figure.axis.transData.transform((x, y)))) def onPress(self, event): """Set the magnetic dot if somewhere near the grid ON PRESS.""" if event.inaxes: try: dot, _ = self.vicinity(event.xdata, event.ydata) except TypeError: # no vicinity at all self.x_p = event.xdata self.y_p = event.ydata else: # if dot is not None: self.x_p = dot[0] self.y_p = dot[1] self._checkDot() self.dot.set_data(self.x_p, self.y_p) self.dot.set_animated(True) self.figure.canvas.draw() self.background = self.figure.canvas.copy_from_bbox(self.dot.axes.bbox) self.dot.axes.draw_artist(self.dot) self.figure.canvas.blit(self.dot.axes.bbox) def onMotion(self, event): """.""" if event.inaxes: # meaning within the plotting area self._checkDot() self.dot.set_animated(True) self.figure.canvas.draw() self.background = self.figure.canvas.copy_from_bbox(self.dot.axes.bbox) self.dot.axes.draw_artist(self.dot) self.figure.canvas.blit(self.dot.axes.bbox) try: dot, color = self.vicinity(event.xdata, event.ydata) self.x_m = dot[0] self.y_m = dot[1] self.dot.set_data(self.x_m, self.y_m) self.dot.set_color(color) self.figure.canvas.restore_region(self.background) self.dot.axes.draw_artist(self.dot) self.figure.canvas.blit(self.dot.axes.bbox) except (ValueError, TypeError): self.x_m = event.xdata self.y_m = event.ydata self._checkDot() self.dot.set_data([], []) self.dot.axes.draw_artist(self.dot) self.dot.set_animated(False) self.background = None def onRelease(self, event): """Set the magnetic dot if somewhere near the grid ON RELEASE.""" if event.inaxes: try: dot, _ = self.vicinity(event.xdata, event.ydata) except TypeError: # no vicinity at all self.x_r = event.xdata self.y_r = event.ydata self._checkDot() self.dot.set_data([], []) else: # if dot is not None: self.x_r = dot[0] self.y_r = dot[1] self._checkDot() self.dot.set_data([], []) self.dot.axes.draw_artist(self.dot) self.dot.set_animated(False) self.background = None self.figure.canvas.draw() def transform(self, x, y): """Transform the given x-y-coordinates to pixel position.""" return self.figure.axis.transData.transform((x, y)) def vicinity(self, x, y, picker=10): """ Calculate the distance between a set magnet and the clicked position. Parameters ---------- x: float The x-position of the current mouse event y: float The y-position of the current mouse event picker: int [10] Sets the sensitive distance to snap from Returns ------- tuple() A tuple holding the cartesian x,y-coordinates of the point that will be snapped to """ # pixel holds the current cursor postion pixel = tuple(self.transform(x, y)) # crossings are all possible positions of grid lines for pos in self.crossings: dist_x = abs(pos[0] - pixel[0]) dist_y = abs(pos[1] - pixel[1]) color = '#ff0000' if dist_x <= picker and dist_y <= picker: self.parent.statusbar.showMessage("Locked X-Y-Axes", 1000) dot_x = pos[0] dot_y = pos[1] color = '#61ff00' # NOTE: 1 <= dist <= picker allows a 5 pixel radius around each # joint so that the junctions can be reached better elif 1 <= dist_x <= picker and dist_y > picker: self.parent.statusbar.showMessage("Locked X-Axis", 1000) dot_x = pos[0] dot_y = pixel[1] elif 1 <= dist_y <= picker and dist_x > picker: self.parent.statusbar.showMessage("Locked Y-Axis", 1000) dot_x = pixel[0] dot_y = pos[1] if 'dot_x' and 'dot_y' in locals(): return self.figure.axis.transData.inverted().transform((dot_x, dot_y)), color def _checkDot(self): """ TODO: why suddenly a list?! HACK: pretty dirty.. but works for now """ if isinstance(self.dot, list): self.dot = self.dot[0] if __name__ == '__main__': pass
gpl-3.0
pypot/scikit-learn
examples/svm/plot_weighted_samples.py
188
1943
""" ===================== SVM: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means that the classifier puts more emphasis on getting these points right. The effect might often be subtle. To emphasize the effect here, we particularly weight outliers, making the deformation of the decision boundary very visible. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm def plot_decision_function(classifier, sample_weight, axis, title): # plot the decision function xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # plot the line, the points, and the nearest vectors to the plane axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone) axis.scatter(X[:, 0], X[:, 1], c=Y, s=100 * sample_weight, alpha=0.9, cmap=plt.cm.bone) axis.axis('off') axis.set_title(title) # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] Y = [1] * 10 + [-1] * 10 sample_weight_last_ten = abs(np.random.randn(len(X))) sample_weight_constant = np.ones(len(X)) # and bigger weights to some outliers sample_weight_last_ten[15:] *= 5 sample_weight_last_ten[9] *= 15 # for reference, first fit without class weights # fit the model clf_weights = svm.SVC() clf_weights.fit(X, Y, sample_weight=sample_weight_last_ten) clf_no_weights = svm.SVC() clf_no_weights.fit(X, Y) fig, axes = plt.subplots(1, 2, figsize=(14, 6)) plot_decision_function(clf_no_weights, sample_weight_constant, axes[0], "Constant weights") plot_decision_function(clf_weights, sample_weight_last_ten, axes[1], "Modified weights") plt.show()
bsd-3-clause
subodhchhabra/glances
setup.py
1
2949
#!/usr/bin/env python import glob import sys from setuptools import setup, Command if sys.version_info < (2, 6) or (3, 0) <= sys.version_info < (3, 3): print('Glances requires at least Python 2.6 or 3.3 to run.') sys.exit(1) class tests(Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): import subprocess import sys for t in glob.glob('unitest.py'): ret = subprocess.call([sys.executable, t]) != 0 if ret != 0: raise SystemExit(ret) raise SystemExit(0) def get_data_files(): data_files = [ ('share/doc/glances', ['AUTHORS', 'COPYING', 'NEWS', 'README.rst', 'conf/glances.conf']), ('share/man/man1', ['docs/man/glances.1']) ] return data_files def get_requires(): requires = ['psutil>=2.0.0'] if sys.platform.startswith('win'): requires += ['colorconsole'] if sys.version_info[:2] == (2, 6): requires += ['argparse', 'logutils'] return requires setup( name='Glances', version='2.6.2', description="A cross-platform curses-based monitoring tool", long_description=open('README.rst').read(), author='Nicolas Hennion', author_email='[email protected]', url='https://github.com/nicolargo/glances', license="LGPL", keywords="cli curses monitoring system", install_requires=get_requires(), extras_require={ 'WEB': ['bottle', 'requests'], 'SENSORS': ['py3sensors'], 'BATINFO': ['batinfo'], 'SNMP': ['pysnmp'], 'CHART': ['matplotlib'], 'BROWSER': ['zeroconf>=0.17'], 'IP': ['netifaces'], 'RAID': ['pymdstat'], 'DOCKER': ['docker-py'], 'EXPORT': ['influxdb>=1.0.0', 'potsdb' 'statsd', 'pika'], 'ACTION': ['pystache'], 'CPUINFO': ['py-cpuinfo'], 'FOLDERS': ['scandir'] }, packages=['glances'], include_package_data=True, data_files=get_data_files(), cmdclass={'test': tests}, test_suite="unitest.py", entry_points={"console_scripts": ["glances=glances:main"]}, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console :: Curses', 'Intended Audience :: Developers', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: GNU Lesser General Public License v3 (LGPLv3)', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5' ] )
lgpl-3.0
dssg/wikienergy
disaggregator/build/pandas/pandas/io/sql.py
1
58024
# -*- coding: utf-8 -*- """ Collection of query wrappers / abstractions to both facilitate data retrieval and to reduce dependency on DB-specific API. """ from __future__ import print_function, division from datetime import datetime, date import warnings import traceback import re import numpy as np import pandas.lib as lib import pandas.core.common as com from pandas.compat import lzip, map, zip, raise_with_traceback, string_types from pandas.core.api import DataFrame, Series from pandas.core.common import isnull from pandas.core.base import PandasObject from pandas.tseries.tools import to_datetime from pandas.util.decorators import Appender from contextlib import contextmanager class SQLAlchemyRequired(ImportError): pass class DatabaseError(IOError): pass #------------------------------------------------------------------------------ #--- Helper functions _SQLALCHEMY_INSTALLED = None def _is_sqlalchemy_engine(con): global _SQLALCHEMY_INSTALLED if _SQLALCHEMY_INSTALLED is None: try: import sqlalchemy _SQLALCHEMY_INSTALLED = True from distutils.version import LooseVersion ver = LooseVersion(sqlalchemy.__version__) # For sqlalchemy versions < 0.8.2, the BIGINT type is recognized # for a sqlite engine, which results in a warning when trying to # read/write a DataFrame with int64 values. (GH7433) if ver < '0.8.2': from sqlalchemy import BigInteger from sqlalchemy.ext.compiler import compiles @compiles(BigInteger, 'sqlite') def compile_big_int_sqlite(type_, compiler, **kw): return 'INTEGER' except ImportError: _SQLALCHEMY_INSTALLED = False if _SQLALCHEMY_INSTALLED: import sqlalchemy return isinstance(con, sqlalchemy.engine.Engine) else: return False def _convert_params(sql, params): """convert sql and params args to DBAPI2.0 compliant format""" args = [sql] if params is not None: if hasattr(params, 'keys'): # test if params is a mapping args += [params] else: args += [list(params)] return args def _handle_date_column(col, format=None): if isinstance(format, dict): return to_datetime(col, **format) else: if format in ['D', 's', 'ms', 'us', 'ns']: return to_datetime(col, coerce=True, unit=format) elif (issubclass(col.dtype.type, np.floating) or issubclass(col.dtype.type, np.integer)): # parse dates as timestamp format = 's' if format is None else format return to_datetime(col, coerce=True, unit=format) else: return to_datetime(col, coerce=True, format=format) def _parse_date_columns(data_frame, parse_dates): """ Force non-datetime columns to be read as such. Supports both string formatted and integer timestamp columns """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for col_name in parse_dates: df_col = data_frame[col_name] try: fmt = parse_dates[col_name] except TypeError: fmt = None data_frame[col_name] = _handle_date_column(df_col, format=fmt) return data_frame def _wrap_result(data, columns, index_col=None, coerce_float=True, parse_dates=None): """Wrap result set of query in a DataFrame """ frame = DataFrame.from_records(data, columns=columns, coerce_float=coerce_float) _parse_date_columns(frame, parse_dates) if index_col is not None: frame.set_index(index_col, inplace=True) return frame def execute(sql, con, cur=None, params=None): """ Execute the given SQL query using the provided connection object. Parameters ---------- sql : string Query to be executed con : SQLAlchemy engine or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. cur : deprecated, cursor is obtained from connection params : list or tuple, optional List of parameters to pass to execute method. Returns ------- Results Iterable """ if cur is None: pandas_sql = pandasSQL_builder(con) else: pandas_sql = pandasSQL_builder(cur, is_cursor=True) args = _convert_params(sql, params) return pandas_sql.execute(*args) #------------------------------------------------------------------------------ #--- Deprecated tquery and uquery def _safe_fetch(cur): try: result = cur.fetchall() if not isinstance(result, list): result = list(result) return result except Exception as e: # pragma: no cover excName = e.__class__.__name__ if excName == 'OperationalError': return [] def tquery(sql, con=None, cur=None, retry=True): """ DEPRECATED. Returns list of tuples corresponding to each row in given sql query. If only one column selected, then plain list is returned. To obtain the same result in the future, you can use the following: >>> execute(sql, con, params).fetchall() Parameters ---------- sql: string SQL query to be executed con: DBAPI2 connection cur: deprecated, cursor is obtained from connection Returns ------- Results Iterable """ warnings.warn( "tquery is deprecated, and will be removed in future versions. " "You can use ``execute(...).fetchall()`` instead.", FutureWarning) cur = execute(sql, con, cur=cur) result = _safe_fetch(cur) if con is not None: try: cur.close() con.commit() except Exception as e: excName = e.__class__.__name__ if excName == 'OperationalError': # pragma: no cover print('Failed to commit, may need to restart interpreter') else: raise traceback.print_exc() if retry: return tquery(sql, con=con, retry=False) if result and len(result[0]) == 1: # python 3 compat result = list(lzip(*result)[0]) elif result is None: # pragma: no cover result = [] return result def uquery(sql, con=None, cur=None, retry=True, params=None): """ DEPRECATED. Does the same thing as tquery, but instead of returning results, it returns the number of rows affected. Good for update queries. To obtain the same result in the future, you can use the following: >>> execute(sql, con).rowcount Parameters ---------- sql: string SQL query to be executed con: DBAPI2 connection cur: deprecated, cursor is obtained from connection params: list or tuple, optional List of parameters to pass to execute method. Returns ------- Number of affected rows """ warnings.warn( "uquery is deprecated, and will be removed in future versions. " "You can use ``execute(...).rowcount`` instead.", FutureWarning) cur = execute(sql, con, cur=cur, params=params) result = cur.rowcount try: con.commit() except Exception as e: excName = e.__class__.__name__ if excName != 'OperationalError': raise traceback.print_exc() if retry: print('Looks like your connection failed, reconnecting...') return uquery(sql, con, retry=False) return result #------------------------------------------------------------------------------ #--- Read and write to DataFrames def read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None): """Read SQL database table into a DataFrame. Given a table name and an SQLAlchemy engine, returns a DataFrame. This function does not support DBAPI connections. Parameters ---------- table_name : string Name of SQL table in database con : SQLAlchemy engine Sqlite DBAPI connection mode not supported schema : string, default None Name of SQL schema in database to query (if database flavor supports this). If None, use default schema (default). index_col : string, optional Column to set as index coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame See also -------- read_sql_query : Read SQL query into a DataFrame. read_sql """ if not _is_sqlalchemy_engine(con): raise NotImplementedError("read_sql_table only supported for " "SQLAlchemy engines.") import sqlalchemy from sqlalchemy.schema import MetaData meta = MetaData(con, schema=schema) try: meta.reflect(only=[table_name]) except sqlalchemy.exc.InvalidRequestError: raise ValueError("Table %s not found" % table_name) pandas_sql = SQLDatabase(con, meta=meta) table = pandas_sql.read_table( table_name, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, columns=columns, chunksize=chunksize) if table is not None: return table else: raise ValueError("Table %s not found" % table_name, con) def read_sql_query(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None): """Read SQL query into a DataFrame. Returns a DataFrame corresponding to the result set of the query string. Optionally provide an `index_col` parameter to use one of the columns as the index, otherwise default integer index will be used. Parameters ---------- sql : string SQL query to be executed con : SQLAlchemy engine or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string, optional Column name to use as index for the returned DataFrame object. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'} parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame See also -------- read_sql_table : Read SQL database table into a DataFrame read_sql """ pandas_sql = pandasSQL_builder(con) return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize) def read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None): """ Read SQL query or database table into a DataFrame. Parameters ---------- sql : string SQL query to be executed or database table name. con : SQLAlchemy engine or DBAPI2 connection (fallback mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string, optional column name to use as index for the returned DataFrame object. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'} parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table (only used when reading a table). chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame Notes ----- This function is a convenience wrapper around ``read_sql_table`` and ``read_sql_query`` (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query). See also -------- read_sql_table : Read SQL database table into a DataFrame read_sql_query : Read SQL query into a DataFrame """ pandas_sql = pandasSQL_builder(con) if isinstance(pandas_sql, SQLiteDatabase): return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize) try: _is_table_name = pandas_sql.has_table(sql) except: _is_table_name = False if _is_table_name: pandas_sql.meta.reflect(only=[sql]) return pandas_sql.read_table( sql, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, columns=columns, chunksize=chunksize) else: return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize) def to_sql(frame, name, con, flavor='sqlite', schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame : DataFrame name : string Name of SQL table con : SQLAlchemy engine or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. 'mysql' is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). if_exists : {'fail', 'replace', 'append'}, default 'fail' - fail: If table exists, do nothing. - replace: If table exists, drop it, recreate it, and insert data. - append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column index_label : string or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. """ if if_exists not in ('fail', 'replace', 'append'): raise ValueError("'{0}' is not valid for if_exists".format(if_exists)) pandas_sql = pandasSQL_builder(con, schema=schema, flavor=flavor) if isinstance(frame, Series): frame = frame.to_frame() elif not isinstance(frame, DataFrame): raise NotImplementedError pandas_sql.to_sql(frame, name, if_exists=if_exists, index=index, index_label=index_label, schema=schema, chunksize=chunksize, dtype=dtype) def has_table(table_name, con, flavor='sqlite', schema=None): """ Check if DataBase has named table. Parameters ---------- table_name: string Name of SQL table con: SQLAlchemy engine or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor: {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. 'mysql' is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). Returns ------- boolean """ pandas_sql = pandasSQL_builder(con, flavor=flavor, schema=schema) return pandas_sql.has_table(table_name) table_exists = has_table _MYSQL_WARNING = ("The 'mysql' flavor with DBAPI connection is deprecated " "and will be removed in future versions. " "MySQL will be further supported with SQLAlchemy engines.") def pandasSQL_builder(con, flavor=None, schema=None, meta=None, is_cursor=False): """ Convenience function to return the correct PandasSQL subclass based on the provided parameters """ # When support for DBAPI connections is removed, # is_cursor should not be necessary. if _is_sqlalchemy_engine(con): return SQLDatabase(con, schema=schema, meta=meta) else: if flavor == 'mysql': warnings.warn(_MYSQL_WARNING, FutureWarning) return SQLiteDatabase(con, flavor, is_cursor=is_cursor) class SQLTable(PandasObject): """ For mapping Pandas tables to SQL tables. Uses fact that table is reflected by SQLAlchemy to do better type convertions. Also holds various flags needed to avoid having to pass them between functions all the time. """ # TODO: support for multiIndex def __init__(self, name, pandas_sql_engine, frame=None, index=True, if_exists='fail', prefix='pandas', index_label=None, schema=None, keys=None, dtype=None): self.name = name self.pd_sql = pandas_sql_engine self.prefix = prefix self.frame = frame self.index = self._index_name(index, index_label) self.schema = schema self.if_exists = if_exists self.keys = keys self.dtype = dtype if frame is not None: # We want to initialize based on a dataframe self.table = self._create_table_setup() else: # no data provided, read-only mode self.table = self.pd_sql.get_table(self.name, self.schema) if self.table is None: raise ValueError("Could not init table '%s'" % name) def exists(self): return self.pd_sql.has_table(self.name, self.schema) def sql_schema(self): from sqlalchemy.schema import CreateTable return str(CreateTable(self.table).compile(self.pd_sql.engine)) def _execute_create(self): # Inserting table into database, add to MetaData object self.table = self.table.tometadata(self.pd_sql.meta) self.table.create() def create(self): if self.exists(): if self.if_exists == 'fail': raise ValueError("Table '%s' already exists." % self.name) elif self.if_exists == 'replace': self.pd_sql.drop_table(self.name, self.schema) self._execute_create() elif self.if_exists == 'append': pass else: raise ValueError( "'{0}' is not valid for if_exists".format(self.if_exists)) else: self._execute_create() def insert_statement(self): return self.table.insert() def insert_data(self): if self.index is not None: temp = self.frame.copy() temp.index.names = self.index try: temp.reset_index(inplace=True) except ValueError as err: raise ValueError( "duplicate name in index/columns: {0}".format(err)) else: temp = self.frame column_names = list(map(str, temp.columns)) ncols = len(column_names) data_list = [None] * ncols blocks = temp._data.blocks for i in range(len(blocks)): b = blocks[i] if b.is_datetime: # convert to microsecond resolution so this yields # datetime.datetime d = b.values.astype('M8[us]').astype(object) else: d = np.array(b.get_values(), dtype=object) # replace NaN with None if b._can_hold_na: mask = isnull(d) d[mask] = None for col_loc, col in zip(b.mgr_locs, d): data_list[col_loc] = col return column_names, data_list def _execute_insert(self, conn, keys, data_iter): data = [dict((k, v) for k, v in zip(keys, row)) for row in data_iter] conn.execute(self.insert_statement(), data) def insert(self, chunksize=None): keys, data_list = self.insert_data() nrows = len(self.frame) if nrows == 0: return if chunksize is None: chunksize = nrows elif chunksize == 0: raise ValueError('chunksize argument should be non-zero') chunks = int(nrows / chunksize) + 1 with self.pd_sql.run_transaction() as conn: for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, nrows) if start_i >= end_i: break chunk_iter = zip(*[arr[start_i:end_i] for arr in data_list]) self._execute_insert(conn, keys, chunk_iter) def _query_iterator(self, result, chunksize, columns, coerce_float=True, parse_dates=None): """Return generator through chunked result set""" while True: data = result.fetchmany(chunksize) if not data: break else: self.frame = DataFrame.from_records( data, columns=columns, coerce_float=coerce_float) self._harmonize_columns(parse_dates=parse_dates) if self.index is not None: self.frame.set_index(self.index, inplace=True) yield self.frame def read(self, coerce_float=True, parse_dates=None, columns=None, chunksize=None): if columns is not None and len(columns) > 0: from sqlalchemy import select cols = [self.table.c[n] for n in columns] if self.index is not None: [cols.insert(0, self.table.c[idx]) for idx in self.index[::-1]] sql_select = select(cols) else: sql_select = self.table.select() result = self.pd_sql.execute(sql_select) column_names = result.keys() if chunksize is not None: return self._query_iterator(result, chunksize, column_names, coerce_float=coerce_float, parse_dates=parse_dates) else: data = result.fetchall() self.frame = DataFrame.from_records( data, columns=column_names, coerce_float=coerce_float) self._harmonize_columns(parse_dates=parse_dates) if self.index is not None: self.frame.set_index(self.index, inplace=True) return self.frame def _index_name(self, index, index_label): # for writing: index=True to include index in sql table if index is True: nlevels = self.frame.index.nlevels # if index_label is specified, set this as index name(s) if index_label is not None: if not isinstance(index_label, list): index_label = [index_label] if len(index_label) != nlevels: raise ValueError( "Length of 'index_label' should match number of " "levels, which is {0}".format(nlevels)) else: return index_label # return the used column labels for the index columns if (nlevels == 1 and 'index' not in self.frame.columns and self.frame.index.name is None): return ['index'] else: return [l if l is not None else "level_{0}".format(i) for i, l in enumerate(self.frame.index.names)] # for reading: index=(list of) string to specify column to set as index elif isinstance(index, string_types): return [index] elif isinstance(index, list): return index else: return None def _get_column_names_and_types(self, dtype_mapper): column_names_and_types = [] if self.index is not None: for i, idx_label in enumerate(self.index): idx_type = dtype_mapper( self.frame.index.get_level_values(i)) column_names_and_types.append((idx_label, idx_type, True)) column_names_and_types += [ (str(self.frame.columns[i]), dtype_mapper(self.frame.iloc[:, i]), False) for i in range(len(self.frame.columns)) ] return column_names_and_types def _create_table_setup(self): from sqlalchemy import Table, Column, PrimaryKeyConstraint column_names_and_types = \ self._get_column_names_and_types(self._sqlalchemy_type) columns = [Column(name, typ, index=is_index) for name, typ, is_index in column_names_and_types] if self.keys is not None: pkc = PrimaryKeyConstraint(self.keys, name=self.name + '_pk') columns.append(pkc) schema = self.schema or self.pd_sql.meta.schema # At this point, attach to new metadata, only attach to self.meta # once table is created. from sqlalchemy.schema import MetaData meta = MetaData(self.pd_sql, schema=schema) return Table(self.name, meta, *columns, schema=schema) def _harmonize_columns(self, parse_dates=None): """ Make the DataFrame's column types align with the SQL table column types. Need to work around limited NA value support. Floats are always fine, ints must always be floats if there are Null values. Booleans are hard because converting bool column with None replaces all Nones with false. Therefore only convert bool if there are no NA values. Datetimes should already be converted to np.datetime64 if supported, but here we also force conversion if required """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for sql_col in self.table.columns: col_name = sql_col.name try: df_col = self.frame[col_name] # the type the dataframe column should have col_type = self._numpy_type(sql_col.type) if col_type is datetime or col_type is date: if not issubclass(df_col.dtype.type, np.datetime64): self.frame[col_name] = _handle_date_column(df_col) elif col_type is float: # floats support NA, can always convert! self.frame[col_name] = df_col.astype(col_type, copy=False) elif len(df_col) == df_col.count(): # No NA values, can convert ints and bools if col_type is np.dtype('int64') or col_type is bool: self.frame[col_name] = df_col.astype(col_type, copy=False) # Handle date parsing if col_name in parse_dates: try: fmt = parse_dates[col_name] except TypeError: fmt = None self.frame[col_name] = _handle_date_column( df_col, format=fmt) except KeyError: pass # this column not in results def _get_notnull_col_dtype(self, col): """ Infer datatype of the Series col. In case the dtype of col is 'object' and it contains NA values, this infers the datatype of the not-NA values. Needed for inserting typed data containing NULLs, GH8778. """ col_for_inference = col if col.dtype == 'object': notnulldata = col[~isnull(col)] if len(notnulldata): col_for_inference = notnulldata return lib.infer_dtype(col_for_inference) def _sqlalchemy_type(self, col): dtype = self.dtype or {} if col.name in dtype: return self.dtype[col.name] col_type = self._get_notnull_col_dtype(col) from sqlalchemy.types import (BigInteger, Float, Text, Boolean, DateTime, Date, Time) if col_type == 'datetime64': try: tz = col.tzinfo return DateTime(timezone=True) except: return DateTime if col_type == 'timedelta64': warnings.warn("the 'timedelta' type is not supported, and will be " "written as integer values (ns frequency) to the " "database.", UserWarning) return BigInteger elif col_type == 'floating': return Float elif col_type == 'integer': # TODO: Refine integer size. return BigInteger elif col_type == 'boolean': return Boolean elif col_type == 'date': return Date elif col_type == 'time': return Time elif col_type == 'complex': raise ValueError('Complex datatypes not supported') return Text def _numpy_type(self, sqltype): from sqlalchemy.types import Integer, Float, Boolean, DateTime, Date if isinstance(sqltype, Float): return float if isinstance(sqltype, Integer): # TODO: Refine integer size. return np.dtype('int64') if isinstance(sqltype, DateTime): # Caution: np.datetime64 is also a subclass of np.number. return datetime if isinstance(sqltype, Date): return date if isinstance(sqltype, Boolean): return bool return object class PandasSQL(PandasObject): """ Subclasses Should define read_sql and to_sql """ def read_sql(self, *args, **kwargs): raise ValueError("PandasSQL must be created with an SQLAlchemy engine" " or connection+sql flavor") def to_sql(self, *args, **kwargs): raise ValueError("PandasSQL must be created with an SQLAlchemy engine" " or connection+sql flavor") class SQLDatabase(PandasSQL): """ This class enables convertion between DataFrame and SQL databases using SQLAlchemy to handle DataBase abstraction Parameters ---------- engine : SQLAlchemy engine Engine to connect with the database. Using SQLAlchemy makes it possible to use any DB supported by that library. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). meta : SQLAlchemy MetaData object, default None If provided, this MetaData object is used instead of a newly created. This allows to specify database flavor specific arguments in the MetaData object. """ def __init__(self, engine, schema=None, meta=None): self.engine = engine if not meta: from sqlalchemy.schema import MetaData meta = MetaData(self.engine, schema=schema) self.meta = meta def run_transaction(self): return self.engine.begin() def execute(self, *args, **kwargs): """Simple passthrough to SQLAlchemy engine""" return self.engine.execute(*args, **kwargs) def read_table(self, table_name, index_col=None, coerce_float=True, parse_dates=None, columns=None, schema=None, chunksize=None): """Read SQL database table into a DataFrame. Parameters ---------- table_name : string Name of SQL table in database index_col : string, optional Column to set as index coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. This can result in loss of precision. parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg}``, where the arg corresponds to the keyword arguments of :func:`pandas.to_datetime`. Especially useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table schema : string, default None Name of SQL schema in database to query (if database flavor supports this). If specified, this overwrites the default schema of the SQLDatabase object. chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame See also -------- pandas.read_sql_table SQLDatabase.read_query """ table = SQLTable(table_name, self, index=index_col, schema=schema) return table.read(coerce_float=coerce_float, parse_dates=parse_dates, columns=columns, chunksize=chunksize) @staticmethod def _query_iterator(result, chunksize, columns, index_col=None, coerce_float=True, parse_dates=None): """Return generator through chunked result set""" while True: data = result.fetchmany(chunksize) if not data: break else: yield _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) def read_query(self, sql, index_col=None, coerce_float=True, parse_dates=None, params=None, chunksize=None): """Read SQL query into a DataFrame. Parameters ---------- sql : string SQL query to be executed index_col : string, optional Column name to use as index for the returned DataFrame object. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'} parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite Returns ------- DataFrame See also -------- read_sql_table : Read SQL database table into a DataFrame read_sql """ args = _convert_params(sql, params) result = self.execute(*args) columns = result.keys() if chunksize is not None: return self._query_iterator(result, chunksize, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) else: data = result.fetchall() frame = _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) return frame read_sql = read_query def to_sql(self, frame, name, if_exists='fail', index=True, index_label=None, schema=None, chunksize=None, dtype=None): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame : DataFrame name : string Name of SQL table if_exists : {'fail', 'replace', 'append'}, default 'fail' - fail: If table exists, do nothing. - replace: If table exists, drop it, recreate it, and insert data. - append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column index_label : string or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If specified, this overwrites the default schema of the SQLDatabase object. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type. """ if dtype is not None: import sqlalchemy.sql.type_api as type_api for col, my_type in dtype.items(): if not issubclass(my_type, type_api.TypeEngine): raise ValueError('The type of %s is not a SQLAlchemy ' 'type ' % col) table = SQLTable(name, self, frame=frame, index=index, if_exists=if_exists, index_label=index_label, schema=schema, dtype=dtype) table.create() table.insert(chunksize) # check for potentially case sensitivity issues (GH7815) if name not in self.engine.table_names(schema=schema or self.meta.schema): warnings.warn("The provided table name '{0}' is not found exactly " "as such in the database after writing the table, " "possibly due to case sensitivity issues. Consider " "using lower case table names.".format(name), UserWarning) @property def tables(self): return self.meta.tables def has_table(self, name, schema=None): return self.engine.has_table(name, schema or self.meta.schema) def get_table(self, table_name, schema=None): schema = schema or self.meta.schema if schema: return self.meta.tables.get('.'.join([schema, table_name])) else: return self.meta.tables.get(table_name) def drop_table(self, table_name, schema=None): schema = schema or self.meta.schema if self.engine.has_table(table_name, schema): self.meta.reflect(only=[table_name], schema=schema) self.get_table(table_name, schema).drop() self.meta.clear() def _create_sql_schema(self, frame, table_name, keys=None): table = SQLTable(table_name, self, frame=frame, index=False, keys=keys) return str(table.sql_schema()) # ---- SQL without SQLAlchemy --- # Flavour specific sql strings and handler class for access to DBs without # SQLAlchemy installed # SQL type convertions for each DB _SQL_TYPES = { 'string': { 'mysql': 'VARCHAR (63)', 'sqlite': 'TEXT', }, 'floating': { 'mysql': 'FLOAT', 'sqlite': 'REAL', }, 'integer': { 'mysql': 'BIGINT', 'sqlite': 'INTEGER', }, 'datetime': { 'mysql': 'DATETIME', 'sqlite': 'TIMESTAMP', }, 'date': { 'mysql': 'DATE', 'sqlite': 'DATE', }, 'time': { 'mysql': 'TIME', 'sqlite': 'TIME', }, 'boolean': { 'mysql': 'BOOLEAN', 'sqlite': 'INTEGER', } } # SQL enquote and wildcard symbols _SQL_SYMB = { 'mysql': { 'br_l': '`', 'br_r': '`', 'wld': '%s' }, 'sqlite': { 'br_l': '[', 'br_r': ']', 'wld': '?' } } _SAFE_NAMES_WARNING = ("The spaces in these column names will not be changed. " "In pandas versions < 0.14, spaces were converted to " "underscores.") class SQLiteTable(SQLTable): """ Patch the SQLTable for fallback support. Instead of a table variable just use the Create Table statement. """ def sql_schema(self): return str(";\n".join(self.table)) def _execute_create(self): with self.pd_sql.run_transaction() as conn: for stmt in self.table: conn.execute(stmt) def insert_statement(self): names = list(map(str, self.frame.columns)) flv = self.pd_sql.flavor br_l = _SQL_SYMB[flv]['br_l'] # left val quote char br_r = _SQL_SYMB[flv]['br_r'] # right val quote char wld = _SQL_SYMB[flv]['wld'] # wildcard char if self.index is not None: [names.insert(0, idx) for idx in self.index[::-1]] bracketed_names = [br_l + column + br_r for column in names] col_names = ','.join(bracketed_names) wildcards = ','.join([wld] * len(names)) insert_statement = 'INSERT INTO %s (%s) VALUES (%s)' % ( self.name, col_names, wildcards) return insert_statement def _execute_insert(self, conn, keys, data_iter): data_list = list(data_iter) conn.executemany(self.insert_statement(), data_list) def _create_table_setup(self): """ Return a list of SQL statement that create a table reflecting the structure of a DataFrame. The first entry will be a CREATE TABLE statement while the rest will be CREATE INDEX statements """ column_names_and_types = \ self._get_column_names_and_types(self._sql_type_name) pat = re.compile('\s+') column_names = [col_name for col_name, _, _ in column_names_and_types] if any(map(pat.search, column_names)): warnings.warn(_SAFE_NAMES_WARNING) flv = self.pd_sql.flavor br_l = _SQL_SYMB[flv]['br_l'] # left val quote char br_r = _SQL_SYMB[flv]['br_r'] # right val quote char create_tbl_stmts = [(br_l + '%s' + br_r + ' %s') % (cname, col_type) for cname, col_type, _ in column_names_and_types] if self.keys is not None and len(self.keys): cnames_br = ",".join([br_l + c + br_r for c in self.keys]) create_tbl_stmts.append( "CONSTRAINT {tbl}_pk PRIMARY KEY ({cnames_br})".format( tbl=self.name, cnames_br=cnames_br)) create_stmts = ["CREATE TABLE " + self.name + " (\n" + ',\n '.join(create_tbl_stmts) + "\n)"] ix_cols = [cname for cname, _, is_index in column_names_and_types if is_index] if len(ix_cols): cnames = "_".join(ix_cols) cnames_br = ",".join([br_l + c + br_r for c in ix_cols]) create_stmts.append( "CREATE INDEX ix_{tbl}_{cnames} ON {tbl} ({cnames_br})".format( tbl=self.name, cnames=cnames, cnames_br=cnames_br)) return create_stmts def _sql_type_name(self, col): dtype = self.dtype or {} if col.name in dtype: return dtype[col.name] col_type = self._get_notnull_col_dtype(col) if col_type == 'timedelta64': warnings.warn("the 'timedelta' type is not supported, and will be " "written as integer values (ns frequency) to the " "database.", UserWarning) col_type = "integer" elif col_type == "datetime64": col_type = "datetime" elif col_type == "empty": col_type = "string" elif col_type == "complex": raise ValueError('Complex datatypes not supported') if col_type not in _SQL_TYPES: col_type = "string" return _SQL_TYPES[col_type][self.pd_sql.flavor] class SQLiteDatabase(PandasSQL): """ Version of SQLDatabase to support sqlite connections (fallback without sqlalchemy). This should only be used internally. For now still supports `flavor` argument to deal with 'mysql' database for backwards compatibility, but this will be removed in future versions. Parameters ---------- con : sqlite connection object """ def __init__(self, con, flavor, is_cursor=False): self.is_cursor = is_cursor self.con = con if flavor is None: flavor = 'sqlite' if flavor not in ['sqlite', 'mysql']: raise NotImplementedError else: self.flavor = flavor @contextmanager def run_transaction(self): cur = self.con.cursor() try: yield cur self.con.commit() except: self.con.rollback() raise finally: cur.close() def execute(self, *args, **kwargs): if self.is_cursor: cur = self.con else: cur = self.con.cursor() try: if kwargs: cur.execute(*args, **kwargs) else: cur.execute(*args) return cur except Exception as exc: try: self.con.rollback() except Exception: # pragma: no cover ex = DatabaseError("Execution failed on sql: %s\n%s\nunable" " to rollback" % (args[0], exc)) raise_with_traceback(ex) ex = DatabaseError("Execution failed on sql '%s': %s" % (args[0], exc)) raise_with_traceback(ex) @staticmethod def _query_iterator(cursor, chunksize, columns, index_col=None, coerce_float=True, parse_dates=None): """Return generator through chunked result set""" while True: data = cursor.fetchmany(chunksize) if not data: cursor.close() break else: yield _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) def read_query(self, sql, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None): args = _convert_params(sql, params) cursor = self.execute(*args) columns = [col_desc[0] for col_desc in cursor.description] if chunksize is not None: return self._query_iterator(cursor, chunksize, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) else: data = self._fetchall_as_list(cursor) cursor.close() frame = _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) return frame def _fetchall_as_list(self, cur): result = cur.fetchall() if not isinstance(result, list): result = list(result) return result def to_sql(self, frame, name, if_exists='fail', index=True, index_label=None, schema=None, chunksize=None, dtype=None): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame: DataFrame name: name of SQL table if_exists: {'fail', 'replace', 'append'}, default 'fail' fail: If table exists, do nothing. replace: If table exists, drop it, recreate it, and insert data. append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column index_label : string or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. schema : string, default None Ignored parameter included for compatability with SQLAlchemy version of ``to_sql``. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a string. """ if dtype is not None: for col, my_type in dtype.items(): if not isinstance(my_type, str): raise ValueError('%s (%s) not a string' % ( col, str(my_type))) table = SQLiteTable(name, self, frame=frame, index=index, if_exists=if_exists, index_label=index_label, dtype=dtype) table.create() table.insert(chunksize) def has_table(self, name, schema=None): flavor_map = { 'sqlite': ("SELECT name FROM sqlite_master " "WHERE type='table' AND name='%s';") % name, 'mysql': "SHOW TABLES LIKE '%s'" % name} query = flavor_map.get(self.flavor) return len(self.execute(query).fetchall()) > 0 def get_table(self, table_name, schema=None): return None # not supported in fallback mode def drop_table(self, name, schema=None): drop_sql = "DROP TABLE %s" % name self.execute(drop_sql) def _create_sql_schema(self, frame, table_name, keys=None): table = SQLiteTable(table_name, self, frame=frame, index=False, keys=keys) return str(table.sql_schema()) def get_schema(frame, name, flavor='sqlite', keys=None, con=None): """ Get the SQL db table schema for the given frame. Parameters ---------- frame : DataFrame name : string name of SQL table flavor : {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. 'mysql' is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. keys : string or sequence columns to use a primary key con: an open SQL database connection object or an SQLAlchemy engine Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. """ pandas_sql = pandasSQL_builder(con=con, flavor=flavor) return pandas_sql._create_sql_schema(frame, name, keys=keys) # legacy names, with depreciation warnings and copied docs @Appender(read_sql.__doc__, join='\n') def read_frame(*args, **kwargs): """DEPRECATED - use read_sql """ warnings.warn("read_frame is deprecated, use read_sql", FutureWarning) return read_sql(*args, **kwargs) @Appender(read_sql.__doc__, join='\n') def frame_query(*args, **kwargs): """DEPRECATED - use read_sql """ warnings.warn("frame_query is deprecated, use read_sql", FutureWarning) return read_sql(*args, **kwargs) def write_frame(frame, name, con, flavor='sqlite', if_exists='fail', **kwargs): """DEPRECATED - use to_sql Write records stored in a DataFrame to a SQL database. Parameters ---------- frame : DataFrame name : string con : DBAPI2 connection flavor : {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. if_exists : {'fail', 'replace', 'append'}, default 'fail' - fail: If table exists, do nothing. - replace: If table exists, drop it, recreate it, and insert data. - append: If table exists, insert data. Create if does not exist. index : boolean, default False Write DataFrame index as a column Notes ----- This function is deprecated in favor of ``to_sql``. There are however two differences: - With ``to_sql`` the index is written to the sql database by default. To keep the behaviour this function you need to specify ``index=False``. - The new ``to_sql`` function supports sqlalchemy engines to work with different sql flavors. See also -------- pandas.DataFrame.to_sql """ warnings.warn("write_frame is deprecated, use to_sql", FutureWarning) # for backwards compatibility, set index=False when not specified index = kwargs.pop('index', False) return to_sql(frame, name, con, flavor=flavor, if_exists=if_exists, index=index, **kwargs)
mit
DStauffman/dstauffman
dstauffman/tests/test_plotting_plotting.py
1
22249
r""" Test file for the `plotting` module of the "dstauffman.plotting" library. Notes ----- #. Written by David C. Stauffer in March 2015. """ #%% Imports import datetime from typing import List, Optional import unittest from unittest.mock import patch from dstauffman import capture_output, get_tests_dir, HAVE_MPL, HAVE_NUMPY, LogLevel, \ NP_DATETIME_FORM, NP_INT64_PER_SEC, NP_TIMEDELTA_FORM, unit import dstauffman.plotting as plot if HAVE_MPL: import matplotlib.pyplot as plt if HAVE_NUMPY: import numpy as np inf = np.inf else: from math import inf #%% plotting.Opts class Test_plotting_Opts(unittest.TestCase): r""" Tests the plotting.Opts class with the following cases: normal mode add new attribute to existing instance """ def setUp(self) -> None: self.opts_fields = ['case_name'] def test_calling(self) -> None: opts = plot.Opts() for field in self.opts_fields: self.assertTrue(hasattr(opts, field)) def test_new_attr(self) -> None: opts = plot.Opts() with self.assertRaises(AttributeError): opts.new_field_that_does_not_exist = 1 # type: ignore[attr-defined] def test_get_names_successful(self) -> None: opts = plot.Opts() opts.names = ['Name 1', 'Name 2'] name = opts.get_names(0) self.assertEqual(name, 'Name 1') def test_get_names_unsuccessful(self) -> None: opts = plot.Opts() opts.names = ['Name 1', 'Name 2'] name = opts.get_names(2) self.assertEqual(name, '') def test_get_date_zero_str(self) -> None: opts = plot.Opts() date_str = opts.get_date_zero_str() self.assertEqual(date_str, '') opts.date_zero = datetime.datetime(2019, 4, 1, 18, 0, 0) date_str = opts.get_date_zero_str() self.assertEqual(date_str,' t(0) = 01-Apr-2019 18:00:00 Z') def get_time_limits(self) -> None: opts = plot.Opts() opts.disp_xmin = 60 opts.disp_xmax = inf opts.rms_xmin = -inf opts.rms_xmax = None opts.time_base = 'sec' opts.time_unit = 'min' (d1, d2, r1, r2) = opts.get_time_limits() self.assertEqual(d1, 1) self.assertEqual(d2, inf) self.assertEqual(r1, -inf) self.assertIsNone(r2) def get_time_limits2(self) -> None: opts = plot.Opts().convert_dates('datetime') opts.disp_xmin = datetime.datetime(2020, 6, 1, 0, 0, 0) opts.disp_xmax = datetime.datetime(2020, 6, 1, 12, 0, 0) (d1, d2, r1, r2) = opts.get_time_limits() self.assertEqual(d1, datetime.datetime(2020, 6, 1, 0, 0, 0)) self.assertEqual(d2, datetime.datetime(2020, 6, 1, 12, 0, 0)) self.assertIsNone(r1) self.assertIsNone(r2) def test_pprint(self) -> None: opts = plot.Opts() with capture_output() as out: opts.pprint(indent=2) lines = out.getvalue().strip().split('\n') out.close() self.assertEqual(lines[0], 'Opts') self.assertEqual(lines[1], ' case_name = ') self.assertEqual(lines[3], ' save_plot = False') self.assertEqual(lines[-1], ' names = []') @unittest.skipIf(not HAVE_NUMPY, 'Skipping due to missing numpy dependency.') def test_convert_dates(self) -> None: opts = plot.Opts() self.assertEqual(opts.disp_xmin, -inf) self.assertEqual(opts.time_base, 'sec') opts.convert_dates('datetime') self.assertIsNone(opts.disp_xmin) self.assertEqual(opts.time_base, 'datetime') @unittest.skipIf(not HAVE_NUMPY, 'Skipping due to missing numpy dependency.') def test_convert_dates2(self) -> None: opts = plot.Opts(date_zero=datetime.datetime(2020, 6, 1)) opts.rms_xmin = -10 opts.rms_xmax = 10 opts.disp_xmin = 5 opts.disp_xmax = 150 opts.convert_dates('datetime') self.assertEqual(opts.time_base, 'datetime') self.assertEqual(opts.rms_xmin, datetime.datetime(2020, 5, 31, 23, 59, 50)) self.assertEqual(opts.rms_xmax, datetime.datetime(2020, 6, 1, 0, 0, 10)) self.assertEqual(opts.disp_xmin, datetime.datetime(2020, 6, 1, 0, 0, 5)) self.assertEqual(opts.disp_xmax, datetime.datetime(2020, 6, 1, 0, 2, 30)) #%% plotting.suppress_plots and plotting.unsupress_plots class Test_plotting_Plotter(unittest.TestCase): r""" Tests the plotting.Plotter class with the following cases: Suppress and Unsuppress """ @classmethod def setUpClass(cls) -> None: cls.orig_flag = plot.plotting._Plotter # type: ignore[attr-defined] def test_suppress_and_unsupress(self) -> None: plot.suppress_plots() self.assertFalse(plot.plotting._Plotter) plot.unsuppress_plots() self.assertTrue(plot.plotting._Plotter) def tearDown(self) -> None: if self.orig_flag: # type: ignore[attr-defined] plot.unsuppress_plots() else: plot.suppress_plots() #%% plotting.plot_time_history @unittest.skipIf(not HAVE_MPL, 'Skipping due to missing matplotlib dependency.') class Test_plotting_plot_time_history(unittest.TestCase): r""" Tests the plotting.plot_time_history function with the following cases: Nominal Defaults With label With type With Opts With legend No data Ignore all zeros Bad legend Show zero """ def setUp(self) -> None: self.description = 'Plot description' self.time = np.arange(0, 10, 0.1) + 2000 num_channels = 5 self.row_data = np.random.rand(len(self.time), num_channels) mag = np.sum(self.row_data, axis=1) self.row_data = 10 * self.row_data / np.expand_dims(mag, axis=1) self.col_data = self.row_data.T.copy() self.units = 'percentage' self.opts = plot.Opts() self.opts.show_plot = False self.elements = ['Value 1', 'Value 2', 'Value 3', 'Value 4', 'Value 5'] self.figs: List[plt.Figure] = [] def test_nominal(self) -> None: self.figs.append(plot.plot_time_history(self.description, self.time, self.row_data, \ opts=self.opts, data_as_rows=False)) def test_defaults(self) -> None: self.figs.append(plot.plot_time_history('', self.time, self.col_data)) def test_with_units(self) -> None: self.figs.append(plot.plot_time_history(self.description, self.time, self.col_data, units=self.units)) def test_with_opts(self) -> None: self.figs.append(plot.plot_time_history(self.description, self.time, self.col_data, opts=self.opts)) @patch('dstauffman.plotting.plotting.logger') def test_no_data(self, mock_logger): plot.plot_time_history('', self.time, None) self.assertEqual(mock_logger.log.call_count, 1) mock_logger.log.assert_called_with(LogLevel.L5, ' plot skipped due to missing data.') def test_ignore_zeros(self) -> None: self.figs.append(plot.plot_time_history(self.description, self.time, self.col_data, ignore_empties=True)) def test_ignore_zeros2(self) -> None: self.col_data[1, :] = 0 self.col_data[3, :] = 0 self.figs.append(plot.plot_time_history(self.description, self.time, self.col_data, ignore_empties=True)) @patch('dstauffman.plotting.plotting.logger') def test_ignore_zeros3(self, mock_logger): self.col_data = np.zeros(self.col_data.shape) not_a_fig = plot.plot_time_history('All Zeros', self.time, self.col_data, ignore_empties=True) self.assertIs(not_a_fig, None) self.assertEqual(mock_logger.log.call_count, 1) mock_logger.log.assert_called_with(LogLevel.L5, ' All Zeros plot skipped due to missing data.') def test_not_ndarray(self) -> None: self.figs.append(plot.plot_time_history('Zero', 0, 0)) def test_0d(self) -> None: self.figs.append(plot.plot_time_history('Zero', np.array(0), np.array(0))) def test_1d(self) -> None: self.figs.append(plot.plot_time_history('Line', np.arange(5), np.arange(5))) def test_bad_3d(self) -> None: bad_data = np.random.rand(self.time.shape[0], 4, 5) with self.assertRaises(AssertionError): plot.plot_time_history(self.description, self.time, bad_data, opts=self.opts) def test_datetime(self) -> None: dates = np.datetime64('2020-01-11 12:00:00') + np.arange(0, 1000, 10).astype('timedelta64[ms]') self.figs.append(plot.plot_time_history(self.description, dates, self.col_data, opts=self.opts, \ time_units='numpy')) def test_lists0(self) -> None: time = np.arange(100, dtype=float) data = [np.zeros(100), np.ones(100)] self.figs.append(plot.plot_time_history('', time, data)) def test_lists1(self) -> None: time = np.arange(10) data = [np.random.rand(10), 5*np.random.rand(10)] elements = ('Item 1', '5 Times') self.figs.append(plot.plot_time_history(self.description, time, data, opts=self.opts, elements=elements)) def test_lists2(self) -> None: time = [np.arange(5), np.arange(10, dtype=float)] data = [np.array([0., 0.1, 0.2, 0.3, 0.5]), np.arange(10)] self.figs.append(plot.plot_time_history(self.description, time, data, opts=self.opts)) def tearDown(self) -> None: if self.figs: for this_fig in self.figs: plt.close(this_fig) #%% plotting.plot_correlation_matrix @unittest.skipIf(not HAVE_MPL, 'Skipping due to missing matplotlib dependency.') class Test_plotting_plot_correlation_matrix(unittest.TestCase): r""" Tests the plotting.plot_correlation_matrix function with the following cases: normal mode non-square inputs default labels all arguments passed in symmetric matrix coloring with values above 1 coloring with values below -1 coloring with values in -1 to 1 instead of 0 to 1 x label rotation bad labels (should raise error) """ def setUp(self) -> None: num = 10 self.figs: List[plt.Figure] = [] self.data = unit(np.random.rand(num, num), axis=0) self.labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] self.units = 'percentage' self.opts = plot.Opts() self.opts.case_name = 'Testing Correlation' self.matrix_name = 'Not a Correlation Matrix' self.sym = self.data.copy() for j in range(num): for i in range(num): if i == j: self.sym[i, j] = 1 elif i > j: self.sym[i, j] = self.data[j, i] def test_normal(self) -> None: self.figs.append(plot.plot_correlation_matrix(self.data, self.labels)) def test_nonsquare(self) -> None: self.figs.append(plot.plot_correlation_matrix(self.data[:5, :3], [self.labels[:3], \ self.labels[:5]])) def test_default_labels(self) -> None: self.figs.append(plot.plot_correlation_matrix(self.data[:5, :3])) def test_type(self) -> None: self.figs.append(plot.plot_correlation_matrix(self.data, units=self.units)) def test_all_args(self) -> None: self.figs.append(plot.plot_correlation_matrix(self.data, self.labels, self.units, opts=self.opts, \ matrix_name=self.matrix_name, cmin=0, cmax=1, xlabel='', ylabel='', \ plot_lower_only=False, label_values=True, x_lab_rot=180, colormap='Paired')) def test_symmetric(self) -> None: self.figs.append(plot.plot_correlation_matrix(self.sym)) def test_symmetric_all(self) -> None: self.figs.append(plot.plot_correlation_matrix(self.sym, plot_lower_only=False)) def test_above_one(self) -> None: large_data = self.data * 1000 self.figs.append(plot.plot_correlation_matrix(large_data, self.labels)) def test_above_one_part2(self) -> None: large_data = self.data * 1000 self.figs.append(plot.plot_correlation_matrix(large_data, self.labels, cmax=2000)) def test_below_one(self) -> None: large_data = 1000*(self.data - 0.5) self.figs.append(plot.plot_correlation_matrix(large_data, self.labels)) def test_below_one_part2(self) -> None: large_data = 1000*(self.data - 0.5) self.figs.append(plot.plot_correlation_matrix(large_data, self.labels, cmin=-2)) def test_within_minus_one(self) -> None: large_data = self.data - 0.5 self.figs.append(plot.plot_correlation_matrix(large_data, self.labels)) def test_within_minus_one_part2(self) -> None: large_data = self.data - 0.5 self.figs.append(plot.plot_correlation_matrix(large_data, self.labels, cmin=-1, cmax=1)) def test_xlabel(self) -> None: self.figs.append(plot.plot_correlation_matrix(self.data, xlabel='Testing Label')) def test_ylabel(self) -> None: self.figs.append(plot.plot_correlation_matrix(self.data, ylabel='Testing Label')) def test_x_label_rotation(self) -> None: self.figs.append(plot.plot_correlation_matrix(self.data, self.labels, x_lab_rot=0)) def test_nans(self) -> None: self.data[0, 0] = np.nan self.figs.append(plot.plot_correlation_matrix(self.data, self.labels)) def test_bad_labels(self) -> None: with self.assertRaises(ValueError): self.figs.append(plot.plot_correlation_matrix(self.data, ['a'])) def test_label_values(self) -> None: self.figs.append(plot.plot_correlation_matrix(self.data, label_values=True)) def tearDown(self) -> None: for i in range(len(self.figs)): plt.close(self.figs.pop()) #%% plotting.plot_bar_breakdown @unittest.skipIf(not HAVE_MPL, 'Skipping due to missing matplotlib dependency.') class Test_plotting_plot_bar_breakdown(unittest.TestCase): r""" Tests the plotting.plot_bar_breakdown function with the following cases: Nominal Defaults With label With opts With legend Null data Bad legend With Colormap """ def setUp(self) -> None: self.time = np.arange(0, 5, 1./12) + 2000 num_bins = 5 self.data = np.random.rand(num_bins, len(self.time)) mag = np.sum(self.data, axis=0) self.data = self.data / np.expand_dims(mag, axis=0) self.description = 'Plot bar testing' self.elements = ['Value 1', 'Value 2', 'Value 3', 'Value 4', 'Value 5'] self.opts = plot.Opts() self.opts.show_plot = False self.figs: List[plt.Figure] = [] def test_nominal(self) -> None: self.figs.append(plot.plot_bar_breakdown(self.description, self.time, self.data, opts=self.opts, \ elements=self.elements)) def test_defaults(self) -> None: self.figs.append(plot.plot_bar_breakdown(self.description, self.time, self.data)) def test_opts(self) -> None: self.figs.append(plot.plot_bar_breakdown(self.description, self.time, self.data, opts=self.opts)) def test_elements(self) -> None: self.figs.append(plot.plot_bar_breakdown(self.description, self.time, self.data, elements=self.elements)) def test_ignore_zeros(self) -> None: self.data[:, 1] = 0 self.data[:, 3] = np.nan self.figs.append(plot.plot_bar_breakdown(self.description, self.time, self.data, ignore_empties=True)) @patch('dstauffman.plotting.plotting.logger') def test_null_data(self, mock_logger): plot.plot_bar_breakdown('', self.time, None) self.assertEqual(mock_logger.log.call_count, 1) mock_logger.log.assert_called_with(LogLevel.L5, ' plot skipped due to missing data.') def test_colormap(self) -> None: self.opts.colormap = 'Dark2' colormap = 'Paired' self.figs.append(plot.plot_bar_breakdown(self.description, self.time, self.data, \ opts=self.opts, colormap=colormap)) def test_bad_elements(self) -> None: with self.assertRaises(AssertionError): plot.plot_bar_breakdown(self.description, self.time, self.data, elements=self.elements[:-1]) def test_single_point(self) -> None: self.figs.append(plot.plot_bar_breakdown(self.description, self.time[:1], self.data[:, :1])) def test_new_colormap(self) -> None: self.opts.colormap = 'seismic' self.figs.append(plot.plot_bar_breakdown(self.description, self.time, self.data, opts=self.opts)) def test_datetime(self) -> None: dates = np.datetime64('2020-01-11 12:00:00') + np.arange(0, 7200, 120).astype('timedelta64[s]') self.figs.append(plot.plot_bar_breakdown(self.description, dates, self.data, opts=self.opts, \ time_units='numpy')) def test_data_as_rows(self) -> None: self.figs.append(plot.plot_bar_breakdown(self.description, self.time, self.data.T.copy(), opts=self.opts, \ elements=self.elements, data_as_rows=False)) def tearDown(self) -> None: if self.figs: for this_fig in self.figs: plt.close(this_fig) #%% plotting.plot_histogram @unittest.skipIf(not HAVE_MPL, 'Skipping due to missing matplotlib dependency.') class Test_plotting_plot_histogram(unittest.TestCase): r""" Tests the plotting.setup_plots function with the following cases: Nominal All inputs Datetimes """ def setUp(self) -> None: self.description = 'Histogram' self.data = np.array([0.5, 3.3, 1., 1.5, 1.5, 1.75, 2.5, 2.5]) self.bins = np.array([0., 1., 2., 3., 5., 7.]) self.fig: Optional[plt.Figure] = None def test_nominal(self) -> None: self.fig = plot.plot_histogram(self.description, self.data, self.bins) def test_with_opts(self) -> None: opts = plot.Opts() self.fig = plot.plot_histogram(self.description, self.data, self.bins, opts=opts, color='xkcd:black', \ xlabel='Text', ylabel='Num', second_ylabel='Dist') def test_datetimes(self) -> None: date_zero = np.datetime64(datetime.date(2021, 2, 1)).astype(NP_DATETIME_FORM) # type: ignore[call-overload] data_np = date_zero + np.round(NP_INT64_PER_SEC * self.data).astype(NP_TIMEDELTA_FORM) bins_np = date_zero + np.round(NP_INT64_PER_SEC * self.bins).astype(NP_TIMEDELTA_FORM) # TODO: would prefer to handle this case better self.fig = plot.plot_histogram(self.description, data_np.astype(np.int64), bins_np.astype(np.int64)) def test_infs(self) -> None: self.fig = plot.plot_histogram(self.description, self.data, np.array([-np.inf, -1., 0., 1., np.inf])) def test_int_cats(self) -> None: data = np.array([3, 3, 5, 8, 2, 2, 2]) bins = np.array([1, 2, 3, 4, 5]) self.fig = plot.plot_histogram(self.description, data, bins, use_exact_counts=True) def test_string_cats(self) -> None: data = np.full(10, 'yes', dtype='S8') data[2] = 'no' data[8] = 'no' data[5] = 'unknown' bins = [b'yes', b'no'] self.fig = plot.plot_histogram(self.description, data, bins, use_exact_counts=True) def test_missing_data(self) -> None: with self.assertRaises(ValueError): plot.plot_histogram(self.description, self.data, np.array([3, 10, 15])) def test_missing_exacts(self) -> None: self.fig = plot.plot_histogram(self.description, np.array([1, 1, 1, 2, 3, 3, 3]), \ np.array([0, 3, 6]), use_exact_counts=True) def tearDown(self) -> None: if self.fig: plt.close(self.fig) #%% plotting.setup_plots @unittest.skipIf(not HAVE_MPL, 'Skipping due to missing matplotlib dependency.') class Test_plotting_setup_plots(unittest.TestCase): r""" Tests the plotting.setup_plots function with the following cases: Prepend a title Don't prepend a title Don't show the plot Multiple figures Save the plot Show the plot link """ def setUp(self) -> None: self.fig = plt.figure() self.fig.canvas.manager.set_window_title('Figure Title') ax = self.fig.add_subplot(111) x = np.arange(0, 10, 0.1) y = np.sin(x) ax.plot(x, y) ax.set_title('X vs Y') ax.set_xlabel('time [years]') ax.set_ylabel('value [radians]') self.opts = plot.Opts() self.opts.case_name = 'Testing' self.opts.show_plot = True self.opts.save_plot = False self.opts.save_path = get_tests_dir() def test_title(self) -> None: plot.setup_plots(self.fig, self.opts) def test_no_title(self) -> None: self.opts.case_name = '' plot.setup_plots(self.fig, self.opts) def test_not_showing_plot(self) -> None: self.opts.show_plot = False plot.setup_plots(self.fig, self.opts) def test_multiple_figs(self) -> None: fig_list = [self.fig] (new_fig, ax) = plt.subplots() ax.plot(0, 0) fig_list.append(new_fig) plot.setup_plots(fig_list, self.opts) plt.close(new_fig) def test_saving_plot(self) -> None: this_filename = get_tests_dir().joinpath(self.opts.case_name + ' - Figure Title.png') self.opts.save_plot = True plot.setup_plots(self.fig, self.opts) # remove file this_filename.unlink(missing_ok=True) def test_show_link(self) -> None: this_filename = get_tests_dir().joinpath(self.opts.case_name + ' - Figure Title.png') self.opts.save_plot = True self.opts.show_link = True with capture_output() as out: plot.setup_plots(self.fig, self.opts) output = out.getvalue().strip() out.close() # remove file this_filename.unlink(missing_ok=True) self.assertTrue(output.startswith('Plots saved to <a href="')) def tearDown(self) -> None: plt.close(self.fig) #%% Unit test execution if __name__ == '__main__': plot.suppress_plots() unittest.main(exit=False)
lgpl-3.0
jaeilepp/eggie
mne/tests/test_source_estimate.py
1
24908
from __future__ import print_function import os.path as op from nose.tools import assert_true, assert_raises import warnings from copy import deepcopy import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_allclose, assert_equal) from scipy.fftpack import fft from mne.datasets import sample from mne import (stats, SourceEstimate, VolSourceEstimate, Label, read_source_spaces) from mne import read_source_estimate, morph_data, extract_label_time_course from mne.source_estimate import (spatio_temporal_tris_connectivity, spatio_temporal_src_connectivity, compute_morph_matrix, grade_to_vertices) from mne.minimum_norm import read_inverse_operator from mne.label import read_labels_from_annot, label_sign_flip from mne.utils import (_TempDir, requires_pandas, requires_sklearn, requires_pytables) warnings.simplefilter('always') # enable b/c these tests throw warnings data_path = sample.data_path(download=False) subjects_dir = op.join(data_path, 'subjects') fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg-lh.stc') fname_inv = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg-oct-6-meg-inv.fif') fname_vol = op.join(data_path, 'MEG', 'sample', 'sample_audvis-grad-vol-7-fwd-sensmap-vol.w') fname_vsrc = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg-vol-7-fwd.fif') fname_t1 = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz') tempdir = _TempDir() @sample.requires_sample_data def test_volume_stc(): """Test volume STCs """ N = 100 data = np.arange(N)[:, np.newaxis] datas = [data, data, np.arange(2)[:, np.newaxis]] vertno = np.arange(N) vertnos = [vertno, vertno[:, np.newaxis], np.arange(2)[:, np.newaxis]] vertno_reads = [vertno, vertno, np.arange(2)] for data, vertno, vertno_read in zip(datas, vertnos, vertno_reads): stc = VolSourceEstimate(data, vertno, 0, 1) fname_temp = op.join(tempdir, 'temp-vl.stc') stc_new = stc for _ in range(2): stc_new.save(fname_temp) stc_new = read_source_estimate(fname_temp) assert_true(isinstance(stc_new, VolSourceEstimate)) assert_array_equal(vertno_read, stc_new.vertno) assert_array_almost_equal(stc.data, stc_new.data) # now let's actually read a MNE-C processed file stc = read_source_estimate(fname_vol, 'sample') assert_true(isinstance(stc, VolSourceEstimate)) assert_true('sample' in repr(stc)) stc_new = stc assert_raises(ValueError, stc.save, fname_vol, ftype='whatever') for _ in range(2): fname_temp = op.join(tempdir, 'temp-vol.w') stc_new.save(fname_temp, ftype='w') stc_new = read_source_estimate(fname_temp) assert_true(isinstance(stc_new, VolSourceEstimate)) assert_array_equal(stc.vertno, stc_new.vertno) assert_array_almost_equal(stc.data, stc_new.data) # save the stc as a nifti file and export try: import nibabel as nib with warnings.catch_warnings(record=True): warnings.simplefilter('always') src = read_source_spaces(fname_vsrc) vol_fname = op.join(tempdir, 'stc.nii.gz') stc.save_as_volume(vol_fname, src, dest='surf', mri_resolution=False) with warnings.catch_warnings(record=True): # nib<->numpy img = nib.load(vol_fname) assert_true(img.shape == src[0]['shape'] + (len(stc.times),)) with warnings.catch_warnings(record=True): # nib<->numpy t1_img = nib.load(fname_t1) stc.save_as_volume(op.join(tempdir, 'stc.nii.gz'), src, dest='mri', mri_resolution=True) with warnings.catch_warnings(record=True): # nib<->numpy img = nib.load(vol_fname) assert_true(img.shape == t1_img.shape + (len(stc.times),)) assert_array_almost_equal(img.get_affine(), t1_img.get_affine(), decimal=5) # export without saving img = stc.as_volume(src, dest='mri', mri_resolution=True) assert_true(img.shape == t1_img.shape + (len(stc.times),)) assert_array_almost_equal(img.get_affine(), t1_img.get_affine(), decimal=5) except ImportError: print('Save as nifti test skipped, needs NiBabel') @sample.requires_sample_data def test_expand(): """Test stc expansion """ stc = read_source_estimate(fname, 'sample') assert_true('sample' in repr(stc)) labels_lh = read_labels_from_annot('sample', 'aparc', 'lh', subjects_dir=subjects_dir) stc_limited = stc.in_label(labels_lh[0] + labels_lh[1]) stc_new = stc_limited.copy() stc_new.data.fill(0) for label in labels_lh[:2]: stc_new += stc.in_label(label).expand(stc_limited.vertno) # make sure we can't add unless vertno agree assert_raises(ValueError, stc.__add__, stc.in_label(labels_lh[0])) def _fake_stc(n_time=10): verts = [np.arange(10), np.arange(90)] return SourceEstimate(np.random.rand(100, n_time), verts, 0, 1e-1, 'foo') def test_io_stc(): """Test IO for STC files """ stc = _fake_stc() stc.save(op.join(tempdir, "tmp.stc")) stc2 = read_source_estimate(op.join(tempdir, "tmp.stc")) assert_array_almost_equal(stc.data, stc2.data) assert_array_almost_equal(stc.tmin, stc2.tmin) assert_equal(len(stc.vertno), len(stc2.vertno)) for v1, v2 in zip(stc.vertno, stc2.vertno): assert_array_almost_equal(v1, v2) assert_array_almost_equal(stc.tstep, stc2.tstep) @requires_pytables() def test_io_stc_h5(): """Test IO for STC files using HDF5 """ stc = _fake_stc() assert_raises(ValueError, stc.save, op.join(tempdir, 'tmp'), ftype='foo') out_name = op.join(tempdir, 'tmp') stc.save(out_name, ftype='h5') stc3 = read_source_estimate(out_name) stc4 = read_source_estimate(out_name + '-stc.h5') assert_raises(RuntimeError, read_source_estimate, out_name, subject='bar') for stc_new in stc3, stc4: assert_equal(stc_new.subject, stc.subject) assert_array_equal(stc_new.data, stc.data) assert_array_equal(stc_new.tmin, stc.tmin) assert_array_equal(stc_new.tstep, stc.tstep) assert_equal(len(stc_new.vertno), len(stc.vertno)) for v1, v2 in zip(stc_new.vertno, stc.vertno): assert_array_equal(v1, v2) def test_io_w(): """Test IO for w files """ stc = _fake_stc(n_time=1) w_fname = op.join(tempdir, 'fake') stc.save(w_fname, ftype='w') src = read_source_estimate(w_fname) src.save(op.join(tempdir, 'tmp'), ftype='w') src2 = read_source_estimate(op.join(tempdir, 'tmp-lh.w')) assert_array_almost_equal(src.data, src2.data) assert_array_almost_equal(src.lh_vertno, src2.lh_vertno) assert_array_almost_equal(src.rh_vertno, src2.rh_vertno) def test_stc_arithmetic(): """Test arithmetic for STC files """ stc = _fake_stc() data = stc.data.copy() out = list() for a in [data, stc]: a = a + a * 3 + 3 * a - a ** 2 / 2 a += a a -= a with warnings.catch_warnings(record=True): warnings.simplefilter('always') a /= 2 * a a *= -a a += 2 a -= 1 a *= -1 a /= 2 a **= 3 out.append(a) assert_array_equal(out[0], out[1].data) assert_array_equal(stc.sqrt().data, np.sqrt(stc.data)) stc_mean = stc.mean() assert_array_equal(stc_mean.data, np.mean(stc.data, 1)[:, None]) @sample.requires_sample_data def test_stc_methods(): """Test stc methods lh_data, rh_data, bin(), center_of_mass(), resample() """ fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg') stc = read_source_estimate(fname) # lh_data / rh_data assert_array_equal(stc.lh_data, stc.data[:len(stc.lh_vertno)]) assert_array_equal(stc.rh_data, stc.data[len(stc.lh_vertno):]) # bin bin = stc.bin(.12) a = np.array((1,), dtype=stc.data.dtype) a[0] = np.mean(stc.data[0, stc.times < .12]) assert a[0] == bin.data[0, 0] assert_raises(ValueError, stc.center_of_mass, 'sample') stc.lh_data[:] = 0 vertex, hemi, t = stc.center_of_mass('sample', subjects_dir=subjects_dir) assert_true(hemi == 1) # XXX Should design a fool-proof test case, but here were the results: assert_true(vertex == 90186) assert_true(np.round(t, 3) == 0.123) stc = read_source_estimate(fname) stc_new = deepcopy(stc) o_sfreq = 1.0 / stc.tstep # note that using no padding for this STC reduces edge ringing... stc_new.resample(2 * o_sfreq, npad=0, n_jobs=2) assert_true(stc_new.data.shape[1] == 2 * stc.data.shape[1]) assert_true(stc_new.tstep == stc.tstep / 2) stc_new.resample(o_sfreq, npad=0) assert_true(stc_new.data.shape[1] == stc.data.shape[1]) assert_true(stc_new.tstep == stc.tstep) assert_array_almost_equal(stc_new.data, stc.data, 5) @sample.requires_sample_data def test_extract_label_time_course(): """Test extraction of label time courses from stc """ n_stcs = 3 n_times = 50 src = read_inverse_operator(fname_inv)['src'] vertices = [src[0]['vertno'], src[1]['vertno']] n_verts = len(vertices[0]) + len(vertices[1]) # get some labels labels_lh = read_labels_from_annot('sample', hemi='lh', subjects_dir=subjects_dir) labels_rh = read_labels_from_annot('sample', hemi='rh', subjects_dir=subjects_dir) labels = list() labels.extend(labels_lh[:5]) labels.extend(labels_rh[:4]) n_labels = len(labels) label_means = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times)) label_maxs = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times)) # compute the mean with sign flip label_means_flipped = np.zeros_like(label_means) for i, label in enumerate(labels): label_means_flipped[i] = i * np.mean(label_sign_flip(label, src)) # generate some stc's with known data stcs = list() for i in range(n_stcs): data = np.zeros((n_verts, n_times)) # set the value of the stc within each label for j, label in enumerate(labels): if label.hemi == 'lh': idx = np.intersect1d(vertices[0], label.vertices) idx = np.searchsorted(vertices[0], idx) elif label.hemi == 'rh': idx = np.intersect1d(vertices[1], label.vertices) idx = len(vertices[0]) + np.searchsorted(vertices[1], idx) data[idx] = label_means[j] this_stc = SourceEstimate(data, vertices, 0, 1) stcs.append(this_stc) # test some invalid inputs assert_raises(ValueError, extract_label_time_course, stcs, labels, src, mode='notamode') # have an empty label empty_label = labels[0].copy() empty_label.vertices += 1000000 assert_raises(ValueError, extract_label_time_course, stcs, empty_label, src, mode='mean') # but this works: tc = extract_label_time_course(stcs, empty_label, src, mode='mean', allow_empty=True) for arr in tc: assert_true(arr.shape == (1, n_times)) assert_array_equal(arr, np.zeros((1, n_times))) # test the different modes modes = ['mean', 'mean_flip', 'pca_flip', 'max'] for mode in modes: label_tc = extract_label_time_course(stcs, labels, src, mode=mode) label_tc_method = [stc.extract_label_time_course(labels, src, mode=mode) for stc in stcs] assert_true(len(label_tc) == n_stcs) assert_true(len(label_tc_method) == n_stcs) for tc1, tc2 in zip(label_tc, label_tc_method): assert_true(tc1.shape == (n_labels, n_times)) assert_true(tc2.shape == (n_labels, n_times)) assert_true(np.allclose(tc1, tc2, rtol=1e-8, atol=1e-16)) if mode == 'mean': assert_array_almost_equal(tc1, label_means) if mode == 'mean_flip': assert_array_almost_equal(tc1, label_means_flipped) if mode == 'max': assert_array_almost_equal(tc1, label_maxs) # test label with very few vertices (check SVD conditionals) label = Label(vertices=src[0]['vertno'][:2], hemi='lh') x = label_sign_flip(label, src) assert_true(len(x) == 2) label = Label(vertices=[], hemi='lh') x = label_sign_flip(label, src) assert_true(x.size == 0) @sample.requires_sample_data def test_morph_data(): """Test morphing of data """ subject_from = 'sample' subject_to = 'fsaverage' fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg') stc_from = read_source_estimate(fname, subject='sample') fname = op.join(data_path, 'MEG', 'sample', 'fsaverage_audvis-meg') stc_to = read_source_estimate(fname) # make sure we can specify grade stc_from.crop(0.09, 0.1) # for faster computation stc_to.crop(0.09, 0.1) # for faster computation stc_to1 = stc_from.morph(subject_to, grade=3, smooth=12, buffer_size=1000, subjects_dir=subjects_dir) stc_to1.save(op.join(tempdir, '%s_audvis-meg' % subject_to)) # make sure we can specify vertices vertices_to = grade_to_vertices(subject_to, grade=3, subjects_dir=subjects_dir) stc_to2 = morph_data(subject_from, subject_to, stc_from, grade=vertices_to, smooth=12, buffer_size=1000, subjects_dir=subjects_dir) # make sure we can use different buffer_size stc_to3 = morph_data(subject_from, subject_to, stc_from, grade=vertices_to, smooth=12, buffer_size=3, subjects_dir=subjects_dir) assert_array_almost_equal(stc_to.data, stc_to1.data, 5) assert_array_almost_equal(stc_to1.data, stc_to2.data) assert_array_almost_equal(stc_to1.data, stc_to3.data) # make sure precomputed morph matrices work morph_mat = compute_morph_matrix(subject_from, subject_to, stc_from.vertno, vertices_to, smooth=12, subjects_dir=subjects_dir) stc_to3 = stc_from.morph_precomputed(subject_to, vertices_to, morph_mat) assert_array_almost_equal(stc_to1.data, stc_to3.data) mean_from = stc_from.data.mean(axis=0) mean_to = stc_to1.data.mean(axis=0) assert_true(np.corrcoef(mean_to, mean_from).min() > 0.999) # make sure we can fill by morphing stc_to5 = morph_data(subject_from, subject_to, stc_from, grade=None, smooth=12, buffer_size=3, subjects_dir=subjects_dir) assert_true(stc_to5.data.shape[0] == 163842 + 163842) # test morphing to the same subject stc_to6 = stc_from.morph(subject_from, grade=stc_from.vertno, smooth=1, subjects_dir=subjects_dir) mask = np.ones(stc_from.data.shape[0], dtype=np.bool) # XXX: there is a bug somewhere that causes a difference at 2 vertices.. mask[6799] = False mask[6800] = False assert_array_almost_equal(stc_from.data[mask], stc_to6.data[mask], 5) # Morph sparse data # Make a sparse stc stc_from.vertno[0] = stc_from.vertno[0][[100, 500]] stc_from.vertno[1] = stc_from.vertno[1][[200]] stc_from._data = stc_from._data[:3] assert_raises(RuntimeError, stc_from.morph, subject_to, sparse=True, grade=5, subjects_dir=subjects_dir) stc_to_sparse = stc_from.morph(subject_to, grade=None, sparse=True, subjects_dir=subjects_dir) assert_array_almost_equal(np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))) assert_equal(len(stc_from.rh_vertno), len(stc_to_sparse.rh_vertno)) assert_equal(len(stc_from.lh_vertno), len(stc_to_sparse.lh_vertno)) assert_equal(stc_to_sparse.subject, subject_to) assert_equal(stc_from.tmin, stc_from.tmin) assert_equal(stc_from.tstep, stc_from.tstep) stc_from.vertno[0] = np.array([], dtype=np.int64) stc_from._data = stc_from._data[:1] stc_to_sparse = stc_from.morph(subject_to, grade=None, sparse=True, subjects_dir=subjects_dir) assert_array_almost_equal(np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))) assert_equal(len(stc_from.rh_vertno), len(stc_to_sparse.rh_vertno)) assert_equal(len(stc_from.lh_vertno), len(stc_to_sparse.lh_vertno)) assert_equal(stc_to_sparse.subject, subject_to) assert_equal(stc_from.tmin, stc_from.tmin) assert_equal(stc_from.tstep, stc_from.tstep) def _my_trans(data): """FFT that adds an additional dimension by repeating result""" data_t = fft(data) data_t = np.concatenate([data_t[:, :, None], data_t[:, :, None]], axis=2) return data_t, None def test_transform_data(): """Test applying linear (time) transform to data""" # make up some data n_sensors, n_vertices, n_times = 10, 20, 4 kernel = np.random.randn(n_vertices, n_sensors) sens_data = np.random.randn(n_sensors, n_times) vertices = np.arange(n_vertices) data = np.dot(kernel, sens_data) for idx, tmin_idx, tmax_idx in\ zip([None, np.arange(n_vertices // 2, n_vertices)], [None, 1], [None, 3]): if idx is None: idx_use = slice(None, None) else: idx_use = idx data_f, _ = _my_trans(data[idx_use, tmin_idx:tmax_idx]) for stc_data in (data, (kernel, sens_data)): stc = VolSourceEstimate(stc_data, vertices=vertices, tmin=0., tstep=1.) stc_data_t = stc.transform_data(_my_trans, idx=idx, tmin_idx=tmin_idx, tmax_idx=tmax_idx) assert_allclose(data_f, stc_data_t) def test_transform(): """Test applying linear (time) transform to data""" # make up some data n_verts_lh, n_verts_rh, n_times = 10, 10, 10 vertices = [np.arange(n_verts_lh), n_verts_lh + np.arange(n_verts_rh)] data = np.random.randn(n_verts_lh + n_verts_rh, n_times) stc = SourceEstimate(data, vertices=vertices, tmin=-0.1, tstep=0.1) # data_t.ndim > 2 & copy is True stcs_t = stc.transform(_my_trans, copy=True) assert_true(isinstance(stcs_t, list)) assert_array_equal(stc.times, stcs_t[0].times) assert_equal(stc.vertno, stcs_t[0].vertno) data = np.concatenate((stcs_t[0].data[:, :, None], stcs_t[1].data[:, :, None]), axis=2) data_t = stc.transform_data(_my_trans) assert_array_equal(data, data_t) # check against stc.transform_data() # data_t.ndim > 2 & copy is False assert_raises(ValueError, stc.transform, _my_trans, copy=False) # data_t.ndim = 2 & copy is True tmp = deepcopy(stc) stc_t = stc.transform(np.abs, copy=True) assert_true(isinstance(stc_t, SourceEstimate)) assert_array_equal(stc.data, tmp.data) # xfrm doesn't modify original? # data_t.ndim = 2 & copy is False times = np.round(1000 * stc.times) verts = np.arange(len(stc.lh_vertno), len(stc.lh_vertno) + len(stc.rh_vertno), 1) verts_rh = stc.rh_vertno t_idx = [np.where(times >= -50)[0][0], np.where(times <= 500)[0][-1]] data_t = stc.transform_data(np.abs, idx=verts, tmin_idx=t_idx[0], tmax_idx=t_idx[-1]) stc.transform(np.abs, idx=verts, tmin=-50, tmax=500, copy=False) assert_true(isinstance(stc, SourceEstimate)) assert_true((stc.tmin == 0.) & (stc.times[-1] == 0.5)) assert_true(len(stc.vertno[0]) == 0) assert_equal(stc.vertno[1], verts_rh) assert_array_equal(stc.data, data_t) times = np.round(1000 * stc.times) t_idx = [np.where(times >= 0)[0][0], np.where(times <= 250)[0][-1]] data_t = stc.transform_data(np.abs, tmin_idx=t_idx[0], tmax_idx=t_idx[-1]) stc.transform(np.abs, tmin=0, tmax=250, copy=False) assert_true((stc.tmin == 0.) & (stc.times[-1] == 0.2)) assert_array_equal(stc.data, data_t) @requires_sklearn def test_spatio_temporal_tris_connectivity(): """Test spatio-temporal connectivity from triangles""" tris = np.array([[0, 1, 2], [3, 4, 5]]) connectivity = spatio_temporal_tris_connectivity(tris, 2) x = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] components = stats.cluster_level._get_components(np.array(x), connectivity) # _get_components works differently now... old_fmt = [0, 0, -2, -2, -2, -2, 0, -2, -2, -2, -2, 1] new_fmt = np.array(old_fmt) new_fmt = [np.nonzero(new_fmt == v)[0] for v in np.unique(new_fmt[new_fmt >= 0])] assert_true(len(new_fmt), len(components)) for c, n in zip(components, new_fmt): assert_array_equal(c, n) @sample.requires_sample_data def test_spatio_temporal_src_connectivity(): """Test spatio-temporal connectivity from source spaces""" tris = np.array([[0, 1, 2], [3, 4, 5]]) src = [dict(), dict()] connectivity = spatio_temporal_tris_connectivity(tris, 2) src[0]['use_tris'] = np.array([[0, 1, 2]]) src[1]['use_tris'] = np.array([[0, 1, 2]]) src[0]['vertno'] = np.array([0, 1, 2]) src[1]['vertno'] = np.array([0, 1, 2]) connectivity2 = spatio_temporal_src_connectivity(src, 2) assert_array_equal(connectivity.todense(), connectivity2.todense()) # add test for dist connectivity src[0]['dist'] = np.ones((3, 3)) - np.eye(3) src[1]['dist'] = np.ones((3, 3)) - np.eye(3) src[0]['vertno'] = [0, 1, 2] src[1]['vertno'] = [0, 1, 2] connectivity3 = spatio_temporal_src_connectivity(src, 2, dist=2) assert_array_equal(connectivity.todense(), connectivity3.todense()) # add test for source space connectivity with omitted vertices inverse_operator = read_inverse_operator(fname_inv) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') src_ = inverse_operator['src'] connectivity = spatio_temporal_src_connectivity(src_, n_times=2) assert len(w) == 1 a = connectivity.shape[0] / 2 b = sum([s['nuse'] for s in inverse_operator['src']]) assert_true(a == b) @requires_pandas def test_as_data_frame(): """Test stc Pandas exporter""" n_vert, n_times = 10, 5 vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)] data = np.random.randn(n_vert, n_times) stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1, subject='sample') stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1, subject='sample') for stc in [stc_surf, stc_vol]: assert_raises(ValueError, stc.as_data_frame, index=['foo', 'bar']) for ncat, ind in zip([1, 0], ['time', ['subject', 'time']]): df = stc.as_data_frame(index=ind) assert_true(df.index.names == ind if isinstance(ind, list) else [ind]) assert_array_equal(df.values.T[ncat:], stc.data) # test that non-indexed data were present as categorial variables with warnings.catch_warnings(record=True): # pandas df.reset_index().columns[:3] == ['subject', 'time'] def test_get_peak(): """Test peak getter """ n_vert, n_times = 10, 5 vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)] data = np.random.randn(n_vert, n_times) stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1, subject='sample') stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1, subject='sample') for ii, stc in enumerate([stc_surf, stc_vol]): assert_raises(ValueError, stc.get_peak, tmin=-100) assert_raises(ValueError, stc.get_peak, tmax=90) assert_raises(ValueError, stc.get_peak, tmin=0.002, tmax=0.001) vert_idx, time_idx = stc.get_peak() vertno = np.concatenate(stc.vertno) if ii == 0 else stc.vertno assert_true(vert_idx in vertno) assert_true(time_idx in stc.times) ch_idx, time_idx = stc.get_peak(vert_as_index=True, time_as_index=True) assert_true(vert_idx < stc.data.shape[0]) assert_true(time_idx < len(stc.times))
bsd-2-clause
r-mart/scikit-learn
examples/svm/plot_svm_anova.py
250
2000
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
nitin-cherian/LifeLongLearning
Python/PythonProgrammingLanguage/Encapsulation/encap_env/lib/python3.5/site-packages/IPython/core/pylabtools.py
2
14139
# -*- coding: utf-8 -*- """Pylab (matplotlib) support utilities.""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. from io import BytesIO from IPython.core.display import _pngxy from IPython.utils.decorators import flag_calls # If user specifies a GUI, that dictates the backend, otherwise we read the # user's mpl default from the mpl rc structure backends = {'tk': 'TkAgg', 'gtk': 'GTKAgg', 'gtk3': 'GTK3Agg', 'wx': 'WXAgg', 'qt': 'Qt4Agg', # qt3 not supported 'qt4': 'Qt4Agg', 'qt5': 'Qt5Agg', 'osx': 'MacOSX', 'nbagg': 'nbAgg', 'notebook': 'nbAgg', 'agg': 'agg', 'inline': 'module://ipykernel.pylab.backend_inline', 'ipympl': 'module://ipympl.backend_nbagg', } # We also need a reverse backends2guis mapping that will properly choose which # GUI support to activate based on the desired matplotlib backend. For the # most part it's just a reverse of the above dict, but we also need to add a # few others that map to the same GUI manually: backend2gui = dict(zip(backends.values(), backends.keys())) # Our tests expect backend2gui to just return 'qt' backend2gui['Qt4Agg'] = 'qt' # In the reverse mapping, there are a few extra valid matplotlib backends that # map to the same GUI support backend2gui['GTK'] = backend2gui['GTKCairo'] = 'gtk' backend2gui['GTK3Cairo'] = 'gtk3' backend2gui['WX'] = 'wx' backend2gui['CocoaAgg'] = 'osx' # And some backends that don't need GUI integration del backend2gui['nbAgg'] del backend2gui['agg'] del backend2gui['module://ipykernel.pylab.backend_inline'] #----------------------------------------------------------------------------- # Matplotlib utilities #----------------------------------------------------------------------------- def getfigs(*fig_nums): """Get a list of matplotlib figures by figure numbers. If no arguments are given, all available figures are returned. If the argument list contains references to invalid figures, a warning is printed but the function continues pasting further figures. Parameters ---------- figs : tuple A tuple of ints giving the figure numbers of the figures to return. """ from matplotlib._pylab_helpers import Gcf if not fig_nums: fig_managers = Gcf.get_all_fig_managers() return [fm.canvas.figure for fm in fig_managers] else: figs = [] for num in fig_nums: f = Gcf.figs.get(num) if f is None: print('Warning: figure %s not available.' % num) else: figs.append(f.canvas.figure) return figs def figsize(sizex, sizey): """Set the default figure size to be [sizex, sizey]. This is just an easy to remember, convenience wrapper that sets:: matplotlib.rcParams['figure.figsize'] = [sizex, sizey] """ import matplotlib matplotlib.rcParams['figure.figsize'] = [sizex, sizey] def print_figure(fig, fmt='png', bbox_inches='tight', **kwargs): """Print a figure to an image, and return the resulting file data Returned data will be bytes unless ``fmt='svg'``, in which case it will be unicode. Any keyword args are passed to fig.canvas.print_figure, such as ``quality`` or ``bbox_inches``. """ # When there's an empty figure, we shouldn't return anything, otherwise we # get big blank areas in the qt console. if not fig.axes and not fig.lines: return dpi = fig.dpi if fmt == 'retina': dpi = dpi * 2 fmt = 'png' # build keyword args kw = { "format":fmt, "facecolor":fig.get_facecolor(), "edgecolor":fig.get_edgecolor(), "dpi":dpi, "bbox_inches":bbox_inches, } # **kwargs get higher priority kw.update(kwargs) bytes_io = BytesIO() fig.canvas.print_figure(bytes_io, **kw) data = bytes_io.getvalue() if fmt == 'svg': data = data.decode('utf-8') return data def retina_figure(fig, **kwargs): """format a figure as a pixel-doubled (retina) PNG""" pngdata = print_figure(fig, fmt='retina', **kwargs) # Make sure that retina_figure acts just like print_figure and returns # None when the figure is empty. if pngdata is None: return w, h = _pngxy(pngdata) metadata = {"width": w//2, "height":h//2} return pngdata, metadata # We need a little factory function here to create the closure where # safe_execfile can live. def mpl_runner(safe_execfile): """Factory to return a matplotlib-enabled runner for %run. Parameters ---------- safe_execfile : function This must be a function with the same interface as the :meth:`safe_execfile` method of IPython. Returns ------- A function suitable for use as the ``runner`` argument of the %run magic function. """ def mpl_execfile(fname,*where,**kw): """matplotlib-aware wrapper around safe_execfile. Its interface is identical to that of the :func:`execfile` builtin. This is ultimately a call to execfile(), but wrapped in safeties to properly handle interactive rendering.""" import matplotlib import matplotlib.pyplot as plt #print '*** Matplotlib runner ***' # dbg # turn off rendering until end of script is_interactive = matplotlib.rcParams['interactive'] matplotlib.interactive(False) safe_execfile(fname,*where,**kw) matplotlib.interactive(is_interactive) # make rendering call now, if the user tried to do it if plt.draw_if_interactive.called: plt.draw() plt.draw_if_interactive.called = False # re-draw everything that is stale try: da = plt.draw_all except AttributeError: pass else: da() return mpl_execfile def _reshow_nbagg_figure(fig): """reshow an nbagg figure""" try: reshow = fig.canvas.manager.reshow except AttributeError: raise NotImplementedError() else: reshow() def select_figure_formats(shell, formats, **kwargs): """Select figure formats for the inline backend. Parameters ========== shell : InteractiveShell The main IPython instance. formats : str or set One or a set of figure formats to enable: 'png', 'retina', 'jpeg', 'svg', 'pdf'. **kwargs : any Extra keyword arguments to be passed to fig.canvas.print_figure. """ import matplotlib from matplotlib.figure import Figure svg_formatter = shell.display_formatter.formatters['image/svg+xml'] png_formatter = shell.display_formatter.formatters['image/png'] jpg_formatter = shell.display_formatter.formatters['image/jpeg'] pdf_formatter = shell.display_formatter.formatters['application/pdf'] if isinstance(formats, str): formats = {formats} # cast in case of list / tuple formats = set(formats) [ f.pop(Figure, None) for f in shell.display_formatter.formatters.values() ] mplbackend = matplotlib.get_backend().lower() if mplbackend == 'nbagg' or mplbackend == 'module://ipympl.backend_nbagg': formatter = shell.display_formatter.ipython_display_formatter formatter.for_type(Figure, _reshow_nbagg_figure) supported = {'png', 'png2x', 'retina', 'jpg', 'jpeg', 'svg', 'pdf'} bad = formats.difference(supported) if bad: bs = "%s" % ','.join([repr(f) for f in bad]) gs = "%s" % ','.join([repr(f) for f in supported]) raise ValueError("supported formats are: %s not %s" % (gs, bs)) if 'png' in formats: png_formatter.for_type(Figure, lambda fig: print_figure(fig, 'png', **kwargs)) if 'retina' in formats or 'png2x' in formats: png_formatter.for_type(Figure, lambda fig: retina_figure(fig, **kwargs)) if 'jpg' in formats or 'jpeg' in formats: jpg_formatter.for_type(Figure, lambda fig: print_figure(fig, 'jpg', **kwargs)) if 'svg' in formats: svg_formatter.for_type(Figure, lambda fig: print_figure(fig, 'svg', **kwargs)) if 'pdf' in formats: pdf_formatter.for_type(Figure, lambda fig: print_figure(fig, 'pdf', **kwargs)) #----------------------------------------------------------------------------- # Code for initializing matplotlib and importing pylab #----------------------------------------------------------------------------- def find_gui_and_backend(gui=None, gui_select=None): """Given a gui string return the gui and mpl backend. Parameters ---------- gui : str Can be one of ('tk','gtk','wx','qt','qt4','inline','agg'). gui_select : str Can be one of ('tk','gtk','wx','qt','qt4','inline'). This is any gui already selected by the shell. Returns ------- A tuple of (gui, backend) where backend is one of ('TkAgg','GTKAgg', 'WXAgg','Qt4Agg','module://ipykernel.pylab.backend_inline','agg'). """ import matplotlib if gui and gui != 'auto': # select backend based on requested gui backend = backends[gui] if gui == 'agg': gui = None else: # We need to read the backend from the original data structure, *not* # from mpl.rcParams, since a prior invocation of %matplotlib may have # overwritten that. # WARNING: this assumes matplotlib 1.1 or newer!! backend = matplotlib.rcParamsOrig['backend'] # In this case, we need to find what the appropriate gui selection call # should be for IPython, so we can activate inputhook accordingly gui = backend2gui.get(backend, None) # If we have already had a gui active, we need it and inline are the # ones allowed. if gui_select and gui != gui_select: gui = gui_select backend = backends[gui] return gui, backend def activate_matplotlib(backend): """Activate the given backend and set interactive to True.""" import matplotlib matplotlib.interactive(True) # Matplotlib had a bug where even switch_backend could not force # the rcParam to update. This needs to be set *before* the module # magic of switch_backend(). matplotlib.rcParams['backend'] = backend import matplotlib.pyplot matplotlib.pyplot.switch_backend(backend) # This must be imported last in the matplotlib series, after # backend/interactivity choices have been made import matplotlib.pyplot as plt plt.show._needmain = False # We need to detect at runtime whether show() is called by the user. # For this, we wrap it into a decorator which adds a 'called' flag. plt.draw_if_interactive = flag_calls(plt.draw_if_interactive) def import_pylab(user_ns, import_all=True): """Populate the namespace with pylab-related values. Imports matplotlib, pylab, numpy, and everything from pylab and numpy. Also imports a few names from IPython (figsize, display, getfigs) """ # Import numpy as np/pyplot as plt are conventions we're trying to # somewhat standardize on. Making them available to users by default # will greatly help this. s = ("import numpy\n" "import matplotlib\n" "from matplotlib import pylab, mlab, pyplot\n" "np = numpy\n" "plt = pyplot\n" ) exec(s, user_ns) if import_all: s = ("from matplotlib.pylab import *\n" "from numpy import *\n") exec(s, user_ns) # IPython symbols to add user_ns['figsize'] = figsize from IPython.core.display import display # Add display and getfigs to the user's namespace user_ns['display'] = display user_ns['getfigs'] = getfigs def configure_inline_support(shell, backend): """Configure an IPython shell object for matplotlib use. Parameters ---------- shell : InteractiveShell instance backend : matplotlib backend """ # If using our svg payload backend, register the post-execution # function that will pick up the results for display. This can only be # done with access to the real shell object. # Note: if we can't load the inline backend, then there's no point # continuing (such as in terminal-only shells in environments without # zeromq available). try: from ipykernel.pylab.backend_inline import InlineBackend except ImportError: return import matplotlib cfg = InlineBackend.instance(parent=shell) cfg.shell = shell if cfg not in shell.configurables: shell.configurables.append(cfg) if backend == backends['inline']: from ipykernel.pylab.backend_inline import flush_figures shell.events.register('post_execute', flush_figures) # Save rcParams that will be overwrittern shell._saved_rcParams = {} for k in cfg.rc: shell._saved_rcParams[k] = matplotlib.rcParams[k] # load inline_rc matplotlib.rcParams.update(cfg.rc) new_backend_name = "inline" else: from ipykernel.pylab.backend_inline import flush_figures try: shell.events.unregister('post_execute', flush_figures) except ValueError: pass if hasattr(shell, '_saved_rcParams'): matplotlib.rcParams.update(shell._saved_rcParams) del shell._saved_rcParams new_backend_name = "other" # only enable the formats once -> don't change the enabled formats (which the user may # has changed) when getting another "%matplotlib inline" call. # See https://github.com/ipython/ipykernel/issues/29 cur_backend = getattr(configure_inline_support, "current_backend", "unset") if new_backend_name != cur_backend: # Setup the default figure format select_figure_formats(shell, cfg.figure_formats, **cfg.print_figure_kwargs) configure_inline_support.current_backend = new_backend_name
mit
hunse/deepnet
deepnet/autoencoder/algorithms.py
1
8602
import collections import time import numpy as np import numpy.random import scipy as sp import scipy.optimize import theano import theano.tensor as T from .. import image_tools as imtools # def sgd_minibatch_fn(trainer, rate, clip=None): # x = T.matrix('x', dtype=trainer.dtype) # cost, ups = trainer.get_cost_updates(x) # grads = trainer.grads(cost) # updates = collections.OrderedDict(ups) # rate = T.cast(rate, dtype=trainer.dtype) # for param, grad in zip(trainer.params, grads): # if clip is not None: # grad = grad.clip(*clip) # updates[param] = param - rate*grad # return theano.function([x], cost, updates=updates, # allow_input_downcast=True) def sgd_minibatch_fn(trainer, rate, clip=None): x = T.matrix('x', dtype=trainer.dtype) cost, grads, updates = trainer.get_cost_grads_updates(x) rate = T.cast(rate, dtype=trainer.dtype) for param in trainer.params: grad = grads[param] if clip is not None: grad = grad.clip(*clip) updates[param] = param - rate*grad return theano.function([x], cost, updates=updates.items(), allow_input_downcast=True) def sgd(trainer, images, timages=None, test_fn=None, n_epochs=30, rate=0.05, clip=(-1,1), show=imtools.display_available(), vlims=None, save_fn=None): """ Unsupervised training using Stochasitc Gradient Descent (SGD) """ if timages is None: timages = images[:500] print "Performing SGD on a %d x %d autoencoder for %d epochs"\ % (trainer.network.nvis, trainer.network.nhid, n_epochs) print "SGD params: %s" % dict(n_epochs=n_epochs, rate=rate, clip=clip) print "Trainer params: %s" % trainer.train_hypers ### create minibatch learning function train = sgd_minibatch_fn(trainer, rate=rate, clip=clip) exshape = images.shape[:1] imshape = images.shape[1:] # if len(exshape) == 1: # ### split into batches # batchlen = 100 # batches = images.reshape((-1, batchlen, np.prod(imshape))) # elif len(exshape) == 2: # ### already in batches, so just collapse the shape # batches = images.reshape(exshape + (np.prod(imshape),)) # else: # raise ValueError("Invalid input image shape %s" % images.shape) ### split into batches batchlen = 100 batches = images.reshape((-1, batchlen, np.prod(imshape))) stats = dict(algorithm='sgd', n_epochs=0, cost=[], hypers=dict(trainer.train_hypers)) trainer.network.train_stats.append(stats) for epoch in xrange(n_epochs): # rate = rates[epoch] if epoch < len(rates) else rates[-1] cost = 0 t = time.time() for batch in batches: cost += train(batch) t = time.time() - t test_stats = test(trainer, timages, test_fn=test_fn, show=show, fignum=101, vlims=vlims) stats['n_epochs'] += 1 stats['cost'].append(cost) for k, v in test_stats.items(): if k not in stats: stats[k] = [] stats[k].append(v) print "Epoch %d finished, t = %0.2f s, cost = %0.3e, %s" \ % (epoch, t, cost, str(["%s = %0.2e" % (k,v) for k,v in test_stats.items()])) if save_fn is not None: save_fn() # trainer.network.to_file(save_name) return stats def lbfgs(trainer, images, timages=None, test_fn=None, n_evals=10, clip=None, show=imtools.display_available(), vlims=None, save_fn=None): """ Unsupervised training using limited-memory BFGS (L-BFGS) """ batchlen = 5000 if timages is None: timages = images[:500] print "Performing L-BFGS on a %d x %d autoencoder for %d function evals"\ % (trainer.network.nvis, trainer.network.nhid, n_evals) print "L-BFGS params: %s" % dict(n_evals=n_evals, clip=clip) print "Trainer params: %s" % trainer.train_hypers test_stats = test(trainer, timages, test_fn=test_fn, show=show, fignum=101, vlims=vlims) print ["%s = %0.3e" % (k,v) for k,v in test_stats.items()] ### Make functions to put parameters into one vector, and get them back. params = [p.get_value(borrow=False) for p in trainer.params] def split_params(params_vect): params_list = [] i = 0 for p in params: params_list.append(params_vect[i : i + p.size].reshape(p.shape)) i += p.size return params_list def concat_params(params_list): return np.hstack([p.flatten() for p in params_list]) p0 = concat_params(params).astype('float64') ### make Theano function s_p = T.vector(dtype=trainer.dtype) s_params = split_params(s_p) s_x = T.matrix('x', dtype=trainer.dtype) cost, grads, updates = trainer.get_cost_grads_updates(s_x) grads = [grads[p] for p in trainer.params] f_df = theano.function([s_x, s_p], [cost] + grads, updates=updates.items(), givens=zip(trainer.params, s_params), allow_input_downcast=True) ### make optimization function stats = dict(algorithm='lbfgs', n_evals=0, cost=[], hypers=dict(trainer.train_hypers)) trainer.network.train_stats.append(stats) # flatten images, and get indices images = images.reshape((images.shape[0], np.prod(images.shape[1:]))) images_i = np.arange(len(images)) def f_df_cast(p): t = time.time() i = np.random.choice(images_i, size=batchlen) x = images[i] outs = f_df(x, p) cost, grads = outs[0], outs[1:] grad = concat_params(grads) if clip is not None: grad = grad.clip(*clip) t = time.time() - t ### test if 1: for param, value in zip(trainer.params, split_params(p)): param.set_value(value.astype(param.dtype), borrow=False) test_stats = test(trainer, timages, test_fn=test_fn, show=show, fignum=101, vlims=vlims) stats['n_evals'] += 1 stats['cost'].append(cost) for k, v in test_stats.items(): if k not in stats: stats[k] = [] stats[k].append(v) print "Eval %d finished, t = %0.2f s, cost = %0.3e, %s" \ % (stats['n_evals'], t, cost, str(["%s = %0.2e" % (k,v) for k,v in test_stats.items()])) return cost.astype('float64'), grad.astype('float64') ### perform optimization t = time.time() p_opt, mincost, info_dct = sp.optimize.lbfgsb.fmin_l_bfgs_b( f_df_cast, p0, maxfun=n_evals, iprint=1) t = time.time() - t for param, opt_value in zip(trainer.params, split_params(p_opt)): param.set_value(opt_value.astype(param.dtype), borrow=False) print "Done. t = %0.3f s, cost = %0.2e" % (t, mincost) test_stats = test(trainer, timages, test_fn=test_fn, show=show, fignum=101, vlims=vlims) print ["%s = %0.3e" % (k,v) for k,v in test_stats.items()] def test(trainer, timages, test_fn=None, show=imtools.display_available(), fignum=None, vlims=None): # from ..image_tools import * # from ..image_tools import compare, activations, filters from .. import image_tools as imtools if test_fn is None: test_fn = trainer.network.compVHVraw imshape = timages.shape[1:] ims_shape = (-1,) + imshape x = timages.reshape((len(timages), -1)) ha, h, ya, y = test_fn(x) rmse = imtools.rmse(x, y).mean() act = h.mean(axis=0) # test_stats = {'rmse': rmse, 'hidact': act} test_stats = collections.OrderedDict( rmse=rmse, hid_mean=act.mean(), hid_min=act.min(), hid_max=act.max()) ### Show current results if show: import matplotlib.pyplot as plt # image_tools.figure(fignum=fignum, figsize=(12,12)) plt.figure(fignum) plt.clf() rows, cols = 3, 2 ax = plt.subplot(rows, 1, 1) imtools.compare([x.reshape(ims_shape), y.reshape(ims_shape)], vlims=vlims) ax = plt.subplot(rows, cols, cols+1) imtools.activations(ha, trainer.network.f.eval) ax = plt.subplot(rows, cols, cols+2) imtools.activations(ya, trainer.network.g.eval) ax = plt.subplot(rows, 1, 3) imtools.filters(trainer.network.filters, rows=8, cols=16) plt.tight_layout() plt.draw() return test_stats
mit
walterreade/scikit-learn
sklearn/tests/test_learning_curve.py
59
10869
# Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import make_classification with warnings.catch_warnings(): warnings.simplefilter('ignore') from sklearn.learning_curve import learning_curve, validation_curve from sklearn.cross_validation import KFold from sklearn.linear_model import PassiveAggressiveClassifier class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2. - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes): super(MockIncrementalImprovingEstimator, self).__init__(n_max_train_sizes) self.x = None def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset def test_learning_curve(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) with warnings.catch_warnings(record=True) as w: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_equal(train_scores.shape, (10, 3)) assert_equal(test_scores.shape, (10, 3)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_verbose(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) old_stdout = sys.stdout sys.stdout = StringIO() try: train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=3, verbose=1) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[learning_curve]" in out) def test_learning_curve_incremental_learning_not_possible(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) # The mockup does not have partial_fit() estimator = MockImprovingEstimator(1) assert_raises(ValueError, learning_curve, estimator, X, y, exploit_incremental_learning=True) def test_learning_curve_incremental_learning(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_incremental_learning_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_batch_and_incremental_learning_are_equal(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) train_sizes = np.linspace(0.2, 1.0, 5) estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False) train_sizes_inc, train_scores_inc, test_scores_inc = \ learning_curve( estimator, X, y, train_sizes=train_sizes, cv=3, exploit_incremental_learning=True) train_sizes_batch, train_scores_batch, test_scores_batch = \ learning_curve( estimator, X, y, cv=3, train_sizes=train_sizes, exploit_incremental_learning=False) assert_array_equal(train_sizes_inc, train_sizes_batch) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_learning_curve_n_sample_range_out_of_bounds(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.0, 1.0]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.1, 1.1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 20]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[1, 21]) def test_learning_curve_remove_duplicate_sample_sizes(): X, y = make_classification(n_samples=3, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(2) train_sizes, _, _ = assert_warns( RuntimeWarning, learning_curve, estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)) assert_array_equal(train_sizes, [1, 2]) def test_learning_curve_with_boolean_indices(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) cv = KFold(n=30, n_folds=3) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_validation_curve(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) param_range = np.linspace(0, 1, 10) with warnings.catch_warnings(record=True) as w: train_scores, test_scores = validation_curve( MockEstimatorWithParameter(), X, y, param_name="param", param_range=param_range, cv=2 ) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_array_almost_equal(train_scores.mean(axis=1), param_range) assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
bsd-3-clause
NelisVerhoef/scikit-learn
examples/calibration/plot_calibration.py
225
4795
""" ====================================== Probability calibration of classifiers ====================================== When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However, not all classifiers provide well-calibrated probabilities, some being over-confident while others being under-confident. Thus, a separate calibration of predicted probabilities is often desirable as a postprocessing. This example illustrates two different methods for this calibration and evaluates the quality of the returned probabilities using Brier's score (see http://en.wikipedia.org/wiki/Brier_score). Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score. """ print(__doc__) # Author: Mathieu Blondel <[email protected]> # Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from sklearn.datasets import make_blobs from sklearn.naive_bayes import GaussianNB from sklearn.metrics import brier_score_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.cross_validation import train_test_split n_samples = 50000 n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here # Generate 3 blobs with 2 classes where the second blob contains # half positive samples and half negative samples. Probability in this # blob is therefore 0.5. centers = [(-5, -5), (0, 0), (5, 5)] X, y = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0, centers=centers, shuffle=False, random_state=42) y[:n_samples // 2] = 0 y[n_samples // 2:] = 1 sample_weight = np.random.RandomState(42).rand(y.shape[0]) # split train, test for calibration X_train, X_test, y_train, y_test, sw_train, sw_test = \ train_test_split(X, y, sample_weight, test_size=0.9, random_state=42) # Gaussian Naive-Bayes with no calibration clf = GaussianNB() clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with isotonic calibration clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_isotonic.fit(X_train, y_train, sw_train) prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with sigmoid calibration clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') clf_sigmoid.fit(X_train, y_train, sw_train) prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1] print("Brier scores: (the smaller the better)") clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test) print("No calibration: %1.3f" % clf_score) clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic, sw_test) print("With isotonic calibration: %1.3f" % clf_isotonic_score) clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid, sw_test) print("With sigmoid calibration: %1.3f" % clf_sigmoid_score) ############################################################################### # Plot the data and the predicted probabilities plt.figure() y_unique = np.unique(y) colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size)) for this_y, color in zip(y_unique, colors): this_X = X_train[y_train == this_y] this_sw = sw_train[y_train == this_y] plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50, c=color, alpha=0.5, label="Class %s" % this_y) plt.legend(loc="best") plt.title("Data") plt.figure() order = np.lexsort((prob_pos_clf, )) plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score) plt.plot(prob_pos_isotonic[order], 'g', linewidth=3, label='Isotonic calibration (%1.3f)' % clf_isotonic_score) plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3, label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score) plt.plot(np.linspace(0, y_test.size, 51)[1::2], y_test[order].reshape(25, -1).mean(1), 'k', linewidth=3, label=r'Empirical') plt.ylim([-0.05, 1.05]) plt.xlabel("Instances sorted according to predicted probability " "(uncalibrated GNB)") plt.ylabel("P(y=1)") plt.legend(loc="upper left") plt.title("Gaussian naive Bayes probabilities") plt.show()
bsd-3-clause
mne-tools/mne-tools.github.io
0.21/_downloads/83f7eda14270eb609ba6c9fc83ca49f5/plot_muscle_detection.py
18
3308
""" =========================== Annotate muscle artifacts =========================== Muscle contractions produce high frequency activity that can mask brain signal of interest. Muscle artifacts can be produced when clenching the jaw, swallowing, or twitching a cranial muscle. Muscle artifacts are most noticeable in the range of 110-140 Hz. This example uses :func:`~mne.preprocessing.annotate_muscle_zscore` to annotate segments where muscle activity is likely present. This is done by band-pass filtering the data in the 110-140 Hz range. Then, the envelope is taken using the hilbert analytical signal to only consider the absolute amplitude and not the phase of the high frequency signal. The envelope is z-scored and summed across channels and divided by the square root of the number of channels. Because muscle artifacts last several hundred milliseconds, a low-pass filter is applied on the averaged z-scores at 4 Hz, to remove transient peaks. Segments above a set threshold are annotated as ``BAD_muscle``. In addition, the ``min_length_good`` parameter determines the cutoff for whether short spans of "good data" in between muscle artifacts are included in the surrounding "BAD" annotation. """ # Authors: Adonay Nunes <[email protected]> # Luke Bloy <[email protected]> # License: BSD (3-clause) import os.path as op import matplotlib.pyplot as plt import numpy as np from mne.datasets.brainstorm import bst_auditory from mne.io import read_raw_ctf from mne.preprocessing import annotate_muscle_zscore # Load data data_path = bst_auditory.data_path() raw_fname = op.join(data_path, 'MEG', 'bst_auditory', 'S01_AEF_20131218_01.ds') raw = read_raw_ctf(raw_fname, preload=False) raw.crop(130, 160).load_data() # just use a fraction of data for speed here raw.resample(300, npad="auto") ############################################################################### # Notch filter the data: # # .. note:: # If line noise is present, you should perform notch-filtering *before* # detecting muscle artifacts. See :ref:`tut-section-line-noise` for an # example. raw.notch_filter([50, 100]) ############################################################################### # The threshold is data dependent, check the optimal threshold by plotting # ``scores_muscle``. threshold_muscle = 5 # z-score # Choose one channel type, if there are axial gradiometers and magnetometers, # select magnetometers as they are more sensitive to muscle activity. annot_muscle, scores_muscle = annotate_muscle_zscore( raw, ch_type="mag", threshold=threshold_muscle, min_length_good=0.2, filter_freq=[110, 140]) ############################################################################### # Plot muscle z-scores across recording # -------------------------------------------------------------------------- fig, ax = plt.subplots() ax.plot(raw.times, scores_muscle) ax.axhline(y=threshold_muscle, color='r') ax.set(xlabel='time, (s)', ylabel='zscore', title='Muscle activity') ############################################################################### # View the annotations # -------------------------------------------------------------------------- order = np.arange(144, 164) raw.set_annotations(annot_muscle) raw.plot(start=5, duration=20, order=order)
bsd-3-clause
juswilliams/bioscripts
TE_count/TEcount_modules.py
1
5308
#!/usr/bin/env python ''' module for TE_count script ''' import Bio.SeqUtils import gffutils import argparse import os import sys import re import pandas as pd import numpy as np from ggplot import * # Retrieve args from command line, usage help def parseArguments(): # Create argument parser parser = argparse.ArgumentParser() # Positional mandatory arguments parser.add_argument("FastaFile", help="Fasta File.", type=str) # Optional arguments parser.add_argument("-s", help="Step Size.", type=int, default=250) parser.add_argument("-w", help="Window Size.", type=int, default=1000) parser.add_argument("-r", help="Run RepeatMasker.", type=bool, default=False) parser.add_argument("-gff", help="Matching Repeatmasker GFF File.", type=str, default="empty.gff") # Parse arguments args = parser.parse_args() return args # Class contains TE by window, sequence length class TESeqRec: def __init__(self, SeqId, SeqLength, WinSize, Step): self.SeqId = SeqId self.SeqLength = SeqLength self.WinSize = WinSize self.Step = Step # Pre-Determine the number of TE ranges NumOfChunks = ((self.SeqLength-self.WinSize)/self.Step)+1 self.NumOfChunks = NumOfChunks # Create Ranges formatted for GFFutils def get_tes(self, GffDb): Region = "" BpBin = [] SeqIdList = [] TEcounts = [] ForGGplot = [] for i in range(0, self.NumOfChunks*self.Step, self.Step): WinStart = i WinStop = i + self.WinSize Region = str(self.SeqId) + ":" + str(WinStart) + "-" + str(WinStop) TEhits = GffDb.region(strand=None, region=Region, completely_within=False) hits = len(list(TEhits)) SeqIdList.append(self.SeqId) BpBin.append(WinStop) TEcounts.append(hits) ForGGplot.append(SeqIdList) ForGGplot.append(BpBin) ForGGplot.append(TEcounts) return ForGGplot # GFF check (insure Repeatmasker format) def gff_check(GffFile): cond1 = False cond2 = False cond3 = False with open(GffFile, "r") as GFF: for line in GFF: SplitLine = line.split("\t") if len(SplitLine) == 9: cond1 = True if SplitLine[2] == "similarity": cond2 = True if "Motif:" in SplitLine[8]: cond3 = True break if cond1 and cond2 and cond3: return True else: print "This RepeatMasker GFF file may not be compatible\n" print ("Consider replacing the last (9th) column, or renaming " + "the 3rd column to 'similarity'") while True: Reply = raw_input('Continue Anyway? (Y/N)... ') if Reply == 'Y': return True elif Reply == 'N': sys.exit('Exiting script...') else: print 'Incorrect input. Use Y/N' # GFF edit repeatmasker def edit_gff(GffFile, tempfile): try: pattern = re.compile(r'\"Motif\:.+\"') with open(GffFile, "r") as GFF: with open(tempfile, "w") as tempGFF: for line in GFF: SplitLine = line.split("\t") if len(SplitLine) < 9: tempGFF.write(str(line)) if len(SplitLine) == 9: result = pattern.search(str(SplitLine[8])) if result: string = result.group(0) newstr = string.replace("\"", "") newstr = re.sub('Motif:', 'Motif=', newstr) del SplitLine[-1] SplitLine.append(newstr) tempGFF.write("\t".join(SplitLine) + "\n") except IndexError as e: print 'Error: '+ str(e) sys.exit('error formatting GFF file...') # Insure WinSize, SeqRecord, and Step are correct lengths def arg_seqcheck(SeqRecord, WinSize, Step): if not ((type(WinSize) == type(0)) and (type(Step) == type(0))): raise Exception("**NOTE type(WinSize) and type(Step) must be int.") if Step > WinSize: raise Exception("**NOTE Step must not be larger than WinSize.") if WinSize > len(SeqRecord.seq): raise Exception('''**NOTE WinSize must not be larger than Sequence length.''') # Generate GGplot of TE density def gen_fig(SeqId, ForGGplot): OutFile = str(SeqId) + ".png" try: TEdf = pd.DataFrame({ 'SeqId': ForGGplot[0], 'xval': ForGGplot[1], 'yval': ForGGplot[2]}) p = ggplot(aes(x='xval', y='yval'), data=TEdf) \ + geom_line() \ + ylab("RepeatMasker TE Density") \ + xlab("Position (bp) in Scaffold " + str(SeqId)) \ + ggtitle(str(SeqId) + " Transposable Element Density as predicted by RepeatMasker") p.save(OutFile) except IndexError as e: print 'Error: '+ str(e) sys.exit('Exiting script...')
gpl-3.0
yyjiang/scikit-learn
sklearn/feature_selection/tests/test_chi2.py
221
2398
""" Tests for chi2, currently the only feature selection function designed specifically to work with sparse matrices. """ import numpy as np from scipy.sparse import coo_matrix, csr_matrix import scipy.stats from sklearn.feature_selection import SelectKBest, chi2 from sklearn.feature_selection.univariate_selection import _chisquare from nose.tools import assert_raises from numpy.testing import assert_equal, assert_array_almost_equal # Feature 0 is highly informative for class 1; # feature 1 is the same everywhere; # feature 2 is a bit informative for class 2. X = [[2, 1, 2], [9, 1, 1], [6, 1, 2], [0, 1, 2]] y = [0, 1, 2, 2] def mkchi2(k): """Make k-best chi2 selector""" return SelectKBest(chi2, k=k) def test_chi2(): # Test Chi2 feature extraction chi2 = mkchi2(k=1).fit(X, y) chi2 = mkchi2(k=1).fit(X, y) assert_equal(chi2.get_support(indices=True), [0]) assert_equal(chi2.transform(X), np.array(X)[:, [0]]) chi2 = mkchi2(k=2).fit(X, y) assert_equal(sorted(chi2.get_support(indices=True)), [0, 2]) Xsp = csr_matrix(X, dtype=np.float) chi2 = mkchi2(k=2).fit(Xsp, y) assert_equal(sorted(chi2.get_support(indices=True)), [0, 2]) Xtrans = chi2.transform(Xsp) assert_equal(Xtrans.shape, [Xsp.shape[0], 2]) # == doesn't work on scipy.sparse matrices Xtrans = Xtrans.toarray() Xtrans2 = mkchi2(k=2).fit_transform(Xsp, y).toarray() assert_equal(Xtrans, Xtrans2) def test_chi2_coo(): # Check that chi2 works with a COO matrix # (as returned by CountVectorizer, DictVectorizer) Xcoo = coo_matrix(X) mkchi2(k=2).fit_transform(Xcoo, y) # if we got here without an exception, we're safe def test_chi2_negative(): # Check for proper error on negative numbers in the input X. X, y = [[0, 1], [-1e-20, 1]], [0, 1] for X in (X, np.array(X), csr_matrix(X)): assert_raises(ValueError, chi2, X, y) def test_chisquare(): # Test replacement for scipy.stats.chisquare against the original. obs = np.array([[2., 2.], [1., 1.]]) exp = np.array([[1.5, 1.5], [1.5, 1.5]]) # call SciPy first because our version overwrites obs chi_scp, p_scp = scipy.stats.chisquare(obs, exp) chi_our, p_our = _chisquare(obs, exp) assert_array_almost_equal(chi_scp, chi_our) assert_array_almost_equal(p_scp, p_our)
bsd-3-clause
ElDeveloper/scikit-learn
examples/plot_kernel_approximation.py
262
8004
""" ================================================== Explicit feature map approximation for RBF kernels ================================================== An example illustrating the approximation of the feature map of an RBF kernel. .. currentmodule:: sklearn.kernel_approximation It shows how to use :class:`RBFSampler` and :class:`Nystroem` to approximate the feature map of an RBF kernel for classification with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate mappings and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte Carlo samplings (in the case of :class:`RBFSampler`, which uses random Fourier features) and different sized subsets of the training set (for :class:`Nystroem`) for the approximate mapping are shown. Please note that the dataset here is not large enough to show the benefits of kernel approximation, as the exact SVM is still reasonably fast. Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via :class:`sklearn.linear_model.SGDClassifier`. This is not easily possible for the case of the kernelized SVM. The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel maps. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the data. This visualization should be taken with a grain of salt since it is just an interesting slice through the decision surface in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified into the region it is lying in, since it will not lie on the plane that the first two principal components span. The usage of :class:`RBFSampler` and :class:`Nystroem` is described in detail in :ref:`kernel_approximation`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Andreas Mueller <[email protected]> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt import numpy as np from time import time # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, pipeline from sklearn.kernel_approximation import (RBFSampler, Nystroem) from sklearn.decomposition import PCA # The digits dataset digits = datasets.load_digits(n_class=9) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.data) data = digits.data / 16. data -= data.mean(axis=0) # We learn the digits on the first half of the digits data_train, targets_train = data[:n_samples / 2], digits.target[:n_samples / 2] # Now predict the value of the digit on the second half: data_test, targets_test = data[n_samples / 2:], digits.target[n_samples / 2:] #data_test = scaler.transform(data_test) # Create a classifier: a support vector classifier kernel_svm = svm.SVC(gamma=.2) linear_svm = svm.LinearSVC() # create pipeline from kernel approximation # and linear svm feature_map_fourier = RBFSampler(gamma=.2, random_state=1) feature_map_nystroem = Nystroem(gamma=.2, random_state=1) fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier), ("svm", svm.LinearSVC())]) nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem), ("svm", svm.LinearSVC())]) # fit and predict using linear and kernel svm: kernel_svm_time = time() kernel_svm.fit(data_train, targets_train) kernel_svm_score = kernel_svm.score(data_test, targets_test) kernel_svm_time = time() - kernel_svm_time linear_svm_time = time() linear_svm.fit(data_train, targets_train) linear_svm_score = linear_svm.score(data_test, targets_test) linear_svm_time = time() - linear_svm_time sample_sizes = 30 * np.arange(1, 10) fourier_scores = [] nystroem_scores = [] fourier_times = [] nystroem_times = [] for D in sample_sizes: fourier_approx_svm.set_params(feature_map__n_components=D) nystroem_approx_svm.set_params(feature_map__n_components=D) start = time() nystroem_approx_svm.fit(data_train, targets_train) nystroem_times.append(time() - start) start = time() fourier_approx_svm.fit(data_train, targets_train) fourier_times.append(time() - start) fourier_score = fourier_approx_svm.score(data_test, targets_test) nystroem_score = nystroem_approx_svm.score(data_test, targets_test) nystroem_scores.append(nystroem_score) fourier_scores.append(fourier_score) # plot the results: plt.figure(figsize=(8, 8)) accuracy = plt.subplot(211) # second y axis for timeings timescale = plt.subplot(212) accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel") timescale.plot(sample_sizes, nystroem_times, '--', label='Nystroem approx. kernel') accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel") timescale.plot(sample_sizes, fourier_times, '--', label='Fourier approx. kernel') # horizontal lines for exact rbf and linear kernels: accuracy.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_score, linear_svm_score], label="linear svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_time, linear_svm_time], '--', label='linear svm') accuracy.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_score, kernel_svm_score], label="rbf svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_time, kernel_svm_time], '--', label='rbf svm') # vertical line for dataset dimensionality = 64 accuracy.plot([64, 64], [0.7, 1], label="n_features") # legends and labels accuracy.set_title("Classification accuracy") timescale.set_title("Training times") accuracy.set_xlim(sample_sizes[0], sample_sizes[-1]) accuracy.set_xticks(()) accuracy.set_ylim(np.min(fourier_scores), 1) timescale.set_xlabel("Sampling steps = transformed feature dimension") accuracy.set_ylabel("Classification accuracy") timescale.set_ylabel("Training time in seconds") accuracy.legend(loc='best') timescale.legend(loc='best') # visualize the decision surface, projected down to the first # two principal components of the dataset pca = PCA(n_components=8).fit(data_train) X = pca.transform(data_train) # Gemerate grid along first two principal components multiples = np.arange(-2, 2, 0.1) # steps along first component first = multiples[:, np.newaxis] * pca.components_[0, :] # steps along second component second = multiples[:, np.newaxis] * pca.components_[1, :] # combine grid = first[np.newaxis, :, :] + second[:, np.newaxis, :] flat_grid = grid.reshape(-1, data.shape[1]) # title for the plots titles = ['SVC with rbf kernel', 'SVC (linear kernel)\n with Fourier rbf feature map\n' 'n_components=100', 'SVC (linear kernel)\n with Nystroem rbf feature map\n' 'n_components=100'] plt.tight_layout() plt.figure(figsize=(12, 5)) # predict and plot for i, clf in enumerate((kernel_svm, nystroem_approx_svm, fourier_approx_svm)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(1, 3, i + 1) Z = clf.predict(flat_grid) # Put the result into a color plot Z = Z.reshape(grid.shape[:-1]) plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired) plt.title(titles[i]) plt.tight_layout() plt.show()
bsd-3-clause
mahak/spark
python/pyspark/pandas/tests/test_ops_on_diff_frames_groupby_rolling.py
15
3500
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pandas as pd from pyspark import pandas as ps from pyspark.pandas.config import set_option, reset_option from pyspark.testing.pandasutils import PandasOnSparkTestCase, TestUtils class OpsOnDiffFramesGroupByRollingTest(PandasOnSparkTestCase, TestUtils): @classmethod def setUpClass(cls): super().setUpClass() set_option("compute.ops_on_diff_frames", True) @classmethod def tearDownClass(cls): reset_option("compute.ops_on_diff_frames") super().tearDownClass() def _test_groupby_rolling_func(self, f): pser = pd.Series([1, 2, 3], name="a") pkey = pd.Series([1, 2, 3], name="a") psser = ps.from_pandas(pser) kkey = ps.from_pandas(pkey) self.assert_eq( getattr(psser.groupby(kkey).rolling(2), f)().sort_index(), getattr(pser.groupby(pkey).rolling(2), f)().sort_index(), ) pdf = pd.DataFrame({"a": [1, 2, 3, 2], "b": [4.0, 2.0, 3.0, 1.0]}) pkey = pd.Series([1, 2, 3, 2], name="a") psdf = ps.from_pandas(pdf) kkey = ps.from_pandas(pkey) self.assert_eq( getattr(psdf.groupby(kkey).rolling(2), f)().sort_index(), getattr(pdf.groupby(pkey).rolling(2), f)().sort_index(), ) self.assert_eq( getattr(psdf.groupby(kkey)["b"].rolling(2), f)().sort_index(), getattr(pdf.groupby(pkey)["b"].rolling(2), f)().sort_index(), ) self.assert_eq( getattr(psdf.groupby(kkey)[["b"]].rolling(2), f)().sort_index(), getattr(pdf.groupby(pkey)[["b"]].rolling(2), f)().sort_index(), ) def test_groupby_rolling_count(self): self._test_groupby_rolling_func("count") def test_groupby_rolling_min(self): self._test_groupby_rolling_func("min") def test_groupby_rolling_max(self): self._test_groupby_rolling_func("max") def test_groupby_rolling_mean(self): self._test_groupby_rolling_func("mean") def test_groupby_rolling_sum(self): self._test_groupby_rolling_func("sum") def test_groupby_rolling_std(self): # TODO: `std` now raise error in pandas 1.0.0 self._test_groupby_rolling_func("std") def test_groupby_rolling_var(self): self._test_groupby_rolling_func("var") if __name__ == "__main__": import unittest from pyspark.pandas.tests.test_ops_on_diff_frames_groupby_rolling import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
sonnyhu/scikit-learn
examples/linear_model/plot_omp.py
385
2263
""" =========================== Orthogonal Matching Pursuit =========================== Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import OrthogonalMatchingPursuit from sklearn.linear_model import OrthogonalMatchingPursuitCV from sklearn.datasets import make_sparse_coded_signal n_components, n_features = 512, 100 n_nonzero_coefs = 17 # generate the data ################### # y = Xw # |x|_0 = n_nonzero_coefs y, X, w = make_sparse_coded_signal(n_samples=1, n_components=n_components, n_features=n_features, n_nonzero_coefs=n_nonzero_coefs, random_state=0) idx, = w.nonzero() # distort the clean signal ########################## y_noisy = y + 0.05 * np.random.randn(len(y)) # plot the sparse signal ######################## plt.figure(figsize=(7, 7)) plt.subplot(4, 1, 1) plt.xlim(0, 512) plt.title("Sparse signal") plt.stem(idx, w[idx]) # plot the noise-free reconstruction #################################### omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 2) plt.xlim(0, 512) plt.title("Recovered signal from noise-free measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction ############################### omp.fit(X, y_noisy) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 3) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction with number of non-zeros set by CV ################################################################## omp_cv = OrthogonalMatchingPursuitCV() omp_cv.fit(X, y_noisy) coef = omp_cv.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 4) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements with CV") plt.stem(idx_r, coef[idx_r]) plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38) plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit', fontsize=16) plt.show()
bsd-3-clause
tallakahath/pymatgen
pymatgen/analysis/structure_analyzer.py
1
82945
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals import six import yaml import os """ This module provides classes to perform topological analyses of structures. """ __author__ = "Shyue Ping Ong, Geoffroy Hautier, Sai Jayaraman" __copyright__ = "Copyright 2011, The Materials Project" __version__ = "1.0" __maintainer__ = "Shyue Ping Ong" __email__ = "[email protected]" __status__ = "Production" __date__ = "Sep 23, 2011" import math from math import pi, asin, atan, sqrt, exp, cos import numpy as np import itertools import collections from warnings import warn from scipy.spatial import Voronoi from pymatgen import PeriodicSite from pymatgen import Element, Specie, Composition from pymatgen.util.num import abs_cap from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.core.surface import Slab, SlabGenerator class VoronoiCoordFinder(object): """ Uses a Voronoi algorithm to determine the coordination for each site in a structure. Args: structure (Structure): Input structure target ([Element/Specie]): A list of target species to determine coordination for. cutoff (float): Radius in Angstrom cutoff to look for coordinating atoms. Defaults to 10.0. allow_pathological (bool): whether to allow infinite vertices in determination of Voronoi coordination """ def __init__(self, structure, target=None, cutoff=10.0, allow_pathological=False): self._structure = structure self.cutoff = cutoff self.allow_pathological = allow_pathological if target is None: self._target = structure.composition.elements else: self._target = target def get_voronoi_polyhedra(self, n): """ Gives a weighted polyhedra around a site. This uses the voronoi construction with solid angle weights. See ref: A Proposed Rigorous Definition of Coordination Number, M. O'Keeffe, Acta Cryst. (1979). A35, 772-775 Args: n (int): Site index Returns: A dict of sites sharing a common Voronoi facet with the site n and their solid angle weights """ localtarget = self._target center = self._structure[n] neighbors = self._structure.get_sites_in_sphere( center.coords, self.cutoff) neighbors = [i[0] for i in sorted(neighbors, key=lambda s: s[1])] qvoronoi_input = [s.coords for s in neighbors] voro = Voronoi(qvoronoi_input) all_vertices = voro.vertices results = {} for nn, vind in voro.ridge_dict.items(): if 0 in nn: if -1 in vind: if self.allow_pathological: continue else: raise RuntimeError("This structure is pathological," " infinite vertex in the voronoi " "construction") facets = [all_vertices[i] for i in vind] results[neighbors[sorted(nn)[1]]] = solid_angle( center.coords, facets) maxangle = max(results.values()) resultweighted = {} for nn, angle in results.items(): # is nn site is ordered use "nn.specie" to get species, else use "nn.species_and_occu" to get species if nn.is_ordered: if nn.specie in localtarget: resultweighted[nn] = angle / maxangle else: # is nn site is disordered for disordered_sp in nn.species_and_occu.keys(): if disordered_sp in localtarget: resultweighted[nn] = angle / maxangle return resultweighted def get_coordination_number(self, n): """ Returns the coordination number of site with index n. Args: n (int): Site index """ return sum(self.get_voronoi_polyhedra(n).values()) def get_coordinated_sites(self, n, tol=0, target=None): """ Returns the sites that are in the coordination radius of site with index n. Args: n (int): Site index. tol (float): Weight tolerance to determine if a particular pair is considered a neighbor. target (Element): Target element Returns: Sites coordinating input site. """ coordinated_sites = [] for site, weight in self.get_voronoi_polyhedra(n).items(): if weight > tol and (target is None or site.specie == target): coordinated_sites.append(site) return coordinated_sites class JMolCoordFinder: """ Determine coordinated sites and coordination number using an emulation of JMol's default autoBond() algorithm. This version of the algorithm does not take into account any information regarding known charge states. """ def __init__(self, el_radius_updates=None): """ Initialize coordination finder parameters (atomic radii) Args: el_radius_updates: (dict) symbol->float to override default atomic radii table values """ # load elemental radii table bonds_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "bonds_jmol_ob.yaml") with open(bonds_file, 'r') as f: self.el_radius = yaml.load(f) # update any user preference elemental radii if el_radius_updates: self.el_radius.update(el_radius_updates) def get_max_bond_distance(self, el1_sym, el2_sym, constant=0.56): """ Use JMol algorithm to determine bond length from atomic parameters Args: el1_sym: (str) symbol of atom 1 el2_sym: (str) symbol of atom 2 constant: (float) factor to tune model Returns: (float) max bond length """ return math.sqrt( (self.el_radius[el1_sym] + self.el_radius[el2_sym] + constant) ** 2) def get_coordination_number(self, structure, n, tol=1E-3): """ Get the coordination number of a site Args: structure: (Structure) n: (int) index of site in the structure to get CN for tol: (float) a numerical tolerance to extend search Returns: (int) the coordination number """ return len(self.get_coordinated_sites(structure, n, tol)) def get_coordinated_sites(self, structure, n, tol=1E-3): """ Get the coordinated sites for a site Args: structure: (Structure) n: (int) index of site in the structure to analyze tol: (float) a numerical tolerance to extend search Returns: ([sites]) a list of coordinated sites """ site = structure[n] # determine relevant bond lengths based on atomic radii table bonds = {} for el in structure.composition.elements: bonds[site.specie, el] = self.get_max_bond_distance( site.specie.symbol, el.symbol) # search for neighbors up to max bond length + tolerance max_rad = max(bonds.values()) + tol all_neighbors = [] for neighb, dist in structure.get_neighbors(site, max_rad): # confirm neighbor based on bond length specific to atom pair if dist <= bonds[(site.specie, neighb.specie)] + tol: all_neighbors.append(neighb) return all_neighbors def average_coordination_number(structures, freq=10): """ Calculates the ensemble averaged Voronoi coordination numbers of a list of Structures using VoronoiCoordFinder. Typically used for analyzing the output of a Molecular Dynamics run. Args: structures (list): list of Structures. freq (int): sampling frequency of coordination number [every freq steps]. Returns: Dictionary of elements as keys and average coordination numbers as values. """ coordination_numbers = {} for el in structures[0].composition.elements: coordination_numbers[el.name] = 0.0 count = 0 for t in range(len(structures)): if t % freq != 0: continue count += 1 vor = VoronoiCoordFinder(structures[t]) for atom in range(len(structures[0])): cn = vor.get_coordination_number(atom) coordination_numbers[structures[t][atom].species_string] += cn elements = structures[0].composition.as_dict() for el in coordination_numbers: coordination_numbers[el] = coordination_numbers[el] / elements[ el] / count return coordination_numbers class VoronoiAnalyzer(object): """ Performs a statistical analysis of Voronoi polyhedra around each site. Each Voronoi polyhedron is described using Schaefli notation. That is a set of indices {c_i} where c_i is the number of faces with i number of vertices. E.g. for a bcc crystal, there is only one polyhedron notation of which is [0,6,0,8,0,0,...]. In perfect crystals, these also corresponds to the Wigner-Seitz cells. For distorted-crystals, liquids or amorphous structures, rather than one-type, there is a statistical distribution of polyhedra. See ref: Microstructure and its relaxation in Fe-B amorphous system simulated by molecular dynamics, Stepanyuk et al., J. Non-cryst. Solids (1993), 159, 80-87. Args: cutoff (float): cutoff distance to search for neighbors of a given atom (default = 5.0) qhull_options (str): options to pass to qhull (optional) """ def __init__(self, cutoff=5.0, qhull_options="Qbb Qc Qz"): self.cutoff = cutoff self.qhull_options = qhull_options def analyze(self, structure, n=0): """ Performs Voronoi analysis and returns the polyhedra around atom n in Schlaefli notation. Args: structure (Structure): structure to analyze n (int): index of the center atom in structure Returns: voronoi index of n: <c3,c4,c6,c6,c7,c8,c9,c10> where c_i denotes number of facets with i vertices. """ center = structure[n] neighbors = structure.get_sites_in_sphere(center.coords, self.cutoff) neighbors = [i[0] for i in sorted(neighbors, key=lambda s: s[1])] qvoronoi_input = np.array([s.coords for s in neighbors]) voro = Voronoi(qvoronoi_input, qhull_options=self.qhull_options) vor_index = np.array([0, 0, 0, 0, 0, 0, 0, 0]) for key in voro.ridge_dict: if 0 in key: # This means if the center atom is in key if -1 in key: # This means if an infinity point is in key raise ValueError("Cutoff too short.") else: try: vor_index[len(voro.ridge_dict[key]) - 3] += 1 except IndexError: # If a facet has more than 10 edges, it's skipped here. pass return vor_index def analyze_structures(self, structures, step_freq=10, most_frequent_polyhedra=15): """ Perform Voronoi analysis on a list of Structures. Note that this might take a significant amount of time depending on the size and number of structures. Args: structures (list): list of Structures cutoff (float: cutoff distance around an atom to search for neighbors step_freq (int): perform analysis every step_freq steps qhull_options (str): options to pass to qhull most_frequent_polyhedra (int): this many unique polyhedra with highest frequences is stored. Returns: A list of tuples in the form (voronoi_index,frequency) """ voro_dict = {} step = 0 for structure in structures: step += 1 if step % step_freq != 0: continue v = [] for n in range(len(structure)): v.append(str(self.analyze(structure, n=n).view())) for voro in v: if voro in voro_dict: voro_dict[voro] += 1 else: voro_dict[voro] = 1 return sorted(voro_dict.items(), key=lambda x: (x[1], x[0]), reverse=True)[:most_frequent_polyhedra] @staticmethod def plot_vor_analysis(voronoi_ensemble): t = zip(*voronoi_ensemble) labels = t[0] val = list(t[1]) tot = np.sum(val) val = [float(j) / tot for j in val] pos = np.arange(len(val)) + .5 # the bar centers on the y axis import matplotlib.pyplot as plt plt.figure() plt.barh(pos, val, align='center', alpha=0.5) plt.yticks(pos, labels) plt.xlabel('Count') plt.title('Voronoi Spectra') plt.grid(True) return plt class RelaxationAnalyzer(object): """ This class analyzes the relaxation in a calculation. """ def __init__(self, initial_structure, final_structure): """ Please note that the input and final structures should have the same ordering of sites. This is typically the case for most computational codes. Args: initial_structure (Structure): Initial input structure to calculation. final_structure (Structure): Final output structure from calculation. """ if final_structure.formula != initial_structure.formula: raise ValueError("Initial and final structures have different " + "formulas!") self.initial = initial_structure self.final = final_structure def get_percentage_volume_change(self): """ Returns the percentage volume change. Returns: Volume change in percentage, e.g., 0.055 implies a 5.5% increase. """ initial_vol = self.initial.lattice.volume final_vol = self.final.lattice.volume return final_vol / initial_vol - 1 def get_percentage_lattice_parameter_changes(self): """ Returns the percentage lattice parameter changes. Returns: A dict of the percentage change in lattice parameter, e.g., {'a': 0.012, 'b': 0.021, 'c': -0.031} implies a change of 1.2%, 2.1% and -3.1% in the a, b and c lattice parameters respectively. """ initial_latt = self.initial.lattice final_latt = self.final.lattice d = {l: getattr(final_latt, l) / getattr(initial_latt, l) - 1 for l in ["a", "b", "c"]} return d def get_percentage_bond_dist_changes(self, max_radius=3.0): """ Returns the percentage bond distance changes for each site up to a maximum radius for nearest neighbors. Args: max_radius (float): Maximum radius to search for nearest neighbors. This radius is applied to the initial structure, not the final structure. Returns: Bond distance changes as a dict of dicts. E.g., {index1: {index2: 0.011, ...}}. For economy of representation, the index1 is always less than index2, i.e., since bonding between site1 and siten is the same as bonding between siten and site1, there is no reason to duplicate the information or computation. """ data = collections.defaultdict(dict) for inds in itertools.combinations(list(range(len(self.initial))), 2): (i, j) = sorted(inds) initial_dist = self.initial[i].distance(self.initial[j]) if initial_dist < max_radius: final_dist = self.final[i].distance(self.final[j]) data[i][j] = final_dist / initial_dist - 1 return data class VoronoiConnectivity(object): """ Computes the solid angles swept out by the shared face of the voronoi polyhedron between two sites. Args: structure (Structure): Input structure cutoff (float) Cutoff distance. """ # Radius in Angstrom cutoff to look for coordinating atoms def __init__(self, structure, cutoff=10): self.cutoff = cutoff self.s = structure recp_len = np.array(self.s.lattice.reciprocal_lattice.abc) i = np.ceil(cutoff * recp_len / (2 * math.pi)) offsets = np.mgrid[-i[0]:i[0] + 1, -i[1]:i[1] + 1, -i[2]:i[2] + 1].T self.offsets = np.reshape(offsets, (-1, 3)) # shape = [image, axis] self.cart_offsets = self.s.lattice.get_cartesian_coords(self.offsets) @property def connectivity_array(self): """ Provides connectivity array. Returns: connectivity: An array of shape [atomi, atomj, imagej]. atomi is the index of the atom in the input structure. Since the second atom can be outside of the unit cell, it must be described by both an atom index and an image index. Array data is the solid angle of polygon between atomi and imagej of atomj """ # shape = [site, axis] cart_coords = np.array(self.s.cart_coords) # shape = [site, image, axis] all_sites = cart_coords[:, None, :] + self.cart_offsets[None, :, :] vt = Voronoi(all_sites.reshape((-1, 3))) n_images = all_sites.shape[1] cs = (len(self.s), len(self.s), len(self.cart_offsets)) connectivity = np.zeros(cs) vts = np.array(vt.vertices) for (ki, kj), v in vt.ridge_dict.items(): atomi = ki // n_images atomj = kj // n_images imagei = ki % n_images imagej = kj % n_images if imagei != n_images // 2 and imagej != n_images // 2: continue if imagei == n_images // 2: # atomi is in original cell val = solid_angle(vt.points[ki], vts[v]) connectivity[atomi, atomj, imagej] = val if imagej == n_images // 2: # atomj is in original cell val = solid_angle(vt.points[kj], vts[v]) connectivity[atomj, atomi, imagei] = val if -10.101 in vts[v]: warn('Found connectivity with infinite vertex. ' 'Cutoff is too low, and results may be ' 'incorrect') return connectivity @property def max_connectivity(self): """ returns the 2d array [sitei, sitej] that represents the maximum connectivity of site i to any periodic image of site j """ return np.max(self.connectivity_array, axis=2) def get_connections(self): """ Returns a list of site pairs that are Voronoi Neighbors, along with their real-space distances. """ con = [] maxconn = self.max_connectivity for ii in range(0, maxconn.shape[0]): for jj in range(0, maxconn.shape[1]): if maxconn[ii][jj] != 0: dist = self.s.get_distance(ii, jj) con.append([ii, jj, dist]) return con def get_sitej(self, site_index, image_index): """ Assuming there is some value in the connectivity array at indices (1, 3, 12). sitei can be obtained directly from the input structure (structure[1]). sitej can be obtained by passing 3, 12 to this function Args: site_index (int): index of the site (3 in the example) image_index (int): index of the image (12 in the example) """ atoms_n_occu = self.s[site_index].species_and_occu lattice = self.s.lattice coords = self.s[site_index].frac_coords + self.offsets[image_index] return PeriodicSite(atoms_n_occu, coords, lattice) def solid_angle(center, coords): """ Helper method to calculate the solid angle of a set of coords from the center. Args: center (3x1 array): Center to measure solid angle from. coords (Nx3 array): List of coords to determine solid angle. Returns: The solid angle. """ o = np.array(center) r = [np.array(c) - o for c in coords] r.append(r[0]) n = [np.cross(r[i + 1], r[i]) for i in range(len(r) - 1)] n.append(np.cross(r[1], r[0])) vals = [] for i in range(len(n) - 1): v = -np.dot(n[i], n[i + 1]) \ / (np.linalg.norm(n[i]) * np.linalg.norm(n[i + 1])) vals.append(math.acos(abs_cap(v))) phi = sum(vals) return phi + (3 - len(r)) * math.pi def get_max_bond_lengths(structure, el_radius_updates=None): """ Provides max bond length estimates for a structure based on the JMol table and algorithms. Args: structure: (structure) el_radius_updates: (dict) symbol->float to update atomic radii Returns: (dict) - (Element1, Element2) -> float. The two elements are ordered by Z. """ jmc = JMolCoordFinder(el_radius_updates) bonds_lens = {} els = sorted(structure.composition.elements, key=lambda x: x.Z) for i1 in range(len(els)): for i2 in range(len(els) - i1): bonds_lens[els[i1], els[i1 + i2]] = jmc.get_max_bond_distance( els[i1].symbol, els[i1 + i2].symbol) return bonds_lens def get_dimensionality(structure, max_hkl=2, el_radius_updates=None, min_slab_size=5, min_vacuum_size=5, standardize=True): """ This method returns whether a structure is 3D, 2D (layered), or 1D (linear chains or molecules) according to the algorithm published in Gorai, P., Toberer, E. & Stevanovic, V. Computational Identification of Promising Thermoelectric Materials Among Known Quasi-2D Binary Compounds. J. Mater. Chem. A 2, 4136 (2016). Note that a 1D structure detection might indicate problems in the bonding algorithm, particularly for ionic crystals (e.g., NaCl) Args: structure: (Structure) structure to analyze dimensionality for max_hkl: (int) max index of planes to look for layers el_radius_updates: (dict) symbol->float to update atomic radii min_slab_size: (float) internal surface construction parameter min_vacuum_size: (float) internal surface construction parameter standardize (bool): whether to standardize the structure before analysis. Set to False only if you already have the structure in a convention where layers / chains will be along low <hkl> indexes. Returns: (int) the dimensionality of the structure - 1 (molecules/chains), 2 (layered), or 3 (3D) """ if standardize: structure = SpacegroupAnalyzer(structure).\ get_conventional_standard_structure() bonds = get_max_bond_lengths(structure) num_surfaces = 0 for h in range(max_hkl): for k in range(max_hkl): for l in range(max_hkl): if max([h, k, l]) > 0 and num_surfaces < 2: sg = SlabGenerator(structure, (h, k, l), min_slab_size=min_slab_size, min_vacuum_size=min_vacuum_size) slabs = sg.get_slabs(bonds) for _ in slabs: num_surfaces += 1 return 3 - min(num_surfaces, 2) def contains_peroxide(structure, relative_cutoff=1.1): """ Determines if a structure contains peroxide anions. Args: structure (Structure): Input structure. relative_cutoff: The peroxide bond distance is 1.49 Angstrom. Relative_cutoff * 1.49 stipulates the maximum distance two O atoms must be to each other to be considered a peroxide. Returns: Boolean indicating if structure contains a peroxide anion. """ ox_type = oxide_type(structure, relative_cutoff) if ox_type == "peroxide": return True else: return False class OxideType(object): """ Separate class for determining oxide type. Args: structure: Input structure. relative_cutoff: Relative_cutoff * act. cutoff stipulates the max. distance two O atoms must be from each other. Default value is 1.1. At most 1.1 is recommended, nothing larger, otherwise the script cannot distinguish between superoxides and peroxides. """ def __init__(self, structure, relative_cutoff=1.1): self.structure = structure self.relative_cutoff = relative_cutoff self.oxide_type, self.nbonds = self.parse_oxide() def parse_oxide(self): """ Determines if an oxide is a peroxide/superoxide/ozonide/normal oxide. Returns: oxide_type (str): Type of oxide ozonide/peroxide/superoxide/hydroxide/None. nbonds (int): Number of peroxide/superoxide/hydroxide bonds in structure. """ structure = self.structure relative_cutoff = self.relative_cutoff o_sites_frac_coords = [] h_sites_frac_coords = [] lattice = structure.lattice if isinstance(structure.composition.elements[0], Element): comp = structure.composition elif isinstance(structure.composition.elements[0], Specie): elmap = collections.defaultdict(float) for site in structure: for species, occu in site.species_and_occu.items(): elmap[species.element] += occu comp = Composition(elmap) if Element("O") not in comp or comp.is_element: return "None", 0 for site in structure: syms = [sp.symbol for sp in site.species_and_occu.keys()] if "O" in syms: o_sites_frac_coords.append(site.frac_coords) if "H" in syms: h_sites_frac_coords.append(site.frac_coords) if h_sites_frac_coords: dist_matrix = lattice.get_all_distances(o_sites_frac_coords, h_sites_frac_coords) if np.any(dist_matrix < relative_cutoff * 0.93): return "hydroxide", len( np.where(dist_matrix < relative_cutoff * 0.93)[0]) / 2.0 dist_matrix = lattice.get_all_distances(o_sites_frac_coords, o_sites_frac_coords) np.fill_diagonal(dist_matrix, 1000) is_superoxide = False is_peroxide = False is_ozonide = False if np.any(dist_matrix < relative_cutoff * 1.35): bond_atoms = np.where(dist_matrix < relative_cutoff * 1.35)[0] is_superoxide = True elif np.any(dist_matrix < relative_cutoff * 1.49): is_peroxide = True bond_atoms = np.where(dist_matrix < relative_cutoff * 1.49)[0] if is_superoxide: if len(bond_atoms) > len(set(bond_atoms)): is_superoxide = False is_ozonide = True try: nbonds = len(set(bond_atoms)) except UnboundLocalError: nbonds = 0.0 if is_ozonide: str_oxide = "ozonide" elif is_superoxide: str_oxide = "superoxide" elif is_peroxide: str_oxide = "peroxide" else: str_oxide = "oxide" if str_oxide == "oxide": nbonds = comp["O"] return str_oxide, nbonds def oxide_type(structure, relative_cutoff=1.1, return_nbonds=False): """ Determines if an oxide is a peroxide/superoxide/ozonide/normal oxide Args: structure (Structure): Input structure. relative_cutoff (float): Relative_cutoff * act. cutoff stipulates the max distance two O atoms must be from each other. return_nbonds (bool): Should number of bonds be requested? """ ox_obj = OxideType(structure, relative_cutoff) if return_nbonds: return ox_obj.oxide_type, ox_obj.nbonds else: return ox_obj.oxide_type def sulfide_type(structure): """ Determines if a structure is a sulfide/polysulfide Args: structure (Structure): Input structure. Returns: (str) sulfide/polysulfide/sulfate """ structure = structure.copy() structure.remove_oxidation_states() s = Element("S") comp = structure.composition if comp.is_element or s not in comp: return None finder = SpacegroupAnalyzer(structure, symprec=0.1) symm_structure = finder.get_symmetrized_structure() s_sites = [sites[0] for sites in symm_structure.equivalent_sites if sites[0].specie == s] def process_site(site): neighbors = structure.get_neighbors(site, 4) neighbors = sorted(neighbors, key=lambda n: n[1]) nn, dist = neighbors[0] coord_elements = [site.specie for site, d in neighbors if d < dist + 0.4][:4] avg_electroneg = np.mean([e.X for e in coord_elements]) if avg_electroneg > s.X: return "sulfate" elif avg_electroneg == s.X and s in coord_elements: return "polysulfide" else: return "sulfide" types = set([process_site(site) for site in s_sites]) if "sulfate" in types: return None elif "polysulfide" in types: return "polysulfide" else: return "sulfide" def gramschmidt(vin, uin): """ Returns that part of the first input vector that is orthogonal to the second input vector. The output vector is not normalized. Args: vin (numpy array): first input vector uin (numpy array): second input vector """ vin_uin = np.inner(vin, uin) uin_uin = np.inner(uin, uin) if uin_uin <= 0.0: raise ValueError("Zero or negative inner product!") return vin - (vin_uin / uin_uin) * uin class OrderParameters(object): """ This class permits the calculation of various types of local order parameters. """ __supported_types = ( "cn", "lin", "bent", "tet", "oct", "bcc", "q2", "q4", "q6", "reg_tri", "sq", "sq_pyr", "tri_bipyr") def __init__(self, types, parameters=None, cutoff=-10.0): """ Create an OrderParameter analyzer instance. Args: types ([string]): List of strings representing the types of order parameters to be calculated. Note that multiple mentions of the same type may occur. Currently available types are "cn" (simple coordination number---normalized, if desired), "lin" [Peters-style OP recognizing linear coordination (Zimmermann & Jain, in progress, 2017)], "bent" [Peters-style OP recognizing bent coordination (Zimmermann & Jain, in progress, 2017)], "tet" [Peters-style OP recognizing tetrahedral coordination (Zimmermann et al., J. Am. Chem. Soc., 137, 13352-13361, 2015)], "oct" [Peters-style OP recognizing octahedral coordination (Zimmermann et al., J. Am. Chem. Soc., 137, 13352-13361, 2015)], "bcc" [Peters-style OP recognizing local body-centered cubic environment (Peters, J. Chem. Phys., 131, 244103, 2009)], "reg_tri" (OP recognizing coordination with a regular triangle), "sq" (OP recognizing square coordination), "sq_pyr" (OP recognizing square pyramidal coordination), "tri_bipyr" (OP recognizing trigonal bipyramidal coord.), "q2" [Bond orientational order parameter (BOOP) of weight l=2 (Steinhardt et al., Phys. Rev. B, 28, 784-805, 1983)], "q4" (BOOP of weight l=4), "q6" (BOOP of weight l=6). parameters ([[float]]): 2D list of floating point numbers that store parameters associated with the different order parameters that are to be calculated (1st dimension = length of types tuple; any 2nd dimension may be zero, in which case default values are used). In the following, those order parameters q_i are listed that require further parameters for their computation (values in brackets denote default values): "cn": normalizing constant (1); "lin": Gaussian width in fractions of pi (180 degrees) reflecting the "speed of penalizing" deviations away from 180 degrees of any individual neighbor1-center-neighbor2 configuration (0.0667); "bent": target angle in degrees (180); Gaussian width for penalizing deviations away from perfect target angle in fractions of pi (0.0667); "tet": Gaussian width for penalizing deviations away perfecttetrahedral angle (0.0667); "oct": threshold angle in degrees distinguishing a second neighbor to be either close to the south pole or close to the equator (160.0); Gaussian width for penalizing deviations away from south pole (0.0667); Gaussian width for penalizing deviations away from equator (0.0556); constant for shifting q_oct toward smaller values, which can be helpful when trying to fine- tune the capabilities of distinguishing between different environments (e.g., tet vs oct) given a single mutual threshold q_thresh; "bcc": south-pole threshold angle as for "oct" (160.0); south-pole Gaussian width as for "oct" (0.0667); "reg_tri": Gaussian width for penalizing angles away from the expected angles, given the estimated height-to-side ratio of the trigonal pyramid in which the central atom is located at the tip (0.0222); "sq": Gaussian width for penalizing angles away from the expected angles, given the estimated height-to-diagonal ratio of the pyramid in which the central atom is located at the tip (0.0333); "sq_pyr": Gaussian width in fractions of pi for penalizing angles away from 90 degrees (0.0333); Gaussian width in Angstrom for penalizing variations in neighbor distances (0.1); "tri_bipyr": threshold angle to identify close to South pole positions (160.0, cf., oct). Gaussian width for penalizing deviations away from south pole (0.0667); Gaussian width for penalizing deviations away from equator (0.0556). cutoff (float): Cutoff radius to determine which nearest neighbors are supposed to contribute to the order parameters. If the value is negative the neighboring sites found by distance and cutoff radius are further pruned using the get_coordinated_sites method from the VoronoiCoordFinder class. """ if len(types) == 0: raise ValueError("Empty types list!") for t in types: if t not in OrderParameters.__supported_types: raise ValueError("Unknown order parameter type (" + \ t + ")!") if parameters is not None: if len(types) != len(parameters): raise ValueError("1st dimension of parameters array is not" " consistent with types list!") for lp in parameters: if len(lp) > 0: for p in lp: if type(p) != float and type(p) != int: raise AttributeError("Expected only float and" " integer type parameters!") loc_parameters = list(parameters) else: loc_parameters = [[] for t in types] self._types = tuple(types) tmpparas = [] self._computerijs = self._computerjks = self._geomops = False self._geomops2 = self._boops = False self._max_trig_order = -1 for i, t in enumerate(self._types): # add here any additional parameter checking and # default value assignment tmpparas.append([]) if t == "cn": if len(loc_parameters[i]) == 0: tmpparas[i].append(1.0) else: if loc_parameters[i][0] == 0.0: raise ValueError("Normalizing constant for" " coordination-number based order" " parameter is zero!") else: tmpparas[i].append(loc_parameters[i][0]) elif t == "lin": if len(loc_parameters[i]) == 0: tmpparas[i] = [1.0 / 0.0667] else: if loc_parameters[i][0] == 0.0: raise ValueError("Gaussian width for" " linear order" " parameter is zero!") else: tmpparas[i] = [1.0 / loc_parameters[i][0]] elif t == "bent": if len(loc_parameters[i]) == 0: tmpparas[i] = [1.0, 1.0 / 0.0667] else: if loc_parameters[i][0] <= 0.0 or loc_parameters[i][ 0] > 180.0: warn("Target angle for bent order parameter is" " not in ]0,180] interval.") if loc_parameters[i][1] == 0.0: raise ValueError("Gaussian width for" " bent order" " parameter is zero!") else: tmpparas[i] = [loc_parameters[i][0] / 180.0, \ 1.0 / loc_parameters[i][1]] elif t == "tet": if len(loc_parameters[i]) == 0: tmpparas[i].append(1.0 / 0.0667) else: if loc_parameters[i][0] == 0.0: raise ValueError("Gaussian width for" " tetrahedral order" " parameter is zero!") else: tmpparas[i].append(1.0 / loc_parameters[i][0]) elif t == "oct": if len(loc_parameters[i]) < 4: tmpparas[i].append(8.0 * pi / 9.0) tmpparas[i].append(1.0 / 0.0667) tmpparas[i].append(1.0 / 0.0556) tmpparas[i].append(0.25) tmpparas[i].append(4.0 / 3.0) else: if loc_parameters[i][0] <= 0.0 or loc_parameters[i][ 0] >= 180.0: warn("Threshold value for south pole" " configurations in octahedral order" " parameter outside ]0,180[") tmpparas[i].append(loc_parameters[i][0] * pi / 180.0) if loc_parameters[i][1] == 0.0: raise ValueError("Gaussian width for south pole" " configurations in octahedral" " order parameter is zero!") else: tmpparas[i].append(1.0 / loc_parameters[i][1]) if loc_parameters[i][2] == 0.0: raise ValueError("Gaussian width for equatorial" " configurations in octahedral" " order parameter is zero!") else: tmpparas[i].append(1.0 / loc_parameters[i][2]) if loc_parameters[i][3] - 1.0 == 0.0: raise ValueError("Shift constant may not be" " unity!") if loc_parameters[i][3] < 0.0 or loc_parameters[i][3] > 1.0: warn("Shift constant outside [0,1[.") tmpparas[i].append(loc_parameters[i][3]) tmpparas[i].append(1.0 / (1.0 - loc_parameters[i][3])) elif t == "bcc": if len(loc_parameters[i]) < 2: tmpparas[i].append(8.0 * pi / 9.0) tmpparas[i].append(1.0 / 0.0667) else: if loc_parameters[i][0] <= 0.0 or loc_parameters[i][ 0] >= 180.0: warn("Threshold value for south pole" " configurations in bcc order" " parameter outside ]0,180[") tmpparas[i].append(loc_parameters[i][0] * pi / 180.0) if loc_parameters[i][1] == 0.0: raise ValueError("Gaussian width for south pole" " configurations in bcc" " order parameter is zero!") else: tmpparas[i].append(1.0 / loc_parameters[i][1]) elif t == "reg_tri": if len(loc_parameters[i]) == 0: tmpparas[i] = [1.0 / 0.0222] else: if loc_parameters[i][0] == 0.0: raise ValueError("Gaussian width for angles in" " trigonal pyramid tip of regular triangle" " order parameter is zero!") tmpparas[i] = [1.0 / loc_parameters[i][0]] elif t == "sq": if len(loc_parameters[i]) == 0: tmpparas[i] = [1.0 / 0.0333] else: if loc_parameters[i][0] == 0.0: raise ValueError("Gaussian width for angles in" " pyramid tip of square order parameter" " is zero!") tmpparas[i] = [1.0 / loc_parameters[i][0]] elif t == "sq_pyr": if len(loc_parameters[i]) == 0: tmpparas[i] = [1.0 / 0.0333, 1.0 / 0.1] else: if loc_parameters[i][0] == 0.0: raise ValueError("Gaussian width for angles in" " square pyramid order parameter is zero!") if loc_parameters[i][0] == 0.0: raise ValueError("Gaussian width for lengths in" " square pyramid order parameter is zero!") tmpparas[i] = [1.0 / loc_parameters[i][0], \ 1.0 / loc_parameters[i][1]] elif t == "tri_bipyr": if len(loc_parameters[i]) < 3: tmpparas[i].append(8.0 * pi / 9.0) tmpparas[i].append(1.0 / 0.0667) tmpparas[i].append(1.0 / 0.0741) else: if loc_parameters[i][0] <= 0.0 or loc_parameters[i][ 0] >= 180.0: warn("Threshold value for south pole" " configurations in octahedral order" " parameter outside ]0,180[") tmpparas[i].append(loc_parameters[i][0] * pi / 180.0) if loc_parameters[i][1] == 0.0: raise ValueError("Gaussian width for south pole" " configurations in trigonal" " bipyramidal order parameter is" " zero!") else: tmpparas[i].append(1.0 / loc_parameters[i][1]) if loc_parameters[i][2] == 0.0: raise ValueError("Gaussian width for equatorial" " configurations in trigonal" " bipyramidal order parameter" " is zero!") else: tmpparas[i].append(1.0 / loc_parameters[i][2]) # All following types should be well-defined/-implemented, # and they should not require parameters. elif t != "q2" and t != "q4" and t != "q6": raise ValueError("unknown order-parameter type \"" + t + "\"") # Add here any additional flags to be used during calculation. # self._computerijs: compute vectors from centeral atom i # to any neighbor j. # self._computerjks: compute vectors from non-centeral atom j # to any non-central atom k. if t == "tet" or t == "oct" or t == "bcc" or t == "sq_pyr" or \ t == "tri_bipyr": self._computerijs = self._geomops = True if t == "reg_tri" or t =="sq": self._computerijs = self._computerjks = self._geomops2 = True if t == "q2" or t == "q4" or t == "q6": self._computerijs = self._boops = True if t == "q2" and self._max_trig_order < 2: self._max_trig_order = 2 if t == "q4" and self._max_trig_order < 4: self._max_trig_order = 4 if t == "q6" and self._max_trig_order < 6: self._max_trig_order = 6 # Finish parameter treatment. self._paras = list(tmpparas) if cutoff < 0.0: self._cutoff = -cutoff self._voroneigh = True elif cutoff > 0.0: self._cutoff = cutoff self._voroneigh = False else: raise ValueError("Cutoff radius is zero!") # Further variable definitions. self._last_nneigh = -1 self._pow_sin_t = {} self._pow_cos_t = {} self._sin_n_p = {} self._cos_n_p = {} @property def num_ops(self): """" Returns the number of different order parameters that are targeted to be calculated. """ return len(self._types) @property def last_nneigh(self): """" Returns the number of neighbors encountered during the most recent order-parameter calculation. A value of -1 indicates that no such calculation has yet been performed for this instance. """ return len(self._last_nneigh) def compute_trigonometric_terms(self, thetas, phis): """" Computes trigonometric terms that are required to calculate bond orientational order parameters. Args: thetas ([float]): polar angles of all neighbors in radians. phis ([float]): azimuth angles of all neighbors in radians. The list of azimuth angles is expected to have the same size as the list of polar angles; otherwise, a ValueError is raised. Also, the two lists of angles have to be coherent in order. That is, it is expected that the order in the list of azimuth angles corresponds to a distinct sequence of neighbors. And, this sequence has to equal the sequence of neighbors in the list of polar angles. """ if len(thetas) != len(phis): raise ValueError("List of polar and azimuthal angles have to be" " equal!") self._pow_sin_t.clear() self._pow_cos_t.clear() self._sin_n_p.clear() self._cos_n_p.clear() self._pow_sin_t[1] = [math.sin(float(t)) for t in thetas] self._pow_cos_t[1] = [math.cos(float(t)) for t in thetas] self._sin_n_p[1] = [math.sin(float(p)) for p in phis] self._cos_n_p[1] = [math.cos(float(p)) for p in phis] for i in range(2, self._max_trig_order + 1): self._pow_sin_t[i] = [e[0] * e[1] for e in zip( self._pow_sin_t[i - 1], self._pow_sin_t[1])] self._pow_cos_t[i] = [e[0] * e[1] for e in zip( self._pow_cos_t[i - 1], self._pow_cos_t[1])] self._sin_n_p[i] = [math.sin(float(i) * float(p)) \ for p in phis] self._cos_n_p[i] = [math.cos(float(i) * float(p)) \ for p in phis] def get_q2(self, thetas=None, phis=None): """ Calculates the value of the bond orientational order parameter of weight l=2. If the function is called with non-empty lists of polar and azimuthal angles the corresponding trigonometric terms are computed afresh. Otherwise, it is expected that the compute_trigonometric_terms function has been just called. Args: thetas ([float]): polar angles of all neighbors in radians. phis ([float]): azimuth angles of all neighbors in radians. Return: q2 (float): bond orientational order parameter of weight l=2 corresponding to the input angles thetas and phis. """ if thetas is not None and phis is not None: self.compute_trigonometric_terms(thetas, phis) nnn = len(self._pow_sin_t[1]) nnn_range = range(nnn) sqrt_15_2pi = math.sqrt(15.0 / (2.0 * pi)) sqrt_5_pi = math.sqrt(5.0 / pi) pre_y_2_2 = [0.25 * sqrt_15_2pi * val for val in self._pow_sin_t[2]] pre_y_2_1 = [0.5 * sqrt_15_2pi * val[0] * val[1] for val in zip(self._pow_sin_t[1], self._pow_cos_t[1])] acc = 0.0 # Y_2_-2 real = imag = 0.0 for i in nnn_range: real += pre_y_2_2[i] * self._cos_n_p[2][i] imag -= pre_y_2_2[i] * self._sin_n_p[2][i] acc += (real * real + imag * imag) # Y_2_-1 real = imag = 0.0 for i in nnn_range: real += pre_y_2_1[i] * self._cos_n_p[1][i] imag -= pre_y_2_1[i] * self._sin_n_p[1][i] acc += (real * real + imag * imag) # Y_2_0 real = imag = 0.0 for i in nnn_range: real += 0.25 * sqrt_5_pi * (3.0 * self._pow_cos_t[2][i] - 1.0) acc += (real * real) # Y_2_1 real = imag = 0.0 for i in nnn_range: real -= pre_y_2_1[i] * self._cos_n_p[1][i] imag -= pre_y_2_1[i] * self._sin_n_p[1][i] acc += (real * real + imag * imag) # Y_2_2 real = imag = 0.0 for i in nnn_range: real += pre_y_2_2[i] * self._cos_n_p[2][i] imag += pre_y_2_2[i] * self._sin_n_p[2][i] acc += (real * real + imag * imag) q2 = math.sqrt(4.0 * pi * acc / (5.0 * float(nnn * nnn))) return q2 def get_q4(self, thetas=None, phis=None): """ Calculates the value of the bond orientational order parameter of weight l=4. If the function is called with non-empty lists of polar and azimuthal angles the corresponding trigonometric terms are computed afresh. Otherwise, it is expected that the compute_trigonometric_terms function has been just called. Args: thetas ([float]): polar angles of all neighbors in radians. phis ([float]): azimuth angles of all neighbors in radians. Return: q4 (float): bond orientational order parameter of weight l=4 corresponding to the input angles thetas and phis. """ if thetas is not None and phis is not None: self.compute_trigonometric_terms(thetas, phis) nnn = len(self._pow_sin_t[1]) nnn_range = range(nnn) i16_3 = 3.0 / 16.0 i8_3 = 3.0 / 8.0 sqrt_35_pi = math.sqrt(35.0 / pi) sqrt_35_2pi = math.sqrt(35.0 / (2.0 * pi)) sqrt_5_pi = math.sqrt(5.0 / pi) sqrt_5_2pi = math.sqrt(5.0 / (2.0 * pi)) sqrt_1_pi = math.sqrt(1.0 / pi) pre_y_4_4 = [i16_3 * sqrt_35_2pi * val for val in self._pow_sin_t[4]] pre_y_4_3 = [i8_3 * sqrt_35_pi * val[0] * val[1] \ for val in zip(self._pow_sin_t[3], self._pow_cos_t[1])] pre_y_4_2 = [i8_3 * sqrt_5_2pi * val[0] * (7.0 * val[1] - 1.0) \ for val in zip(self._pow_sin_t[2], self._pow_cos_t[2])] pre_y_4_1 = [i8_3 * sqrt_5_pi * val[0] * (7.0 * val[1] - 3.0 * val[2]) \ for val in zip(self._pow_sin_t[1], self._pow_cos_t[3], \ self._pow_cos_t[1])] acc = 0.0 # Y_4_-4 real = imag = 0.0 for i in nnn_range: real += pre_y_4_4[i] * self._cos_n_p[4][i] imag -= pre_y_4_4[i] * self._sin_n_p[4][i] acc += (real * real + imag * imag) # Y_4_-3 real = imag = 0.0 for i in nnn_range: real += pre_y_4_3[i] * self._cos_n_p[3][i] imag -= pre_y_4_3[i] * self._sin_n_p[3][i] acc += (real * real + imag * imag) # Y_4_-2 real = imag = 0.0 for i in nnn_range: real += pre_y_4_2[i] * self._cos_n_p[2][i] imag -= pre_y_4_2[i] * self._sin_n_p[2][i] acc += (real * real + imag * imag) # Y_4_-1 real = imag = 0.0 for i in nnn_range: real += pre_y_4_1[i] * self._cos_n_p[1][i] imag -= pre_y_4_1[i] * self._sin_n_p[1][i] acc += (real * real + imag * imag) # Y_4_0 real = imag = 0.0 for i in nnn_range: real += i16_3 * sqrt_1_pi * (35.0 * self._pow_cos_t[4][i] - \ 30.0 * self._pow_cos_t[2][i] + 3.0) acc += (real * real) # Y_4_1 real = imag = 0.0 for i in nnn_range: real -= pre_y_4_1[i] * self._cos_n_p[1][i] imag -= pre_y_4_1[i] * self._sin_n_p[1][i] acc += (real * real + imag * imag) # Y_4_2 real = imag = 0.0 for i in nnn_range: real += pre_y_4_2[i] * self._cos_n_p[2][i] imag += pre_y_4_2[i] * self._sin_n_p[2][i] acc += (real * real + imag * imag) # Y_4_3 real = imag = 0.0 for i in nnn_range: real -= pre_y_4_3[i] * self._cos_n_p[3][i] imag -= pre_y_4_3[i] * self._sin_n_p[3][i] acc += (real * real + imag * imag) # Y_4_4 real = imag = 0.0 for i in nnn_range: real += pre_y_4_4[i] * self._cos_n_p[4][i] imag += pre_y_4_4[i] * self._sin_n_p[4][i] acc += (real * real + imag * imag) q4 = math.sqrt(4.0 * pi * acc / (9.0 * float(nnn * nnn))) return q4 def get_q6(self, thetas=None, phis=None): """ Calculates the value of the bond orientational order parameter of weight l=6. If the function is called with non-empty lists of polar and azimuthal angles the corresponding trigonometric terms are computed afresh. Otherwise, it is expected that the compute_trigonometric_terms function has been just called. Args: thetas ([float]): polar angles of all neighbors in radians. phis ([float]): azimuth angles of all neighbors in radians. Return: q6 (float): bond orientational order parameter of weight l=6 corresponding to the input angles thetas and phis. """ if thetas is not None and phis is not None: self.compute_trigonometric_terms(thetas, phis) nnn = len(self._pow_sin_t[1]) nnn_range = range(nnn) i64 = 1.0 / 64.0 i32 = 1.0 / 32.0 i32_3 = 3.0 / 32.0 i16 = 1.0 / 16.0 sqrt_3003_pi = math.sqrt(3003.0 / pi) sqrt_1001_pi = math.sqrt(1001.0 / pi) sqrt_91_2pi = math.sqrt(91.0 / (2.0 * pi)) sqrt_1365_pi = math.sqrt(1365.0 / pi) sqrt_273_2pi = math.sqrt(273.0 / (2.0 * pi)) sqrt_13_pi = math.sqrt(13.0 / pi) pre_y_6_6 = [i64 * sqrt_3003_pi * val for val in self._pow_sin_t[6]] pre_y_6_5 = [i32_3 * sqrt_1001_pi * val[0] * val[1] \ for val in zip(self._pow_sin_t[5], self._pow_cos_t[1])] pre_y_6_4 = [i32_3 * sqrt_91_2pi * val[0] * (11.0 * val[1] - 1.0) \ for val in zip(self._pow_sin_t[4], self._pow_cos_t[2])] pre_y_6_3 = [ i32 * sqrt_1365_pi * val[0] * (11.0 * val[1] - 3.0 * val[2]) \ for val in zip(self._pow_sin_t[3], self._pow_cos_t[3], \ self._pow_cos_t[1])] pre_y_6_2 = [i64 * sqrt_1365_pi * val[0] * (33.0 * val[1] - \ 18.0 * val[2] + 1.0) for val in zip(self._pow_sin_t[2], \ self._pow_cos_t[4], self._pow_cos_t[2])] pre_y_6_1 = [i16 * sqrt_273_2pi * val[0] * (33.0 * val[1] - \ 30.0 * val[2] + 5.0 * val[ 3]) for val in zip(self._pow_sin_t[1], \ self._pow_cos_t[5], self._pow_cos_t[3], self._pow_cos_t[1])] acc = 0.0 # Y_6_-6 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real += pre_y_6_6[i] * self._cos_n_p[6][i] # cos(x) = cos(-x) imag -= pre_y_6_6[i] * self._sin_n_p[6][i] # sin(x) = -sin(-x) acc += (real * real + imag * imag) # Y_6_-5 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real += pre_y_6_5[i] * self._cos_n_p[5][i] imag -= pre_y_6_5[i] * self._sin_n_p[5][i] acc += (real * real + imag * imag) # Y_6_-4 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real += pre_y_6_4[i] * self._cos_n_p[4][i] imag -= pre_y_6_4[i] * self._sin_n_p[4][i] acc += (real * real + imag * imag) # Y_6_-3 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real += pre_y_6_3[i] * self._cos_n_p[3][i] imag -= pre_y_6_3[i] * self._sin_n_p[3][i] acc += (real * real + imag * imag) # Y_6_-2 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real += pre_y_6_2[i] * self._cos_n_p[2][i] imag -= pre_y_6_2[i] * self._sin_n_p[2][i] acc += (real * real + imag * imag) # Y_6_-1 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real += pre_y_6_1[i] * self._cos_n_p[1][i] imag -= pre_y_6_1[i] * self._sin_n_p[1][i] acc += (real * real + imag * imag) # Y_6_0 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real += i32 * sqrt_13_pi * (231.0 * self._pow_cos_t[6][i] - \ 315.0 * self._pow_cos_t[4][i] + 105.0 * self._pow_cos_t[2][i] - 5.0) acc += (real * real) # Y_6_1 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real -= pre_y_6_1[i] * self._cos_n_p[1][i] imag -= pre_y_6_1[i] * self._sin_n_p[1][i] acc += (real * real + imag * imag) # Y_6_2 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real += pre_y_6_2[i] * self._cos_n_p[2][i] imag += pre_y_6_2[i] * self._sin_n_p[2][i] acc += (real * real + imag * imag) # Y_6_3 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real -= pre_y_6_3[i] * self._cos_n_p[3][i] imag -= pre_y_6_3[i] * self._sin_n_p[3][i] acc += (real * real + imag * imag) # Y_6_4 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real += pre_y_6_4[i] * self._cos_n_p[4][i] imag += pre_y_6_4[i] * self._sin_n_p[4][i] acc += (real * real + imag * imag) # Y_6_5 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real -= pre_y_6_5[i] * self._cos_n_p[5][i] imag -= pre_y_6_5[i] * self._sin_n_p[5][i] acc += (real * real + imag * imag) # Y_6_6 real = imag = 0.0 real = 0.0 imag = 0.0 for i in nnn_range: real += pre_y_6_6[i] * self._cos_n_p[6][i] imag += pre_y_6_6[i] * self._sin_n_p[6][i] acc += (real * real + imag * imag) q6 = math.sqrt(4.0 * pi * acc / (13.0 * float(nnn * nnn))) return q6 def get_type(self, index): """ Return type of order-parameter at the index provided and represented by a short string. Args: index (int): index of order-parameter for which type is to be returned """ if index < 0 or index >= len(self._types): raise ValueError("Index for getting order-parameter type" " out-of-bounds!") return self._types[index] def get_parameters(self, index): """ Returns list of floats that represents the parameters associated with calculation of the order parameter that was defined at the index provided. Attention: the parameters do not need to equal those originally inputted because of processing out of efficiency reasons. Args: index (int): index of order-parameter for which associated parameters are to be returned """ if index < 0 or index >= len(self._types): raise ValueError("Index for getting parameters associated with" " order-parameter calculation out-of-bounds!") return self._paras[index] def get_order_parameters(self, structure, n, indeces_neighs=None, \ tol=0.0, target_spec=None): """ Compute all order parameters of site n. Args: structure (Structure): input structure. n (int): index of site in input structure, for which OPs are to be calculated. Note that we do not use the sites iterator here, but directly access sites via struct[index]. indeces_neighs ([int]): list of indeces of those neighbors in Structure object structure that are to be considered for OP computation. This optional argument overwrites the way neighbors are to be determined as defined in the constructor (i.e., Voronoi coordination finder via negative cutoff radius vs constant cutoff radius if cutoff was positive). We do not use information about the underlying structure lattice if the neighbor indeces are explicitly provided. This has two important consequences. First, the input Structure object can, in fact, be a simple list of Site objects. Second, no nearest images of neighbors are determined when providing an index list. Note furthermore that this neighbor determination type ignores the optional target_spec argument. tol (float): threshold of weight (= solid angle / maximal solid angle) to determine if a particular pair is considered neighbors; this is relevant only in the case when Voronoi polyhedra are used to determine coordination target_spec (Specie): target specie to be considered when calculating the order parameters of site n; None includes all species of input structure. Returns: list of floats representing order parameters. Should it not be possible to compute a given OP for a conceptual reason, the corresponding entry is None instead of a float. For Steinhardt et al.'s bond orientational OPs and the other geometric OPs ("tet", "oct", "bcc"), this can happen if there is a single neighbor around site n in the structure because that, obviously, does not permit calculation of angles between multiple neighbors. """ # Do error-checking and initialization. if n < 0: raise ValueError("Site index smaller zero!") if n >= len(structure): raise ValueError("Site index beyond maximum!") if indeces_neighs is not None: for index in indeces_neighs: if index >= len(structure): raise ValueError("Neighbor site index beyond maximum!") if tol < 0.0: raise ValueError("Negative tolerance for weighted solid angle!") left_of_unity = 1.0 - 1.0e-12 # The following threshold has to be adapted to non-Angstrom units. very_small = 1.0e-12 # Find central site and its neighbors. # Note that we adopt the same way of accessing sites here as in # VoronoiCoordFinder; that is, not via the sites iterator. centsite = structure[n] if indeces_neighs is not None: neighsites = [structure[index] for index in indeces_neighs] elif self._voroneigh: vorocf = VoronoiCoordFinder(structure) neighsites = vorocf.get_coordinated_sites(n, tol, target_spec) else: # Structure.get_sites_in_sphere --> also other periodic images neighsitestmp = [i[0] for i in structure.get_sites_in_sphere( centsite.coords, self._cutoff)] neighsites = [] if centsite not in neighsitestmp: raise ValueError("Could not find center site!") else: neighsitestmp.remove(centsite) if target_spec is None: neighsites = list(neighsitestmp) else: neighsites[:] = [site for site in neighsitestmp \ if site.specie.symbol == target_spec] nneigh = len(neighsites) self._last_nneigh = nneigh # Prepare angle calculations, if applicable. rij = [] rjk = [] rijnorm = [] rjknorm = [] dist = [] distjk_unique = [] distjk = [] centvec = centsite.coords if self._computerijs: for j, neigh in enumerate(neighsites): rij.append((neigh.coords - centvec)) dist.append(np.linalg.norm(rij[j])) rijnorm.append((rij[j] / dist[j])) if self._computerjks: for j, neigh in enumerate(neighsites): rjk.append([]) rjknorm.append([]) distjk.append([]) kk = 0 for k in range(len(neighsites)): if j != k: rjk[j].append(neighsites[k].coords - neigh.coords) distjk[j].append(np.linalg.norm(rjk[j][kk])) if k > j: distjk_unique.append(distjk[j][kk]) rjknorm[j].append(rjk[j][kk] / distjk[j][kk]) kk = kk + 1 # Initialize OP list and, then, calculate OPs. ops = [0.0 for t in self._types] # First, coordination number-based OPs. for i, t in enumerate(self._types): if t == "cn": ops[i] = nneigh / self._paras[i][0] # Then, bond orientational OPs based on spherical harmonics # according to Steinhardt et al., Phys. Rev. B, 28, 784-805, 1983. if self._boops: thetas = [] phis = [] for j, vec in enumerate(rijnorm): # z is North pole --> theta between vec and (0, 0, 1)^T. # Because vec is normalized, dot product is simply vec[2]. thetas.append(math.acos(max(-1.0, min(vec[2], 1.0)))) tmpphi = 0.0 # Compute phi only if it is not (almost) perfectly # aligned with z-axis. if vec[2] < left_of_unity and vec[2] > - (left_of_unity): # x is prime meridian --> phi between projection of vec # into x-y plane and (1, 0, 0)^T tmpphi = math.acos(max( -1.0, min(vec[0] / (math.sqrt( vec[0] * vec[0] + vec[1] * vec[1])), 1.0))) if vec[1] < 0.0: tmpphi = -tmpphi phis.append(tmpphi) # Note that None flags that we have too few neighbors # for calculating BOOPS. for i, t in enumerate(self._types): if t == "q2": ops[i] = self.get_q2(thetas, phis) if len( thetas) > 0 else None elif t == "q4": ops[i] = self.get_q4(thetas, phis) if len( thetas) > 0 else None elif t == "q6": ops[i] = self.get_q6(thetas, phis) if len( thetas) > 0 else None # Then, deal with the Peters-style OPs that are tailor-made # to recognize common structural motifs # (Peters, J. Chem. Phys., 131, 244103, 2009; # Zimmermann et al., J. Am. Chem. Soc., under revision, 2015). if self._geomops: gaussthetak = [0.0 for t in self._types] # not used by all OPs qsptheta = [[] for t in self._types] # not used by all OPs ipi = 1.0 / pi piover2 = pi / 2.0 tetangoverpi = math.acos(-1.0 / 3.0) * ipi itetangminuspihalfoverpi = 1.0 / (tetangoverpi - 0.5) for j in range(nneigh): # Neighbor j is put to the North pole. zaxis = rijnorm[j] for i, t in enumerate(self._types): qsptheta[i].append(0.0) for k in range(nneigh): # From neighbor k, we construct if j != k: # the prime meridian. tmp = max( -1.0, min(np.inner(zaxis, rijnorm[k]), 1.0)) thetak = math.acos(tmp) xaxistmp = gramschmidt(rijnorm[k], zaxis) if np.linalg.norm(xaxistmp) < very_small: flag_xaxis = True else: xaxis = xaxistmp / np.linalg.norm(xaxistmp) flag_xaxis = False # Contributions of j-i-k angles, where i represents the central atom # and j and k two of the neighbors. for i, t in enumerate(self._types): if t == "lin": tmp = self._paras[i][0] * (thetak * ipi - 1.0) ops[i] += exp(-0.5 * tmp * tmp) elif t == "bent": tmp = self._paras[i][1] * ( thetak * ipi - self._paras[i][0]) ops[i] += exp(-0.5 * tmp * tmp) elif t == "tet": tmp = self._paras[i][0] * ( thetak * ipi - tetangoverpi) gaussthetak[i] = math.exp(-0.5 * tmp * tmp) elif t == "oct": if thetak >= self._paras[i][0]: # k is south pole to j tmp = self._paras[i][1] * ( thetak * ipi - 1.0) ops[i] += 3.0 * math.exp(-0.5 * tmp * tmp) elif t == "bcc" and j < k: if thetak >= self._paras[i][0]: # k is south pole to j tmp = self._paras[i][1] * ( thetak * ipi - 1.0) ops[i] += 6.0 * math.exp(-0.5 * tmp * tmp) elif t == "sq_pyr": tmp = self._paras[i][0] * (thetak * ipi - 0.5) qsptheta[i][j] = qsptheta[i][j] + exp(-0.5 * tmp * tmp) elif t == "tri_bipyr": if thetak >= self._paras[i][0]: tmp = self._paras[i][1] * ( thetak * ipi - 1.0) qsptheta[i][j] = 2.0 * math.exp(-0.5 * tmp * tmp) for m in range(nneigh): if (m != j) and (m != k) and (not flag_xaxis): tmp = max( -1.0, min(np.inner(zaxis, rijnorm[m]), 1.0)) thetam = math.acos(tmp) xtwoaxistmp = gramschmidt(rijnorm[m], zaxis) l = np.linalg.norm(xtwoaxistmp) if l < very_small: flag_xtwoaxis = True else: xtwoaxis = xtwoaxistmp / l phi = math.acos(max( -1.0, min(np.inner(xtwoaxis, xaxis), 1.0))) flag_xtwoaxis = False # Contributions of j-i-m angle and # angles between plane j-i-k and i-m vector. if not flag_xaxis and not flag_xtwoaxis: for i, t in enumerate(self._types): if t == "tet": tmp = self._paras[i][0] * ( thetam * ipi - tetangoverpi) ops[i] += gaussthetak[i] * math.exp( -0.5 * tmp * tmp) * math.cos( 3.0 * phi) elif t == "oct": if thetak < self._paras[i][0] and \ thetam < \ self._paras[i][0]: tmp = math.cos(2.0 * phi) tmp2 = self._paras[i][2] * ( thetam * ipi - 0.5) ops[i] += tmp * tmp * \ self._paras[i][4] * ( math.exp( -0.5 * tmp2 * tmp2) - \ self._paras[i][3]) elif t == "bcc" and j < k: if thetak < self._paras[i][0]: if thetak > piover2: fac = 1.0 else: fac = -1.0 tmp = (thetam - piover2) / ( 19.47 * pi / 180.0) ops[i] += fac * math.cos( 3.0 * phi) * \ 1.6 * tmp * \ math.exp( -0.5 * tmp * tmp) elif t == "tri_bipyr": if thetak < self._paras[i][0] and \ thetam < self._paras[i][0]: tmp = math.cos(1.5 * phi) tmp2 = self._paras[i][2] * ( thetam * ipi - 0.5) qsptheta[i][j] += \ tmp * tmp * math.exp( \ -0.5 * tmp2 * tmp2) # Normalize Peters-style OPs. for i, t in enumerate(self._types): if t == "lin": ops[i] = ops[i] / float(nneigh * ( nneigh - 1)) if nneigh > 1 else None elif t == "bent": ops[i] = ops[i] / float(nneigh * ( nneigh - 1)) if nneigh > 1 else None elif t == "tet": ops[i] = ops[i] / float(nneigh * (nneigh - 1) * ( nneigh - 2)) if nneigh > 2 else None elif t == "oct": ops[i] = ops[i] / float(nneigh * (3 + (nneigh - 2) * ( nneigh - 3))) if nneigh > 3 else None elif t == "bcc": ops[i] = ops[i] / float(0.5 * float( nneigh * (6 + (nneigh - 2) * (nneigh - 3)))) \ if nneigh > 3 else None elif t == "sq_pyr": if nneigh > 1: dmean = np.mean(dist) acc = 0.0 for d in dist: tmp = self._paras[i][1] * (d - dmean) acc = acc + exp(-0.5 * tmp * tmp) ops[i] = acc * max(qsptheta[i]) / float( nneigh * (nneigh - 1)) else: ops[i] = None elif t == "tri_bipyr": ops[i] = max(qsptheta[i]) / float( 2 + (nneigh - 2) * (nneigh - 3)) if nneigh > 3 \ else None # Then, deal with the new-style OPs that require vectors between # neighbors. if self._geomops2: # Compute all (unique) angles and sort the resulting list. aij = [] for ir, r in enumerate(rijnorm): for j in range(ir+1, len(rijnorm)): aij.append(math.acos(max(-1.0, min(np.inner( r, rijnorm[j]), 1.0)))) aijs = sorted(aij) # Compute height, side and diagonal length estimates. neighscent = np.array([0.0, 0.0, 0.0]) for j, neigh in enumerate(neighsites): neighscent = neighscent + neigh.coords if nneigh > 0: neighscent = (neighscent / float(nneigh)) h = np.linalg.norm(neighscent - centvec) b = min(distjk_unique) if len(distjk_unique) > 0 else 0 dhalf = max(distjk_unique) / 2.0 if len(distjk_unique) > 0 else 0 for i, t in enumerate(self._types): if t == "reg_tri" or t == "sq": if nneigh < 3: ops[i] = None else: ops[i] = 1.0 if t == "reg_tri": a = 2.0 * asin(b / (2.0 * sqrt(h*h + (b / ( 2.0 * cos(3.0 * pi / 18.0)))**2.0))) nmax = 3 else: a = 2.0 * asin(b / (2.0 * sqrt(h*h + dhalf*dhalf))) nmax = 4 for j in range(min([nneigh,nmax])): ops[i] = ops[i] * exp(-0.5 * (( aijs[j] - a) * self._paras[i][0])**2) return ops
mit
kjung/scikit-learn
examples/neural_networks/plot_mlp_alpha.py
19
4088
""" ================================================ Varying regularization in Multi-layer Perceptron ================================================ A comparison of different values for regularization parameter 'alpha' on synthetic datasets. The plot shows that different alphas yield different decision functions. Alpha is a parameter for regularization term, aka penalty term, that combats overfitting by constraining the size of the weights. Increasing alpha may fix high variance (a sign of overfitting) by encouraging smaller weights, resulting in a decision boundary plot that appears with lesser curvatures. Similarly, decreasing alpha may fix high bias (a sign of underfitting) by encouraging larger weights, potentially resulting in a more complicated decision boundary. """ print(__doc__) # Author: Issam H. Laradji # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neural_network import MLPClassifier h = .02 # step size in the mesh alphas = np.logspace(-5, 3, 5) names = [] for i in alphas: names.append('alpha ' + str(i)) classifiers = [] for i in alphas: classifiers.append(MLPClassifier(alpha=i, random_state=1)) X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=0, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable] figure = plt.figure(figsize=(17, 9)) i = 1 # iterate over datasets for X, y in datasets: # preprocess dataset, split into training and test part X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show()
bsd-3-clause
Scapogo/zipline
zipline/pipeline/factors/technical.py
2
24137
""" Technical Analysis Factors -------------------------- """ from __future__ import division from numbers import Number from numpy import ( abs, arange, average, clip, diff, dstack, exp, fmax, full, inf, isnan, log, NINF, sqrt, sum as np_sum, ) from numexpr import evaluate from zipline.pipeline.data import USEquityPricing from zipline.pipeline.mixins import SingleInputMixin from zipline.utils.input_validation import expect_bounded, expect_types from zipline.utils.math_utils import ( nanargmax, nanargmin, nanmax, nanmean, nanstd, nansum, nanmin, ) from zipline.utils.numpy_utils import ( float64_dtype, ignore_nanwarnings, rolling_window, ) from .factor import CustomFactor class Returns(CustomFactor): """ Calculates the percent change in close price over the given window_length. **Default Inputs**: [USEquityPricing.close] """ inputs = [USEquityPricing.close] window_safe = True def _validate(self): super(Returns, self)._validate() if self.window_length < 2: raise ValueError( "'Returns' expected a window length of at least 2, but was " "given {window_length}. For daily returns, use a window " "length of 2.".format(window_length=self.window_length) ) def compute(self, today, assets, out, close): out[:] = (close[-1] - close[0]) / close[0] class RSI(CustomFactor, SingleInputMixin): """ Relative Strength Index **Default Inputs**: [USEquityPricing.close] **Default Window Length**: 15 """ window_length = 15 inputs = (USEquityPricing.close,) def compute(self, today, assets, out, closes): diffs = diff(closes, axis=0) ups = nanmean(clip(diffs, 0, inf), axis=0) downs = abs(nanmean(clip(diffs, -inf, 0), axis=0)) return evaluate( "100 - (100 / (1 + (ups / downs)))", local_dict={'ups': ups, 'downs': downs}, global_dict={}, out=out, ) class SimpleMovingAverage(CustomFactor, SingleInputMixin): """ Average Value of an arbitrary column **Default Inputs**: None **Default Window Length**: None """ # numpy's nan functions throw warnings when passed an array containing only # nans, but they still returns the desired value (nan), so we ignore the # warning. ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): out[:] = nanmean(data, axis=0) class WeightedAverageValue(CustomFactor): """ Helper for VWAP-like computations. **Default Inputs:** None **Default Window Length:** None """ def compute(self, today, assets, out, base, weight): out[:] = nansum(base * weight, axis=0) / nansum(weight, axis=0) class VWAP(WeightedAverageValue): """ Volume Weighted Average Price **Default Inputs:** [USEquityPricing.close, USEquityPricing.volume] **Default Window Length:** None """ inputs = (USEquityPricing.close, USEquityPricing.volume) class MaxDrawdown(CustomFactor, SingleInputMixin): """ Max Drawdown **Default Inputs:** None **Default Window Length:** None """ ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): drawdowns = fmax.accumulate(data, axis=0) - data drawdowns[isnan(drawdowns)] = NINF drawdown_ends = nanargmax(drawdowns, axis=0) # TODO: Accelerate this loop in Cython or Numba. for i, end in enumerate(drawdown_ends): peak = nanmax(data[:end + 1, i]) out[i] = (peak - data[end, i]) / data[end, i] class AverageDollarVolume(CustomFactor): """ Average Daily Dollar Volume **Default Inputs:** [USEquityPricing.close, USEquityPricing.volume] **Default Window Length:** None """ inputs = [USEquityPricing.close, USEquityPricing.volume] def compute(self, today, assets, out, close, volume): out[:] = nansum(close * volume, axis=0) / len(close) def exponential_weights(length, decay_rate): """ Build a weight vector for an exponentially-weighted statistic. The resulting ndarray is of the form:: [decay_rate ** length, ..., decay_rate ** 2, decay_rate] Parameters ---------- length : int The length of the desired weight vector. decay_rate : float The rate at which entries in the weight vector increase or decrease. Returns ------- weights : ndarray[float64] """ return full(length, decay_rate, float64_dtype) ** arange(length + 1, 1, -1) class _ExponentialWeightedFactor(SingleInputMixin, CustomFactor): """ Base class for factors implementing exponential-weighted operations. **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list or tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Methods ------- weights from_span from_halflife from_center_of_mass """ params = ('decay_rate',) @classmethod @expect_types(span=Number) def from_span(cls, inputs, window_length, span, **kwargs): """ Convenience constructor for passing `decay_rate` in terms of `span`. Forwards `decay_rate` as `1 - (2.0 / (1 + span))`. This provides the behavior equivalent to passing `span` to pandas.ewma. Example ------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[USEquityPricing.close], # window_length=30, # decay_rate=(1 - (2.0 / (1 + 15.0))), # ) my_ewma = EWMA.from_span( inputs=[USEquityPricing.close], window_length=30, span=15, ) Note ---- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ if span <= 1: raise ValueError( "`span` must be a positive number. %s was passed." % span ) decay_rate = (1.0 - (2.0 / (1.0 + span))) assert 0.0 < decay_rate <= 1.0 return cls( inputs=inputs, window_length=window_length, decay_rate=decay_rate, **kwargs ) @classmethod @expect_types(halflife=Number) def from_halflife(cls, inputs, window_length, halflife, **kwargs): """ Convenience constructor for passing ``decay_rate`` in terms of half life. Forwards ``decay_rate`` as ``exp(log(.5) / halflife)``. This provides the behavior equivalent to passing `halflife` to pandas.ewma. Example ------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[USEquityPricing.close], # window_length=30, # decay_rate=np.exp(np.log(0.5) / 15), # ) my_ewma = EWMA.from_halflife( inputs=[USEquityPricing.close], window_length=30, halflife=15, ) Note ---- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ if halflife <= 0: raise ValueError( "`span` must be a positive number. %s was passed." % halflife ) decay_rate = exp(log(.5) / halflife) assert 0.0 < decay_rate <= 1.0 return cls( inputs=inputs, window_length=window_length, decay_rate=decay_rate, **kwargs ) @classmethod def from_center_of_mass(cls, inputs, window_length, center_of_mass, **kwargs): """ Convenience constructor for passing `decay_rate` in terms of center of mass. Forwards `decay_rate` as `1 - (1 / 1 + center_of_mass)`. This provides behavior equivalent to passing `center_of_mass` to pandas.ewma. Example ------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[USEquityPricing.close], # window_length=30, # decay_rate=(1 - (1 / 15.0)), # ) my_ewma = EWMA.from_center_of_mass( inputs=[USEquityPricing.close], window_length=30, center_of_mass=15, ) Note ---- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ return cls( inputs=inputs, window_length=window_length, decay_rate=(1.0 - (1.0 / (1.0 + center_of_mass))), **kwargs ) class ExponentialWeightedMovingAverage(_ExponentialWeightedFactor): """ Exponentially Weighted Moving Average **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list/tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Notes ----- - This class can also be imported under the name ``EWMA``. See Also -------- :func:`pandas.ewma` """ def compute(self, today, assets, out, data, decay_rate): out[:] = average( data, axis=0, weights=exponential_weights(len(data), decay_rate), ) class LinearWeightedMovingAverage(CustomFactor, SingleInputMixin): """ Weighted Average Value of an arbitrary column **Default Inputs**: None **Default Window Length**: None """ # numpy's nan functions throw warnings when passed an array containing only # nans, but they still returns the desired value (nan), so we ignore the # warning. ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): ndays = data.shape[0] # Initialize weights array weights = arange(1, ndays + 1, dtype=float64_dtype).reshape(ndays, 1) # Compute normalizer normalizer = (ndays * (ndays + 1)) / 2 # Weight the data weighted_data = data * weights # Compute weighted averages out[:] = nansum(weighted_data, axis=0) / normalizer class ExponentialWeightedMovingStdDev(_ExponentialWeightedFactor): """ Exponentially Weighted Moving Standard Deviation **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list/tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Notes ----- - This class can also be imported under the name ``EWMSTD``. See Also -------- :func:`pandas.ewmstd` """ def compute(self, today, assets, out, data, decay_rate): weights = exponential_weights(len(data), decay_rate) mean = average(data, axis=0, weights=weights) variance = average((data - mean) ** 2, axis=0, weights=weights) squared_weight_sum = (np_sum(weights) ** 2) bias_correction = ( squared_weight_sum / (squared_weight_sum - np_sum(weights ** 2)) ) out[:] = sqrt(variance * bias_correction) class BollingerBands(CustomFactor): """ Bollinger Bands technical indicator. https://en.wikipedia.org/wiki/Bollinger_Bands **Default Inputs:** :data:`zipline.pipeline.data.USEquityPricing.close` Parameters ---------- inputs : length-1 iterable[BoundColumn] The expression over which to compute bollinger bands. window_length : int > 0 Length of the lookback window over which to compute the bollinger bands. k : float The number of standard deviations to add or subtract to create the upper and lower bands. """ params = ('k',) inputs = (USEquityPricing.close,) outputs = 'lower', 'middle', 'upper' def compute(self, today, assets, out, close, k): difference = k * nanstd(close, axis=0) out.middle = middle = nanmean(close, axis=0) out.upper = middle + difference out.lower = middle - difference class Aroon(CustomFactor): """ Aroon technical indicator. https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/aroon-indicator # noqa **Defaults Inputs:** USEquityPricing.low, USEquityPricing.high Parameters ---------- window_length : int > 0 Length of the lookback window over which to compute the Aroon indicator. """ inputs = (USEquityPricing.low, USEquityPricing.high) outputs = ('down', 'up') def compute(self, today, assets, out, lows, highs): wl = self.window_length high_date_index = nanargmax(highs, axis=0) low_date_index = nanargmin(lows, axis=0) evaluate( '(100 * high_date_index) / (wl - 1)', local_dict={ 'high_date_index': high_date_index, 'wl': wl, }, out=out.up, ) evaluate( '(100 * low_date_index) / (wl - 1)', local_dict={ 'low_date_index': low_date_index, 'wl': wl, }, out=out.down, ) class FastStochasticOscillator(CustomFactor): """ Fast Stochastic Oscillator Indicator [%K, Momentum Indicator] https://wiki.timetotrade.eu/Stochastic This stochastic is considered volatile, and varies a lot when used in market analysis. It is recommended to use the slow stochastic oscillator or a moving average of the %K [%D]. **Default Inputs:** :data: `zipline.pipeline.data.USEquityPricing.close` :data: `zipline.pipeline.data.USEquityPricing.low` :data: `zipline.pipeline.data.USEquityPricing.high` **Default Window Length:** 14 Returns ------- out: %K oscillator """ inputs = (USEquityPricing.close, USEquityPricing.low, USEquityPricing.high) window_safe = True window_length = 14 def compute(self, today, assets, out, closes, lows, highs): highest_highs = nanmax(highs, axis=0) lowest_lows = nanmin(lows, axis=0) today_closes = closes[-1] evaluate( '((tc - ll) / (hh - ll)) * 100', local_dict={ 'tc': today_closes, 'll': lowest_lows, 'hh': highest_highs, }, global_dict={}, out=out, ) class IchimokuKinkoHyo(CustomFactor): """Compute the various metrics for the Ichimoku Kinko Hyo (Ichimoku Cloud). http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ichimoku_cloud # noqa **Default Inputs:** :data:`zipline.pipeline.data.USEquityPricing.high` :data:`zipline.pipeline.data.USEquityPricing.low` :data:`zipline.pipeline.data.USEquityPricing.close` **Default Window Length:** 52 Parameters ---------- window_length : int > 0 The length the the window for the senkou span b. tenkan_sen_length : int >= 0, <= window_length The length of the window for the tenkan-sen. kijun_sen_length : int >= 0, <= window_length The length of the window for the kijou-sen. chikou_span_length : int >= 0, <= window_length The lag for the chikou span. """ params = { 'tenkan_sen_length': 9, 'kijun_sen_length': 26, 'chikou_span_length': 26, } inputs = (USEquityPricing.high, USEquityPricing.low, USEquityPricing.close) outputs = ( 'tenkan_sen', 'kijun_sen', 'senkou_span_a', 'senkou_span_b', 'chikou_span', ) window_length = 52 def _validate(self): super(IchimokuKinkoHyo, self)._validate() for k, v in self.params.items(): if v > self.window_length: raise ValueError( '%s must be <= the window_length: %s > %s' % ( k, v, self.window_length, ), ) def compute(self, today, assets, out, high, low, close, tenkan_sen_length, kijun_sen_length, chikou_span_length): out.tenkan_sen = tenkan_sen = ( high[-tenkan_sen_length:].max(axis=0) + low[-tenkan_sen_length:].min(axis=0) ) / 2 out.kijun_sen = kijun_sen = ( high[-kijun_sen_length:].max(axis=0) + low[-kijun_sen_length:].min(axis=0) ) / 2 out.senkou_span_a = (tenkan_sen + kijun_sen) / 2 out.senkou_span_b = (high.max(axis=0) + low.min(axis=0)) / 2 out.chikou_span = close[chikou_span_length] class RateOfChangePercentage(CustomFactor): """ Rate of change Percentage ROC measures the percentage change in price from one period to the next. The ROC calculation compares the current price with the price `n` periods ago. Formula for calculation: ((price - prevPrice) / prevPrice) * 100 price - the current price prevPrice - the price n days ago, equals window length """ def compute(self, today, assets, out, close): today_close = close[-1] prev_close = close[0] evaluate('((tc - pc) / pc) * 100', local_dict={ 'tc': today_close, 'pc': prev_close }, global_dict={}, out=out, ) class TrueRange(CustomFactor): """ True Range A technical indicator originally developed by J. Welles Wilder, Jr. Indicates the true degree of daily price change in an underlying. **Default Inputs:** :data:`zipline.pipeline.data.USEquityPricing.high` :data:`zipline.pipeline.data.USEquityPricing.low` :data:`zipline.pipeline.data.USEquityPricing.close` **Default Window Length:** 2 """ inputs = ( USEquityPricing.high, USEquityPricing.low, USEquityPricing.close, ) window_length = 2 def compute(self, today, assets, out, highs, lows, closes): high_to_low = highs[1:] - lows[1:] high_to_prev_close = abs(highs[1:] - closes[:-1]) low_to_prev_close = abs(lows[1:] - closes[:-1]) out[:] = nanmax( dstack(( high_to_low, high_to_prev_close, low_to_prev_close, )), 2 ) class MovingAverageConvergenceDivergenceSignal(CustomFactor): """ Moving Average Convergence/Divergence (MACD) Signal line https://en.wikipedia.org/wiki/MACD A technical indicator originally developed by Gerald Appel in the late 1970's. MACD shows the relationship between two moving averages and reveals changes in the strength, direction, momentum, and duration of a trend in a stock's price. **Default Inputs:** :data:`zipline.pipeline.data.USEquityPricing.close` Parameters ---------- fast_period : int > 0, optional The window length for the "fast" EWMA. Default is 12. slow_period : int > 0, > fast_period, optional The window length for the "slow" EWMA. Default is 26. signal_period : int > 0, < fast_period, optional The window length for the signal line. Default is 9. Notes ----- Unlike most pipeline expressions, this factor does not accept a ``window_length`` parameter. ``window_length`` is inferred from ``slow_period`` and ``signal_period``. """ inputs = (USEquityPricing.close,) # We don't use the default form of `params` here because we want to # dynamically calculate `window_length` from the period lengths in our # __new__. params = ('fast_period', 'slow_period', 'signal_period') @expect_bounded( __funcname='MACDSignal', fast_period=(1, None), # These must all be >= 1. slow_period=(1, None), signal_period=(1, None), ) def __new__(cls, fast_period=12, slow_period=26, signal_period=9, *args, **kwargs): if slow_period <= fast_period: raise ValueError( "'slow_period' must be greater than 'fast_period', but got\n" "slow_period={slow}, fast_period={fast}".format( slow=slow_period, fast=fast_period, ) ) return super(MovingAverageConvergenceDivergenceSignal, cls).__new__( cls, fast_period=fast_period, slow_period=slow_period, signal_period=signal_period, window_length=slow_period + signal_period - 1, *args, **kwargs ) def _ewma(self, data, length): decay_rate = 1.0 - (2.0 / (1.0 + length)) return average( data, axis=1, weights=exponential_weights(length, decay_rate) ) def compute(self, today, assets, out, close, fast_period, slow_period, signal_period): slow_EWMA = self._ewma( rolling_window(close, slow_period), slow_period ) fast_EWMA = self._ewma( rolling_window(close, fast_period)[-signal_period:], fast_period ) macd = fast_EWMA - slow_EWMA out[:] = self._ewma(macd.T, signal_period) class AnnualizedVolatility(CustomFactor): """ Volatility. The degree of variation of a series over time as measured by the standard deviation of daily returns. https://en.wikipedia.org/wiki/Volatility_(finance) **Default Inputs:** :data:`zipline.pipeline.factors.Returns(window_length=2)` # noqa Parameters ---------- annualization_factor : float, optional The number of time units per year. Defaults is 252, the number of NYSE trading days in a normal year. """ inputs = [Returns(window_length=2)] params = {'annualization_factor': 252.0} window_length = 252 def compute(self, today, assets, out, returns, annualization_factor): out[:] = nanstd(returns, axis=0) * (annualization_factor ** .5) # Convenience aliases. EWMA = ExponentialWeightedMovingAverage EWMSTD = ExponentialWeightedMovingStdDev MACDSignal = MovingAverageConvergenceDivergenceSignal
apache-2.0
rishita/mxnet
example/dec/dec.py
15
7064
# pylint: skip-file from __future__ import print_function import sys import os # code to automatically download dataset curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) sys.path = [os.path.join(curr_path, "../autoencoder")] + sys.path import mxnet as mx import numpy as np import data from scipy.spatial.distance import cdist from sklearn.cluster import KMeans import model from autoencoder import AutoEncoderModel from solver import Solver, Monitor import logging def cluster_acc(Y_pred, Y): from sklearn.utils.linear_assignment_ import linear_assignment assert Y_pred.size == Y.size D = max(Y_pred.max(), Y.max())+1 w = np.zeros((D,D), dtype=np.int64) for i in range(Y_pred.size): w[Y_pred[i], int(Y[i])] += 1 ind = linear_assignment(w.max() - w) return sum([w[i,j] for i,j in ind])*1.0/Y_pred.size, w class DECModel(model.MXModel): class DECLoss(mx.operator.NumpyOp): def __init__(self, num_centers, alpha): super(DECModel.DECLoss, self).__init__(need_top_grad=False) self.num_centers = num_centers self.alpha = alpha def forward(self, in_data, out_data): z = in_data[0] mu = in_data[1] q = out_data[0] self.mask = 1.0/(1.0+cdist(z, mu)**2/self.alpha) q[:] = self.mask**((self.alpha+1.0)/2.0) q[:] = (q.T/q.sum(axis=1)).T def backward(self, out_grad, in_data, out_data, in_grad): q = out_data[0] z = in_data[0] mu = in_data[1] p = in_data[2] dz = in_grad[0] dmu = in_grad[1] self.mask *= (self.alpha+1.0)/self.alpha*(p-q) dz[:] = (z.T*self.mask.sum(axis=1)).T - self.mask.dot(mu) dmu[:] = (mu.T*self.mask.sum(axis=0)).T - self.mask.T.dot(z) def infer_shape(self, in_shape): assert len(in_shape) == 3 assert len(in_shape[0]) == 2 input_shape = in_shape[0] label_shape = (input_shape[0], self.num_centers) mu_shape = (self.num_centers, input_shape[1]) out_shape = (input_shape[0], self.num_centers) return [input_shape, mu_shape, label_shape], [out_shape] def list_arguments(self): return ['data', 'mu', 'label'] def setup(self, X, num_centers, alpha, save_to='dec_model'): sep = X.shape[0]*9/10 X_train = X[:sep] X_val = X[sep:] ae_model = AutoEncoderModel(self.xpu, [X.shape[1],500,500,2000,10], pt_dropout=0.2) if not os.path.exists(save_to+'_pt.arg'): ae_model.layerwise_pretrain(X_train, 256, 50000, 'sgd', l_rate=0.1, decay=0.0, lr_scheduler=mx.misc.FactorScheduler(20000,0.1)) ae_model.finetune(X_train, 256, 100000, 'sgd', l_rate=0.1, decay=0.0, lr_scheduler=mx.misc.FactorScheduler(20000,0.1)) ae_model.save(save_to+'_pt.arg') logging.log(logging.INFO, "Autoencoder Training error: %f"%ae_model.eval(X_train)) logging.log(logging.INFO, "Autoencoder Validation error: %f"%ae_model.eval(X_val)) else: ae_model.load(save_to+'_pt.arg') self.ae_model = ae_model self.dec_op = DECModel.DECLoss(num_centers, alpha) label = mx.sym.Variable('label') self.feature = self.ae_model.encoder self.loss = self.dec_op(data=self.ae_model.encoder, label=label, name='dec') self.args.update({k:v for k,v in self.ae_model.args.items() if k in self.ae_model.encoder.list_arguments()}) self.args['dec_mu'] = mx.nd.empty((num_centers, self.ae_model.dims[-1]), ctx=self.xpu) self.args_grad.update({k: mx.nd.empty(v.shape, ctx=self.xpu) for k,v in self.args.items()}) self.args_mult.update({k: k.endswith('bias') and 2.0 or 1.0 for k in self.args}) self.num_centers = num_centers def cluster(self, X, y=None, update_interval=None): N = X.shape[0] if not update_interval: update_interval = N batch_size = 256 test_iter = mx.io.NDArrayIter({'data': X}, batch_size=batch_size, shuffle=False, last_batch_handle='pad') args = {k: mx.nd.array(v.asnumpy(), ctx=self.xpu) for k, v in self.args.items()} z = list(model.extract_feature(self.feature, args, None, test_iter, N, self.xpu).values())[0] kmeans = KMeans(self.num_centers, n_init=20) kmeans.fit(z) args['dec_mu'][:] = kmeans.cluster_centers_ solver = Solver('sgd', momentum=0.9, wd=0.0, learning_rate=0.01) def ce(label, pred): return np.sum(label*np.log(label/(pred+0.000001)))/label.shape[0] solver.set_metric(mx.metric.CustomMetric(ce)) label_buff = np.zeros((X.shape[0], self.num_centers)) train_iter = mx.io.NDArrayIter({'data': X}, {'label': label_buff}, batch_size=batch_size, shuffle=False, last_batch_handle='roll_over') self.y_pred = np.zeros((X.shape[0])) def refresh(i): if i%update_interval == 0: z = list(model.extract_feature(self.feature, args, None, test_iter, N, self.xpu).values())[0] p = np.zeros((z.shape[0], self.num_centers)) self.dec_op.forward([z, args['dec_mu'].asnumpy()], [p]) y_pred = p.argmax(axis=1) print(np.std(np.bincount(y_pred)), np.bincount(y_pred)) print(np.std(np.bincount(y.astype(np.int))), np.bincount(y.astype(np.int))) if y is not None: print(cluster_acc(y_pred, y)[0]) weight = 1.0/p.sum(axis=0) weight *= self.num_centers/weight.sum() p = (p**2)*weight train_iter.data_list[1][:] = (p.T/p.sum(axis=1)).T print(np.sum(y_pred != self.y_pred), 0.001*y_pred.shape[0]) if np.sum(y_pred != self.y_pred) < 0.001*y_pred.shape[0]: self.y_pred = y_pred return True self.y_pred = y_pred solver.set_iter_start_callback(refresh) solver.set_monitor(Monitor(50)) solver.solve(self.xpu, self.loss, args, self.args_grad, None, train_iter, 0, 1000000000, {}, False) self.end_args = args if y is not None: return cluster_acc(self.y_pred, y)[0] else: return -1 def mnist_exp(xpu): X, Y = data.get_mnist() dec_model = DECModel(xpu, X, 10, 1.0, 'data/mnist') acc = [] for i in [10*(2**j) for j in range(9)]: acc.append(dec_model.cluster(X, Y, i)) logging.log(logging.INFO, 'Clustering Acc: %f at update interval: %d'%(acc[-1], i)) logging.info(str(acc)) logging.info('Best Clustering ACC: %f at update_interval: %d'%(np.max(acc), 10*(2**np.argmax(acc)))) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) mnist_exp(mx.gpu(0))
apache-2.0
Akshay-lodha/MTP
src/models/visualize_model.py
2
3005
""" A script to visualize layers and filters in the conv net model """ import tflearn from cnn_model import CNNModel import pandas as pd import numpy as np import matplotlib.pyplot as plt from PIL import Image from scipy.ndimage import imread, zoom def create_mosaic(image, nrows, ncols): """ Tiles all the layers in nrows x ncols Args: ------ image = 3d numpy array of M * N * number of filters dimensions nrows = integer representing number of images in a row ncol = integer representing number of images in a column returns formatted image """ M = image.shape[0] N = image.shape[1] npad = ((1,1), (1,1), (0,0)) image = np.pad(image, pad_width = npad, mode = 'constant',\ constant_values = 0) M += 2 N += 2 image = image.reshape(M, N, nrows, ncols) image = np.transpose(image, (2,0,3,1)) image = image.reshape(M*nrows, N*ncols) return image def get_layer_output(layer, model, inp): """ Returns model layer output Args ---- layer: cnn layer model: cnn model inp: input image """ m2 = tflearn.DNN(layer, session = model.session) yhat = m2.predict(inp.reshape(-1, inp.shape[0], inp.shape[1], 1)) yhat_1 = np.array(yhat[0]) return m2, yhat_1 def plot_layers(image, idx, pltfilename, size = 12, cmapx = 'magma'): """ plot filter output in layers Args ---- image: layer output of form M x N x nfilt idx: layer number pltfilename = a string representing filename """ nfilt = image.shape[-1] mosaic = create_mosaic(image, nfilt/4, 4) plt.figure(figsize = (size, size)) plt.imshow(mosaic, cmap = cmapx) plt.axis('off') plt.savefig(pltfilename + str(idx)+'.png', bbox_inches='tight') #plt.show() def get_weights(m2, layer): """ get a layer's weights Args: ------ m2: model input layer = layer in question Returns: weights """ weights = m2.get_weights(layer.W) print weights.shape weights =\ weights.reshape(weights.shape[0], weights.shape[1], weights.shape[-1]) return weights def plot_single_output(image, size = 6): plt.figure(figsize = (size, size)) plt.imshow(mosaic, cmap = 'magma') plt.axis('off') plt.savefig('filterout' + '.png', bbox_inches='tight') def main(): ### Plot layer filename = '../data/test/image_21351.jpg' inp = imread(filename).astype('float32') convnet = CNNModel() conv_layer_1, conv_layer_2, conv_layer_3, network =\ convnet.define_network(inp.reshape(-1, inp.shape[0], inp.shape[1], 1), 'visual') model = tflearn.DNN(network, tensorboard_verbose=0,\ checkpoint_path='nodule3-classifier.tfl.ckpt') model.load("nodule3-classifier.tfl") print model.predict(inp.reshape(-1, 50, 50, 1)) layers_to_be_plotted = [conv_layer_1, conv_layer_2, conv_layer_3] #plot_layers(conv_layer_1, model, inp) for idx, layer in enumerate(layers_to_be_plotted): m2, yhat = get_layer_output(layer, model, inp) plot_layers(yhat, idx, 'conv_layer_') weights = get_weights(m2, conv_layer_1) plot_layers(weights, 0, 'weight_conv_layer_', 6, 'gray') if __name__ == "__main__": main()
mit
jstoxrocky/statsmodels
statsmodels/tsa/statespace/tools.py
19
12762
""" Statespace Tools Author: Chad Fulton License: Simplified-BSD """ from __future__ import division, absolute_import, print_function import numpy as np from statsmodels.tools.data import _is_using_pandas from . import _statespace try: from scipy.linalg.blas import find_best_blas_type except ImportError: # pragma: no cover # Shim for SciPy 0.11, derived from tag=0.11 scipy.linalg.blas _type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z', 'G': 'z'} def find_best_blas_type(arrays): dtype, index = max( [(ar.dtype, i) for i, ar in enumerate(arrays)]) prefix = _type_conv.get(dtype.char, 'd') return prefix, dtype, None prefix_dtype_map = { 's': np.float32, 'd': np.float64, 'c': np.complex64, 'z': np.complex128 } prefix_statespace_map = { 's': _statespace.sStatespace, 'd': _statespace.dStatespace, 'c': _statespace.cStatespace, 'z': _statespace.zStatespace } prefix_kalman_filter_map = { 's': _statespace.sKalmanFilter, 'd': _statespace.dKalmanFilter, 'c': _statespace.cKalmanFilter, 'z': _statespace.zKalmanFilter } def companion_matrix(polynomial): r""" Create a companion matrix Parameters ---------- polynomial : array_like, optional. If an iterable, interpreted as the coefficients of the polynomial from which to form the companion matrix. Polynomial coefficients are in order of increasing degree. If an integer, the size of the companion matrix (the polynomial coefficients are then set to zeros). Returns ------- companion_matrix : array Notes ----- Returns a matrix of the form .. math:: \begin{bmatrix} \phi_1 & 1 & 0 & \cdots & 0 \\ \phi_2 & 0 & 1 & & 0 \\ \vdots & & & \ddots & 0 \\ & & & & 1 \\ \phi_n & 0 & 0 & \cdots & 0 \\ \end{bmatrix} where some or all of the :math:`\phi_i` may be non-zero (if `polynomial` is None, then all are equal to zero). If the coefficients provided are :math:`(c_0, c_1, \dots, c_{n})`, then the companion matrix is an :math:`n \times n` matrix formed with the elements in the first column defined as :math:`\phi_i = -\frac{c_i}{c_0}, i \in 1, \dots, n`. """ if isinstance(polynomial, int): n = polynomial polynomial = None else: n = len(polynomial) - 1 polynomial = np.asanyarray(polynomial) matrix = np.zeros((n, n)) idx = np.diag_indices(n - 1) idx = (idx[0], idx[1] + 1) matrix[idx] = 1 if polynomial is not None and n > 0: matrix[:, 0] = -polynomial[1:] / polynomial[0] return matrix def diff(series, k_diff=1, k_seasonal_diff=None, k_seasons=1): r""" Difference a series simply and/or seasonally along the zero-th axis. Given a series (denoted :math:`y_t`), performs the differencing operation .. math:: \Delta^d \Delta_s^D y_t where :math:`d =` `diff`, :math:`s =` `k_seasons`, :math:`D =` `seasonal\_diff`, and :math:`\Delta` is the difference operator. Parameters ---------- series : array_like The series to be differenced. diff : int, optional The number of simple differences to perform. Default is 1. seasonal_diff : int or None, optional The number of seasonal differences to perform. Default is no seasonal differencing. k_seasons : int, optional The seasonal lag. Default is 1. Unused if there is no seasonal differencing. Returns ------- differenced : array The differenced array. """ pandas = _is_using_pandas(series, None) differenced = np.asanyarray(series) if not pandas else series # Seasonal differencing if k_seasonal_diff is not None: while k_seasonal_diff > 0: if not pandas: differenced = ( differenced[k_seasons:] - differenced[:-k_seasons] ) else: differenced = differenced.diff(k_seasons)[k_seasons:] k_seasonal_diff -= 1 # Simple differencing if not pandas: differenced = np.diff(differenced, k_diff, axis=0) else: while k_diff > 0: differenced = differenced.diff()[1:] k_diff -= 1 return differenced def is_invertible(polynomial, threshold=1.): r""" Determine if a polynomial is invertible. Requires all roots of the polynomial lie inside the unit circle. Parameters ---------- polynomial : array_like Coefficients of a polynomial, in order of increasing degree. For example, `polynomial=[1, -0.5]` corresponds to the polynomial :math:`1 - 0.5x` which has root :math:`2`. threshold : number Allowed threshold for `is_invertible` to return True. Default is 1. Notes ----- If the coefficients provided are :math:`(c_0, c_1, \dots, c_n)`, then the corresponding polynomial is :math:`c_0 + c_1 L + \dots + c_n L^n`. There are three equivalent methods of determining if the polynomial represented by the coefficients is invertible: The first method factorizes the polynomial into: .. math:: C(L) & = c_0 + c_1 L + \dots + c_n L^n \\ & = constant (1 - \lambda_1 L) (1 - \lambda_2 L) \dots (1 - \lambda_n L) In order for :math:`C(L)` to be invertible, it must be that each factor :math:`(1 - \lambda_i L)` is invertible; the condition is then that :math:`|\lambda_i| < 1`, where :math:`\lambda_i` is a root of the polynomial. The second method factorizes the polynomial into: .. math:: C(L) & = c_0 + c_1 L + \dots + c_n L^n \\ & = constant (L - \zeta_1 L) (L - \zeta_2) \dots (L - \zeta_3) The condition is now :math:`|\zeta_i| > 1`, where :math:`\zeta_i` is a root of the polynomial with reversed coefficients and :math:`\lambda_i = \frac{1}{\zeta_i}`. Finally, a companion matrix can be formed using the coefficients of the polynomial. Then the eigenvalues of that matrix give the roots of the polynomial. This last method is the one actually used. See Also -------- companion_matrix """ # First method: # np.all(np.abs(np.roots(np.r_[1, params])) < 1) # Second method: # np.all(np.abs(np.roots(np.r_[1, params][::-1])) > 1) # Final method: eigvals = np.linalg.eigvals(companion_matrix(polynomial)) return np.all(np.abs(eigvals) < threshold) def constrain_stationary_univariate(unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array Unconstrained parameters used by the optimizer, to be transformed to stationary coefficients of, e.g., an autoregressive or moving average component. Returns ------- constrained : array Constrained parameters of, e.g., an autoregressive or moving average component, to be transformed to arbitrary parameters used by the optimizer. References ---------- Monahan, John F. 1984. "A Note on Enforcing Stationarity in Autoregressive-moving Average Models." Biometrika 71 (2) (August 1): 403-404. """ n = unconstrained.shape[0] y = np.zeros((n, n), dtype=unconstrained.dtype) r = unconstrained/((1 + unconstrained**2)**0.5) for k in range(n): for i in range(k): y[k, i] = y[k - 1, i] + r[k] * y[k - 1, k - i - 1] y[k, k] = r[k] return -y[n - 1, :] def unconstrain_stationary_univariate(constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer Parameters ---------- constrained : array Constrained parameters of, e.g., an autoregressive or moving average component, to be transformed to arbitrary parameters used by the optimizer. Returns ------- unconstrained : array Unconstrained parameters used by the optimizer, to be transformed to stationary coefficients of, e.g., an autoregressive or moving average component. References ---------- Monahan, John F. 1984. "A Note on Enforcing Stationarity in Autoregressive-moving Average Models." Biometrika 71 (2) (August 1): 403-404. """ n = constrained.shape[0] y = np.zeros((n, n), dtype=constrained.dtype) y[n-1:] = -constrained for k in range(n-1, 0, -1): for i in range(k): y[k-1, i] = (y[k, i] - y[k, k]*y[k, k-i-1]) / (1 - y[k, k]**2) r = y.diagonal() x = r / ((1 - r**2)**0.5) return x def validate_matrix_shape(name, shape, nrows, ncols, nobs): """ Validate the shape of a possibly time-varying matrix, or raise an exception Parameters ---------- name : str The name of the matrix being validated (used in exception messages) shape : array_like The shape of the matrix to be validated. May be of size 2 or (if the matrix is time-varying) 3. nrows : int The expected number of rows. ncols : int The expected number of columns. nobs : int The number of observations (used to validate the last dimension of a time-varying matrix) Raises ------ ValueError If the matrix is not of the desired shape. """ ndim = len(shape) # Enforce dimension if ndim not in [2, 3]: raise ValueError('Invalid value for %s matrix. Requires a' ' 2- or 3-dimensional array, got %d dimensions' % (name, ndim)) # Enforce the shape of the matrix if not shape[0] == nrows: raise ValueError('Invalid dimensions for %s matrix: requires %d' ' rows, got %d' % (name, nrows, shape[0])) if not shape[1] == ncols: raise ValueError('Invalid dimensions for %s matrix: requires %d' ' columns, got %d' % (name, ncols, shape[1])) # If we don't yet know `nobs`, don't allow time-varying arrays if nobs is None and not (ndim == 2 or shape[-1] == 1): raise ValueError('Invalid dimensions for %s matrix: time-varying' ' matrices cannot be given unless `nobs` is specified' ' (implicitly when a dataset is bound or else set' ' explicity)' % name) # Enforce time-varying array size if ndim == 3 and nobs is not None and not shape[-1] in [1, nobs]: raise ValueError('Invalid dimensions for time-varying %s' ' matrix. Requires shape (*,*,%d), got %s' % (name, nobs, str(shape))) def validate_vector_shape(name, shape, nrows, nobs): """ Validate the shape of a possibly time-varying vector, or raise an exception Parameters ---------- name : str The name of the vector being validated (used in exception messages) shape : array_like The shape of the vector to be validated. May be of size 1 or (if the vector is time-varying) 2. nrows : int The expected number of rows (elements of the vector). nobs : int The number of observations (used to validate the last dimension of a time-varying vector) Raises ------ ValueError If the vector is not of the desired shape. """ ndim = len(shape) # Enforce dimension if ndim not in [1, 2]: raise ValueError('Invalid value for %s vector. Requires a' ' 1- or 2-dimensional array, got %d dimensions' % (name, ndim)) # Enforce the shape of the vector if not shape[0] == nrows: raise ValueError('Invalid dimensions for %s vector: requires %d' ' rows, got %d' % (name, nrows, shape[0])) # If we don't yet know `nobs`, don't allow time-varying arrays if nobs is None and not (ndim == 1 or shape[-1] == 1): raise ValueError('Invalid dimensions for %s vector: time-varying' ' vectors cannot be given unless `nobs` is specified' ' (implicitly when a dataset is bound or else set' ' explicity)' % name) # Enforce time-varying array size if ndim == 2 and not shape[1] in [1, nobs]: raise ValueError('Invalid dimensions for time-varying %s' ' vector. Requires shape (*,%d), got %s' % (name, nobs, str(shape)))
bsd-3-clause
kashif/scikit-learn
examples/cluster/plot_dbscan.py
346
2479
# -*- coding: utf-8 -*- """ =================================== Demo of DBSCAN clustering algorithm =================================== Finds core samples of high density and expands clusters from them. """ print(__doc__) import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) ############################################################################## # Compute DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels)) ############################################################################## # Plot result import matplotlib.pyplot as plt # Black removed and is used for noise instead. unique_labels = set(labels) colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = 'k' class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
christabor/MoAL
MOAL/algorithms/time_series/dynamic_timewarping.py
1
1635
# -*- coding: utf-8 -*- __author__ = """Chris Tabor ([email protected])""" if __name__ == '__main__': from os import getcwd from os import sys sys.path.append(getcwd()) from MOAL.helpers.display import Section import mlpy import matplotlib.pyplot as plot import matplotlib.cm as cm from random import randrange as rr DEBUG = True if __name__ == '__main__' else False def random_timesequence(start, end, steps=3): seq = [] for n in range(start, end): # Randomize the number of sub-steps, # but maintain the bounds and monotonicity # (e.g. 0, 0, 1, 1, 1, 2, 3, 3, 3) for i in range(rr(0, steps)): seq.append(n) return seq if DEBUG: with Section('Dynamic Time Warping algorithm - MLPY'): # Using MLPY: # First, make sure deps are setup. # `brew install gsl` # Download from SF: http://mlpy.sourceforge.net/ # Then install using setup.py: # `cd MLPY_PATH/setup.py install` # Now this makes it fun. x, y = random_timesequence(0, 10), random_timesequence(0, 10) # Taken from examples: http://mlpy.sourceforge.net/docs/3.5/dtw.html#id3 distance, cost, path = mlpy.dtw_std(x, y, dist_only=False) fig = plot.figure(1) axes = fig.add_subplot(111) plot1 = plot.imshow( cost.T, origin='lower', cmap=cm.gray, interpolation='nearest') plot2 = plot.plot(path[0], path[1], 'w') bound = 0.5 xlim = axes.set_xlim((-bound, cost.shape[0] - bound)) ylim = axes.set_ylim((-bound, cost.shape[1] - bound)) plot.show()
apache-2.0
hugobowne/scikit-learn
sklearn/neighbors/tests/test_neighbors.py
25
45729
from itertools import product import numpy as np from scipy.sparse import (bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix) from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_greater from sklearn.utils.validation import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn import neighbors, datasets rng = np.random.RandomState(0) # load and shuffle iris dataset iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # load and shuffle digits digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] SPARSE_TYPES = (bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix) SPARSE_OR_DENSE = SPARSE_TYPES + (np.asarray,) ALGORITHMS = ('ball_tree', 'brute', 'kd_tree', 'auto') P = (1, 2, 3, 4, np.inf) # Filter deprecation warnings. neighbors.kneighbors_graph = ignore_warnings(neighbors.kneighbors_graph) neighbors.radius_neighbors_graph = ignore_warnings( neighbors.radius_neighbors_graph) def _weight_func(dist): """ Weight function to replace lambda d: d ** -2. The lambda function is not valid because: if d==0 then 0^-2 is not valid. """ # Dist could be multidimensional, flatten it so all values # can be looped with np.errstate(divide='ignore'): retval = 1. / dist return retval ** 2 def test_unsupervised_kneighbors(n_samples=20, n_features=5, n_query_pts=2, n_neighbors=5): # Test unsupervised neighbors methods X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for p in P: results_nodist = [] results = [] for algorithm in ALGORITHMS: neigh = neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm=algorithm, p=p) neigh.fit(X) results_nodist.append(neigh.kneighbors(test, return_distance=False)) results.append(neigh.kneighbors(test, return_distance=True)) for i in range(len(results) - 1): assert_array_almost_equal(results_nodist[i], results[i][1]) assert_array_almost_equal(results[i][0], results[i + 1][0]) assert_array_almost_equal(results[i][1], results[i + 1][1]) def test_unsupervised_inputs(): # test the types of valid input into NearestNeighbors X = rng.random_sample((10, 3)) nbrs_fid = neighbors.NearestNeighbors(n_neighbors=1) nbrs_fid.fit(X) dist1, ind1 = nbrs_fid.kneighbors(X) nbrs = neighbors.NearestNeighbors(n_neighbors=1) for input in (nbrs_fid, neighbors.BallTree(X), neighbors.KDTree(X)): nbrs.fit(input) dist2, ind2 = nbrs.kneighbors(X) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2) def test_precomputed(random_state=42): """Tests unsupervised NearestNeighbors with a distance matrix.""" # Note: smaller samples may result in spurious test success rng = np.random.RandomState(random_state) X = rng.random_sample((10, 4)) Y = rng.random_sample((3, 4)) DXX = metrics.pairwise_distances(X, metric='euclidean') DYX = metrics.pairwise_distances(Y, X, metric='euclidean') for method in ['kneighbors']: # TODO: also test radius_neighbors, but requires different assertion # As a feature matrix (n_samples by n_features) nbrs_X = neighbors.NearestNeighbors(n_neighbors=3) nbrs_X.fit(X) dist_X, ind_X = getattr(nbrs_X, method)(Y) # As a dense distance matrix (n_samples by n_samples) nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='brute', metric='precomputed') nbrs_D.fit(DXX) dist_D, ind_D = getattr(nbrs_D, method)(DYX) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Check auto works too nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='auto', metric='precomputed') nbrs_D.fit(DXX) dist_D, ind_D = getattr(nbrs_D, method)(DYX) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Check X=None in prediction dist_X, ind_X = getattr(nbrs_X, method)(None) dist_D, ind_D = getattr(nbrs_D, method)(None) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Must raise a ValueError if the matrix is not of correct shape assert_raises(ValueError, getattr(nbrs_D, method), X) target = np.arange(X.shape[0]) for Est in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): print(Est) est = Est(metric='euclidean') est.radius = est.n_neighbors = 1 pred_X = est.fit(X, target).predict(Y) est.metric = 'precomputed' pred_D = est.fit(DXX, target).predict(DYX) assert_array_almost_equal(pred_X, pred_D) def test_precomputed_cross_validation(): # Ensure array is split correctly rng = np.random.RandomState(0) X = rng.rand(20, 2) D = pairwise_distances(X, metric='euclidean') y = rng.randint(3, size=20) for Est in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): metric_score = cross_val_score(Est(), X, y) precomp_score = cross_val_score(Est(metric='precomputed'), D, y) assert_array_equal(metric_score, precomp_score) def test_unsupervised_radius_neighbors(n_samples=20, n_features=5, n_query_pts=2, radius=0.5, random_state=0): # Test unsupervised radius-based query rng = np.random.RandomState(random_state) X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for p in P: results = [] for algorithm in ALGORITHMS: neigh = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm, p=p) neigh.fit(X) ind1 = neigh.radius_neighbors(test, return_distance=False) # sort the results: this is not done automatically for # radius searches dist, ind = neigh.radius_neighbors(test, return_distance=True) for (d, i, i1) in zip(dist, ind, ind1): j = d.argsort() d[:] = d[j] i[:] = i[j] i1[:] = i1[j] results.append((dist, ind)) assert_array_almost_equal(np.concatenate(list(ind)), np.concatenate(list(ind1))) for i in range(len(results) - 1): assert_array_almost_equal(np.concatenate(list(results[i][0])), np.concatenate(list(results[i + 1][0]))), assert_array_almost_equal(np.concatenate(list(results[i][1])), np.concatenate(list(results[i + 1][1]))) def test_kneighbors_classifier(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-neighbors classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) y_str = y.astype(str) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) # Test prediction with y_str knn.fit(X, y_str) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y_str[:n_test_pts]) def test_kneighbors_classifier_float_labels(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-neighbors classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors) knn.fit(X, y.astype(np.float)) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) def test_kneighbors_classifier_predict_proba(): # Test KNeighborsClassifier.predict_proba() method X = np.array([[0, 2, 0], [0, 2, 1], [2, 0, 0], [2, 2, 0], [0, 0, 2], [0, 0, 1]]) y = np.array([4, 4, 5, 5, 1, 1]) cls = neighbors.KNeighborsClassifier(n_neighbors=3, p=1) # cityblock dist cls.fit(X, y) y_prob = cls.predict_proba(X) real_prob = np.array([[0, 2. / 3, 1. / 3], [1. / 3, 2. / 3, 0], [1. / 3, 0, 2. / 3], [0, 1. / 3, 2. / 3], [2. / 3, 1. / 3, 0], [2. / 3, 1. / 3, 0]]) assert_array_equal(real_prob, y_prob) # Check that it also works with non integer labels cls.fit(X, y.astype(str)) y_prob = cls.predict_proba(X) assert_array_equal(real_prob, y_prob) # Check that it works with weights='distance' cls = neighbors.KNeighborsClassifier( n_neighbors=2, p=1, weights='distance') cls.fit(X, y) y_prob = cls.predict_proba(np.array([[0, 2, 0], [2, 2, 2]])) real_prob = np.array([[0, 1, 0], [0, 0.4, 0.6]]) assert_array_almost_equal(real_prob, y_prob) def test_radius_neighbors_classifier(n_samples=40, n_features=5, n_test_pts=10, radius=0.5, random_state=0): # Test radius-based classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) y_str = y.astype(str) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: neigh = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm) neigh.fit(X, y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) neigh.fit(X, y_str) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y_str[:n_test_pts]) def test_radius_neighbors_classifier_when_no_neighbors(): # Test radius-based classifier when no neighbors found. # In this case it should rise an informative exception X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier weight_func = _weight_func for outlier_label in [0, -1, None]: for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: rnc = neighbors.RadiusNeighborsClassifier clf = rnc(radius=radius, weights=weights, algorithm=algorithm, outlier_label=outlier_label) clf.fit(X, y) assert_array_equal(np.array([1, 2]), clf.predict(z1)) if outlier_label is None: assert_raises(ValueError, clf.predict, z2) elif False: assert_array_equal(np.array([1, outlier_label]), clf.predict(z2)) def test_radius_neighbors_classifier_outlier_labeling(): # Test radius-based classifier when no neighbors found and outliers # are labeled. X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier correct_labels1 = np.array([1, 2]) correct_labels2 = np.array([1, -1]) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: clf = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm, outlier_label=-1) clf.fit(X, y) assert_array_equal(correct_labels1, clf.predict(z1)) assert_array_equal(correct_labels2, clf.predict(z2)) def test_radius_neighbors_classifier_zero_distance(): # Test radius-based classifier, when distance to a sample is zero. X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.0, 2.0]]) correct_labels1 = np.array([1, 2]) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: clf = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm) clf.fit(X, y) assert_array_equal(correct_labels1, clf.predict(z1)) def test_neighbors_regressors_zero_distance(): # Test radius-based regressor, when distance to a sample is zero. X = np.array([[1.0, 1.0], [1.0, 1.0], [2.0, 2.0], [2.5, 2.5]]) y = np.array([1.0, 1.5, 2.0, 0.0]) radius = 0.2 z = np.array([[1.1, 1.1], [2.0, 2.0]]) rnn_correct_labels = np.array([1.25, 2.0]) knn_correct_unif = np.array([1.25, 1.0]) knn_correct_dist = np.array([1.25, 2.0]) for algorithm in ALGORITHMS: # we don't test for weights=_weight_func since user will be expected # to handle zero distances themselves in the function. for weights in ['uniform', 'distance']: rnn = neighbors.RadiusNeighborsRegressor(radius=radius, weights=weights, algorithm=algorithm) rnn.fit(X, y) assert_array_almost_equal(rnn_correct_labels, rnn.predict(z)) for weights, corr_labels in zip(['uniform', 'distance'], [knn_correct_unif, knn_correct_dist]): knn = neighbors.KNeighborsRegressor(n_neighbors=2, weights=weights, algorithm=algorithm) knn.fit(X, y) assert_array_almost_equal(corr_labels, knn.predict(z)) def test_radius_neighbors_boundary_handling(): """Test whether points lying on boundary are handled consistently Also ensures that even with only one query point, an object array is returned rather than a 2d array. """ X = np.array([[1.5], [3.0], [3.01]]) radius = 3.0 for algorithm in ALGORITHMS: nbrs = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm).fit(X) results = nbrs.radius_neighbors([[0.0]], return_distance=False) assert_equal(results.shape, (1,)) assert_equal(results.dtype, object) assert_array_equal(results[0], [0, 1]) def test_RadiusNeighborsClassifier_multioutput(): # Test k-NN classifier on multioutput data rng = check_random_state(0) n_features = 2 n_samples = 40 n_output = 3 X = rng.rand(n_samples, n_features) y = rng.randint(0, 3, (n_samples, n_output)) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) weights = [None, 'uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): # Stack single output prediction y_pred_so = [] for o in range(n_output): rnn = neighbors.RadiusNeighborsClassifier(weights=weights, algorithm=algorithm) rnn.fit(X_train, y_train[:, o]) y_pred_so.append(rnn.predict(X_test)) y_pred_so = np.vstack(y_pred_so).T assert_equal(y_pred_so.shape, y_test.shape) # Multioutput prediction rnn_mo = neighbors.RadiusNeighborsClassifier(weights=weights, algorithm=algorithm) rnn_mo.fit(X_train, y_train) y_pred_mo = rnn_mo.predict(X_test) assert_equal(y_pred_mo.shape, y_test.shape) assert_array_almost_equal(y_pred_mo, y_pred_so) def test_kneighbors_classifier_sparse(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-NN classifier on sparse matrices # Like the above, but with various types of sparse matrices rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 X *= X > .2 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) for sparsemat in SPARSE_TYPES: knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm='auto') knn.fit(sparsemat(X), y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) for sparsev in SPARSE_TYPES + (np.asarray,): X_eps = sparsev(X[:n_test_pts] + epsilon) y_pred = knn.predict(X_eps) assert_array_equal(y_pred, y[:n_test_pts]) def test_KNeighborsClassifier_multioutput(): # Test k-NN classifier on multioutput data rng = check_random_state(0) n_features = 5 n_samples = 50 n_output = 3 X = rng.rand(n_samples, n_features) y = rng.randint(0, 3, (n_samples, n_output)) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) weights = [None, 'uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): # Stack single output prediction y_pred_so = [] y_pred_proba_so = [] for o in range(n_output): knn = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm) knn.fit(X_train, y_train[:, o]) y_pred_so.append(knn.predict(X_test)) y_pred_proba_so.append(knn.predict_proba(X_test)) y_pred_so = np.vstack(y_pred_so).T assert_equal(y_pred_so.shape, y_test.shape) assert_equal(len(y_pred_proba_so), n_output) # Multioutput prediction knn_mo = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm) knn_mo.fit(X_train, y_train) y_pred_mo = knn_mo.predict(X_test) assert_equal(y_pred_mo.shape, y_test.shape) assert_array_almost_equal(y_pred_mo, y_pred_so) # Check proba y_pred_proba_mo = knn_mo.predict_proba(X_test) assert_equal(len(y_pred_proba_mo), n_output) for proba_mo, proba_so in zip(y_pred_proba_mo, y_pred_proba_so): assert_array_almost_equal(proba_mo, proba_so) def test_kneighbors_regressor(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y_target = y[:n_test_pts] weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_true(np.all(abs(y_pred - y_target) < 0.3)) def test_KNeighborsRegressor_multioutput_uniform_weight(): # Test k-neighbors in multi-output regression with uniform weight rng = check_random_state(0) n_features = 5 n_samples = 40 n_output = 4 X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_output) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for algorithm, weights in product(ALGORITHMS, [None, 'uniform']): knn = neighbors.KNeighborsRegressor(weights=weights, algorithm=algorithm) knn.fit(X_train, y_train) neigh_idx = knn.kneighbors(X_test, return_distance=False) y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx]) y_pred = knn.predict(X_test) assert_equal(y_pred.shape, y_test.shape) assert_equal(y_pred_idx.shape, y_test.shape) assert_array_almost_equal(y_pred, y_pred_idx) def test_kneighbors_regressor_multioutput(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors in multi-output regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y = np.vstack([y, y]).T y_target = y[:n_test_pts] weights = ['uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_equal(y_pred.shape, y_target.shape) assert_true(np.all(np.abs(y_pred - y_target) < 0.3)) def test_radius_neighbors_regressor(n_samples=40, n_features=3, n_test_pts=10, radius=0.5, random_state=0): # Test radius-based neighbors regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y_target = y[:n_test_pts] weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: neigh = neighbors.RadiusNeighborsRegressor(radius=radius, weights=weights, algorithm=algorithm) neigh.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_true(np.all(abs(y_pred - y_target) < radius / 2)) def test_RadiusNeighborsRegressor_multioutput_with_uniform_weight(): # Test radius neighbors in multi-output regression (uniform weight) rng = check_random_state(0) n_features = 5 n_samples = 40 n_output = 4 X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_output) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for algorithm, weights in product(ALGORITHMS, [None, 'uniform']): rnn = neighbors. RadiusNeighborsRegressor(weights=weights, algorithm=algorithm) rnn.fit(X_train, y_train) neigh_idx = rnn.radius_neighbors(X_test, return_distance=False) y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx]) y_pred_idx = np.array(y_pred_idx) y_pred = rnn.predict(X_test) assert_equal(y_pred_idx.shape, y_test.shape) assert_equal(y_pred.shape, y_test.shape) assert_array_almost_equal(y_pred, y_pred_idx) def test_RadiusNeighborsRegressor_multioutput(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors in multi-output regression with various weight rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y = np.vstack([y, y]).T y_target = y[:n_test_pts] weights = ['uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): rnn = neighbors.RadiusNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) rnn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = rnn.predict(X[:n_test_pts] + epsilon) assert_equal(y_pred.shape, y_target.shape) assert_true(np.all(np.abs(y_pred - y_target) < 0.3)) def test_kneighbors_regressor_sparse(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test radius-based regression on sparse matrices # Like the above, but with various types of sparse matrices rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .25).astype(np.int) for sparsemat in SPARSE_TYPES: knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, algorithm='auto') knn.fit(sparsemat(X), y) for sparsev in SPARSE_OR_DENSE: X2 = sparsev(X) assert_true(np.mean(knn.predict(X2).round() == y) > 0.95) def test_neighbors_iris(): # Sanity checks on the iris dataset # Puts three points of each label in the plane and performs a # nearest neighbor query on points near the decision boundary. for algorithm in ALGORITHMS: clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm=algorithm) clf.fit(iris.data, iris.target) assert_array_equal(clf.predict(iris.data), iris.target) clf.set_params(n_neighbors=9, algorithm=algorithm) clf.fit(iris.data, iris.target) assert_true(np.mean(clf.predict(iris.data) == iris.target) > 0.95) rgs = neighbors.KNeighborsRegressor(n_neighbors=5, algorithm=algorithm) rgs.fit(iris.data, iris.target) assert_greater(np.mean(rgs.predict(iris.data).round() == iris.target), 0.95) def test_neighbors_digits(): # Sanity check on the digits dataset # the 'brute' algorithm has been observed to fail if the input # dtype is uint8 due to overflow in distance calculations. X = digits.data.astype('uint8') Y = digits.target (n_samples, n_features) = X.shape train_test_boundary = int(n_samples * 0.8) train = np.arange(0, train_test_boundary) test = np.arange(train_test_boundary, n_samples) (X_train, Y_train, X_test, Y_test) = X[train], Y[train], X[test], Y[test] clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm='brute') score_uint8 = clf.fit(X_train, Y_train).score(X_test, Y_test) score_float = clf.fit(X_train.astype(float), Y_train).score( X_test.astype(float), Y_test) assert_equal(score_uint8, score_float) def test_kneighbors_graph(): # Test kneighbors_graph to build the k-Nearest Neighbor graph. X = np.array([[0, 1], [1.01, 1.], [2, 0]]) # n_neighbors = 1 A = neighbors.kneighbors_graph(X, 1, mode='connectivity', include_self=True) assert_array_equal(A.toarray(), np.eye(A.shape[0])) A = neighbors.kneighbors_graph(X, 1, mode='distance') assert_array_almost_equal( A.toarray(), [[0.00, 1.01, 0.], [1.01, 0., 0.], [0.00, 1.40716026, 0.]]) # n_neighbors = 2 A = neighbors.kneighbors_graph(X, 2, mode='connectivity', include_self=True) assert_array_equal( A.toarray(), [[1., 1., 0.], [1., 1., 0.], [0., 1., 1.]]) A = neighbors.kneighbors_graph(X, 2, mode='distance') assert_array_almost_equal( A.toarray(), [[0., 1.01, 2.23606798], [1.01, 0., 1.40716026], [2.23606798, 1.40716026, 0.]]) # n_neighbors = 3 A = neighbors.kneighbors_graph(X, 3, mode='connectivity', include_self=True) assert_array_almost_equal( A.toarray(), [[1, 1, 1], [1, 1, 1], [1, 1, 1]]) def test_kneighbors_graph_sparse(seed=36): # Test kneighbors_graph to build the k-Nearest Neighbor graph # for sparse input. rng = np.random.RandomState(seed) X = rng.randn(10, 10) Xcsr = csr_matrix(X) for n_neighbors in [1, 2, 3]: for mode in ["connectivity", "distance"]: assert_array_almost_equal( neighbors.kneighbors_graph(X, n_neighbors, mode=mode).toarray(), neighbors.kneighbors_graph(Xcsr, n_neighbors, mode=mode).toarray()) def test_radius_neighbors_graph(): # Test radius_neighbors_graph to build the Nearest Neighbor graph. X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = neighbors.radius_neighbors_graph(X, 1.5, mode='connectivity', include_self=True) assert_array_equal( A.toarray(), [[1., 1., 0.], [1., 1., 1.], [0., 1., 1.]]) A = neighbors.radius_neighbors_graph(X, 1.5, mode='distance') assert_array_almost_equal( A.toarray(), [[0., 1.01, 0.], [1.01, 0., 1.40716026], [0., 1.40716026, 0.]]) def test_radius_neighbors_graph_sparse(seed=36): # Test radius_neighbors_graph to build the Nearest Neighbor graph # for sparse input. rng = np.random.RandomState(seed) X = rng.randn(10, 10) Xcsr = csr_matrix(X) for n_neighbors in [1, 2, 3]: for mode in ["connectivity", "distance"]: assert_array_almost_equal( neighbors.radius_neighbors_graph(X, n_neighbors, mode=mode).toarray(), neighbors.radius_neighbors_graph(Xcsr, n_neighbors, mode=mode).toarray()) def test_neighbors_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, neighbors.NearestNeighbors, algorithm='blah') X = rng.random_sample((10, 2)) Xsparse = csr_matrix(X) y = np.ones(10) for cls in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): assert_raises(ValueError, cls, weights='blah') assert_raises(ValueError, cls, p=-1) assert_raises(ValueError, cls, algorithm='blah') nbrs = cls(algorithm='ball_tree', metric='haversine') assert_raises(ValueError, nbrs.predict, X) assert_raises(ValueError, ignore_warnings(nbrs.fit), Xsparse, y) nbrs = cls() assert_raises(ValueError, nbrs.fit, np.ones((0, 2)), np.ones(0)) assert_raises(ValueError, nbrs.fit, X[:, :, None], y) nbrs.fit(X, y) assert_raises(ValueError, nbrs.predict, [[]]) if (isinstance(cls, neighbors.KNeighborsClassifier) or isinstance(cls, neighbors.KNeighborsRegressor)): nbrs = cls(n_neighbors=-1) assert_raises(ValueError, nbrs.fit, X, y) nbrs = neighbors.NearestNeighbors().fit(X) assert_raises(ValueError, nbrs.kneighbors_graph, X, mode='blah') assert_raises(ValueError, nbrs.radius_neighbors_graph, X, mode='blah') def test_neighbors_metrics(n_samples=20, n_features=3, n_query_pts=2, n_neighbors=5): # Test computing the neighbors for various metrics # create a symmetric matrix V = rng.rand(n_features, n_features) VI = np.dot(V, V.T) metrics = [('euclidean', {}), ('manhattan', {}), ('minkowski', dict(p=1)), ('minkowski', dict(p=2)), ('minkowski', dict(p=3)), ('minkowski', dict(p=np.inf)), ('chebyshev', {}), ('seuclidean', dict(V=rng.rand(n_features))), ('wminkowski', dict(p=3, w=rng.rand(n_features))), ('mahalanobis', dict(VI=VI))] algorithms = ['brute', 'ball_tree', 'kd_tree'] X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for metric, metric_params in metrics: results = [] p = metric_params.pop('p', 2) for algorithm in algorithms: # KD tree doesn't support all metrics if (algorithm == 'kd_tree' and metric not in neighbors.KDTree.valid_metrics): assert_raises(ValueError, neighbors.NearestNeighbors, algorithm=algorithm, metric=metric, metric_params=metric_params) continue neigh = neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm=algorithm, metric=metric, p=p, metric_params=metric_params) neigh.fit(X) results.append(neigh.kneighbors(test, return_distance=True)) assert_array_almost_equal(results[0][0], results[1][0]) assert_array_almost_equal(results[0][1], results[1][1]) def test_callable_metric(): def custom_metric(x1, x2): return np.sqrt(np.sum(x1 ** 2 + x2 ** 2)) X = np.random.RandomState(42).rand(20, 2) nbrs1 = neighbors.NearestNeighbors(3, algorithm='auto', metric=custom_metric) nbrs2 = neighbors.NearestNeighbors(3, algorithm='brute', metric=custom_metric) nbrs1.fit(X) nbrs2.fit(X) dist1, ind1 = nbrs1.kneighbors(X) dist2, ind2 = nbrs2.kneighbors(X) assert_array_almost_equal(dist1, dist2) def test_metric_params_interface(): assert_warns(SyntaxWarning, neighbors.KNeighborsClassifier, metric_params={'p': 3}) def test_predict_sparse_ball_kd_tree(): rng = np.random.RandomState(0) X = rng.rand(5, 5) y = rng.randint(0, 2, 5) nbrs1 = neighbors.KNeighborsClassifier(1, algorithm='kd_tree') nbrs2 = neighbors.KNeighborsRegressor(1, algorithm='ball_tree') for model in [nbrs1, nbrs2]: model.fit(X, y) assert_raises(ValueError, model.predict, csr_matrix(X)) def test_non_euclidean_kneighbors(): rng = np.random.RandomState(0) X = rng.rand(5, 5) # Find a reasonable radius. dist_array = pairwise_distances(X).flatten() np.sort(dist_array) radius = dist_array[15] # Test kneighbors_graph for metric in ['manhattan', 'chebyshev']: nbrs_graph = neighbors.kneighbors_graph( X, 3, metric=metric, mode='connectivity', include_self=True).toarray() nbrs1 = neighbors.NearestNeighbors(3, metric=metric).fit(X) assert_array_equal(nbrs_graph, nbrs1.kneighbors_graph(X).toarray()) # Test radiusneighbors_graph for metric in ['manhattan', 'chebyshev']: nbrs_graph = neighbors.radius_neighbors_graph( X, radius, metric=metric, mode='connectivity', include_self=True).toarray() nbrs1 = neighbors.NearestNeighbors(metric=metric, radius=radius).fit(X) assert_array_equal(nbrs_graph, nbrs1.radius_neighbors_graph(X).A) # Raise error when wrong parameters are supplied, X_nbrs = neighbors.NearestNeighbors(3, metric='manhattan') X_nbrs.fit(X) assert_raises(ValueError, neighbors.kneighbors_graph, X_nbrs, 3, metric='euclidean') X_nbrs = neighbors.NearestNeighbors(radius=radius, metric='manhattan') X_nbrs.fit(X) assert_raises(ValueError, neighbors.radius_neighbors_graph, X_nbrs, radius, metric='euclidean') def check_object_arrays(nparray, list_check): for ind, ele in enumerate(nparray): assert_array_equal(ele, list_check[ind]) def test_k_and_radius_neighbors_train_is_not_query(): # Test kneighbors et.al when query is not training data for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) X = [[0], [1]] nn.fit(X) test_data = [[2], [1]] # Test neighbors. dist, ind = nn.kneighbors(test_data) assert_array_equal(dist, [[1], [0]]) assert_array_equal(ind, [[1], [1]]) dist, ind = nn.radius_neighbors([[2], [1]], radius=1.5) check_object_arrays(dist, [[1], [1, 0]]) check_object_arrays(ind, [[1], [0, 1]]) # Test the graph variants. assert_array_equal( nn.kneighbors_graph(test_data).A, [[0., 1.], [0., 1.]]) assert_array_equal( nn.kneighbors_graph([[2], [1]], mode='distance').A, np.array([[0., 1.], [0., 0.]])) rng = nn.radius_neighbors_graph([[2], [1]], radius=1.5) assert_array_equal(rng.A, [[0, 1], [1, 1]]) def test_k_and_radius_neighbors_X_None(): # Test kneighbors et.al when query is None for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) X = [[0], [1]] nn.fit(X) dist, ind = nn.kneighbors() assert_array_equal(dist, [[1], [1]]) assert_array_equal(ind, [[1], [0]]) dist, ind = nn.radius_neighbors(None, radius=1.5) check_object_arrays(dist, [[1], [1]]) check_object_arrays(ind, [[1], [0]]) # Test the graph variants. rng = nn.radius_neighbors_graph(None, radius=1.5) kng = nn.kneighbors_graph(None) for graph in [rng, kng]: assert_array_equal(rng.A, [[0, 1], [1, 0]]) assert_array_equal(rng.data, [1, 1]) assert_array_equal(rng.indices, [1, 0]) X = [[0, 1], [0, 1], [1, 1]] nn = neighbors.NearestNeighbors(n_neighbors=2, algorithm=algorithm) nn.fit(X) assert_array_equal( nn.kneighbors_graph().A, np.array([[0., 1., 1.], [1., 0., 1.], [1., 1., 0]])) def test_k_and_radius_neighbors_duplicates(): # Test behavior of kneighbors when duplicates are present in query for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) nn.fit([[0], [1]]) # Do not do anything special to duplicates. kng = nn.kneighbors_graph([[0], [1]], mode='distance') assert_array_equal( kng.A, np.array([[0., 0.], [0., 0.]])) assert_array_equal(kng.data, [0., 0.]) assert_array_equal(kng.indices, [0, 1]) dist, ind = nn.radius_neighbors([[0], [1]], radius=1.5) check_object_arrays(dist, [[0, 1], [1, 0]]) check_object_arrays(ind, [[0, 1], [0, 1]]) rng = nn.radius_neighbors_graph([[0], [1]], radius=1.5) assert_array_equal(rng.A, np.ones((2, 2))) rng = nn.radius_neighbors_graph([[0], [1]], radius=1.5, mode='distance') assert_array_equal(rng.A, [[0, 1], [1, 0]]) assert_array_equal(rng.indices, [0, 1, 0, 1]) assert_array_equal(rng.data, [0, 1, 1, 0]) # Mask the first duplicates when n_duplicates > n_neighbors. X = np.ones((3, 1)) nn = neighbors.NearestNeighbors(n_neighbors=1) nn.fit(X) dist, ind = nn.kneighbors() assert_array_equal(dist, np.zeros((3, 1))) assert_array_equal(ind, [[1], [0], [1]]) # Test that zeros are explicitly marked in kneighbors_graph. kng = nn.kneighbors_graph(mode='distance') assert_array_equal( kng.A, np.zeros((3, 3))) assert_array_equal(kng.data, np.zeros(3)) assert_array_equal(kng.indices, [1., 0., 1.]) assert_array_equal( nn.kneighbors_graph().A, np.array([[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]])) def test_include_self_neighbors_graph(): # Test include_self parameter in neighbors_graph X = [[2, 3], [4, 5]] kng = neighbors.kneighbors_graph(X, 1, include_self=True).A kng_not_self = neighbors.kneighbors_graph(X, 1, include_self=False).A assert_array_equal(kng, [[1., 0.], [0., 1.]]) assert_array_equal(kng_not_self, [[0., 1.], [1., 0.]]) rng = neighbors.radius_neighbors_graph(X, 5.0, include_self=True).A rng_not_self = neighbors.radius_neighbors_graph( X, 5.0, include_self=False).A assert_array_equal(rng, [[1., 1.], [1., 1.]]) assert_array_equal(rng_not_self, [[0., 1.], [1., 0.]]) def test_same_knn_parallel(): X, y = datasets.make_classification(n_samples=30, n_features=5, n_redundant=0, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y) def check_same_knn_parallel(algorithm): clf = neighbors.KNeighborsClassifier(n_neighbors=3, algorithm=algorithm) clf.fit(X_train, y_train) y = clf.predict(X_test) dist, ind = clf.kneighbors(X_test) graph = clf.kneighbors_graph(X_test, mode='distance').toarray() clf.set_params(n_jobs=3) clf.fit(X_train, y_train) y_parallel = clf.predict(X_test) dist_parallel, ind_parallel = clf.kneighbors(X_test) graph_parallel = \ clf.kneighbors_graph(X_test, mode='distance').toarray() assert_array_equal(y, y_parallel) assert_array_almost_equal(dist, dist_parallel) assert_array_equal(ind, ind_parallel) assert_array_almost_equal(graph, graph_parallel) for algorithm in ALGORITHMS: yield check_same_knn_parallel, algorithm def test_dtype_convert(): classifier = neighbors.KNeighborsClassifier(n_neighbors=1) CLASSES = 15 X = np.eye(CLASSES) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:CLASSES]] result = classifier.fit(X, y).predict(X) assert_array_equal(result, y)
bsd-3-clause
avmarchenko/exatomic
exatomic/qchem/output.py
2
2088
# -*- coding: utf-8 -*- # Copyright (c) 2015-2018, Exa Analytics Development Team # Distributed under the terms of the Apache License 2.0 """ Q-Chem Ouput Editor ####################### Editor classes for simple Q-Chem output files """ import six import numpy as np import pandas as pd from exa import TypedMeta from exa.util.units import Length#, Energy from .editor import Editor from exatomic.base import sym2z from exatomic.core.atom import Atom, Frequency from exatomic.core.frame import Frame#, compute_frame_from_atom from exatomic.core.basis import (BasisSet, BasisSetOrder, Overlap)#, deduplicate_basis_sets) from exatomic.core.orbital import Orbital, MOMatrix, Excitation #from exatomic.algorithms.basis import lmap, lorder class QMeta(TypedMeta): atom = Atom basis_set = BasisSet orbital = Orbital momatrix = MOMatrix basis_set_order = BasisSetOrder frame = Frame excitation = Excitation frequency = Frequency overlap = Overlap multipole = pd.DataFrame class Output(six.with_metaclass(QMeta, Editor)): def parse_atom(self): # Atom flags _regeom01 = "Standard Nuclear Orientation (Angstroms)" _regeom02 = "Coordinates (Angstroms)" # Find Data found = self.find(_regeom01, keys_only=True) starts = np.array(found) + 3 stop = starts[0] while '-------' not in self[stop]: stop += 1 stops = starts + (stop - starts[0]) dfs = [] for i, (start, stop) in enumerate(zip(starts, stops)): atom = self.pandas_dataframe(start, stop, 5) atom['frame'] = i dfs.append(atom) atom = pd.concat(dfs).reset_index(drop=True) atom.columns = ['set', 'symbol', 'x', 'y', 'z', 'frame'] atom['set'] -= 1 atom['x'] *= Length['Angstrom', 'au'] atom['y'] *= Length['Angstrom', 'au'] atom['z'] *= Length['Angstrom', 'au'] atom['Z'] = atom['symbol'].map(sym2z) self.atom = atom def __init__(self, *args, **kwargs): super(Output, self).__init__(*args,**kwargs)
apache-2.0
drabastomek/practicalDataAnalysisCookbook
Codes/Chapter04/clustering_kmeans.py
1
1172
# this is needed to load helper from the parent folder import sys sys.path.append('..') # the rest of the imports import helper as hlp import pandas as pd import sklearn.cluster as cl import sklearn.metrics as mt @hlp.timeit def findClusters_kmeans(data): ''' Cluster data using k-means ''' # create the classifier object kmeans = cl.KMeans( n_clusters=4, n_jobs=-1, verbose=0, n_init=30 ) # fit the data return kmeans.fit(data) # the file name of the dataset r_filename = '../../Data/Chapter04/bank_contacts.csv' # read the data csv_read = pd.read_csv(r_filename) # select variables selected = csv_read[['n_duration','n_nr_employed', 'prev_ctc_outcome_success','n_euribor3m', 'n_cons_conf_idx','n_age','month_oct', 'n_cons_price_idx','edu_university_degree','n_pdays', 'dow_mon','job_student','job_technician', 'job_housemaid','edu_basic_6y']] # cluster the data cluster = findClusters_kmeans(selected) # assess the clusters effectiveness labels = cluster.labels_ centroids = cluster.cluster_centers_ hlp.printClustersSummary(selected, labels, centroids)
gpl-2.0
TJXUNwu/FileTest
extractsingleftr.py
1
2183
#coding=utf-8 import sys,os import numpy as np import matplotlib.pyplot as plt import scipy.io as sio import dirlist caffe_root = 'D:/CaffeProject/CaffeTest/' sys.path.insert(0, caffe_root + 'python') import caffe caffe.set_mode_cpu() model_file='D:/CaffeProject/CaffeTest/models/bvlc_reference_caffenet/deploy.prototxt' weight_file='D:/CaffeProject/CaffeTest/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel' mean_file='D:/CaffeProject/CaffeTest/python/caffe/imagenet/ilsvrc_2012_mean.npy' imgfile='E:/FaceData/LFW/Aaron_Peirsol/Aaron_Peirsol_0004.jpg' imaglistfile='D:/CaffeProject/CaffeTest/data/ilsvrc12/synset_words.txt' net = caffe.Net(model_file,weight_file, caffe.TEST) # input preprocessing: 'data' is the name of the input blob == net.inputs[0] transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) transformer.set_mean('data', np.load(mean_file).mean(1).mean(1)) # mean pixel transformer.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1] transformer.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB # set net to batch size of 50 net.blobs['data'].reshape(50,3,227,227) net.blobs['data'].data[...] = transformer.preprocess('data', caffe.io.load_image(imgfile)) out = net.forward() print("Predicted class is #{}.".format(out['prob'][0].argmax())) # load labels #imagenet_labels_filename = caffe_root + 'data/ilsvrc12/synset_words.txt' try: labels = np.loadtxt(imaglistfile, str, delimiter='\t') except: labels = np.loadtxt(imaglistfile, str, delimiter='\t') # sort top k predictions from softmax output top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1] print labels[top_k] print '\nlayername and parames:' for k, v in net.blobs.items(): print [(k, v.data.shape)] fet=net.blobs['fc7'].data[0] sio.savemat('F:\\TJProgram\\MatlabPro\\FtrVal\\fet.mat', {'fet':fet}) #plt.plot(feat.flat) #plt.show() #fet=net.params['fc7'][0].data #sio.savemat('savefet.mat',{'fet':fet}) print 'Save OK !'
gpl-3.0
yanlend/scikit-learn
sklearn/decomposition/nmf.py
5
39512
""" Non-negative matrix factorization """ # Author: Vlad Niculae # Lars Buitinck <[email protected]> # Mathieu Blondel <[email protected]> # Tom Dupre la Tour # Author: Chih-Jen Lin, National Taiwan University (original projected gradient # NMF implementation) # Author: Anthony Di Franco (Projected gradient, Python and NumPy port) # License: BSD 3 clause from __future__ import division from math import sqrt import warnings import numbers import numpy as np import scipy.sparse as sp from ..externals import six from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted, check_non_negative from ..utils import deprecated from ..utils import ConvergenceWarning from .cdnmf_fast import _update_cdnmf_fast def safe_vstack(Xs): if any(sp.issparse(X) for X in Xs): return sp.vstack(Xs) else: return np.vstack(Xs) def norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return sqrt(squared_norm(x)) def trace_dot(X, Y): """Trace of np.dot(X, Y.T).""" return np.dot(X.ravel(), Y.ravel()) def _sparseness(x): """Hoyer's measure of sparsity for a vector""" sqrt_n = np.sqrt(len(x)) return (sqrt_n - np.linalg.norm(x, 1) / norm(x)) / (sqrt_n - 1) def _check_init(A, shape, whom): A = check_array(A) if np.shape(A) != shape: raise ValueError('Array with wrong shape passed to %s. Expected %s, ' 'but got %s ' % (whom, shape, np.shape(A))) check_non_negative(A, whom) if np.max(A) == 0: raise ValueError('Array passed to %s is full of zeros.' % whom) def _safe_compute_error(X, W, H): """Frobenius norm between X and WH, safe for sparse array""" if not sp.issparse(X): error = norm(X - np.dot(W, H)) else: norm_X = np.dot(X.data, X.data) norm_WH = trace_dot(np.dot(np.dot(W.T, W), H), H) cross_prod = trace_dot((X * H.T), W) error = sqrt(norm_X + norm_WH - 2. * cross_prod) return error def _check_string_param(sparseness, solver): allowed_sparseness = (None, 'data', 'components') if sparseness not in allowed_sparseness: raise ValueError( 'Invalid sparseness parameter: got %r instead of one of %r' % (sparseness, allowed_sparseness)) allowed_solver = ('pg', 'cd') if solver not in allowed_solver: raise ValueError( 'Invalid solver parameter: got %r instead of one of %r' % (solver, allowed_solver)) def _initialize_nmf(X, n_components, init=None, eps=1e-6, random_state=None): """Algorithms for NMF initialization. Computes an initial guess for the non-negative rank k matrix approximation for X: X = WH Parameters ---------- X : array-like, shape (n_samples, n_features) The data matrix to be decomposed. n_components : integer The number of components desired in the approximation. init : None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' Method used to initialize the procedure. Default: 'nndsvdar' if n_components < n_features, otherwise 'random'. Valid options: 'random': non-negative random matrices, scaled with: sqrt(X.mean() / n_components) 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) eps: float Truncate all values less then this in output to zero. random_state : int seed, RandomState instance, or None (default) Random number generator seed control, used in 'nndsvdar' and 'random' modes. Returns ------- W : array-like, shape (n_samples, n_components) Initial guesses for solving X ~= WH H : array-like, shape (n_components, n_features) Initial guesses for solving X ~= WH References ---------- C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ check_non_negative(X, "NMF initialization") n_samples, n_features = X.shape if init is None: if n_components < n_features: init = 'nndsvd' else: init = 'random' # Random initialization if init == 'random': avg = np.sqrt(X.mean() / n_components) rng = check_random_state(random_state) H = avg * rng.randn(n_components, n_features) W = avg * rng.randn(n_samples, n_components) # we do not write np.abs(H, out=H) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(H, H) np.abs(W, W) return W, H # NNDSVD initialization U, S, V = randomized_svd(X, n_components, random_state=random_state) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if init == "nndsvd": pass elif init == "nndsvda": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif init == "nndsvdar": rng = check_random_state(random_state) avg = X.mean() W[W == 0] = abs(avg * rng.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * rng.randn(len(H[H == 0])) / 100) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'random', 'nndsvd', 'nndsvda', 'nndsvdar'))) return W, H def _nls_subproblem(V, W, H, tol, max_iter, alpha=0., l1_ratio=0., sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. Parameters ---------- V : array-like, shape (n_samples, n_features) Constant matrix. W : array-like, shape (n_samples, n_components) Constant matrix. H : array-like, shape (n_components, n_features) Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. alpha : double, default: 0. Constant that multiplies the regularization terms. Set it to zero to have no regularization. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem. grad : array-like, shape (n_components, n_features) The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtV = safe_sparse_dot(W.T, V) WtW = fast_dot(W.T, W) # values justified in the paper (alpha is renamed gamma) gamma = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtV if alpha > 0 and l1_ratio == 1.: grad += alpha elif alpha > 0: grad += alpha * (l1_ratio + (1 - l1_ratio) * H) # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(20): # Gradient step. Hn = H - gamma * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_gamma = not suff_decr if decr_gamma: if suff_decr: H = Hn break else: gamma *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: gamma /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.") return H, grad, n_iter def _update_projected_gradient_w(X, W, H, tolW, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta): """Helper function for _fit_projected_gradient""" n_samples, n_features = X.shape n_components_ = H.shape[0] if sparseness is None: Wt, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) elif sparseness == 'data': Wt, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((1, n_samples))]), safe_vstack([H.T, np.sqrt(beta) * np.ones((1, n_components_))]), W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) elif sparseness == 'components': Wt, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((n_components_, n_samples))]), safe_vstack([H.T, np.sqrt(eta) * np.eye(n_components_)]), W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) return Wt.T, gradW.T, iterW def _update_projected_gradient_h(X, W, H, tolH, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta): """Helper function for _fit_projected_gradient""" n_samples, n_features = X.shape n_components_ = W.shape[1] if sparseness is None: H, gradH, iterH = _nls_subproblem(X, W, H, tolH, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) elif sparseness == 'data': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((n_components_, n_features))]), safe_vstack([W, np.sqrt(eta) * np.eye(n_components_)]), H, tolH, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) elif sparseness == 'components': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((1, n_features))]), safe_vstack([W, np.sqrt(beta) * np.ones((1, n_components_))]), H, tolH, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) return H, gradH, iterH def _fit_projected_gradient(X, W, H, tol, max_iter, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta): """Compute Non-negative Matrix Factorization (NMF) with Projected Gradient References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 2004. """ gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = squared_norm(gradW) + squared_norm(gradH.T) # max(0.001, tol) to force alternating minimizations of W and H tolW = max(0.001, tol) * np.sqrt(init_grad) tolH = tolW for n_iter in range(1, max_iter + 1): # stopping condition # as discussed in paper proj_grad_W = squared_norm(gradW * np.logical_or(gradW < 0, W > 0)) proj_grad_H = squared_norm(gradH * np.logical_or(gradH < 0, H > 0)) if (proj_grad_W + proj_grad_H) / init_grad < tol ** 2: break # update W W, gradW, iterW = _update_projected_gradient_w(X, W, H, tolW, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta) if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = _update_projected_gradient_h(X, W, H, tolH, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta) if iterH == 1: tolH = 0.1 * tolH H[H == 0] = 0 # fix up negative zeros if n_iter == max_iter: W, _, _ = _update_projected_gradient_w(X, W, H, tol, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta) return W, H, n_iter def _update_coordinate_descent(X, W, Ht, l1_reg, l2_reg, shuffle, random_state): """Helper function for _fit_coordinate_descent Update W to minimize the objective function, iterating once over all coordinates. By symmetry, to update H, one can call _update_coordinate_descent(X.T, Ht, W, ...) """ n_components = Ht.shape[1] HHt = fast_dot(Ht.T, Ht) XHt = safe_sparse_dot(X, Ht) # L2 regularization corresponds to increase the diagonal of HHt if l2_reg != 0.: # adds l2_reg only on the diagonal HHt.flat[::n_components + 1] += l2_reg # L1 regularization correponds to decrease each element of XHt if l1_reg != 0.: XHt -= l1_reg if shuffle: permutation = random_state.permutation(n_components) else: permutation = np.arange(n_components) # The following seems to be required on 64-bit Windows w/ Python 3.5. permutation = np.asarray(permutation, dtype=np.intp) return _update_cdnmf_fast(W, HHt, XHt, permutation) def _fit_coordinate_descent(X, W, H, tol=1e-4, max_iter=200, alpha=0.001, l1_ratio=0., regularization=None, update_H=True, verbose=0, shuffle=False, random_state=None): """Compute Non-negative Matrix Factorization (NMF) with Coordinate Descent The objective function is minimized with an alternating minimization of W and H. Each minimization is done with a cyclic (up to a permutation of the features) Coordinate Descent. Parameters ---------- X : array-like, shape (n_samples, n_features) Constant matrix. W : array-like, shape (n_samples, n_components) Initial guess for the solution. H : array-like, shape (n_components, n_features) Initial guess for the solution. tol : float, default: 1e-4 Tolerance of the stopping condition. max_iter : integer, default: 200 Maximum number of iterations before timing out. alpha : double, default: 0. Constant that multiplies the regularization terms. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. regularization : 'both' | 'components' | 'transformation' | None Select whether the regularization affects the components (H), the transformation (W), both or none of them. update_H : boolean, default: True Set to True, both W and H will be estimated from initial guesses. Set to False, only W will be estimated. verbose : integer, default: 0 The verbosity level. shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver. random_state : integer seed, RandomState instance, or None (default) Random number generator seed control. Returns ------- W : array-like, shape (n_samples, n_components) Solution to the non-negative least squares problem. H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem. n_iter : int The number of iterations done by the algorithm. References ---------- Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. """ # so W and Ht are both in C order in memory Ht = check_array(H.T, order='C') X = check_array(X, accept_sparse='csr') # L1 and L2 regularization l1_H, l2_H, l1_W, l2_W = 0, 0, 0, 0 if regularization in ('both', 'components'): alpha = float(alpha) l1_H = l1_ratio * alpha l2_H = (1. - l1_ratio) * alpha if regularization in ('both', 'transformation'): alpha = float(alpha) l1_W = l1_ratio * alpha l2_W = (1. - l1_ratio) * alpha rng = check_random_state(random_state) for n_iter in range(max_iter): violation = 0. # Update W violation += _update_coordinate_descent(X, W, Ht, l1_W, l2_W, shuffle, rng) # Update H if update_H: violation += _update_coordinate_descent(X.T, Ht, W, l1_H, l2_H, shuffle, rng) if n_iter == 0: violation_init = violation if violation_init == 0: break if verbose: print("violation:", violation / violation_init) if violation / violation_init <= tol: if verbose: print("Converged at iteration", n_iter + 1) break return W, Ht.T, n_iter def non_negative_factorization(X, W=None, H=None, n_components=None, init='random', update_H=True, solver='cd', tol=1e-4, max_iter=200, alpha=0., l1_ratio=0., regularization=None, random_state=None, verbose=0, shuffle=False, nls_max_iter=2000, sparseness=None, beta=1, eta=0.1): """Compute Non-negative Matrix Factorization (NMF) Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction. The objective function is:: 0.5 * ||X - WH||_Fro^2 + alpha * l1_ratio * ||vec(W)||_1 + alpha * l1_ratio * ||vec(H)||_1 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2 Where:: ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm) ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm) The objective function is minimized with an alternating minimization of W and H. If H is given and update_H=False, it solves for W only. Parameters ---------- X : array-like, shape (n_samples, n_features) Constant matrix. W : array-like, shape (n_samples, n_components) If init='custom', it is used as initial guess for the solution. H : array-like, shape (n_components, n_features) If init='custom', it is used as initial guess for the solution. If update_H=False, it is used as a constant, to solve for W only. n_components : integer Number of components, if n_components is not set all features are kept. init : None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom' Method used to initialize the procedure. Default: 'nndsvd' if n_components < n_features, otherwise random. Valid options:: 'random': non-negative random matrices, scaled with: sqrt(X.mean() / n_components) 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 'custom': use custom matrices W and H update_H : boolean, default: True Set to True, both W and H will be estimated from initial guesses. Set to False, only W will be estimated. solver : 'pg' | 'cd' Numerical solver to use: 'pg' is a (deprecated) Projected Gradient solver. 'cd' is a Coordinate Descent solver. tol : float, default: 1e-4 Tolerance of the stopping condition. max_iter : integer, default: 200 Maximum number of iterations before timing out. alpha : double, default: 0. Constant that multiplies the regularization terms. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. regularization : 'both' | 'components' | 'transformation' | None Select whether the regularization affects the components (H), the transformation (W), both or none of them. random_state : integer seed, RandomState instance, or None (default) Random number generator seed control. verbose : integer, default: 0 The verbosity level. shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver. nls_max_iter : integer, default: 2000 Number of iterations in NLS subproblem. Used only in the deprecated 'pg' solver. sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. Used only in the deprecated 'pg' solver. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. Used only in the deprecated 'pg' solver. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. Used only in the deprecated 'pg' solver. Returns ------- W : array-like, shape (n_samples, n_components) Solution to the non-negative least squares problem. H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem. n_iter : int Actual number of iterations. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. """ X = check_array(X, accept_sparse=('csr', 'csc')) check_non_negative(X, "NMF (input X)") _check_string_param(sparseness, solver) n_samples, n_features = X.shape if n_components is None: n_components = n_features if not isinstance(n_components, six.integer_types) or n_components <= 0: raise ValueError("Number of components must be positive;" " got (n_components=%r)" % n_components) if not isinstance(max_iter, numbers.Number) or max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % max_iter) if not isinstance(tol, numbers.Number) or tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % tol) # check W and H, or initialize them if init == 'custom': _check_init(H, (n_components, n_features), "NMF (input H)") _check_init(W, (n_samples, n_components), "NMF (input W)") elif not update_H: _check_init(H, (n_components, n_features), "NMF (input H)") W = np.zeros((n_samples, n_components)) else: W, H = _initialize_nmf(X, n_components, init=init, random_state=random_state) if solver == 'pg': warnings.warn("'pg' solver will be removed in release 0.19." " Use 'cd' solver instead.", DeprecationWarning) if update_H: # fit_transform W, H, n_iter = _fit_projected_gradient(X, W, H, tol, max_iter, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta) else: # transform W, H, n_iter = _update_projected_gradient_w(X, W, H, tol, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta) elif solver == 'cd': W, H, n_iter = _fit_coordinate_descent(X, W, H, tol, max_iter, alpha, l1_ratio, regularization, update_H=update_H, verbose=verbose, shuffle=shuffle, random_state=random_state) else: raise ValueError("Invalid solver parameter '%s'." % solver) if n_iter == max_iter: warnings.warn("Maximum number of iteration %d reached. Increase it to" " improve convergence." % max_iter, ConvergenceWarning) return W, H, n_iter class NMF(BaseEstimator, TransformerMixin): """Non-Negative Matrix Factorization (NMF) Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction. The objective function is:: 0.5 * ||X - WH||_Fro^2 + alpha * l1_ratio * ||vec(W)||_1 + alpha * l1_ratio * ||vec(H)||_1 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2 Where:: ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm) ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm) The objective function is minimized with an alternating minimization of W and H. Read more in the :ref:`User Guide <NMF>`. Parameters ---------- n_components : int or None Number of components, if n_components is not set all features are kept. init : 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom' Method used to initialize the procedure. Default: 'nndsvdar' if n_components < n_features, otherwise random. Valid options:: 'random': non-negative random matrices 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 'custom': use custom matrices W and H, given in 'fit' method. solver : 'pg' | 'cd' Numerical solver to use: 'pg' is a (deprecated) Projected Gradient solver. 'cd' is a Coordinate Descent solver. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : integer, default: 200 Number of iterations to compute. random_state : integer seed, RandomState instance, or None (default) Random number generator seed control. alpha : double, default: 0. Constant that multiplies the regularization terms. Set it to zero to have no regularization. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver. nls_max_iter : integer, default: 2000 Number of iterations in NLS subproblem. Used only in the deprecated 'pg' solver. sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. Used only in the deprecated 'pg' solver. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. Used only in the deprecated 'pg' solver. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. Used only in the deprecated 'pg' solver. Attributes ---------- components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. ``|| X - WH ||_2`` n_iter_ : int Actual number of iterations. Examples -------- >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import NMF >>> model = NMF(n_components=2, init='random', random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE NMF(alpha=0.0, beta=1, eta=0.1, init='random', l1_ratio=0.0, max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, shuffle=False, solver='cd', sparseness=None, tol=0.0001, verbose=0) >>> model.components_ array([[ 2.09783018, 0.30560234], [ 2.13443044, 2.13171694]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00115993... References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. """ def __init__(self, n_components=None, init=None, solver='cd', tol=1e-4, max_iter=200, random_state=None, alpha=0., l1_ratio=0., verbose=0, shuffle=False, nls_max_iter=2000, sparseness=None, beta=1, eta=0.1): self.n_components = n_components self.init = init self.solver = solver self.tol = tol self.max_iter = max_iter self.random_state = random_state self.alpha = alpha self.l1_ratio = l1_ratio self.verbose = verbose self.shuffle = shuffle if sparseness is not None: warnings.warn("Controlling regularization through the sparseness," " beta and eta arguments is only available" " for 'pg' solver, which will be removed" " in release 0.19. Use another solver with L1 or L2" " regularization instead.", DeprecationWarning) self.nls_max_iter = nls_max_iter self.sparseness = sparseness self.beta = beta self.eta = eta def fit_transform(self, X, y=None, W=None, H=None): """Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters ---------- X: {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be decomposed W : array-like, shape (n_samples, n_components) If init='custom', it is used as initial guess for the solution. H : array-like, shape (n_components, n_features) If init='custom', it is used as initial guess for the solution. Attributes ---------- components_ : array-like, shape (n_components, n_features) Factorization matrix, sometimes called 'dictionary'. n_iter_ : int Actual number of iterations for the transform. Returns ------- W: array, shape (n_samples, n_components) Transformed data. """ X = check_array(X, accept_sparse=('csr', 'csc')) W, H, n_iter_ = non_negative_factorization( X=X, W=W, H=H, n_components=self.n_components, init=self.init, update_H=True, solver=self.solver, tol=self.tol, max_iter=self.max_iter, alpha=self.alpha, l1_ratio=self.l1_ratio, regularization='both', random_state=self.random_state, verbose=self.verbose, shuffle=self.shuffle, nls_max_iter=self.nls_max_iter, sparseness=self.sparseness, beta=self.beta, eta=self.eta) if self.solver == 'pg': self.comp_sparseness_ = _sparseness(H.ravel()) self.data_sparseness_ = _sparseness(W.ravel()) self.reconstruction_err_ = _safe_compute_error(X, W, H) self.n_components_ = H.shape[0] self.components_ = H self.n_iter_ = n_iter_ return W def fit(self, X, y=None, **params): """Learn a NMF model for the data X. Parameters ---------- X: {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be decomposed Attributes ---------- components_ : array-like, shape (n_components, n_features) Factorization matrix, sometimes called 'dictionary'. n_iter_ : int Actual number of iterations for the transform. Returns ------- self """ self.fit_transform(X, **params) return self def transform(self, X): """Transform the data X according to the fitted NMF model Parameters ---------- X: {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be transformed by the model Attributes ---------- n_iter_ : int Actual number of iterations for the transform. Returns ------- W: array, shape (n_samples, n_components) Transformed data """ check_is_fitted(self, 'n_components_') W, _, n_iter_ = non_negative_factorization( X=X, W=None, H=self.components_, n_components=self.n_components_, init=self.init, update_H=False, solver=self.solver, tol=self.tol, max_iter=self.max_iter, alpha=self.alpha, l1_ratio=self.l1_ratio, regularization='both', random_state=self.random_state, verbose=self.verbose, shuffle=self.shuffle, nls_max_iter=self.nls_max_iter, sparseness=self.sparseness, beta=self.beta, eta=self.eta) self.n_iter_ = n_iter_ return W @deprecated("It will be removed in release 0.19. Use NMF instead." "'pg' solver is still available until release 0.19.") class ProjectedGradientNMF(NMF): def __init__(self, n_components=None, solver='pg', init=None, tol=1e-4, max_iter=200, random_state=None, alpha=0., l1_ratio=0., verbose=0, nls_max_iter=2000, sparseness=None, beta=1, eta=0.1): super(ProjectedGradientNMF, self).__init__( n_components=n_components, init=init, solver='pg', tol=tol, max_iter=max_iter, random_state=random_state, alpha=alpha, l1_ratio=l1_ratio, verbose=verbose, nls_max_iter=nls_max_iter, sparseness=sparseness, beta=beta, eta=eta)
bsd-3-clause
jakobworldpeace/scikit-learn
examples/svm/plot_separating_hyperplane.py
294
1273
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
brainiak/brainiak
tests/funcalign/test_srm.py
1
11513
# Copyright 2016 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sklearn.exceptions import NotFittedError import pytest def test_can_instantiate(tmp_path): import brainiak.funcalign.srm s = brainiak.funcalign.srm.SRM() assert s, "Invalid SRM instance!" import numpy as np np.random.seed(0) voxels = 100 samples = 500 subjects = 2 features = 3 s = brainiak.funcalign.srm.SRM(n_iter=5, features=features) assert s, "Invalid SRM instance!" # Create a Shared response S with K = 3 theta = np.linspace(-4 * np.pi, 4 * np.pi, samples) z = np.linspace(-2, 2, samples) r = z**2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) S = np.vstack((x, y, z)) X = [] W = [] Q, R = np.linalg.qr(np.random.random((voxels, features))) W.append(Q) X.append(Q.dot(S) + 0.1*np.random.random((voxels, samples))) # Check that transform does NOT run before fitting the model with pytest.raises(NotFittedError): s.transform(X) print("Test: transforming before fitting the model") # Check that it does NOT run with 1 subject with pytest.raises(ValueError): s.fit(X) print("Test: running SRM with 1 subject") for subject in range(1, subjects): Q, R = np.linalg.qr(np.random.random((voxels, features))) W.append(Q) X.append(Q.dot(S) + 0.1*np.random.random((voxels, samples))) # Check that runs with 2 subject s.fit(X) from pathlib import Path sr_v0_4 = np.load(Path(__file__).parent / "sr_v0_4.npz")['sr'] assert(np.allclose(sr_v0_4, s.s_)) assert len(s.w_) == subjects, ( "Invalid computation of SRM! (wrong # subjects in W)") for subject in range(subjects): assert s.w_[subject].shape[0] == voxels, ( "Invalid computation of SRM! (wrong # voxels in W)") assert s.w_[subject].shape[1] == features, ( "Invalid computation of SRM! (wrong # features in W)") ortho = np.linalg.norm(s.w_[subject].T.dot(s.w_[subject]) - np.eye(s.w_[subject].shape[1]), 'fro') assert ortho < 1e-7, "A Wi mapping is not orthonormal in SRM." difference = np.linalg.norm(X[subject] - s.w_[subject].dot(s.s_), 'fro') datanorm = np.linalg.norm(X[subject], 'fro') assert difference/datanorm < 1.0, "Model seems incorrectly computed." assert s.s_.shape[0] == features, ( "Invalid computation of SRM! (wrong # features in S)") assert s.s_.shape[1] == samples, ( "Invalid computation of SRM! (wrong # samples in S)") # Check that it does run to compute the shared response after the model # computation new_s = s.transform(X) assert len(new_s) == subjects, ( "Invalid computation of SRM! (wrong # subjects after transform)") for subject in range(subjects): assert new_s[subject].shape[0] == features, ( "Invalid computation of SRM! (wrong # features after transform)") assert new_s[subject].shape[1] == samples, ( "Invalid computation of SRM! (wrong # samples after transform)") # Check that it does NOT run with non-matching number of subjects with pytest.raises(ValueError): s.transform(X[1]) print("Test: transforming with non-matching number of subjects") # Check that it does not run without enough samples (TRs). with pytest.raises(ValueError): s.set_params(features=(samples+1)) s.fit(X) print("Test: not enough samples") # Check that it does not run with different number of samples (TRs) S2 = S[:, :-2] X.append(Q.dot(S2)) with pytest.raises(ValueError): s.fit(X) print("Test: different number of samples per subject") # Check save/load functionality for fitted SRM srm_path = tmp_path / 'srm.npz' s.save(srm_path) s_load = brainiak.funcalign.srm.load(srm_path) assert np.array_equal(s.s_, s_load.s_) for w, wl in zip(s.w_, s_load.w_): assert np.array_equal(w, wl) assert np.array_equal(s.sigma_s_, s_load.sigma_s_) assert np.array_equal(s.mu_, s_load.mu_) assert np.array_equal(s.rho2_, s_load.rho2_) assert s.features == s_load.features assert s.n_iter == s_load.n_iter assert s.rand_seed == s_load.rand_seed print("Test: save/load functionality") def test_new_subject(): import brainiak.funcalign.srm s = brainiak.funcalign.srm.SRM() assert s, "Invalid SRM instance!" import numpy as np np.random.seed(0) voxels = 100 samples = 500 subjects = 3 features = 3 s = brainiak.funcalign.srm.SRM(n_iter=5, features=features) assert s, "Invalid SRM instance!" # Create a Shared response S with K = 3 theta = np.linspace(-4 * np.pi, 4 * np.pi, samples) z = np.linspace(-2, 2, samples) r = z**2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) S = np.vstack((x, y, z)) X = [] W = [] Q, R = np.linalg.qr(np.random.random((voxels, features))) W.append(Q) X.append(Q.dot(S) + 0.1*np.random.random((voxels, samples))) for subject in range(1, subjects): Q, R = np.linalg.qr(np.random.random((voxels, features))) W.append(Q) X.append(Q.dot(S) + 0.1*np.random.random((voxels, samples))) # Check that transform does NOT run before fitting the model with pytest.raises(NotFittedError): s.transform_subject(X) print("Test: transforming before fitting the model") # Check that runs with 3 subject s.fit(X) # Check that you get an error when the data is the wrong shape with pytest.raises(ValueError): s.transform_subject(X[0].T) # Check that it does run to compute a new subject new_w = s.transform_subject(X[0]) assert new_w.shape[1] == features, ( "Invalid computation of SRM! (wrong # features for new subject)") assert new_w.shape[0] == voxels, ( "Invalid computation of SRM! (wrong # voxels for new subject)") # Check that these analyses work with the deterministic SRM too ds = brainiak.funcalign.srm.DetSRM(n_iter=5, features=features) # Check that transform does NOT run before fitting the model with pytest.raises(NotFittedError): ds.transform_subject(X) print("Test: transforming before fitting the model") # Check that runs with 3 subject ds.fit(X) # Check that you get an error when the data is the wrong shape with pytest.raises(ValueError): ds.transform_subject(X[0].T) # Check that it does run to compute a new subject new_w = ds.transform_subject(X[0]) assert new_w.shape[1] == features, ( "Invalid computation of SRM! (wrong # features for new subject)") assert new_w.shape[0] == voxels, ( "Invalid computation of SRM! (wrong # voxels for new subject)") def test_det_srm(): import brainiak.funcalign.srm model = brainiak.funcalign.srm.DetSRM() assert model, "Invalid DetSRM instance!" import numpy as np voxels = 100 samples = 500 subjects = 2 features = 3 model = brainiak.funcalign.srm.DetSRM(n_iter=5, features=features) assert model, "Invalid DetSRM instance!" # Create a Shared response S with K = 3 theta = np.linspace(-4 * np.pi, 4 * np.pi, samples) z = np.linspace(-2, 2, samples) r = z**2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) S = np.vstack((x, y, z)) X = [] W = [] Q, R = np.linalg.qr(np.random.random((voxels, features))) W.append(Q) X.append(Q.dot(S) + 0.1*np.random.random((voxels, samples))) # Check that transform does NOT run before fitting the model with pytest.raises(NotFittedError): model.transform(X) print("Test: transforming before fitting the model") # Check that it does NOT run with 1 subject with pytest.raises(ValueError): model.fit(X) print("Test: running DetSRM with 1 subject") for subject in range(1, subjects): Q, R = np.linalg.qr(np.random.random((voxels, features))) W.append(Q) X.append(Q.dot(S) + 0.1*np.random.random((voxels, samples))) # Check that runs with 2 subject model.fit(X) assert len(model.w_) == subjects, ( "Invalid computation of DetSRM! (wrong # subjects in W)") for subject in range(subjects): assert model.w_[subject].shape[0] == voxels, ( "Invalid computation of DetSRM! (wrong # voxels in W)") assert model.w_[subject].shape[1] == features, ( "Invalid computation of DetSRM! (wrong # features in W)") ortho = np.linalg.norm(model.w_[subject].T.dot(model.w_[subject]) - np.eye(model.w_[subject].shape[1]), 'fro') assert ortho < 1e-7, "A Wi mapping is not orthonormal in DetSRM." difference = np.linalg.norm(X[subject] - model.w_[subject].dot(model.s_), 'fro') datanorm = np.linalg.norm(X[subject], 'fro') assert difference/datanorm < 1.0, "Model seems incorrectly computed." assert model.s_.shape[0] == features, ( "Invalid computation of DetSRM! (wrong # features in S)") assert model.s_.shape[1] == samples, ( "Invalid computation of DetSRM! (wrong # samples in S)") # Check that it does run to compute the shared response after the model # computation new_s = model.transform(X) assert len(new_s) == subjects, ( "Invalid computation of DetSRM! (wrong # subjects after transform)") for subject in range(subjects): assert new_s[subject].shape[0] == features, ( "Invalid computation of DetSRM! (wrong # features after " "transform)") assert new_s[subject].shape[1] == samples, ( "Invalid computation of DetSRM! (wrong # samples after transform)") # Check that it does run to compute a new subject new_w = model.transform_subject(X[0]) assert new_w.shape[1] == features, ( "Invalid computation of SRM! (wrong # features for new subject)") assert new_w.shape[0] == voxels, ( "Invalid computation of SRM! (wrong # voxels for new subject)") # Check that it does NOT run with non-matching number of subjects with pytest.raises(ValueError): model.transform(X[1]) print("Test: transforming with non-matching number of subjects") # Check that it does not run without enough samples (TRs). with pytest.raises(ValueError): model.set_params(features=(samples+1)) model.fit(X) print("Test: not enough samples") # Check that it does not run with different number of samples (TRs) S2 = S[:, :-2] X.append(Q.dot(S2)) with pytest.raises(ValueError): model.fit(X) print("Test: different number of samples per subject")
apache-2.0
codehacken/Kb4ML
lib/models/classify.py
1
4185
__author__ = 'ashwin' __email__ = '[email protected]' """" Implement Standard classifiers. """ # Implementing the std. Naive Bayes Algorithm. # Classification is based on Maximum-Likelihood for selecting the final class. from sklearn.feature_extraction import DictVectorizer from sklearn.naive_bayes import BernoulliNB import numpy as np from sklearn import metrics class NaiveBayes: def __init__(self): self.feature_vector = DictVectorizer(sparse=False) self.class_vector = {} self.nb_model = BernoulliNB() self.class_var = None # This function converts a set of class variable values to integer eq. # This is can then be used as the class ID. def data2vector(self, class_data, reset=False): if reset: self.class_vector = {} # The final vector of integer for the class variables. transform_vector = [] # The conversion is a simple one taking values from 0 to # x where x+1 type of values are there for the class variable. idx = 0 for data_point in class_data: if data_point[data_point.keys()[0]] not in self.class_vector: self.class_vector[data_point[data_point.keys()[0]]] = idx idx += 1 transform_vector.append(self.class_vector[data_point[data_point.keys()[0]]]) return np.array(transform_vector) def vectorize_data(self, file_feature_data, file_class_result, if_train=True): # Vectorize the training data. if if_train: transformed_feature_data = self.feature_vector.fit_transform(file_feature_data) else: transformed_feature_data = self.feature_vector.transform(file_feature_data) # Vectorize the training data results (that is the class results applied to the same set) transformed_class_data = self.data2vector(file_class_result) return [transformed_feature_data, transformed_class_data] def train_model(self, ft_data, cl_data): return self.nb_model.fit(ft_data, cl_data) def predict(self, ft_data): return self.nb_model.predict(ft_data) @staticmethod def get_accuracy_score(train_cl_real, test_cl_predict): return metrics.accuracy_score(train_cl_real, test_cl_predict) """ Sample Code: Using NB Created. Use File Reader to read the file and get the data. file_data is then passed to the Naive Bayes to train the model. naive_b = NaiveBayes(file_reader.col_var, file_reader.class_var) naive_b.train_model(file_data) """ class DiscreteNaiveBayes: def __init__(self, var_names, class_var_name): self.factor_freq = {} self.result_freq = {} self.class_var_name = class_var_name self.__reset__(var_names) # The __reset__ method is used to reset the trained model vector. # This resets all the frequency counts to 0. def __reset__(self, var_names): # Setup the factor_freq mapping. for var in var_names: if var != self.class_var_name: self.factor_freq[var] = {} for var_category in var_names[var]: self.factor_freq[var][var_category] = {} for class_category in var_names[self.class_var_name]: self.factor_freq[var][var_category][class_category] = 0 # Setup for the frequency mapping for the resultant categories. for class_category in var_names[self.class_var_name]: self.result_freq[class_category] = 0 # Create the NB model basing on training data. def train_model(self, training_data): # Create a counter for each combination for a specific class value. # Probability is calculated as a n(X1) / n(S). for data_point in training_data: for data_point_val in data_point: if data_point_val != self.class_var_name: self.factor_freq[data_point_val][data_point[data_point_val]][data_point[self.class_var_name]] += 1 self.result_freq[data_point[self.class_var_name]] += 1 """ TBD: Using the trained model to calculate prob. for the test data. """
mit
toobaz/pandas
pandas/tests/indexes/multi/test_reshape.py
2
3470
import numpy as np import pytest import pandas as pd from pandas import Index, MultiIndex import pandas.util.testing as tm def test_insert(idx): # key contained in all levels new_index = idx.insert(0, ("bar", "two")) assert new_index.equal_levels(idx) assert new_index[0] == ("bar", "two") # key not contained in all levels new_index = idx.insert(0, ("abc", "three")) exp0 = Index(list(idx.levels[0]) + ["abc"], name="first") tm.assert_index_equal(new_index.levels[0], exp0) exp1 = Index(list(idx.levels[1]) + ["three"], name="second") tm.assert_index_equal(new_index.levels[1], exp1) assert new_index[0] == ("abc", "three") # key wrong length msg = "Item must have length equal to number of levels" with pytest.raises(ValueError, match=msg): idx.insert(0, ("foo2",)) left = pd.DataFrame([["a", "b", 0], ["b", "d", 1]], columns=["1st", "2nd", "3rd"]) left.set_index(["1st", "2nd"], inplace=True) ts = left["3rd"].copy(deep=True) left.loc[("b", "x"), "3rd"] = 2 left.loc[("b", "a"), "3rd"] = -1 left.loc[("b", "b"), "3rd"] = 3 left.loc[("a", "x"), "3rd"] = 4 left.loc[("a", "w"), "3rd"] = 5 left.loc[("a", "a"), "3rd"] = 6 ts.loc[("b", "x")] = 2 ts.loc["b", "a"] = -1 ts.loc[("b", "b")] = 3 ts.loc["a", "x"] = 4 ts.loc[("a", "w")] = 5 ts.loc["a", "a"] = 6 right = pd.DataFrame( [ ["a", "b", 0], ["b", "d", 1], ["b", "x", 2], ["b", "a", -1], ["b", "b", 3], ["a", "x", 4], ["a", "w", 5], ["a", "a", 6], ], columns=["1st", "2nd", "3rd"], ) right.set_index(["1st", "2nd"], inplace=True) # FIXME data types changes to float because # of intermediate nan insertion; tm.assert_frame_equal(left, right, check_dtype=False) tm.assert_series_equal(ts, right["3rd"]) # GH9250 idx = ( [("test1", i) for i in range(5)] + [("test2", i) for i in range(6)] + [("test", 17), ("test", 18)] ) left = pd.Series(np.linspace(0, 10, 11), pd.MultiIndex.from_tuples(idx[:-2])) left.loc[("test", 17)] = 11 left.loc[("test", 18)] = 12 right = pd.Series(np.linspace(0, 12, 13), pd.MultiIndex.from_tuples(idx)) tm.assert_series_equal(left, right) def test_append(idx): result = idx[:3].append(idx[3:]) assert result.equals(idx) foos = [idx[:1], idx[1:3], idx[3:]] result = foos[0].append(foos[1:]) assert result.equals(idx) # empty result = idx.append([]) assert result.equals(idx) def test_repeat(): reps = 2 numbers = [1, 2, 3] names = np.array(["foo", "bar"]) m = MultiIndex.from_product([numbers, names], names=names) expected = MultiIndex.from_product([numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) def test_insert_base(idx): result = idx[1:4] # test 0th element assert idx[0:4].equals(result.insert(0, idx[0])) def test_delete_base(idx): expected = idx[1:] result = idx.delete(0) assert result.equals(expected) assert result.name == expected.name expected = idx[:-1] result = idx.delete(-1) assert result.equals(expected) assert result.name == expected.name with pytest.raises((IndexError, ValueError)): # Exception raised depends on NumPy version. idx.delete(len(idx))
bsd-3-clause
r0k3/trading-with-python
lib/qtpandas.py
77
7937
''' Easy integration of DataFrame into pyqt framework Copyright: Jev Kuznetsov Licence: BSD ''' from PyQt4.QtCore import (QAbstractTableModel,Qt,QVariant,QModelIndex,SIGNAL) from PyQt4.QtGui import (QApplication,QDialog,QVBoxLayout, QHBoxLayout, QTableView, QPushButton, QWidget,QTableWidget, QHeaderView, QFont,QMenu,QAbstractItemView) from pandas import DataFrame, Index class DataFrameModel(QAbstractTableModel): ''' data model for a DataFrame class ''' def __init__(self,parent=None): super(DataFrameModel,self).__init__(parent) self.df = DataFrame() self.columnFormat = {} # format columns def setFormat(self,fmt): """ set string formatting for the output example : format = {'close':"%.2f"} """ self.columnFormat = fmt def setDataFrame(self,dataFrame): self.df = dataFrame self.signalUpdate() def signalUpdate(self): ''' tell viewers to update their data (this is full update, not efficient)''' self.layoutChanged.emit() def __repr__(self): return str(self.df) def setData(self,index,value, role=Qt.EditRole): if index.isValid(): row,column = index.row(), index.column() dtype = self.df.dtypes.tolist()[column] # get column dtype if np.issubdtype(dtype,np.float): val,ok = value.toFloat() elif np.issubdtype(dtype,np.int): val,ok = value.toInt() else: val = value.toString() ok = True if ok: self.df.iloc[row,column] = val return True return False def flags(self, index): if not index.isValid(): return Qt.ItemIsEnabled return Qt.ItemFlags( QAbstractTableModel.flags(self, index)| Qt.ItemIsEditable) def appendRow(self, index, data=0): self.df.loc[index,:] = data self.signalUpdate() def deleteRow(self, index): idx = self.df.index[index] #self.beginRemoveRows(QModelIndex(), index,index) #self.df = self.df.drop(idx,axis=0) #self.endRemoveRows() #self.signalUpdate() #------------- table display functions ----------------- def headerData(self,section,orientation,role=Qt.DisplayRole): if role != Qt.DisplayRole: return QVariant() if orientation == Qt.Horizontal: try: return self.df.columns.tolist()[section] except (IndexError, ): return QVariant() elif orientation == Qt.Vertical: try: #return self.df.index.tolist() return str(self.df.index.tolist()[section]) except (IndexError, ): return QVariant() def data(self, index, role=Qt.DisplayRole): if role != Qt.DisplayRole: return QVariant() if not index.isValid(): return QVariant() col = self.df.ix[:,index.column()] # get a column slice first to get the right data type elm = col[index.row()] #elm = self.df.ix[index.row(),index.column()] if self.df.columns[index.column()] in self.columnFormat.keys(): return QVariant(self.columnFormat[self.df.columns[index.column()]] % elm ) else: return QVariant(str(elm)) def sort(self,nCol,order): self.layoutAboutToBeChanged.emit() if order == Qt.AscendingOrder: self.df = self.df.sort(columns=self.df.columns[nCol], ascending=True) elif order == Qt.DescendingOrder: self.df = self.df.sort(columns=self.df.columns[nCol], ascending=False) self.layoutChanged.emit() def rowCount(self, index=QModelIndex()): return self.df.shape[0] def columnCount(self, index=QModelIndex()): return self.df.shape[1] class TableView(QTableView): """ extended table view """ def __init__(self,name='TableView1', parent=None): super(TableView,self).__init__(parent) self.name = name self.setSelectionBehavior(QAbstractItemView.SelectRows) def contextMenuEvent(self, event): menu = QMenu(self) Action = menu.addAction("delete row") Action.triggered.connect(self.deleteRow) menu.exec_(event.globalPos()) def deleteRow(self): print "Action triggered from " + self.name print 'Selected rows:' for idx in self.selectionModel().selectedRows(): print idx.row() # self.model.deleteRow(idx.row()) class DataFrameWidget(QWidget): ''' a simple widget for using DataFrames in a gui ''' def __init__(self,name='DataFrameTable1', parent=None): super(DataFrameWidget,self).__init__(parent) self.name = name self.dataModel = DataFrameModel() self.dataModel.setDataFrame(DataFrame()) self.dataTable = QTableView() #self.dataTable.setSelectionBehavior(QAbstractItemView.SelectRows) self.dataTable.setSortingEnabled(True) self.dataTable.setModel(self.dataModel) self.dataModel.signalUpdate() #self.dataTable.setFont(QFont("Courier New", 8)) layout = QVBoxLayout() layout.addWidget(self.dataTable) self.setLayout(layout) def setFormat(self,fmt): """ set non-default string formatting for a column """ for colName, f in fmt.iteritems(): self.dataModel.columnFormat[colName]=f def fitColumns(self): self.dataTable.horizontalHeader().setResizeMode(QHeaderView.Stretch) def setDataFrame(self,df): self.dataModel.setDataFrame(df) def resizeColumnsToContents(self): self.dataTable.resizeColumnsToContents() def insertRow(self,index, data=None): self.dataModel.appendRow(index,data) #-----------------stand alone test code def testDf(): ''' creates test dataframe ''' data = {'int':[1,2,3],'float':[1./3,2.5,3.5],'string':['a','b','c'],'nan':[np.nan,np.nan,np.nan]} return DataFrame(data, index=Index(['AAA','BBB','CCC']))[['int','float','string','nan']] class Form(QDialog): def __init__(self,parent=None): super(Form,self).__init__(parent) df = testDf() # make up some data self.table = DataFrameWidget(parent=self) self.table.setDataFrame(df) #self.table.resizeColumnsToContents() self.table.fitColumns() self.table.setFormat({'float': '%.2f'}) #buttons #but_add = QPushButton('Add') but_test = QPushButton('Test') but_test.clicked.connect(self.testFcn) hbox = QHBoxLayout() #hbox.addself.table(but_add) hbox.addWidget(but_test) layout = QVBoxLayout() layout.addWidget(self.table) layout.addLayout(hbox) self.setLayout(layout) def testFcn(self): print 'test function' self.table.insertRow('foo') if __name__=='__main__': import sys import numpy as np app = QApplication(sys.argv) form = Form() form.show() app.exec_()
bsd-3-clause
BhallaLab/moose-examples
snippets/reacDiffBranchingNeuron.py
2
8284
######################################################################### ## This program is part of 'MOOSE', the ## Messaging Object Oriented Simulation Environment. ## Copyright (C) 2013 Upinder S. Bhalla. and NCBS ## It is made available under the terms of the ## GNU Lesser General Public License version 2.1 ## See the file COPYING.LIB for the full notice. ######################################################################### import math import pylab import numpy import matplotlib.pyplot as plt import moose def makeModel(): model = moose.Neutral( '/model' ) # Make neuronal model. It has no channels, just for geometry cell = moose.loadModel( './branching.p', '/model/cell', 'Neutral' ) # We don't want the cell to do any calculations. Disable everything. for i in moose.wildcardFind( '/model/cell/##' ): i.tick = -1 # create container for model model = moose.element( '/model' ) chem = moose.Neutral( '/model/chem' ) # The naming of the compartments is dicated by the places that the # chem model expects to be loaded. compt0 = moose.NeuroMesh( '/model/chem/compt0' ) compt0.separateSpines = 0 compt0.geometryPolicy = 'cylinder' #reacSystem = moose.loadModel( 'simpleOsc.g', '/model/chem', 'ee' ) makeChemModel( compt0 ) # Populate all compt with the chem system. compt0.diffLength = 1e-6 # This will be over 100 compartments. # This is the magic command that configures the diffusion compartments. compt0.subTreePath = cell.path + "/#" moose.showfields( compt0 ) # Build the solvers. No need for diffusion in this version. ksolve0 = moose.Ksolve( '/model/chem/compt0/ksolve' ) dsolve0 = moose.Dsolve( '/model/chem/compt0/dsolve' ) stoich0 = moose.Stoich( '/model/chem/compt0/stoich' ) # Configure solvers stoich0.compartment = compt0 stoich0.ksolve = ksolve0 stoich0.dsolve = dsolve0 stoich0.path = '/model/chem/compt0/#' assert( stoich0.numVarPools == 3 ) assert( stoich0.numProxyPools == 0 ) assert( stoich0.numRates == 4 ) num = compt0.numDiffCompts - 1 moose.element( '/model/chem/compt0/a[' + str(num) + ']' ).concInit *= 1.5 # Create the output tables graphs = moose.Neutral( '/model/graphs' ) makeTab( 'a_soma', '/model/chem/compt0/a[0]' ) makeTab( 'b_soma', '/model/chem/compt0/b[0]' ) makeTab( 'a_apical', '/model/chem/compt0/a[' + str( num ) + ']' ) makeTab( 'b_apical', '/model/chem/compt0/b[' + str( num ) + ']' ) def makeTab( plotname, molpath ): tab = moose.Table2( '/model/graphs/' + plotname ) # Make output table # connect up the tables moose.connect( tab, 'requestOut', moose.element( molpath ), 'getConc' ); def makeDisplay(): plt.ion() fig = plt.figure( figsize=(10,12) ) layout = fig.add_subplot( 211 ) plt.ylabel( 'x position + 10*conc' ) plt.xlabel( 'y position (microns)' ) timeLabel = plt.text(0, 20, 'time = 0') layout.set_xlim( -5, 75 ) layout.set_ylim( -20, 25 ) compt = moose.element( '/model/chem/compt0' ) pos = compt.voxelMidpoint i = len( pos ) / 3 r2 = numpy.sqrt( 0.5 ) yp = [ -r2 * pos[j] * 1e6 for j in range( i ) ] xp = pos[i:2*i] * 1e6 - yp #xp = [ pos[i + j] for j in range( i ) ] #yp = [ -r2 * pos[j] for j in range( i ) ] #line0, = layout.plot( pos[:i], pos[i:2*i] , 'bo' ) line, = layout.plot( xp, yp, 'bo' ) timeSeries = fig.add_subplot( 212 ) timeSeries.set_ylim( 0, 0.6 ) plt.ylabel( 'Conc (mM)' ) plt.xlabel( 'time (seconds)' ) fig.canvas.draw() return ( timeSeries, fig, line, timeLabel, yp ) def updateDisplay( plotlist ): a = moose.vec( '/model/chem/compt0/a' ) b = moose.vec( '/model/chem/compt0/b' ) plotlist[2].set_ydata( a.conc * 10 + plotlist[4] ) plotlist[1].canvas.draw() def finalizeDisplay( plotlist, cPlotDt ): for x in moose.wildcardFind( '/model/graphs/#[ISA=Table2]' ): pos = numpy.arange( 0, x.vector.size, 1 ) * cPlotDt line1, = plotlist[0].plot( pos, x.vector, label=x.name ) plt.legend() plotlist[1].canvas.draw() print( "Hit any key to exit" ) try: a = raw_input( ) except NameError as e: a = input( ) def makeChemModel( compt ): """ This function sets up a simple oscillatory chemical system within the script. The reaction system is:: s ---a---> a // s goes to a, catalyzed by a. s ---a---> b // s goes to b, catalyzed by a. a ---b---> s // a goes to s, catalyzed by b. b -------> s // b is degraded irreversibly to s. in sum, **a** has a positive feedback onto itself and also forms **b**. **b** has a negative feedback onto **a**. Finally, the diffusion constant for **a** is 1/10 that of **b**. """ # create container for model diffConst = 10e-12 # m^2/sec motorRate = 1e-6 # m/sec concA = 1 # millimolar # create molecules and reactions a = moose.Pool( compt.path + '/a' ) b = moose.Pool( compt.path + '/b' ) s = moose.Pool( compt.path + '/s' ) e1 = moose.MMenz( compt.path + '/e1' ) e2 = moose.MMenz( compt.path + '/e2' ) e3 = moose.MMenz( compt.path + '/e3' ) r1 = moose.Reac( compt.path + '/r1' ) a.concInit = 0.1 b.concInit = 0.1 s.concInit = 1 moose.connect( e1, 'sub', s, 'reac' ) moose.connect( e1, 'prd', a, 'reac' ) moose.connect( a, 'nOut', e1, 'enzDest' ) e1.Km = 1 e1.kcat = 1 moose.connect( e2, 'sub', s, 'reac' ) moose.connect( e2, 'prd', b, 'reac' ) moose.connect( a, 'nOut', e2, 'enzDest' ) e2.Km = 1 e2.kcat = 0.5 moose.connect( e3, 'sub', a, 'reac' ) moose.connect( e3, 'prd', s, 'reac' ) moose.connect( b, 'nOut', e3, 'enzDest' ) e3.Km = 0.1 e3.kcat = 1 moose.connect( r1, 'sub', b, 'reac' ) moose.connect( r1, 'prd', s, 'reac' ) r1.Kf = 0.3 # 1/sec r1.Kb = 0 # 1/sec # Assign parameters a.diffConst = diffConst/10 b.diffConst = diffConst s.diffConst = 0 def main(): """ This example illustrates how to define a kinetic model embedded in the branching pseudo 1-dimensional geometry of a neuron. This means that diffusion only happens along the axis of dendritic segments, not radially from inside to outside a dendrite, nor tangentially around the dendrite circumference. The model oscillates in space and time due to a Turing-like reaction-diffusion mechanism present in all compartments. For the sake of this demo, the initial conditions are set to be slightly different on one of the terminal dendrites, so as to break the symmetry and initiate oscillations. This example uses an external model file to specify a binary branching neuron. This model does not have any spines. The electrical model is used here purely for the geometry and is not part of the computations. In this example we build an identical chemical model throughout the neuronal geometry, using the makeChemModel function. The model is set up to run using the Ksolve for integration and the Dsolve for handling diffusion. The display has two parts: a. Animated pseudo-3D plot of neuronal geometry, where each point represents a diffusive voxel and moves in the y-axis to show changes in concentration. b. Time-series plot that appears after the simulation has ended. The plots are for the first and last diffusive voxel, that is, the soma and the tip of one of the apical dendrites. """ chemdt = 0.1 # Tested various dts, this is reasonable. diffdt = 0.01 plotdt = 1 animationdt = 5 runtime = 750 makeModel() plotlist = makeDisplay() # Schedule the whole lot. Autoscheduling already takes care of these ''' for i in range( 11, 17 ): moose.setClock( i, chemdt ) # for the chem objects moose.setClock( 10, diffdt ) # for the diffusion moose.setClock( 18, plotdt ) # for the output tables. ''' moose.reinit() for i in range( 0, runtime, animationdt ): moose.start( animationdt ) plotlist[3].set_text( "time = %d" % i ) updateDisplay( plotlist ) finalizeDisplay( plotlist, plotdt ) # Run the 'main' if this script is executed standalone. if __name__ == '__main__': main()
gpl-2.0
alexsavio/scikit-learn
examples/neural_networks/plot_mlp_training_curves.py
58
3692
""" ======================================================== Compare Stochastic learning strategies for MLPClassifier ======================================================== This example visualizes some training loss curves for different stochastic learning strategies, including SGD and Adam. Because of time-constraints, we use several small datasets, for which L-BFGS might be more suitable. The general trend shown in these examples seems to carry over to larger datasets, however. Note that those results can be highly dependent on the value of ``learning_rate_init``. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn import datasets # different learning rate schedules and momentum parameters params = [{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': 0, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9, 'nesterovs_momentum': False, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9, 'nesterovs_momentum': True, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': 0, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9, 'nesterovs_momentum': True, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9, 'nesterovs_momentum': False, 'learning_rate_init': 0.2}, {'solver': 'adam', 'learning_rate_init': 0.01}] labels = ["constant learning-rate", "constant with momentum", "constant with Nesterov's momentum", "inv-scaling learning-rate", "inv-scaling with momentum", "inv-scaling with Nesterov's momentum", "adam"] plot_args = [{'c': 'red', 'linestyle': '-'}, {'c': 'green', 'linestyle': '-'}, {'c': 'blue', 'linestyle': '-'}, {'c': 'red', 'linestyle': '--'}, {'c': 'green', 'linestyle': '--'}, {'c': 'blue', 'linestyle': '--'}, {'c': 'black', 'linestyle': '-'}] def plot_on_dataset(X, y, ax, name): # for each dataset, plot learning for each learning strategy print("\nlearning on dataset %s" % name) ax.set_title(name) X = MinMaxScaler().fit_transform(X) mlps = [] if name == "digits": # digits is larger but converges fairly quickly max_iter = 15 else: max_iter = 400 for label, param in zip(labels, params): print("training: %s" % label) mlp = MLPClassifier(verbose=0, random_state=0, max_iter=max_iter, **param) mlp.fit(X, y) mlps.append(mlp) print("Training set score: %f" % mlp.score(X, y)) print("Training set loss: %f" % mlp.loss_) for mlp, label, args in zip(mlps, labels, plot_args): ax.plot(mlp.loss_curve_, label=label, **args) fig, axes = plt.subplots(2, 2, figsize=(15, 10)) # load / generate some toy datasets iris = datasets.load_iris() digits = datasets.load_digits() data_sets = [(iris.data, iris.target), (digits.data, digits.target), datasets.make_circles(noise=0.2, factor=0.5, random_state=1), datasets.make_moons(noise=0.3, random_state=0)] for ax, data, name in zip(axes.ravel(), data_sets, ['iris', 'digits', 'circles', 'moons']): plot_on_dataset(*data, ax=ax, name=name) fig.legend(ax.get_lines(), labels=labels, ncol=3, loc="upper center") plt.show()
bsd-3-clause
mne-tools/mne-python
mne/viz/tests/test_montage.py
14
2773
# Authors: Denis Engemann <[email protected]> # Alexandre Gramfort <[email protected]> # Teon Brooks <[email protected]> # # License: Simplified BSD # Set our plotters to test mode import os.path as op import numpy as np import pytest import matplotlib.pyplot as plt from mne.channels import (read_dig_fif, make_dig_montage, make_standard_montage) p_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'kit', 'tests', 'data') elp = op.join(p_dir, 'test_elp.txt') hsp = op.join(p_dir, 'test_hsp.txt') hpi = op.join(p_dir, 'test_mrk.sqd') point_names = ['nasion', 'lpa', 'rpa', '1', '2', '3', '4', '5'] io_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') fif_fname = op.join(io_dir, 'test_raw.fif') def test_plot_montage(): """Test plotting montages.""" m = make_standard_montage('easycap-M1') m.plot() plt.close('all') m.plot(kind='3d') plt.close('all') m.plot(kind='3d', show_names=True) plt.close('all') m.plot(kind='topomap') plt.close('all') m.plot(kind='topomap', show_names=True) plt.close('all') N_HSP, N_HPI = 2, 1 montage = make_dig_montage(nasion=[1, 1, 1], lpa=[2, 2, 2], rpa=[3, 3, 3], hsp=np.full((N_HSP, 3), 4), hpi=np.full((N_HPI, 3), 4), coord_frame='head') assert '0 channels' in repr(montage) with pytest.raises(RuntimeError, match='No valid channel positions'): montage.plot() d = read_dig_fif(fname=fif_fname) assert '61 channels' in repr(d) # XXX this is broken; dm.point_names is used. Sometimes we say this should # Just contain the HPI coils, other times that it's all channels (e.g., # EEG channels). But there is redundancy with this and dm.dig_ch_pos. # This should be addressed in the pending big refactoring. # d.plot() # plt.close('all') @pytest.mark.parametrize('name, n', [ ('standard_1005', 342), ('standard_postfixed', 85), ('standard_primed', 85), ('standard_1020', 93) ]) def test_plot_defect_montage(name, n): """Test plotting defect montages (i.e. with duplicate labels).""" # montage name and number of unique labels m = make_standard_montage(name) n -= 3 # new montage does not have fiducials fig = m.plot() collection = fig.axes[0].collections[0] assert collection._edgecolors.shape[0] == n assert collection._facecolors.shape[0] == n assert collection._offsets.shape[0] == n def test_plot_digmontage(): """Test plot DigMontage.""" montage = make_dig_montage( ch_pos=dict(zip(list('abc'), np.eye(3))), coord_frame='head' ) montage.plot() plt.close('all')
bsd-3-clause
carrillo/scikit-learn
examples/bicluster/plot_spectral_biclustering.py
403
2011
""" ============================================= A demo of the Spectral Biclustering algorithm ============================================= This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering algorithm. The data is generated with the ``make_checkerboard`` function, then shuffled and passed to the Spectral Biclustering algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm. The outer product of the row and column label vectors shows a representation of the checkerboard structure. """ print(__doc__) # Author: Kemal Eren <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_checkerboard from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.metrics import consensus_score n_clusters = (4, 3) data, rows, columns = make_checkerboard( shape=(300, 300), n_clusters=n_clusters, noise=10, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralBiclustering(n_clusters=n_clusters, method='log', random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.1f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.matshow(np.outer(np.sort(model.row_labels_) + 1, np.sort(model.column_labels_) + 1), cmap=plt.cm.Blues) plt.title("Checkerboard structure of rearranged data") plt.show()
bsd-3-clause
cgre-aachen/gempy
gempy/bayesian/theano_op.py
1
5469
import theano import theano.tensor as tt import gempy as gp import copy class GemPyThOp: def __init__(self, model: gp.Project): model = copy.deepcopy(model) gp.set_interpolator(model, compile_theano=False, output=['geology', 'gravity', 'magnetics'], gradient=True) self.model = model self.th_op = None def get_output(self, output): if output == 'gravity': out = self.model._interpolator.theano_graph.theano_output()[12][0] elif output == 'lith': out = self.model._interpolator.theano_graph.theano_output()[0][1] else: raise AttributeError() return out def get_wrt(self, wrt: str): if wrt == 'surface_points': wrt_ = self.model._interpolator.theano_graph.input_parameters_loop[4] else: raise AttributeError return wrt_ def set_th_op(self, output): interpolator = self.model._interpolator out = self.get_output(output) i = interpolator.get_python_input_block() theano.config.compute_test_value = 'ignore' self.th_op = theano.OpFromGraph(interpolator.theano_graph.input_parameters_loop, [out], inline=False, on_unused_input='ignore', name=output) return self.th_op def test_gradient(self, output: str, wrt: str): theano.config.compute_test_value = 'ignore' interpolator = self.model._interpolator out = self.get_output(output) wrt_ = self.get_wrt(wrt) geo_model_T = theano.OpFromGraph(interpolator.theano_graph.input_parameters_loop, [theano.grad(out[0], wrt_)], inline=True, on_unused_input='ignore', name='test_'+output) i = interpolator.get_python_input_block() th_f = theano.function([], geo_model_T(*i), on_unused_input='warn') interpolator.theano_graph.sig_slope.set_value(20) return th_f() @staticmethod def set_shared(python_input): input_sh = [] i = python_input for ii in i: input_sh.append(theano.shared(ii)) return input_sh def gempy_th_op(geo_model): theano.config.compute_test_value = 'ignore' geo_model_T = theano.OpFromGraph(geo_model.interpolator.theano_graph.input_parameters_loop, [theano.grad(geo_model.interpolator.theano_graph.theano_output()[12], geo_model.interpolator.theano_graph.input_parameters_loop[4])], inline=True, on_unused_input='ignore', name='forw_grav') # %% i = geo_model.interpolator.get_python_input_block() th_f = theano.function([], geo_model_T(*i), on_unused_input='warn') # %% geo_model.interpolator.theano_graph.sig_slope.set_value(20) # %% th_f() # %% # Setup Bayesian model # -------------------- # # %% i = geo_model.interpolator.get_python_input_block() theano.config.compute_test_value = 'ignore' geo_model_T_grav = theano.OpFromGraph(geo_model.interpolator.theano_graph.input_parameters_loop, [geo_model.interpolator.theano_graph.theano_output()[12]], inline=False, on_unused_input='ignore', name='forw_grav') # %% geo_model_T_thick = theano.OpFromGraph(geo_model.interpolator.theano_graph.input_parameters_loop, [geo_model.interpolator.theano_graph.compute_series()[0][1][0:250000]], inline=True, on_unused_input='ignore', name='geo_model') # %% # We convert a python variable to theano.shared input_sh = [] i = geo_model.interpolator.get_python_input_block() for ii in i: input_sh.append(theano.shared(ii)) # We get the rescaling parameters: rf = geo_model.rescaling.df.loc['values', 'rescaling factor'].astype('float32') centers = geo_model.rescaling.df.loc['values', 'centers'].astype('float32') # We create pandas groups by id to be able to modify several points at the same time: g = geo_model.surface_points.df.groupby('id') l = theano.shared(np.array([], dtype='float64')) # %% g_obs_p = 1e3 * np.array([-0.3548658 , -0.35558686, -0.3563156 , -0.35558686, -0.3548658 , -0.3534237 , -0.35201198, -0.3534237 , -0.3548658 , -0.3563401 , -0.3548658 , -0.35558686, -0.3548658 , -0.3541554 , -0.3534569 , -0.3527707 , -0.35424498, -0.35575098, -0.3572901 , -0.35575098, -0.35424498, -0.35575098, -0.35424498, -0.35575098, -0.35424498, -0.35575098, -0.35643718, -0.35713565, -0.35643718], dtype='float32') y_obs_list = 1e3 * np.array([2.12, 2.06, 2.08, 2.05, 2.08, 2.09, 2.19, 2.07, 2.16, 2.11, 2.13, 1.92]) # %% # Python input variables i = geo_model.interpolator.get_python_input_block()
lgpl-3.0
nelson-liu/scikit-learn
examples/applications/plot_out_of_core_classification.py
51
13651
""" ====================================================== Out-of-core classification of text documents ====================================================== This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn't fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit method, that will be fed with batches of examples. To guarantee that the features space remains the same over time we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful in the case of text classification where new features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically downloaded and uncompressed on first run. The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner. """ # Authors: Eustache Diemert <[email protected]> # @FedericoV <https://github.com/FedericoV/> # License: BSD 3 clause from __future__ import print_function from glob import glob import itertools import os.path import re import tarfile import time import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams from sklearn.externals.six.moves import html_parser from sklearn.externals.six.moves import urllib from sklearn.datasets import get_data_home from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import Perceptron from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() ############################################################################### # Reuters Dataset related routines # -------------------------------- # class ReutersParser(html_parser.HTMLParser): """Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'): html_parser.HTMLParser.__init__(self) self._reset() self.encoding = encoding def handle_starttag(self, tag, attrs): method = 'start_' + tag getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag): method = 'end_' + tag getattr(self, method, lambda: None)() def _reset(self): self.in_title = 0 self.in_body = 0 self.in_topics = 0 self.in_topic_d = 0 self.title = "" self.body = "" self.topics = [] self.topic_d = "" def parse(self, fd): self.docs = [] for chunk in fd: self.feed(chunk.decode(self.encoding)) for doc in self.docs: yield doc self.docs = [] self.close() def handle_data(self, data): if self.in_body: self.body += data elif self.in_title: self.title += data elif self.in_topic_d: self.topic_d += data def start_reuters(self, attributes): pass def end_reuters(self): self.body = re.sub(r'\s+', r' ', self.body) self.docs.append({'title': self.title, 'body': self.body, 'topics': self.topics}) self._reset() def start_title(self, attributes): self.in_title = 1 def end_title(self): self.in_title = 0 def start_body(self, attributes): self.in_body = 1 def end_body(self): self.in_body = 0 def start_topics(self, attributes): self.in_topics = 1 def end_topics(self): self.in_topics = 0 def start_d(self, attributes): self.in_topic_d = 1 def end_d(self): self.in_topic_d = 0 self.topics.append(self.topic_d) self.topic_d = "" def stream_reuters_documents(data_path=None): """Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str), 'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'reuters21578-mld/reuters21578.tar.gz') ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None: data_path = os.path.join(get_data_home(), "reuters") if not os.path.exists(data_path): """Download the dataset.""" print("downloading dataset (once and for all) into %s" % data_path) os.mkdir(data_path) def progress(blocknum, bs, size): total_sz_mb = '%.2f MB' % (size / 1e6) current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6) if _not_in_sphinx(): print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb), end='') archive_path = os.path.join(data_path, ARCHIVE_FILENAME) urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path, reporthook=progress) if _not_in_sphinx(): print('\r', end='') print("untarring Reuters dataset...") tarfile.open(archive_path, 'r:gz').extractall(data_path) print("done.") parser = ReutersParser() for filename in glob(os.path.join(data_path, "*.sgm")): for doc in parser.parse(open(filename, 'rb')): yield doc ############################################################################### # Main # ---- # # Create the vectorizer and limit the number of features to a reasonable # maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, non_negative=True) # Iterator over parsed Reuters SGML files. data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others. # "acq" was chosen as it is more or less evenly distributed in the Reuters # files. For other datasets, one should take care of creating a test set with # a realistic portion of positive instances. all_classes = np.array([0, 1]) positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method partial_fit_classifiers = { 'SGD': SGDClassifier(), 'Perceptron': Perceptron(), 'NB Multinomial': MultinomialNB(alpha=0.01), 'Passive-Aggressive': PassiveAggressiveClassifier(), } def get_minibatch(doc_iter, size, pos_class=positive_class): """Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """ data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics']) for doc in itertools.islice(doc_iter, size) if doc['topics']] if not len(data): return np.asarray([], dtype=int), np.asarray([], dtype=int) X_text, y = zip(*data) return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size): """Generator of minibatches.""" X_text, y = get_minibatch(doc_iter, minibatch_size) while len(X_text): yield X_text, y X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy n_test_documents = 1000 tick = time.time() X_test_text, y_test = get_minibatch(data_stream, 1000) parsing_time = time.time() - tick tick = time.time() X_test = vectorizer.transform(X_test_text) vectorizing_time = time.time() - tick test_stats['n_test'] += len(y_test) test_stats['n_test_pos'] += sum(y_test) print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test))) def progress(cls_name, stats): """Report progress information, return a string.""" duration = time.time() - stats['t0'] s = "%20s classifier : \t" % cls_name s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats s += "accuracy: %(accuracy).3f " % stats s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration) return s cls_stats = {} for cls_name in partial_fit_classifiers: stats = {'n_train': 0, 'n_train_pos': 0, 'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(), 'runtime_history': [(0, 0)], 'total_fit_time': 0.0} cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents) # Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means # we have at most 1000 docs in memory at any time. The smaller the document # batch, the bigger the relative overhead of the partial fit methods. minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on # documents as a stream. minibatch_iterators = iter_minibatches(data_stream, minibatch_size) total_vect_time = 0.0 # Main loop : iterate on mini-batches of examples for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time() X_train = vectorizer.transform(X_train_text) total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items(): tick = time.time() # update estimator with examples in the current mini-batch cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats cls_stats[cls_name]['total_fit_time'] += time.time() - tick cls_stats[cls_name]['n_train'] += X_train.shape[0] cls_stats[cls_name]['n_train_pos'] += sum(y_train) tick = time.time() cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test) cls_stats[cls_name]['prediction_time'] = time.time() - tick acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train']) cls_stats[cls_name]['accuracy_history'].append(acc_history) run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time']) cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0: print(progress(cls_name, cls_stats[cls_name])) if i % 3 == 0: print('\n') ############################################################################### # Plot results # ------------ def plot_accuracy(x, y, x_legend): """Plot accuracy as a function of x.""" x = np.array(x) y = np.array(y) plt.title('Classification accuracy as a function of %s' % x_legend) plt.xlabel('%s' % x_legend) plt.ylabel('Accuracy') plt.grid(True) plt.plot(x, y) rcParams['legend.fontsize'] = 10 cls_names = list(sorted(cls_stats.keys())) # Plot accuracy evolution plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with #examples accuracy, n_examples = zip(*stats['accuracy_history']) plot_accuracy(n_examples, accuracy, "training examples (#)") ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with runtime accuracy, runtime = zip(*stats['runtime_history']) plot_accuracy(runtime, accuracy, 'runtime (s)') ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') # Plot fitting times plt.figure() fig = plt.gcf() cls_runtime = [] for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time) cls_names.append('Vectorization') bar_colors = ['b', 'g', 'r', 'c', 'm', 'y'] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=10) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Training Times') def autolabel(rectangles): """attach some text vi autolabel on rectangles.""" for rect in rectangles: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%.4f' % height, ha='center', va='bottom') autolabel(rectangles) plt.show() # Plot prediction times plt.figure() cls_runtime = [] cls_names = list(sorted(cls_stats.keys())) for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['prediction_time']) cls_runtime.append(parsing_time) cls_names.append('Read/Parse\n+Feat.Extr.') cls_runtime.append(vectorizing_time) cls_names.append('Hashing\n+Vect.') ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=8) plt.setp(plt.xticks()[1], rotation=30) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Prediction Times (%d instances)' % n_test_documents) autolabel(rectangles) plt.show()
bsd-3-clause
jfsehuanes/thunderfish
thunderfish/tracker.py
1
46236
""" Track wave-type electric fish frequencies over time. fish_tracker(): load data and track fish. """ import sys import os import argparse import numpy as np from .version import __version__ from .configfile import ConfigFile from .dataloader import open_data from .powerspectrum import spectrogram, next_power_of_two from .harmonicgroups import add_psd_peak_detection_config, add_harmonic_groups_config from .harmonicgroups import harmonic_groups_args, psd_peak_detection_args from .harmonicgroups import harmonic_groups, fundamental_freqs, plot_psd_harmonic_groups try: import matplotlib.pyplot as plt except ImportError: pass # TODO: update to numpy doc style! def extract_fundamentals(data, samplerate, start_time=0.0, end_time=-1.0, data_snippet_secs=60.0, nffts_per_psd=4, fresolution=0.5, overlap_frac=.9, plot_harmonic_groups=False, verbose=0, **kwargs): """ For a long data array calculates spectograms of small data snippets, computes PSDs, extracts harmonic groups and extracts fundamental frequncies. :param data: (array) raw data. :param samplerate: (int) samplerate of data. :param start_time: (int) analyze data from this time on (in seconds). XXX this should be a float!!!! Internally I would use indices. :param end_time: (int) stop analysis at this time (in seconds). If -1 then analyse to the end of the data. XXX TODO this should be a float!!!! Internally I would use indices. :param data_snippet_secs: (float) duration of data snipped processed at once in seconds. Necessary because of memory issues. :param nffts_per_psd: (int) number of nffts used for calculating one psd. :param fresolution: (float) frequency resolution for the spectrogram. :param overlap_frac: (float) overlap of the nffts (0 = no overlap; 1 = total overlap). :param verbose: (int) with increasing value provides more output on console. :param kwargs: further arguments are passed on to harmonic_groups(). :return all_fundamentals: (list) containing arrays with the fundamentals frequencies of fishes detected at a certain time. :return all_times: (array) containing time stamps of frequency detection. ( len(all_times) == len(fishes[xy]) ) """ all_fundamentals = [] all_times = np.array([]) if end_time < 0.0: end_time = len(data)/samplerate nfft = next_power_of_two(samplerate / fresolution) if len(data.shape) > 1: channels = range(data.shape[1]) else: channels = range(1) while start_time < int((len(data)- data_snippet_secs*samplerate) / samplerate) or int(start_time) == 0: if verbose >= 3: print('Minute %.2f' % (start_time/60)) for channel in channels: # print(channel) if len(channels) > 1: tmp_data = data[int(start_time*samplerate) : int((start_time+data_snippet_secs)*samplerate), channel] else: tmp_data = data[int(start_time*samplerate) : int((start_time+data_snippet_secs)*samplerate)] # spectrogram spectrum, freqs, time = spectrogram(tmp_data, samplerate, fresolution=fresolution, overlap_frac=overlap_frac) # nfft window = 2 sec # psd and fish fundamentals frequency detection tmp_power = [np.array([]) for i in range(len(time)-(nffts_per_psd-1))] for t in range(len(time)-(nffts_per_psd-1)): # power = np.mean(spectrum[:, t:t+nffts_per_psd], axis=1) tmp_power[t] = np.mean(spectrum[:, t:t+nffts_per_psd], axis=1) if channel == 0: power = tmp_power else: for t in range(len(power)): power[t] += tmp_power[t] all_times = np.concatenate((all_times, time[:-(nffts_per_psd-1)] + start_time)) for p in range(len(power)): fishlist, _, mains, all_freqs, good_freqs, _, _, _ = harmonic_groups(freqs, power[p], **kwargs) fundamentals = fundamental_freqs(fishlist) all_fundamentals.append(fundamentals) if plot_harmonic_groups: fig = plt.figure() ax = fig.add_subplot(1, 1, 1) plot_psd_harmonic_groups(ax, freqs, power[p], fishlist, mains, all_freqs, good_freqs, max_freq=3000.0) ax.set_title('time = %gmin' % ((start_time+0.0)/60.0)) # XXX TODO plus what??? plt.show() if (len(all_times) % ((len(time) - (nffts_per_psd-1)) * 30)) > -1 and ( len(all_times) % ((len(time) - (nffts_per_psd-1)) * 30)) < 1: if verbose >= 3: print('Minute %.0f' % (start_time/60)) start_time += time[-nffts_per_psd] - (0.5 -(1-overlap_frac)) * nfft / samplerate if end_time > 0: if start_time >= end_time: if verbose >= 3: print('End time reached!') break return all_fundamentals, all_times def first_level_fish_sorting(all_fundamentals, base_name, all_times, prim_time_tolerance=5., freq_tolerance = .5, save_original_fishes=False, output_folder = '.', verbose=0): """ Sorts fundamental frequencies of wave-type electric fish detected at certain timestamps to fishes. There is an array of fundamental frequencies for every timestamp (all_fundamentals). Each of these frequencies is compared to the last frequency of already detected fishes (last_fish_fundamentals). If the frequency difference between the new frequency and one or multiple already detected fishes the frequency is appended to the array containing all frequencies of the fish (fishes) that has been absent for the shortest period of time. If the frequency doesn't fit to one fish, a new fish array is created. If a fish has not been detected at one time-step a NaN is added to this fish array. The result is for each fish a array containing frequencies or nans with the same length than the time array (all_times). These fish arrays can be saved as .npy file to access the code after the time demanding step. :param all_fundamentals: (list) containing arrays with the fundamentals frequencies of fishes detected at a certain time. :param base_name: (string) filename. :param all_times: (array) containing time stamps of frequency detection. ( len(all_times) == len(fishes[xy]) ) :param prim_time_tolerance: (int) time in minutes from when a certain fish is no longer tracked. :param freq_tolerance: (float) maximum frequency difference to assign a frequency to a certain fish. :param save_original_fishes: (boolean) if True saves the sorted fishes after the first level of fish sorting. :param verbose: (int) with increasing value provides more shell output. :return fishes: (list) containing arrays of sorted fish frequencies. Each array represents one fish. """ def clean_up(fishes, last_fish_fundamentals, end_nans): """ Delete fish arrays with too little data points to reduce memory usage. :param fishes: (list) containing arrays of sorted fish frequencies. Each array represents one fish. :param last_fish_fundamentals: (list) contains for every fish in fishes the last detected fundamental frequency. :param end_nans: (list) for every fish contains the counts of nans since the last fundamental detection. :return: fishes: (list) cleaned up input list. :return: last_fish_fundamentals: (list) cleaned up input list. :return: end_nans: (list) cleaned up input list. """ for fish in reversed(range(len(fishes))): if len(np.array(fishes[fish])[~np.isnan(fishes[fish])]) <= 10: fishes.pop(fish) last_fish_fundamentals.pop(fish) end_nans.pop(fish) return fishes, last_fish_fundamentals, end_nans detection_time_diff = all_times[1] - all_times[0] dpm = 60. / detection_time_diff # detections per minutes fishes = [np.full(len(all_fundamentals)+1, np.nan)] fishes[0][0] = 0. last_fish_fundamentals = [ 0. ] end_nans = [0] # for every list of fundamentals ... clean_up_idx = int(30 * dpm) for enu, fundamentals in enumerate(all_fundamentals): if enu == clean_up_idx: if verbose >= 3: print('cleaning up ...') fishes, last_fish_fundamentals, end_nans = clean_up(fishes, last_fish_fundamentals, end_nans) clean_up_idx += int(30 * dpm) for idx in range(len(fundamentals)): diff = np.abs(np.asarray(last_fish_fundamentals) - fundamentals[idx]) sorted_diff_idx = np.argsort(diff) tolerated_diff_idx = sorted_diff_idx[diff[sorted_diff_idx] < freq_tolerance] last_detect_of_tolerated = np.array(end_nans)[tolerated_diff_idx] if len(tolerated_diff_idx) == 0: fishes.append(np.full(len(all_fundamentals)+1, np.nan)) fishes[-1][enu+1] = fundamentals[idx] last_fish_fundamentals.append(fundamentals[idx]) end_nans.append(0) else: found = False for i in tolerated_diff_idx[np.argsort(last_detect_of_tolerated)]: if np.isnan(fishes[i][enu+1]): fishes[i][enu+1] = fundamentals[idx] last_fish_fundamentals[i] = fundamentals[idx] end_nans[i] = 0 found = True break if not found: fishes.append(np.full(len(all_fundamentals)+1, np.nan)) fishes[-1][enu+1] = fundamentals[idx] last_fish_fundamentals.append(fundamentals[idx]) end_nans.append(0) for fish in range(len(fishes)): if end_nans[fish] >= prim_time_tolerance * dpm: last_fish_fundamentals[fish] = 0. if np.isnan(fishes[fish][enu+1]): end_nans[fish] += 1 if verbose >= 3: print('cleaning up ...') fishes, last_fish_fundamentals, end_nans = clean_up(fishes, last_fish_fundamentals, end_nans) # reshape everything to arrays for fish in range(len(fishes)): fishes[fish] = fishes[fish][1:] # if not removed be clean_up(): remove first fish because it has been used for the first comparison ! if fishes[0][0] == 0.: fishes.pop(0) if save_original_fishes: print('saving') np.save(os.path.join(output_folder, base_name) + '-fishes.npy', np.asarray(fishes)) np.save(os.path.join(output_folder, base_name) + '-times.npy', all_times) return np.asarray(fishes) def detect_rises(fishes, all_times, rise_f_th = .5, verbose = 0): """ Detects rises in frequency arrays that belong to a certain fish. Single rises are detected with the function 'detect_single_rises()' and get appended to a list. When the function 'detect_single_rises()' detects a rise it returns some data about the rise and continues seaching for rises at that index in the data where the detected rise ended. (While-loop) :param fishes: (array) containing arrays of sorted fish frequencies. Each array represents one fish. :param all_times: (array) containing time stamps of frequency detection. ( len(all_times) == len(fishes[xy]) ) :param rise_f_th: (float) minimum frequency difference between peak and base of a rise to be detected as such. :return all_rises: (list) contains a list for each fish which each contains a list for every detected rise. In this last list there are two arrays containing the frequency and the index of start and end of the rise. all_rises[ fish ][ rise ][ [idx_start, idx_end], [freq_start, freq_end] ] """ def detect_single_rise(fish, non_nan_idx, rise_f_th, dpm): """ Detects a single rise in an array of fish frequencies. At first and an index of the array is detected from where on in the next 10 seconds every frequency is lower. This index is at first assumed as the peak of the rise. Afterwards and index is searched for from where on in the next 30 seconds every frequency is larger. This index is assumed as the end of the rise. The other possibility to get an end index of a rise is when the frequency doesnt drop any longer. If during the process of finding the end and the peak of the rise, the time difference between those indices rise above a time threshold (10 min) or the frequency rises above the assumed peak frequency of the rise, both indices are withdrawn and the seach continues. When both a peak and a end index are detected the frequency difference between those indices have to be larger than n * frequency threshold. n is defined by the time difference between peak and end of the rise. In the end index and frequency of rise peak and end are part if the return as well as the non_nan_indices of the fish array that are larger than the end index of the detected rise. :param fish: (array) sorted fish frequencies- :param non_nan_idx: (array) Indices where the fish array is not Nan. :param f_th: (float) minimum frequency difference between peak and base of a rise to be detected as such. :param dpm: (float) delta-t of the fish array. :return: index and frequency of start and end of one detected rise. [[start_idx, end_idx], [start_freq, end_freq]] :return: Indices where the fish array is not Nan only containing those values larger than the end_idx of the detected rise. """ loop_idxs = np.arange(len(non_nan_idx[non_nan_idx <= non_nan_idx[-1] - dpm/ 60. * 10])) for i in loop_idxs: help_idx = np.arange(len(non_nan_idx))[non_nan_idx < non_nan_idx[i] + dpm / 60. * 10][-1] idxs = non_nan_idx[i+1:help_idx] if len(idxs) < dpm / 60. * 1.: continue if len(fish[idxs][fish[idxs] < fish[non_nan_idx[i]]]) == len(fish[idxs]): for j in loop_idxs[loop_idxs > i]: if fish[non_nan_idx[j]] >= fish[non_nan_idx[i]]: break if non_nan_idx[j] - non_nan_idx[i] >= dpm * 10.: break help_idx2 = np.arange(len(non_nan_idx))[non_nan_idx < non_nan_idx[j] + dpm / 60. * 30][-1] idxs2 = non_nan_idx[j+1:help_idx2] last_possibe = False if fish[non_nan_idx[j]] - np.median(fish[idxs2]) < 0.05: last_possibe = True if len(fish[idxs2][fish[idxs2] >= fish[non_nan_idx[j]]]) == len(fish[idxs2]) or non_nan_idx[j] == non_nan_idx[-1] or last_possibe: freq_th = rise_f_th + ((non_nan_idx[j] - non_nan_idx[i]) *1.) // (dpm /60. *30) * rise_f_th if fish[non_nan_idx[i]] - fish[non_nan_idx[j]] >= freq_th: nnans_befor_start = non_nan_idx[(non_nan_idx > non_nan_idx[i] - dpm / 60 *10) & (non_nan_idx <= non_nan_idx[i])] diff_nnans_before = np.append([nnans_befor_start[0] - (non_nan_idx[i] - dpm / 60 * 10)],np.diff(nnans_befor_start)) if len(diff_nnans_before[diff_nnans_before >= dpm / 60 * 3]) > 0: new_start_idx = nnans_befor_start[diff_nnans_before >= dpm / 60 * 3][-1] return [[new_start_idx, non_nan_idx[j]], [fish[new_start_idx], fish[non_nan_idx[j]]]] , non_nan_idx[j+1:] return [[non_nan_idx[i], non_nan_idx[j]], [fish[non_nan_idx[i]], fish[non_nan_idx[j]]]], non_nan_idx[j+1:] else: break return [[], []], [non_nan_idx[-1]] detection_time_diff = all_times[1] - all_times[0] dpm = 60. / detection_time_diff all_rises = [] progress = '0.00' if verbose >= 3: print('Progress:') for enu, fish in enumerate(fishes): if verbose >= 3: if ('%.2f' % (enu * 1.0 / len(fishes))) != progress: print('%.2f' % (enu * 1.0 / len(fishes))) progress = ('%.2f' % (enu * 1.0 / len(fishes))) non_nan_idx = np.arange(len(fish))[~np.isnan(fish)] fish_rises = [] while non_nan_idx[-1] - non_nan_idx[0] > (dpm / 60. * 10) + 1: rise_data, non_nan_idx = detect_single_rise(fish, non_nan_idx, rise_f_th, dpm) fish_rises.append(rise_data) if not fish_rises == []: if fish_rises[-1][0] == []: fish_rises.pop(-1) all_rises.append(fish_rises) return all_rises def combine_fishes(fishes, all_times, all_rises, max_time_tolerance = 10., f_th = 5.): """ Combines array of electric fish fundamental frequencies which, based on frequency difference and time of occurrence likely belong to the same fish. Every fish is compared to the fishes that appeared before this fish. If the time of occurrence of two fishes overlap or differ by less than a certain time tolerance (10 min.) for each of these fishes a compare index is determined. For the fish that second this compare index is either the index of the end of a rise (when the fish array begins with a rise) of the first index of frequency detection (when the fish array doesn't begin with a rise). For the fish that occurred first the compare index is the first index of detection before the compare index of the second fish. If the frequency of the two fishes at the compare indices differ by less than the frequency threshold and the counts of detections at the same time is below threshold a 'distance value' is calculated (frequency difference + alpha * time difference oc occur index). These 'distance values' are saved in a matrix. After all this matrix contains the 'distance values' for every fish to all other fishes of Nans if the fishes are not combinable. Ever fish and its 'distant values' to all other fishes is represented by a row in the matrix. (possible_combination_all_fish[fish][compare_fish] = 'distance value' between fish and compare_fish). In the next step the fish arrays get combined. Therefore the minimum 'distance value' in the whole matrix is located. The index of this value match the fishes that fit together the best. The values of the second fish (fish) get transfered into the array of the first fish (comp_fish). Furthermore in the 'distance value' matrix the values that pointed to the second fish now point to the first fish. Since the second fish can't anymore point to another fish its row in the 'distance value' matrix gets replaced the an array full of nans. This process is repeated until this 'distance value' matrix only consists of Nans. When a fish is combined with another its rise data also gets transfered. In the end the list of fish frequency arrays gets cleaned up as well as the rise array. (Resulting from the sorting process the fishes array contains arrays only consisting of Nans. These get deleated.) :param fishes: (array) containing arrays of sorted fish frequencies. Each array represents one fish. :param all_times: (array) containing time stamps of frequency detection. ( len(all_times) == len(fishes[xy]) ) :param all_rises: (list) contains a list for each fish which each contains a list for every detected rise. In this last list there are two arrays containing the frequency and the index of start and end of the rise. all_rises[ fish ][ rise ][ [idx_start, idx_end], [freq_start, freq_end] ] :param max_time_tolerance: (float) maximum time difference in min. between two fishes to allow combination. :param f_th: (float) maximum frequency difference between two fishes to allow combination :return fishes: (array) containing arrays of sorted fish frequencies. Each array represents one fish. :return all_rises: (list) contains a list for each fish which each contains a list for every detected rise. In this last list there are two arrays containing the frequency and the index of start and end of the rise. all_rises[ fish ][ rise ][ [idx_start, idx_end], [freq_start, freq_end] ] """ detection_time_diff = all_times[1] - all_times[0] dpm = 60. / detection_time_diff # detections per minutes occure_idx = [] delete_idx = [] possible_combinations_all_fish = np.array([np.full(len(fishes), np.nan) for i in range(len(fishes))]) for fish in range(len(fishes)): non_nan_idx = np.arange(len(fishes[fish]))[~np.isnan(fishes[fish])] first_and_last_idx = np.array([non_nan_idx[0], non_nan_idx[-1]]) occure_idx.append(first_and_last_idx) occure_order = np.argsort(np.array([occure_idx[i][0] for i in range(len(fishes))])) for fish in reversed(occure_order): possible_freq_combinations = np.full(len(fishes), np.nan) possible_idx_combinations = np.full(len(fishes), np.nan) possible_combinations = np.full(len(fishes), np.nan) for comp_fish in reversed(occure_order[:np.where(occure_order == fish)[0][0]]): combinable = False if occure_idx[fish][0] > occure_idx[comp_fish][0] and occure_idx[fish][0] < occure_idx[comp_fish][1]: combinable = True comp_fish_nnans_idxs = np.arange(len(fishes[comp_fish]))[~np.isnan(fishes[comp_fish])] if all_rises[fish] != []: if occure_idx[fish][0] in [all_rises[fish][i][0][0] for i in range(len(all_rises[fish]))]: x = np.where( np.array([all_rises[fish][i][0][0] for i in range(len(all_rises[fish]))]) == occure_idx[fish][0])[0][0] compare_idxs = [all_rises[fish][x][0][1], comp_fish_nnans_idxs[comp_fish_nnans_idxs < all_rises[fish][x][0][1]][-1]] else: compare_idxs = [occure_idx[fish][0], comp_fish_nnans_idxs[comp_fish_nnans_idxs < occure_idx[fish][0]][-1]] else: compare_idxs = [occure_idx[fish][0], comp_fish_nnans_idxs[comp_fish_nnans_idxs < occure_idx[fish][0]][-1]] elif occure_idx[fish][0] > occure_idx[comp_fish][1] and occure_idx[fish][0] - occure_idx[comp_fish][1] < max_time_tolerance * dpm: combinable = True if all_rises[fish] != []: if occure_idx[fish][0] in [all_rises[fish][i][0][0] for i in range(len(all_rises[fish]))]: x = np.where( np.array([all_rises[fish][i][0][0] for i in range(len(all_rises[fish]))]) == occure_idx[fish][0])[0][0] compare_idxs = [all_rises[fish][x][0][1], occure_idx[comp_fish][1]] else: compare_idxs = [occure_idx[fish][0], occure_idx[comp_fish][1]] else: compare_idxs = [occure_idx[fish][0], occure_idx[comp_fish][1]] if combinable: alpha = 0.01 # alpha cant be larger ... to many mistakes !!! if np.abs(fishes[fish][compare_idxs[0]] - fishes[comp_fish][compare_idxs[1]]) <= f_th: nan_test = fishes[fish] + fishes[comp_fish] if len(nan_test[~np.isnan(nan_test)]) <= 20: possible_freq_combinations[comp_fish] = np.abs( [fishes[fish][compare_idxs[0]] - fishes[comp_fish][compare_idxs[1]]]) possible_idx_combinations[comp_fish] = np.abs([compare_idxs[0] - compare_idxs[1]]) possible_combinations[comp_fish] = possible_freq_combinations[comp_fish] + possible_idx_combinations[comp_fish] / (dpm / 60.) * alpha # ax.plot([compare_idxs[0], compare_idxs[1]], [fishes[fish][compare_idxs[0]], fishes[comp_fish][compare_idxs[1]]], '-', color = 'red') if comp_fish == 0 and len(possible_freq_combinations[~np.isnan(possible_freq_combinations)]) > 0: possible_combinations_all_fish[fish] = possible_combinations combining_finished = False while combining_finished == False: if np.size(possible_combinations_all_fish[~np.isnan(possible_combinations_all_fish)]) == 0: combining_finished = True continue fish = np.where(possible_combinations_all_fish == np.min(possible_combinations_all_fish[~np.isnan(possible_combinations_all_fish)]))[0][0] comp_fish = np.where(possible_combinations_all_fish == np.min(possible_combinations_all_fish[~np.isnan(possible_combinations_all_fish)]))[1][0] nan_test2 = fishes[fish] + fishes[comp_fish] if len(nan_test2[~np.isnan(nan_test2)]) >= 20: possible_combinations_all_fish[fish][comp_fish] = np.nan if np.size(possible_combinations_all_fish[~np.isnan(possible_combinations_all_fish)]) == 0: combining_finished = True continue fishes[comp_fish][~np.isnan(fishes[fish])] = fishes[fish][~np.isnan(fishes[fish])] fishes[fish] = np.full(len(fishes[fish]), np.nan) # clean up possible_combination all fish for i in range(len(possible_combinations_all_fish)): if not np.isnan(possible_combinations_all_fish[i][fish]): if np.isnan(possible_combinations_all_fish[i][comp_fish]): possible_combinations_all_fish[i][comp_fish] = possible_combinations_all_fish[i][fish] possible_combinations_all_fish[i][fish] = np.nan elif possible_combinations_all_fish[i][fish] < possible_combinations_all_fish[i][comp_fish]: possible_combinations_all_fish[i][comp_fish] = possible_combinations_all_fish[i][fish] possible_combinations_all_fish[i][fish] = np.nan else: possible_combinations_all_fish[i][fish] = np.nan possible_combinations_all_fish[fish] = np.full(len(possible_combinations_all_fish[fish]), np.nan) if all_rises[fish] != []: for rise in range(len(all_rises[fish])): all_rises[comp_fish].append(all_rises[fish][rise]) all_rises[fish] = [] if np.size(possible_combinations_all_fish[~np.isnan(possible_combinations_all_fish)]) == 0: combining_finished = True # for i in range(len(fishes)): # ax.plot(np.arange(len(fishes[i]))[~np.isnan(fishes[i])], fishes[i][~np.isnan(fishes[i])], color= np.random.rand(3, 1), marker='.') # plt.show() for fish in reversed(range(len(fishes))): if len(fishes[fish][~np.isnan(fishes[fish])]) == 0: delete_idx.append(fish) all_rises.pop(fish) return_idxs = np.setdiff1d(np.arange(len(fishes)), np.array(delete_idx)) return fishes[return_idxs], all_rises def exclude_fishes(fishes, all_times, min_occure_time = 1.): """ Delete fishes that are present for a to short period of time. :param fishes: (list) containing arrays of sorted fish frequencies. Each array represents one fish. :param all_times: (array) containing time stamps of frequency detection. ( len(all_times) == len(fishes[xy]) ) :param min_occure_time (int) minimum duration a fish has to be available to not get excluded. :return fishes: (array) containing arrays of sorted fish frequencies. Each array represents one fish. """ keep_idx = [] detection_time_diff = all_times[1] - all_times[0] dpm = 60. / detection_time_diff # detections per minute for fish in range(len(fishes)): if len(fishes[fish][~np.isnan(fishes[fish])]) >= min_occure_time * dpm: keep_idx.append(fish) return np.asarray(fishes)[keep_idx] def cut_at_rises(fishes, all_rises): """ Cuts fish arrays at detected rise peaks. For each rise two fish arrays are created with the same length as the original fish array. This step is necessary because of wrong detections resulting from rises of fishes. :param fishes: (array) containing arrays of sorted fish frequencies. Each array represents one fish. :param all_rises: (array) containing time stamps of frequency detection. ( len(all_times) == len(fishes[xy]) ) :return: (array) containing arrays of sorted fish frequencies. Each array represents one fish. """ new_fishes = [] delete_idx = [] for fish in reversed(range(len(fishes))): for rise in reversed(range(len(all_rises[fish]))): cut_idx = all_rises[fish][rise][0][0] new_fishes.append(np.full(len(fishes[fish]), np.nan)) new_fishes[-1][cut_idx:] = fishes[fish][cut_idx:] fishes[fish][cut_idx:] = np.full(len(fishes[fish][cut_idx:]), np.nan) all_rises.append([all_rises[fish][rise]]) all_rises[fish].pop(rise) for fish in reversed(range(len(fishes))): if len(fishes[fish][~np.isnan(fishes[fish])]) <= 10: delete_idx.append(fish) all_rises.pop(fish) return_idx = np.setdiff1d(np.arange(len(fishes)), np.array(delete_idx)) if len(new_fishes) == 0: return fishes, all_rises else: return np.append(fishes[return_idx], new_fishes, axis=0), all_rises # return np.append(fishes[return_idx], new_fishes, axis=0), all_rises def save_data(fishes, all_times, all_rises, base_name, output_folder): np.save(os.path.join(output_folder, base_name) + '-final_fishes.npy', np.asarray(fishes)) np.save(os.path.join(output_folder, base_name) + '-final_times.npy', all_times) np.save(os.path.join(output_folder, base_name) + '-final_rises.npy', np.asarray(all_rises)) def plot_fishes(fishes, all_times, all_rises, base_name, save_plot, output_folder): """ Plot shows the detected fish fundamental frequencies plotted against the time in hours. :param fishes: (list) containing arrays of sorted fish frequencies. Each array represents one fish. :param all_times: (array) containing time stamps of frequency detection. ( len(all_times) == len(fishes[xy]) ) """ fig, ax = plt.subplots(facecolor='white', figsize=(11.6, 8.2)) if all_times[-1] <= 120: time_factor = 1. elif all_times[-1] > 120 and all_times[-1] < 7200: time_factor = 60. else: time_factor = 3600. for fish in range(len(fishes)): color = np.random.rand(3, 1) ax.plot(all_times[~np.isnan(fishes[fish])] / time_factor, fishes[fish][~np.isnan(fishes[fish])], color=color, marker='.') legend_in = False for fish in range(len(all_rises)): for rise in all_rises[fish]: if rise[1][0] - rise[1][1] > 1.5: if legend_in == False: ax.plot(all_times[rise[0][0]] / time_factor, rise[1][0], 'o', color='red', markersize= 7, markerfacecolor='None', label='rise begin') ax.plot(all_times[rise[0][1]] / time_factor, rise[1][1], 's', color='green', markersize= 7, markerfacecolor='None', label='rise end') legend_in = True plt.legend(loc=1, numpoints=1, frameon=False, fontsize = 12) else: ax.plot(all_times[rise[0][0]] / time_factor, rise[1][0], 'o', color='red', markersize=7, markerfacecolor='None') ax.plot(all_times[rise[0][1]] / time_factor, rise[1][1], 's', color='green', markersize=7, markerfacecolor='None') maxy = np.max(np.array([np.mean(fishes[fish][~np.isnan(fishes[fish])]) for fish in range(len(fishes))])) miny = np.min(np.array([np.mean(fishes[fish][~np.isnan(fishes[fish])]) for fish in range(len(fishes))])) plt.ylim([miny-150, maxy+150]) plt.ylabel('Frequency [Hz]', fontsize=14) if time_factor == 1.: plt.xlabel('Time [sec]', fontsize=14) elif time_factor == 60.: plt.xlabel('Time [min]', fontsize=14) else: plt.xlabel('Time [h]', fontsize=14) plt.title(base_name, fontsize=16) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() if save_plot: plt.savefig(os.path.join(output_folder, base_name)) plt.close(fig) else: plt.show() def add_tracker_config(cfg, data_snipped_secs = 60., nffts_per_psd = 4, fresolution = 0.5, overlap_frac = .9, freq_tolerance = 0.5, rise_f_th = 0.5, prim_time_tolerance = 5., max_time_tolerance = 10., f_th=5.): """ Add parameter needed for fish_tracker() as a new section to a configuration. Parameters ---------- cfg: ConfigFile the configuration data_snipped_secs: float duration of data snipped processed at once in seconds. nffts_per_psd: int nffts used for powerspectrum analysis. fresolution: float frequency resoltution of the spectrogram. overlap_frac: float overlap fraction of nffts for powerspectrum analysis. freq_tolerance: float frequency tollerance for combining fishes. rise_f_th: float minimum frequency difference between peak and base of a rise to be detected as such. prim_time_tolerance: float maximum time differencs in minutes in the first fish sorting step. max_time_tolerance: float maximum time difference in minutes between two fishes to combine these. f_th: float maximum frequency difference between two fishes to combine these. """ cfg.add_section('Fish tracking:') cfg.add('DataSnippedSize', data_snipped_secs, 's', 'Duration of data snipped processed at once in seconds.') cfg.add('NfftPerPsd', nffts_per_psd, '', 'Number of nffts used for powerspectrum analysis.') cfg.add('FreqResolution', fresolution, 'Hz', 'Frequency resolution of the spectrogram') cfg.add('OverlapFrac', overlap_frac, '', 'Overlap fraction of the nffts during Powerspectrum analysis') cfg.add('FreqTolerance', freq_tolerance, 'Hz', 'Frequency tolernace in the first fish sorting step.') cfg.add('RiseFreqTh', rise_f_th, 'Hz', 'Frequency threshold for the primary rise detection.') cfg.add('PrimTimeTolerance', prim_time_tolerance, 'min', 'Time tolerance in the first fish sorting step.') cfg.add('MaxTimeTolerance', max_time_tolerance, 'min', 'Time tolerance between the occurrance of two fishes to join them.') cfg.add('FrequencyThreshold', f_th, 'Hz', 'Maximum Frequency difference between two fishes to join them.') def tracker_args(cfg): """ Translates a configuration to the respective parameter names of the function fish_tracker(). The return value can then be passed as key-word arguments to this function. Parameters ---------- cfg: ConfigFile the configuration Returns (dict): dictionary with names of arguments of the clip_amplitudes() function and their values as supplied by cfg. ------- dict dictionary with names of arguments of the fish_tracker() function and their values as supplied by cfg. """ return cfg.map({'data_snipped_secs': 'DataSnippedSize', 'nffts_per_psd': 'NfftPerPsd', 'fresolution': 'FreqResolution', 'overlap_frac': 'OverlapFrac', 'freq_tolerance': 'FreqTolerance', 'rise_f_th': 'RiseFreqTh', 'prim_time_tolerance': 'PrimTimeTolerance', 'max_time_tolerance': 'MaxTimeTolerance', 'f_th': 'FrequencyThreshold'}) def fish_tracker(data_file, start_time=0.0, end_time=-1.0, gridfile=False, save_plot=False, save_original_fishes=False, data_snippet_secs = 60., nffts_per_psd = 4, fresolution = 0.5, overlap_frac =.9, freq_tolerance = 0.5, rise_f_th= .5, max_time_tolerance = 10., f_th= 5., output_folder = '.', plot_harmonic_groups=False, verbose=0, **kwargs): """ Performs the steps to analyse long-term recordings of wave-type weakly electric fish including frequency analysis, fish tracking and more. In small data snippets spectrograms and power-spectra are calculated. With the help of the power-spectra harmonic groups and therefore electric fish fundamental frequencies can be detected. These fundamental frequencies are detected for every time-step throughout the whole file. Afterwards the fundamental frequencies get assigned to different fishes. :param data_file: (string) filepath of the analysed data file. :param data_snippet_secs: (float) duration of data snipped processed at once in seconds. Necessary because of memory issues. :param nffts_per_psd: (int) amount of nffts used to calculate one psd. :param start_time: (int) analyze data from this time on (in seconds). XXX this should be a float!!!! :param end_time: (int) stop analysis at this time (in seconds). XXX this should be a float!!!! :param plot_data_func: (function) if plot_data_func = plot_fishes creates a plot of the sorted fishes. :param save_original_fishes: (boolean) if True saves the sorted fishes after the first level of fish sorting. :param kwargs: further arguments are passed on to harmonic_groups(). """ if gridfile: data = open_data(data_file, -1, 60.0, 10.0) print('\n--- GRID FILE ANALYSIS ---') print('ALL traces are analysed') print('--------------------------') else: data = open_data(data_file, 0, 60.0, 10.0) print('\n--- ONE TRACE ANALYSIS ---') print('ONLY 1 trace is analysed') print('--------------------------') # with open_data(data_file, 0, 60.0, 10.0) as data: samplerate = data.samplerate base_name = os.path.splitext(os.path.basename(data_file))[0] if verbose >= 1: print('\nextract fundamentals...') if verbose >= 2: print('> frequency resolution = %.2f Hz' % fresolution) print('> nfft overlap fraction = %.2f' % overlap_frac) all_fundamentals, all_times = extract_fundamentals(data, samplerate, start_time, end_time, data_snippet_secs, nffts_per_psd, fresolution=fresolution, overlap_frac=overlap_frac, plot_harmonic_groups=plot_harmonic_groups, verbose=verbose, **kwargs) if verbose >= 1: print('\nsorting fishes...') if verbose >= 2: print('> frequency tolerance = %.2f Hz' % freq_tolerance) fishes = first_level_fish_sorting(all_fundamentals, base_name, all_times, freq_tolerance=freq_tolerance, save_original_fishes=save_original_fishes, output_folder=output_folder, verbose=verbose) min_occure_time = all_times[-1] * 0.01 / 60. if min_occure_time > 1.: min_occure_time = 1. if verbose >= 1: print('\nexclude fishes...') if verbose >= 2: print('> minimum occur time: %.2f min' % min_occure_time) fishes = exclude_fishes(fishes, all_times, min_occure_time) if len(fishes) == 0: print('excluded all fishes. Change parameters.') quit() if verbose >= 1: print('\nrise detection...') if verbose >= 2: print('> rise frequency th = %.2f Hz' % rise_f_th) all_rises = detect_rises(fishes, all_times, rise_f_th, verbose=verbose) if verbose >= 1: print('\ncut fishes at rises...') fishes, all_rises = cut_at_rises(fishes, all_rises) if verbose >= 1: print('\ncombining fishes...') if verbose >= 2: print('> maximum time difference: %.2f min' % max_time_tolerance) print('> maximum frequency difference: %.2f Hz' % f_th) fishes, all_rises = combine_fishes(fishes, all_times, all_rises, max_time_tolerance, f_th) if verbose >= 1: print('%.0f fishes left' % len(fishes)) if 'plt' in locals() or 'plt' in globals(): plot_fishes(fishes, all_times, all_rises, base_name, save_plot, output_folder) if save_original_fishes: if verbose >= 1: print('saving data to ' + output_folder) save_data(fishes, all_times, all_rises, base_name, output_folder) if verbose >= 1: print('\nWhole file processed.') def main(): # config file name: cfgfile = __package__ + '.cfg' # command line arguments: parser = argparse.ArgumentParser( description='Analyse long single- or multi electrode EOD recordings of weakly electric fish.', epilog='by bendalab (2015-2017)') parser.add_argument('--version', action='version', version=__version__) parser.add_argument('-v', action='count', dest='verbose', help='verbosity level') parser.add_argument('-c', '--save-config', nargs='?', default='', const=cfgfile, type=str, metavar='cfgfile', help='save configuration to file cfgfile (defaults to {0})'.format(cfgfile)) parser.add_argument('file', nargs='?', default='', type=str, help='name of the file wih the time series data or the -fishes.npy file saved with the -s option') parser.add_argument('start_time', nargs='?', default=0.0, type=float, help='start time of analysis in min.') parser.add_argument('end_time', nargs='?', default=-1.0, type=float, help='end time of analysis in min.') parser.add_argument('-g', dest='grid', action='store_true', help='sum up spectrograms of all channels available.') parser.add_argument('-p', dest='save_plot', action='store_true', help='save output plot as png file') parser.add_argument('-s', dest='save_fish', action='store_true', help='save fish EODs after first stage of sorting.') parser.add_argument('-f', dest='plot_harmonic_groups', action='store_true', help='plot harmonic group detection') parser.add_argument('-o', dest='output_folder', default=".", type=str, help="path where to store results and figures") args = parser.parse_args() datafile = args.file # set verbosity level from command line: verbose = 0 if args.verbose != None: verbose = args.verbose # configuration options: cfg = ConfigFile() add_psd_peak_detection_config(cfg) add_harmonic_groups_config(cfg) add_tracker_config(cfg) # load configuration from working directory and data directories: cfg.load_files(cfgfile, datafile, 3, verbose) # save configuration: if len(args.save_config) > 0: ext = os.path.splitext(args.save_config)[1] if ext != os.extsep + 'cfg': print('configuration file name must have .cfg as extension!') else: print('write configuration to %s ...' % args.save_config) cfg.dump(args.save_config) return # check data file: if len(datafile) == 0: parser.error('you need to specify a file containing some data') return # output directory: if not os.path.exists(args.output_folder): os.makedirs(args.output_folder) if os.path.splitext(datafile)[1] == '.npy': rise_f_th = .5 max_time_tolerance = 10. f_th = 5. output_folder = args.output_folder a = np.load(sys.argv[1], mmap_mode='r+') fishes = a.copy() all_times = np.load(sys.argv[1].replace('-fishes', '-times')) min_occure_time = all_times[-1] * 0.01 / 60. if min_occure_time > 1.: min_occure_time = 1. if verbose >= 1: print('\nexclude fishes...') if verbose >= 2: print('> minimum occur time: %.2f min' % min_occure_time) fishes = exclude_fishes(fishes, all_times, min_occure_time=min_occure_time) if verbose >= 1: print('\nrise detection...') if verbose >= 2: print('> rise frequency th = %.2f Hz' % rise_f_th) all_rises = detect_rises(fishes, all_times, rise_f_th, verbose) if verbose >= 1: print('\ncut fishes at rises...') fishes, all_rises = cut_at_rises(fishes, all_rises) if verbose >= 1: print('\ncombining fishes...') if verbose >= 2: print('> maximum time difference: %.2f min' % max_time_tolerance) print('> maximum frequency difference: %.2f Hz' % f_th) fishes, all_rises = combine_fishes(fishes, all_times, all_rises, max_time_tolerance, f_th) if verbose >= 1: print('%.0f fishes left' % len(fishes)) base_name = os.path.splitext(os.path.basename(sys.argv[1]))[0] if 'plt' in locals() or 'plt' in globals(): plot_fishes(fishes, all_times, all_rises, base_name, args.save_plot, args.output_folder) if args.save_fish: if verbose >= 1: print('saving data to ' + output_folder) save_data(fishes, all_times, all_rises, base_name, output_folder) if verbose >= 1: print('Whole file processed.') else: t_kwargs = psd_peak_detection_args(cfg) t_kwargs.update(harmonic_groups_args(cfg)) t_kwargs.update(tracker_args(cfg)) fish_tracker(datafile, args.start_time*60.0, args.end_time*60.0, args.grid, args.save_plot, args.save_fish, output_folder=args.output_folder, plot_harmonic_groups=args.plot_harmonic_groups, verbose=verbose, **t_kwargs) if __name__ == '__main__': main()
gpl-3.0
deepchem/deepchem
examples/tox21/tox21_sklearn_models.py
6
1160
""" Script that trains sklearn models on Tox21 dataset. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals import numpy as np import deepchem as dc from deepchem.molnet import load_tox21 from sklearn.ensemble import RandomForestClassifier # Only for debug! np.random.seed(123) # Load Tox21 dataset tox21_tasks, tox21_datasets, transformers = load_tox21() (train_dataset, valid_dataset, test_dataset) = tox21_datasets # Fit models metric = dc.metrics.Metric(dc.metrics.roc_auc_score, np.mean) def model_builder(model_dir): sklearn_model = RandomForestClassifier( class_weight="balanced", n_estimators=500) return dc.models.SklearnModel(sklearn_model, model_dir) model = dc.models.SingletaskToMultitask(tox21_tasks, model_builder) # Fit trained model print("About to fit model") model.fit(train_dataset) model.save() print("About to evaluate model") train_scores = model.evaluate(train_dataset, [metric], transformers) valid_scores = model.evaluate(valid_dataset, [metric], transformers) print("Train scores") print(train_scores) print("Validation scores") print(valid_scores)
mit
urinieto/similarity_classification
code/compute_dtw.py
1
13207
#!/usr/bin/env python """ TODO """ import argparse import cPickle as pickle import dtw import matplotlib.pyplot as plt import librosa import logging import mir_eval import numpy as np import os import pandas as pd import scipy import sklearn import time from joblib import Parallel, delayed import msaf from msaf import jams2 # Directory to store the features features_dir = "../features_beats" # Distances to use for the DTW dist_dict = { "L1": scipy.spatial.distance.cityblock, "L2": scipy.spatial.distance.euclidean, "correlation": scipy.spatial.distance.correlation } # Normalization techniques for the threshold and f-measure computation norms = ["none", "min", "max", "hmean"] def compute_threshold(intervals=None, labels=None, scores=None, norm=None): """Computes the thresholds for the given inputs. Parameters ---------- intervals : np.array Estimated segment boundary intervals. labels : np.array Estimated segment labels. scores : np.array DTW scores. norm : str Normalization method. Returns ------- thr : float > 0 Threshold for which to optimally cut the DTW score matrix. fmeasure : float > 0 F-measure resulting using threshold. """ label_agreement = np.zeros((len(labels), len(labels)), dtype=bool) for i in range(len(labels)): for j in range(i, len(labels)): label_agreement[i, j] = (labels[i] == labels[j]) label_agreement[j, i] = label_agreement[i, j] time_norm = 1 durations = np.diff(intervals, axis=1).ravel() if norm == 'min': time_norm = np.minimum.outer(durations, durations) elif norm == 'max': time_norm = np.maximum.outer(durations, durations) elif norm == 'hmean': time_norm = 2./np.add.outer(durations, durations) time_norm *= np.multiply.outer(durations, durations) # TODO: have the label agreement index out nan-valued scores scores = scores / time_norm label_agreement[np.tril_indices_from(label_agreement, k=0)] = False label_agreement[~np.isfinite(scores)] = False label_disagreement = ~label_agreement label_disagreement[np.tril_indices_from(label_disagreement, k=0)] = False label_disagreement[~np.isfinite(scores)] = False tp_scores = scores[label_agreement] fp_scores = scores[label_disagreement] num_pos = np.sum(label_agreement) num_neg = np.sum(label_disagreement) if num_pos == 0 or num_neg == 0: return 0.0, 0.0 y_true = np.concatenate([np.zeros(len(tp_scores)), np.ones(len(fp_scores))]) y_score = np.concatenate([tp_scores, fp_scores]) fpr, tpr, thr = sklearn.metrics.roc_curve(y_true, y_score) tp = num_pos * tpr fp = num_neg * fpr precision = tp / (tp + fp) recall = tpr fmeasure = np.asarray([mir_eval.util.f_measure(p, r) for p, r in zip(precision, recall)]) k = np.argmax(fmeasure) return thr[k], fmeasure[k] def read_features(features_file): """Reads the features from the pickle file. Parameters ---------- features_file : str Path to the features file. Returns ------- cqgram : np.array Subseg-sync constant-Q power spectrogram. intframes : np.array The frame indeces. """ with open(features_file, "r") as f: features = pickle.load(f) return features["cqgram"], features["intframes"] def save_features(cqgram, intframes, subseg, features_file): """Reads the features from the pickle file. Parameters ---------- cqgram : np.array Subseg-sync constant-Q power spectrogram. intframes : np.array The frame indeces. subseg : np.array Subseq-index times. features_file : str Path to the output features file. """ features = {} features["cqgram"] = cqgram features["intframes"] = intframes features["subseg"] = subseg with open(features_file, "w") as f: pickle.dump(features, f, protocol=-1) def compute_features(audio_file, intervals, level): """Computes the subseg-sync cqt features from the given audio file, if they are not previously computed. Saves the results in the feat_dir folder. Parameters ---------- audio_file : str Path to the audio file. intervals : np.array Intervals containing the estimated boundaries. level : str Level in the hierarchy. Returns ------- cqgram : np.array Subseg-sync constant-Q power spectrogram. intframes : np.array The frame indeces. """ # Check if features have already been computed if level == "small_scale": features_file = os.path.join(features_dir, os.path.basename(audio_file).split('.')[0] + "_small_scale.mp3.pk") else: features_file = os.path.join(features_dir, os.path.basename(audio_file) + ".pk") if os.path.isfile(features_file): return read_features(features_file) y, sr = librosa.load(audio_file, sr=11025) # Default hopsize is 512 hopsize = 512 cqgram = librosa.logamplitude(librosa.cqt(y, sr=sr, hop_length=hopsize)**2, ref_power=np.max) # Track beats y_harmonic, y_percussive = librosa.effects.hpss(y) tempo, beats = librosa.beat.beat_track(y=y_percussive, sr=sr, hop_length=hopsize) # Synchronize cqgram = librosa.feature.sync(cqgram, beats, aggregate=np.median) intframes = None if intervals is not None: # convert intervals to frames intframes = librosa.time_to_frames(intervals, sr=sr, hop_length=hopsize) # Match intervals to subseg points intframes = librosa.util.match_events(intframes, beats) # Save the features save_features(cqgram, intframes, beats, features_file) return cqgram, intframes def make_cost_matrix(audio_file, intervals, labels, dist, level): """Computes the cost matrix of the DTW from the given audio file. Parameters ---------- audio_file : str Path to the audio file. intervals : np.array Intervals containing the estimated boundaries. labels : np.array Estimated segment labels. dist : fun Distance function to be used for the DTW level : str Level in the hierarchy. Returns ------- D : np.array DTW scores. P : list List containing np.arrays() representing the DTW paths. """ # Computes the features (return existing ones if already computed) cqgram, intframes = compute_features(audio_file, intervals, level) # Score matrix D = np.nan * np.zeros((len(labels), len(labels)), dtype=np.float32) np.fill_diagonal(D, 0) # Path matrix P = [] for i in range(len(labels)): P.append([np.nan] * len(labels)) for i in range(len(labels)): P[i][i] = 0 for i in range(len(labels)): x_slice = cqgram[:, intframes[i, 0]:intframes[i, 1]].T if intframes[i, 1] - intframes[i, 0] < 2: continue for j in range(i+1, len(labels)): if intframes[j, 1] - intframes[j, 0] < 2: continue y_slice = cqgram[:, intframes[j, 0]:intframes[j, 1]].T dtw_cost, distance, path = dtw.dtw(x_slice, y_slice, dist=dist) D[i, j] = dtw_cost D[j, i] = D[i, j] path = list(path) path[0] = np.asarray(path[0], dtype=np.int32) path[1] = np.asarray(path[1], dtype=np.int32) P[i][j] = path return D, P def compute_score(file_struct, level, dist_key): """Computes the DTW scores for the given file. Parameters ---------- file_struct : FileStruct (msaf) Object containing the struct. level : str Level of the hierarchy to be considered. dist_key : str Distance measure identifier. Returns ------- ret : dict Dictionary with the results, including the following keys: intervals : reference boundary intervals, labels : reference segment labels, scores : DTW scores, paths : DTW paths, thresholds : thresholds found for the different normalizations, fmeasures : fmeasures computes for the different normalizations, file_name : name of the file """ try: ref_inter, ref_labels = jams2.converters.load_jams_range( file_struct.ref_file, "sections", annotator=0, context=level) assert len(ref_labels) > 0 D, P = make_cost_matrix(file_struct.audio_file, ref_inter, ref_labels, dist=dist_dict[dist_key], level=level) thresholds = {} fmeasures = {} for norm in norms: thresholds[norm], fmeasures[norm] = compute_threshold( intervals=ref_inter, labels=ref_labels, scores=D, norm=norm) except IndexError as e: logging.warning("warning: problem computing threshold %s at level %s" % (file_struct.audio_file, level)) ref_inter = None ref_labels = None D = None P = None thresholds = None fmeasures = None except (AssertionError, IOError) as e: logging.warning("warning: no annotations for %s" % file_struct.audio_file) ref_inter = None ref_labels = None D = None P = None thresholds = None fmeasures = None finally: cqgram, intframes = compute_features(file_struct.audio_file, None, level) ret = { "intervals": ref_inter, "labels": ref_labels, "scores": D, "paths": P, "thresholds": thresholds, "fmeasures": fmeasures, "file_name": os.path.basename(file_struct.audio_file) } return ret def save_results(dataset, level, dist_key, scores): """Saves the results. Parameters ---------- dataset : str Name of the dataset. level : str Level of dataset being considered. dist_key : str Type of distance scores : dict Dictionary containing the scores for all the files in the dataset. """ result = { "level": level, "dist": dist_key, "file_scores": scores } out_file = "scores_datasetE%s_levelE%s_distE%s.pk" % (dataset, level, dist_key) with open(out_file, "w") as f: pickle.dump(result, f, protocol=-1) def main(ds_path, n_jobs): """Main function to compute DTW scores for a given root dataset and number of processors. Parameters ---------- ds_path : str Path to the root of the dataset. n_jobs : int > 0 Number of processes to use. """ # Datasets from which to compute the DTWs datasets = ["SALAMI", "Isophonics"] # Different levels for the datasets dataset_levels = { "Isophonics": ["function"], #"SALAMI": ["function", "large_scale", "small_scale"] #"SALAMI": ["function", "large_scale"] "SALAMI": ["function"] } # Make sure the features folder exists msaf.utils.ensure_dir(features_dir) # Main loop for dataset in datasets: # Obtain all the files for the given dataset files = msaf.io.get_dataset_files(ds_path, ds_name=dataset) # Compute results for the specific level and distance for level in dataset_levels[dataset]: for dist_key in dist_dict.keys(): if dataset != "SALAMI" and level != "function": continue logging.info("Computing: %s, %s, %s" % (dataset, level, dist_key)) # Compute scores using multiple cpus scores = Parallel(n_jobs=n_jobs)(delayed(compute_score)( file_struct, level, dist_key) for file_struct in files[:]) # Save all results save_results(dataset, level, dist_key, scores) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Computes the DTW scores, paths, thresholds, and f-measures" " for multiple collections.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("ds_path", action="store", help="Input path to dataset") parser.add_argument("-j", action="store", dest="n_jobs", default=1, type=int, help="The number of threads to use") args = parser.parse_args() start_time = time.time() # Setup the logger logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s', level=logging.INFO) # Call main function main(args.ds_path, args.n_jobs) # Done! logging.info("Done! Took %.2f seconds." % (time.time() - start_time))
mit
StupidTortoise/personal
python/temp.py
1
1396
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import pandas as pd import sklearn import seaborn as sb iris_data = pd.read_csv('iris-data.csv', na_values = ['NA']) iris_data.loc[iris_data['class'] == 'versicolor', 'class'] = 'Iris-versicolor' iris_data.loc[iris_data['class'] == 'Iris-setossa', 'class'] = 'Iris-setosa' # This line drops any 'Iris-setosa' rows with a separal width less than 2.5 cm iris_data = iris_data.loc[(iris_data['class'] != 'Iris-setosa') | (iris_data['sepal_width_cm'] >= 2.5)] iris_data.loc[iris_data['class'] == 'Iris-setosa', 'sepal_width_cm'].hist() iris_data.loc[(iris_data['class'] == 'Iris-versicolor') & (iris_data['sepal_length_cm'] < 1.0), 'sepal_length_cm'] *= 100.0 iris_data.loc[iris_data['class'] == 'Iris-versicolor', 'sepal_length_cm'].hist() # iris_data.loc[(iris_data['sepal_length_cm'].isnull()) | (iris_data['sepal_width_cm'].isnull()) | (iris_data['petal_length_cm'].isnull()) | (iris_data['petal_width_cm'].isnull())] average_petal_width = iris_data.loc[iris_data['class'] == 'Iris-setosa', 'petal_width_cm'].mean() iris_data.loc[(iris_data['class'] == 'Iris-setosa') & (iris_data['petal_width_cm'].isnull()), 'petal_width_cm'] = average_petal_width iris_data.loc[(iris_data['class'] == 'Iris-setosa') & (iris_data['petal_width_cm'] == average_petal_width)] iris_data_clean = pd.read_csv('iris-data-clean.csv')
gpl-2.0
jblackburne/scikit-learn
examples/calibration/plot_calibration.py
66
4795
""" ====================================== Probability calibration of classifiers ====================================== When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However, not all classifiers provide well-calibrated probabilities, some being over-confident while others being under-confident. Thus, a separate calibration of predicted probabilities is often desirable as a postprocessing. This example illustrates two different methods for this calibration and evaluates the quality of the returned probabilities using Brier's score (see https://en.wikipedia.org/wiki/Brier_score). Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score. """ print(__doc__) # Author: Mathieu Blondel <[email protected]> # Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from sklearn.datasets import make_blobs from sklearn.naive_bayes import GaussianNB from sklearn.metrics import brier_score_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.model_selection import train_test_split n_samples = 50000 n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here # Generate 3 blobs with 2 classes where the second blob contains # half positive samples and half negative samples. Probability in this # blob is therefore 0.5. centers = [(-5, -5), (0, 0), (5, 5)] X, y = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0, centers=centers, shuffle=False, random_state=42) y[:n_samples // 2] = 0 y[n_samples // 2:] = 1 sample_weight = np.random.RandomState(42).rand(y.shape[0]) # split train, test for calibration X_train, X_test, y_train, y_test, sw_train, sw_test = \ train_test_split(X, y, sample_weight, test_size=0.9, random_state=42) # Gaussian Naive-Bayes with no calibration clf = GaussianNB() clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with isotonic calibration clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_isotonic.fit(X_train, y_train, sw_train) prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with sigmoid calibration clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') clf_sigmoid.fit(X_train, y_train, sw_train) prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1] print("Brier scores: (the smaller the better)") clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test) print("No calibration: %1.3f" % clf_score) clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic, sw_test) print("With isotonic calibration: %1.3f" % clf_isotonic_score) clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid, sw_test) print("With sigmoid calibration: %1.3f" % clf_sigmoid_score) ############################################################################### # Plot the data and the predicted probabilities plt.figure() y_unique = np.unique(y) colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size)) for this_y, color in zip(y_unique, colors): this_X = X_train[y_train == this_y] this_sw = sw_train[y_train == this_y] plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50, c=color, alpha=0.5, label="Class %s" % this_y) plt.legend(loc="best") plt.title("Data") plt.figure() order = np.lexsort((prob_pos_clf, )) plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score) plt.plot(prob_pos_isotonic[order], 'g', linewidth=3, label='Isotonic calibration (%1.3f)' % clf_isotonic_score) plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3, label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score) plt.plot(np.linspace(0, y_test.size, 51)[1::2], y_test[order].reshape(25, -1).mean(1), 'k', linewidth=3, label=r'Empirical') plt.ylim([-0.05, 1.05]) plt.xlabel("Instances sorted according to predicted probability " "(uncalibrated GNB)") plt.ylabel("P(y=1)") plt.legend(loc="upper left") plt.title("Gaussian naive Bayes probabilities") plt.show()
bsd-3-clause
nelango/ViralityAnalysis
model/lib/pandas/tools/tests/test_tile.py
9
8927
import os import nose import numpy as np from pandas.compat import zip from pandas import DataFrame, Series, unique import pandas.util.testing as tm from pandas.util.testing import assertRaisesRegexp import pandas.core.common as com from pandas.core.algorithms import quantile from pandas.tools.tile import cut, qcut import pandas.tools.tile as tmod class TestCut(tm.TestCase): def test_simple(self): data = np.ones(5) result = cut(data, 4, labels=False) desired = [1, 1, 1, 1, 1] tm.assert_numpy_array_equal(result, desired) def test_bins(self): data = np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]) result, bins = cut(data, 3, retbins=True) tm.assert_numpy_array_equal(result.codes, [0, 0, 0, 1, 2, 0]) tm.assert_almost_equal(bins, [0.1905, 3.36666667, 6.53333333, 9.7]) def test_right(self): data = np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575]) result, bins = cut(data, 4, right=True, retbins=True) tm.assert_numpy_array_equal(result.codes, [0, 0, 0, 2, 3, 0, 0]) tm.assert_almost_equal(bins, [0.1905, 2.575, 4.95, 7.325, 9.7]) def test_noright(self): data = np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575]) result, bins = cut(data, 4, right=False, retbins=True) tm.assert_numpy_array_equal(result.codes, [0, 0, 0, 2, 3, 0, 1]) tm.assert_almost_equal(bins, [0.2, 2.575, 4.95, 7.325, 9.7095]) def test_arraylike(self): data = [.2, 1.4, 2.5, 6.2, 9.7, 2.1] result, bins = cut(data, 3, retbins=True) tm.assert_numpy_array_equal(result.codes, [0, 0, 0, 1, 2, 0]) tm.assert_almost_equal(bins, [0.1905, 3.36666667, 6.53333333, 9.7]) def test_bins_not_monotonic(self): data = [.2, 1.4, 2.5, 6.2, 9.7, 2.1] self.assertRaises(ValueError, cut, data, [0.1, 1.5, 1, 10]) def test_wrong_num_labels(self): data = [.2, 1.4, 2.5, 6.2, 9.7, 2.1] self.assertRaises(ValueError, cut, data, [0, 1, 10], labels=['foo', 'bar', 'baz']) def test_cut_corner(self): # h3h self.assertRaises(ValueError, cut, [], 2) self.assertRaises(ValueError, cut, [1, 2, 3], 0.5) def test_cut_out_of_range_more(self): # #1511 s = Series([0, -1, 0, 1, -3]) ind = cut(s, [0, 1], labels=False) exp = [np.nan, np.nan, np.nan, 0, np.nan] tm.assert_almost_equal(ind, exp) def test_labels(self): arr = np.tile(np.arange(0, 1.01, 0.1), 4) result, bins = cut(arr, 4, retbins=True) ex_levels = ['(-0.001, 0.25]', '(0.25, 0.5]', '(0.5, 0.75]', '(0.75, 1]'] self.assert_numpy_array_equal(result.categories, ex_levels) result, bins = cut(arr, 4, retbins=True, right=False) ex_levels = ['[0, 0.25)', '[0.25, 0.5)', '[0.5, 0.75)', '[0.75, 1.001)'] self.assert_numpy_array_equal(result.categories, ex_levels) def test_cut_pass_series_name_to_factor(self): s = Series(np.random.randn(100), name='foo') factor = cut(s, 4) self.assertEqual(factor.name, 'foo') def test_label_precision(self): arr = np.arange(0, 0.73, 0.01) result = cut(arr, 4, precision=2) ex_levels = ['(-0.00072, 0.18]', '(0.18, 0.36]', '(0.36, 0.54]', '(0.54, 0.72]'] self.assert_numpy_array_equal(result.categories, ex_levels) def test_na_handling(self): arr = np.arange(0, 0.75, 0.01) arr[::3] = np.nan result = cut(arr, 4) result_arr = np.asarray(result) ex_arr = np.where(com.isnull(arr), np.nan, result_arr) tm.assert_almost_equal(result_arr, ex_arr) result = cut(arr, 4, labels=False) ex_result = np.where(com.isnull(arr), np.nan, result) tm.assert_almost_equal(result, ex_result) def test_inf_handling(self): data = np.arange(6) data_ser = Series(data,dtype='int64') result = cut(data, [-np.inf, 2, 4, np.inf]) result_ser = cut(data_ser, [-np.inf, 2, 4, np.inf]) ex_categories = ['(-inf, 2]', '(2, 4]', '(4, inf]'] tm.assert_numpy_array_equal(result.categories, ex_categories) tm.assert_numpy_array_equal(result_ser.cat.categories, ex_categories) self.assertEqual(result[5], '(4, inf]') self.assertEqual(result[0], '(-inf, 2]') self.assertEqual(result_ser[5], '(4, inf]') self.assertEqual(result_ser[0], '(-inf, 2]') def test_qcut(self): arr = np.random.randn(1000) labels, bins = qcut(arr, 4, retbins=True) ex_bins = quantile(arr, [0, .25, .5, .75, 1.]) tm.assert_almost_equal(bins, ex_bins) ex_levels = cut(arr, ex_bins, include_lowest=True) self.assert_numpy_array_equal(labels, ex_levels) def test_qcut_bounds(self): arr = np.random.randn(1000) factor = qcut(arr, 10, labels=False) self.assertEqual(len(np.unique(factor)), 10) def test_qcut_specify_quantiles(self): arr = np.random.randn(100) factor = qcut(arr, [0, .25, .5, .75, 1.]) expected = qcut(arr, 4) self.assertTrue(factor.equals(expected)) def test_qcut_all_bins_same(self): assertRaisesRegexp(ValueError, "edges.*unique", qcut, [0,0,0,0,0,0,0,0,0,0], 3) def test_cut_out_of_bounds(self): arr = np.random.randn(100) result = cut(arr, [-1, 0, 1]) mask = result.codes == -1 ex_mask = (arr < -1) | (arr > 1) self.assert_numpy_array_equal(mask, ex_mask) def test_cut_pass_labels(self): arr = [50, 5, 10, 15, 20, 30, 70] bins = [0, 25, 50, 100] labels = ['Small', 'Medium', 'Large'] result = cut(arr, bins, labels=labels) exp = cut(arr, bins) exp.categories = labels self.assertTrue(result.equals(exp)) def test_qcut_include_lowest(self): values = np.arange(10) cats = qcut(values, 4) ex_levels = ['[0, 2.25]', '(2.25, 4.5]', '(4.5, 6.75]', '(6.75, 9]'] self.assertTrue((cats.categories == ex_levels).all()) def test_qcut_nas(self): arr = np.random.randn(100) arr[:20] = np.nan result = qcut(arr, 4) self.assertTrue(com.isnull(result[:20]).all()) def test_label_formatting(self): self.assertEqual(tmod._trim_zeros('1.000'), '1') # it works result = cut(np.arange(11.), 2) result = cut(np.arange(11.) / 1e10, 2) # #1979, negative numbers result = tmod._format_label(-117.9998, precision=3) self.assertEqual(result, '-118') result = tmod._format_label(117.9998, precision=3) self.assertEqual(result, '118') def test_qcut_binning_issues(self): # #1978, 1979 path = os.path.join(curpath(), 'cut_data.csv') arr = np.loadtxt(path) result = qcut(arr, 20) starts = [] ends = [] for lev in result.categories: s, e = lev[1:-1].split(',') self.assertTrue(s != e) starts.append(float(s)) ends.append(float(e)) for (sp, sn), (ep, en) in zip(zip(starts[:-1], starts[1:]), zip(ends[:-1], ends[1:])): self.assertTrue(sp < sn) self.assertTrue(ep < en) self.assertTrue(ep <= sn) def test_cut_return_categorical(self): from pandas import Categorical s = Series([0,1,2,3,4,5,6,7,8]) res = cut(s,3) exp = Series(Categorical.from_codes([0,0,0,1,1,1,2,2,2], ["(-0.008, 2.667]", "(2.667, 5.333]", "(5.333, 8]"], ordered=True)) tm.assert_series_equal(res, exp) def test_qcut_return_categorical(self): from pandas import Categorical s = Series([0,1,2,3,4,5,6,7,8]) res = qcut(s,[0,0.333,0.666,1]) exp = Series(Categorical.from_codes([0,0,0,1,1,1,2,2,2], ["[0, 2.664]", "(2.664, 5.328]", "(5.328, 8]"], ordered=True)) tm.assert_series_equal(res, exp) def test_series_retbins(self): # GH 8589 s = Series(np.arange(4)) result, bins = cut(s, 2, retbins=True) tm.assert_numpy_array_equal(result.cat.codes.values, [0, 0, 1, 1]) tm.assert_almost_equal(bins, [-0.003, 1.5, 3]) result, bins = qcut(s, 2, retbins=True) tm.assert_numpy_array_equal(result.cat.codes.values, [0, 0, 1, 1]) tm.assert_almost_equal(bins, [0, 1.5, 3]) def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
mit
muthujothi/CrowdAnalytix-CrimeRates-PredictiveModelling
curate_data.py
1
1354
import pandas as pd import numpy as np from sklearn import linear_model import matplotlib.pyplot as plt import csv #Load the train data df_1 = pd.read_csv('C:/Pst Files/CrowdAnalytix/CrimeRates/CA_Crime_Rate_Test_old-bk .csv') #x = df_1.ix[:,8] f = lambda x: x.fillna(x.median(), inplace=True) df_1.apply(f) df_1.to_csv('C:/Pst Files/CrowdAnalytix/CrimeRates/CA_Crime_Rate_MungedData_Test.csv') print "done" ''' f = lambda x: x.fillna(x.mean()) df_1.apply(f) df_1.to_csv('C:/Pst Files/CrowdAnalytix/CrimeRates/CA_Crime_Rate_MungedData .csv') print "done" ''' ''' feature_means = [] feature_medians = [] for i in range (2, 120): df_feature = df_1.ix[:,i] ft_mean = round(np.mean(df_feature), 5) ft_median = round(np.median(df_feature), 5) feature_means.append(ft_mean) feature_medians.append(ft_median) data_reader = csv.reader(open('C:/Pst Files/CrowdAnalytix/CrimeRates/CA_Crime_Rate_Train_old-bk .csv','rb')) open_file_object = csv.writer(open("C:/Pst Files/CrowdAnalytix/CrimeRates/CA_Crime_Rate_MungedData.csv", "wb")) header = data_reader.next() #skip the first line of the test file. for data in data_reader: for index in data: idx = 0 val = str(data[idx]) if val != "": data[idx] = feature_medians[idx-2] idx += 1 open_file_object.writerow(data) print "done" '''
mit
brentp/methylcode
scripts/summary_plot.py
1
4403
""" plot a histogram of the methylation data per chromosome. usage: %prog [options] dir1/ dir2/ ... where dir1/ and dir2/ contain the .bin files from a run of methylcoder. as many directories as you want. """ import matplotlib matplotlib.rc('axes', edgecolor='#aaaaaa', linewidth=0.9) matplotlib.rc('font', family='sans-serif') matplotlib.use('Agg') import matplotlib.pyplot as plt import sys import glob import os.path as op import numpy as np def avg(c, t, m): ac = np.fromfile(c, dtype=np.uint32) at = np.fromfile(t, dtype=np.uint32) am = np.fromfile(m, dtype=np.uint8) mes = [] for mt in range(1, 4): ctx = (am == mt) | (am == mt + 3) ctx &= (at + ac) > 0 me = ac[ctx].sum() / float(ac[ctx].sum() + at[ctx].sum()) mes.append(me) return mes import collections def get_data(ctms, labels): names = collections.defaultdict(list) for label, ctm in zip(labels, ctms): avgs = [] for c, t, m in ctm: mes = avg(c, t, m) name = op.basename(c).replace('.c.bin', '') pidx = name.find(".") + 1 name = name[pidx:] avgs.append((name, mes)) avgs.sort() for name, (cgs, chgs, chhs) in avgs: names[name].append((cgs, chgs, chhs)) return dict(names) def main(ctms, labels, opts): names = get_data(ctms, labels) plot(names, labels, opts) def add_label(rect, label): y = rect.get_height() + rect.get_y() + 0.01 x = rect.get_x() + rect.get_width() * 0.15 plt.text(x, y, label, horizontalalignment='left', verticalalignment='bottom', rotation='vertical' ) def plot(names, labels, opts): xlabels = sorted(names.keys()) n = len(names[xlabels[0]]) fig = plt.figure() #ax = fig.add_axes([0, 0, 1, 1]) spacing = 0.04 width = ((1 - spacing * (n - 1)) / (n + 1)) xs = 2.0 * spacing + np.arange(len(xlabels)) for i in range(n): cgs = np.array([names[schr][i][0] for schr in xlabels]) chgs = np.array([names[schr][i][1] for schr in xlabels]) chhs = np.array([names[schr][i][2] for schr in xlabels]) p1 = plt.bar(xs, cgs, width, color='r', linewidth=0) p2 = plt.bar(xs, chgs, width, color='g', bottom=cgs, linewidth=0) p3 = plt.bar(xs, chhs, width, color='b', bottom=cgs + chgs, linewidth=0) xs += width + spacing if n > 1: add_label(p3[0], labels[i]) plt.xticks(xs - 0.66 * width - (width + spacing) * i/2., xlabels) plt.legend((p1[0], p2[0], p3[0]), ('CG', 'CHG', 'CHH')) plt.xlabel("Sequence Id") plt.ylabel("Methylation c/(c + t)") if opts.title: plt.title(opts.title) print >>sys.stderr, "saving to %s" % opts.out plt.savefig(opts.out) if __name__ == "__main__": import optparse p = optparse.OptionParser(__doc__) p.add_option("--out", dest="out", default="/var/www/t/met.png", help=\ "path to save image. extension (.png/.pdf) will determine file-type") p.add_option("--title", dest="title", default="", help="image title") p.add_option("--exclude", dest="exclude", default=None, help="exclude these chromosomes. e.g. --exclude 'm|c'") p.add_option("--labels", dest="labels", default=None, help="by default, " "the directories specified in args are used to label the series " "when plotting more than one directory. if --labels are specified " "these will be used instead. must be pipe '|' delimited: e.g. : " "--labels 'series a|series b|other series' the number specified" " must match the number of directories sent on args") opts, args = p.parse_args() if len(args) == 0: sys.exit(p.print_help()) ctms = [] exclude = [] if opts.exclude is None else opts.exclude.split("|") for bin_dir in args: cs = glob.glob("%s/*.c.bin" % bin_dir) cs = [c for c in cs if not any(c.endswith("%s.c.bin" % e) for e in exclude)] assert cs ts = [c.replace('.c.bin', '.t.bin') for c in cs] mt = [c.replace('.c.bin', '.methyltype.bin') for c in cs] ctms.append(zip(cs, ts, mt)) labels = opts.labels.split("|") if opts.labels \ else [x.rstrip("/") for x in args] main(ctms, labels, opts)
bsd-3-clause
anjalisood/spark-tk
regression-tests/sparktkregtests/testcases/frames/power_iteration_clustering_test.py
11
5681
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Test power iteration Clustering against known values""" import math import unittest from sparktkregtests.lib import sparktk_test class PowerIterationTest(sparktk_test.SparkTKTestCase): def setUp(self): """Import the files to be tested.""" super(PowerIterationTest, self).setUp() data = self.get_file("pic_circles_data.csv") self.schema = [('Source', int), ('Destination', int), ('Similarity', float)] self.frame = self.context.frame.import_csv(data, schema=self.schema) def test_doc_example(self): """ Example from the API documentation """ data = [[1,2,1.0], [1,3,0.3], [2,3,0.3], [3,0,0.03], [0,5,0.01], [5,4,0.3], [5,6,1.0], [4,6,0.3]] frame = self.context.frame.create(data, schema=self.schema) result = frame.power_iteration_clustering( "Source", "Destination", "Similarity", k=3, max_iterations=20) #check cluster sizes actual_cluster_sizes = sorted(result.cluster_sizes.values()) expected_cluster_sizes = [1, 3, 3] self.assertItemsEqual(actual_cluster_sizes, expected_cluster_sizes) #check values assigned to each cluster actual_assignment = result.frame.to_pandas( result.frame.count()).groupby("cluster") grouped_assignment = [list(val["id"]) for index, val in actual_assignment] expected_assignment = [[4, 5, 6], [1, 2, 3], [0]] self.assertEqual(sorted(map(sorted, grouped_assignment)), sorted(map(sorted, expected_assignment))) def test_circles_default(self): """ Test pic on similarity matrix for two concentric cicles """ result = self.frame.power_iteration_clustering( "Source", "Destination", "Similarity", k=2) #check cluster sizes actual_cluster_sizes = sorted(result.cluster_sizes.values()) expected_cluster_sizes = [5, 15] self.assertItemsEqual(actual_cluster_sizes, expected_cluster_sizes) #check values assigned to each cluster actual_assignment = result.frame.to_pandas( result.frame.count()).values.tolist() expected_assignment = \ [[4,1], [16,1], [14,1], [0,1], [6,1], [8,1], [12,1], [18,1], [10,1], [2,1], [13,2], [19,2], [15,2], [11,2], [1,1], [17,2], [3,1], [7,1], [9,1], [5,1]] self.assertItemsEqual(actual_assignment, expected_assignment) def test_circles_max_iterations(self): """ Test pic with max_iteration = 40 """ result = self.frame.power_iteration_clustering( "Source", "Destination", "Similarity", k=2, max_iterations=40) #check cluster sizes actual_cluster_sizes = sorted(result.cluster_sizes.values()) expected_cluster_sizes = [10, 10] self.assertItemsEqual(actual_cluster_sizes, expected_cluster_sizes) #check values assigned to each cluster actual_assignment = result.frame.to_pandas( result.frame.count()).values.tolist() expected_assignment = \ [[4,1], [16,2], [14,2], [0,1], [6,1], [8,1], [12,2], [18,2], [10,2], [2,1], [13,2], [19,2], [15,2], [11,2], [1,1], [17,2], [3,1], [7,1], [9,1], [5,1]] self.assertItemsEqual(actual_assignment, expected_assignment) def test_neg_similarity(self): """ Test pic with negative similarity values """ bad_frame = self.context.frame.create( [[1, 0, -1.0], [1, 2, 0.1]], schema=self.schema) with self.assertRaisesRegexp( Exception, "Similarity must be nonnegative but found .*"): result = bad_frame.power_iteration_clustering( "Source", "Destination", "Similarity", k=2, max_iterations=10) def test_bad_column_name(self): """ Test behavior for bad source column name """ with self.assertRaisesRegexp( Exception, "Invalid column name ERR .*"): result = self.frame.power_iteration_clustering( "ERR", "Destination", "Similarity") def test_bad_k_value(self): """ Tests behavior for bad number of k """ with self.assertRaisesRegexp( Exception, "Number of clusters must be must be greater than 1"): result = self.frame.power_iteration_clustering( "Source", "Destination", "Similarity", k=0) def test_bad_max_iterations(self): """ Tests behavior for negative max_iterations """ with self.assertRaisesRegexp( Exception, "Maximum number of iterations must be greater than 0"): result = self.frame.power_iteration_clustering( "Source", "Destination", "Similarity", k=2, max_iterations=-1) if __name__ == "__main__": unittest.main()
apache-2.0
jackchi/interview-prep
complexity/graph_complexity.py
1
1516
""" alganal.py Description: A utility program to plot algorithmic time complexity of a function. Author: Mahesh Venkitachalam Website: electronut.in """ from matplotlib import pyplot import numpy as np import timeit from functools import partial import random def fconst(N): """ O(1) function """ x = 1 def flinear(N): """ O(n) function """ x = [i for i in range(N)] def fsquare(N): """ O(n^2) function """ for i in range(N): for j in range(N): x = i*j def fshuffle(N): # O(N) random.shuffle(list(range(N))) def fsort(N): x = list(range(N)) random.shuffle(x) x.sort() def fexponential(N): x = 2**N def plotTC(fn, nMin, nMax, nInc, nTests): """ Run timer and plot time complexity """ x = [] y = [] for i in range(nMin, nMax, nInc): N = i testNTimer = timeit.Timer(partial(fn, N)) t = testNTimer.timeit(number=nTests) x.append(i) y.append(t) p1 = pyplot.plot(x, y, 'o') pyplot.legend([p1,], [fn.__name__, ]) # main() function def main(): print('Analyzing Algorithms...') # plotTC(flinear, 10, 1000, 10, 10) plotTC(fsquare, 10, 100, 2, 10) plotTC(fexponential, 10, 100, 2, 10) #plotTC(fshuffle, 10, 1000, 1000, 10) plotTC(fsort, 10, 100, 2, 10) # enable this in case you want to set y axis limits #pyplot.ylim((-0.1, 0.5)) # show plot pyplot.show() # call main if __name__ == '__main__': main()
mit
andybrnr/QuantEcon.py
examples/perm_inc_ir.py
7
1450
""" Impulse response functions for the LQ permanent income model permanent and transitory shocks. """ import numpy as np import matplotlib.pyplot as plt r = 0.05 beta = 1 / (1 + r) T = 20 # Time horizon S = 5 # Impulse date sigma1 = sigma2 = 0.15 def time_path(permanent=False): "Time path of consumption and debt given shock sequence" w1 = np.zeros(T+1) w2 = np.zeros(T+1) b = np.zeros(T+1) c = np.zeros(T+1) if permanent: w1[S+1] = 1.0 else: w2[S+1] = 1.0 for t in range(1, T): b[t+1] = b[t] - sigma2 * w2[t] c[t+1] = c[t] + sigma1 * w1[t+1] + (1 - beta) * sigma2 * w2[t+1] return b, c fig, axes = plt.subplots(2, 1) plt.subplots_adjust(hspace=0.5) p_args = {'lw': 2, 'alpha': 0.7} L = 0.175 for ax in axes: ax.grid(alpha=0.5) ax.set_xlabel(r'Time') ax.set_ylim(-L, L) ax.plot((S, S), (-L, L), 'k-', lw=0.5) ax = axes[0] b, c = time_path(permanent=0) ax.set_title('impulse-response, transitory income shock') ax.plot(list(range(T+1)), c, 'g-', label="consumption", **p_args) ax.plot(list(range(T+1)), b, 'b-', label="debt", **p_args) ax.legend(loc='upper right') ax = axes[1] b, c = time_path(permanent=1) ax.set_title('impulse-response, permanent income shock') ax.plot(list(range(T+1)), c, 'g-', label="consumption", **p_args) ax.plot(list(range(T+1)), b, 'b-', label="debt", **p_args) ax.legend(loc='lower right') plt.show()
bsd-3-clause
rsivapr/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
15
2202
""" Testing for the gradient boosting loss functions and initial estimators. """ import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.ensemble.gradient_boosting import BinomialDeviance from sklearn.ensemble.gradient_boosting import LogOddsEstimator def test_binomial_deviance(): """Check binomial deviance loss. Check against alternative definitions in ESLII. """ bd = BinomialDeviance(2) # pred has the same BD for y in {0, 1} assert_equal(bd(np.array([0.0]), np.array([0.0])), bd(np.array([1.0]), np.array([0.0]))) assert_almost_equal(bd(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), 0.0) assert_almost_equal(bd(np.array([1.0, 0.0, 0.0]), np.array([100.0, -100.0, -100.0])), 0) # check if same results as alternative definition of deviance (from ESLII) alt_dev = lambda y, pred: np.mean(np.logaddexp(0.0, -2.0 * (2.0 * y - 1) * pred)) test_data = [(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([-100.0, -100.0, -100.0])), (np.array([1.0, 1.0, 1.0]), np.array([-100.0, -100.0, -100.0]))] for datum in test_data: assert_almost_equal(bd(*datum), alt_dev(*datum)) # check the gradient against the alt_ng = lambda y, pred: (2 * y - 1) / (1 + np.exp(2 * (2 * y - 1) * pred)) for datum in test_data: assert_almost_equal(bd.negative_gradient(*datum), alt_ng(*datum)) def test_log_odds_estimator(): """Check log odds estimator. """ est = LogOddsEstimator() assert_raises(ValueError, est.fit, None, np.array([1])) est.fit(None, np.array([1.0, 0.0])) assert_equal(est.prior, 0.0) assert_array_equal(est.predict(np.array([[1.0], [1.0]])), np.array([[0.0], [0.0]]))
bsd-3-clause
zzcclp/spark
python/pyspark/pandas/tests/test_typedef.py
15
16852
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import unittest import datetime import decimal from typing import List import pandas import pandas as pd from pandas.api.types import CategoricalDtype import numpy as np from pyspark.sql.types import ( ArrayType, BinaryType, BooleanType, FloatType, IntegerType, LongType, StringType, StructField, StructType, ByteType, ShortType, DateType, DecimalType, DoubleType, TimestampType, ) from pyspark.pandas.typedef import ( as_spark_type, extension_dtypes_available, extension_float_dtypes_available, extension_object_dtypes_available, infer_return_type, pandas_on_spark_type, ) from pyspark import pandas as ps class TypeHintTests(unittest.TestCase): @unittest.skipIf( sys.version_info < (3, 7), "Type inference from pandas instances is supported with Python 3.7+", ) def test_infer_schema_from_pandas_instances(self): def func() -> pd.Series[int]: pass inferred = infer_return_type(func) self.assertEqual(inferred.dtype, np.int64) self.assertEqual(inferred.spark_type, LongType()) def func() -> pd.Series[np.float]: pass inferred = infer_return_type(func) self.assertEqual(inferred.dtype, np.float64) self.assertEqual(inferred.spark_type, DoubleType()) def func() -> "pd.DataFrame[np.float, str]": pass expected = StructType([StructField("c0", DoubleType()), StructField("c1", StringType())]) inferred = infer_return_type(func) self.assertEqual(inferred.dtypes, [np.float64, np.unicode_]) self.assertEqual(inferred.spark_type, expected) def func() -> "pandas.DataFrame[np.float]": pass expected = StructType([StructField("c0", DoubleType())]) inferred = infer_return_type(func) self.assertEqual(inferred.dtypes, [np.float64]) self.assertEqual(inferred.spark_type, expected) def func() -> "pd.Series[int]": pass inferred = infer_return_type(func) self.assertEqual(inferred.dtype, np.int64) self.assertEqual(inferred.spark_type, LongType()) def func() -> pd.DataFrame[np.float, str]: pass expected = StructType([StructField("c0", DoubleType()), StructField("c1", StringType())]) inferred = infer_return_type(func) self.assertEqual(inferred.dtypes, [np.float64, np.unicode_]) self.assertEqual(inferred.spark_type, expected) def func() -> pd.DataFrame[np.float]: pass expected = StructType([StructField("c0", DoubleType())]) inferred = infer_return_type(func) self.assertEqual(inferred.dtypes, [np.float64]) self.assertEqual(inferred.spark_type, expected) pdf = pd.DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}) def func() -> pd.DataFrame[pdf.dtypes]: # type: ignore pass expected = StructType([StructField("c0", LongType()), StructField("c1", LongType())]) inferred = infer_return_type(func) self.assertEqual(inferred.dtypes, [np.int64, np.int64]) self.assertEqual(inferred.spark_type, expected) pdf = pd.DataFrame({"a": [1, 2, 3], "b": pd.Categorical(["a", "b", "c"])}) def func() -> pd.Series[pdf.b.dtype]: # type: ignore pass inferred = infer_return_type(func) self.assertEqual(inferred.dtype, CategoricalDtype(categories=["a", "b", "c"])) self.assertEqual(inferred.spark_type, LongType()) def func() -> pd.DataFrame[pdf.dtypes]: # type: ignore pass expected = StructType([StructField("c0", LongType()), StructField("c1", LongType())]) inferred = infer_return_type(func) self.assertEqual(inferred.dtypes, [np.int64, CategoricalDtype(categories=["a", "b", "c"])]) self.assertEqual(inferred.spark_type, expected) def test_if_pandas_implements_class_getitem(self): # the current type hint implementation of pandas DataFrame assumes pandas doesn't # implement '__class_getitem__'. This test case is to make sure pandas # doesn't implement them. assert not ps._frame_has_class_getitem assert not ps._series_has_class_getitem @unittest.skipIf( sys.version_info < (3, 7), "Type inference from pandas instances is supported with Python 3.7+", ) def test_infer_schema_with_names_pandas_instances(self): def func() -> 'pd.DataFrame["a" : np.float, "b":str]': # noqa: F405 pass expected = StructType([StructField("a", DoubleType()), StructField("b", StringType())]) inferred = infer_return_type(func) self.assertEqual(inferred.dtypes, [np.float64, np.unicode_]) self.assertEqual(inferred.spark_type, expected) def func() -> "pd.DataFrame['a': np.float, 'b': int]": # noqa: F405 pass expected = StructType([StructField("a", DoubleType()), StructField("b", LongType())]) inferred = infer_return_type(func) self.assertEqual(inferred.dtypes, [np.float64, np.int64]) self.assertEqual(inferred.spark_type, expected) pdf = pd.DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}) def func() -> pd.DataFrame[zip(pdf.columns, pdf.dtypes)]: pass expected = StructType([StructField("a", LongType()), StructField("b", LongType())]) inferred = infer_return_type(func) self.assertEqual(inferred.dtypes, [np.int64, np.int64]) self.assertEqual(inferred.spark_type, expected) pdf = pd.DataFrame({("x", "a"): [1, 2, 3], ("y", "b"): [3, 4, 5]}) def func() -> pd.DataFrame[zip(pdf.columns, pdf.dtypes)]: pass expected = StructType( [StructField("(x, a)", LongType()), StructField("(y, b)", LongType())] ) inferred = infer_return_type(func) self.assertEqual(inferred.dtypes, [np.int64, np.int64]) self.assertEqual(inferred.spark_type, expected) pdf = pd.DataFrame({"a": [1, 2, 3], "b": pd.Categorical(["a", "b", "c"])}) def func() -> pd.DataFrame[zip(pdf.columns, pdf.dtypes)]: pass expected = StructType([StructField("a", LongType()), StructField("b", LongType())]) inferred = infer_return_type(func) self.assertEqual(inferred.dtypes, [np.int64, CategoricalDtype(categories=["a", "b", "c"])]) self.assertEqual(inferred.spark_type, expected) @unittest.skipIf( sys.version_info < (3, 7), "Type inference from pandas instances is supported with Python 3.7+", ) def test_infer_schema_with_names_pandas_instances_negative(self): def try_infer_return_type(): def f() -> 'pd.DataFrame["a" : np.float : 1, "b":str:2]': # noqa: F405 pass infer_return_type(f) self.assertRaisesRegex(TypeError, "Type hints should be specified", try_infer_return_type) class A: pass def try_infer_return_type(): def f() -> pd.DataFrame[A]: pass infer_return_type(f) self.assertRaisesRegex(TypeError, "not understood", try_infer_return_type) def try_infer_return_type(): def f() -> 'pd.DataFrame["a" : np.float : 1, "b":str:2]': # noqa: F405 pass infer_return_type(f) self.assertRaisesRegex(TypeError, "Type hints should be specified", try_infer_return_type) # object type pdf = pd.DataFrame({"a": ["a", 2, None]}) def try_infer_return_type(): def f() -> pd.DataFrame[pdf.dtypes]: # type: ignore pass infer_return_type(f) self.assertRaisesRegex(TypeError, "object.*not understood", try_infer_return_type) def try_infer_return_type(): def f() -> pd.Series[pdf.a.dtype]: # type: ignore pass infer_return_type(f) self.assertRaisesRegex(TypeError, "object.*not understood", try_infer_return_type) def test_infer_schema_with_names_negative(self): def try_infer_return_type(): def f() -> 'ps.DataFrame["a" : np.float : 1, "b":str:2]': # noqa: F405 pass infer_return_type(f) self.assertRaisesRegex(TypeError, "Type hints should be specified", try_infer_return_type) class A: pass def try_infer_return_type(): def f() -> ps.DataFrame[A]: pass infer_return_type(f) self.assertRaisesRegex(TypeError, "not understood", try_infer_return_type) def try_infer_return_type(): def f() -> 'ps.DataFrame["a" : np.float : 1, "b":str:2]': # noqa: F405 pass infer_return_type(f) self.assertRaisesRegex(TypeError, "Type hints should be specified", try_infer_return_type) # object type pdf = pd.DataFrame({"a": ["a", 2, None]}) def try_infer_return_type(): def f() -> ps.DataFrame[pdf.dtypes]: # type: ignore pass infer_return_type(f) self.assertRaisesRegex(TypeError, "object.*not understood", try_infer_return_type) def try_infer_return_type(): def f() -> ps.Series[pdf.a.dtype]: # type: ignore pass infer_return_type(f) self.assertRaisesRegex(TypeError, "object.*not understood", try_infer_return_type) def test_as_spark_type_pandas_on_spark_dtype(self): type_mapper = { # binary np.character: (np.character, BinaryType()), np.bytes_: (np.bytes_, BinaryType()), np.string_: (np.bytes_, BinaryType()), bytes: (np.bytes_, BinaryType()), # integer np.int8: (np.int8, ByteType()), np.byte: (np.int8, ByteType()), np.int16: (np.int16, ShortType()), np.int32: (np.int32, IntegerType()), np.int64: (np.int64, LongType()), np.int: (np.int64, LongType()), int: (np.int64, LongType()), # floating np.float32: (np.float32, FloatType()), np.float: (np.float64, DoubleType()), np.float64: (np.float64, DoubleType()), float: (np.float64, DoubleType()), # string np.str: (np.unicode_, StringType()), np.unicode_: (np.unicode_, StringType()), str: (np.unicode_, StringType()), # bool np.bool: (np.bool, BooleanType()), bool: (np.bool, BooleanType()), # datetime np.datetime64: (np.datetime64, TimestampType()), datetime.datetime: (np.dtype("datetime64[ns]"), TimestampType()), # DateType datetime.date: (np.dtype("object"), DateType()), # DecimalType decimal.Decimal: (np.dtype("object"), DecimalType(38, 18)), # ArrayType np.ndarray: (np.dtype("object"), ArrayType(StringType())), List[bytes]: (np.dtype("object"), ArrayType(BinaryType())), List[np.character]: (np.dtype("object"), ArrayType(BinaryType())), List[np.bytes_]: (np.dtype("object"), ArrayType(BinaryType())), List[np.string_]: (np.dtype("object"), ArrayType(BinaryType())), List[bool]: (np.dtype("object"), ArrayType(BooleanType())), List[np.bool]: (np.dtype("object"), ArrayType(BooleanType())), List[datetime.date]: (np.dtype("object"), ArrayType(DateType())), List[np.int8]: (np.dtype("object"), ArrayType(ByteType())), List[np.byte]: (np.dtype("object"), ArrayType(ByteType())), List[decimal.Decimal]: (np.dtype("object"), ArrayType(DecimalType(38, 18))), List[float]: (np.dtype("object"), ArrayType(DoubleType())), List[np.float]: (np.dtype("object"), ArrayType(DoubleType())), List[np.float64]: (np.dtype("object"), ArrayType(DoubleType())), List[np.float32]: (np.dtype("object"), ArrayType(FloatType())), List[np.int32]: (np.dtype("object"), ArrayType(IntegerType())), List[int]: (np.dtype("object"), ArrayType(LongType())), List[np.int]: (np.dtype("object"), ArrayType(LongType())), List[np.int64]: (np.dtype("object"), ArrayType(LongType())), List[np.int16]: (np.dtype("object"), ArrayType(ShortType())), List[str]: (np.dtype("object"), ArrayType(StringType())), List[np.unicode_]: (np.dtype("object"), ArrayType(StringType())), List[datetime.datetime]: (np.dtype("object"), ArrayType(TimestampType())), List[np.datetime64]: (np.dtype("object"), ArrayType(TimestampType())), # CategoricalDtype CategoricalDtype(categories=["a", "b", "c"]): ( CategoricalDtype(categories=["a", "b", "c"]), LongType(), ), } for numpy_or_python_type, (dtype, spark_type) in type_mapper.items(): self.assertEqual(as_spark_type(numpy_or_python_type), spark_type) self.assertEqual(pandas_on_spark_type(numpy_or_python_type), (dtype, spark_type)) with self.assertRaisesRegex(TypeError, "Type uint64 was not understood."): as_spark_type(np.dtype("uint64")) with self.assertRaisesRegex(TypeError, "Type object was not understood."): as_spark_type(np.dtype("object")) with self.assertRaisesRegex(TypeError, "Type uint64 was not understood."): pandas_on_spark_type(np.dtype("uint64")) with self.assertRaisesRegex(TypeError, "Type object was not understood."): pandas_on_spark_type(np.dtype("object")) @unittest.skipIf(not extension_dtypes_available, "The pandas extension types are not available") def test_as_spark_type_extension_dtypes(self): from pandas import Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype type_mapper = { Int8Dtype(): ByteType(), Int16Dtype(): ShortType(), Int32Dtype(): IntegerType(), Int64Dtype(): LongType(), } for extension_dtype, spark_type in type_mapper.items(): self.assertEqual(as_spark_type(extension_dtype), spark_type) self.assertEqual(pandas_on_spark_type(extension_dtype), (extension_dtype, spark_type)) @unittest.skipIf( not extension_object_dtypes_available, "The pandas extension object types are not available" ) def test_as_spark_type_extension_object_dtypes(self): from pandas import BooleanDtype, StringDtype type_mapper = { BooleanDtype(): BooleanType(), StringDtype(): StringType(), } for extension_dtype, spark_type in type_mapper.items(): self.assertEqual(as_spark_type(extension_dtype), spark_type) self.assertEqual(pandas_on_spark_type(extension_dtype), (extension_dtype, spark_type)) @unittest.skipIf( not extension_float_dtypes_available, "The pandas extension float types are not available" ) def test_as_spark_type_extension_float_dtypes(self): from pandas import Float32Dtype, Float64Dtype type_mapper = { Float32Dtype(): FloatType(), Float64Dtype(): DoubleType(), } for extension_dtype, spark_type in type_mapper.items(): self.assertEqual(as_spark_type(extension_dtype), spark_type) self.assertEqual(pandas_on_spark_type(extension_dtype), (extension_dtype, spark_type)) if __name__ == "__main__": from pyspark.pandas.tests.test_typedef import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
agentfog/qiime
scripts/plot_semivariogram.py
9
15002
#!/usr/bin/env python # File created on 09 Feb 2010 from __future__ import division __author__ = "Antonio Gonzalez Pena" __copyright__ = "Copyright 2011, The QIIME Project" __credits__ = ["Antonio Gonzalez Pena", "Kyle Patnode", "Yoshiki Vazquez-Baeza"] __license__ = "GPL" __version__ = "1.9.1-dev" __maintainer__ = "Antonio Gonzalez Pena" __email__ = "[email protected]" from qiime.plot_taxa_summary import make_legend from qiime.colors import get_qiime_hex_string_color from qiime.util import parse_command_line_parameters, get_options_lookup from qiime.util import make_option from qiime.plot_semivariogram import fit_semivariogram, FitModel from qiime.parse import parse_distmat, parse_mapping_file from qiime.filter import (filter_samples_from_distance_matrix, sample_ids_from_metadata_description) from matplotlib import use use('Agg', warn=False) from pylab import (plot, xlabel, ylabel, title, savefig, ylim, xlim, legend, show, figure) from numpy import asarray import os from os.path import splitext from StringIO import StringIO from copy import deepcopy options_lookup = get_options_lookup() script_info = {} script_info['brief_description'] = "Fits a model between two distance matrices " +\ "and plots the result" script_info['script_description'] = "Fits a spatial autocorrelation model " +\ "between two matrices and plots the result. This script will work with " +\ "two distance matrices but will ignore the 0s at the diagonal and the " +\ "values that go to N/A. See distance_matrix_from_mapping.py." script_info['script_usage'] = [] script_info['script_usage'].append(("Fitting", "For this script, the user " "supplies two distance matrices (i.e. resulting file from " "beta_diversity.py), along with the output filename (e.g. semivariogram), " "and the model to fit, as follows:", "%prog -x distance.txt -y unifrac.txt " "-o semivariogram_exponential.png")) script_info['script_usage'].append(("", "Modify the the default method to " "gaussian", "%prog -x distance.txt -y unifrac.txt --model gaussian -o " "semivariogram_gaussian.png")) script_info['script_usage'].append(("Color semivariograms by a category in" " the metadata mapping file", "Using a header name in the mapping file" " (Time), create two separate semivariograms in the same plot, an " "accompanying file with the color coding will be created" "(categories_legend.eps), both the legends and the plot will be in eps " "format.", "%prog -y unweighted_unifrac_dm.txt -x time_dm.txt --model " "gaussian -m Fasting_Map.txt -o categories.eps -c Treatment")) script_info['output_description'] = "The resulting output file consists of a " +\ "pdf image containing the plot between the two distances matrices and the" +\ " fitted model" script_info['required_options'] = [ make_option('-x', '--input_path_x', type='existing_filepath', help='path to distance matrix to be displayed in the x axis'), make_option('-y', '--input_path_y', type='existing_filepath', help='path to distance matrix to be displayed in the y axis'), make_option('-o', '--output_path', type='new_path', help='output path. directory for batch processing, ' + 'filename for single file operation'), ] script_info['optional_options'] = [ make_option('-b', '--binning', type='string', default=None, help='binning ranges. Format: [increment,top_limit], when ' + 'top_limit is -1=infinitum; you can specify several ranges using the same ' + 'format, i.e. [2.5,10][50,-1] will set two bins, one from 0-10 using 2.5 ' + 'size steps and from 10-inf using 50 size steps. Note that the binning is ' + 'used to clean the plots (reduce number of points) but ignored to fit the ' + 'model. [default: %default]'), make_option('--ignore_missing_samples', help='This will overpass the error raised ' + 'when the matrices have different sizes/samples', action='store_true', default=False), make_option( '--x_max', type='float', help='x axis max limit [default: auto]', default=None), make_option( '--x_min', type='float', help='x axis min limit [default: auto]', default=None), make_option( '--y_max', type='float', help='y axis max limit [default: auto]', default=None), make_option( '--y_min', type='float', help='y axis min limit [default: auto]', default=None), make_option( '-X', '--x_label', default='Distance Dissimilarity (m)', type='string', help='Label for the x axis [default: %default]'), make_option( '-Y', '--y_label', default='Community Dissimilarity', type='string', help='Label for the y axis [default: %default]'), make_option('-t', '--fig_title', default='Semivariogram', type='string', help='Title of the plot [default: %default]'), make_option('--dot_color', type='string', help='dot color for plot, more info:' + ' http://matplotlib.sourceforge.net/api/pyplot_api.html' + ' [default: %default]', default="white"), make_option('--dot_marker', type='string', help='dot color for plot, more info:' + ' http://matplotlib.sourceforge.net/api/pyplot_api.html' + ' [default: %default]', default="o"), make_option('--line_color', type='string', help='line color for plot, more info:' + ' http://matplotlib.sourceforge.net/api/pyplot_api.html' + ' [default: %default]', default="blue"), make_option('--dot_alpha', type='float', help='alpha for dots, more info:' + ' http://matplotlib.sourceforge.net/api/pyplot_api.html' + ' [default: %default]', default=1), make_option('--line_alpha', type='float', help='alpha for dots, more info:' + ' http://matplotlib.sourceforge.net/api/pyplot_api.html' + ' [default: %default]', default=1), make_option('--model', type='choice', choices=FitModel.options, default='exponential', help='model to be fitted to the data. Valid ' + 'choices are:' + ', '.join(FitModel.options) + '. [default: %default]'), make_option('-p', '--print_model', action='store_true', help='Print in the title of the plot the function of the fit. ' + '[default: %default]', default=False), make_option('-c', '--category', type='string', help='category to color each of' ' the trajectories when you have multiple treatments [default: %default]', default=None), make_option('-m', '--mapping_fp', type='existing_filepath', help='metadata ' 'mapping file, only used when coloring by a category, a file with the ' 'legends and color coding will be created with the suffix legend ' '[default: %default]', default=None) ] script_info['version'] = __version__ def main(): option_parser, opts, args = parse_command_line_parameters(**script_info) category = opts.category mapping_fp = opts.mapping_fp colors_used = [] if (category and mapping_fp is None) or (category is None and mapping_fp): option_parser.error('If coloring by a metadata category, both the ' 'category and the mapping file must be supplied.') elif mapping_fp and category: mapping_data, mapping_headers, _ = parse_mapping_file(open(mapping_fp, 'U')) if category not in mapping_headers: option_parser.error("The category supplied must exist in the " "metadata mapping file, '%s' does not exist." % category) index = mapping_headers.index(category) categories = list(set([line[index] for line in mapping_data])) list_of_plots = [] if opts.binning is None: ranges = [] else: # simple ranges format validation if opts.binning.count('[') != opts.binning.count(']') or\ opts.binning.count('[') != opts.binning.count(','): raise ValueError("The binning input has an error: '%s'; " % + "\nthe format should be [increment1,top_limit1][increment2,top_limit2]") # spliting in ranges rgn_txt = opts.binning.split('][') # removing left [ and right ] rgn_txt[0] = rgn_txt[0][1:] rgn_txt[-1] = rgn_txt[-1][:-1] # converting into int ranges = [] max = 0 for i, r in enumerate(rgn_txt): try: values = map(float, r.split(',')) except ValueError: raise ValueError( "Not a valid format for binning %s" % opts.binning) if len(values) != 2: raise ValueError( "All ranges must have only 2 values: [%s]" % r) elif i + 1 != len(rgn_txt): if values[0] > values[1]: raise ValueError( "The bin value can't be greater than the max value: [%s]" % r) elif values < 0: raise ValueError( "This value can not be negative: [%s]" % r) elif max > values[1]: raise ValueError( "This value can not smaller than the previous one: [%s]" % r) else: max = values[1] ranges.append(values) x_samples, x_distmtx = parse_distmat(open(opts.input_path_x, 'U')) y_samples, y_distmtx = parse_distmat(open(opts.input_path_y, 'U')) if opts.ignore_missing_samples: ignoring_from_x = list(set(x_samples) - set(y_samples)) ignoring_from_y = list(set(y_samples) - set(x_samples)) if opts.verbose: print '\nFrom %s we are ignoring: %s\n' % (opts.input_path_x, ignoring_from_x) print '\nFrom %s we are ignoring: %s\n' % (opts.input_path_y, ignoring_from_y) print '\nOnly using: %s\n' % (list(set(x_samples) & set(y_samples))) x_file = StringIO( filter_samples_from_distance_matrix((x_samples, x_distmtx), ignoring_from_x)) x_samples, x_distmtx = parse_distmat(x_file) y_file = StringIO( filter_samples_from_distance_matrix((y_samples, y_distmtx), ignoring_from_y)) y_samples, y_distmtx = parse_distmat(y_file) else: if x_distmtx.shape != y_distmtx.shape: raise ValueError('The distance matrices have different sizes. ' + 'You can cancel this error by passing --ignore_missing_samples') figure() if category is None: x_val, y_val, x_fit, y_fit, func_text = fit_semivariogram( (x_samples, x_distmtx), (y_samples, y_distmtx), opts.model, ranges) plot( x_val, y_val, color=opts.dot_color, marker=opts.dot_marker, linestyle="None", alpha=opts.dot_alpha) plot( x_fit, y_fit, linewidth=2.0, color=opts.line_color, alpha=opts.line_alpha) else: # not all the categories that are going to be enumerated are found in # the distance matrices i.e. the mapping file is a superset that can # contain more samples than the distance matrices used_categories = deepcopy(categories) for index, single_category in enumerate(categories): good_sample_ids = sample_ids_from_metadata_description( open(mapping_fp), '%s:%s' % (category, single_category)) try: _y_samples, _y_distmtx = parse_distmat(StringIO( filter_samples_from_distance_matrix((y_samples, y_distmtx), good_sample_ids, negate=True))) _x_samples, _x_distmtx = parse_distmat(StringIO( filter_samples_from_distance_matrix((x_samples, x_distmtx), good_sample_ids, negate=True))) except ValueError: # no samples found for this category used_categories.remove(single_category) continue x_val, y_val, x_fit, y_fit, func_text = fit_semivariogram( (_x_samples, _x_distmtx), (_y_samples, _y_distmtx), opts.model, ranges) # retrieve one of the colors the "QIIME" colors and add it to the # list of used colors for the creation of the legends in the plot color_only = get_qiime_hex_string_color(index) colors_used.append(color_only) plot(x_val, y_val, color=color_only, marker=opts.dot_marker, linestyle="None", alpha=opts.dot_alpha) plot(x_fit, y_fit, linewidth=2.0, color=color_only, alpha=opts.line_alpha, label=single_category) # set plot limits if requested x_lb, x_ub = xlim() y_lb, y_ub = ylim() if opts.x_min is not None: x_lb = opts.x_min if opts.x_max is not None: x_ub = opts.x_max if opts.y_min is not None: y_lb = opts.y_min if opts.y_max is not None: y_ub = opts.y_max xlim(x_lb, x_ub) ylim(y_lb, y_ub) x_label = opts.x_label y_label = opts.y_label fig_title = '%s (%s)' % (opts.fig_title, opts.model) xlabel(x_label) ylabel(y_label) if opts.print_model: title(fig_title + ' ' + func_text) else: title(fig_title) savefig(opts.output_path) # print the legends after the figure is exported to avoid conflicts if category: # if there's a desired format, use that, else default it to png _, extension = splitext(opts.output_path) # remove the dot, else, make_legend will add it to the filename extension = extension.replace('.', '') if extension == '': extension = 'png' make_legend(used_categories, colors_used, 0, 0, 'black', 'white', opts.output_path, extension, 80) if __name__ == "__main__": main()
gpl-2.0
richter-t/espresso
samples/python/lbf.py
4
2067
# # Copyright (C) 2013,2014 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # from __future__ import print_function import espressomd from espressomd import thermostat from espressomd import code_info from espressomd import lb import numpy as np print(""" ======================================================= = lbf.py = ======================================================= Program Information:""") print(code_info.features()) system = espressomd.System() system.time_step = 0.01 system.cell_system.skin = 0.1 box_l = 50 system.box_l =[box_l, box_l, box_l] # system.periodic = [1,1,1] system.part.add(id=0, pos=[box_l/2.0,box_l/2.0,box_l/2.0], fix=[1,1,1]) # system.part.add(id=0, pos=[box_l/2.0,box_l/2.0,box_l/2.0], ext_force=[0,0,1]) #lbf = lb.LBFluid_GPU(agrid=1, fric=1, dens=1, visc=1, tau=0.01, ext_force=[0,0,-1.0/(box_l**3)]) lbf = lb.LBFluid(agrid=1, fric=1, dens=1, visc=1, tau=0.01, ext_force=[0,0,-1.0/(box_l**3)]) system.actors.add(lbf) print(system.actors) print(lbf.get_params()) f_list = [] for i in range(10): f_list.append(system.part[0].f) system.integrator.run(steps=10) print(i) f_list=np.array(f_list) import matplotlib.pyplot as pp fig1=pp.figure() ax=fig1.add_subplot(111) ax.plot(f_list[:,0],label="F_x") ax.plot(f_list[:,1],label="F_y") ax.plot(f_list[:,2],label="F_z") ax.legend() ax.set_xlabel("t") ax.set_ylabel("F") pp.show()
gpl-3.0
pradyu1993/scikit-learn
examples/plot_digits_classification.py
3
2225
""" ================================ Recognizing hand-written digits ================================ An example showing how the scikit-learn can be used to recognize images of hand-written digits. This example is commented in the :ref:`tutorial section of the user manual <introduction>`. """ print __doc__ # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # License: Simplified BSD # Standard scientific Python imports import pylab as pl # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, metrics # The digits dataset digits = datasets.load_digits() # The data that we are interested in is made of 8x8 images of digits, # let's have a look at the first 3 images, stored in the `images` # attribute of the dataset. If we were working from image files, we # could load them using pylab.imread. For these images know which # digit they represent: it is given in the 'target' of the dataset. for index, (image, label) in enumerate(zip(digits.images, digits.target)[:4]): pl.subplot(2, 4, index + 1) pl.axis('off') pl.imshow(image, cmap=pl.cm.gray_r, interpolation='nearest') pl.title('Training: %i' % label) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Create a classifier: a support vector classifier classifier = svm.SVC(gamma=0.001) # We learn the digits on the first half of the digits classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2]) # Now predict the value of the digit on the second half: expected = digits.target[n_samples / 2:] predicted = classifier.predict(data[n_samples / 2:]) print "Classification report for classifier %s:\n%s\n" % ( classifier, metrics.classification_report(expected, predicted)) print "Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted) for index, (image, prediction) in enumerate( zip(digits.images[n_samples / 2:], predicted)[:4]): pl.subplot(2, 4, index + 5) pl.axis('off') pl.imshow(image, cmap=pl.cm.gray_r, interpolation='nearest') pl.title('Prediction: %i' % prediction) pl.show()
bsd-3-clause
sumspr/scikit-learn
sklearn/utils/tests/test_fixes.py
281
1829
# Authors: Gael Varoquaux <[email protected]> # Justin Vincent # Lars Buitinck # License: BSD 3 clause import numpy as np from nose.tools import assert_equal from nose.tools import assert_false from nose.tools import assert_true from numpy.testing import (assert_almost_equal, assert_array_almost_equal) from sklearn.utils.fixes import divide, expit from sklearn.utils.fixes import astype def test_expit(): # Check numerical stability of expit (logistic function). # Simulate our previous Cython implementation, based on #http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression assert_almost_equal(expit(1000.), 1. / (1. + np.exp(-1000.)), decimal=16) assert_almost_equal(expit(-1000.), np.exp(-1000.) / (1. + np.exp(-1000.)), decimal=16) x = np.arange(10) out = np.zeros_like(x, dtype=np.float32) assert_array_almost_equal(expit(x), expit(x, out=out)) def test_divide(): assert_equal(divide(.6, 1), .600000000000) def test_astype_copy_memory(): a_int32 = np.ones(3, np.int32) # Check that dtype conversion works b_float32 = astype(a_int32, dtype=np.float32, copy=False) assert_equal(b_float32.dtype, np.float32) # Changing dtype forces a copy even if copy=False assert_false(np.may_share_memory(b_float32, a_int32)) # Check that copy can be skipped if requested dtype match c_int32 = astype(a_int32, dtype=np.int32, copy=False) assert_true(c_int32 is a_int32) # Check that copy can be forced, and is the case by default: d_int32 = astype(a_int32, dtype=np.int32, copy=True) assert_false(np.may_share_memory(d_int32, a_int32)) e_int32 = astype(a_int32, dtype=np.int32) assert_false(np.may_share_memory(e_int32, a_int32))
bsd-3-clause
MDAnalysis/mdanalysis
package/MDAnalysis/analysis/psa.py
1
87765
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # MDAnalysis --- https://www.mdanalysis.org # Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the GNU Public Licence, v2 or any higher version # # Please cite your use of MDAnalysis in published work: # # R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, # D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. # MDAnalysis: A Python package for the rapid analysis of molecular dynamics # simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th # Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy. # doi: 10.25080/majora-629e541a-00e # # N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. # MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. # J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787 # r""" Calculating path similarity --- :mod:`MDAnalysis.analysis.psa` ========================================================================== :Author: Sean Seyler :Year: 2015 :Copyright: GNU Public License v3 .. versionadded:: 0.10.0 The module contains code to calculate the geometric similarity of trajectories using path metrics such as the Hausdorff or Fréchet distances [Seyler2015]_. The path metrics are functions of two paths and return a nonnegative number, i.e., a distance. Two paths are identical if their distance is zero, and large distances indicate dissimilarity. Each path metric is a function of the individual points (e.g., coordinate snapshots) that comprise each path and, loosely speaking, identify the two points, one per path of a pair of paths, where the paths deviate the most. The distance between these points of maximal deviation is measured by the root mean square deviation (RMSD), i.e., to compute structural similarity. One typically computes the pairwise similarity for an ensemble of paths to produce a symmetric distance matrix, which can be clustered to, at a glance, identify patterns in the trajectory data. To properly analyze a path ensemble, one must select a suitable reference structure to which all paths (each conformer in each path) will be universally aligned using the rotations determined by the best-fit rmsds. Distances between paths and their structures are then computed directly with no further alignment. This pre-processing step is necessary to preserve the metric properties of the Hausdorff and Fréchet metrics; using the best-fit rmsd on a pairwise basis does not generally preserve the triangle inequality. Note ---- The `PSAnalysisTutorial`_ outlines a typical application of PSA to a set of trajectories, including doing proper alignment, performing distance comparisons, and generating heat map-dendrogram plots from hierarchical clustering. .. Rubric:: References .. [Seyler2015] Seyler SL, Kumar A, Thorpe MF, Beckstein O (2015) Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways. PLoS Comput Biol 11(10): e1004568. doi: `10.1371/journal.pcbi.1004568`_ .. _`10.1371/journal.pcbi.1004568`: http://dx.doi.org/10.1371/journal.pcbi.1004568 .. _`PSAnalysisTutorial`: https://github.com/Becksteinlab/PSAnalysisTutorial Helper functions and variables ------------------------------ The following convenience functions are used by other functions in this module. .. autofunction:: sqnorm .. autofunction:: get_msd_matrix .. autofunction:: get_coord_axes Classes, methods, and functions ------------------------------- .. autofunction:: get_path_metric_func .. autofunction:: hausdorff .. autofunction:: hausdorff_wavg .. autofunction:: hausdorff_avg .. autofunction:: hausdorff_neighbors .. autofunction:: discrete_frechet .. autofunction:: dist_mat_to_vec .. autoclass:: Path :members: .. attribute:: u_original :class:`MDAnalysis.Universe` object with a trajectory .. attribute:: u_reference :class:`MDAnalysis.Universe` object containing a reference structure .. attribute:: select string, selection for :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` to select frame from :attr:`Path.u_reference` .. attribute:: path_select string, selection for :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` to select atoms to compose :attr:`Path.path` .. attribute:: ref_frame int, frame index to select frame from :attr:`Path.u_reference` .. attribute:: u_fitted :class:`MDAnalysis.Universe` object with the fitted trajectory .. attribute:: path :class:`numpy.ndarray` object representation of the fitted trajectory .. autoclass:: PSAPair .. attribute:: npaths int, total number of paths in the comparison in which *this* :class:`PSAPair` was generated .. attribute:: matrix_id (int, int), (row, column) indices of the location of *this* :class:`PSAPair` in the corresponding pairwise distance matrix .. attribute:: pair_id int, ID of *this* :class:`PSAPair` (the pair_id:math:`^\text{th}` comparison) in the distance vector corresponding to the pairwise distance matrix .. attribute:: nearest_neighbors dict, contains the nearest neighbors by frame index and the nearest neighbor distances for each path in *this* :class:`PSAPair` .. attribute:: hausdorff_pair dict, contains the frame indices of the Hausdorff pair for each path in *this* :class:`PSAPair` and the corresponding (Hausdorff) distance .. autoclass:: PSAnalysis :members: .. attribute:: universes list of :class:`MDAnalysis.Universe` objects containing trajectories .. attribute:: u_reference :class:`MDAnalysis.Universe` object containing a reference structure .. attribute:: select string, selection for :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` to select frame from :attr:`PSAnalysis.u_reference` .. attribute:: path_select string, selection for :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` to select atoms to compose :attr:`Path.path` .. attribute:: ref_frame int, frame index to select frame from :attr:`Path.u_reference` .. attribute:: paths list of :class:`numpy.ndarray` objects representing the set/ensemble of fitted trajectories .. attribute:: D :class:`numpy.ndarray` whichs store calculated distance matrix .. Markup definitions .. ------------------ .. .. |3Dp| replace:: :math:`N_p \times N \times 3` .. |2Dp| replace:: :math:`N_p \times (3N)` .. |3Dq| replace:: :math:`N_q \times N \times 3` .. |2Dq| replace:: :math:`N_q \times (3N)` .. |3D| replace:: :math:`N_p\times N\times 3` .. |2D| replace:: :math:`N_p\times 3N` .. |Np| replace:: :math:`N_p` """ import pickle import os import warnings import numbers import numpy as np from scipy import spatial, cluster from scipy.spatial.distance import directed_hausdorff import matplotlib import MDAnalysis import MDAnalysis.analysis.align from MDAnalysis import NoDataError from MDAnalysis.lib.util import deprecate import logging logger = logging.getLogger('MDAnalysis.analysis.psa') from ..due import due, Doi due.cite(Doi("10.1371/journal.pcbi.1004568"), description="Path Similarity Analysis algorithm and implementation", path="MDAnalysis.analysis.psa", cite_module=True) del Doi def get_path_metric_func(name): """Selects a path metric function by name. Parameters ---------- name : str name of path metric Returns ------- path_metric : function The path metric function specified by *name* (if found). """ path_metrics = { 'hausdorff' : hausdorff, 'weighted_average_hausdorff' : hausdorff_wavg, 'average_hausdorff' : hausdorff_avg, 'hausdorff_neighbors' : hausdorff_neighbors, 'discrete_frechet' : discrete_frechet } try: return path_metrics[name] except KeyError as key: errmsg = (f'Path metric "{key}" not found. Valid selections: ' f'{" ".join(n for n in path_metrics.keys())}') raise KeyError(errmsg) from None def sqnorm(v, axis=None): """Compute the sum of squares of elements along specified axes. Parameters ---------- v : numpy.ndarray coordinates axes : None / int / tuple (optional) Axes or axes along which a sum is performed. The default (*axes* = ``None``) performs a sum over all the dimensions of the input array. The value of *axes* may be negative, in which case it counts from the last axis to the zeroth axis. Returns ------- float the sum of the squares of the elements of `v` along `axes` """ return np.sum(v*v, axis=axis) def get_msd_matrix(P, Q, axis=None): r"""Generate the matrix of pairwise mean-squared deviations between paths. The MSDs between all pairs of points in `P` and `Q` are calculated, each pair having a point from `P` and a point from `Q`. `P` (`Q`) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time steps, :math:`N` atoms, and :math:`3N` coordinates (e.g., :attr:`MDAnalysis.core.groups.AtomGroup.positions`). The pairwise MSD matrix has dimensions :math:`N_p` by :math:`N_q`. Parameters ---------- P : numpy.ndarray the points in the first path Q : numpy.ndarray the points in the second path Returns ------- msd_matrix : numpy.ndarray matrix of pairwise MSDs between points in `P` and points in `Q` Notes ----- We calculate the MSD matrix .. math:: M_{ij} = ||p_i - q_j||^2 where :math:`p_i \in P` and :math:`q_j \in Q`. """ return np.asarray([sqnorm(p - Q, axis=axis) for p in P]) def reshaper(path, axis): """Flatten path when appropriate to facilitate calculations requiring two dimensional input. """ if len(axis) > 1: path = path.reshape(len(path), -1) return path def get_coord_axes(path): """Return the number of atoms and the axes corresponding to atoms and coordinates for a given path. The `path` is assumed to be a :class:`numpy.ndarray` where the 0th axis corresponds to a frame (a snapshot of coordinates). The :math:`3N` (Cartesian) coordinates are assumed to be either: 1. all in the 1st axis, starting with the x,y,z coordinates of the first atom, followed by the *x*,*y*,*z* coordinates of the 2nd, etc. 2. in the 1st *and* 2nd axis, where the 1st axis indexes the atom number and the 2nd axis contains the *x*,*y*,*z* coordinates of each atom. Parameters ---------- path : numpy.ndarray representing a path Returns ------- (int, (int, ...)) the number of atoms and the axes containing coordinates """ path_dimensions = len(path.shape) if path_dimensions == 3: N = path.shape[1] axis = (1,2) # 1st axis: atoms, 2nd axis: x,y,z coords elif path_dimensions == 2: # can use mod to check if total # coords divisible by 3 N = path.shape[1] / 3 axis = (1,) # 1st axis: 3N structural coords (x1,y1,z1,...,xN,xN,zN) else: raise ValueError("Path must have 2 or 3 dimensions; the first " "dimensions (axis 0) must correspond to frames, " "axis 1 (and axis 2, if present) must contain atomic " "coordinates.") return N, axis def hausdorff(P, Q): r"""Calculate the symmetric Hausdorff distance between two paths. The metric used is RMSD, as opposed to the more conventional L2 (Euclidean) norm, because this is convenient for i.e., comparing protein configurations. *P* (*Q*) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time steps, :math:`N` atoms, and :math:`3N` coordinates (e.g., :attr:`MDAnalysis.core.groups.AtomGroup.positions`). *P* (*Q*) has either shape |3Dp| (|3Dq|), or |2Dp| (|2Dq|) in flattened form. Note that reversing the path does not change the Hausdorff distance. Parameters ---------- P : numpy.ndarray the points in the first path Q : numpy.ndarray the points in the second path Returns ------- float the Hausdorff distance between paths `P` and `Q` Example ------- Calculate the Hausdorff distance between two halves of a trajectory: >>> from MDAnalysis.tests.datafiles import PSF, DCD >>> u = Universe(PSF,DCD) >>> mid = len(u.trajectory)/2 >>> ca = u.select_atoms('name CA') >>> P = numpy.array([ ... ca.positions for _ in u.trajectory[:mid:] ... ]) # first half of trajectory >>> Q = numpy.array([ ... ca.positions for _ in u.trajectory[mid::] ... ]) # second half of trajectory >>> hausdorff(P,Q) 4.7786639840135905 >>> hausdorff(P,Q[::-1]) # hausdorff distance w/ reversed 2nd trajectory 4.7786639840135905 Notes ----- :func:`scipy.spatial.distance.directed_hausdorff` is an optimized implementation of the early break algorithm of [Taha2015]_; the latter code is used here to calculate the symmetric Hausdorff distance with an RMSD metric References ---------- .. [Taha2015] A. A. Taha and A. Hanbury. An efficient algorithm for calculating the exact Hausdorff distance. IEEE Transactions On Pattern Analysis And Machine Intelligence, 37:2153-63, 2015. """ N_p, axis_p = get_coord_axes(P) N_q, axis_q = get_coord_axes(Q) if N_p != N_q: raise ValueError("P and Q must have matching sizes") P = reshaper(P, axis_p) Q = reshaper(Q, axis_q) return max(directed_hausdorff(P, Q)[0], directed_hausdorff(Q, P)[0]) / np.sqrt(N_p) def hausdorff_wavg(P, Q): r"""Calculate the weighted average Hausdorff distance between two paths. *P* (*Q*) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time steps, :math:`N` atoms, and :math:`3N` coordinates (e.g., :attr:`MDAnalysis.core.groups.AtomGroup.positions`). *P* (*Q*) has either shape |3Dp| (|3Dq|), or |2Dp| (|2Dq|) in flattened form. The nearest neighbor distances for *P* (to *Q*) and those of *Q* (to *P*) are averaged individually to get the average nearest neighbor distance for *P* and likewise for *Q*. These averages are then summed and divided by 2 to get a measure that gives equal weight to *P* and *Q*. Parameters ---------- P : numpy.ndarray the points in the first path Q : numpy.ndarray the points in the second path Returns ------- float the weighted average Hausdorff distance between paths `P` and `Q` Example ------- >>> from MDAnalysis import Universe >>> from MDAnalysis.tests.datafiles import PSF, DCD >>> u = Universe(PSF,DCD) >>> mid = len(u.trajectory)/2 >>> ca = u.select_atoms('name CA') >>> P = numpy.array([ ... ca.positions for _ in u.trajectory[:mid:] ... ]) # first half of trajectory >>> Q = numpy.array([ ... ca.positions for _ in u.trajectory[mid::] ... ]) # second half of trajectory >>> hausdorff_wavg(P,Q) 2.5669644353703447 >>> hausdorff_wavg(P,Q[::-1]) # weighted avg hausdorff dist w/ Q reversed 2.5669644353703447 Notes ----- The weighted average Hausdorff distance is not a true metric (it does not obey the triangle inequality); see [Seyler2015]_ for further details. """ N, axis = get_coord_axes(P) d = get_msd_matrix(P, Q, axis=axis) out = 0.5*( np.mean(np.amin(d,axis=0)) + np.mean(np.amin(d,axis=1)) ) return ( out / N )**0.5 def hausdorff_avg(P, Q): r"""Calculate the average Hausdorff distance between two paths. *P* (*Q*) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time steps, :math:`N` atoms, and :math:`3N` coordinates (e.g., :attr:`MDAnalysis.core.groups.AtomGroup.positions`). *P* (*Q*) has either shape |3Dp| (|3Dq|), or |2Dp| (|2Dq|) in flattened form. The nearest neighbor distances for *P* (to *Q*) and those of *Q* (to *P*) are all averaged together to get a mean nearest neighbor distance. This measure biases the average toward the path that has more snapshots, whereas weighted average Hausdorff gives equal weight to both paths. Parameters ---------- P : numpy.ndarray the points in the first path Q : numpy.ndarray the points in the second path Returns ------- float the average Hausdorff distance between paths `P` and `Q` Example ------- >>> from MDAnalysis.tests.datafiles import PSF, DCD >>> u = Universe(PSF,DCD) >>> mid = len(u.trajectory)/2 >>> ca = u.select_atoms('name CA') >>> P = numpy.array([ ... ca.positions for _ in u.trajectory[:mid:] ... ]) # first half of trajectory >>> Q = numpy.array([ ... ca.positions for _ in u.trajectory[mid::] ... ]) # second half of trajectory >>> hausdorff_avg(P,Q) 2.5669646575869005 >>> hausdorff_avg(P,Q[::-1]) # hausdorff distance w/ reversed 2nd trajectory 2.5669646575869005 Notes ----- The average Hausdorff distance is not a true metric (it does not obey the triangle inequality); see [Seyler2015]_ for further details. """ N, axis = get_coord_axes(P) d = get_msd_matrix(P, Q, axis=axis) out = np.mean( np.append( np.amin(d,axis=0), np.amin(d,axis=1) ) ) return ( out / N )**0.5 def hausdorff_neighbors(P, Q): r"""Find the Hausdorff neighbors of two paths. *P* (*Q*) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time steps, :math:`N` atoms, and :math:`3N` coordinates (e.g., :attr:`MDAnalysis.core.groups.AtomGroup.positions`). *P* (*Q*) has either shape |3Dp| (|3Dq|), or |2Dp| (|2Dq|) in flattened form. Parameters ---------- P : numpy.ndarray the points in the first path Q : numpy.ndarray the points in the second path Returns ------- dict dictionary of two pairs of numpy arrays, the first pair (key "frames") containing the indices of (Hausdorff) nearest neighbors for `P` and `Q`, respectively, the second (key "distances") containing (corresponding) nearest neighbor distances for `P` and `Q`, respectively Notes ----- - Hausdorff neighbors are those points on the two paths that are separated by the Hausdorff distance. They are the farthest nearest neighbors and are maximally different in the sense of the Hausdorff distance [Seyler2015]_. - :func:`scipy.spatial.distance.directed_hausdorff` can also provide the hausdorff neighbors. """ N, axis = get_coord_axes(P) d = get_msd_matrix(P, Q, axis=axis) nearest_neighbors = { 'frames' : (np.argmin(d, axis=1), np.argmin(d, axis=0)), 'distances' : ((np.amin(d,axis=1)/N)**0.5, (np.amin(d, axis=0)/N)**0.5) } return nearest_neighbors def discrete_frechet(P, Q): r"""Calculate the discrete Fréchet distance between two paths. *P* (*Q*) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time steps, :math:`N` atoms, and :math:`3N` coordinates (e.g., :attr:`MDAnalysis.core.groups.AtomGroup.positions`). *P* (*Q*) has either shape |3Dp| (|3Dq|), or :|2Dp| (|2Dq|) in flattened form. Parameters ---------- P : numpy.ndarray the points in the first path Q : numpy.ndarray the points in the second path Returns ------- float the discrete Fréchet distance between paths *P* and *Q* Example ------- Calculate the discrete Fréchet distance between two halves of a trajectory. >>> u = Universe(PSF,DCD) >>> mid = len(u.trajectory)/2 >>> ca = u.select_atoms('name CA') >>> P = np.array([ ... ca.positions for _ in u.trajectory[:mid:] ... ]) # first half of trajectory >>> Q = np.array([ ... ca.positions for _ in u.trajectory[mid::] ... ]) # second half of trajectory >>> discrete_frechet(P,Q) 4.7786639840135905 >>> discrete_frechet(P,Q[::-1]) # frechet distance w/ 2nd trj reversed 2nd 6.8429011177113832 Note that reversing the direction increased the Fréchet distance: it is sensitive to the direction of the path. Notes ----- The discrete Fréchet metric is an approximation to the continuous Fréchet metric [Frechet1906]_ [Alt1995]_. The calculation of the continuous Fréchet distance is implemented with the dynamic programming algorithm of [EiterMannila1994]_ [EiterMannila1997]_. References ---------- .. [Frechet1906] M. Fréchet. Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo, 22(1):1–72, Dec. 1906. .. [Alt1995] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Int J Comput Geometry & Applications, 5(01n02):75–91, 1995. doi: `10.1142/S0218195995000064`_ .. _`10.1142/S0218195995000064`: http://doi.org/10.1142/S0218195995000064 .. [EiterMannila1994] T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technical Report CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, Technische Universität Wien, Wien, 1994. .. [EiterMannila1997] T. Eiter and H. Mannila. Distance measures for point sets and their computation. Acta Informatica, 34:109–133, 1997. doi: `10.1007/s002360050075`_. .. _10.1007/s002360050075: http://doi.org/10.1007/s002360050075 """ N, axis = get_coord_axes(P) Np, Nq = len(P), len(Q) d = get_msd_matrix(P, Q, axis=axis) ca = -np.ones((Np, Nq)) def c(i, j): """Compute the coupling distance for two partial paths formed by *P* and *Q*, where both begin at frame 0 and end (inclusive) at the respective frame indices :math:`i-1` and :math:`j-1`. The partial path of *P* (*Q*) up to frame *i* (*j*) is formed by the slicing ``P[0:i]`` (``Q[0:j]``). :func:`c` is called recursively to compute the coupling distance between the two full paths *P* and *Q* (i.e., the discrete Frechet distance) in terms of coupling distances between their partial paths. Parameters ---------- i : int partial path of *P* through final frame *i-1* j : int partial path of *Q* through final frame *j-1* Returns ------- dist : float the coupling distance between partial paths `P[0:i]` and `Q[0:j]` """ if ca[i,j] != -1 : return ca[i,j] if i > 0: if j > 0: ca[i,j] = max( min(c(i-1,j),c(i,j-1),c(i-1,j-1)), d[i,j] ) else: ca[i,j] = max( c(i-1,0), d[i,0] ) elif j > 0: ca[i,j] = max( c(0,j-1), d[0,j] ) else: ca[i,j] = d[0,0] return ca[i,j] return (c(Np-1, Nq-1) / N)**0.5 def dist_mat_to_vec(N, i, j): """Convert distance matrix indices (in the upper triangle) to the index of the corresponding distance vector. This is a convenience function to locate distance matrix elements (and the pair generating it) in the corresponding distance vector. The row index *j* should be greater than *i+1*, corresponding to the upper triangle of the distance matrix. Parameters ---------- N : int size of the distance matrix (of shape *N*-by-*N*) i : int row index (starting at 0) of the distance matrix j : int column index (starting at 0) of the distance matrix Returns ------- int index (of the matrix element) in the corresponding distance vector """ if not (isinstance(N, numbers.Integral) and isinstance(i, numbers.Integral) and isinstance(j, numbers.Integral)): raise ValueError("N, i, j all must be of type int") if i < 0 or j < 0 or N < 2: raise ValueError("Matrix indices are invalid; i and j must be greater " "than 0 and N must be greater the 2") if (j > i and (i > N - 1 or j > N)) or (j < i and (i > N or j > N - 1)): raise ValueError("Matrix indices are out of range; i and j must be " "less than N = {0:d}".format(N)) if j > i: return (N*i) + j - (i+2)*(i+1) // 2 # old-style division for int output elif j < i: warnings.warn("Column index entered (j = {:d} is smaller than row " "index (i = {:d}). Using symmetric element in upper " "triangle of distance matrix instead: i --> j, " "j --> i".format(j, i)) return (N*j) + i - (j+2)*(j+1) // 2 # old-style division for int output else: raise ValueError("Error in processing matrix indices; i and j must " "be integers less than integer N = {0:d} such that" " j >= i+1.".format(N)) class Path(object): """Represent a path based on a :class:`~MDAnalysis.core.universe.Universe`. Pre-process a :class:`Universe` object: (1) fit the trajectory to a reference structure, (2) convert fitted time series to a :class:`numpy.ndarray` representation of :attr:`Path.path`. The analysis is performed with :meth:`PSAnalysis.run` and stores the result in the :class:`numpy.ndarray` distance matrix :attr:`PSAnalysis.D`. :meth:`PSAnalysis.run` also generates a fitted trajectory and path from alignment of the original trajectories to a reference structure. .. versionadded:: 0.9.1 """ def __init__(self, universe, reference, select='name CA', path_select='all', ref_frame=0): """Setting up trajectory alignment and fitted path generation. Parameters ---------- universe : Universe :class:`MDAnalysis.Universe` object containing a trajectory reference : Universe reference structure (uses `ref_frame` from the trajectory) select : str or dict or tuple (optional) The selection to operate on for rms fitting; can be one of: 1. any valid selection string for :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` that produces identical selections in *mobile* and *reference*; or 2. a dictionary ``{'mobile':sel1, 'reference':sel2}`` (the :func:`MDAnalysis.analysis.align.fasta2select` function returns such a dictionary based on a ClustalW_ or STAMP_ sequence alignment); or 3. a tuple ``(sel1, sel2)`` When using 2. or 3. with *sel1* and *sel2* then these selections can also each be a list of selection strings (to generate an AtomGroup with defined atom order as described under :ref:`ordered-selections-label`). ref_frame : int frame index to select the coordinate frame from `select.trajectory` path_select : selection_string atom selection composing coordinates of (fitted) path; if ``None`` then `path_select` is set to `select` [``None``] """ self.u_original = universe self.u_reference = reference self.select = select self.ref_frame = ref_frame self.path_select = path_select self.top_name = self.u_original.filename self.trj_name = self.u_original.trajectory.filename self.newtrj_name = None self.u_fitted = None self.path = None self.natoms = None def fit_to_reference(self, filename=None, prefix='', postfix='_fit', rmsdfile=None, targetdir=os.path.curdir, weights=None, tol_mass=0.1): """Align each trajectory frame to the reference structure Parameters ---------- filename : str (optional) file name for the RMS-fitted trajectory or pdb; defaults to the original trajectory filename (from :attr:`Path.u_original`) with `prefix` prepended prefix : str (optional) prefix for auto-generating the new output filename rmsdfile : str (optional) file name for writing the RMSD time series [``None``] weights : {"mass", ``None``} or array_like (optional) choose weights. With ``"mass"`` uses masses as weights; with ``None`` weigh each atom equally. If a float array of the same length as the selected AtomGroup is provided, use each element of the `array_like` as a weight for the corresponding atom in the AtomGroup. tol_mass : float (optional) Reject match if the atomic masses for matched atoms differ by more than `tol_mass` [0.1] Returns ------- Universe :class:`MDAnalysis.Universe` object containing a fitted trajectory Notes ----- Uses :class:`MDAnalysis.analysis.align.AlignTraj` for the fitting. .. deprecated:: 0.16.1 Instead of ``mass_weighted=True`` use new ``weights='mass'``; refactored to fit with AnalysisBase API .. versionchanged:: 0.17.0 Deprecated keyword `mass_weighted` was removed. """ head, tail = os.path.split(self.trj_name) oldname, ext = os.path.splitext(tail) filename = filename or oldname self.newtrj_name = os.path.join(targetdir, filename + postfix + ext) self.u_reference.trajectory[self.ref_frame] # select frame from ref traj aligntrj = MDAnalysis.analysis.align.AlignTraj(self.u_original, self.u_reference, select=self.select, filename=self.newtrj_name, prefix=prefix, weights=weights, tol_mass=tol_mass).run() if rmsdfile is not None: aligntrj.save(rmsdfile) return MDAnalysis.Universe(self.top_name, self.newtrj_name) def to_path(self, fitted=False, select=None, flat=False): r"""Generates a coordinate time series from the fitted universe trajectory. Given a selection of *N* atoms from *select*, the atomic positions for each frame in the fitted universe (:attr:`Path.u_fitted`) trajectory (with |Np| total frames) are appended sequentially to form a 3D or 2D (if *flat* is ``True``) :class:`numpy.ndarray` representation of the fitted trajectory (with dimensions |3D| or |2D|, respectively). Parameters ---------- fitted : bool (optional) construct a :attr:`Path.path` from the :attr:`Path.u_fitted` trajectory; if ``False`` then :attr:`Path.path` is generated with the trajectory from :attr:`Path.u_original` [``False``] select : str (optional) the selection for constructing the coordinates of each frame in :attr:`Path.path`; if ``None`` then :attr:`Path.path_select` is used, else it is overridden by *select* [``None``] flat : bool (optional) represent :attr:`Path.path` as a 2D (|2D|) :class:`numpy.ndarray`; if ``False`` then :attr:`Path.path` is a 3D (|3D|) :class:`numpy.ndarray` [``False``] Returns ------- numpy.ndarray representing a time series of atomic positions of an :class:`MDAnalysis.core.groups.AtomGroup` selection from :attr:`Path.u_fitted.trajectory` """ select = select if select is not None else self.path_select if fitted: if not isinstance(self.u_fitted, MDAnalysis.Universe): raise TypeError("Fitted universe not found. Generate a fitted " + "universe with fit_to_reference() first, or explicitly "+ "set argument \"fitted\" to \"False\" to generate a " + "path from the original universe.") u = self.u_fitted else: u = self.u_original frames = u.trajectory atoms = u.select_atoms(select) self.natoms = len(atoms) frames.rewind() if flat: return np.array([atoms.positions.flatten() for _ in frames]) else: return np.array([atoms.positions for _ in frames]) def run(self, align=False, filename=None, postfix='_fit', rmsdfile=None, targetdir=os.path.curdir, weights=None, tol_mass=0.1, flat=False): r"""Generate a path from a trajectory and reference structure. As part of the path generation, the trajectory can be superimposed ("aligned") to a reference structure if specified. This is a convenience method to generate a fitted trajectory from an inputted universe (:attr:`Path.u_original`) and reference structure (:attr:`Path.u_reference`). :meth:`Path.fit_to_reference` and :meth:`Path.to_path` are used consecutively to generate a new universe (:attr:`Path.u_fitted`) containing the fitted trajectory along with the corresponding :attr:`Path.path` represented as an :class:`numpy.ndarray`. The method returns a tuple of the topology name and new trajectory name, which can be fed directly into an :class:`MDAnalysis.Universe` object after unpacking the tuple using the ``*`` operator, as in ``MDAnalysis.Universe(*(top_name, newtraj_name))``. Parameters ---------- align : bool (optional) Align trajectory to atom selection :attr:`Path.select` of :attr:`Path.u_reference`. If ``True``, a universe containing an aligned trajectory is produced with :meth:`Path.fit_to_reference` [``False``] filename : str (optional) filename for the RMS-fitted trajectory or pdb; defaults to the original trajectory filename (from :attr:`Path.u_original`) with *prefix* prepended postfix : str (optional) prefix for auto-generating the new output filename rmsdfile : str (optional) file name for writing the RMSD time series [``None``] weights : {"mass", ``None``} or array_like (optional) choose weights. With ``"mass"`` uses masses as weights; with ``None`` weigh each atom equally. If a float array of the same length as the selected AtomGroup is provided, use each element of the `array_like` as a weight for the corresponding atom in the AtomGroup. tol_mass : float (optional) Reject match if the atomic masses for matched atoms differ by more than *tol_mass* [0.1] flat : bool (optional) represent :attr:`Path.path` with 2D (|2D|) :class:`numpy.ndarray`; if ``False`` then :attr:`Path.path` is a 3D (|3D|) :class:`numpy.ndarray` [``False``] Returns ------- topology_trajectory : tuple A tuple of the topology name and new trajectory name. .. deprecated:: 0.16.1 Instead of ``mass_weighted=True`` use new ``weights='mass'``; refactored to fit with AnalysisBase API .. versionchanged:: 0.17.0 Deprecated keyword `mass_weighted` was removed. """ if align: self.u_fitted = self.fit_to_reference( filename=filename, postfix=postfix, rmsdfile=rmsdfile, targetdir=targetdir, weights=weights, tol_mass=0.1) self.path = self.to_path(fitted=align, flat=flat) return self.top_name, self.newtrj_name def get_num_atoms(self): """Return the number of atoms used to construct the :class:`Path`. Must run :meth:`Path.to_path` prior to calling this method. Returns ------- int the number of atoms in the :class:`Path` """ if self.natoms is None: raise ValueError("No path data; do 'Path.to_path()' first.") return self.natoms class PSAPair(object): """Generate nearest neighbor and Hausdorff pair information between a pair of paths from an all-pairs comparison generated by :class:`PSA`. The nearest neighbors for each path of a pair of paths is generated by :meth:`PSAPair.compute_nearest_neighbors` and stores the result in a dictionary (:attr:`nearest_neighbors`): each path has a :class:`numpy.ndarray` of the frames of its nearest neighbors, and a :class:`numpy.ndarray` of its nearest neighbor distances :attr:`PSAnalysis.D`. For example, *nearest_neighbors['frames']* is a pair of :class:`numpy.ndarray`, the first being the frames of the nearest neighbors of the first path, *i*, the second being those of the second path, *j*. The Hausdorff pair for the pair of paths is found by calling :meth:`find_hausdorff_pair` (locates the nearest neighbor pair having the largest overall distance separating them), which stores the result in a dictionary (:attr:`hausdorff_pair`) containing the frames (indices) of the pair along with the corresponding (Hausdorff) distance. *hausdorff_pair['frame']* contains a pair of frames in the first path, *i*, and the second path, *j*, respectively, that correspond to the Hausdorff distance between them. .. versionadded:: 0.11 """ def __init__(self, npaths, i, j): """Set up a :class:`PSAPair` for a pair of paths that are part of a :class:`PSA` comparison of *npaths* total paths. Each unique pair of paths compared using :class:`PSA` is related by their nearest neighbors (and corresponding distances) and the Hausdorff pair and distance. :class:`PSAPair` is a convenience class for calculating and encapsulating nearest neighbor and Hausdorff pair information for one pair of paths. Given *npaths*, :class:`PSA` performs and all-pairs comparison among all paths for a total of :math:`\text{npaths}*(\text{npaths}-1)/2` unique comparisons. If distances between paths are computed, the all-pairs comparison can be summarized in a symmetric distance matrix whose upper triangle can be mapped to a corresponding distance vector form in a one-to-one manner. A particular comparison of a pair of paths in a given instance of :class:`PSAPair` is thus unique identified by the row and column indices in the distance matrix representation (whether or not distances are actually computed), or a single ID (index) in the corresponding distance vector. Parameters ---------- npaths : int total number of paths in :class:`PSA` used to generate *this* :class:`PSAPair` i : int row index (starting at 0) of the distance matrix j : int column index (starting at 0) of the distance matrix """ self.npaths = npaths self.matrix_idx = (i,j) self.pair_idx = self._dvec_idx(i,j) # Set by calling hausdorff_nn self.nearest_neighbors = {'frames' : None, 'distances' : None} # Set by self.getHausdorffPair self.hausdorff_pair = {'frames' : (None, None), 'distance' : None} def _dvec_idx(self, i, j): """Convert distance matrix indices (in the upper triangle) to the index of the corresponding distance vector. This is a convenience function to locate distance matrix elements (and the pair generating it) in the corresponding distance vector. The row index *j* should be greater than *i+1*, corresponding to the upper triangle of the distance matrix. Parameters ---------- i : int row index (starting at 0) of the distance matrix j : int column index (starting at 0) of the distance matrix Returns ------- int (matrix element) index in the corresponding distance vector """ return (self.npaths*i) + j - (i+2)*(i+1)/2 def compute_nearest_neighbors(self, P,Q, N=None): """Generates Hausdorff nearest neighbor lists of *frames* (by index) and *distances* for *this* pair of paths corresponding to distance matrix indices (*i*,*j*). :meth:`PSAPair.compute_nearest_neighbors` calls :func:`hausdorff_neighbors` to populate the dictionary of the nearest neighbor lists of frames (by index) and distances (:attr:`PSAPair.nearest_neighbors`). This method must explicitly take as arguments a pair of paths, *P* and *Q*, where *P* is the :math:`i^\text{th}` path and *Q* is the :math:`j^\text{th}` path among the set of *N* total paths in the comparison. Parameters ---------- P : numpy.ndarray representing a path Q : numpy.ndarray representing a path N : int size of the distance matrix (of shape *N*-by-*N*) [``None``] """ hn = hausdorff_neighbors(P, Q) self.nearest_neighbors['frames'] = hn['frames'] self.nearest_neighbors['distances'] = hn['distances'] def find_hausdorff_pair(self): r"""Find the Hausdorff pair (of frames) for *this* pair of paths. :meth:`PSAPair.find_hausdorff_pair` requires that `:meth:`PSAPair.compute_nearest_neighbors` be called first to generate the nearest neighbors (and corresponding distances) for each path in *this* :class:`PSAPair`. The Hausdorff pair is the nearest neighbor pair (of snapshots/frames), one in the first path and one in the second, with the largest separation distance. """ if self.nearest_neighbors['distances'] is None: raise NoDataError("Nearest neighbors have not been calculated yet;" " run compute_nearest_neighbors() first.") nn_idx_P, nn_idx_Q = self.nearest_neighbors['frames'] nn_dist_P, nn_dist_Q = self.nearest_neighbors['distances'] max_nn_dist_P = max(nn_dist_P) max_nn_dist_Q = max(nn_dist_Q) if max_nn_dist_P > max_nn_dist_Q: max_nn_idx_P = np.argmax(nn_dist_P) self.hausdorff_pair['frames'] = max_nn_idx_P, nn_idx_P[max_nn_idx_P] self.hausdorff_pair['distance'] = max_nn_dist_P else: max_nn_idx_Q = np.argmax(nn_dist_Q) self.hausdorff_pair['frames'] = nn_idx_Q[max_nn_idx_Q], max_nn_idx_Q self.hausdorff_pair['distance'] = max_nn_dist_Q def get_nearest_neighbors(self, frames=True, distances=True): """Returns the nearest neighbor frame indices, distances, or both, for each path in *this* :class:`PSAPair`. :meth:`PSAPair.get_nearest_neighbors` requires that the nearest neighbors (:attr:`nearest_neighbors`) be initially computed by first calling :meth:`compute_nearest_neighbors`. At least one of *frames* or *distances* must be ``True``, or else a ``NoDataError`` is raised. Parameters ---------- frames : bool if ``True``, return nearest neighbor frame indices [``True``] distances : bool if ``True``, return nearest neighbor distances [``True``] Returns ------- dict or tuple If both *frames* and *distances* are ``True``, return the entire dictionary (:attr:`nearest_neighbors`); if only *frames* is ``True``, return a pair of :class:`numpy.ndarray` containing the indices of the frames (for the pair of paths) of the nearest neighbors; if only *distances* is ``True``, return a pair of :class:`numpy.ndarray` of the nearest neighbor distances (for the pair of paths). """ if self.nearest_neighbors['distances'] is None: raise NoDataError("Nearest neighbors have not been calculated yet;" " run compute_nearest_neighbors() first.") if frames: if distances: return self.nearest_neighbors else: return self.nearest_neighbors['frames'] elif distances: return self.nearest_neighbors['distances'] else: raise NoDataError('Need to select Hausdorff pair "frames" or' ' "distances" or both. "frames" and "distances"' ' cannot both be set to False.') def get_hausdorff_pair(self, frames=True, distance=True): """Returns the Hausdorff pair of frames indices, the Hausdorff distance, or both, for the paths in *this* :class:`PSAPair`. :meth:`PSAPair.get_hausdorff_pair` requires that the Hausdorff pair (and distance) be initially found by first calling :meth:`find_hausdorff_pair`. At least one of *frames* or *distance* must be ``True``, or else a ``NoDataError`` is raised. Parameters ---------- frames : bool if ``True``, return the indices of the frames of the Hausdorff pair [``True``] distances : bool if ``True``, return Hausdorff distance [``True``] Returns ------- dict or tuple If both *frames* and *distance* are ``True``, return the entire dictionary (:attr:`hausdorff_pair`); if only *frames* is ``True``, return a pair of ``int`` containing the indices of the frames (one index per path) of the Hausdorff pair; if only *distance* is ``True``, return the Hausdorff distance for this path pair. """ if self.hausdorff_pair['distance'] is None: raise NoDataError("Hausdorff pair has not been calculated yet;" " run find_hausdorff_pair() first.") if frames: if distance: return self.hausdorff_pair else: return self.hausdorff_pair['frames'] elif distance: return self.hausdorff_pair['distance'] else: raise NoDataError('Need to select Hausdorff pair "frames" or' ' "distance" or both. "frames" and "distance"' ' cannot both be set to False.') class PSAnalysis(object): """Perform Path Similarity Analysis (PSA) on a set of trajectories. The analysis is performed with :meth:`PSAnalysis.run` and stores the result in the :class:`numpy.ndarray` distance matrix :attr:`PSAnalysis.D`. :meth:`PSAnalysis.run` also generates a fitted trajectory and path from alignment of the original trajectories to a reference structure. .. versionadded:: 0.8 .. versionchanged:: 1.0.0 ``save_result()`` method has been removed. You can use ``np.save()`` on :attr:`PSAnalysis.D` instead. """ def __init__(self, universes, reference=None, select='name CA', ref_frame=0, path_select=None, labels=None, targetdir=os.path.curdir): """Setting up Path Similarity Analysis. The mutual similarity between all unique pairs of trajectories are computed using a selected path metric. Parameters ---------- universes : list a list of universes (:class:`MDAnalysis.Universe` object), each containing a trajectory reference : Universe reference coordinates; :class:`MDAnalysis.Universe` object; if ``None`` the first time step of the first item in `universes` is used [``None``] select : str or dict or tuple The selection to operate on; can be one of: 1. any valid selection string for :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` that produces identical selections in *mobile* and *reference*; or 2. a dictionary ``{'mobile':sel1, 'reference':sel2}`` (the :func:`MDAnalysis.analysis.align.fasta2select` function returns such a dictionary based on a ClustalW_ or STAMP_ sequence alignment); or 3. a tuple ``(sel1, sel2)`` When using 2. or 3. with *sel1* and *sel2* then these selections can also each be a list of selection strings (to generate an AtomGroup with defined atom order as described under :ref:`ordered-selections-label`). tol_mass : float Reject match if the atomic masses for matched atoms differ by more than *tol_mass* [0.1] ref_frame : int frame index to select frame from *reference* [0] path_select : str atom selection composing coordinates of (fitted) path; if ``None`` then *path_select* is set to *select* [``None``] targetdir : str output files are saved there; if ``None`` then "./psadata" is created and used [.] labels : list list of strings, names of trajectories to be analyzed (:class:`MDAnalysis.Universe`); if ``None``, defaults to trajectory names [``None``] .. _ClustalW: http://www.clustal.org/ .. _STAMP: http://www.compbio.dundee.ac.uk/manuals/stamp.4.2/ """ self.universes = universes self.u_reference = self.universes[0] if reference is None else reference self.select = select self.ref_frame = ref_frame self.path_select = self.select if path_select is None else path_select if targetdir is None: try: targetdir = os.path.join(os.path.curdir, 'psadata') os.makedirs(targetdir) except OSError: if not os.path.isdir(targetdir): raise self.targetdir = os.path.realpath(targetdir) # Set default directory names for storing topology/reference structures, # fitted trajectories, paths, distance matrices, and plots self.datadirs = {'fitted_trajs' : 'fitted_trajs', 'paths' : 'paths', 'distance_matrices' : 'distance_matrices', 'plots' : 'plots'} for dir_name, directory in self.datadirs.items(): try: full_dir_name = os.path.join(self.targetdir, dir_name) os.makedirs(full_dir_name) except OSError: if not os.path.isdir(full_dir_name): raise # Keep track of topology, trajectory, and related files trj_names = [] for i, u in enumerate(self.universes): head, tail = os.path.split(u.trajectory.filename) filename, ext = os.path.splitext(tail) trj_names.append(filename) self.trj_names = trj_names self.fit_trj_names = None self.path_names = None self.top_name = self.universes[0].filename if len(universes) != 0 else None self.labels = labels or self.trj_names # Names of persistence (pickle) files where topology and trajectory # filenames are stored--should not be modified by user self._top_pkl = os.path.join(self.targetdir, "psa_top-name.pkl") self._trjs_pkl = os.path.join(self.targetdir, "psa_orig-traj-names.pkl") self._fit_trjs_pkl = os.path.join(self.targetdir, "psa_fitted-traj-names.pkl") self._paths_pkl = os.path.join(self.targetdir, "psa_path-names.pkl") self._labels_pkl = os.path.join(self.targetdir, "psa_labels.pkl") # Pickle topology and trajectory filenames for this analysis to curdir with open(self._top_pkl, 'wb') as output: pickle.dump(self.top_name, output) with open(self._trjs_pkl, 'wb') as output: pickle.dump(self.trj_names, output) with open(self._labels_pkl, 'wb') as output: pickle.dump(self.labels, output) self.natoms = None self.npaths = None self.paths = None self.D = None # pairwise distances self._HP = None # (distance vector order) list of all Hausdorff pairs self._NN = None # (distance vector order) list of all nearest neighbors self._psa_pairs = None # (distance vector order) list of all PSAPairs def generate_paths(self, align=False, filename=None, infix='', weights=None, tol_mass=False, ref_frame=None, flat=False, save=True, store=False): """Generate paths, aligning each to reference structure if necessary. Parameters ---------- align : bool Align trajectories to atom selection :attr:`PSAnalysis.select` of :attr:`PSAnalysis.u_reference` [``False``] filename : str strings representing base filename for fitted trajectories and paths [``None``] infix : str additional tag string that is inserted into the output filename of the fitted trajectory files [''] weights : {"mass", ``None``} or array_like (optional) choose weights. With ``"mass"`` uses masses as weights; with ``None`` weigh each atom equally. If a float array of the same length as the selected AtomGroup is provided, use each element of the `array_like` as a weight for the corresponding atom in the AtomGroup [``None``] tol_mass : float Reject match if the atomic masses for matched atoms differ by more than *tol_mass* [``False``] ref_frame : int frame index to select frame from *reference* [``None``] flat : bool represent :attr:`Path.path` as a 2D (|2D|) :class:`numpy.ndarray`; if ``False`` then :attr:`Path.path` is a 3D (|3D|) :class:`numpy.ndarray` [``False``] save : bool if ``True``, pickle list of names for fitted trajectories [``True``] store : bool if ``True`` then writes each path (:class:`numpy.ndarray`) in :attr:`PSAnalysis.paths` to compressed npz (numpy) files [``False``] The fitted trajectories are written to new files in the "/trj_fit" subdirectory in :attr:`PSAnalysis.targetdir` named "filename(*trajectory*)XXX*infix*_psa", where "XXX" is a number between 000 and 999; the extension of each file is the same as its original. Optionally, the trajectories can also be saved in numpy compressed npz format in the "/paths" subdirectory in :attr:`PSAnalysis.targetdir` for persistence and can be accessed as the attribute :attr:`PSAnalysis.paths`. .. deprecated:: 0.16.1 Instead of ``mass_weighted=True`` use new ``weights='mass'``; refactored to fit with AnalysisBase API .. versionchanged:: 0.17.0 Deprecated keyword `mass_weighted` was removed. .. versionchanged:: 1.0.0 Defaults for the `store` and `filename` keywords have been changed from `True` and `fitted` to `False` and `None` respectively. These now match the docstring documented defaults. """ if ref_frame is None: ref_frame = self.ref_frame paths = [] fit_trj_names = [] for i, u in enumerate(self.universes): p = Path(u, self.u_reference, select=self.select, path_select=self.path_select, ref_frame=ref_frame) trj_dir = os.path.join(self.targetdir, self.datadirs['fitted_trajs']) postfix = '{0}{1}{2:03n}'.format(infix, '_psa', i+1) top_name, fit_trj_name = p.run(align=align, filename=filename, postfix=postfix, targetdir=trj_dir, weights=weights, tol_mass=tol_mass, flat=flat) paths.append(p.path) fit_trj_names.append(fit_trj_name) self.natoms, axis = get_coord_axes(paths[0]) self.paths = paths self.npaths = len(paths) self.fit_trj_names = fit_trj_names if save: with open(self._fit_trjs_pkl, 'wb') as output: pickle.dump(self.fit_trj_names, output) if store: self.save_paths(filename=filename) def run(self, **kwargs): """Perform path similarity analysis on the trajectories to compute the distance matrix. A number of parameters can be changed from the defaults. The result is stored as the array :attr:`PSAnalysis.D`. Parameters ---------- metric : str or callable selection string specifying the path metric to measure pairwise distances among :attr:`PSAnalysis.paths` or a callable with the same call signature as :func:`hausdorff` [``'hausdorff'``] start : int `start` and `stop` frame index with `step` size: analyze ``trajectory[start:stop:step]`` [``None``] stop : int step : int .. versionchanged:: 1.0.0 `store` and `filename` have been removed. """ metric = kwargs.pop('metric', 'hausdorff') start = kwargs.pop('start', None) stop = kwargs.pop('stop', None) step = kwargs.pop('step', None) if isinstance(metric, str): metric_func = get_path_metric_func(str(metric)) else: metric_func = metric numpaths = self.npaths D = np.zeros((numpaths,numpaths)) for i in range(0, numpaths-1): for j in range(i+1, numpaths): P = self.paths[i][start:stop:step] Q = self.paths[j][start:stop:step] D[i,j] = metric_func(P, Q) D[j,i] = D[i,j] self.D = D def run_pairs_analysis(self, **kwargs): """Perform PSA Hausdorff (nearest neighbor) pairs analysis on all unique pairs of paths in :attr:`PSAnalysis.paths`. Partial results can be stored in separate lists, where each list is indexed according to distance vector convention (i.e., element *(i,j)* in distance matrix representation corresponds to element :math:`s=N*i+j-(i+1)*(i+2)` in distance vector representation, which is the :math:`s^\text{th}` comparison). For each unique pair of paths, the nearest neighbors for that pair can be stored in :attr:`NN` and the Hausdorff pair in :attr:`HP`. :attr:`PP` stores the full information of Hausdorff pairs analysis that is available for each pair of path, including nearest neighbors lists and the Hausdorff pairs. The pairwise distances are stored as the array :attr:`PSAnalysis.D`. Parameters ---------- start : int `start` and `stop` frame index with `step` size: analyze ``trajectory[start:stop:step]`` [``None``] stop : int step : int neighbors : bool if ``True``, then stores dictionary of nearest neighbor frames/distances in :attr:`PSAnalysis.NN` [``False``] hausdorff_pairs : bool if ``True``, then stores dictionary of Hausdorff pair frames/distances in :attr:`PSAnalysis.HP` [``False``] """ start = kwargs.pop('start', None) stop = kwargs.pop('stop', None) step = kwargs.pop('step', None) neighbors = kwargs.pop('neighbors', False) hausdorff_pairs = kwargs.pop('hausdorff_pairs', False) numpaths = self.npaths D = np.zeros((numpaths,numpaths)) self._NN = [] # list of nearest neighbors pairs self._HP = [] # list of Hausdorff pairs self._psa_pairs = [] # list of PSAPairs for i in range(0, numpaths-1): for j in range(i+1, numpaths): pp = PSAPair(i, j, numpaths) P = self.paths[i][start:stop:step] Q = self.paths[j][start:stop:step] pp.compute_nearest_neighbors(P, Q, self.natoms) pp.find_hausdorff_pair() D[i,j] = pp.hausdorff_pair['distance'] D[j,i] = D[i,j] self._psa_pairs.append(pp) if neighbors: self._NN.append(pp.get_nearest_neighbors()) if hausdorff_pairs: self._HP.append(pp.get_hausdorff_pair()) self.D = D def save_paths(self, filename=None): """Save fitted :attr:`PSAnalysis.paths` to numpy compressed npz files. The data are saved with :func:`numpy.savez_compressed` in the directory specified by :attr:`PSAnalysis.targetdir`. Parameters ---------- filename : str specifies filename [``None``] Returns ------- filename : str See Also -------- load """ filename = filename or 'path_psa' head = os.path.join(self.targetdir, self.datadirs['paths']) outfile = os.path.join(head, filename) if self.paths is None: raise NoDataError("Paths have not been calculated yet") path_names = [] for i, path in enumerate(self.paths): current_outfile = "{0}{1:03n}.npy".format(outfile, i+1) np.save(current_outfile, self.paths[i]) path_names.append(current_outfile) logger.info("Wrote path to file %r", current_outfile) self.path_names = path_names with open(self._paths_pkl, 'wb') as output: pickle.dump(self.path_names, output) return filename def load(self): """Load fitted paths specified by 'psa_path-names.pkl' in :attr:`PSAnalysis.targetdir`. All filenames are determined by :class:`PSAnalysis`. See Also -------- save_paths """ if not os.path.exists(self._paths_pkl): raise NoDataError("Fitted trajectories cannot be loaded; save file" + "{0} does not exist.".format(self._paths_pkl)) self.path_names = np.load(self._paths_pkl, allow_pickle=True) self.paths = [np.load(pname) for pname in self.path_names] if os.path.exists(self._labels_pkl): self.labels = np.load(self._labels_pkl, allow_pickle=True) logger.info("Loaded paths from %r", self._paths_pkl) def plot(self, filename=None, linkage='ward', count_sort=False, distance_sort=False, figsize=4.5, labelsize=12): """Plot a clustered distance matrix. Usese method *linkage* and plots the corresponding dendrogram. Rows (and columns) are identified using the list of strings specified by :attr:`PSAnalysis.labels`. If `filename` is supplied then the figure is also written to file (the suffix determines the file type, e.g. pdf, png, eps, ...). All other keyword arguments are passed on to :func:`matplotlib.pyplot.matshow`. Parameters ---------- filename : str save figure to *filename* [``None``] linkage : str name of linkage criterion for clustering [``'ward'``] count_sort : bool see :func:`scipy.cluster.hierarchy.dendrogram` [``False``] distance_sort : bool see :func:`scipy.cluster.hierarchy.dendrogram` [``False``] figsize : float set the vertical size of plot in inches [``4.5``] labelsize : float set the font size for colorbar labels; font size for path labels on dendrogram default to 3 points smaller [``12``] Returns ------- Z `Z` from :meth:`cluster` dgram `dgram` from :meth:`cluster` dist_matrix_clus clustered distance matrix (reordered) .. versionchanged:: 1.0.0 :attr:`tick1On`, :attr:`tick2On`, :attr:`label1On` and :attr:`label2On` changed to :attr:`tick1line`, :attr:`tick2line`, :attr:`label1` and :attr:`label2` due to upstream deprecation (see #2493) """ from matplotlib.pyplot import figure, colorbar, cm, savefig, clf if self.D is None: raise ValueError( "No distance data; do 'PSAnalysis.run()' first.") npaths = len(self.D) dist_matrix = self.D dgram_loc, hmap_loc, cbar_loc = self._get_plot_obj_locs() aspect_ratio = 1.25 clf() fig = figure(figsize=(figsize*aspect_ratio, figsize)) ax_hmap = fig.add_axes(hmap_loc) ax_dgram = fig.add_axes(dgram_loc) Z, dgram = self.cluster(method=linkage, \ count_sort=count_sort, \ distance_sort=distance_sort) rowidx = colidx = dgram['leaves'] # get row-wise ordering from clustering ax_dgram.invert_yaxis() # Place origin at up left (from low left) minDist, maxDist = 0, np.max(dist_matrix) dist_matrix_clus = dist_matrix[rowidx,:] dist_matrix_clus = dist_matrix_clus[:,colidx] im = ax_hmap.matshow(dist_matrix_clus, aspect='auto', origin='lower', \ cmap=cm.YlGn, vmin=minDist, vmax=maxDist) ax_hmap.invert_yaxis() # Place origin at upper left (from lower left) ax_hmap.locator_params(nbins=npaths) ax_hmap.set_xticks(np.arange(npaths), minor=True) ax_hmap.set_yticks(np.arange(npaths), minor=True) ax_hmap.tick_params(axis='x', which='both', labelleft='off', \ labelright='off', labeltop='on', labelsize=0) ax_hmap.tick_params(axis='y', which='both', labelleft='on', \ labelright='off', labeltop='off', labelsize=0) rowlabels = [self.labels[i] for i in rowidx] collabels = [self.labels[i] for i in colidx] ax_hmap.set_xticklabels(collabels, rotation='vertical', \ size=(labelsize-4), multialignment='center', minor=True) ax_hmap.set_yticklabels(rowlabels, rotation='horizontal', \ size=(labelsize-4), multialignment='left', ha='right', \ minor=True) ax_color = fig.add_axes(cbar_loc) colorbar(im, cax=ax_color, ticks=np.linspace(minDist, maxDist, 10), \ format="%0.1f") ax_color.tick_params(labelsize=labelsize) # Remove major ticks and labels from both heat map axes for tic in ax_hmap.xaxis.get_major_ticks(): tic.tick1line.set_visible(False) tic.tick2line.set_visible(False) tic.label1.set_visible(False) tic.label2.set_visible(False) for tic in ax_hmap.yaxis.get_major_ticks(): tic.tick1line.set_visible(False) tic.tick2line.set_visible(False) tic.label1.set_visible(False) tic.label2.set_visible(False) # Remove minor ticks from both heat map axes for tic in ax_hmap.xaxis.get_minor_ticks(): tic.tick1line.set_visible(False) tic.tick2line.set_visible(False) for tic in ax_hmap.yaxis.get_minor_ticks(): tic.tick1line.set_visible(False) tic.tick2line.set_visible(False) # Remove tickmarks from colorbar for tic in ax_color.yaxis.get_major_ticks(): tic.tick1line.set_visible(False) tic.tick2line.set_visible(False) if filename is not None: head = os.path.join(self.targetdir, self.datadirs['plots']) outfile = os.path.join(head, filename) savefig(outfile, dpi=300, bbox_inches='tight') return Z, dgram, dist_matrix_clus def plot_annotated_heatmap(self, filename=None, linkage='ward', \ count_sort=False, distance_sort=False, \ figsize=8, annot_size=6.5): """Plot a clustered distance matrix. Uses method `linkage` and plots annotated distances in the matrix. Rows (and columns) are identified using the list of strings specified by :attr:`PSAnalysis.labels`. If `filename` is supplied then the figure is also written to file (the suffix determines the file type, e.g. pdf, png, eps, ...). All other keyword arguments are passed on to :func:`matplotlib.pyplot.imshow`. Parameters ---------- filename : str save figure to *filename* [``None``] linkage : str name of linkage criterion for clustering [``'ward'``] count_sort : bool see :func:`scipy.cluster.hierarchy.dendrogram` [``False``] distance_sort : bool see :func:`scipy.cluster.hierarchy.dendrogram` [``False``] figsize : float set the vertical size of plot in inches [``4.5``] annot_size : float font size of annotation labels on heat map [``6.5``] Returns ------- Z `Z` from :meth:`cluster` dgram `dgram` from :meth:`cluster` dist_matrix_clus clustered distance matrix (reordered) Note ---- This function requires the seaborn_ package, which can be installed with `pip install seaborn` or `conda install seaborn`. .. _seaborn: https://seaborn.pydata.org/ .. versionchanged:: 1.0.0 :attr:`tick1On`, :attr:`tick2On`, :attr:`label1On` and :attr:`label2On` changed to :attr:`tick1line`, :attr:`tick2line`, :attr:`label1` and :attr:`label2` due to upstream deprecation (see #2493) """ from matplotlib.pyplot import figure, colorbar, cm, savefig, clf try: import seaborn as sns except ImportError: raise ImportError( """ERROR --- The seaborn package cannot be found! The seaborn API could not be imported. Please install it first. You can try installing with pip directly from the internet: pip install seaborn Alternatively, download the package from http://pypi.python.org/pypi/seaborn/ and install in the usual manner. """ ) from None if self.D is None: raise ValueError( "No distance data; do 'PSAnalysis.run()' first.") dist_matrix = self.D Z, dgram = self.cluster(method=linkage, \ count_sort=count_sort, \ distance_sort=distance_sort, \ no_plot=True) rowidx = colidx = dgram['leaves'] # get row-wise ordering from clustering dist_matrix_clus = dist_matrix[rowidx,:] dist_matrix_clus = dist_matrix_clus[:,colidx] clf() aspect_ratio = 1.25 fig = figure(figsize=(figsize*aspect_ratio, figsize)) ax_hmap = fig.add_subplot(111) ax_hmap = sns.heatmap(dist_matrix_clus, \ linewidths=0.25, cmap=cm.YlGn, annot=True, fmt='3.1f', \ square=True, xticklabels=rowidx, yticklabels=colidx, \ annot_kws={"size": 7}, ax=ax_hmap) # Remove major ticks from both heat map axes for tic in ax_hmap.xaxis.get_major_ticks(): tic.tick1line.set_visible(False) tic.tick2line.set_visible(False) tic.label1.set_visible(False) tic.label2.set_visible(False) for tic in ax_hmap.yaxis.get_major_ticks(): tic.tick1line.set_visible(False) tic.tick2line.set_visible(False) tic.label1.set_visible(False) tic.label2.set_visible(False) # Remove minor ticks from both heat map axes for tic in ax_hmap.xaxis.get_minor_ticks(): tic.tick1line.set_visible(False) tic.tick2line.set_visible(False) for tic in ax_hmap.yaxis.get_minor_ticks(): tic.tick1line.set_visible(False) tic.tick2line.set_visible(False) if filename is not None: head = os.path.join(self.targetdir, self.datadirs['plots']) outfile = os.path.join(head, filename) savefig(outfile, dpi=600, bbox_inches='tight') return Z, dgram, dist_matrix_clus def plot_nearest_neighbors(self, filename=None, idx=0, \ labels=('Path 1', 'Path 2'), figsize=4.5, \ multiplot=False, aspect_ratio=1.75, \ labelsize=12): """Plot nearest neighbor distances as a function of normalized frame number. The frame number is mapped to the interval *[0, 1]*. If `filename` is supplied then the figure is also written to file (the suffix determines the file type, e.g. pdf, png, eps, ...). All other keyword arguments are passed on to :func:`matplotlib.pyplot.imshow`. Parameters ---------- filename : str save figure to *filename* [``None``] idx : int index of path (pair) comparison to plot [``0``] labels : (str, str) pair of names to label nearest neighbor distance curves [``('Path 1', 'Path 2')``] figsize : float set the vertical size of plot in inches [``4.5``] multiplot : bool set to ``True`` to enable plotting multiple nearest neighbor distances on the same figure [``False``] aspect_ratio : float set the ratio of width to height of the plot [``1.75``] labelsize : float set the font size for colorbar labels; font size for path labels on dendrogram default to 3 points smaller [``12``] Returns ------- ax : axes Note ---- This function requires the seaborn_ package, which can be installed with `pip install seaborn` or `conda install seaborn`. .. _seaborn: https://seaborn.pydata.org/ """ from matplotlib.pyplot import figure, savefig, tight_layout, clf, show try: import seaborn as sns except ImportError: raise ImportError( """ERROR --- The seaborn package cannot be found! The seaborn API could not be imported. Please install it first. You can try installing with pip directly from the internet: pip install seaborn Alternatively, download the package from http://pypi.python.org/pypi/seaborn/ and install in the usual manner. """ ) from None colors = sns.xkcd_palette(["cherry", "windows blue"]) if self._NN is None: raise ValueError("No nearest neighbor data; run " "'PSAnalysis.run_pairs_analysis(neighbors=True)' first.") sns.set_style('whitegrid') if not multiplot: clf() fig = figure(figsize=(figsize*aspect_ratio, figsize)) ax = fig.add_subplot(111) nn_dist_P, nn_dist_Q = self._NN[idx]['distances'] frames_P = len(nn_dist_P) frames_Q = len(nn_dist_Q) progress_P = np.asarray(range(frames_P))/(1.0*frames_P) progress_Q = np.asarray(range(frames_Q))/(1.0*frames_Q) ax.plot(progress_P, nn_dist_P, color=colors[0], lw=1.5, label=labels[0]) ax.plot(progress_Q, nn_dist_Q, color=colors[1], lw=1.5, label=labels[1]) ax.legend() ax.set_xlabel(r'(normalized) progress by frame number', fontsize=12) ax.set_ylabel(r'nearest neighbor rmsd ($\AA$)', fontsize=12) ax.tick_params(axis='both', which='major', labelsize=12, pad=4) sns.despine(bottom=True, left=True, ax=ax) tight_layout() if filename is not None: head = os.path.join(self.targetdir, self.datadirs['plots']) outfile = os.path.join(head, filename) savefig(outfile, dpi=300, bbox_inches='tight') return ax def cluster(self, dist_mat=None, method='ward', count_sort=False, \ distance_sort=False, no_plot=False, no_labels=True, \ color_threshold=4): """Cluster trajectories and optionally plot the dendrogram. This method is used by :meth:`PSAnalysis.plot` to generate a heatmap- dendrogram combination plot. By default, the distance matrix, :attr:`PSAnalysis.D`, is assumed to exist, converted to distance-vector form, and inputted to :func:`cluster.hierarchy.linkage` to generate a clustering. For convenience in plotting arbitrary distance matrices, one can also be specify `dist_mat`, which will be checked for proper distance matrix form by :func:`spatial.distance.squareform` Parameters ---------- dist_mat : numpy.ndarray user-specified distance matrix to be clustered [``None``] method : str name of linkage criterion for clustering [``'ward'``] no_plot : bool if ``True``, do not render the dendrogram [``False``] no_labels : bool if ``True`` then do not label dendrogram [``True``] color_threshold : float For brevity, let t be the color_threshold. Colors all the descendent links below a cluster node k the same color if k is the first node below the cut threshold t. All links connecting nodes with distances greater than or equal to the threshold are colored blue. If t is less than or equal to zero, all nodes are colored blue. If color_threshold is None or ‘default’, corresponding with MATLAB(TM) behavior, the threshold is set to 0.7*max(Z[:,2]). [``4``]] Returns ------- Z output from :func:`scipy.cluster.hierarchy.linkage`; list of indices representing the row-wise order of the objects after clustering dgram output from :func:`scipy.cluster.hierarchy.dendrogram` """ # perhaps there is a better way to manipulate the plot... or perhaps it # is not even necessary? In any case, the try/finally makes sure that # we are not permanently changing the user's global state orig_linewidth = matplotlib.rcParams['lines.linewidth'] matplotlib.rcParams['lines.linewidth'] = 0.5 try: if dist_mat: dist_vec = spatial.distance.squareform(dist_mat, force='tovector', checks=True) else: dist_vec = self.get_pairwise_distances(vectorform=True) Z = cluster.hierarchy.linkage(dist_vec, method=method) dgram = cluster.hierarchy.dendrogram( Z, no_labels=no_labels, orientation='left', count_sort=count_sort, distance_sort=distance_sort, no_plot=no_plot, color_threshold=color_threshold) finally: matplotlib.rcParams['lines.linewidth'] = orig_linewidth return Z, dgram def _get_plot_obj_locs(self): """Find and return coordinates for dendrogram, heat map, and colorbar. Returns ------- tuple tuple of coordinates for placing the dendrogram, heat map, and colorbar in the plot. """ plot_xstart = 0.04 plot_ystart = 0.04 label_margin = 0.155 dgram_height = 0.2 # dendrogram heights(s) hmap_xstart = plot_xstart + dgram_height + label_margin # Set locations for dendrogram(s), matrix, and colorbar hmap_height = 0.8 hmap_width = 0.6 dgram_loc = [plot_xstart, plot_ystart, dgram_height, hmap_height] cbar_width = 0.02 cbar_xstart = hmap_xstart + hmap_width + 0.01 cbar_loc = [cbar_xstart, plot_ystart, cbar_width, hmap_height] hmap_loc = [hmap_xstart, plot_ystart, hmap_width, hmap_height] return dgram_loc, hmap_loc, cbar_loc def get_num_atoms(self): """Return the number of atoms used to construct the :class:`Path` instances in :class:`PSA`. Returns ------- int the number of atoms in any path Note ---- Must run :meth:`PSAnalysis.generate_paths` prior to calling this method. """ if self.natoms is None: raise ValueError( "No path data; do 'PSAnalysis.generate_paths()' first.") return self.natoms def get_num_paths(self): """Return the number of paths in :class:`PSA`. Note ---- Must run :meth:`PSAnalysis.generate_paths` prior to calling this method. Returns ------- int the number of paths in :class:`PSA` """ if self.npaths is None: raise ValueError( "No path data; do 'PSAnalysis.generate_paths()' first.") return self.npaths def get_paths(self): """Return the paths in :class:`PSA`. Note ---- Must run :meth:`PSAnalysis.generate_paths` prior to calling this method. Returns ------- list list of :class:`numpy.ndarray` representations of paths in :class:`PSA` """ if self.paths is None: raise ValueError( "No path data; do 'PSAnalysis.generate_paths()' first.") return self.paths def get_pairwise_distances(self, vectorform=False, checks=False): """Return the distance matrix (or vector) of pairwise path distances. Note ---- Must run :meth:`PSAnalysis.run` prior to calling this method. Parameters ---------- vectorform : bool if ``True``, return the distance vector instead [``False``] checks : bool if ``True``, check that :attr:`PSAnalysis.D` is a proper distance matrix [``False``] Returns ------- numpy.ndarray representation of the distance matrix (or vector) """ if self.D is None: raise ValueError( "No distance data; do 'PSAnalysis.run()' first.") if vectorform: return spatial.distance.squareform(self.D, force='tovector', checks=checks) else: return self.D @property def psa_pairs(self): """The list of :class:`PSAPair` instances for each pair of paths. :attr:`psa_pairs` is a list of all :class:`PSAPair` objects (in distance vector order). The elements of a :class:`PSAPair` are pairs of paths that have been compared using :meth:`PSAnalysis.run_pairs_analysis`. Each :class:`PSAPair` contains nearest neighbor and Hausdorff pair information specific to a pair of paths. The nearest neighbor frames and distances for a :class:`PSAPair` can be accessed in the nearest neighbor dictionary using the keys 'frames' and 'distances', respectively. E.g., :attr:`PSAPair.nearest_neighbors['distances']` returns a *pair* of :class:`numpy.ndarray` corresponding to the nearest neighbor distances for each path. Similarly, Hausdorff pair information can be accessed using :attr:`PSAPair.hausdorff_pair` with the keys 'frames' and 'distance'. Note ---- Must run :meth:`PSAnalysis.run_pairs_analysis` prior to calling this method. """ if self._psa_pairs is None: raise ValueError("No nearest neighbors data; do" " 'PSAnalysis.run_pairs_analysis()' first.") return self._psa_pairs @property def hausdorff_pairs(self): """The Hausdorff pair for each (unique) pairs of paths. This attribute contains a list of Hausdorff pair information (in distance vector order), where each element is a dictionary containing the pair of frames and the (Hausdorff) distance between a pair of paths. See :meth:`PSAnalysis.psa_pairs` and :attr:`PSAPair.hausdorff_pair` for more information about accessing Hausdorff pair data. Note ---- Must run :meth:`PSAnalysis.run_pairs_analysis` with ``hausdorff_pairs=True`` prior to calling this method. """ if self._HP is None: raise ValueError("No Hausdorff pairs data; do " "'PSAnalysis.run_pairs_analysis(hausdorff_pairs=True)' " "first.") return self._HP @property def nearest_neighbors(self): """The nearest neighbors for each (unique) pair of paths. This attribute contains a list of nearest neighbor information (in distance vector order), where each element is a dictionary containing the nearest neighbor frames and distances between a pair of paths. See :meth:`PSAnalysis.psa_pairs` and :attr:`PSAPair.nearest_neighbors` for more information about accessing nearest neighbor data. Note ---- Must run :meth:`PSAnalysis.run_pairs_analysis` with ``neighbors=True`` prior to calling this method. """ if self._NN is None: raise ValueError("No nearest neighbors data; do" " 'PSAnalysis.run_pairs_analysis(neighbors=True)'" " first.") return self._NN
gpl-2.0
msarahan/bokeh
bokeh/charts/builder.py
3
25115
"""This is the Bokeh charts interface. It gives you a high level API to build complex plot is a simple way. This is the Builder class, a minimal prototype class to build more chart types on top of it. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from .attributes import AttrSpec, ColorAttr, CatAttr from .chart import Chart from .data_source import ChartDataSource from .models import CompositeGlyph from .properties import Dimension, ColumnLabel from .utils import collect_attribute_columns, label_from_index_dict, build_hover_tooltips from .data_source import OrderedAssigner from ..models.ranges import Range, Range1d, FactorRange from ..models.sources import ColumnDataSource from ..core.properties import (HasProps, Instance, List, String, Dict, Color, Bool, Tuple, Either) from ..io import curdoc, curstate #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- def create_and_build(builder_class, *data, **kws): """A factory function for handling Chart and Builder generation. Returns: :class:`Chart` """ if getattr(builder_class, 'dimensions') is None: raise NotImplementedError('Each builder must specify its dimensions, %s does not.' % builder_class.__name__) if getattr(builder_class, 'default_attributes') is None: raise NotImplementedError('Each builder must specify its default_attributes, %s does not.' % builder_class.__name__) builder_props = set(builder_class.properties()) # append dimensions to the builder props for dim in builder_class.dimensions: builder_props.add(dim) # append attributes to the builder props for attr_name in builder_class.default_attributes.keys(): builder_props.add(attr_name) # create the new builder builder_kws = {k: v for k, v in kws.items() if k in builder_props} builder = builder_class(*data, **builder_kws) # create a chart to return, since there isn't one already chart_kws = { k:v for k,v in kws.items() if k not in builder_props} chart = Chart(**chart_kws) chart.add_builder(builder) chart.start_plot() curdoc()._current_plot = chart # TODO (havocp) store this on state, not doc? if curstate().autoadd: curdoc().add_root(chart) return chart class Builder(HasProps): """ A prototype class to inherit each new chart Builder type. It provides useful methods to be used by the inherited builder classes, in order to automate most of the charts creation tasks and leave the core customization to specialized builder classes. In that pattern inherited builders just need to provide the following methods: Required: * :meth:`~bokeh.charts.builder.Builder.yield_renderers`: yields the glyphs to be rendered into the plot. Here you should call the :meth:`~bokeh.charts.builder.Builder.add_glyph` method so that the builder can setup the legend for you. * :meth:`~bokeh.charts.builder.Builder.set_ranges`: setup the ranges for the glyphs. This is called after glyph creation, so you are able to inspect the comp_glyphs for their minimum and maximum values. See the :meth:`~bokeh.charts.builder.Builder.create` method for more information on when this is called and how the builder provides the ranges to the containing :class:`Chart` using the :meth:`Chart.add_ranges` method. Optional: * :meth:`~bokeh.charts.builder.Builder.setup`: provides an area where subclasses of builder can introspect properties, setup attributes, or change property values. This is called before :meth:`~bokeh.charts.builder.Builder.process_data`. * :meth:`~bokeh.charts.builder.Builder.process_data`: provides an area where subclasses of builder can manipulate the source data before renderers are created. """ # Optional Inputs x_range = Instance(Range) y_range = Instance(Range) xlabel = String() ylabel = String() xscale = String() yscale = String() palette = List(Color, help="""Optional input to override the default palette used by any color attribute. """) # Dimension Configuration """ The dimension labels that drive the position of the glyphs. Subclasses should implement this so that the Builder base class knows which dimensions it needs to operate on. An example for a builder working with cartesian x and y coordinates would be dimensions = ['x', 'y']. You should then instantiate the x and y dimensions as attributes of the subclass of builder using the :class:`Dimension <bokeh.charts.properties.Dimension>` class. One for x, as x = Dimension(...), and one as y = Dimension(...). """ dimensions = None # None because it MUST be overridden """ The dimension labels that must exist to produce the glyphs. This specifies what are the valid configurations for the chart, with the option of specifying the type of the columns. The :class:`~bokeh.charts.data_source.ChartDataSource` will inspect this property of your subclass of Builder and use this to fill in any required dimensions if no keyword arguments are used. """ req_dimensions = [] # Attribute Configuration attributes = Dict(String, Instance(AttrSpec), help=""" The attribute specs used to group data. This is a mapping between the role of the attribute spec (e.g. 'color') and the :class:`~bokeh.charts.attributes.AttrSpec` class (e.g., :class:`~bokeh.charts.attributes.ColorAttr`). The Builder will use this attributes property during runtime, which will consist of any attribute specs that are passed into the chart creation function (e.g., :class:`~bokeh.charts.Bar`), ones that are created for the user from simple input types (e.g. `Bar(..., color='red')` or `Bar(..., color=<column_name>)`), or lastly, the attribute spec found in the default_attributes configured for the subclass of :class:`~bokeh.charts.builder.Builder`. """) """ The default attribute specs used to group data. This is where the subclass of Builder should specify what the default attributes are that will yield attribute values to each group of data, and any specific configuration. For example, the :class:`ColorAttr` utilizes a default palette for assigning color based on groups of data. If the user doesn't assign a column of the data to the associated attribute spec, then the default attrspec is used, which will yield a constant color value for each group of data. This is by default the first color in the default palette, but can be customized by setting the default color in the ColorAttr. """ default_attributes = None # None because it MUST be overridden # Derived properties (created by Builder at runtime) attribute_columns = List(ColumnLabel, help=""" All columns used for specifying attributes for the Chart. The Builder will set this value on creation so that the subclasses can know the distinct set of columns that are being used to assign attributes. """) comp_glyphs = List(Instance(CompositeGlyph), help=""" A list of composite glyphs, where each represents a unique subset of data. The composite glyph is a helper class that encapsulates all low level :class:`~bokeh.models.glyphs.Glyph`, that represent a higher level group of data. For example, the :class:`BoxGlyph` is a single class that yields each :class:`GlyphRenderer` needed to produce a Box on a :class:`BoxPlot`. The single Box represents a full array of values that are aggregated, and is made up of multiple :class:`~bokeh.models.glyphs.Rect` and :class:`~bokeh.models.glyphs.Segment` glyphs. """) labels = List(String, help="""Represents the unique labels to be used for legends.""") """List of attributes to use for legends.""" label_attributes = [] """ Used to assign columns to dimensions when no selections have been provided. The default behavior is provided by the :class:`OrderedAssigner`, which assigns a single column to each dimension available in the `Builder`'s `dims` property. """ column_selector = OrderedAssigner comp_glyph_types = List(Instance(CompositeGlyph)) sort_dim = Dict(String, Bool, default={}) sort_legend = List(Tuple(String, Bool), help=""" List of tuples to use for sorting the legend, in order that they should be used for sorting. This sorting can be different than the sorting used for the rest of the chart. For example, you might want to sort only on the column assigned to the color attribute, or sort it descending. The order of each tuple is (Column, Ascending). """) source = Instance(ColumnDataSource) tooltips = Either(List(Tuple(String, String)), List(String), Bool, default=None, help=""" Tells the builder to add tooltips to the chart by either using the columns specified to the chart attributes (True), or by generating tooltips for each column specified (list(str)), or by explicit specification of the tooltips using the valid input for the `HoverTool` tooltips kwarg. """) def __init__(self, *args, **kws): """Common arguments to be used by all the inherited classes. Args: data (:ref:`userguide_charts_data_types`): source data for the chart legend (str, bool): the legend of your plot. The legend content is inferred from incoming input.It can be ``top_left``, ``top_right``, ``bottom_left``, ``bottom_right``. It is ``top_right`` is you set it as True. Attributes: source (obj): datasource object for your plot, initialized as a dummy None. x_range (obj): x-associated datarange object for you plot, initialized as a dummy None. y_range (obj): y-associated datarange object for you plot, initialized as a dummy None. groups (list): to be filled with the incoming groups of data. Useful for legend construction. data (dict): to be filled with the incoming data and be passed to the ChartDataSource for each Builder class. attr (list(AttrSpec)): to be filled with the new attributes created after loading the data dict. """ data = None if len(args) != 0 or len(kws) != 0: # chart dimensions can be literal dimensions or attributes attrs = list(self.default_attributes.keys()) dims = self.dimensions + attrs # pop the dimension inputs from kwargs data_args = {} for dim in dims: if dim in kws.keys(): data_args[dim] = kws[dim] # build chart data source from inputs, given the dimension configuration data_args['dims'] = tuple(dims) data_args['required_dims'] = tuple(self.req_dimensions) data_args['attrs'] = attrs data_args['column_assigner'] = self.column_selector data = ChartDataSource.from_data(*args, **data_args) # make sure that the builder dimensions have access to the chart data source for dim in self.dimensions: getattr(getattr(self, dim), 'set_data')(data) # handle input attrs and ensure attrs have access to data attributes = self._setup_attrs(data, kws) # remove inputs handled by dimensions and chart attributes for dim in dims: kws.pop(dim, None) else: attributes = dict() kws['attributes'] = attributes super(Builder, self).__init__(**kws) # collect unique columns used for attributes self.attribute_columns = collect_attribute_columns(**self.attributes) self._data = data self._legends = [] def _setup_attrs(self, data, kws): """Handle overridden attributes and initialize them with data. Makes sure that all attributes have access to the data source, which is used for mapping attributes to groups of data. Returns: None """ source = ColumnDataSource(data.df) attr_names = self.default_attributes.keys() custom_palette = kws.get('palette') attributes = dict() for attr_name in attr_names: attr = kws.pop(attr_name, None) # if given an attribute use it if isinstance(attr, AttrSpec): attributes[attr_name] = attr # if we are given columns, use those elif isinstance(attr, str) or isinstance(attr, list): attributes[attr_name] = self.default_attributes[attr_name]._clone() # override palette if available if isinstance(attributes[attr_name], ColorAttr): if custom_palette is not None: attributes[attr_name].iterable = custom_palette attributes[attr_name].setup(data=source, columns=attr) else: # override palette if available if (isinstance(self.default_attributes[attr_name], ColorAttr) and custom_palette is not None): attributes[attr_name] = self.default_attributes[attr_name]._clone() attributes[attr_name].iterable = custom_palette else: attributes[attr_name] = self.default_attributes[attr_name]._clone() # make sure all have access to data source for attr_name in attr_names: attributes[attr_name].update_data(data=source) return attributes def setup(self): """Perform any initial pre-processing, attribute config. Returns: None """ pass def process_data(self): """Make any global data manipulations before grouping. It has to be implemented by any of the inherited class representing each different chart type. It is the place where we make specific calculations for each chart. Returns: None """ pass def yield_renderers(self): """ Generator that yields the glyphs to be draw on the plot It has to be implemented by any of the inherited class representing each different chart type. Yields: :class:`GlyphRenderer` """ raise NotImplementedError('Subclasses of %s must implement _yield_renderers.' % self.__class__.__name__) def set_ranges(self): """Calculate and set the x and y ranges. It has to be implemented by any of the subclasses of builder representing each different chart type, and is called after :meth:`yield_renderers`. Returns: None """ raise NotImplementedError('Subclasses of %s must implement _set_ranges.' % self.__class__.__name__) def get_dim_extents(self): """Helper method to retrieve maximum extents of all the renderers. Returns: a dict mapping between dimension and value for x_max, y_max, x_min, y_min """ return {'x_max': max([renderer.x_max for renderer in self.comp_glyphs]), 'y_max': max([renderer.y_max for renderer in self.comp_glyphs]), 'x_min': min([renderer.x_min for renderer in self.comp_glyphs]), 'y_min': min([renderer.y_min for renderer in self.comp_glyphs]) } def add_glyph(self, group, glyph): """Add a composite glyph. Manages the legend, since the builder might not want all attribute types used for the legend. Args: group (:class:`DataGroup`): the data the `glyph` is associated with glyph (:class:`CompositeGlyph`): the glyph associated with the `group` Returns: None """ if isinstance(glyph, list): for sub_glyph in glyph: self.comp_glyphs.append(sub_glyph) else: self.comp_glyphs.append(glyph) # handle cases where builders have specified which attributes to use for labels label = None if len(self.label_attributes) > 0: for attr in self.label_attributes: # this will get the last attribute group label for now if self.attributes[attr].columns is not None: label = self._get_group_label(group, attr=attr) # if no special case for labeling, just use the group label if label is None: label = self._get_group_label(group, attr='label') # add to legend if new and unique label if str(label) not in self.labels and label is not None: self._legends.append((label, glyph.renderers)) self.labels.append(label) def _get_group_label(self, group, attr='label'): """Get the label of the group by the attribute name. Args: group (:attr:`DataGroup`: the group of data attr (str, optional): the attribute name containing the label, defaults to 'label'. Returns: str: the label for the group """ if attr is 'label': label = group.label else: label = group[attr] if isinstance(label, dict): label = tuple(label.values()) return self._get_label(label) @staticmethod def _get_label(raw_label): """Converts a label by string or tuple to a string representation. Args: raw_label (str or tuple(any, any)): a unique identifier for the data group Returns: str: a label that is usable in charts """ # don't convert None type to string so we can test for it later if raw_label is None: return None if (isinstance(raw_label, tuple) or isinstance(raw_label, list)) and \ len(raw_label) == 1: raw_label = raw_label[0] elif isinstance(raw_label, dict): raw_label = label_from_index_dict(raw_label) return str(raw_label) def collect_attr_kwargs(self): if hasattr(super(self.__class__, self), 'default_attributes'): attrs = set(self.default_attributes.keys()) - set( (super(self.__class__, self).default_attributes or {}).keys()) else: attrs = set() return attrs def get_group_kwargs(self, group, attrs): return {attr: group[attr] for attr in attrs} def create(self, chart=None): """Builds the renderers, adding them and other components to the chart. Args: chart (:class:`Chart`, optional): the chart that will contain the glyph renderers that the `Builder` produces. Returns: :class:`Chart` """ # call methods that allow customized setup by subclasses self.setup() self.process_data() # create and add renderers to chart renderers = self.yield_renderers() if chart is None: chart = Chart() chart.add_renderers(self, renderers) # handle ranges after renders, since ranges depend on aggregations # ToDo: should reconsider where this occurs self.set_ranges() chart.add_ranges('x', self.x_range) chart.add_ranges('y', self.y_range) # always contribute legends, let Chart sort it out chart.add_legend(self._legends) chart.add_labels('x', self.xlabel) chart.add_labels('y', self.ylabel) chart.add_scales('x', self.xscale) chart.add_scales('y', self.yscale) if self.tooltips is not None: tooltips = build_hover_tooltips(hover_spec=self.tooltips, chart_cols=self.attribute_columns) chart.add_tooltips(tooltips) return chart @classmethod def generate_help(cls): help_str = '' for comp_glyph in cls.comp_glyph_types: help_str += str(comp_glyph.glyph_properties()) return help_str class XYBuilder(Builder): """Implements common functionality for XY Builders.""" x = Dimension('x') y = Dimension('y') dimensions = ['x', 'y'] req_dimensions = [['x'], ['y'], ['x', 'y']] default_attributes = {'color': ColorAttr()} def set_ranges(self): """Calculate and set the x and y ranges.""" # ToDo: handle when only single dimension is provided extents = self.get_dim_extents() endx = extents['x_max'] startx = extents['x_min'] self.x_range = self._get_range('x', startx, endx) endy = extents['y_max'] starty = extents['y_min'] self.y_range = self._get_range('y', starty, endy) if self.xlabel is None: if self.x.selection is not None: select = self.x.selection if not isinstance(select, list): select = [select] else: select = [''] self.xlabel = ', '.join(select) if self.ylabel is None: if self.y.selection is not None: select = self.y.selection if not isinstance(select, list): select = [select] else: select = [''] self.ylabel = ', '.join(select) # sort the legend if we are told to if len(self.sort_legend) > 0: for attr, asc in self.sort_legend: if len(self.attributes[attr].columns) > 0: item_order = self.attributes[attr].items self._legends = list(sorted(self._legends, key=lambda leg: item_order.index(leg[0]), reverse=~asc)) def _get_range(self, dim, start, end): """Create a :class:`Range` for the :class:`Chart`. Args: dim (str): the name of the dimension, which is an attribute of the builder start: the starting value of the range end: the ending value of the range Returns: :class:`Range` """ dim_ref = getattr(self, dim) values = dim_ref.data dtype = dim_ref.dtype.name sort = self.sort_dim.get(dim) # object data or single value if dtype == 'object': factors = values.drop_duplicates() if sort: # TODO (fpliger): this handles pandas API change so users do not experience # the related annoying deprecation warning. This is probably worth # removing when pandas deprecated version (0.16) is "old" enough try: factors.sort_values(inplace=True) except AttributeError: factors.sort(inplace=True) setattr(self, dim + 'scale', 'categorical') return FactorRange(factors=factors.tolist()) elif 'datetime' in dtype: setattr(self, dim + 'scale', 'datetime') return Range1d(start=start, end=end) else: if end == 'None' or (end - start) == 0: setattr(self, dim + 'scale', 'categorical') return FactorRange(factors=['None']) else: diff = end - start setattr(self, dim + 'scale', 'linear') return Range1d(start=start - 0.1 * diff, end=end + 0.1 * diff) class AggregateBuilder(Builder): """A base class for deriving specific builders performing aggregation with stats. The typical AggregateBuilder takes a single dimension of values. """ values = Dimension('values') default_attributes = {'label': CatAttr(), 'color': ColorAttr()}
bsd-3-clause
sshh12/StockMarketML
lab1/HeadlinePredictionClassification.py
1
3059
# coding: utf-8 # In[1]: # Setup (Imports) from LoadData import * from keras.models import Sequential from keras.layers.advanced_activations import LeakyReLU from keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint from keras.layers import Dense, LSTM, Dropout, Flatten, Conv1D, BatchNormalization, Activation, GlobalMaxPooling1D import numpy as np import matplotlib.pyplot as plt # In[2]: # Setup (Globals/Hyperz) window_size = 4 epochs = 750 batch_size = 128 emb_size = 100 # In[3]: # Loading and Splitting Data def get_data(stock): AllX, AllY = create_timeframed_doc2vec_classification_data(stock, window_size, min_time_disparity=4) trainX, trainY, testX, testY = split_data(AllX, AllY, ratio=.85) return (trainX, trainY), (testX, testY) # In[4]: # Make Model def get_model(): model = Sequential() model.add(Conv1D(filters=8, kernel_size=3, padding='same', input_shape=(window_size, emb_size), name="hl_conv1d")) model.add(GlobalMaxPooling1D(name="hl_gpool")) #model.add(Dense(30, name="hl_d1")) #model.add(BatchNormalization(name="hl_bn1")) #model.add(Activation('selu', name="hl_a1")) #model.add(Dropout(0.5, name="hl_do1")) model.add(Dense(10, name="hl_d2")) model.add(BatchNormalization(name="hl_bn2")) model.add(Activation('selu', name="hl_a2")) model.add(Dropout(0.2, name="hl_do2")) model.add(Dense(8, name="hl_d3")) model.add(BatchNormalization(name="hl_bn3")) model.add(Activation('selu', name="hl_a3")) model.add(Dropout(0.1, name="hl_do3")) model.add(Dense(2, activation='softmax', name="hl_d4")) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model # In[5]: # Run (Load) if __name__ == "__main__": (trainX, trainY), (testX, testY) = get_data('AAPL') print(trainX.shape, trainY.shape) # In[6]: # Run (Train) if __name__ == "__main__": model = get_model() reduce_LR = ReduceLROnPlateau(monitor='val_acc', factor=0.9, patience=30, min_lr=1e-6, verbose=0) e_stopping = EarlyStopping(patience=60) checkpoint = ModelCheckpoint(os.path.join('models', 'headline-classification.h5'), monitor='val_loss', verbose=0, save_best_only=True) history = model.fit(trainX, trainY, epochs=epochs, batch_size=batch_size, validation_data=(testX, testY), verbose=0, callbacks=[checkpoint, e_stopping]) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.legend(['TrainLoss', 'TestLoss']) plt.show() plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.legend(['TrainAcc', 'TestAcc']) plt.show()
mit
openego/eDisGo
edisgo/data/import_data.py
1
89664
from ..grid.components import Load, Generator, BranchTee, MVStation, Line, \ Transformer, LVStation, GeneratorFluctuating from ..grid.grids import MVGrid, LVGrid from ..grid.connect import connect_mv_generators, connect_lv_generators from ..grid.tools import select_cable, position_switch_disconnectors from ..tools.geo import proj2equidistant from edisgo.tools import pypsa_io from edisgo.tools import session_scope from egoio.db_tables import model_draft, supply from sqlalchemy import func from workalendar.europe import Germany from demandlib import bdew as bdew, particular_profiles as profiles import datetime import pandas as pd import numpy as np import networkx as nx from math import isnan import random import os if not 'READTHEDOCS' in os.environ: from ding0.tools.results import load_nd_from_pickle from ding0.core.network.stations import LVStationDing0 from ding0.core.structure.regions import LVLoadAreaCentreDing0 from ding0.core import GeneratorFluctuatingDing0 from shapely.ops import transform from shapely.wkt import loads as wkt_loads import logging logger = logging.getLogger('edisgo') def import_from_ding0(file, network): """ Import an eDisGo grid topology from `Ding0 data <https://github.com/openego/ding0>`_. This import method is specifically designed to load grid topology data in the format as `Ding0 <https://github.com/openego/ding0>`_ provides it via pickles. The import of the grid topology includes * the topology itself * equipment parameter * generators incl. location, type, subtype and capacity * loads incl. location and sectoral consumption Parameters ---------- file: :obj:`str` or :class:`ding0.core.NetworkDing0` If a str is provided it is assumed it points to a pickle with Ding0 grid data. This file will be read. If an object of the type :class:`ding0.core.NetworkDing0` data will be used directly from this object. network: :class:`~.grid.network.Network` The eDisGo data container object Notes ----- Assumes :class:`ding0.core.NetworkDing0` provided by `file` contains only data of one mv_grid_district. """ # when `file` is a string, it will be read by the help of pickle if isinstance(file, str): ding0_nd = load_nd_from_pickle(filename=file) # otherwise it is assumed the object is passed directly else: ding0_nd = file ding0_mv_grid = ding0_nd._mv_grid_districts[0].mv_grid # Make sure circuit breakers (respectively the rings) are closed ding0_mv_grid.close_circuit_breakers() # Import medium-voltage grid data network.mv_grid = _build_mv_grid(ding0_mv_grid, network) # Import low-voltage grid data lv_grids, lv_station_mapping, lv_grid_mapping = _build_lv_grid( ding0_mv_grid, network) # Assign lv_grids to network network.mv_grid.lv_grids = lv_grids # Integrate disconnecting points position_switch_disconnectors(network.mv_grid, mode=network.config['disconnecting_point'][ 'position']) # Check data integrity _validate_ding0_grid_import(network.mv_grid, ding0_mv_grid, lv_grid_mapping) # Set data source network.set_data_source('grid', 'dingo') # Set more params network._id = network.mv_grid.id # Update the weather_cell_ids in mv_grid to include the ones in lv_grids # ToDo: maybe get a better solution to push the weather_cell_ids in lv_grids but not in mv_grid but into the # mv_grid.weather_cell_ids from within the Grid() object or the MVGrid() or LVGrid() mv_weather_cell_id = network.mv_grid.weather_cells for lvg in lv_grids: if lvg.weather_cells: for lv_w_id in lvg._weather_cells: if not (lv_w_id in mv_weather_cell_id): network.mv_grid._weather_cells.append(lv_w_id) def _build_lv_grid(ding0_grid, network): """ Build eDisGo LV grid from Ding0 data Parameters ---------- ding0_grid: ding0.MVGridDing0 Ding0 MV grid object Returns ------- list of LVGrid LV grids dict Dictionary containing a mapping of LV stations in Ding0 to newly created eDisGo LV stations. This mapping is used to use the same instances of LV stations in the MV grid graph. """ lv_station_mapping = {} lv_grids = [] lv_grid_mapping = {} for la in ding0_grid.grid_district._lv_load_areas: for lvgd in la._lv_grid_districts: ding0_lv_grid = lvgd.lv_grid if not ding0_lv_grid.grid_district.lv_load_area.is_aggregated: # Create LV grid instance lv_grid = LVGrid( id=ding0_lv_grid.id_db, geom=ding0_lv_grid.grid_district.geo_data, grid_district={ 'geom': ding0_lv_grid.grid_district.geo_data, 'population': ding0_lv_grid.grid_district.population}, voltage_nom=ding0_lv_grid.v_level / 1e3, network=network) station = {repr(_): _ for _ in network.mv_grid.graph.nodes_by_attribute( 'lv_station')}['LVStation_' + str( ding0_lv_grid._station.id_db)] station.grid = lv_grid for t in station.transformers: t.grid = lv_grid lv_grid.graph.add_node(station, type='lv_station') lv_station_mapping.update({ding0_lv_grid._station: station}) # Create list of load instances and add these to grid's graph loads = {_: Load( id=_.id_db, geom=_.geo_data, grid=lv_grid, consumption=_.consumption) for _ in ding0_lv_grid.loads()} lv_grid.graph.add_nodes_from(loads.values(), type='load') # Create list of generator instances and add these to grid's # graph generators = {_: (GeneratorFluctuating( id=_.id_db, geom=_.geo_data, nominal_capacity=_.capacity, type=_.type, subtype=_.subtype, grid=lv_grid, weather_cell_id=_.weather_cell_id, v_level=_.v_level) if _.type in ['wind', 'solar'] else Generator( id=_.id_db, geom=_.geo_data, nominal_capacity=_.capacity, type=_.type, subtype=_.subtype, grid=lv_grid, v_level=_.v_level)) for _ in ding0_lv_grid.generators()} lv_grid.graph.add_nodes_from(generators.values(), type='generator') # Create list of branch tee instances and add these to grid's # graph branch_tees = { _: BranchTee(id=_.id_db, geom=_.geo_data, grid=lv_grid, in_building=_.in_building) for _ in ding0_lv_grid._cable_distributors} lv_grid.graph.add_nodes_from(branch_tees.values(), type='branch_tee') # Merge node above defined above to a single dict nodes = {**loads, **generators, **branch_tees, **{ding0_lv_grid._station: station}} edges = [] edges_raw = list(nx.get_edge_attributes( ding0_lv_grid._graph, name='branch').items()) for edge in edges_raw: edges.append({'adj_nodes': edge[0], 'branch': edge[1]}) # Create list of line instances and add these to grid's graph lines = [(nodes[_['adj_nodes'][0]], nodes[_['adj_nodes'][1]], {'line': Line( id=_['branch'].id_db, type=_['branch'].type, length=_['branch'].length / 1e3, kind=_['branch'].kind, grid=lv_grid) }) for _ in edges] # convert voltage from V to kV for line in lines: # ToDo: remove work around once it's fixed in ding0 if line[2]['line'].type['U_n'] >= 400: line[2]['line'].type['U_n'] = \ line[2]['line'].type['U_n'] / 1e3 lv_grid.graph.add_edges_from(lines, type='line') # Add LV station as association to LV grid lv_grid._station = station # Add to lv grid mapping lv_grid_mapping.update({lv_grid: ding0_lv_grid}) # Put all LV grid to a list of LV grids lv_grids.append(lv_grid) # ToDo: don't forget to adapt lv stations creation in MV grid return lv_grids, lv_station_mapping, lv_grid_mapping def _build_mv_grid(ding0_grid, network): """ Parameters ---------- ding0_grid: ding0.MVGridDing0 Ding0 MV grid object network: Network The eDisGo container object Returns ------- MVGrid A MV grid of class edisgo.grids.MVGrid is return. Data from the Ding0 MV Grid object is translated to the new grid object. """ # Instantiate a MV grid grid = MVGrid( id=ding0_grid.id_db, network=network, grid_district={'geom': ding0_grid.grid_district.geo_data, 'population': sum([_.zensus_sum for _ in ding0_grid.grid_district._lv_load_areas if not np.isnan(_.zensus_sum)])}, voltage_nom=ding0_grid.v_level) # Special treatment of LVLoadAreaCenters see ... # ToDo: add a reference above for explanation of how these are treated la_centers = [_ for _ in ding0_grid._graph.nodes() if isinstance(_, LVLoadAreaCentreDing0)] if la_centers: aggregated, aggr_stations, dingo_import_data = \ _determine_aggregated_nodes(la_centers) network.dingo_import_data = dingo_import_data else: aggregated = {} aggr_stations = [] # create empty DF for imported agg. generators network.dingo_import_data = pd.DataFrame(columns=('id', 'capacity', 'agg_geno') ) # Create list of load instances and add these to grid's graph loads = {_: Load( id=_.id_db, geom=_.geo_data, grid=grid, consumption=_.consumption) for _ in ding0_grid.loads()} grid.graph.add_nodes_from(loads.values(), type='load') # Create list of generator instances and add these to grid's graph generators = {_: (GeneratorFluctuating( id=_.id_db, geom=_.geo_data, nominal_capacity=_.capacity, type=_.type, subtype=_.subtype, grid=grid, weather_cell_id=_.weather_cell_id, v_level=_.v_level) if _.type in ['wind', 'solar'] else Generator( id=_.id_db, geom=_.geo_data, nominal_capacity=_.capacity, type=_.type, subtype=_.subtype, grid=grid, v_level=_.v_level)) for _ in ding0_grid.generators()} grid.graph.add_nodes_from(generators.values(), type='generator') # Create list of branch tee instances and add these to grid's graph branch_tees = {_: BranchTee(id=_.id_db, geom=_.geo_data, grid=grid, in_building=False) for _ in ding0_grid._cable_distributors} grid.graph.add_nodes_from(branch_tees.values(), type='branch_tee') # Create list of LV station instances and add these to grid's graph stations = {_: LVStation(id=_.id_db, geom=_.geo_data, mv_grid=grid, grid=None, # (this will be set during LV import) transformers=[Transformer( mv_grid=grid, grid=None, # (this will be set during LV import) id='_'.join(['LVStation', str(_.id_db), 'transformer', str(count)]), geom=_.geo_data, voltage_op=t.v_level, type=pd.Series(dict( S_nom=t.s_max_a, x_pu=t.x_pu, r_pu=t.r_pu)) ) for (count, t) in enumerate(_.transformers(), 1)]) for _ in ding0_grid._graph.nodes() if isinstance(_, LVStationDing0) and _ not in aggr_stations} grid.graph.add_nodes_from(stations.values(), type='lv_station') # Create HV-MV station add to graph mv_station = MVStation( id=ding0_grid.station().id_db, geom=ding0_grid.station().geo_data, grid=grid, transformers=[Transformer( mv_grid=grid, grid=grid, id='_'.join(['MVStation', str(ding0_grid.station().id_db), 'transformer', str(count)]), geom=ding0_grid.station().geo_data, voltage_op=_.v_level, type=pd.Series(dict( S_nom=_.s_max_a, x_pu=_.x_pu, r_pu=_.r_pu))) for (count, _) in enumerate( ding0_grid.station().transformers(), 1)]) grid.graph.add_node(mv_station, type='mv_station') # Merge node above defined above to a single dict nodes = {**loads, **generators, **branch_tees, **stations, **{ding0_grid.station(): mv_station}} # Create list of line instances and add these to grid's graph lines = [(nodes[_['adj_nodes'][0]], nodes[_['adj_nodes'][1]], {'line': Line( id=_['branch'].id_db, type=_['branch'].type, kind=_['branch'].kind, length=_['branch'].length / 1e3, grid=grid) }) for _ in ding0_grid.graph_edges() if not any([isinstance(_['adj_nodes'][0], LVLoadAreaCentreDing0), isinstance(_['adj_nodes'][1], LVLoadAreaCentreDing0)])] # set line name as series name for line in lines: line[2]['line'].type.name = line[2]['line'].type['name'] grid.graph.add_edges_from(lines, type='line') # Assign reference to HV-MV station to MV grid grid._station = mv_station # Attach aggregated to MV station _attach_aggregated(network, grid, aggregated, ding0_grid) return grid def _determine_aggregated_nodes(la_centers): """Determine generation and load within load areas Parameters ---------- la_centers: list of LVLoadAreaCentre Load Area Centers are Ding0 implementations for representating areas of high population density with high demand compared to DG potential. Notes ----- Currently, MV grid loads are not considered in this aggregation function as Ding0 data does not come with loads in the MV grid level. Returns ------- :obj:`list` of dict aggregated Dict of the structure .. code: {'generation': { 'v_level': { 'subtype': { 'ids': <ids of aggregated generator>, 'capacity'} } }, 'load': { 'consumption': 'residential': <value>, 'retail': <value>, ... } 'aggregates': { 'population': int, 'geom': `shapely.Polygon` } } :obj:`list` aggr_stations List of LV stations its generation and load is aggregated """ def aggregate_generators(gen, aggr): """Aggregate generation capacity per voltage level Parameters ---------- gen: ding0.core.GeneratorDing0 Ding0 Generator object aggr: dict Aggregated generation capacity. For structure see `_determine_aggregated_nodes()`. Returns ------- """ if gen.v_level not in aggr['generation']: aggr['generation'][gen.v_level] = {} if gen.type not in aggr['generation'][gen.v_level]: aggr['generation'][gen.v_level][gen.type] = {} if gen.subtype not in aggr['generation'][gen.v_level][gen.type]: aggr['generation'][gen.v_level][gen.type].update( {gen.subtype: {'ids': [gen.id_db], 'capacity': gen.capacity}}) else: aggr['generation'][gen.v_level][gen.type][gen.subtype][ 'ids'].append(gen.id_db) aggr['generation'][gen.v_level][gen.type][gen.subtype][ 'capacity'] += gen.capacity return aggr def aggregate_loads(la_center, aggr): """Aggregate consumption in load area per sector Parameters ---------- la_center: LVLoadAreaCentreDing0 Load area center object from Ding0 Returns ------- """ for s in ['retail', 'industrial', 'agricultural', 'residential']: if s not in aggr['load']: aggr['load'][s] = 0 aggr['load']['retail'] += sum( [_.sector_consumption_retail for _ in la_center.lv_load_area._lv_grid_districts]) aggr['load']['industrial'] += sum( [_.sector_consumption_industrial for _ in la_center.lv_load_area._lv_grid_districts]) aggr['load']['agricultural'] += sum( [_.sector_consumption_agricultural for _ in la_center.lv_load_area._lv_grid_districts]) aggr['load']['residential'] += sum( [_.sector_consumption_residential for _ in la_center.lv_load_area._lv_grid_districts]) return aggr aggregated = {} aggr_stations = [] # ToDo: The variable generation_aggr is further used -> delete this code generation_aggr = {} for la in la_centers[0].grid.grid_district._lv_load_areas: for lvgd in la._lv_grid_districts: for gen in lvgd.lv_grid.generators(): if la.is_aggregated: generation_aggr.setdefault(gen.type, {}) generation_aggr[gen.type].setdefault(gen.subtype, {'ding0': 0}) generation_aggr[gen.type][gen.subtype].setdefault('ding0', 0) generation_aggr[gen.type][gen.subtype]['ding0'] += gen.capacity dingo_import_data = pd.DataFrame(columns=('id', 'capacity', 'agg_geno') ) for la_center in la_centers: aggr = {'generation': {}, 'load': {}, 'aggregates': []} # Determine aggregated generation in LV grid for lvgd in la_center.lv_load_area._lv_grid_districts: weather_cell_ids = {} for gen in lvgd.lv_grid.generators(): aggr = aggregate_generators(gen, aggr) # Get the aggregated weather cell id of the area # b if isinstance(gen, GeneratorFluctuatingDing0): if gen.weather_cell_id not in weather_cell_ids.keys(): weather_cell_ids[gen.weather_cell_id] = 1 else: weather_cell_ids[gen.weather_cell_id] += 1 dingo_import_data.loc[len(dingo_import_data)] = \ [int(gen.id_db), gen.capacity, None] # Get the weather cell id that occurs the most if there are any generators if not(list(lvgd.lv_grid.generators())): weather_cell_id = None else: if weather_cell_ids: weather_cell_id = list(weather_cell_ids.keys())[ list(weather_cell_ids.values()).index( max(weather_cell_ids.values()))] else: weather_cell_id = None for v_level in aggr['generation']: for type in aggr['generation'][v_level]: for subtype in aggr['generation'][v_level][type]: # make sure to check if there are any generators before assigning # a weather cell id if not(list(lvgd.lv_grid.generators())): pass else: aggr['generation'][v_level][type][subtype]['weather_cell_id'] = \ weather_cell_id # Determine aggregated load in MV grid # -> Implement once laods in Ding0 MV grids exist # Determine aggregated load in LV grid aggr = aggregate_loads(la_center, aggr) # Collect metadata of aggregated load areas aggr['aggregates'] = { 'population': la_center.lv_load_area.zensus_sum, 'geom': la_center.lv_load_area.geo_area} # Determine LV grids/ stations that are aggregated for _ in la_center.lv_load_area._lv_grid_districts: aggr_stations.append(_.lv_grid.station()) # add elements to lists aggregated.update({la_center.id_db: aggr}) return aggregated, aggr_stations, dingo_import_data def _attach_aggregated(network, grid, aggregated, ding0_grid): """Add Generators and Loads to MV station representing aggregated generation capacity and load Parameters ---------- grid: MVGrid MV grid object aggregated: dict Information about aggregated load and generation capacity. For information about the structure of the dict see ... . ding0_grid: ding0.Network Ding0 network container Returns ------- MVGrid Altered instance of MV grid including aggregated load and generation """ aggr_line_type = ding0_grid.network._static_data['MV_cables'].iloc[ ding0_grid.network._static_data['MV_cables']['I_max_th'].idxmax()] for la_id, la in aggregated.items(): # add aggregated generators for v_level, val in la['generation'].items(): for type, val2 in val.items(): for subtype, val3 in val2.items(): if type in ['solar', 'wind']: gen = GeneratorFluctuating( id='agg-' + str(la_id) + '-' + '_'.join( [str(_) for _ in val3['ids']]), nominal_capacity=val3['capacity'], weather_cell_id=val3['weather_cell_id'], type=type, subtype=subtype, geom=grid.station.geom, grid=grid, v_level=4) else: gen = Generator( id='agg-' + str(la_id) + '-' + '_'.join( [str(_) for _ in val3['ids']]), nominal_capacity=val3['capacity'], type=type, subtype=subtype, geom=grid.station.geom, grid=grid, v_level=4) grid.graph.add_node(gen, type='generator_aggr') # backup reference of geno to LV geno list (save geno # where the former LV genos are aggregated in) network.dingo_import_data.set_value(network.dingo_import_data['id'].isin(val3['ids']), 'agg_geno', gen) # connect generator to MV station line = Line(id='line_aggr_generator_la_' + str(la_id) + '_vlevel_{v_level}_' '{subtype}'.format( v_level=v_level, subtype=subtype), type=aggr_line_type, kind='cable', length=1e-3, grid=grid) grid.graph.add_edge(grid.station, gen, line=line, type='line_aggr') for sector, sectoral_load in la['load'].items(): load = Load( geom=grid.station.geom, consumption={sector: sectoral_load}, grid=grid, id='_'.join(['Load_aggregated', sector, repr(grid), str(la_id)])) grid.graph.add_node(load, type='load') # connect aggregated load to MV station line = Line(id='_'.join(['line_aggr_load_la_' + str(la_id), sector, str(la_id)]), type=aggr_line_type, kind='cable', length=1e-3, grid=grid) grid.graph.add_edge(grid.station, load, line=line, type='line_aggr') def _validate_ding0_grid_import(mv_grid, ding0_mv_grid, lv_grid_mapping): """Cross-check imported data with original data source Parameters ---------- mv_grid: MVGrid eDisGo MV grid instance ding0_mv_grid: MVGridDing0 Ding0 MV grid instance lv_grid_mapping: dict Translates Ding0 LV grids to associated, newly created eDisGo LV grids """ # Check number of components in MV grid _validate_ding0_mv_grid_import(mv_grid, ding0_mv_grid) # Check number of components in LV grid _validate_ding0_lv_grid_import(mv_grid.lv_grids, ding0_mv_grid, lv_grid_mapping) # Check cumulative load and generation in MV grid district _validate_load_generation(mv_grid, ding0_mv_grid) def _validate_ding0_mv_grid_import(grid, ding0_grid): """Verify imported data with original data from Ding0 Parameters ---------- grid: MVGrid MV Grid data (eDisGo) ding0_grid: ding0.MVGridDing0 Ding0 MV grid object Notes ----- The data validation excludes grid components located in aggregated load areas as these are represented differently in eDisGo. Returns ------- dict Dict showing data integrity for each type of grid component """ integrity_checks = ['branch_tee', 'disconnection_point', 'mv_transformer', 'lv_station'#,'line', ] data_integrity = {} data_integrity.update({_: {'ding0': None, 'edisgo': None, 'msg': None} for _ in integrity_checks}) # Check number of branch tees data_integrity['branch_tee']['ding0'] = len(ding0_grid._cable_distributors) data_integrity['branch_tee']['edisgo'] = len( grid.graph.nodes_by_attribute('branch_tee')) # Check number of disconnecting points data_integrity['disconnection_point']['ding0'] = len( ding0_grid._circuit_breakers) data_integrity['disconnection_point']['edisgo'] = len( grid.graph.nodes_by_attribute('mv_disconnecting_point')) # Check number of MV transformers data_integrity['mv_transformer']['ding0'] = len( list(ding0_grid.station().transformers())) data_integrity['mv_transformer']['edisgo'] = len( grid.station.transformers) # Check number of LV stations in MV grid (graph) data_integrity['lv_station']['edisgo'] = len(grid.graph.nodes_by_attribute( 'lv_station')) data_integrity['lv_station']['ding0'] = len( [_ for _ in ding0_grid._graph.nodes() if (isinstance(_, LVStationDing0) and not _.grid.grid_district.lv_load_area.is_aggregated)]) # Check number of lines outside aggregated LA # edges_w_la = grid.graph.lines() # data_integrity['line']['edisgo'] = len([_ for _ in edges_w_la # if not (_['adj_nodes'][0] == grid.station or # _['adj_nodes'][1] == grid.station) and # _['line']._length > .5]) # data_integrity['line']['ding0'] = len( # [_ for _ in ding0_grid.lines() # if not _['branch'].connects_aggregated]) # raise an error if data does not match for c in integrity_checks: if data_integrity[c]['edisgo'] != data_integrity[c]['ding0']: raise ValueError( 'Unequal number of objects for {c}. ' '\n\tDing0:\t{ding0_no}' '\n\teDisGo:\t{edisgo_no}'.format( c=c, ding0_no=data_integrity[c]['ding0'], edisgo_no=data_integrity[c]['edisgo'])) return data_integrity def _validate_ding0_lv_grid_import(grids, ding0_grid, lv_grid_mapping): """Verify imported data with original data from Ding0 Parameters ---------- grids: list of LVGrid LV Grid data (eDisGo) ding0_grid: ding0.MVGridDing0 Ding0 MV grid object lv_grid_mapping: dict Defines relationship between Ding0 and eDisGo grid objects Notes ----- The data validation excludes grid components located in aggregated load areas as these are represented differently in eDisGo. Returns ------- dict Dict showing data integrity for each type of grid component """ integrity_checks = ['branch_tee', 'lv_transformer', 'generator', 'load','line'] data_integrity = {} for grid in grids: data_integrity.update({grid:{_: {'ding0': None, 'edisgo': None, 'msg': None} for _ in integrity_checks}}) # Check number of branch tees data_integrity[grid]['branch_tee']['ding0'] = len( lv_grid_mapping[grid]._cable_distributors) data_integrity[grid]['branch_tee']['edisgo'] = len( grid.graph.nodes_by_attribute('branch_tee')) # Check number of LV transformers data_integrity[grid]['lv_transformer']['ding0'] = len( list(lv_grid_mapping[grid].station().transformers())) data_integrity[grid]['lv_transformer']['edisgo'] = len( grid.station.transformers) # Check number of generators data_integrity[grid]['generator']['edisgo'] = len( grid.generators) data_integrity[grid]['generator']['ding0'] = len( list(lv_grid_mapping[grid].generators())) # Check number of loads data_integrity[grid]['load']['edisgo'] = len( grid.graph.nodes_by_attribute('load')) data_integrity[grid]['load']['ding0'] = len( list(lv_grid_mapping[grid].loads())) # Check number of lines outside aggregated LA data_integrity[grid]['line']['edisgo'] = len( list(grid.graph.lines())) data_integrity[grid]['line']['ding0'] = len( [_ for _ in lv_grid_mapping[grid].graph_edges() if not _['branch'].connects_aggregated]) # raise an error if data does not match for grid in grids: for c in integrity_checks: if data_integrity[grid][c]['edisgo'] != data_integrity[grid][c]['ding0']: raise ValueError( 'Unequal number of objects in grid {grid} for {c}. ' '\n\tDing0:\t{ding0_no}' '\n\teDisGo:\t{edisgo_no}'.format( grid=grid, c=c, ding0_no=data_integrity[grid][c]['ding0'], edisgo_no=data_integrity[grid][c]['edisgo'])) def _validate_load_generation(mv_grid, ding0_mv_grid): """ Parameters ---------- mv_grid ding0_mv_grid Notes ----- Only loads in LV grids are compared as currently Ding0 does not have MV connected loads """ decimal_places = 6 tol = 10 ** -decimal_places sectors = ['retail', 'industrial', 'agricultural', 'residential'] consumption = {_: {'edisgo': 0, 'ding0':0} for _ in sectors} # Collect eDisGo LV loads for lv_grid in mv_grid.lv_grids: for load in lv_grid.graph.nodes_by_attribute('load'): for s in sectors: consumption[s]['edisgo'] += load.consumption.get(s, 0) # Collect Ding0 LV loads for la in ding0_mv_grid.grid_district._lv_load_areas: for lvgd in la._lv_grid_districts: for load in lvgd.lv_grid.loads(): for s in sectors: consumption[s]['ding0'] += load.consumption.get(s, 0) # Compare cumulative load for k, v in consumption.items(): if v['edisgo'] != v['ding0']: raise ValueError( 'Consumption for {sector} does not match! ' '\n\tDing0:\t{ding0}' '\n\teDisGo:\t{edisgo}'.format( sector=k, ding0=v['ding0'], edisgo=v['edisgo'])) # Compare cumulative generation capacity mv_gens = mv_grid.graph.nodes_by_attribute('generator') lv_gens = [] [lv_gens.extend(_.graph.nodes_by_attribute('generator')) for _ in mv_grid.lv_grids] gens_aggr = mv_grid.graph.nodes_by_attribute('generator_aggr') generation = {} generation_aggr = {} # collect eDisGo cumulative generation capacity for gen in mv_gens + lv_gens: generation.setdefault(gen.type, {}) generation[gen.type].setdefault(gen.subtype, {'edisgo': 0}) generation[gen.type][gen.subtype]['edisgo'] += gen.nominal_capacity for gen in gens_aggr: generation_aggr.setdefault(gen.type, {}) generation_aggr[gen.type].setdefault(gen.subtype, {'edisgo': 0}) generation_aggr[gen.type][gen.subtype]['edisgo'] += gen.nominal_capacity generation.setdefault(gen.type, {}) generation[gen.type].setdefault(gen.subtype, {'edisgo': 0}) generation[gen.type][gen.subtype]['edisgo'] += gen.nominal_capacity # collect Ding0 MV generation capacity for gen in ding0_mv_grid.generators(): generation.setdefault(gen.type, {}) generation[gen.type].setdefault(gen.subtype, {'ding0': 0}) generation[gen.type][gen.subtype].setdefault('ding0', 0) generation[gen.type][gen.subtype]['ding0'] += gen.capacity # Collect Ding0 LV generation capacity for la in ding0_mv_grid.grid_district._lv_load_areas: for lvgd in la._lv_grid_districts: for gen in lvgd.lv_grid.generators(): if la.is_aggregated: generation_aggr.setdefault(gen.type, {}) generation_aggr[gen.type].setdefault(gen.subtype, {'ding0': 0}) generation_aggr[gen.type][gen.subtype].setdefault('ding0', 0) generation_aggr[gen.type][gen.subtype]['ding0'] += gen.capacity generation.setdefault(gen.type, {}) generation[gen.type].setdefault(gen.subtype, {'ding0': 0}) generation[gen.type][gen.subtype].setdefault('ding0', 0) generation[gen.type][gen.subtype]['ding0'] += gen.capacity # Compare cumulative generation capacity for k1, v1 in generation.items(): for k2, v2 in v1.items(): if abs(v2['edisgo'] - v2['ding0']) > tol: raise ValueError( 'Generation capacity of {type} {subtype} does not match! ' '\n\tDing0:\t{ding0}' '\n\teDisGo:\t{edisgo}'.format( type=k1, subtype=k2, ding0=v2['ding0'], edisgo=v2['edisgo'])) # Compare aggregated generation capacity for k1, v1 in generation_aggr.items(): for k2, v2 in v1.items(): if abs(v2['edisgo'] - v2['ding0']) > tol: raise ValueError( 'Aggregated generation capacity of {type} {subtype} does ' 'not match! ' '\n\tDing0:\t{ding0}' '\n\teDisGo:\t{edisgo}'.format( type=k1, subtype=k2, ding0=v2['ding0'], edisgo=v2['edisgo'])) def import_generators(network, data_source=None, file=None): """Import generator data from source. The generator data include * nom. capacity * type ToDo: specify! * timeseries Additional data which can be processed (e.g. used in OEDB data) are * location * type * subtype * capacity Parameters ---------- network: :class:`~.grid.network.Network` The eDisGo container object data_source: :obj:`str` Data source. Supported sources: * 'oedb' file: :obj:`str` File to import data from, required when using file-based sources. Returns ------- :pandas:`pandas.DataFrame<dataframe>` List of generators """ if data_source == 'oedb': logging.warning('Right now only solar and wind generators can be ' 'imported from the oedb.') _import_genos_from_oedb(network=network) network.mv_grid._weather_cells = None if network.pypsa is not None: pypsa_io.update_pypsa_generator_import(network) elif data_source == 'pypsa': _import_genos_from_pypsa(network=network, file=file) else: logger.error("Invalid option {} for generator import. Must either be " "'oedb' or 'pypsa'.".format(data_source)) raise ValueError('The option you specified is not supported.') def _import_genos_from_oedb(network): """Import generator data from the Open Energy Database (OEDB). The importer uses SQLAlchemy ORM objects. These are defined in ego.io, see https://github.com/openego/ego.io/tree/dev/egoio/db_tables Parameters ---------- network: :class:`~.grid.network.Network` The eDisGo container object Notes ------ Right now only solar and wind generators can be imported. """ def _import_conv_generators(session): """Import conventional (conv) generators Returns ------- :pandas:`pandas.DataFrame<dataframe>` List of medium-voltage generators Notes ----- You can find a full list of columns in :func:`edisgo.data.import_data._update_grids` """ # build query generators_sqla = session.query( orm_conv_generators.columns.id, orm_conv_generators.columns.subst_id, orm_conv_generators.columns.la_id, orm_conv_generators.columns.capacity, orm_conv_generators.columns.type, orm_conv_generators.columns.voltage_level, orm_conv_generators.columns.fuel, func.ST_AsText(func.ST_Transform( orm_conv_generators.columns.geom, srid)) ). \ filter(orm_conv_generators.columns.subst_id == network.mv_grid.id). \ filter(orm_conv_generators.columns.voltage_level.in_([4, 5, 6, 7])). \ filter(orm_conv_generators_version) # read data from db generators_mv = pd.read_sql_query(generators_sqla.statement, session.bind, index_col='id') return generators_mv def _import_res_generators(session): """Import renewable (res) generators Returns ------- :pandas:`pandas.DataFrame<dataframe>` List of medium-voltage generators :pandas:`pandas.DataFrame<dataframe>` List of low-voltage generators Notes ----- You can find a full list of columns in :func:`edisgo.data.import_data._update_grids` If subtype is not specified it's set to 'unknown'. """ # Create filter for generation technologies # ToDo: This needs to be removed when all generators can be imported types_filter = orm_re_generators.columns.generation_type.in_( ['solar', 'wind']) # build basic query generators_sqla = session.query( orm_re_generators.columns.id, orm_re_generators.columns.subst_id, orm_re_generators.columns.la_id, orm_re_generators.columns.mvlv_subst_id, orm_re_generators.columns.electrical_capacity, orm_re_generators.columns.generation_type, orm_re_generators.columns.generation_subtype, orm_re_generators.columns.voltage_level, orm_re_generators.columns.w_id, func.ST_AsText(func.ST_Transform( orm_re_generators.columns.rea_geom_new, srid)).label('geom'), func.ST_AsText(func.ST_Transform( orm_re_generators.columns.geom, srid)).label('geom_em')). \ filter(orm_re_generators.columns.subst_id == network.mv_grid.id). \ filter(orm_re_generators_version). \ filter(types_filter) # extend basic query for MV generators and read data from db generators_mv_sqla = generators_sqla. \ filter(orm_re_generators.columns.voltage_level.in_([4, 5])) generators_mv = pd.read_sql_query(generators_mv_sqla.statement, session.bind, index_col='id') # define generators with unknown subtype as 'unknown' generators_mv.loc[generators_mv[ 'generation_subtype'].isnull(), 'generation_subtype'] = 'unknown' # extend basic query for LV generators and read data from db generators_lv_sqla = generators_sqla. \ filter(orm_re_generators.columns.voltage_level.in_([6, 7])) generators_lv = pd.read_sql_query(generators_lv_sqla.statement, session.bind, index_col='id') # define generators with unknown subtype as 'unknown' generators_lv.loc[generators_lv[ 'generation_subtype'].isnull(), 'generation_subtype'] = 'unknown' return generators_mv, generators_lv def _update_grids(network, generators_mv, generators_lv, remove_missing=True): """Update imported status quo DINGO-grid according to new generator dataset It * adds new generators to grid if they do not exist * updates existing generators if parameters have changed * removes existing generators from grid which do not exist in the imported dataset Steps: * Step 1: MV generators: Update existing, create new, remove decommissioned * Step 2: LV generators (single units): Update existing, remove decommissioned * Step 3: LV generators (in aggregated MV generators): Update existing, remove decommissioned (aggregated MV generators = originally LV generators from aggregated Load Areas which were aggregated during import from ding0.) * Step 4: LV generators (single units + aggregated MV generators): Create new Parameters ---------- network: :class:`~.grid.network.Network` The eDisGo container object generators_mv: :pandas:`pandas.DataFrame<dataframe>` List of MV generators Columns: * id: :obj:`int` (index column) * electrical_capacity: :obj:`float` (unit: kW) * generation_type: :obj:`str` (e.g. 'solar') * generation_subtype: :obj:`str` (e.g. 'solar_roof_mounted') * voltage level: :obj:`int` (range: 4..7,) * geom: :shapely:`Shapely Point object<points>` (CRS see config_grid.cfg) * geom_em: :shapely:`Shapely Point object<points>` (CRS see config_grid.cfg) generators_lv: :pandas:`pandas.DataFrame<dataframe>` List of LV generators Columns: * id: :obj:`int` (index column) * mvlv_subst_id: :obj:`int` (id of MV-LV substation in grid = grid which the generator will be connected to) * electrical_capacity: :obj:`float` (unit: kW) * generation_type: :obj:`str` (e.g. 'solar') * generation_subtype: :obj:`str` (e.g. 'solar_roof_mounted') * voltage level: :obj:`int` (range: 4..7,) * geom: :shapely:`Shapely Point object<points>` (CRS see config_grid.cfg) * geom_em: :shapely:`Shapely Point object<points>` (CRS see config_grid.cfg) remove_missing: :obj:`bool` If true, remove generators from grid which are not included in the imported dataset. """ # set capacity difference threshold cap_diff_threshold = 10 ** -4 # get existing generators in MV and LV grids g_mv, g_lv, g_mv_agg = _build_generator_list(network=network) # print current capacity capacity_grid = 0 capacity_grid += sum([row['obj'].nominal_capacity for id, row in g_mv.iterrows()]) capacity_grid += sum([row['obj'].nominal_capacity for id, row in g_lv.iterrows()]) capacity_grid += sum([row['obj'].nominal_capacity for id, row in g_mv_agg.iterrows()]) logger.debug('Cumulative generator capacity (existing): {} kW' .format(str(round(capacity_grid, 1))) ) # ====================================== # Step 1: MV generators (existing + new) # ====================================== logger.debug('==> MV generators') logger.debug('{} generators imported.' .format(str(len(generators_mv)))) # get existing genos (status quo DF format) g_mv_existing = g_mv[g_mv['id'].isin(list(generators_mv.index.values))] # get existing genos (new genos DF format) generators_mv_existing = generators_mv[generators_mv.index.isin(list(g_mv_existing['id']))] # remove existing ones from grid's geno list g_mv = g_mv[~g_mv.isin(g_mv_existing)].dropna() # TEMP: BACKUP 1 GENO FOR TESTING #temp_geno = generators_mv_existing.iloc[0] #temp_geno['geom_em'] = temp_geno['geom_em'].replace('10.667', '10.64') # iterate over exiting generators and check whether capacity has changed log_geno_count = 0 log_geno_cap = 0 for id, row in generators_mv_existing.iterrows(): geno_existing = g_mv_existing[g_mv_existing['id'] == id]['obj'].iloc[0] # check if capacity equals; if not: update capacity if abs(row['electrical_capacity'] - \ geno_existing.nominal_capacity) < cap_diff_threshold: continue else: log_geno_cap += row['electrical_capacity'] - geno_existing.nominal_capacity log_geno_count += 1 geno_existing.nominal_capacity = row['electrical_capacity'] # check if cap=0 (this may happen if dp is buggy) if row['electrical_capacity'] <= 0: geno_existing.grid.graph.remove_node(geno_existing) logger.warning('Capacity of generator {} is <=0, generator removed. ' 'Check your data source.' .format(repr(geno_existing)) ) logger.debug('Capacities of {} of {} existing generators updated ({} kW).' .format(str(log_geno_count), str(len(generators_mv_existing) - log_geno_count), str(round(log_geno_cap, 1)) ) ) # new genos log_geno_count = 0 log_geno_cap = 0 generators_mv_new = generators_mv[~generators_mv.index.isin( list(g_mv_existing['id']))] # remove them from grid's geno list g_mv = g_mv[~g_mv.isin(list(generators_mv_new.index.values))].dropna() # TEMP: INSERT BACKUPPED GENO IN DF FOR TESTING #generators_mv_new = generators_mv_new.append(temp_geno) # iterate over new generators and create them for id, row in generators_mv_new.iterrows(): # check if geom is available, skip otherwise geom = _check_geom(id, row) if not geom: logger.warning('Generator {} has no geom entry at all and will' 'not be imported!'.format(id)) continue # create generator object and add it to MV grid's graph if row['generation_type'] in ['solar', 'wind']: network.mv_grid.graph.add_node( GeneratorFluctuating( id=id, grid=network.mv_grid, nominal_capacity=row['electrical_capacity'], type=row['generation_type'], subtype=row['generation_subtype'], v_level=int(row['voltage_level']), weather_cell_id=row['w_id'], geom=wkt_loads(geom)), type='generator') else: network.mv_grid.graph.add_node( Generator(id=id, grid=network.mv_grid, nominal_capacity=row['electrical_capacity'], type=row['generation_type'], subtype=row['generation_subtype'], v_level=int(row['voltage_level']), geom=wkt_loads(geom) ), type='generator') log_geno_cap += row['electrical_capacity'] log_geno_count += 1 logger.debug('{} of {} new generators added ({} kW).' .format(str(log_geno_count), str(len(generators_mv_new)), str(round(log_geno_cap, 1)) ) ) # remove decommissioned genos # (genos which exist in grid but not in the new dataset) log_geno_cap = 0 if not g_mv.empty and remove_missing: log_geno_count = 0 for _, row in g_mv.iterrows(): log_geno_cap += row['obj'].nominal_capacity row['obj'].grid.graph.remove_node(row['obj']) log_geno_count += 1 logger.debug('{} of {} decommissioned generators removed ({} kW).' .format(str(log_geno_count), str(len(g_mv)), str(round(log_geno_cap, 1)) ) ) # ============================================= # Step 2: LV generators (single existing units) # ============================================= logger.debug('==> LV generators') logger.debug('{} generators imported.'.format(str(len(generators_lv)))) # get existing genos (status quo DF format) g_lv_existing = g_lv[g_lv['id'].isin(list(generators_lv.index.values))] # get existing genos (new genos DF format) generators_lv_existing = generators_lv[generators_lv.index.isin(list(g_lv_existing['id']))] # TEMP: BACKUP 1 GENO FOR TESTING # temp_geno = g_lv.iloc[0] # remove existing ones from grid's geno list g_lv = g_lv[~g_lv.isin(g_lv_existing)].dropna() # iterate over exiting generators and check whether capacity has changed log_geno_count = 0 log_geno_cap = 0 for id, row in generators_lv_existing.iterrows(): geno_existing = g_lv_existing[g_lv_existing['id'] == id]['obj'].iloc[0] # check if capacity equals; if not: update capacity if abs(row['electrical_capacity'] - \ geno_existing.nominal_capacity) < cap_diff_threshold: continue else: log_geno_cap += row['electrical_capacity'] - geno_existing.nominal_capacity log_geno_count += 1 geno_existing.nominal_capacity = row['electrical_capacity'] logger.debug('Capacities of {} of {} existing generators (single units) updated ({} kW).' .format(str(log_geno_count), str(len(generators_lv_existing) - log_geno_count), str(round(log_geno_cap, 1)) ) ) # TEMP: INSERT BACKUPPED GENO IN DF FOR TESTING # g_lv.loc[len(g_lv)] = temp_geno # remove decommissioned genos # (genos which exist in grid but not in the new dataset) log_geno_cap = 0 if not g_lv.empty and remove_missing: log_geno_count = 0 for _, row in g_lv.iterrows(): log_geno_cap += row['obj'].nominal_capacity row['obj'].grid.graph.remove_node(row['obj']) log_geno_count += 1 logger.debug('{} of {} decommissioned generators (single units) removed ({} kW).' .format(str(log_geno_count), str(len(g_lv)), str(round(log_geno_cap, 1)) ) ) # ==================================================================================== # Step 3: LV generators (existing in aggregated units (originally from aggregated LA)) # ==================================================================================== g_lv_agg = network.dingo_import_data g_lv_agg_existing = g_lv_agg[g_lv_agg['id'].isin(list(generators_lv.index.values))] generators_lv_agg_existing = generators_lv[generators_lv.index.isin(list(g_lv_agg_existing['id']))] # TEMP: BACKUP 1 GENO FOR TESTING # temp_geno = g_lv_agg.iloc[0] g_lv_agg = g_lv_agg[~g_lv_agg.isin(g_lv_agg_existing)].dropna() log_geno_count = 0 log_agg_geno_list = [] log_geno_cap = 0 for id, row in generators_lv_agg_existing.iterrows(): # check if capacity equals; if not: update capacity off agg. geno cap_diff = row['electrical_capacity'] - \ g_lv_agg_existing[g_lv_agg_existing['id'] == id]['capacity'].iloc[0] if abs(cap_diff) < cap_diff_threshold: continue else: agg_geno = g_lv_agg_existing[g_lv_agg_existing['id'] == id]['agg_geno'].iloc[0] agg_geno.nominal_capacity += cap_diff log_geno_cap += cap_diff log_geno_count += 1 log_agg_geno_list.append(agg_geno) logger.debug('Capacities of {} of {} existing generators (in {} of {} aggregated units) ' 'updated ({} kW).' .format(str(log_geno_count), str(len(generators_lv_agg_existing) - log_geno_count), str(len(set(log_agg_geno_list))), str(len(g_lv_agg_existing['agg_geno'].unique())), str(round(log_geno_cap, 1)) ) ) # TEMP: INSERT BACKUPPED GENO IN DF FOR TESTING # g_lv_agg.loc[len(g_lv_agg)] = temp_geno # remove decommissioned genos # (genos which exist in grid but not in the new dataset) log_geno_cap = 0 if not g_lv_agg.empty and remove_missing: log_geno_count = 0 for _, row in g_lv_agg.iterrows(): row['agg_geno'].nominal_capacity -= row['capacity'] log_geno_cap += row['capacity'] # remove LV geno id from id string of agg. geno id = row['agg_geno'].id.split('-') ids = id[2].split('_') ids.remove(str(int(row['id']))) row['agg_geno'].id = '-'.join([id[0], id[1], '_'.join(ids)]) # after removing the LV geno from agg geno, is the agg. geno empty? # if yes, remove it from grid if not ids: row['agg_geno'].grid.graph.remove_node(row['agg_geno']) log_geno_count += 1 logger.debug('{} of {} decommissioned generators in aggregated generators removed ({} kW).' .format(str(log_geno_count), str(len(g_lv_agg)), str(round(log_geno_cap, 1)) ) ) # ==================================================================== # Step 4: LV generators (new single units + genos in aggregated units) # ==================================================================== # new genos log_geno_count =\ log_agg_geno_new_count =\ log_agg_geno_upd_count = 0 # TEMP: BACKUP 1 GENO FOR TESTING #temp_geno = generators_lv[generators_lv.index == g_lv_existing.iloc[0]['id']] generators_lv_new = generators_lv[~generators_lv.index.isin(list(g_lv_existing['id'])) & ~generators_lv.index.isin(list(g_lv_agg_existing['id']))] # TEMP: INSERT BACKUPPED GENO IN DF FOR TESTING #generators_lv_new = generators_lv_new.append(temp_geno) # dict for new agg. generators agg_geno_new = {} # get LV grid districts lv_grid_dict = _build_lv_grid_dict(network) # get predefined random seed and initialize random generator seed = int(network.config['grid_connection']['random_seed']) random.seed(a=seed) # check if none of new generators can be allocated to an existing LV grid if not any([_ in lv_grid_dict.keys() for _ in list(generators_lv_new['mvlv_subst_id'])]): logger.warning('None of the imported generators can be allocated ' 'to an existing LV grid. Check compatibility of grid ' 'and generator datasets.') # iterate over new (single unit or part of agg. unit) generators and create them log_geno_cap = 0 for id, row in generators_lv_new.iterrows(): lv_geno_added_to_agg_geno = False # new unit is part of agg. LA (mvlv_subst_id is different from existing # ones in LV grids of non-agg. load areas) if (row['mvlv_subst_id'] not in lv_grid_dict.keys() and row['la_id'] and not isnan(row['la_id']) and row['mvlv_subst_id'] and not isnan(row['mvlv_subst_id'])): # check if new unit can be added to existing agg. generator # (LA id, type and subtype match) -> update existing agg. generator. # Normally, this case should not occur since `subtype` of new genos # is set to a new value (e.g. 'solar') for _, agg_row in g_mv_agg.iterrows(): if (agg_row['la_id'] == int(row['la_id']) and agg_row['obj'].type == row['generation_type'] and agg_row['obj'].subtype == row['generation_subtype']): agg_row['obj'].nominal_capacity += row['electrical_capacity'] agg_row['obj'].id += '_{}'.format(str(id)) log_agg_geno_upd_count += 1 lv_geno_added_to_agg_geno = True if not lv_geno_added_to_agg_geno: la_id = int(row['la_id']) if la_id not in agg_geno_new: agg_geno_new[la_id] = {} if row['voltage_level'] not in agg_geno_new[la_id]: agg_geno_new[la_id][row['voltage_level']] = {} if row['generation_type'] not in agg_geno_new[la_id][row['voltage_level']]: agg_geno_new[la_id][row['voltage_level']][row['generation_type']] = {} if row['generation_subtype'] not in \ agg_geno_new[la_id][row['voltage_level']][row['generation_type']]: agg_geno_new[la_id][row['voltage_level']][row['generation_type']]\ .update({row['generation_subtype']: {'ids': [int(id)], 'capacity': row['electrical_capacity'] } } ) else: agg_geno_new[la_id][row['voltage_level']][row['generation_type']] \ [row['generation_subtype']]['ids'].append(int(id)) agg_geno_new[la_id][row['voltage_level']][row['generation_type']] \ [row['generation_subtype']]['capacity'] += row['electrical_capacity'] # new generator is a single (non-aggregated) unit else: # check if geom is available geom = _check_geom(id, row) if row['generation_type'] in ['solar', 'wind']: gen = GeneratorFluctuating( id=id, grid=None, nominal_capacity=row['electrical_capacity'], type=row['generation_type'], subtype=row['generation_subtype'], v_level=int(row['voltage_level']), weather_cell_id=row['w_id'], geom=wkt_loads(geom) if geom else geom) else: gen = Generator(id=id, grid=None, nominal_capacity=row[ 'electrical_capacity'], type=row['generation_type'], subtype=row['generation_subtype'], v_level=int(row['voltage_level']), geom=wkt_loads(geom) if geom else geom) # TEMP: REMOVE MVLV SUBST ID FOR TESTING #row['mvlv_subst_id'] = None # check if MV-LV substation id exists. if not, allocate to # random one lv_grid = _check_mvlv_subst_id( generator=gen, mvlv_subst_id=row['mvlv_subst_id'], lv_grid_dict=lv_grid_dict) gen.grid = lv_grid lv_grid.graph.add_node(gen, type='generator') log_geno_count += 1 log_geno_cap += row['electrical_capacity'] # there are new agg. generators to be created if agg_geno_new: pfac_mv_gen = network.config['reactive_power_factor']['mv_gen'] # add aggregated generators for la_id, val in agg_geno_new.items(): for v_level, val2 in val.items(): for type, val3 in val2.items(): for subtype, val4 in val3.items(): if type in ['solar', 'wind']: gen = GeneratorFluctuating( id='agg-' + str(la_id) + '-' + '_'.join([ str(_) for _ in val4['ids']]), grid=network.mv_grid, nominal_capacity=val4['capacity'], type=type, subtype=subtype, v_level=4, # ToDo: get correct w_id weather_cell_id=row['w_id'], geom=network.mv_grid.station.geom) else: gen = Generator( id='agg-' + str(la_id) + '-' + '_'.join([ str(_) for _ in val4['ids']]), nominal_capacity=val4['capacity'], type=type, subtype=subtype, geom=network.mv_grid.station.geom, grid=network.mv_grid, v_level=4) network.mv_grid.graph.add_node( gen, type='generator_aggr') # select cable type line_type, line_count = select_cable( network=network, level='mv', apparent_power=gen.nominal_capacity / pfac_mv_gen) # connect generator to MV station line = Line(id='line_aggr_generator_la_' + str(la_id) + '_vlevel_{v_level}_' '{subtype}'.format( v_level=v_level, subtype=subtype), type=line_type, kind='cable', quantity=line_count, length=1e-3, grid=network.mv_grid) network.mv_grid.graph.add_edge(network.mv_grid.station, gen, line=line, type='line_aggr') log_agg_geno_new_count += len(val4['ids']) log_geno_cap += val4['capacity'] logger.debug('{} of {} new generators added ({} single units, {} to existing ' 'agg. generators and {} units as new aggregated generators) ' '(total: {} kW).' .format(str(log_geno_count + log_agg_geno_new_count + log_agg_geno_upd_count), str(len(generators_lv_new)), str(log_geno_count), str(log_agg_geno_upd_count), str(log_agg_geno_new_count), str(round(log_geno_cap, 1)) ) ) def _check_geom(id, row): """Checks if a valid geom is available in dataset If yes, this geom will be used. If not: * MV generators: use geom from EnergyMap. * LV generators: set geom to None. It is re-set in :func:`edisgo.data.import_data._check_mvlv_subst_id` to MV-LV station's geom. EnergyMap's geom is not used since it is more inaccurate than the station's geom. Parameters ---------- id : :obj:`int` Id of generator row : :pandas:`pandas.Series<series>` Generator dataset Returns ------- :shapely:`Shapely Point object<points>` or None Geom of generator. None, if no geom is available. """ geom = None # check if geom is available if row['geom']: geom = row['geom'] else: # MV generators: set geom to EnergyMap's geom, if available if int(row['voltage_level']) in [4,5]: # check if original geom from Energy Map is available if row['geom_em']: geom = row['geom_em'] logger.debug('Generator {} has no geom entry, EnergyMap\'s geom entry will be used.' .format(id) ) return geom def _check_mvlv_subst_id(generator, mvlv_subst_id, lv_grid_dict): """Checks if MV-LV substation id of single LV generator is missing or invalid. If so, a random one from existing stations in LV grids will be assigned. Parameters ---------- generator : :class:`~.grid.components.Generator` LV generator mvlv_subst_id : :obj:`int` MV-LV substation id lv_grid_dict : :obj:`dict` Dict of existing LV grids Format: {:obj:`int`: :class:`~.grid.grids.LVGrid`} Returns ------- :class:`~.grid.grids.LVGrid` LV grid of generator """ if mvlv_subst_id and not isnan(mvlv_subst_id): # assume that given LA exists try: # get LV grid lv_grid = lv_grid_dict[mvlv_subst_id] # if no geom, use geom of station if not generator.geom: generator.geom = lv_grid.station.geom logger.debug('Generator {} has no geom entry, stations\' geom will be used.' .format(generator.id) ) return lv_grid # if LA/LVGD does not exist, choose random LVGD and move generator to station of LVGD # this occurs due to exclusion of LA with peak load < 1kW except: lv_grid = random.choice(list(lv_grid_dict.values())) generator.geom = lv_grid.station.geom logger.warning('Generator {} cannot be assigned to ' 'non-existent LV Grid and was ' 'allocated to a random LV Grid ({}); ' 'geom was set to stations\' geom.' .format(repr(generator), repr(lv_grid))) pass return lv_grid else: lv_grid = random.choice(list(lv_grid_dict.values())) generator.geom = lv_grid.station.geom logger.warning('Generator {} has no mvlv_subst_id and was ' 'allocated to a random LV Grid ({}); ' 'geom was set to stations\' geom.' .format(repr(generator), repr(lv_grid))) pass return lv_grid def _validate_generation(): """Validate generators in updated grids The validation uses the cumulative capacity of all generators. """ # ToDo: Valdate conv. genos too! # set capacity difference threshold cap_diff_threshold = 10 ** -4 capacity_imported = generators_res_mv['electrical_capacity'].sum() + \ generators_res_lv['electrical_capacity'].sum() #+ \ #generators_conv_mv['capacity'].sum() capacity_grid = 0 # MV genos for geno in network.mv_grid.generators: capacity_grid += geno.nominal_capacity # LV genos for lv_grid in network.mv_grid.lv_grids: for geno in lv_grid.generators: capacity_grid += geno.nominal_capacity logger.debug('Cumulative generator capacity (updated): {} kW' .format(str(round(capacity_imported, 1))) ) if abs(capacity_imported - capacity_grid) > cap_diff_threshold: raise ValueError('Cumulative capacity of imported generators ({} kW) ' 'differ from cumulative capacity of generators ' 'in updated grid ({} kW) by {} kW.' .format(str(round(capacity_imported, 1)), str(round(capacity_grid, 1)), str(round(capacity_imported - capacity_grid, 1)) ) ) else: logger.debug('Cumulative capacity of imported generators validated.') def _validate_sample_geno_location(): if all(generators_res_lv['geom'].notnull()) \ and all(generators_res_mv['geom'].notnull()) \ and not generators_res_lv['geom'].empty \ and not generators_res_mv['geom'].empty: # get geom of 1 random MV and 1 random LV generator and transform sample_mv_geno_geom_shp = transform(proj2equidistant(network), wkt_loads(generators_res_mv['geom'] .dropna() .sample(n=1) .item()) ) sample_lv_geno_geom_shp = transform(proj2equidistant(network), wkt_loads(generators_res_lv['geom'] .dropna() .sample(n=1) .item()) ) # get geom of MV grid district mvgd_geom_shp = transform(proj2equidistant(network), network.mv_grid.grid_district['geom'] ) # check if MVGD contains geno if not (mvgd_geom_shp.contains(sample_mv_geno_geom_shp) and mvgd_geom_shp.contains(sample_lv_geno_geom_shp)): raise ValueError('At least one imported generator is not located ' 'in the MV grid area. Check compatibility of ' 'grid and generator datasets.') srid = int(network.config['geo']['srid']) oedb_data_source = network.config['data_source']['oedb_data_source'] scenario = network.generator_scenario if oedb_data_source == 'model_draft': # load ORM names orm_conv_generators_name = network.config['model_draft']['conv_generators_prefix'] + \ scenario + \ network.config['model_draft']['conv_generators_suffix'] orm_re_generators_name = network.config['model_draft']['re_generators_prefix'] + \ scenario + \ network.config['model_draft']['re_generators_suffix'] # import ORMs orm_conv_generators = model_draft.__getattribute__(orm_conv_generators_name) orm_re_generators = model_draft.__getattribute__(orm_re_generators_name) # set dummy version condition (select all generators) orm_conv_generators_version = 1 == 1 orm_re_generators_version = 1 == 1 elif oedb_data_source == 'versioned': # load ORM names orm_conv_generators_name = network.config['versioned']['conv_generators_prefix'] + \ scenario + \ network.config['versioned']['conv_generators_suffix'] orm_re_generators_name = network.config['versioned']['re_generators_prefix'] + \ scenario + \ network.config['versioned']['re_generators_suffix'] data_version = network.config['versioned']['version'] # import ORMs orm_conv_generators = supply.__getattribute__(orm_conv_generators_name) orm_re_generators = supply.__getattribute__(orm_re_generators_name) # set version condition orm_conv_generators_version = orm_conv_generators.columns.version == data_version orm_re_generators_version = orm_re_generators.columns.version == data_version # get conventional and renewable generators with session_scope() as session: #generators_conv_mv = _import_conv_generators(session) generators_res_mv, generators_res_lv = _import_res_generators( session) #generators_mv = generators_conv_mv.append(generators_res_mv) _validate_sample_geno_location() _update_grids(network=network, #generators_mv=generators_mv, generators_mv=generators_res_mv, generators_lv=generators_res_lv) _validate_generation() connect_mv_generators(network=network) connect_lv_generators(network=network) def _import_genos_from_pypsa(network, file): """Import generator data from a pyPSA file. TBD Parameters ---------- network: :class:`~.grid.network.Network` The eDisGo container object file: :obj:`str` File including path """ raise NotImplementedError # generators = pd.read_csv(file, # comment='#', # index_col='name', # delimiter=',', # decimal='.' # ) def _build_generator_list(network): """Builds DataFrames with all generators in MV and LV grids Returns ------- :pandas:`pandas.DataFrame<dataframe>` A DataFrame with id of and reference to MV generators :pandas:`pandas.DataFrame<dataframe>` A DataFrame with id of and reference to LV generators :pandas:`pandas.DataFrame<dataframe>` A DataFrame with id of and reference to aggregated LV generators """ genos_mv = pd.DataFrame(columns= ('id', 'obj')) genos_lv = pd.DataFrame(columns= ('id', 'obj')) genos_lv_agg = pd.DataFrame(columns= ('la_id', 'id', 'obj')) # MV genos for geno in network.mv_grid.graph.nodes_by_attribute('generator'): genos_mv.loc[len(genos_mv)] = [int(geno.id), geno] for geno in network.mv_grid.graph.nodes_by_attribute('generator_aggr'): la_id = int(geno.id.split('-')[1].split('_')[-1]) genos_lv_agg.loc[len(genos_lv_agg)] = [la_id, geno.id, geno] # LV genos for lv_grid in network.mv_grid.lv_grids: for geno in lv_grid.generators: genos_lv.loc[len(genos_lv)] = [int(geno.id), geno] return genos_mv, genos_lv, genos_lv_agg def _build_lv_grid_dict(network): """Creates dict of LV grids LV grid ids are used as keys, LV grid references as values. Parameters ---------- network: :class:`~.grid.network.Network` The eDisGo container object Returns ------- :obj:`dict` Format: {:obj:`int`: :class:`~.grid.grids.LVGrid`} """ lv_grid_dict = {} for lv_grid in network.mv_grid.lv_grids: lv_grid_dict[lv_grid.id] = lv_grid return lv_grid_dict def import_feedin_timeseries(config_data, weather_cell_ids): """ Import RES feed-in time series data and process Parameters ---------- config_data : dict Dictionary containing config data from config files. weather_cell_ids : :obj:`list` List of weather cell id's (integers) to obtain feed-in data for. Returns ------- :pandas:`pandas.DataFrame<dataframe>` Feedin time series """ def _retrieve_timeseries_from_oedb(session): """Retrieve time series from oedb """ # ToDo: add option to retrieve subset of time series # ToDo: find the reference power class for mvgrid/w_id and insert instead of 4 feedin_sqla = session.query( orm_feedin.w_id, orm_feedin.source, orm_feedin.feedin). \ filter(orm_feedin.w_id.in_(weather_cell_ids)). \ filter(orm_feedin.power_class.in_([0, 4])). \ filter(orm_feedin_version) feedin = pd.read_sql_query(feedin_sqla.statement, session.bind, index_col=['source', 'w_id']) return feedin if config_data['data_source']['oedb_data_source'] == 'model_draft': orm_feedin_name = config_data['model_draft']['res_feedin_data'] orm_feedin = model_draft.__getattribute__(orm_feedin_name) orm_feedin_version = 1 == 1 else: orm_feedin_name = config_data['versioned']['res_feedin_data'] orm_feedin = supply.__getattribute__(orm_feedin_name) orm_feedin_version = orm_feedin.version == config_data['versioned'][ 'version'] with session_scope() as session: feedin = _retrieve_timeseries_from_oedb(session) feedin.sort_index(axis=0, inplace=True) timeindex = pd.date_range('1/1/2011', periods=8760, freq='H') recasted_feedin_dict = {} for type_w_id in feedin.index: recasted_feedin_dict[type_w_id] = feedin.loc[ type_w_id, :].values[0] feedin = pd.DataFrame(recasted_feedin_dict, index=timeindex) # rename 'wind_onshore' and 'wind_offshore' to 'wind' new_level = [_ if _ not in ['wind_onshore'] else 'wind' for _ in feedin.columns.levels[0]] feedin.columns.set_levels(new_level, level=0, inplace=True) feedin.columns.rename('type', level=0, inplace=True) feedin.columns.rename('weather_cell_id', level=1, inplace=True) return feedin def import_load_timeseries(config_data, data_source, mv_grid_id=None, year=None): """ Import load time series Parameters ---------- config_data : dict Dictionary containing config data from config files. data_source : str Specify type of data source. Available data sources are * 'demandlib' Determine a load time series with the use of the demandlib. This calculates standard load profiles for 4 different sectors. mv_grid_id : :obj:`str` MV grid ID as used in oedb. Provide this if `data_source` is 'oedb'. Default: None. year : int Year for which to generate load time series. Provide this if `data_source` is 'demandlib'. Default: None. Returns ------- :pandas:`pandas.DataFrame<dataframe>` Load time series """ def _import_load_timeseries_from_oedb(config_data, mv_grid_id): """ Retrieve load time series from oedb Parameters ---------- config_data : dict Dictionary containing config data from config files. Returns ------- :pandas:`pandas.DataFrame<dataframe>` Load time series Notes ------ This is currently not a valid option to retrieve load time series since time series in the oedb are not differentiated by sector. An issue concerning this has been created. """ if config_data['versioned']['version'] == 'model_draft': orm_load_name = config_data['model_draft']['load_data'] orm_load = model_draft.__getattribute__(orm_load_name) orm_load_areas_name = config_data['model_draft']['load_areas'] orm_load_areas = model_draft.__getattribute__(orm_load_areas_name) orm_load_version = 1 == 1 else: orm_load_name = config_data['versioned']['load_data'] # orm_load = supply.__getattribute__(orm_load_name) # ToDo: remove workaround orm_load = model_draft.__getattribute__(orm_load_name) # orm_load_version = orm_load.version == config.data['versioned']['version'] orm_load_areas_name = config_data['versioned']['load_areas'] # orm_load_areas = supply.__getattribute__(orm_load_areas_name) # ToDo: remove workaround orm_load_areas = model_draft.__getattribute__(orm_load_areas_name) # orm_load_areas_version = orm_load.version == config.data['versioned']['version'] orm_load_version = 1 == 1 with session_scope() as session: load_sqla = session.query( # orm_load.id, orm_load.p_set, orm_load.q_set, orm_load_areas.subst_id). \ join(orm_load_areas, orm_load.id == orm_load_areas.otg_id). \ filter(orm_load_areas.subst_id == mv_grid_id). \ filter(orm_load_version). \ distinct() load = pd.read_sql_query(load_sqla.statement, session.bind, index_col='subst_id') return load def _load_timeseries_demandlib(config_data, year): """ Get normalized sectoral load time series Time series are normalized to 1 kWh consumption per year Parameters ---------- config_data : dict Dictionary containing config data from config files. year : int Year for which to generate load time series. Returns ------- :pandas:`pandas.DataFrame<dataframe>` Load time series """ sectoral_consumption = {'h0': 1, 'g0': 1, 'i0': 1, 'l0': 1} cal = Germany() holidays = dict(cal.holidays(year)) e_slp = bdew.ElecSlp(year, holidays=holidays) # multiply given annual demand with timeseries elec_demand = e_slp.get_profile(sectoral_consumption) # Add the slp for the industrial group ilp = profiles.IndustrialLoadProfile(e_slp.date_time_index, holidays=holidays) # Beginning and end of workday, weekdays and weekend days, and scaling # factors by default elec_demand['i0'] = ilp.simple_profile( sectoral_consumption['i0'], am=datetime.time(config_data['demandlib']['day_start'].hour, config_data['demandlib']['day_start'].minute, 0), pm=datetime.time(config_data['demandlib']['day_end'].hour, config_data['demandlib']['day_end'].minute, 0), profile_factors= {'week': {'day': config_data['demandlib']['week_day'], 'night': config_data['demandlib']['week_night']}, 'weekend': {'day': config_data['demandlib']['weekend_day'], 'night': config_data['demandlib']['weekend_night']}}) # Resample 15-minute values to hourly values and sum across sectors elec_demand = elec_demand.resample('H').mean() return elec_demand if data_source == 'oedb': load = _import_load_timeseries_from_oedb(config_data, mv_grid_id) elif data_source == 'demandlib': load = _load_timeseries_demandlib(config_data, year) load.rename(columns={'g0': 'retail', 'h0': 'residential', 'l0': 'agricultural', 'i0': 'industrial'}, inplace=True) return load
agpl-3.0
ooici/coi-services
ion/services/sa/product/data_product_management_service.py
1
77120
#!/usr/bin/env python __author__ = 'Maurice Manning' from pyon.public import log, IonObject from pyon.util.containers import DotDict from pyon.core.object import IonObjectBase from pyon.core.exception import BadRequest, NotFound from pyon.public import RT, OT, PRED, LCS, CFG from pyon.util.ion_time import IonTime from pyon.ion.resource import ExtendedResourceContainer from pyon.event.event import EventPublisher from pyon.util.arg_check import validate_is_instance, validate_is_not_none, validate_false, validate_true from pyon.net.endpoint import RPCClient from ion.services.dm.utility.granule_utils import RecordDictionaryTool from ion.util.enhanced_resource_registry_client import EnhancedResourceRegistryClient from ion.util.time_utils import TimeUtils from ion.util.geo_utils import GeoUtils from interface.services.sa.idata_product_management_service import BaseDataProductManagementService from interface.objects import ComputedValueAvailability, DataProductTypeEnum, Dataset, CoverageTypeEnum, ParameterContext from interface.objects import DataProduct, DataProductVersion, InformationStatus, DataProcess, DataProcessTypeEnum, Device from coverage_model import QuantityType, ParameterDictionary, NumexprFunction, ParameterFunctionType from ion.services.dm.inventory.dataset_management_service import DatasetManagementService from ion.services.dm.utility.test.parameter_helper import ParameterHelper from pyon.datastore.datastore import DataStore from pyon.datastore.datastore_query import DatastoreQueryBuilder, DQ from lxml import etree from datetime import datetime import numpy as np import string, StringIO import networkx as nx import matplotlib.pyplot as plt from collections import deque from pyon.core.governance import ORG_MANAGER_ROLE, DATA_OPERATOR, OBSERVATORY_OPERATOR, INSTRUMENT_OPERATOR, GovernanceHeaderValues, has_org_role from pyon.core.exception import Inconsistent import re import functools from pyon.util.breakpoint import debug_wrapper class DataProductManagementService(BaseDataProductManagementService): """ @author Bill Bollenbacher @file ion/services/sa/product/data_product_management_service.py @brief Implementation of the data product management service """ def on_init(self): self.RR2 = EnhancedResourceRegistryClient(self.clients.resource_registry) def create_data_product(self, data_product=None, stream_definition_id='', exchange_point='', dataset_id='', parent_data_product_id='', default_stream_configuration=None): """ Creates a data product Resource. @param data_product - The data product resource @param stream_definition_id - The stream definition points to the parameter dictionary and defines the parameters for this data product @param exchange_point - Which exchange point on the broker to use for streaming purposes @param dataset_id - It's possible to create a data product from an already existing dataset, this is the dataset to use and point to @param parent_data_product_id - The id of the parent data product, this is for the case where a derived data product is created @param default_stream_configuration - A configuration for how to name the streams coming from the agent """ if data_product.category == DataProductTypeEnum.DEVICE: return self.create_device_data_product(data_product, stream_definition_id, default_stream_configuration) elif data_product.category == DataProductTypeEnum.SITE: return self.create_site_data_product(data_product, stream_definition_id) elif data_product.category == DataProductTypeEnum.DERIVED: return self.create_derived_data_product(data_product, parent_data_product_id, stream_definition_id) elif data_product.category == DataProductTypeEnum.EXTERNAL: return self.create_external_data_product(data_product, stream_definition_id) else: raise BadRequest("Unrecognized Data Product Type") def create_device_data_product(self, data_product=None, stream_definition_id='', stream_configuration=None): ''' Creates a data product resource and a stream for the data product. ''' if not data_product.category == DataProductTypeEnum.DEVICE: raise BadRequest("Attempted to create a Device Data Product without the proper type category") data_product_id = self.create_data_product_(data_product) # WARNING: This creates a Stream as a side effect!! self.assign_stream_definition_to_data_product(data_product_id=data_product_id, stream_definition_id=stream_definition_id, stream_configuration=stream_configuration) return data_product_id def create_derived_data_product(self, data_product=None, parent_data_product_id='', stream_definition_id=''): ''' Creates a derived data product ''' if not data_product.category == DataProductTypeEnum.DERIVED: raise BadRequest("Attempted to create a Derived Data Product without the proper type category") # Store the resource data_product_id = self.create_data_product_(data_product) # Associate the stream definition with the data product, BUT DONT MAKE A STREAM self.RR2.assign_stream_definition_to_data_product_with_has_stream_definition(stream_definition_id, data_product_id) # Associate the data product to its parent self.assign_data_product_to_data_product(data_product_id=data_product_id, parent_data_product_id=parent_data_product_id) # Associate the dataset of the parent with this data product dataset_ids, _ = self.clients.resource_registry.find_objects(parent_data_product_id, predicate=PRED.hasDataset, id_only=True) for dataset_id in dataset_ids: self.assign_dataset_to_data_product(data_product_id, dataset_id) # If there were physical datasets if dataset_ids: self.create_catalog_entry(data_product_id) self._check_qc(data_product_id) return data_product_id def create_site_data_product(self, data_product=None, stream_definition_id=''): ''' Creates a site data product ''' if not data_product.category == DataProductTypeEnum.SITE: raise BadRequest("Attempted to create a Site Data Product without the proper type category") # Store the resource data_product_id = self.create_data_product_(data_product) # Associate the stream definition with the data product, BUT DONT MAKE A STREAM self.RR2.assign_stream_definition_to_data_product_with_has_stream_definition(stream_definition_id, data_product_id) return data_product_id def create_external_data_product(self, data_product=None, stream_definition_id=''): ''' Creates an external data product ''' if not data_product.category == DataProductTypeEnum.EXTERNAL: raise BadRequest("Attempted to create a External Data Product without the proper type category") # Store the resource data_product_id = self.create_data_product_(data_product) # Associate the stream definition with the data product, BUT DONT MAKE A STREAM self.RR2.assign_stream_definition_to_data_product_with_has_stream_definition(stream_definition_id, data_product_id) return data_product_id def create_data_product_(self, data_product=None): validate_is_not_none(data_product, 'A data product (ion object) must be passed to register a data product') # if the geospatial_bounds is set then calculate the geospatial_point_center if data_product and data_product.type_ == RT.DataProduct: data_product.geospatial_point_center = GeoUtils.calc_geospatial_point_center(data_product.geospatial_bounds) log.debug("create_data_product data_product.geospatial_point_center: %s" % data_product.geospatial_point_center) #-------------------------------------------------------------------------------- # Register - create and store a new DataProduct resource using provided metadata #-------------------------------------------------------------------------------- data_product_id = self.RR2.create(data_product, RT.DataProduct) return data_product_id def create_data_processes(self, data_product_id=''): ''' For each data process launched also create a dataprocess for each parameter function in the data product ''' data_product = self.read_data_product(data_product_id) # DataProduct -> StreamDefinition stream_def_ids, _ = self.clients.resource_registry.find_objects(data_product_id, PRED.hasStreamDefinition, id_only=True) pdict_ids = [] # StreamDefinition -> ParameterDictionary for stream_def_id in stream_def_ids: pd_ids, _ = self.clients.resource_registry.find_objects(stream_def_id, PRED.hasParameterDictionary, id_only=True) pdict_ids.extend(pd_ids) pd_ids = [] # ParameterDictionary -> ParameterContext for pdict_id in pdict_ids: pdef_ids, _ = self.clients.resource_registry.find_objects(pdict_id, PRED.hasParameterContext, id_only=True) pd_ids.extend(pdef_ids) pf_ids = [] pc_name_map = {} # ParameterContext -> ParameterFunction for pd_id in pd_ids: pfunc_objs, _ = self.clients.resource_registry.find_objects(pd_id, PRED.hasParameterFunction, id_only=False) for pfunc_obj in pfunc_objs: pf_ids.append(pfunc_obj._id) pc_name_map[pfunc_obj._id] = pfunc_obj.name dpds = [] dpd_name_map = {} # DataProcessDefinition -> ParameterFunction for pf_id in pf_ids: dpdef_objs, _ = self.clients.resource_registry.find_subjects(object=pf_id, predicate=PRED.hasParameterFunction, subject_type=RT.DataProcessDefinition, id_only=False) for dpdef_obj in dpdef_objs: dpd_name_map[dpdef_obj._id] = pc_name_map[pf_id] dpds.append(dpdef_obj) for dpd in dpds: dp = DataProcess() #dp.name = 'Data Process %s for Data Product %s' % ( dpd.name, data_product.name ) dp.name = dpd_name_map[dpd._id] # TODO: This is a stub until DPD is ready dp_id, _ = self.clients.resource_registry.create(dp) self.clients.resource_registry.create_association(dpd._id, PRED.hasDataProcess, dp_id) self.clients.resource_registry.create_association(dp_id, PRED.hasOutputProduct, data_product._id) def _check_qc(self, data_product_id): ''' Creates the necessary QC parameters where the "qc_applications" attribute is specified. ''' data_product = self.read_data_product(data_product_id) parameters = self.get_data_product_parameters(data_product_id) parameter_names = [p.name for p in parameters] pmap = {} # Make a map from the ooi short name to the parameter object for p in parameters: if p.ooi_short_name: pmap[re.sub(r'_L[0-2]', '', p.ooi_short_name)] = p for sname, qc_applicability in data_product.qc_applications.iteritems(): parameter_list = self._generate_qc(pmap[sname], qc_applicability) for parameter in parameter_list: if parameter.name in parameter_names: # Parameter already exists continue parameter_id = self.clients.dataset_management.create_parameter(parameter) self.add_parameter_to_data_product(parameter_id, data_product_id) return True def _generate_qc(self, parameter, qc_list): sname = parameter.ooi_short_name # DATAPROD_ALGORTHM_QC # drop the _L? sname = re.sub(r'_L[0-2]', '', sname) retval = [] for qc_thing in qc_list: if qc_thing not in ('qc_glblrng', 'qc_gradtst', 'qc_trndtst', 'qc_spketst', 'qc_loclrng', 'qc_stuckvl'): log.warning("Invalid QC: %s", qc_thing) continue qc_thing = qc_thing.replace('qc_', '') new_param_name = '_'.join([sname, qc_thing.upper(), 'QC']) parameter = ParameterContext(new_param_name.lower(), parameter_type='quantity', value_encoding='int8', ooi_short_name=new_param_name, display_name=' '.join([sname, qc_thing.upper()]), units='1', description=' '.join([qc_thing.upper(), 'Quality Control for', sname]), fill_value=-88 ) retval.append(parameter) return retval ''' { TEMPWAT_L1: [qc_glblrng, qc_gradtst], DENSITY_L2: [qc_glblrng] } ''' def assign_stream_definition_to_data_product(self, data_product_id='', stream_definition_id='', exchange_point='', stream_configuration=None): validate_is_not_none(data_product_id, 'A data product id must be passed to register a data product') validate_is_not_none(stream_definition_id, 'A stream definition id must be passed to assign to a data product') stream_def_obj = self.clients.pubsub_management.read_stream_definition(stream_definition_id) # Validates and checks for param_dict parameter_dictionary = stream_def_obj.parameter_dictionary validate_is_not_none(parameter_dictionary, 'A parameter dictionary must be passed to register a data product') exchange_point = exchange_point or 'science_data' data_product = self.RR2.read(data_product_id) #if stream_definition_id: #@todo: What about topics? # Associate the StreamDefinition with the data product self.RR2.assign_stream_definition_to_data_product_with_has_stream_definition(stream_definition_id, data_product_id) stream_name = '' stream_type = '' if stream_configuration is not None: stream_name = stream_configuration.stream_name stream_type = stream_configuration.stream_type stream_id, route = self.clients.pubsub_management.create_stream(name=data_product.name, exchange_point=exchange_point, description=data_product.description, stream_definition_id=stream_definition_id, stream_name=stream_name, stream_type=stream_type) # Associate the Stream with the main Data Product and with the default data product version self.RR2.assign_stream_to_data_product_with_has_stream(stream_id, data_product_id) def assign_dataset_to_data_product(self, data_product_id='', dataset_id=''): validate_is_not_none(data_product_id, 'A data product id must be passed to assign a dataset to a data product') validate_is_not_none(dataset_id, 'A dataset id must be passed to assign a dataset to a data product') self.RR2.assign_dataset_to_data_product_with_has_dataset(dataset_id, data_product_id) def assign_data_product_to_data_product(self, data_product_id='', parent_data_product_id=''): validate_true(data_product_id, 'A data product id must be specified') validate_true(parent_data_product_id, 'A data product id must be specified') self.RR2.assign_data_product_to_data_product_with_has_data_product_parent(parent_data_product_id, data_product_id) def read_data_product(self, data_product_id=''): """ method docstring """ # Retrieve all metadata for a specific data product # Return data product resource data_product = self.RR2.read(data_product_id, RT.DataProduct) return data_product def update_data_product(self, data_product=None): """ @todo document this interface!!! @param data_product DataProduct @throws NotFound object with specified id does not exist """ # if the geospatial_bounds is set then calculate the geospatial_point_center if data_product and data_product.type_ == RT.DataProduct: data_product.geospatial_point_center = GeoUtils.calc_geospatial_point_center(data_product.geospatial_bounds) original = self.RR2.read(data_product._id) self.RR2.update(data_product, RT.DataProduct) if self._metadata_changed(original, data_product): self.update_catalog_entry(data_product._id) if self._qc_application_changed(original, data_product): self._check_qc(data_product._id) def _metadata_changed(self, original_dp, new_dp): from ion.processes.data.registration.registration_process import RegistrationProcess for field in RegistrationProcess.catalog_metadata: if hasattr(original_dp, field) and getattr(original_dp, field) != getattr(new_dp, field): return True return False def _qc_application_changed(self, original_dp, new_dp): retval = original_dp.qc_applications != new_dp.qc_applications return retval def delete_data_product(self, data_product_id=''): #-------------------------------------------------------------------------------- # suspend persistence #-------------------------------------------------------------------------------- if self.is_persisted(data_product_id): self.suspend_data_product_persistence(data_product_id) #-------------------------------------------------------------------------------- # remove stream associations #-------------------------------------------------------------------------------- stream_ids, assoc_ids = self.clients.resource_registry.find_objects(data_product_id, PRED.hasStream, RT.Stream, True) for stream, assoc in zip(stream_ids,assoc_ids): self.clients.resource_registry.delete_association(assoc) self.clients.pubsub_management.delete_stream(stream_ids[0]) #-------------------------------------------------------------------------------- # retire the data product #-------------------------------------------------------------------------------- self.RR2.lcs_delete(data_product_id, RT.DataProduct) def force_delete_data_product(self, data_product_id=''): #get the assoc producers before deleteing the links producer_ids = self.RR2.find_data_producer_ids_of_data_product_using_has_data_producer(data_product_id) for producer_id in producer_ids: self.RR2.delete(producer_id) self.RR2.force_delete(data_product_id, RT.DataProduct) def find_data_products(self, filters=None): """ method docstring """ # Validate the input filter and augment context as required # Define set of resource attributes to filter on, change parameter from "filter" to include attributes and filter values. # potentially: title, keywords, date_created, creator_name, project, geospatial coords, time range # Call DM DiscoveryService to query the catalog for matches # Organize and return the list of matches with summary metadata (title, summary, keywords) ret, _ = self.clients.resource_registry.find_resources(RT.DataProduct, None, None, False) return ret def get_data_product_updates(self, data_product_id_list=None, since_timestamp="" ): # For a list of data products, retrieve events since the given timestamp. The return is a dict # of dp_id to a dict containing dataset_id, updated: boolean, current geospatial bounds, current temporal bounds. event_objs = None response_data = {} # get the passed parameters. At least the data product id and start_time # should be specified if data_product_id_list == None or len(data_product_id_list) == 0: raise BadRequest("Please pass a valid data_product_id") # Build query structure for fetching events for the data products passed try: dqb = DatastoreQueryBuilder(datastore=DataStore.DS_EVENTS, profile=DataStore.DS_PROFILE.EVENTS) filter_origins = dqb.in_(DQ.EA_ORIGIN, *data_product_id_list) filter_types = dqb.in_(DQ.ATT_TYPE, "ResourceModifiedEvent") filter_mindate = dqb.gte(DQ.RA_TS_CREATED, since_timestamp) where = dqb.and_(filter_origins, filter_types, filter_mindate) order_by = dqb.order_by([["ts_created", "desc"]]) # Descending order by time dqb.build_query(where=where, order_by=order_by, limit=100000, skip=0, id_only=False) query = dqb.get_query() event_objs = self.container.event_repository.event_store.find_by_query(query) except Exception as ex: log.error("Error querying for events for specified data products: %s", ex.message) event_objs = [] # Start populating the response structure for data_product_id in data_product_id_list: response_data[data_product_id] = {#"dataset_id" : None, "updated" : False, "current_geospatial_bounds" : None, "current_temporal_bounds" : None} """ Commented till Maurice decides he needs the dataset ids in the response # Need dataset id in response data ds_ids,_ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasDataset, id_only=True) if (ds_ids and len(ds_ids) > 0): response_data[data_product_id]["dataset_id"] = ds_ids[0] """ # if we find any UPDATE event for this data_product_id. This type of dumb iteration # is slow but since the returned events for all data_product_ids in the list are returned # as one big list, there is no way to narrow down the search for UPDATE events for event_obj in event_objs: if event_obj.origin == data_product_id and event_obj.sub_type == "UPDATE": response_data[data_product_id]["updated"] = True continue # Get information about the current geospatial and temporal bounds dp_obj = self.clients.resource_registry.read(data_product_id) if dp_obj: response_data[data_product_id]["current_geospatial_bounds"] = dp_obj.geospatial_bounds response_data[data_product_id]["current_temporal_bounds"] = dp_obj.nominal_datetime return response_data def create_dataset_for_data_product(self, data_product_id=''): ''' Create a dataset for a data product ''' #----------------------------------------------------------------------------------------- # Step 1: Collect related resources data_product_obj = self.RR2.read(data_product_id) validate_is_not_none(data_product_obj, "The data product id should correspond to a valid registered data product.") stream_ids, _ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasStream, id_only=True) if data_product_obj.category == DataProductTypeEnum.DEVICE: if not stream_ids: raise BadRequest('Specified DataProduct has no streams associated with it') stream_id = stream_ids[0] else: stream_id = None stream_defs, _ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasStreamDefinition,id_only=True) if not stream_defs: raise BadRequest("Data Product stream is without a stream definition") stream_def_id = stream_defs[0] parameter_dictionary_ids, _ = self.clients.resource_registry.find_objects(stream_def_id, PRED.hasParameterDictionary, id_only=True) if not parameter_dictionary_ids: raise BadRequest("Data Product stream is without a parameter dictionary") parameter_dictionary_id = parameter_dictionary_ids[0] parent_data_product_ids, _ = self.clients.resource_registry.find_objects(data_product_id, predicate=PRED.hasDataProductParent, id_only=True) if len(parent_data_product_ids) == 1: # This is a child data product raise BadRequest("Child Data Products shouldn't be activated") child_data_product_ids, _ = self.clients.resource_registry.find_subjects(object=data_product_id, predicate=PRED.hasDataProductParent, id_only=True) dataset_ids, _ = self.clients.resource_registry.find_objects(data_product_id, predicate=PRED.hasDataset, id_only=True) #----------------------------------------------------------------------------------------- # Step 2: Create and associate Dataset (coverage) # If there's already a dataset, just return that if dataset_ids: return dataset_ids[0] dataset_id = self._create_dataset(data_product_obj, parameter_dictionary_id) # Also assign the stream to the dataset if stream_id: self.RR2.assign_stream_to_dataset_with_has_stream(stream_id, dataset_id) # link dataset with data product. This creates the association in the resource registry self.RR2.assign_dataset_to_data_product_with_has_dataset(dataset_id, data_product_id) # Link this dataset with the child data products AND # create catalog entries for the child data products for child_dp_id in child_data_product_ids: self.assign_dataset_to_data_product(child_dp_id, dataset_id) self.create_catalog_entry(data_product_id=data_product_id) # register the dataset for externalization self.create_catalog_entry(data_product_id=data_product_id) return dataset_id def _create_dataset(self, data_product, parameter_dictionary_id): # Device -> Simplex, Site -> Complex if data_product.category == DataProductTypeEnum.DEVICE: dataset = Dataset(name=data_product.name, description='Dataset for Data Product %s' % data_product._id, coverage_type=CoverageTypeEnum.SIMPLEX) elif data_product.category == DataProductTypeEnum.SITE: dataset = Dataset(name=data_product.name, description='Dataset for Data Product %s' % data_product._id, coverage_type=CoverageTypeEnum.COMPLEX) # No datasets are currently linked which means we need to create a new one dataset_id = self.clients.dataset_management.create_dataset(dataset, parameter_dictionary_id=parameter_dictionary_id) return dataset_id def activate_data_product_persistence(self, data_product_id=''): """Persist data product data into a data set @param data_product_id str @throws NotFound object with specified id does not exist """ #----------------------------------------------------------------------------------------- # Step 1: Collect related resources data_product_obj = self.RR2.read(data_product_id) validate_is_not_none(data_product_obj, "The data product id should correspond to a valid registered data product.") stream_ids, _ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasStream, id_only=True) if not stream_ids: raise BadRequest('Specified DataProduct has no streams associated with it') stream_id = stream_ids[0] dataset_id = self.create_dataset_for_data_product(data_product_id) #----------------------------------------------------------------------------------------- # Step 2: Configure and start ingestion with lookup values # grab the ingestion configuration id from the data_product in order to use to persist it if data_product_obj.dataset_configuration_id: ingestion_configuration_id = data_product_obj.dataset_configuration_id else: ingestion_configuration_id = self.clients.ingestion_management.list_ingestion_configurations(id_only=True)[0] # Identify lookup tables config = DotDict() if self._has_lookup_values(data_product_id): config.process.input_product = data_product_id config.process.lookup_docs = self._get_lookup_documents(data_product_id) # persist the data stream using the ingestion config id and stream id # find datasets for the data product dataset_id = self.clients.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingestion_configuration_id, dataset_id=dataset_id, config=config) #-------------------------------------------------------------------------------- # todo: dataset_configuration_obj contains the ingest config for now... # Update the data product object and sent event #-------------------------------------------------------------------------------- data_product_obj.dataset_configuration_id = ingestion_configuration_id self.update_data_product(data_product_obj) self._publish_persist_event(data_product_id=data_product_id, persist_on = True) self.create_data_processes(data_product_id) def is_persisted(self, data_product_id=''): # Is the data product currently persisted into a data set? try: if data_product_id: stream_id = self.RR2.find_stream_id_of_data_product_using_has_stream(data_product_id) return self.clients.ingestion_management.is_persisted(stream_id) except NotFound: pass return False def _publish_persist_event(self, data_product_id=None, persist_on=True): try: if data_product_id: if persist_on: persist_type = 'PERSIST_ON' description = 'Data product is persisted.' else: persist_type= 'PERSIST_OFF' description= 'Data product is not currently persisted' pub = EventPublisher(OT.InformationContentStatusEvent, process=self) event_data = dict(origin_type=RT.DataProduct, origin=data_product_id or "", sub_type=persist_type, status = InformationStatus.NORMAL, description = description) pub.publish_event(**event_data) except Exception as ex: log.error("Error publishing InformationContentStatusEvent for data product: %s", data_product_id) def suspend_data_product_persistence(self, data_product_id=''): """Suspend data product data persistence into a data set, multiple options @param data_product_id str @throws NotFound object with specified id does not exist """ #-------------------------------------------------------------------------------- # retrieve the data_process object #-------------------------------------------------------------------------------- data_product_obj = self.clients.resource_registry.read(data_product_id) validate_is_not_none(data_product_obj, 'Should not have been empty') validate_is_instance(data_product_obj, DataProduct) parent_dp_ids, _ = self.clients.resource_registry.find_objects(data_product_id, PRED.hasDataProductParent, id_only=True) if not data_product_obj.dataset_configuration_id: if parent_dp_ids: # It's a derived data product, we're done here return raise NotFound("Data Product %s dataset configuration does not exist" % data_product_id) #-------------------------------------------------------------------------------- # get the Stream associated with this data product; if no stream then create one, if multiple streams then Throw #streams = self.data_product.find_stemming_stream(data_product_id) #-------------------------------------------------------------------------------- # if this data product is not currently being persisted, then just flag with a warning. if self.is_persisted(data_product_id): try: log.debug("Attempting to find stream") stream_id = self.RR2.find_stream_id_of_data_product_using_has_stream(data_product_id) log.debug("stream found") validate_is_not_none(stream_id, 'Data Product %s must have one stream associated' % str(data_product_id)) self.clients.ingestion_management.unpersist_data_stream(stream_id=stream_id, ingestion_configuration_id=data_product_obj.dataset_configuration_id) self._publish_persist_event(data_product_id=data_product_id, persist_on=False) except NotFound: if data_product_obj.lcstate == LCS.DELETED: log.debug("stream not found, but assuming it was from a deletion") log.error("Attempted to suspend_data_product_persistence on a retired data product") else: log.debug("stream not found, assuming error") raise else: log.warning('Data product is not currently persisted, no action taken: %s', data_product_id) def add_parameter_to_data_product(self, parameter_context_id='', data_product_id=''): data_product = self.read_data_product(data_product_id) data_product = self.read_data_product(data_product_id) pc = self.clients.dataset_management.read_parameter_context(parameter_context_id) stream_def_ids, _ = self.clients.resource_registry.find_objects(data_product_id, PRED.hasStreamDefinition, id_only=False) stream_def = stream_def_ids[0] pdict_ids, _ = self.clients.resource_registry.find_objects(stream_def._id, PRED.hasParameterDictionary,id_only=True) pdict_id = pdict_ids[0] self.clients.resource_registry.create_association(subject=pdict_id, predicate=PRED.hasParameterContext, object=parameter_context_id) if stream_def.available_fields: stream_def.available_fields.append(pc.name) self.clients.resource_registry.update(stream_def) datasets, _ = self.clients.resource_registry.find_objects(data_product_id, PRED.hasDataset, id_only=True) if datasets: dataset_id = datasets[0] self.clients.dataset_management.add_parameter_to_dataset(parameter_context_id, dataset_id) self.update_catalog_entry(data_product_id) #-------------------------------------------------------------------------------- # detach the dataset from this data product #-------------------------------------------------------------------------------- # dataset_ids, _ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasDataset, id_only=True) # for dataset_id in dataset_ids: # self.data_product.unlink_data_set(data_product_id, dataset_id) def _get_reference_designator(self, data_product_id=''): ''' Returns the reference designator for a data product if it has one ''' device_ids, _ = self.clients.resource_registry.find_subjects(object=data_product_id, predicate=PRED.hasOutputProduct, subject_type=RT.InstrumentDevice, id_only=True) if not device_ids: raise BadRequest("No instrument device associated with this data product") device_id = device_ids[0] sites, _ = self.clients.resource_registry.find_subjects(object=device_id, predicate=PRED.hasDevice, subject_type=RT.InstrumentSite, id_only=False) if not sites: raise BadRequest("No site is associated with this data product") site = sites[0] rd = site.reference_designator return rd def get_data_product_stream_definition(self, data_product_id=''): self.read_data_product(data_product_id) streams, _ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasStream, id_only=True) for stream in streams: stream_defs, _ = self.clients.resource_registry.find_objects(subject=stream, predicate=PRED.hasStreamDefinition, id_only=True) if stream_defs: return stream_defs[0] def get_data_product_provenance(self, data_product_id=''): # Retrieve information that characterizes how this data was produced # Return in a dictionary # There are two parts to the provenance tree as returned by this method. The first part is # a path that follows the DataProduct to its parent DataProduct .. all the way to the InstrumentAgent # The second part is along the parameters contained within the DataProducts. The Provenance along the # parameters can follow its own pathways. self.provenance_results = {} validate_is_not_none(data_product_id, 'A data product identifier must be passed to create a provenance report') # Walk up the DataProduct tree def resource_traversal(resource_id, result): #Get data product object to verify it exists and what type it is if resource_id not in result.keys(): result[resource_id] = {'parents' : {}, 'type' : None, 'parameter_provenance': {}} #parent_info = [] # determine the type of resource. This will determine what parents to look for resource_obj = self.clients.resource_registry.read(resource_id) if resource_obj == None: raise BadRequest('Resource object does not exist.') return result[resource_id]['type'] = resource_obj.type_ if result[resource_id]['type'] == "InstrumentDevice" or \ result[resource_id]['type'] == 'PlatformDevice': # Do nothing. We have reached the top of the tree return # if the resource is a dataproduct, check for parent dataproduct, data process or Instrument/Platform/Dataset Agent if result[resource_id]['type'] == "DataProduct": # If its a derived data product, it should have a parent parent_data_product_ids,_ = self.clients.resource_registry.find_objects(subject=resource_id, object_type=RT.DataProduct, predicate=PRED.hasDataProductParent, id_only=True) # recurse if we found data product parents if(parent_data_product_ids !=None and len(parent_data_product_ids) > 0): for _id in parent_data_product_ids: result[resource_id]['parents'][_id] = {'data_process_definition_id' : None, 'data_process_definition_name' : None, 'data_process_definition_rev' : None} #recurse for _id in parent_data_product_ids: resource_traversal(_id, result) #return # Code reaches here if no parents were found. # Try the hasOutputProduct association with a dataprocess (from a transform # func or retrieve process etc) parent_data_process_ids,_ = self.clients.resource_registry.find_subjects(object=resource_id, subject_type=RT.DataProcess, predicate=PRED.hasOutputProduct, id_only=True) # Add the data Process definitions as parents and their input data product as the parent if (parent_data_process_ids != None and len(parent_data_process_ids) > 0): for parent_process_id in parent_data_process_ids: parent_dpd_objs,_ = self.clients.resource_registry.find_subjects(object=parent_process_id, subject_type=RT.DataProcessDefinition, predicate=PRED.hasDataProcess, id_only=False) if (parent_dpd_objs == None or len(parent_dpd_objs) == 0): raise BadRequest('Could not locate Data Process Definition') return #Check to see what type of data_process_type was associated with it. If its a TRANSFORM_PROCESS # or RETRIEVE_PROCESS, treat it as a parent. If its a PARAMETER_FUNCTION, add it to the parameter # provenance. if parent_dpd_objs[0].data_process_type == DataProcessTypeEnum.TRANSFORM_PROCESS or \ parent_dpd_objs[0].data_process_type == DataProcessTypeEnum.RETRIEVE_PROCESS : # Whats the input data product ? input_to_data_process_ids,_ = self.clients.resource_registry.find_objects(subject=parent_process_id, object_type=RT.DataProduct, predicate=PRED.hasInputProduct, id_only=True) # Add information about the parent for _id in input_to_data_process_ids: result[resource_id]['parents'][_id] = {'data_process_definition_id' : parent_dpd_objs[0]._id, 'data_process_definition_name' : parent_dpd_objs[0].name, 'data_process_definition_rev' : parent_dpd_objs[0]._rev} # recurse for _id in input_to_data_process_ids: resource_traversal(_id, result) # In case of a parameter function, follow parameter provenance if parent_dpd_objs[0].data_process_type == DataProcessTypeEnum.PARAMETER_FUNCTION: input_params = parent_dpd_objs[0].parameters result[resource_id]['parameter_provenance'][parent_process_id] = \ {'data_process_definition_id' : parent_dpd_objs[0]._id, 'data_process_definition_name' : parent_dpd_objs[0].name, 'data_process_definition_rev' : parent_dpd_objs[0]._rev, 'parameters' : input_params} #return # If code reaches here, we still have not found any parents, maybe we have reached a parsed data product, # in which case we want to follow a link to an InstrumentDevice or PlatformDeveice # via a hasOutputProduct predicate instrument_device_ids,_ = self.clients.resource_registry.find_subjects(object=resource_id, subject_type=RT.InstrumentDevice, predicate=PRED.hasOutputProduct, id_only=True) platform_device_ids,_ = self.clients.resource_registry.find_subjects(object=resource_id, subject_type=RT.PlatformDevice, predicate=PRED.hasOutputProduct, id_only=True) source_device_ids = instrument_device_ids + platform_device_ids if (source_device_ids != None and len(source_device_ids) > 0): for _id in source_device_ids: result[resource_id]['parents'][_id]={'data_process_definition_id' : None, 'data_process_definition_name' : None, 'data_process_definition_rev' : None} for _id in source_device_ids: resource_traversal(_id, result) #return else: # log an error for not being able to find the source instrument log.error("Could not locate the source device for :" + resource_id) resource_traversal(data_product_id, self.provenance_results) # We are actually interested in the DataProcessDefinitions for the DataProcess. Find those return self.provenance_results def get_data_product_parameter_provenance(self, data_product_id='', parameter_name=''): # Provides an audit trail for modifications to the original data provenance_image = StringIO.StringIO() #first get the assoc stream definition stream_def_ids, _ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasStreamDefinition, object_type=RT.StreamDefinition) if not stream_def_ids: raise BadRequest('No stream definitions found for this data product: %s', data_product_id) else: param_dict_ids, _ = self.clients.resource_registry.find_objects(subject=stream_def_ids[0], predicate=PRED.hasParameterDictionary, object_type=RT.ParameterDictionary) if not param_dict_ids: raise BadRequest('No parameter dictionary found for this data product: %s', data_product_id) else: #context = self.clients.dataset_management.read_parameter_context_by_name(parameter_context_id) pdict = DatasetManagementService.get_parameter_dictionary(param_dict_ids[0]._id) context = pdict.get_context(parameter_name) #log.debug('get_data_product_parameter_provenance context: %s ', context) if hasattr(context, 'param_type'): graph = context.param_type.get_dependency_graph() pos=nx.spring_layout(graph) nx.draw(graph, pos, font_size=10) plt.savefig(provenance_image) provenance_image.seek(0) else: raise BadRequest('Invalid paramter context found for this data product: %s', data_product_id) return provenance_image.getvalue() def get_data_product_parameters(self, data_product_id='', id_only=False): stream_defs, _ = self.clients.resource_registry.find_objects(data_product_id, PRED.hasStreamDefinition, id_only=False) if not stream_defs: raise BadRequest("No Stream Definition Found for data product %s" % data_product_id) stream_def = stream_defs[0] pdicts, _ = self.clients.resource_registry.find_objects(stream_def._id, PRED.hasParameterDictionary, id_only=True) if not pdicts: raise BadRequest("No Parameter Dictionary Found for data product %s" % data_product_id) pdict_id = pdicts[0] parameters, _ = self.clients.resource_registry.find_objects(pdict_id, PRED.hasParameterContext, id_only=False) if not parameters: raise NotFound("No parameters are associated with this data product") # too complicated for one line of code #retval = { p.name : p._id for p in parameters if not filtered or (filtered and p in stream_def.available_fields) } param_id = lambda x, id_only : x._id if id_only else x retval = [] for p in parameters: if (stream_def.available_fields and p.name in stream_def.available_fields) or not stream_def.available_fields: retval.append(param_id(p, id_only)) return retval def _registration_rpc(self, op, data_product_id): procs,_ = self.clients.resource_registry.find_resources(restype=RT.Process, id_only=True) pid = None for p in procs: if 'registration_worker' in p: pid = p if not pid: log.warning('No registration worker found') return rpc_cli = RPCClient(to_name=pid) return rpc_cli.request({'data_product_id':data_product_id}, op=op) def create_catalog_entry(self, data_product_id=''): return self._registration_rpc('create_entry',data_product_id) def read_catalog_entry(self, data_product_id=''): return self._registration_rpc('read_entry', data_product_id) def update_catalog_entry(self, data_product_id=''): return self._registration_rpc('update_entry', data_product_id) def delete_catalog_entry(self, data_product_id=''): return self._registration_rpc('delete_entry', data_product_id) def execute_data_product_lifecycle(self, data_product_id="", lifecycle_event=""): """ declare a data_product to be in a given state @param data_product_id the resource id """ return self.RR2.advance_lcs(data_product_id, lifecycle_event) def get_data_product_group_list(self, org_id=''): group_names = set() res_ids, keys = self.clients.resource_registry.find_resources_ext(RT.DataProduct, attr_name="ooi_product_name", id_only=True) for key in keys: group_name = key.get('attr_value', None) if group_name: group_names.add(group_name) return sorted(list(group_names)) def _get_dataset_id(self, data_product_id=''): # find datasets for the data product dataset_id = '' dataset_ids, _ = self.clients.resource_registry.find_objects(data_product_id, PRED.hasDataset, RT.Dataset, id_only=True) if dataset_ids: dataset_id = dataset_ids[0] else: raise NotFound('No Dataset is associated with DataProduct %s' % data_product_id) return dataset_id ############################ # # EXTENDED RESOURCES # ############################ def get_data_product_extension(self, data_product_id='', ext_associations=None, ext_exclude=None, user_id=''): #Returns an DataProductExtension object containing additional related information if not data_product_id: raise BadRequest("The data_product_id parameter is empty") extended_resource_handler = ExtendedResourceContainer(self) extended_product = extended_resource_handler.create_extended_resource_container( extended_resource_type=OT.DataProductExtension, resource_id=data_product_id, computed_resource_type=OT.DataProductComputedAttributes, ext_associations=ext_associations, ext_exclude=ext_exclude, user_id=user_id) # Set data product source device (WARNING: may not be unique) extended_product.source_device = None dp_source, _ = self.clients.resource_registry.find_objects(data_product_id, PRED.hasSource, id_only=False) for dps in dp_source: if isinstance(dps, Device): if extended_product.source_device == None: extended_product.source_device = dps else: log.warn("DataProduct %s has additional source device: %s", data_product_id, dps._id) #extract the list of upstream data products from the provenance results # dp_list = [] # for key, value in extended_product.computed.provenance.value.iteritems(): # for producer_id, dataprodlist in value['inputs'].iteritems(): # for dataprod in dataprodlist: # dp_list.append( self.clients.resource_registry.read(dataprod) ) # extended_product.provenance_product_list = list ( set(dp_list) ) #remove dups in list #set the data_ingestion_datetime from get_data_datetime if extended_product.computed.data_datetime.status == ComputedValueAvailability.PROVIDED : extended_product.data_ingestion_datetime = extended_product.computed.data_datetime.value[1] #get the dataset size in MB extended_product.computed.product_download_size_estimated = self._get_product_dataset_size(data_product_id) #covert to bytes for stored_data_size attribute extended_product.computed.stored_data_size.value = int(extended_product.computed.product_download_size_estimated.value * 1048576) extended_product.computed.stored_data_size.status = extended_product.computed.product_download_size_estimated.status extended_product.computed.stored_data_size.reason = extended_product.computed.product_download_size_estimated.reason # divide up the active and past user subscriptions active = [] nonactive = [] for notification_obj in extended_product.computed.active_user_subscriptions.value: if notification_obj.lcstate == LCS.RETIRED: nonactive.append(notification_obj) else: active.append(notification_obj) extended_product.computed.active_user_subscriptions.value = active extended_product.computed.past_user_subscriptions.value = nonactive extended_product.computed.past_user_subscriptions.status = ComputedValueAvailability.PROVIDED extended_product.computed.number_active_subscriptions.value = len(active) extended_product.computed.number_active_subscriptions.status = ComputedValueAvailability.PROVIDED # replace list of lists with single list replacement_data_products = [] for inner_list in extended_product.process_input_data_products: if inner_list: for actual_data_product in inner_list: if actual_data_product: replacement_data_products.append(actual_data_product) extended_product.process_input_data_products = replacement_data_products from ion.util.extresource import strip_resource_extension, get_matchers, matcher_ParameterContext matchers = get_matchers([matcher_ParameterContext]) strip_resource_extension(extended_product, matchers=matchers) return extended_product def get_data_datetime(self, data_product_id=''): # Returns a temporal bounds object of the span of data product life span (may exist without getting a granule) ret = IonObject(OT.ComputedListValue) ret.value = [] ret.status = ComputedValueAvailability.NOTAVAILABLE try: dataset_id = self._get_dataset_id(data_product_id) bounds = self.clients.dataset_management.dataset_bounds(dataset_id) if 'time' in bounds and len(bounds['time']) == 2 : log.debug("get_data_datetime bounds['time']: %s" % str(dataset_id)) timeStart = IonTime(bounds['time'][0] - IonTime.JAN_1970) timeEnd = IonTime(bounds['time'][1] - IonTime.JAN_1970) ret.value = [str(timeStart), str(timeEnd)] ret.status = ComputedValueAvailability.PROVIDED except NotFound: ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "Dataset for this Data Product could not be located" except Exception as e: ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "Could not calculate time range for this data product" return ret def _get_product_dataset_size(self, data_product_id=''): # Returns the size of the full data product if downloaded/presented in a given presentation form ret = IonObject(OT.ComputedFloatValue) ret.value = 0 try: dataset_id = self._get_dataset_id(data_product_id) size_in_bytes = self.clients.dataset_management.dataset_size(dataset_id, in_bytes=False) ret.status = ComputedValueAvailability.PROVIDED ret.value = size_in_bytes except NotFound: ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "Dataset for this Data Product could not be located" except Exception as e: raise e return ret def get_data_contents_updated(self, data_product_id=''): # the datetime when the contents of the data were last modified in any way. # This is distinct from modifications to the data product attributes ret = IonObject(OT.ComputedStringValue) ret.value = "" ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "Currently need to retrieve form the coverage" return ret def get_parameters(self, data_product_id=''): # The set of Parameter objects describing each variable in this data product ret = IonObject(OT.ComputedListValue) ret.value = [] try: stream_def_ids, _ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasStreamDefinition, id_only=True) if not stream_def_ids: ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "There is no StreamDefinition associated with this DataProduct" return ret stream_def = self.clients.pubsub_management.read_stream_definition(stream_definition_id=stream_def_ids[0]) param_dict_ids, _ = self.clients.resource_registry.find_objects(subject=stream_def_ids[0], predicate=PRED.hasParameterDictionary, id_only=True) if not param_dict_ids: ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "There is no ParameterDictionary associated with this DataProduct" else: ret.status = ComputedValueAvailability.PROVIDED if stream_def.available_fields: retval = [i for i in self.clients.dataset_management.read_parameter_contexts(param_dict_ids[0]) if i.name in stream_def.available_fields] else: retval = self.clients.dataset_management.read_parameter_contexts(param_dict_ids[0]) retval = filter(lambda x : 'visible' not in x.parameter_context or x.parameter_context['visible'], retval) ret.value = retval except NotFound: ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "FIXME: this message should say why the calculation couldn't be done" except Exception as e: raise e return ret def get_data_url(self, data_product_id=''): # The unique pointer to this set of data ret = IonObject(OT.ComputedStringValue) ret.value = "" erddap_host = CFG.get_safe('server.erddap.host','localhost') errdap_port = CFG.get_safe('server.erddap.port','8080') try: data_product = self.container.resource_registry.read(data_product_id) if data_product.category == DataProductTypeEnum.EXTERNAL: if len(data_product.reference_urls) == 1: ret.value = data_product.reference_urls[0] ret.status = ComputedValueAvailability.PROVIDED log.debug("get_data_url: data_url: %s", ret.value) else: ret.value = string.join( ["http://", erddap_host, ":", str(errdap_port),"/erddap/tabledap/", "data", str(data_product_id), ".html"],'') ret.status = ComputedValueAvailability.PROVIDED log.debug("get_data_url: data_url: %s", ret.value) except NotFound: ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "Dataset for this Data Product could not be located" return ret def get_provenance(self, data_product_id=''): # Provides an audit trail for modifications to the original data ret = IonObject(OT.ComputedDictValue) ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "Provenance not currently used." ret = IonObject(OT.ComputedDictValue) # try: # ret.value = self.get_data_product_provenance(data_product_id) # ret.status = ComputedValueAvailability.PROVIDED # except NotFound: # ret.status = ComputedValueAvailability.NOTAVAILABLE # ret.reason = "Error in DataProuctMgmtService:get_data_product_provenance" # except Exception as e: # raise e return ret def get_active_user_subscriptions(self, data_product_id=''): # The UserSubscription objects for this data product ret = IonObject(OT.ComputedListValue) ret.value = [] try: ret.value = self.clients.user_notification.get_subscriptions(resource_id=data_product_id, include_nonactive=True) ret.status = ComputedValueAvailability.PROVIDED except NotFound: ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "Product subscription infromation not provided by UserNotificationService" except Exception as e: raise e return ret def get_last_granule(self, data_product_id=''): # Provides information for users who have in the past acquired this data product, but for which that acquisition was terminated ret = IonObject(OT.ComputedDictValue) ret.value = {} try: dataset_ids, _ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasDataset, id_only=True) if not dataset_ids: ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "No dataset associated with this data product" return ret stream_def_ids, _ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasStreamDefinition, id_only=True) if not stream_def_ids: ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "No stream definition associated with this data product" return ret #stream_def_id = stream_def_ids[0] #replay_granule = self.clients.data_retriever.retrieve_last_data_points(dataset_ids[0], number_of_points=1, delivery_format=stream_def_id) #replay_granule = self.clients.data_retriever.retrieve_last_granule(dataset_ids[0]) rdt = ParameterHelper.rdt_for_data_product(data_product_id) values = self.clients.dataset_management.dataset_latest(dataset_ids[0]) for k,v in values.iteritems(): if k in rdt: rdt[k] = [v] retval = {} for k,v in rdt.iteritems(): if hasattr(rdt.context(k),'visible') and not rdt.context(k).visible: continue if k.endswith('_qc') and not k.endswith('glblrng_qc'): continue element = np.atleast_1d(rdt[k]).flatten()[0] if element == rdt._pdict.get_context(k).fill_value: retval[k] = '%s: Empty' % k elif rdt._pdict.get_context(k).uom and 'seconds' in rdt._pdict.get_context(k).uom: units = rdt._pdict.get_context(k).uom element = np.atleast_1d(rdt[k]).flatten()[0] unix_ts = TimeUtils.units_to_ts(units, element) dtg = datetime.utcfromtimestamp(unix_ts) try: retval[k] = '%s: %s' %(k,dtg.strftime('%Y-%m-%dT%H:%M:%SZ')) except: retval[k] = '%s: %s' %(k, element) elif isinstance(element, float) or (isinstance(element,np.number) and element.dtype.char in 'edfg'): try: precision = int(rdt.context(k).precision) except ValueError: precision = 5 except TypeError: # None results in a type error precision = 5 formatted = ("{0:.%df}" % precision).format(round(element,precision)) retval[k] = '%s: %s' %(k, formatted) else: retval[k] = '%s: %s' % (k,element) ret.value = retval # ret.value = {k : str(rdt[k].tolist()[0]) for k,v in rdt.iteritems()} ret.status = ComputedValueAvailability.PROVIDED except NotFound: ret.status = ComputedValueAvailability.NOTAVAILABLE ret.reason = "FIXME: this message should say why the calculation couldn't be done" except Exception as e: raise e return ret def get_recent_granules(self, data_product_id=''): # Provides information for users who have in the past acquired this data product, but for which that acquisition was terminated ret = IonObject(OT.ComputedDictValue) ret.value = {} ret.status = ComputedValueAvailability.NOTAVAILABLE # try: # dataset_ids, _ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasDataset, id_only=True) # if not dataset_ids: # ret.status = ComputedValueAvailability.NOTAVAILABLE # ret.reason = "No dataset associated with this data product" # else: # replay_granule = self.clients.data_retriever.retrieve_last_data_points(dataset_ids[0]) # rdt = RecordDictionaryTool.load_from_granule(replay_granule) # ret.value = {k : rdt[k].tolist() for k,v in rdt.iteritems()} # ret.status = ComputedValueAvailability.PROVIDED # except NotFound: # ret.status = ComputedValueAvailability.NOTAVAILABLE # ret.reason = "FIXME: this message should say why the calculation couldn't be done" # except Exception as e: # raise e return ret def get_is_persisted(self, data_product_id=''): # Returns True if data product is currently being persisted ret = IonObject(OT.ComputedIntValue) ret.value = self.is_persisted(data_product_id) ret.status = ComputedValueAvailability.PROVIDED return ret def _has_lookup_values(self, data_product_id): stream_ids, _ = self.clients.resource_registry.find_objects(subject=data_product_id, predicate=PRED.hasStream, id_only=True) if not stream_ids: raise BadRequest('No streams found for this data product') stream_def_ids, _ = self.clients.resource_registry.find_objects(subject=stream_ids[0], predicate=PRED.hasStreamDefinition, id_only=True) if not stream_def_ids: raise BadRequest('No stream definitions found for this stream') return self.clients.pubsub_management.has_lookup_values(stream_definition_id=stream_def_ids[0]) def _get_lookup_documents(self, data_product_id): return self.clients.data_acquisition_management.list_qc_references(data_product_id) def _format_ion_time(self, ion_time=''): ion_time_obj = IonTime.from_string(ion_time) #todo: fix this and return str( ion_time_obj) return str(ion_time_obj) ############################ # # PREPARE UPDATE RESOURCES # ############################ def prepare_data_product_support(self, data_product_id=''): """ Returns the object containing the data to update an instrument device resource """ #TODO - does this have to be filtered by Org ( is an Org parameter needed ) extended_resource_handler = ExtendedResourceContainer(self) resource_data = extended_resource_handler.create_prepare_resource_support(data_product_id, OT.DataProductPrepareSupport) #Fill out service request information for creating a platform device extended_resource_handler.set_service_requests(resource_data.create_request, 'data_product_management', 'create_data_product_', { "data_product": "$(data_product)" }) #Fill out service request information for creating a platform device extended_resource_handler.set_service_requests(resource_data.update_request, 'data_product_management', 'update_data_product', { "data_product": "$(data_product)" }) #Fill out service request information for activating a platform device extended_resource_handler.set_service_requests(resource_data.activate_request, 'data_product_management', 'activate_data_product_persistence', { "data_product": "$(data_product)" }) #Fill out service request information for deactivating a platform device extended_resource_handler.set_service_requests(resource_data.deactivate_request, 'data_product_management', 'suspend_data_product_persistence', { "data_product": "$(data_product)" }) #Fill out service request information for assigning a stream definition extended_resource_handler.set_service_requests(resource_data.associations['StreamDefinition'].assign_request, 'data_product_management', 'assign_stream_definition_to_data_product', { "data_product_id": data_product_id, "stream_definition_id": "$(stream_definition_id)", "exchange_point": "$(exchange_point)" }) #Fill out service request information for assigning a dataset extended_resource_handler.set_service_requests(resource_data.associations['Dataset'].assign_request, 'data_product_management', 'assign_dataset_to_data_product', { "data_product_id": data_product_id, "dataset_id": "$(dataset_id)" }) #Fill out service request information for assigning an instrument extended_resource_handler.set_service_requests(resource_data.associations['InstrumentDeviceHasOutputProduct'].assign_request, 'data_acquisition_management', 'assign_data_product', {"data_product_id": data_product_id, "input_resource_id": "$(instrument_device_id)"}) #Fill out service request information for unassigning an instrument extended_resource_handler.set_service_requests(resource_data.associations['InstrumentDeviceHasOutputProduct'].unassign_request, 'data_acquisition_management', 'unassign_data_product', {"data_product_id": data_product_id, "input_resource_id": "$(instrument_device_id)" }) #Fill out service request information for assigning an instrument extended_resource_handler.set_service_requests(resource_data.associations['PlatformDevice'].assign_request, 'data_acquisition_management', 'assign_data_product', {"data_product_id": data_product_id, "input_resource_id": "$(platform_device_id)"}) #Fill out service request information for unassigning an instrument extended_resource_handler.set_service_requests(resource_data.associations['PlatformDevice'].unassign_request, 'data_acquisition_management', 'unassign_data_product', {"data_product_id": data_product_id, "input_resource_id": "$(platform_device_id)" }) # DataProduct hasSource InstrumentDevice* extended_resource_handler.set_service_requests(resource_data.associations['InstrumentDeviceHasSource'].assign_request, 'data_acquisition_management', 'assign_data_product_source', {'data_product_id': data_product_id, 'source_id': '$(data_product_id)'}) # yes this is odd, but its the variable name we want to substitute based on resource_identifier (i'm not sure where that is set) extended_resource_handler.set_service_requests(resource_data.associations['InstrumentDeviceHasSource'].unassign_request, 'data_acquisition_management', 'unassign_data_product_source', {'data_product_id': data_product_id, 'source_id': '$(data_product_id)'}) resource_data.associations['InstrumentDeviceHasSource'].multiple_associations = True return resource_data def check_dpms_policy(self, process, message, headers): try: gov_values = GovernanceHeaderValues(headers=headers, process=process, resource_id_required=False) except Inconsistent, ex: return False, ex.message resource_id = message.data_product_id # Allow actor to suspend/activate persistence in an org where the actor has the appropriate role orgs,_ = self.clients.resource_registry.find_subjects(subject_type=RT.Org, predicate=PRED.hasResource, object=resource_id, id_only=False) for org in orgs: if (has_org_role(gov_values.actor_roles, org.org_governance_name, [INSTRUMENT_OPERATOR, DATA_OPERATOR, ORG_MANAGER_ROLE, OBSERVATORY_OPERATOR])): log.error("returning true: "+str(gov_values.actor_roles)) return True, '' log.error("returning false: "+str(gov_values.actor_roles)) return False, '%s(%s) has been denied since the user does not have an appropriate role in any org to which the data product id %s belongs ' % (process.name, gov_values.op, resource_id)
bsd-2-clause
ergosimulation/mpslib
scikit-mps/examples/mpslib_2d_to_coarsen.py
1
2277
# mpslib_2d_to_coarsen: Effect ofo corsening the training image import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import mpslib as mps from scipy import squeeze import copy %matplotlib widget plt.ion() di=6 # Use every di'th data # NO coarsening --> 1 2D TI TI1, TI_filename1 = mps.trainingimages.strebelle(di, coarse3d=0) # Coarsening --> multiple 2D TI TI2, TI_filename2 = mps.trainingimages.strebelle(di, coarse3d=1) mps.eas.write_mat(TI1,'ti1.dat') mps.eas.write_mat(TI2,'ti2.dat') #%% Plot the training images fig = plt.figure(figsize=(15, 15)) outer = gridspec.GridSpec(2, 2, wspace=0.2, hspace=0.2) ax1 = plt.Subplot(fig, outer[0]) fig.add_subplot(ax1) plt.imshow(np.transpose(TI1[:,:,0])) plt.title('One coarse TI') ax1 = plt.Subplot(fig, outer[1]) fig.add_subplot(ax1) plt.axis('off') plt.title('LL') plt.title('Mulitple coarse TI') nsp = int(np.floor(np.sqrt(TI2.shape[2]))) for i in [1]: inner = gridspec.GridSpecFromSubplotSpec(nsp, nsp, subplot_spec=outer[i], wspace=0.02, hspace=0.02) for j in range(nsp*nsp): ax = plt.Subplot(fig, inner[j]) fig.add_subplot(ax) plt.imshow(np.transpose(TI2[:, :, j])) plt.axis('off') #%% RUN THE SIMULATIONS alg='mps_snesim_tree' #alg='mps_genesim' nc=8*8 rseed=1; #nc=8*8 #Coarsen channel TI, using only coarsened TI # Single coarsened TI O1=mps.mpslib(method=alg) O1.par['debug_level']=-1 O1.par['ti_fnam']='ti1.dat' O1.par['simulation_grid_size'][0]=85 O1.par['simulation_grid_size'][1]=45 O1.ti = TI1 O1.par['simulation_grid_size'][2]=1 O1.par['shuffle_simulation_grid']=0 O1.par['n_cond']=nc O1.par['rseed']=rseed O1.par['n_real']=1 O1.parameter_filename='sim1.par' O1.delete_local_files() O1.run() # Detailed Coarsened TI O2=copy.deepcopy(O1); O2.ti = TI2 O2.parameter_filename='sim2.par' O2.delete_local_files() O2.run() #%% ax3 = plt.Subplot(fig, outer[2]) fig.add_subplot(ax3) plt.imshow(np.transpose(squeeze(O1.sim[0]))) plt.title('Real using Single coarse TI') ax4 = plt.Subplot(fig, outer[3]) fig.add_subplot(ax4) plt.imshow(np.transpose(squeeze(O2.sim[0]))) plt.title('Real using Multiple coarse TI') plt.suptitle("%s - di=%d" % (alg,di)) plt.savefig('mpslib_coarsen_%d_%s.png'%(di,alg)) plt.show()
lgpl-3.0
bamford/gzhubble
python/creating_debiased_catalog/STEP_4_hubble_catalog.py
2
8825
# coding: utf-8 # In[1]: #get_ipython().magic(u'matplotlib inline') @profile def run_all(): print("Cell 1 - importing packages") from astropy.io import fits as pyfits from astropy.table import Table import numpy as np from astropy.io.fits import Column from datetime import datetime import matplotlib.pyplot as plt import requests # In[2]: print("Cell 2 - define download_from_dropbox module") def download_from_dropbox(url): local_filename = "{:}".format(url.split("/")[-1].split("?")[0]) r = requests.get(url, stream=True) with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) f.flush() return local_filename # In[3]: print("Cell 3 - download and set zeta parameters") # zeta parameters zeta_fname = download_from_dropbox("https://www.dropbox.com/s/ax8sclh0r34oxrq/zeta_parameters.fits?dl=1") zeta_params=Table.read(zeta_fname) slope = zeta_params['slope'][0] intercept=zeta_params['intercept'][0] # In[4]: print("Cell 4 - download data into an astropy Table") hubble_fname = download_from_dropbox("https://www.dropbox.com/s/bfoa17lz23976je/input_for_hubble_debiased_catalog.fits?dl=1") votes_data=Table.read(hubble_fname) # In[5]: print("Cell 5 - find unique OBJNOs") subjects=set(votes_data['OBJNO']) # In[6]: print("Cell 6 - define fitting functions") #Zeta-hat function for computing debiased values z0 = 0.3 # we're correcting to redshift 0.3 def fhat_mel(f,z,z0,zeta_hat): val = 1. - (1. - f)*np.exp(-(z - z0)/ zeta_hat) return val #assume zeta_hat is a linear function of surface brightness def zeta_hat_lin(SB): val = 10.**((SB*slope) + intercept) return val # In[7]: print("Cell 7 - create empty table") #And here we define our new table! intcolumn = np.zeros(len(subjects),dtype=int) floatcolumn = np.zeros(len(subjects),dtype=float) strcolumn = np.array([' ']*len(subjects),dtype='S24') #S24=24 character string #c01 = Column(name='num_classifications', format='J', array=floatcolumn) # c05 = c01, by definition # In[9]: print("Cell 9 - remove columns not in old table") #First copy the raw and weighted vote information to new table. #remove columns that are not in old table - those will be transferred manually from astropy.table import Column as TableColumn ex1 = TableColumn(floatcolumn,name='t01_smooth_or_features_a01_smooth_debiased_fraction', format='D') ex2 = TableColumn(floatcolumn,name='t01_smooth_or_features_a01_smooth_lower_limit', format='D') ex3 = TableColumn(floatcolumn,name='t01_smooth_or_features_a01_smooth_upper_limit', format='D') ex4 = TableColumn(floatcolumn,name='t01_smooth_or_features_a01_smooth_best_fraction',format='D') ex5 = TableColumn(floatcolumn,name='t01_smooth_or_features_a02_features_or_disk_debiased_fraction', format='D') ex6 = TableColumn(floatcolumn,name='t01_smooth_or_features_a02_features_or_disk_best_fraction',format='D') newtable = votes_data.copy(copy_data=True) newtable.add_columns( (ex1, ex2, ex3, ex4, ex5, ex6) ) # In[10]: print("Cell 10 - enter data") z = 'Z_BEST' print 'Writing file...' # Why bother to do this row by row? for i,gal in enumerate(votes_data): if i % 1000 == 0: t=datetime.now().time().isoformat() print 'Writing %ith row at time %s' %(i,t) #transfer all raw/weighted data #for column_name in old_columns: # hubble_catalog.data.field(column_name)[i] = gal[column_name] #new data: debiased vote fractions p_features_debiased = fhat_mel(gal['t01_smooth_or_features_a02_features_or_disk_weighted_fraction'],gal[z],z0,zeta_hat_lin(gal['MU_HI'])) newtable.field('t01_smooth_or_features_a02_features_or_disk_debiased_fraction')[i] = p_features_debiased #write the 'best features' fraction column if newtable.field('Correctable_Category')[i]=='correctable': p_features_best = newtable.field('t01_smooth_or_features_a02_features_or_disk_debiased_fraction')[i] elif newtable.field('Correctable_Category')[i]=='uncorrectable': p_features_best = max(newtable.field('t01_smooth_or_features_a02_features_or_disk_lower_limit')[i],newtable.field('t01_smooth_or_features_a02_features_or_disk_weighted_fraction')[i]) else: p_features_best = newtable.field('t01_smooth_or_features_a02_features_or_disk_weighted_fraction')[i] newtable.field('t01_smooth_or_features_a02_features_or_disk_best_fraction')[i] = p_features_best #debiased, lower and upper, best smooth fractions based on 1 - p_artifact - p_features newtable.field('t01_smooth_or_features_a01_smooth_debiased_fraction')[i] = 1 - gal['t01_smooth_or_features_a03_star_or_artifact_weighted_fraction'] - p_features_debiased newtable.field('t01_smooth_or_features_a01_smooth_lower_limit')[i] = 1 - gal['t01_smooth_or_features_a03_star_or_artifact_weighted_fraction'] - gal['t01_smooth_or_features_a02_features_or_disk_upper_limit'] newtable.field('t01_smooth_or_features_a01_smooth_upper_limit')[i] = 1 - gal['t01_smooth_or_features_a03_star_or_artifact_weighted_fraction'] - gal['t01_smooth_or_features_a02_features_or_disk_lower_limit'] newtable.field('t01_smooth_or_features_a01_smooth_best_fraction')[i] = 1 - gal['t01_smooth_or_features_a03_star_or_artifact_weighted_fraction'] - p_features_best # In[11]: print("Cell 11 - write to file") #write to file newtable.write('gz_hubble_catalog_%i_%i_%i.fits'%(datetime.now().month,datetime.now().day,datetime.now().year),format='fits',overwrite=True) # In[12]: print("Cell 12 - set categories for plots") correctable=(votes_data['Correctable_Category']=='correctable ') uncorrectable=(votes_data['Correctable_Category']=='uncorrectable ') nei=(votes_data['Correctable_Category']=='nei ') old_votes=votes_data['t01_smooth_or_features_a02_features_or_disk_weighted_fraction'] old_lower_limit=votes_data['t01_smooth_or_features_a02_features_or_disk_lower_limit'] old_z=votes_data[z] old_mu=votes_data['MU_HI'] new_c=fhat_mel(old_votes[correctable],old_z[correctable],z0,zeta_hat_lin(old_mu[correctable])) new_unc=fhat_mel(old_votes[uncorrectable],old_z[uncorrectable],z0,zeta_hat_lin(old_mu[uncorrectable])) #debiased value #new_unc = old_lower_limit[uncorrectable] #lower limit new_nei=fhat_mel(old_votes[nei],old_z[nei],z0,zeta_hat_lin(old_mu[nei])) # In[13]: print("Cell 13 - plot results") # 2D histogram of new p_features distribution fig = plt.figure(figsize=(20,5)) ax1 = fig.add_subplot(131) hex1 = ax1.hexbin(old_votes[correctable],new_c, cmap=plt.cm.YlOrRd_r,gridsize=50,vmin =0,vmax=100) ax1.set_xlabel(r'$f_{features}$',fontsize=20) ax1.set_ylabel(r'$\hat f_{features}$',fontsize=20) cb1 = plt.colorbar(hex1) ax1.set_title('correctable data, linear $\hat \zeta$',fontsize=20) # Add the one-to-one line for comparision. # Upper left = boosted p_features for z > 0.3 # Lower right = depressed p_features for z < 0.3 ax1.plot([0,1],[0,1],color='k',lw=2,ls='--') # Try it with Mel's new function ax2 = fig.add_subplot(132) hex2 = ax2.hexbin(old_votes[nei],new_nei, cmap=plt.cm.YlOrRd_r,gridsize=50,vmax=100) ax2.set_xlabel(r'$f_{features}$',fontsize=20) ax2.set_ylabel(r'$\hat f_{features}$',fontsize=20) ax2.set_xlim(0,1) ax2.set_ylim(0,1) cb2 = plt.colorbar(hex2) ax2.plot([0,1],[0,1],color='k',lw=2,ls='--') ax2.set_title('NEI data, linear $\hat \zeta$',fontsize=20) ax3 = fig.add_subplot(133) hex3 = ax3.hexbin(old_votes[uncorrectable],new_unc, cmap=plt.cm.YlOrRd_r,gridsize=50,vmin =0, vmax=100) ax3.set_xlabel(r'$f_{features}$',fontsize=20) ax3.set_ylabel(r'$\hat f_{features}$',fontsize=20) ax3.set_xlim(0,1) ax3.set_ylim(0,1) cb3 = plt.colorbar(hex3) ax3.plot([0,1],[0,1],color='k',lw=2,ls='--') ax3.set_title('uncorrectable data, linear $\hat \zeta$',fontsize=20) ax3.set_axis_bgcolor('#800000') return None if __name__ == "__main__": run_all()
mit
ptitjano/bokeh
examples/webgl/clustering.py
7
2155
""" Example inspired by an example from the scikit-learn project: http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html """ import numpy as np try: from sklearn import cluster, datasets from sklearn.preprocessing import StandardScaler except ImportError: raise ImportError('This example requires scikit-learn (conda install sklearn)') from bokeh.layouts import row, column from bokeh.plotting import figure, show, output_file N = 50000 PLOT_SIZE = 400 # generate datasets. np.random.seed(0) noisy_circles = datasets.make_circles(n_samples=N, factor=.5, noise=.04) noisy_moons = datasets.make_moons(n_samples=N, noise=.05) centers = [(-2, 3), (2, 3), (-2, -3), (2, -3)] blobs1 = datasets.make_blobs(centers=centers, n_samples=N, cluster_std=0.4, random_state=8) blobs2 = datasets.make_blobs(centers=centers, n_samples=N, cluster_std=0.7, random_state=8) colors = np.array([x for x in ('#00f', '#0f0', '#f00', '#0ff', '#f0f', '#ff0')]) colors = np.hstack([colors] * 20) # create clustering algorithms dbscan = cluster.DBSCAN(eps=.2) birch = cluster.Birch(n_clusters=2) means = cluster.MiniBatchKMeans(n_clusters=2) spectral = cluster.SpectralClustering(n_clusters=2, eigen_solver='arpack', affinity="nearest_neighbors") affinity = cluster.AffinityPropagation(damping=.9, preference=-200) # change here, to select clustering algorithm (note: spectral is slow) algorithm = dbscan # <- SELECT ALG plots =[] for dataset in (noisy_circles, noisy_moons, blobs1, blobs2): X, y = dataset X = StandardScaler().fit_transform(X) # predict cluster memberships algorithm.fit(X) if hasattr(algorithm, 'labels_'): y_pred = algorithm.labels_.astype(np.int) else: y_pred = algorithm.predict(X) p = figure(webgl=True, title=algorithm.__class__.__name__, plot_width=PLOT_SIZE, plot_height=PLOT_SIZE) p.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), alpha=0.1,) plots.append(p) # generate layout for the plots layout = column(row(plots[:2]), row(plots[2:])) output_file("clustering.html", title="clustering with sklearn") show(layout)
bsd-3-clause
AndreaDellera/Tesi
reti/plot.py
1
1454
__author__ = 'Andrea' import matplotlib.pyplot as mpl def main(): fold = "./FF/train45" in_train = open(fold + "/errors/train_MSE.txt", "r") in_test = open(fold + "/errors/test_MSE.txt", "r") # in_valid = open(fold + "/errors/valid_MSE.txt", "r") test_errors = in_test.readlines() # test_valid = in_valid.readlines() train_errors = in_train.readlines() # plot train and test errors one, = mpl.plot(range(len(train_errors)), train_errors, label = 'allineamento') two, = mpl.plot(range(len(test_errors)), test_errors, label = 'validazione', linestyle='--') # three, = mpl.plot(range(len(test_valid)), test_valid) mpl.axis([0, 9, 0, 4]) mpl.legend(handles=[one, two]) mpl.ylabel('Errore') mpl.xlabel('Tempo') mpl.show() ptrain = open(fold + "/errors/train_progression.txt", "r") ptest = open(fold + "/errors/test_progression.txt", "r") train_errors = ptrain.readlines() test_errors = ptest.readlines() mpl.close() one, = mpl.plot(range(len(train_errors)), train_errors, label = 'allineamento') two, = mpl.plot(range(len(test_errors)), test_errors, label = 'validazione', linestyle='--') mpl.axis([0, 10000, 0, 4]) mpl.legend(handles=[one, two]) mpl.ylabel('Errore') mpl.xlabel('Tempo') mpl.show() # in_valid.close() in_test.close() in_train.close() ptrain.close() ptest.close() if __name__ == "__main__": main()
apache-2.0
nhuntwalker/astroML
book_figures/chapter9/fig_discriminant_function.py
3
1601
""" Example of a Discriminant Function ---------------------------------- This plot shows a simple example of a discriminant function between two sets of points """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # create some toy data np.random.seed(0) cluster_1 = np.random.normal([1, 0.5], 0.5, size=(10, 2)) cluster_2 = np.random.normal([-1, -0.5], 0.5, size=(10, 2)) #------------------------------------------------------------ # plot the data and boundary fig = plt.figure(figsize=(5, 3.75)) ax = fig.add_subplot(111, xticks=[], yticks=[]) ax.scatter(cluster_1[:, 0], cluster_1[:, 1], c='k', s=30) ax.scatter(cluster_2[:, 0], cluster_2[:, 1], c='w', s=30) ax.plot([0, 1], [1.5, -1.5], '-k', lw=2) ax.set_xlim(-2, 2.5) ax.set_ylim(-2, 2) plt.show()
bsd-2-clause
miaecle/deepchem
deepchem/hyper/gaussian_process.py
1
12659
""" Contains class for gaussian process hyperparameter optimizations. """ import os import logging import tempfile from typing import Dict, List, Optional, Tuple, Union from deepchem.data import Dataset from deepchem.metrics import Metric from deepchem.hyper.base_classes import HyperparamOpt from deepchem.hyper.base_classes import _convert_hyperparam_dict_to_filename logger = logging.getLogger(__name__) PARAM_DICT = Dict[str, Union[int, float]] def compute_parameter_range(params_dict: PARAM_DICT, search_range: Union[int, float, PARAM_DICT] ) -> Dict[str, Tuple[str, List[float]]]: """Convenience Function to compute parameter search space. Parameters ---------- params_dict: Dict Dictionary mapping strings to Ints/Floats. An explicit list of parameters is computed with `search_range`. The optimization range computed is specified in the documentation for `search_range` below. search_range: int/float/Dict (default 4) The `search_range` specifies the range of parameter values to search for. If `search_range` is an int/float, it is used as the global search range for parameters. This creates a search problem on the following space: optimization on [initial value / search_range, initial value * search_range] If `search_range` is a dict, it must contain the same keys as for `params_dict`. In this case, `search_range` specifies a per-parameter search range. This is useful in case some parameters have a larger natural range than others. For a given hyperparameter `hp` this would create the following search range: optimization on hp on [initial value[hp] / search_range[hp], initial value[hp] * search_range[hp]] Returns ------- param_range: Dict Dictionary mapping hyperparameter names to tuples. Each tuple is of form `(value_type, value_range)` where `value_type` is a string that is either "int" or "cont" and `value_range` is a list of two elements of the form `[low, hi]`. This format is expected by pyGPGO which `GaussianProcessHyperparamOpt` uses to perform optimization. """ # Range of optimization param_range = {} if isinstance(search_range, dict): if sorted(params_dict.keys()) != sorted(search_range.keys()): raise ValueError( "If search_range is provided as a dictionary, it must have the same keys as params_dict." ) elif (not isinstance(search_range, int)) and (not isinstance( search_range, float)): raise ValueError("search_range must be a dict or int or float.") for hp, value in params_dict.items(): if isinstance(search_range, dict): hp_search_range = search_range[hp] else: # We know from guard above that this is an int/float hp_search_range = search_range if isinstance(value, int): value_range = [value // hp_search_range, value * hp_search_range] param_range[hp] = ("int", value_range) elif isinstance(value, float): value_range = [value / hp_search_range, value * hp_search_range] param_range[hp] = ("cont", value_range) return param_range class GaussianProcessHyperparamOpt(HyperparamOpt): """ Gaussian Process Global Optimization(GPGO) This class uses Gaussian Process optimization to select hyperparameters. Underneath the hood it uses pyGPGO to optimize models. If you don't have pyGPGO installed, you won't be able to use this class. Note that `params_dict` has a different semantics than for `GridHyperparamOpt`. `param_dict[hp]` must be an int/float and is used as the center of a search range. Example ------- This example shows the type of constructor function expected. >>> import sklearn >>> import deepchem as dc >>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(lambda **p: dc.models.GraphConvModel(n_tasks=1, **p)) Here's a more sophisticated example that shows how to optimize only some parameters of a model. In this case, we have some parameters we want to optimize, and others which we don't. To handle this type of search, we create a `model_builder` which hard codes some arguments (in this case, `n_tasks` and `n_features` which are properties of a dataset and not hyperparameters to search over.) >>> def model_builder(**model_params): ... n_layers = model_params['layers'] ... layer_width = model_params['width'] ... dropout = model_params['dropout'] ... return dc.models.MultitaskClassifier( ... n_tasks=5, ... n_features=100, ... layer_sizes=[layer_width]*n_layers, ... dropouts=dropout ... ) >>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(model_builder) Note ---- This class requires pyGPGO to be installed. """ # NOTE: mypy prohibits changing the number of arguments # FIXME: Signature of "hyperparam_search" incompatible with supertype "HyperparamOpt" def hyperparam_search( # type: ignore[override] self, params_dict: PARAM_DICT, train_dataset: Dataset, valid_dataset: Dataset, metric: Metric, use_max: bool = True, logdir: Optional[str] = None, max_iter: int = 20, search_range: Union[int, float, PARAM_DICT] = 4, logfile: Optional[str] = None): """Perform hyperparameter search using a gaussian process. Parameters ---------- params_dict: Dict Maps hyperparameter names (strings) to possible parameter values. The semantics of this list are different than for `GridHyperparamOpt`. `params_dict[hp]` must map to an int/float, which is used as the center of a search with radius `search_range` since pyGPGO can only optimize numerical hyperparameters. train_dataset: Dataset dataset used for training valid_dataset: Dataset dataset used for validation(optimization on valid scores) metric: Metric metric used for evaluation use_max: bool, (default True) Specifies whether to maximize or minimize `metric`. maximization(True) or minimization(False) logdir: str, optional, (default None) The directory in which to store created models. If not set, will use a temporary directory. max_iter: int, (default 20) number of optimization trials search_range: int/float/Dict (default 4) The `search_range` specifies the range of parameter values to search for. If `search_range` is an int/float, it is used as the global search range for parameters. This creates a search problem on the following space: optimization on [initial value / search_range, initial value * search_range] If `search_range` is a dict, it must contain the same keys as for `params_dict`. In this case, `search_range` specifies a per-parameter search range. This is useful in case some parameters have a larger natural range than others. For a given hyperparameter `hp` this would create the following search range: optimization on hp on [initial value[hp] / search_range[hp], initial value[hp] * search_range[hp]] logfile: str, optional (default None) Name of logfile to write results to. If specified, this is must be a valid file. If not specified, results of hyperparameter search will be written to `logdir/.txt`. Returns ------- Tuple[`best_model`, `best_hyperparams`, `all_scores`] `(best_model, best_hyperparams, all_scores)` where `best_model` is an instance of `dc.model.Model`, `best_hyperparams` is a dictionary of parameters, and `all_scores` is a dictionary mapping string representations of hyperparameter sets to validation scores. """ try: from pyGPGO.covfunc import matern32 from pyGPGO.acquisition import Acquisition from pyGPGO.surrogates.GaussianProcess import GaussianProcess from pyGPGO.GPGO import GPGO except ModuleNotFoundError: raise ValueError("This class requires pyGPGO to be installed.") # Specify logfile log_file = None if logfile: log_file = logfile elif logdir is not None: # Make logdir if it doesn't exist. if not os.path.exists(logdir): os.makedirs(logdir, exist_ok=True) log_file = os.path.join(logdir, "results.txt") # setup range param_range = compute_parameter_range(params_dict, search_range) param_keys = list(param_range.keys()) # Stores all results all_results = {} # Store all model references so we don't have to reload all_models = {} # Stores all model locations model_locations = {} # Demarcating internal function for readability def optimizing_function(**placeholders): """Private Optimizing function Take in hyper parameter values and return valid set performances Parameters ---------- placeholders: keyword arguments Should be various hyperparameters as specified in `param_keys` above. Returns: -------- valid_scores: float valid set performances """ hyper_parameters = {} for hp in param_keys: if param_range[hp][0] == "int": # param values are always float in BO, so this line converts float to int # see : https://github.com/josejimenezluna/pyGPGO/issues/10 hyper_parameters[hp] = int(placeholders[hp]) else: hyper_parameters[hp] = float(placeholders[hp]) logger.info("Running hyperparameter set: %s" % str(hyper_parameters)) if log_file: with open(log_file, 'w+') as f: # Record hyperparameters f.write("Parameters: %s" % str(hyper_parameters)) f.write('\n') hp_str = _convert_hyperparam_dict_to_filename(hyper_parameters) if logdir is not None: filename = "model%s" % hp_str model_dir = os.path.join(logdir, filename) logger.info("model_dir is %s" % model_dir) try: os.makedirs(model_dir) except OSError: if not os.path.isdir(model_dir): logger.info("Error creating model_dir, using tempfile directory") model_dir = tempfile.mkdtemp() else: model_dir = tempfile.mkdtemp() # Add it on to the information needed for the constructor hyper_parameters["model_dir"] = model_dir model = self.model_builder(**hyper_parameters) model.fit(train_dataset) try: model.save() # Some models autosave except NotImplementedError: pass multitask_scores = model.evaluate(valid_dataset, [metric]) score = multitask_scores[metric.name] if log_file: with open(log_file, 'a') as f: # Record performances f.write("Score: %s" % str(score)) f.write('\n') # Store all results all_results[hp_str] = score # Store reference to model all_models[hp_str] = model model_locations[hp_str] = model_dir # GPGO maximize performance by default # set performance to its negative value for minimization if use_max: return score else: return -score # execute GPGO cov = matern32() gp = GaussianProcess(cov) acq = Acquisition(mode='ExpectedImprovement') gpgo = GPGO(gp, acq, optimizing_function, param_range) logger.info("Max number of iteration: %i" % max_iter) gpgo.run(max_iter=max_iter) hp_opt, valid_performance_opt = gpgo.getResult() hyper_parameters = {} for hp in param_keys: if param_range[hp][0] == "int": hyper_parameters[hp] = int(hp_opt[hp]) else: # FIXME: Incompatible types in assignment hyper_parameters[hp] = float(hp_opt[hp]) # type: ignore hp_str = _convert_hyperparam_dict_to_filename(hyper_parameters) # Let's fetch the model with the best parameters best_model = all_models[hp_str] # Compare best model to default hyperparameters if log_file: with open(log_file, 'a') as f: # Record hyperparameters f.write("params_dict:") f.write(str(params_dict)) f.write('\n') # Return default hyperparameters return best_model, hyper_parameters, all_results
mit
marenar/SoftwareSystems
lecture14/thinkplot.py
88
12565
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import math import matplotlib import matplotlib.pyplot as pyplot import numpy as np # customize some matplotlib attributes #matplotlib.rc('figure', figsize=(4, 3)) #matplotlib.rc('font', size=14.0) #matplotlib.rc('axes', labelsize=22.0, titlesize=22.0) #matplotlib.rc('legend', fontsize=20.0) #matplotlib.rc('xtick.major', size=6.0) #matplotlib.rc('xtick.minor', size=3.0) #matplotlib.rc('ytick.major', size=6.0) #matplotlib.rc('ytick.minor', size=3.0) class Brewer(object): """Encapsulates a nice sequence of colors. Shades of blue that look good in color and can be distinguished in grayscale (up to a point). Borrowed from http://colorbrewer2.org/ """ color_iter = None colors = ['#081D58', '#253494', '#225EA8', '#1D91C0', '#41B6C4', '#7FCDBB', '#C7E9B4', '#EDF8B1', '#FFFFD9'] # lists that indicate which colors to use depending on how many are used which_colors = [[], [1], [1, 3], [0, 2, 4], [0, 2, 4, 6], [0, 2, 3, 5, 6], [0, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6], ] @classmethod def Colors(cls): """Returns the list of colors. """ return cls.colors @classmethod def ColorGenerator(cls, n): """Returns an iterator of color strings. n: how many colors will be used """ for i in cls.which_colors[n]: yield cls.colors[i] raise StopIteration('Ran out of colors in Brewer.ColorGenerator') @classmethod def InitializeIter(cls, num): """Initializes the color iterator with the given number of colors.""" cls.color_iter = cls.ColorGenerator(num) @classmethod def ClearIter(cls): """Sets the color iterator to None.""" cls.color_iter = None @classmethod def GetIter(cls): """Gets the color iterator.""" return cls.color_iter def PrePlot(num=None, rows=1, cols=1): """Takes hints about what's coming. num: number of lines that will be plotted """ if num: Brewer.InitializeIter(num) # TODO: get sharey and sharex working. probably means switching # to subplots instead of subplot. # also, get rid of the gray background. if rows > 1 or cols > 1: pyplot.subplots(rows, cols, sharey=True) global SUBPLOT_ROWS, SUBPLOT_COLS SUBPLOT_ROWS = rows SUBPLOT_COLS = cols def SubPlot(rows, cols, plot_number): """Configures the number of subplots and changes the current plot. rows: int cols: int plot_number: int """ pyplot.subplot(rows, cols, plot_number) class InfiniteList(list): """A list that returns the same value for all indices.""" def __init__(self, val): """Initializes the list. val: value to be stored """ list.__init__(self) self.val = val def __getitem__(self, index): """Gets the item with the given index. index: int returns: the stored value """ return self.val def Underride(d, **options): """Add key-value pairs to d only if key is not in d. If d is None, create a new dictionary. d: dictionary options: keyword args to add to d """ if d is None: d = {} for key, val in options.iteritems(): d.setdefault(key, val) return d def Clf(): """Clears the figure and any hints that have been set.""" Brewer.ClearIter() pyplot.clf() def Figure(**options): """Sets options for the current figure.""" Underride(options, figsize=(6, 8)) pyplot.figure(**options) def Plot(xs, ys, style='', **options): """Plots a line. Args: xs: sequence of x values ys: sequence of y values style: style string passed along to pyplot.plot options: keyword args passed to pyplot.plot """ color_iter = Brewer.GetIter() if color_iter: try: options = Underride(options, color=color_iter.next()) except StopIteration: print 'Warning: Brewer ran out of colors.' Brewer.ClearIter() options = Underride(options, linewidth=3, alpha=0.8) pyplot.plot(xs, ys, style, **options) def Scatter(xs, ys, **options): """Makes a scatter plot. xs: x values ys: y values options: options passed to pyplot.scatter """ options = Underride(options, color='blue', alpha=0.2, s=30, edgecolors='none') pyplot.scatter(xs, ys, **options) def Pmf(pmf, **options): """Plots a Pmf or Hist as a line. Args: pmf: Hist or Pmf object options: keyword args passed to pyplot.plot """ xs, ps = pmf.Render() if pmf.name: options = Underride(options, label=pmf.name) Plot(xs, ps, **options) def Pmfs(pmfs, **options): """Plots a sequence of PMFs. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: pmfs: sequence of PMF objects options: keyword args passed to pyplot.plot """ for pmf in pmfs: Pmf(pmf, **options) def Hist(hist, **options): """Plots a Pmf or Hist with a bar plot. The default width of the bars is based on the minimum difference between values in the Hist. If that's too small, you can override it by providing a width keyword argument, in the same units as the values. Args: hist: Hist or Pmf object options: keyword args passed to pyplot.bar """ # find the minimum distance between adjacent values xs, fs = hist.Render() width = min(Diff(xs)) if hist.name: options = Underride(options, label=hist.name) options = Underride(options, align='center', linewidth=0, width=width) pyplot.bar(xs, fs, **options) def Hists(hists, **options): """Plots two histograms as interleaved bar plots. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: hists: list of two Hist or Pmf objects options: keyword args passed to pyplot.plot """ for hist in hists: Hist(hist, **options) def Diff(t): """Compute the differences between adjacent elements in a sequence. Args: t: sequence of number Returns: sequence of differences (length one less than t) """ diffs = [t[i+1] - t[i] for i in range(len(t)-1)] return diffs def Cdf(cdf, complement=False, transform=None, **options): """Plots a CDF as a line. Args: cdf: Cdf object complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to pyplot.plot Returns: dictionary with the scale options that should be passed to Config, Show or Save. """ xs, ps = cdf.Render() scale = dict(xscale='linear', yscale='linear') for s in ['xscale', 'yscale']: if s in options: scale[s] = options.pop(s) if transform == 'exponential': complement = True scale['yscale'] = 'log' if transform == 'pareto': complement = True scale['yscale'] = 'log' scale['xscale'] = 'log' if complement: ps = [1.0-p for p in ps] if transform == 'weibull': xs.pop() ps.pop() ps = [-math.log(1.0-p) for p in ps] scale['xscale'] = 'log' scale['yscale'] = 'log' if transform == 'gumbel': xs.pop(0) ps.pop(0) ps = [-math.log(p) for p in ps] scale['yscale'] = 'log' if cdf.name: options = Underride(options, label=cdf.name) Plot(xs, ps, **options) return scale def Cdfs(cdfs, complement=False, transform=None, **options): """Plots a sequence of CDFs. cdfs: sequence of CDF objects complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to pyplot.plot """ for cdf in cdfs: Cdf(cdf, complement, transform, **options) def Contour(obj, pcolor=False, contour=True, imshow=False, **options): """Makes a contour plot. d: map from (x, y) to z, or object that provides GetDict pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot imshow: boolean, whether to use pyplot.imshow options: keyword args passed to pyplot.pcolor and/or pyplot.contour """ try: d = obj.GetDict() except AttributeError: d = obj Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) xs, ys = zip(*d.iterkeys()) xs = sorted(set(xs)) ys = sorted(set(ys)) X, Y = np.meshgrid(xs, ys) func = lambda x, y: d.get((x, y), 0) func = np.vectorize(func) Z = func(X, Y) x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = pyplot.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: pyplot.pcolormesh(X, Y, Z, **options) if contour: cs = pyplot.contour(X, Y, Z, **options) pyplot.clabel(cs, inline=1, fontsize=10) if imshow: extent = xs[0], xs[-1], ys[0], ys[-1] pyplot.imshow(Z, extent=extent, **options) def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options): """Makes a pseudocolor plot. xs: ys: zs: pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot options: keyword args passed to pyplot.pcolor and/or pyplot.contour """ Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) X, Y = np.meshgrid(xs, ys) Z = zs x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = pyplot.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: pyplot.pcolormesh(X, Y, Z, **options) if contour: cs = pyplot.contour(X, Y, Z, **options) pyplot.clabel(cs, inline=1, fontsize=10) def Config(**options): """Configures the plot. Pulls options out of the option dictionary and passes them to the corresponding pyplot functions. """ names = ['title', 'xlabel', 'ylabel', 'xscale', 'yscale', 'xticks', 'yticks', 'axis'] for name in names: if name in options: getattr(pyplot, name)(options[name]) loc = options.get('loc', 0) legend = options.get('legend', True) if legend: pyplot.legend(loc=loc) def Show(**options): """Shows the plot. For options, see Config. options: keyword args used to invoke various pyplot functions """ # TODO: figure out how to show more than one plot Config(**options) pyplot.show() def Save(root=None, formats=None, **options): """Saves the plot in the given formats. For options, see Config. Args: root: string filename root formats: list of string formats options: keyword args used to invoke various pyplot functions """ Config(**options) if formats is None: formats = ['pdf', 'eps'] if root: for fmt in formats: SaveFormat(root, fmt) Clf() def SaveFormat(root, fmt='eps'): """Writes the current figure to a file in the given format. Args: root: string filename root fmt: string format """ filename = '%s.%s' % (root, fmt) print 'Writing', filename pyplot.savefig(filename, format=fmt, dpi=300) # provide aliases for calling functons with lower-case names preplot = PrePlot subplot = SubPlot clf = Clf figure = Figure plot = Plot scatter = Scatter pmf = Pmf pmfs = Pmfs hist = Hist hists = Hists diff = Diff cdf = Cdf cdfs = Cdfs contour = Contour pcolor = Pcolor config = Config show = Show save = Save def main(): color_iter = Brewer.ColorGenerator(7) for color in color_iter: print color if __name__ == '__main__': main()
gpl-3.0
studywolf/control
studywolf_control/tasks/write_data/read_path.py
1
3050
import numpy as np def get_raw_data(input_name, writebox, spaces=False): f = open('tasks/write_data/'+input_name+'.txt', 'r') row = f.readline() points = [] for row in f: points.append(row.strip('\n').split(',')) f.close() points = np.array(points, dtype='float') points = points[:, :2] # need to rotate the points theta = np.pi/2. R = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) for ii in range(points.shape[0]): points[ii] = np.dot(R, points[ii]) # need to mirror the x values for ii in range(points.shape[0]): points[ii, 0] *= -1 # center numbers points[:, 0] -= np.min(points[:,0]) points[:, 1] -= np.min(points[:,1]) # normalize # TODO: solve weird scaling for 1 and l, and 9 points[:, 0] /= max(points[:,0]) points[:, 1] /= max(points[:,1]) # center numbers points[:, 0] -= .5 - (max(points[:,0]) - min(points[:, 0])) / 2.0 points[:,0] *= 5.0 / 6.0 * (writebox[1] - writebox[0]) points[:,1] *= (writebox[3] - writebox[2]) if input_name in ('1'): points[:, 0] /= 15. if input_name in ('s'): points[:, 0] /= 5. if input_name in ('9'): points[:, 0] /= 2. if input_name in ('e','o','w','r'): points[:, 1] /= 2. points[:,0] += writebox[0] points[:,1] += writebox[2] return points def get_single(**kwargs): """Wrap the number with np.nans on either end """ num = get_raw_data(**kwargs) new_array = np.zeros((num.shape[0]+2, num.shape[1])) new_array[0] = [np.nan, np.nan] new_array[-1] = [np.nan, np.nan] new_array[1:-1] = num return new_array def get_sequence(sequence, writebox, spaces=False): """Returns a sequence sequence list: the sequence of integers writebox list: [min x, max x, min y, max y] """ nans = np.array([np.nan, np.nan]) nums= nans.copy() if spaces is False: each_num_width = (writebox[1] - writebox[0]) / float(len(sequence)) else: each_num_width = (writebox[1] - writebox[0]) / float(len(sequence)*2 - 1) for ii, nn in enumerate(sequence): if spaces is False: num_writebox = [writebox[0] + each_num_width * ii , writebox[0] + each_num_width * (ii+1), writebox[2], writebox[3]] else: num_writebox = [writebox[0] + each_num_width * 2 * ii , writebox[0] + each_num_width * 2 * (ii+.5), writebox[2], writebox[3]] if isinstance(nn, int): nn = str(nn) num = get_raw_data(nn, num_writebox) nums = np.vstack([nums, num, nans]) return nums ### Testing code ### if __name__ == '__main__': import matplotlib.pyplot as plt files=['h','e','l','l','o','w','o','r','l','d'] nums = get_sequence(files, writebox=[-1,1,0,1], spaces=False) plt.plot(nums[:,0], nums[:,1]) plt.show()
gpl-3.0
turi-code/SFrame
oss_src/unity/python/sframe/test/test_sframe.py
5
134915
''' Copyright (C) 2016 Turi All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. ''' # from nose import with_setup from ..data_structures.sframe import SFrame from ..data_structures.sarray import SArray from ..data_structures.image import Image from ..connect import main as glconnect from ..util import _assert_sframe_equal, generate_random_sframe from .. import _launch, load_sframe, aggregate from . import util import pandas as pd from ..util.timezone import GMT from pandas.util.testing import assert_frame_equal import unittest import datetime as dt import tempfile import os import csv import gzip import string import time import numpy as np import array import math import random import shutil import functools import sys import mock import sqlite3 from .dbapi2_mock import dbapi2_mock HAS_PYSPARK = True try: from pyspark import SparkContext, SQLContext except: HAS_PYSPARK = False ####################################################### # Metrics tracking tests are in test_usage_metrics.py # ####################################################### # Taken from http://stackoverflow.com/questions/1151658/python-hashable-dicts # by Alex Martelli class hashabledict(dict): def __key(self): return tuple((k,self[k]) for k in sorted(self)) def __hash__(self): return hash(self.__key()) def __eq__(self, other): return self.__key() == other.__key() class SFrameTest(unittest.TestCase): def setUp(self): self.int_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.float_data = [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.] self.string_data = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] self.a_to_z = [str(chr(97 + i)) for i in range(0, 26)] self.dataframe = pd.DataFrame({'int_data': self.int_data, 'float_data': self.float_data, 'string_data': self.string_data}) self.url = "http://s3-us-west-2.amazonaws.com/testdatasets/a_to_z.txt.gz" self.int_data2 = range(50,60) self.float_data2 = [1.0 * i for i in range(50,60)] self.string_data2 = [str(i) for i in range(50,60)] self.dataframe2 = pd.DataFrame({'int_data': self.int_data2, 'float_data': self.float_data2, 'string_data': self.string_data2}) self.vec_data = [array.array('d', [i, i+1]) for i in self.int_data] self.list_data = [[i, str(i), i * 1.0] for i in self.int_data] self.dict_data = [{str(i): i, i : float(i)} for i in self.int_data] self.datetime_data = [dt.datetime(2013, 5, 7, 10, 4, 10), dt.datetime(1902, 10, 21, 10, 34, 10).replace(tzinfo=GMT(0.0))] self.all_type_cols = [self.int_data, self.float_data, self.string_data, self.vec_data, self.list_data, self.dict_data, self.datetime_data*5] self.sf_all_types = SFrame({"X"+str(i[0]):i[1] for i in zip(range(1,8), self.all_type_cols)}) # Taken from http://en.wikipedia.org/wiki/Join_(SQL) for fun. self.employees_sf = SFrame() self.employees_sf.add_column(SArray(['Rafferty','Jones','Heisenberg','Robinson','Smith','John']), 'last_name') self.employees_sf.add_column(SArray([31,33,33,34,34,None]), 'dep_id') # XXX: below are only used by one test! self.departments_sf = SFrame() self.departments_sf.add_column(SArray([31,33,34,35]), 'dep_id') self.departments_sf.add_column(SArray(['Sales','Engineering','Clerical','Marketing']), 'dep_name') def __assert_sarray_equal(self, sa1, sa2): l1 = list(sa1) l2 = list(sa2) self.assertEquals(len(l1), len(l2)) for i in range(len(l1)): v1 = l1[i] v2 = l2[i] if v1 == None: self.assertEqual(v2, None) else: if type(v1) == dict: self.assertEquals(len(v1), len(v2)) for key in v1: self.assertTrue(key in v1) self.assertEqual(v1[key], v2[key]) elif (hasattr(v1, "__iter__")): self.assertEquals(len(v1), len(v2)) for j in range(len(v1)): t1 = v1[j]; t2 = v2[j] if (type(t1) == float): if (math.isnan(t1)): self.assertTrue(math.isnan(t2)) else: self.assertEquals(t1, t2) else: self.assertEquals(t1, t2) else: self.assertEquals(v1, v2) def test_split_datetime(self): from_zone = GMT(0) to_zone = GMT(4.5) utc = dt.datetime.strptime('2011-01-21 02:37:21', '%Y-%m-%d %H:%M:%S') utc = utc.replace(tzinfo=from_zone) central = utc.astimezone(to_zone) sa = SArray([utc,central]) expected = SFrame() expected ['X.year'] = [2011,2011] expected ['X.month'] = [1,1] expected ['X.day'] = [21,21] expected ['X.hour'] = [2,7] expected ['X.minute'] = [37,7] expected ['X.second'] = [21,21] expected ['X.tzone'] = [0.0,4.5] result = sa.split_datetime(tzone=True) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # column names expected = SFrame() expected ['ttt.year'] = [2011,2011] expected ['ttt.minute'] = [37,7] expected ['ttt.second'] = [21,21] result = sa.split_datetime(column_name_prefix='ttt',limit=['year','minute','second']); self.assertEqual(result.column_names(), ['ttt.year', 'ttt.minute', 'ttt.second']) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) sf = SFrame({'datetime': sa}) result = sf.split_datetime('datetime', column_name_prefix='ttt',limit=['year','minute','second']); self.assertEqual(result.column_names(), ['ttt.year', 'ttt.minute', 'ttt.second']) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) def __test_equal(self, sf, df): self.assertEquals(sf.num_rows(), df.shape[0]) self.assertEquals(sf.num_cols(), df.shape[1]) assert_frame_equal(sf.to_dataframe(), df) def __create_test_df(self, size): int_data = [] float_data = [] string_data = [] for i in range(0,size): int_data.append(i) float_data.append(float(i)) string_data.append(str(i)) return pd.DataFrame({'int_data': int_data, 'float_data': float_data, 'string_data': string_data}) # Test if the rows are all the same...row order does not matter. # (I do expect column order to be the same) def __assert_join_results_equal(self, sf, expected_sf): _assert_sframe_equal(sf, expected_sf, check_row_order=False) def test_creation_from_dataframe(self): # created from empty dataframe sf_empty = SFrame(data=pd.DataFrame()) self.__test_equal(sf_empty, pd.DataFrame()) sf = SFrame(data=self.dataframe, format='dataframe') self.__test_equal(sf, self.dataframe) sf = SFrame(data=self.dataframe, format='auto') self.__test_equal(sf, self.dataframe) original_p = pd.DataFrame({'a':[1.0, float('nan')]}) effective_p = pd.DataFrame({'a':[1.0, None]}) sf = SFrame(data=original_p) self.__test_equal(sf, effective_p) original_p = pd.DataFrame({'a':['a',None,'b']}) sf = SFrame(data=original_p) self.__test_equal(sf, original_p) def test_auto_parse_csv(self): with tempfile.NamedTemporaryFile(mode='w', delete=False) as csvfile: df = pd.DataFrame({'float_data': self.float_data, 'int_data': self.int_data, 'string_data': self.a_to_z[:len(self.int_data)]}) df.to_csv(csvfile, index=False) csvfile.close() sf = SFrame.read_csv(csvfile.name, header=True) self.assertEqual(sf.dtype(), [float, int, str]) self.__test_equal(sf, df) def test_parse_csv(self): with tempfile.NamedTemporaryFile(mode='w', delete=False) as csvfile: self.dataframe.to_csv(csvfile, index=False) csvfile.close() # list type hints sf = SFrame.read_csv(csvfile.name, column_type_hints=[int, int, str]) self.assertEqual(sf.dtype(), [int, int, str]) sf['int_data'] = sf['int_data'].astype(int) sf['float_data'] = sf['float_data'].astype(float) sf['string_data'] = sf['string_data'].astype(str) self.__test_equal(sf, self.dataframe) # list type hints, incorrect number of columns self.assertRaises(RuntimeError, lambda: SFrame.read_csv(csvfile.name, column_type_hints=[int, float])) # dictionary type hints sf = SFrame.read_csv(csvfile.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}) self.__test_equal(sf, self.dataframe) # partial dictionary type hints sf = SFrame.read_csv(csvfile.name, column_type_hints={'float_data': float, 'string_data': str}) self.__test_equal(sf, self.dataframe) # single value type hints sf = SFrame.read_csv(csvfile.name, column_type_hints=str) self.assertEqual(sf.dtype(), [str, str, str]) all_string_column_df = self.dataframe.apply(lambda x: [str(ele) for ele in x]) self.__test_equal(sf, all_string_column_df) # single value type hints row limit sf = SFrame.read_csv(csvfile.name, column_type_hints=str, nrows=5) self.assertEqual(sf.dtype(), [str, str, str]) all_string_column_df = self.dataframe.apply(lambda x: [str(ele) for ele in x]) self.assertEqual(len(sf), 5) self.__test_equal(sf, all_string_column_df[0:len(sf)]) sf = SFrame.read_csv(csvfile.name) sf2 = SFrame(csvfile.name, format='csv') self.__test_equal(sf2, sf.to_dataframe()) f = open(csvfile.name, "w") f.write('a,b,c\n') f.write('NA,PIKA,CHU\n') f.write('1.0,2,3\n') f.close() sf = SFrame.read_csv(csvfile.name, na_values=['NA','PIKA','CHU'], column_type_hints={'a':float,'b':int,'c':str}) t = list(sf['a']) self.assertEquals(t[0], None) self.assertEquals(t[1], 1.0) t = list(sf['b']) self.assertEquals(t[0], None) self.assertEquals(t[1], 2) t = list(sf['c']) self.assertEquals(t[0], None) self.assertEquals(t[1], "3") def test_save_load_file_cleanup(self): # when some file is in use, file should not be deleted with util.TempDirectory() as f: sf = SFrame() sf['a'] = SArray(range(1,1000000)) sf.save(f) # many for each sarray, 1 sframe_idx, 1 object.bin, 1 ini file_count = len(os.listdir(f)) self.assertTrue(file_count > 3); # sf1 now references the on disk file sf1 = SFrame(f); # create another SFrame and save to the same location sf2 = SFrame() sf2['b'] = SArray([str(i) for i in range(1,100000)]) sf2['c'] = SArray(range(1, 100000)) sf2.save(f) file_count = len(os.listdir(f)) self.assertTrue(file_count > 3); # now sf1 should still be accessible self.__test_equal(sf1, sf.to_dataframe()) # and sf2 is correct too sf3 = SFrame(f) self.__test_equal(sf3, sf2.to_dataframe()) # when sf1 goes out of scope, the tmp files should be gone sf1 = 1 time.sleep(1) # give time for the files being deleted file_count = len(os.listdir(f)) self.assertTrue(file_count > 3); def test_save_load(self): # Check top level load function, with no suffix with util.TempDirectory() as f: sf = SFrame(data=self.dataframe, format='dataframe') sf.save(f) sf2 = load_sframe(f) self.__test_equal(sf2, self.dataframe) # Check individual formats with the SFrame constructor formats = ['.csv'] for suffix in formats: f = tempfile.NamedTemporaryFile(suffix=suffix, delete=False) sf = SFrame(data=self.dataframe, format='dataframe') sf.save(f.name) sf2 = SFrame(f.name) sf2['int_data'] = sf2['int_data'].astype(int) sf2['float_data'] = sf2['float_data'].astype(float) sf2['string_data'] = sf2['string_data'].astype(str) self.__test_equal(sf2, self.dataframe) g=SArray([['a','b',3],[{'a':'b'}],[1,2,3]]) g2=SFrame() g2['x']=g g2.save(f.name) g3=SFrame.read_csv(f.name,column_type_hints=list) self.__test_equal(g2, g3.to_dataframe()) f.close() os.unlink(f.name) # Make sure this file don't exist before testing self.assertRaises(IOError, lambda: SFrame(data='__no_such_file__.frame_idx', format='sframe')) if sys.platform != 'win32': # Bad permission test_dir = 'test_dir' if os.path.exists(test_dir): os.removedirs(test_dir) os.makedirs(test_dir, mode=0000) with self.assertRaises(IOError): sf.save(os.path.join(test_dir, 'bad.frame_idx')) # Permissions will affect this test first, so no need # to write something here with self.assertRaises(IOError): sf2 = SFrame(os.path.join(test_dir, 'bad.frame_idx')) # cleanup os.removedirs(test_dir) del sf2 def test_save_load_reference(self): # Check top level load function, with no suffix with util.TempDirectory() as f: sf = SFrame(data=self.dataframe, format='dataframe') originallen = len(sf) sf.save(f) del sf sf = SFrame(f) # make a new column of "1s and save it back int_data2 = sf['int_data'] + 1 int_data2.__materialize__() sf['int_data2'] = int_data2 sf._save_reference(f) del sf sf = SFrame(f) self.assertTrue(((sf['int_data2'] - sf['int_data']) == 1).all()) # try to append and save reference expected = sf.to_dataframe() sf = sf.append(sf) sf._save_reference(f) sf = SFrame(f) self.assertTrue(((sf['int_data2'] - sf['int_data']) == 1).all()) self.assertEquals(2 * originallen, len(sf)) assert_frame_equal(sf[originallen:].to_dataframe(), expected) assert_frame_equal(sf[:originallen].to_dataframe(), expected) def test_save_to_csv(self): f = tempfile.NamedTemporaryFile(suffix='.csv', delete=False) sf = SFrame(data=self.dataframe, format='dataframe') sf.save(f.name, format='csv') sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}) self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':') sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':') self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':', line_terminator='\r\n') sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n') self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':', line_terminator='\r\n', double_quote=False) sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n', double_quote=False) self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'') sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'') self.__test_equal(sf2, self.dataframe) import csv sf.export_csv(f.name, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'', quote_level=csv.QUOTE_MINIMAL) sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'') self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'', quote_level=csv.QUOTE_ALL) sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'') self.__test_equal(sf2, self.dataframe) sf.export_csv(f.name, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'', quote_level=csv.QUOTE_NONE) sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, delimiter=':', line_terminator='\r\n', double_quote=False, quote_char='\'') self.__test_equal(sf2, self.dataframe) # Pandas compatibility options sf.export_csv(f.name, sep=':', lineterminator='\r\n', doublequote=False, quotechar='\'', quote_level=csv.QUOTE_NONE) sf2 = SFrame.read_csv(f.name, column_type_hints={'int_data': int, 'float_data': float, 'string_data': str}, sep=':', lineterminator='\r\n', doublequote=False, quotechar='\'') self.__test_equal(sf2, self.dataframe) f.close() os.unlink(f.name) def test_save_to_json(self): f = tempfile.NamedTemporaryFile(suffix='.json', delete=False) sf = SFrame(data=self.dataframe, format='dataframe') sf.save(f.name, format='json') sf2 = SFrame.read_json(f.name) # the float column will be parsed as integer sf2['float_data'] = sf2['float_data'].astype(float) self.__test_equal(sf2, self.dataframe) sf = SFrame(data=self.dataframe, format='dataframe') sf.export_json(f.name) sf2 = SFrame.read_json(f.name) sf2['float_data'] = sf2['float_data'].astype(float) self.__test_equal(sf2, self.dataframe) sf = SFrame(data=self.dataframe, format='dataframe') sf.export_json(f.name, orient='lines') sf2 = SFrame.read_json(f.name, orient='lines') sf2['float_data'] = sf2['float_data'].astype(float) self.__test_equal(sf2, self.dataframe) f.close() os.unlink(f.name) def _remove_sframe_files(self, prefix): filelist = [ f for f in os.listdir(".") if f.startswith(prefix) ] for f in filelist: os.remove(f) def test_creation_from_txt(self): f = tempfile.NamedTemporaryFile(suffix='.txt', delete=False) df = self.dataframe[['string_data']] df.to_csv(f.name, index=False) sf = SFrame(f.name) self.assertEquals(sf['string_data'].dtype(), int) sf['string_data'] = sf['string_data'].astype(str) self.__test_equal(sf, df) fgzip = tempfile.NamedTemporaryFile(suffix='.txt.gz', delete=False) f_in = open(f.name, 'rb') f_out = gzip.open(fgzip.name, 'wb') f_out.writelines(f_in) f_out.close() f_in.close() sf = SFrame(fgzip.name) self.assertEquals(sf['string_data'].dtype(), int) sf['string_data'] = sf['string_data'].astype(str) self.__test_equal(sf, df) fgzip.close() os.unlink(fgzip.name) f.close() os.unlink(f.name) def test_creation_from_csv_on_local(self): if os.path.exists('./foo.csv'): os.remove('./foo.csv') with open('./foo.csv', 'w') as f: url = f.name basesf = SFrame(self.dataframe) basesf.save(url, format="csv") f.close() sf = SFrame('./foo.csv') self.assertEquals(sf['float_data'].dtype(), int) sf['float_data'] = sf['float_data'].astype(float) self.assertEquals(sf['string_data'].dtype(), int) sf['string_data'] = sf['string_data'].astype(str) self.__test_equal(sf, self.dataframe) sf = SFrame(url) self.assertEquals(sf['float_data'].dtype(), int) sf['float_data'] = sf['float_data'].astype(float) self.assertEquals(sf['string_data'].dtype(), int) sf['string_data'] = sf['string_data'].astype(str) self.__test_equal(sf, self.dataframe) os.remove(url) def test_alternate_line_endings(self): # test Windows line endings if os.path.exists('./windows_lines.csv'): os.remove('./windows_lines.csv') windows_file_url = None with open('./windows_lines.csv', 'w') as f: windows_file_url = f.name def_writer = csv.writer(f, dialect='excel') column_list = ['numbers'] def_writer.writerow(column_list) for i in self.int_data: def_writer.writerow([i]) sf = SFrame.read_csv('./windows_lines.csv', column_type_hints={'numbers':int}) self.assertEquals(sf.column_names(), column_list) self.assertEquals(sf.column_types(), [int]) self.assertEquals(list(sf['numbers'].head()), self.int_data) sf = SFrame.read_csv('./windows_lines.csv', column_type_hints={'numbers':list}, error_bad_lines=False) self.assertEquals(sf.column_names(), column_list) self.assertEquals(sf.num_rows(), 0) os.remove(windows_file_url) def test_skip_rows(self): # test line skippng if os.path.exists('./skip_lines.csv'): os.remove('./skip_lines.csv') skip_file_url = None with open('./skip_lines.csv', 'w') as f: f.write("trash\n"); f.write("junk\n"); skip_file_url = f.name def_writer = csv.writer(f, dialect='excel') column_list = ['numbers'] def_writer.writerow(column_list) for i in self.int_data: def_writer.writerow([i]) sf = SFrame.read_csv('./skip_lines.csv', skiprows=2, column_type_hints={'numbers':int}) self.assertEquals(sf.column_names(), column_list) self.assertEquals(sf.column_types(), [int]) self.assertEquals(list(sf['numbers'].head()), self.int_data) sf = SFrame.read_csv('./skip_lines.csv', skiprows=2, column_type_hints={'numbers':list}, error_bad_lines=False) self.assertEquals(sf.column_names(), column_list) self.assertEquals(sf.num_rows(), 0) os.remove(skip_file_url) def test_creation_from_csv_on_http(self): pass # sf = SFrame(data=self.url, use_header=False) # self.__test_equal(sf, pd.DataFrame({'1': self.a_to_z})) def test_creation_from_csv_on_s3(self): # Requires s3 account for jenkins # sf = SFrame(data='s3://graphlab-testdata/foo.csv') # print sf.head(sf.num_rows()) pass def test_creation_from_csv_dir_local(self): csv_dir = "./csv_dir" if os.path.exists(csv_dir): shutil.rmtree(csv_dir) os.mkdir(csv_dir) for i in range(0, 100): with open(os.path.join(csv_dir, 'foo.%d.csv' % i), 'w') as f: url = f.name self.dataframe.to_csv(url, index=False) f.close() singleton_sf = SFrame.read_csv(os.path.join(csv_dir, "foo.0.csv")) self.assertEquals(singleton_sf.num_rows(), 10) many_sf = SFrame.read_csv(csv_dir) self.assertEquals(many_sf.num_rows(), 1000) glob_sf = SFrame.read_csv(os.path.join(csv_dir, "foo.*2.csv")) self.assertEquals(glob_sf.num_rows(), 100) with self.assertRaises(RuntimeError): SFrame.read_csv("missingdirectory") with self.assertRaises(ValueError): SFrame.read_csv("") shutil.rmtree(csv_dir) def test_creation_from_iterable(self): # Normal dict of lists the_dict = {'ints':self.int_data,'floats':self.float_data,'strings':self.string_data} sf = SFrame(the_dict) df = pd.DataFrame(the_dict) self.__test_equal(sf, df) # Test that a missing value does not change the data type the_dict['ints'][0] = None sf = SFrame(the_dict) self.assertEquals(sf['ints'].dtype(), int) # numpy.nan is actually a float, so it should cast the column to float the_dict['ints'][0] = np.nan sf = SFrame(the_dict) self.assertEquals(sf['ints'].dtype(), float) # Just a single list sf = SFrame(self.int_data) df = pd.DataFrame(self.int_data) df.columns = ['X1'] self.__test_equal(sf, df) # Normal list of lists list_of_lists = [[1.0,2.0,3.0],[4.0,5.0,6.0],[7.0,8.0,9.0]] sf = SFrame(list_of_lists) cntr = 0 for i in sf: self.assertEquals(list_of_lists[cntr], list(i['X1'])) cntr += 1 self.assertEquals(sf.num_columns(), 1) the_dict = {'ints':self.int_data,'floats':self.float_data,'strings':self.string_data} sf = SFrame(the_dict) sf2 = SFrame({'ints':sf['ints'],'floats':sf['floats'],'strings':sf['strings']}) df = pd.DataFrame(the_dict) self.__test_equal(sf2, df) sf2 = SFrame([sf['ints'],sf['floats'],sf['strings']]) self.assertEquals(['X1','X2','X3'],sf2.column_names()) sf2.rename({'X1':'ints','X2':'floats','X3':'strings'}) sf2=sf2[['floats','ints','strings']] self.__test_equal(sf2, df) sf = SFrame({'text': ('foo', 'bar', 'biz')}) df = pd.DataFrame({'text': ['foo', 'bar', 'biz']}) self.__test_equal(sf, df) def test_head_tail(self): sf = SFrame(data=self.dataframe) assert_frame_equal(sf.head(4).to_dataframe(), self.dataframe.head(4)) # Cannot test for equality the same way because of dataframe indices taildf = sf.tail(4) for i in range(0, 4): self.assertEqual(taildf['int_data'][i], self.dataframe['int_data'][i+6]) self.assertEqual(taildf['float_data'][i], self.dataframe['float_data'][i+6]) self.assertEqual(taildf['string_data'][i], self.dataframe['string_data'][i+6]) def test_head_tail_edge_case(self): sf = SFrame() self.assertEquals(sf.head().num_columns(), 0) self.assertEquals(sf.tail().num_columns(), 0) self.assertEquals(sf.head().num_rows(), 0) self.assertEquals(sf.tail().num_rows(), 0) sf = SFrame() sf['a'] = [] self.assertEquals(sf.head().num_columns(), 1) self.assertEquals(sf.tail().num_columns(), 1) self.assertEquals(sf.head().num_rows(), 0) self.assertEquals(sf.tail().num_rows(), 0) def test_transform(self): sf = SFrame(data=self.dataframe) for i in range(sf.num_cols()): colname = sf.column_names()[i] sa = sf.apply(lambda x: x[colname], sf.column_types()[i]) self.__assert_sarray_equal(sa, sf[sf.column_names()[i]]) sa = sf.apply(lambda x: x['int_data'] + x['float_data'], float) self.__assert_sarray_equal(sf['int_data'] + sf['float_data'], sa) def test_transform_with_recursion(self): sf = SFrame(data={'a':[0,1,2,3,4], 'b':['0','1','2','3','4']}) # this should be the equivalent to sf.apply(lambda x:x since a is # equivalent to range(4) sa = sf.apply(lambda x: sf[x['a']]) sb = sf.apply(lambda x: x) self.__assert_sarray_equal(sa, sb) def test_transform_with_type_inference(self): sf = SFrame(data=self.dataframe) for i in range(sf.num_cols()): colname = sf.column_names()[i] sa = sf.apply(lambda x: x[colname]) self.__assert_sarray_equal(sa, sf[sf.column_names()[i]]) sa = sf.apply(lambda x: x['int_data'] + x['float_data']) self.__assert_sarray_equal(sf['int_data'] + sf['float_data'], sa) # SFrame apply returns list of vector of numeric should be vector, not list sa = sf.apply(lambda x: [x['int_data'], x['float_data']]) self.assertEqual(sa.dtype(), array.array); def test_transform_with_exception(self): sf = SFrame(data=self.dataframe) self.assertRaises(KeyError, lambda: sf.apply(lambda x: x['some random key'])) # cannot find the key self.assertRaises(TypeError, lambda: sf.apply(lambda x: sum(x.values()))) # lambda cannot sum int and str self.assertRaises(ZeroDivisionError, lambda: sf.apply(lambda x: x['int_data'] / 0)) # divide by 0 error self.assertRaises(IndexError, lambda: sf.apply(lambda x: list(x.values())[10])) # index out of bound error def test_empty_transform(self): sf = SFrame() b = sf.apply(lambda x:x) self.assertEquals(len(b.head()), 0) def test_flatmap(self): # Correctness of typical usage n = 10 sf = SFrame({'id': range(n)}) new_sf = sf.flat_map(["id_range"], lambda x: [[str(i)] for i in range(x['id'])]) self.assertEqual(new_sf.column_names(), ["id_range"]) self.assertEqual(new_sf.column_types(), [str]) expected_col = [str(x) for i in range(n) for x in range(i)] self.assertListEqual(list(new_sf['id_range']), expected_col) # Empty SFrame, without explicit column types sf = SFrame() with self.assertRaises(TypeError): new_sf = sf.flat_map(['id_range'], lambda x: [[i] for i in range(x['id'])]) # Empty rows successfully removed sf = SFrame({'id': range(15)}) new_sf = sf.flat_map(['id'], lambda x: [[x['id']]] if x['id'] > 8 else []) self.assertEqual(new_sf.num_rows(), 6) # First ten rows are empty raises error with self.assertRaises(TypeError): new_sf = sf.flat_map(['id'], lambda x: [[x['id']]] if x['id'] > 9 else []) def test_select_column(self): sf = SFrame(data=self.dataframe) sub_sf = sf.select_columns(['int_data', 'string_data']) exp_df = pd.DataFrame({'int_data': self.int_data, 'string_data': self.string_data}) self.__test_equal(sub_sf, exp_df) with self.assertRaises(ValueError): sf.select_columns(['int_data', 'string_data', 'int_data']) # test indexing sub_col = sf['float_data'] self.assertEqual(list(sub_col.head(10)), self.float_data) with self.assertRaises(TypeError): sub_sf = sf.select_columns(['duh',1]) with self.assertRaises(TypeError): sub_sf = sf.select_columns(0) with self.assertRaises(RuntimeError): sub_sf = sf.select_columns(['not_a_column']) self.assertEqual(sf.select_columns([int]).column_names(), ['int_data']) self.assertEqual(sf.select_columns([int, str]).column_names(), ['int_data', 'string_data']) self.assertEqual(sf[int].column_names(), ['int_data']) self.assertEqual(sf[[int, str]].column_names(), ['int_data', 'string_data']) self.assertEqual(sf[int, str].column_names(), ['int_data', 'string_data']) self.assertEqual(sf['int_data', 'string_data'].column_names(), ['int_data', 'string_data']) self.assertEqual(sf['string_data', 'int_data'].column_names(), ['string_data', 'int_data']) sf = SFrame() with self.assertRaises(RuntimeError): sf.select_column('x') with self.assertRaises(RuntimeError): sf.select_columns(['x']) sf.add_column(SArray(), 'x') # does not throw sf.select_column('x') sf.select_columns(['x']) with self.assertRaises(RuntimeError): sf.select_column('y') with self.assertRaises(RuntimeError): sf.select_columns(['y']) def test_topk(self): sf = SFrame(data=self.dataframe) # Test that order is preserved df2 = sf.topk('int_data').to_dataframe() df2_expected = self.dataframe.sort('int_data', ascending=False) df2_expected.index = range(df2.shape[0]) assert_frame_equal(df2, df2_expected) df2 = sf.topk('float_data', 3).to_dataframe() df2_expected = self.dataframe.sort('float_data', ascending=False).head(3) df2_expected.index = range(3) assert_frame_equal(df2, df2_expected) df2 = sf.topk('string_data', 3).to_dataframe() for i in range(0, 3): self.assertEqual(df2['int_data'][2-i], i + 7) with self.assertRaises(TypeError): sf.topk(2,3) sf = SFrame() sf.add_column(SArray([1,2,3,4,5]), 'a') sf.add_column(SArray([1,2,3,4,5]), 'b') sf.topk('a', 1) # should not fail def test_filter(self): sf = SFrame(data=self.dataframe) filter_sa = SArray([1,1,1,0,0,0,0,1,1,1]) sf2 = sf[filter_sa] exp_df = sf.head(3).append(sf.tail(3)) self.__test_equal(sf2, exp_df.to_dataframe()) # filter by 1s sf2 = sf[SArray(self.int_data)] exp_df = sf.head(10).to_dataframe() self.__test_equal(sf2, exp_df) # filter by 0s sf2 = sf[SArray([0,0,0,0,0,0,0,0,0,0])] exp_df = sf.head(0).to_dataframe() self.__test_equal(sf2, exp_df) # wrong size with self.assertRaises(IndexError): sf2 = sf[SArray([0,1,205])] # slightly bigger size sf = SFrame() n = 1000000 sf['a'] = range(n) result = sf[sf['a'] == -1] self.assertEquals(len(result), 0) result = sf[sf['a'] > n - 123] self.assertEquals(len(result), 122) l = list(result['a']) for i in range(len(result)): self.assertEquals(i + n - 122, l[i]) result = sf[sf['a'] < 2000] self.assertEquals(len(result), 2000) l = list(result['a']) for i in range(len(result)): self.assertEquals(i, l[i]) def test_sample_split(self): sf = SFrame(data=self.__create_test_df(100)) entry_list = set() for i in sf: entry_list.add(str(i)) sample_sf = sf.sample(.12, 9) sample_sf2 = sf.sample(.12, 9) self.assertEqual(len(sample_sf), len(sample_sf2)) assert_frame_equal(sample_sf.head().to_dataframe(), sample_sf2.head().to_dataframe()) for i in sample_sf: self.assertTrue(str(i) in entry_list) with self.assertRaises(ValueError): sf.sample(3) sample_sf = SFrame().sample(.12, 9) self.assertEqual(len(sample_sf), 0) a_split = sf.random_split(.12, 9) first_split_entries = set() for i in a_split[0]: first_split_entries.add(str(i)) for i in a_split[1]: self.assertTrue(str(i) in entry_list) self.assertTrue(str(i) not in first_split_entries) with self.assertRaises(ValueError): sf.random_split(3) self.assertEqual(len(SFrame().random_split(.4)[0]), 0) self.assertEqual(len(SFrame().random_split(.4)[1]), 0) # tests add_column, rename def test_edit_column_ops(self): sf = SFrame() # typical add column stuff sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.float_data)) sf.add_column(SArray(self.string_data)) # Make sure auto names work names = sf.column_names() cntr = 1 for i in names: self.assertEquals("X"+str(cntr), i) cntr = cntr + 1 # Remove a column del sf['X2'] # names names = sf.column_names() self.assertEquals(len(names), 2) self.assertEquals('X1', names[0]) self.assertEquals('X3', names[1]) # check content self.assertEquals(list(sf['X1'].head(10)), self.int_data) self.assertEquals(list(sf['X3'].head(10)), self.string_data) # check that a new automatically named column will not conflict sf.add_column(SArray(self.string_data)) names = sf.column_names() self.assertEquals(len(names), 3) uniq_set = set() for i in names: uniq_set.add(i) if len(uniq_set) == 1: self.assertEquals(list(sf[i].head(10)), self.int_data) else: self.assertEquals(list(sf[i].head(10)), self.string_data) self.assertEquals(len(uniq_set), 3) # replacing columns preserves order names = sf.column_names() for n in names: sf[n] = sf[n].apply(lambda x: x) self.assertEquals(sf.column_names(), names) # do it again! del sf['X1'] sf.add_column(SArray(self.string_data)) names = sf.column_names() self.assertEquals(len(names), 3) uniq_set = set() for i in names: uniq_set.add(i) self.assertEquals(list(sf[i].head(10)), self.string_data) self.assertEquals(len(uniq_set), len(names)) # standard rename rename_dict = {'X3':'data','X3.1':'more_data','X3.2':'even_more'} sf.rename(rename_dict) self.assertEquals(sf.column_names(), ['data','more_data','even_more']) # rename a column to a name that's already taken with self.assertRaises(RuntimeError): sf.rename({'data':'more_data'}) # try to rename a column that doesn't exist with self.assertRaises(ValueError): sf.rename({'foo':'bar'}) # pass something other than a dict with self.assertRaises(TypeError): sf.rename('foo') # Setting a column to const preserves order names = sf.column_names() for n in names: sf[n] = 1 self.assertEquals(sf.column_names(), names) def test_duplicate_add_column_failure(self): sf = SFrame() # typical add column stuff sf.add_column(SArray(self.int_data), "hello") with self.assertRaises(RuntimeError): sf.add_column(SArray(self.float_data), "hello") def test_remove_column(self): sf = SFrame() # typical add column stuff sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.float_data)) sf.add_column(SArray(self.string_data)) self.assertEquals(sf.column_names(), ['X1', 'X2', 'X3', 'X4', 'X5']) sf2 = sf.remove_column('X3') assert sf is sf2 self.assertEquals(sf.column_names(), ['X1', 'X2', 'X4', 'X5']) sf2 = sf.remove_columns(['X2', 'X5']) assert sf is sf2 self.assertEquals(sf.column_names(), ['X1', 'X4']) # with a generator expression sf2 = sf.remove_columns((n for n in ['X1', 'X5'] if n in sf.column_names())) assert sf is sf2 self.assertEquals(sf.column_names(), ['X4']) def test_remove_bad_column(self): sf = SFrame() # typical add column stuff sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.int_data)) sf.add_column(SArray(self.float_data)) sf.add_column(SArray(self.string_data)) self.assertEquals(sf.column_names(), ['X1', 'X2', 'X3', 'X4', 'X5']) self.assertRaises(KeyError, lambda: sf.remove_column('bad')) self.assertEquals(sf.column_names(), ['X1', 'X2', 'X3', 'X4', 'X5']) self.assertRaises(KeyError, lambda: sf.remove_columns(['X1', 'X2', 'X3', 'bad', 'X4'])) self.assertEquals(sf.column_names(), ['X1', 'X2', 'X3', 'X4', 'X5']) def __generate_synthetic_sframe__(self, num_users): """ synthetic collaborative data. generate 1000 users, user i watched movie 0, ... i-1. rating(i, j) = i + j length(i, j) = i - j """ sf = SFrame() sparse_matrix = {} for i in range(1, num_users + 1): sparse_matrix[i] = [(j, i + j, i - j) for j in range(1, i + 1)] user_ids = [] movie_ids = [] ratings = [] length_of_watching = [] for u in sparse_matrix: user_ids += [u] * len(sparse_matrix[u]) movie_ids += [x[0] for x in sparse_matrix[u]] ratings += [x[1] for x in sparse_matrix[u]] length_of_watching += [x[2] for x in sparse_matrix[u]] # typical add column stuff sf['user_id'] = (SArray(user_ids, int)) sf['movie_id'] = (SArray(movie_ids, str)) sf['rating'] = (SArray(ratings, float)) sf['length'] = (SArray(length_of_watching, int)) return sf def test_aggregate_ops(self): """ Test builtin groupby aggregators """ for m in [1, 10, 20, 50, 100]: values = range(m) vector_values = [[random.randint(1,100) for num in range(10)] \ for y in range(m)] sf = SFrame() sf['key'] = [1] * m sf['value'] = values sf['vector_values'] = vector_values sf.__materialize__() built_ins = [aggregate.COUNT(), aggregate.SUM('value'), aggregate.AVG('value'), aggregate.MIN('value'), aggregate.MAX('value'), aggregate.VAR('value'), aggregate.STDV('value'), aggregate.SUM('vector_values'), aggregate.MEAN('vector_values'), aggregate.COUNT_DISTINCT('value'), aggregate.DISTINCT('value'), aggregate.FREQ_COUNT('value')] sf2 = sf.groupby('key', built_ins) self.assertEquals(len(sf2), 1) self.assertEqual(sf2['Count'][0], m) self.assertEqual(sf2['Sum of value'][0], sum(values)) self.assertAlmostEqual(sf2['Avg of value'][0], np.mean(values)) self.assertEqual(sf2['Min of value'][0], min(values)) self.assertEqual(sf2['Max of value'][0], max(values)) self.assertAlmostEqual(sf2['Var of value'][0], np.var(values)) self.assertAlmostEqual(sf2['Stdv of value'][0], np.std(values)) np.testing.assert_almost_equal(list(sf2['Vector Sum of vector_values'][0]), list(np.sum(vector_values, axis=0))) np.testing.assert_almost_equal(list(sf2['Vector Avg of vector_values'][0]), list(np.mean(vector_values, axis=0))) self.assertEqual(sf2['Count Distinct of value'][0], len(np.unique(values))) self.assertEqual(sorted(sf2['Distinct of value'][0]), sorted(list(np.unique(values)))) self.assertEqual(sf2['Frequency Count of value'][0], {k:1 for k in np.unique(values)}) # For vectors def test_min_max_with_missing_values(self): """ Test builtin groupby aggregators """ sf = SFrame() sf['key'] = [1,1,1,1,1,1,2,2,2,2] sf['value'] = [1,None,None,None,None,None, None,None,None,None] built_ins = [aggregate.COUNT(), aggregate.SUM('value'), aggregate.AVG('value'), aggregate.MIN('value'), aggregate.MAX('value'), aggregate.VAR('value'), aggregate.STDV('value'), aggregate.COUNT_DISTINCT('value'), aggregate.DISTINCT('value'), aggregate.FREQ_COUNT('value')] sf2 = sf.groupby('key', built_ins).sort('key') self.assertEqual(list(sf2['Count']), [6,4]) self.assertEqual(list(sf2['Sum of value']), [1, 0]) self.assertEqual(list(sf2['Avg of value']), [1, None]) self.assertEqual(list(sf2['Min of value']), [1, None]) self.assertEqual(list(sf2['Max of value']), [1, None]) self.assertEqual(list(sf2['Var of value']), [0, 0]) self.assertEqual(list(sf2['Stdv of value']), [0, 0]) self.assertEqual(list(sf2['Count Distinct of value']), [2, 1]) self.assertEqual(set(sf2['Distinct of value'][0]), set([1, None])) self.assertEqual(set(sf2['Distinct of value'][1]), set([None])) self.assertEqual(sf2['Frequency Count of value'][0], {1:1, None:5}) self.assertEqual(sf2['Frequency Count of value'][1], {None:4}) def test_aggregate_ops_on_lazy_frame(self): """ Test builtin groupby aggregators """ for m in [1, 10, 20, 50, 100]: values = range(m) vector_values = [[random.randint(1,100) for num in range(10)] \ for y in range(m)] sf = SFrame() sf['key'] = [1] * m sf['value'] = values sf['vector_values'] = vector_values sf['value'] = sf['value'] + 0 built_ins = [aggregate.COUNT(), aggregate.SUM('value'), aggregate.AVG('value'), aggregate.MIN('value'), aggregate.MAX('value'), aggregate.VAR('value'), aggregate.STDV('value'), aggregate.SUM('vector_values'), aggregate.MEAN('vector_values'), aggregate.COUNT_DISTINCT('value'), aggregate.DISTINCT('value')] sf2 = sf.groupby('key', built_ins) self.assertEquals(len(sf2), 1) self.assertEqual(sf2['Count'][0], m) self.assertEqual(sf2['Sum of value'][0], sum(values)) self.assertAlmostEqual(sf2['Avg of value'][0], np.mean(values)) self.assertEqual(sf2['Min of value'][0], min(values)) self.assertEqual(sf2['Max of value'][0], max(values)) self.assertAlmostEqual(sf2['Var of value'][0], np.var(values)) self.assertAlmostEqual(sf2['Stdv of value'][0], np.std(values)) np.testing.assert_almost_equal(list(sf2['Vector Sum of vector_values'][0]), list(np.sum(vector_values, axis=0))) np.testing.assert_almost_equal(list(sf2['Vector Avg of vector_values'][0]), list(np.mean(vector_values, axis=0))) self.assertEqual(sf2['Count Distinct of value'][0], len(np.unique(values))) self.assertEqual(sorted(sf2['Distinct of value'][0]), sorted(np.unique(values))) def test_aggregate_ops2(self): """ Test builtin groupby aggregators using explicit named columns """ for m in [1, 10, 20, 50, 100]: values = range(m) vector_values = [[random.randint(1,100) for num in range(10)] \ for y in range(m)] sf = SFrame() sf['key'] = [1] * m sf['value'] = values sf['vector_values'] = vector_values built_ins = {'count':aggregate.COUNT, 'sum':aggregate.SUM('value'), 'avg':aggregate.AVG('value'), 'avg2':aggregate.MEAN('value'), 'min':aggregate.MIN('value'), 'max':aggregate.MAX('value'), 'var':aggregate.VAR('value'), 'var2':aggregate.VARIANCE('value'), 'stdv':aggregate.STD('value'), 'stdv2':aggregate.STDV('value'), 'vector_sum': aggregate.SUM('vector_values'), 'vector_mean': aggregate.MEAN('vector_values'), 'count_unique':aggregate.COUNT_DISTINCT('value'), 'unique':aggregate.DISTINCT('value'), 'frequency':aggregate.FREQ_COUNT('value')} sf2 = sf.groupby('key', built_ins) self.assertEquals(len(sf2), 1) self.assertEqual(sf2['count'][0], m) self.assertEqual(sf2['sum'][0], sum(values)) self.assertAlmostEqual(sf2['avg'][0], np.mean(values)) self.assertAlmostEqual(sf2['avg2'][0], np.mean(values)) self.assertEqual(sf2['min'][0], min(values)) self.assertEqual(sf2['max'][0], max(values)) self.assertAlmostEqual(sf2['var'][0], np.var(values)) self.assertAlmostEqual(sf2['var2'][0], np.var(values)) self.assertAlmostEqual(sf2['stdv'][0], np.std(values)) self.assertAlmostEqual(sf2['stdv2'][0], np.std(values)) np.testing.assert_almost_equal(sf2['vector_sum'][0], list(np.sum(vector_values, axis=0))) np.testing.assert_almost_equal(sf2['vector_mean'][0], list(np.mean(vector_values, axis=0))) self.assertEqual(sf2['count_unique'][0], len(np.unique(values))) self.assertEqual(sorted(sf2['unique'][0]), sorted(np.unique(values))) self.assertEqual(sf2['frequency'][0], {k:1 for k in np.unique(values)}) def test_groupby(self): """ Test builtin groupby and aggregate on different column types """ num_users = 500 sf = self.__generate_synthetic_sframe__(num_users=num_users) built_ins = [aggregate.COUNT(), aggregate.SUM('rating'), aggregate.AVG('rating'), aggregate.MIN('rating'), aggregate.MAX('rating'), aggregate.VAR('rating'), aggregate.STDV('rating')] built_in_names = ['Sum', 'Avg', 'Min', 'Max', 'Var', 'Stdv'] """ Test groupby user_id and aggregate on rating """ sf_user_rating = sf.groupby('user_id', built_ins) actual = sf_user_rating.column_names() expected = ['%s of rating' % v for v in built_in_names] \ + ['user_id'] + ['Count'] self.assertSetEqual(set(actual), set(expected)) for row in sf_user_rating: uid = row['user_id'] mids = range(1, uid + 1) ratings = [uid + i for i in mids] expected = [len(ratings), sum(ratings), np.mean(ratings), min(ratings), max(ratings), np.var(ratings), np.sqrt(np.var(ratings))] actual = [row['Count']] + [row['%s of rating' % op] \ for op in built_in_names] for i in range(len(actual)): self.assertAlmostEqual(actual[i], expected[i]) """ Test that count can be applied on empty aggregate column. """ sf_user_rating = sf.groupby("user_id", {'counter': aggregate.COUNT()}) actual = {x['user_id']: x['counter'] for x in sf_user_rating} expected = {i: i for i in range(1, num_users + 1)} self.assertDictEqual(actual, expected) """ Test groupby movie_id and aggregate on length_of_watching """ built_ins = [aggregate.COUNT(), aggregate.SUM('length'), aggregate.AVG('length'), aggregate.MIN('length'), aggregate.MAX('length'), aggregate.VAR('length'), aggregate.STDV('length')] sf_movie_length = sf.groupby('movie_id', built_ins) actual = sf_movie_length.column_names() expected = ['%s of length' % v for v in built_in_names] \ + ['movie_id'] + ['Count'] self.assertSetEqual(set(actual), set(expected)) for row in sf_movie_length: mid = row['movie_id'] uids = range(int(mid), num_users + 1) values = [i - int(mid) for i in uids] expected = [len(values), sum(values), np.mean(values), min(values), max(values), np.var(values), np.std(values)] actual = [row['Count']] + [row['%s of length' % op] \ for op in built_in_names] for i in range(len(actual)): self.assertAlmostEqual(actual[i], expected[i]) def test_quantile_groupby(self): sf = self.__generate_synthetic_sframe__(num_users=500) # max and min rating for each user g = sf.groupby('user_id', [aggregate.MIN('rating'), aggregate.MAX('rating'), aggregate.QUANTILE('rating', 0, 1)]) self.assertEquals(len(g), 500) for row in g: minrating = row['Min of rating'] maxrating = row['Max of rating'] arr = list(row['Quantiles of rating']) self.assertEquals(len(arr), 2) self.assertEquals(arr[0], minrating) self.assertEquals(arr[1], maxrating) def test_argmax_argmin_groupby(self): sf = self.__generate_synthetic_sframe__(num_users=500) sf_ret = sf.groupby('user_id', {'movie with max rating' : aggregate.ARGMAX('rating','movie_id'), 'movie with min rating' : aggregate.ARGMIN('rating','movie_id')}) self.assertEquals(len(sf_ret), 500) self.assertEqual(sf_ret["movie with max rating"].dtype(), str) self.assertEqual(sf_ret["movie with min rating"].dtype(), str) self.assertEqual(sf_ret["user_id"].dtype(), int) # make sure we have computed correctly. max_d = {} min_d = {} for i in sf: key = i['user_id'] if key not in max_d: max_d[key] = (i['movie_id'],i['rating']) min_d[key] = (i['movie_id'],i['rating']) else: if max_d[key][1] < i['rating']: max_d[key] = (i['movie_id'],i['rating']) if min_d[key][1] > i['rating']: min_d[key] = (i['movie_id'],i['rating']) for i in sf_ret: key = i['user_id'] self.assertEqual(i["movie with max rating"],max_d[key][0]) self.assertEqual(i["movie with min rating"],min_d[key][0]) def test_multicolumn_groupby(self): sf = self.__generate_synthetic_sframe__(num_users=500) sf_um = sf.groupby(["user_id", "movie_id"], aggregate.COUNT) # I can query it t = sf_um.to_dataframe() self.assertEqual(sf_um["user_id"].dtype(), int) self.assertEqual(sf_um["movie_id"].dtype(), str) # make sure we have counted correctly d = {} for i in sf: key = str(i['user_id']) + "," + i["movie_id"] if key not in d: d[key] = 0 d[key] = d[key] + 1 for i in sf_um: key = str(i['user_id']) + "," + i["movie_id"] self.assertTrue(key in d) self.assertEqual(i['Count'], d[key]) sf_um = sf.groupby(["movie_id", "user_id"], aggregate.COUNT()) # I can query it t = sf_um.to_dataframe() self.assertEqual(sf_um["user_id"].dtype(), int) self.assertEqual(sf_um["movie_id"].dtype(), str) # make sure we have counted correctly d = {} for i in sf: key = str(i['user_id']) + "," + i["movie_id"] if key not in d: d[key] = 0 d[key] = d[key] + 1 for i in sf_um: key = str(i['user_id']) + "," + i["movie_id"] self.assertTrue(key in d) self.assertEqual(i['Count'], d[key]) def __assert_concat_result_equal(self, result, expected, list_columns): self.assertEqual(result.num_columns(), expected.num_columns()) for column in result.column_names(): c1 = result[column] c2 = expected[column] self.assertEqual(c1.dtype(), c2.dtype()) self.assertEqual(c1.size(), c2.size()) if (column in list_columns): for i in range(len(c1)): if (c1[i] == None): self.assertTrue(c2[i] == None) continue if (c1.dtype() == dict): for k in c1[i]: self.assertEqual(c2[i][k], c1[i][k]) else: s1 = list(c1[i]); if s1 != None: s1.sort() s2 = list(c2[i]); if s2 != None: s2.sort() self.assertEqual(s1, s2) else: self.assertEqual(list(c1),list(c2)) def test_groupby_dict_key(self): t = SFrame({'a':[{1:2},{3:4}]}) with self.assertRaises(TypeError): t.groupby('a', {}) def test_concat(self): sf = SFrame() sf['a'] = [1,1,1,1, 2,2,2, 3, 4,4, 5] sf['b'] = [1,2,1,2, 3,3,1, 4, None, 2, None] sf['c'] = ['a','b','a','b', 'e','e', None, 'h', 'i','j', 'k'] sf['d'] = [1.0,2.0,1.0,2.0, 3.0,3.0,1.0, 4.0, None, 2.0, None] sf['e'] = [{'x': 1}] * len(sf['a']) print(sf['b'].dtype()) result = sf.groupby('a', aggregate.CONCAT('b')) expected_result = SFrame({ 'a': [1,2,3,4, 5], 'List of b': [[1.,1.,2.,2.],[1.,3.,3.],[4.],[2.], []] }) expected_result['List of b'] = expected_result['List of b'].astype(list) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['List of b']) result = sf.groupby('a', aggregate.CONCAT('d')) expected_result = SFrame({ 'a': [1,2,3,4, 5], 'List of d': [[1,1,2,2],[1,3,3],[4],[2], []] }) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['List of d']) result = sf.groupby('a', {'c_c' :aggregate.CONCAT('c')}) expected_result = SFrame({ 'a': [1,2,3,4, 5], 'c_c': [['a','b','a','b'],['e','e'],['h'],['i','j'], ['k']] }) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['c_c']) result = sf.groupby('a', aggregate.CONCAT('b','c')) expected_result = SFrame({ 'a': [1,2,3,4,5], 'Dict of b_c': [{1:'a',2:'b'},{3:'e', 1: None},{4:'h'},{2:'j'}, {}] }) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['Dict of b_c']) result = sf.groupby('a', {'c_b':aggregate.CONCAT('c','b')}) expected_result = SFrame({ 'a': [1,2,3,4,5], 'c_b': [{'a':1, 'b':2},{'e':3},{'h':4},{'i':None, 'j':2},{'k':None}] }) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['c_b']) result = sf.groupby('a', {'cs':aggregate.CONCAT('c'), 'bs':aggregate.CONCAT('b')}) expected_result = SFrame({ 'a': [1,2,3,4,5], 'bs': [[1,1,2,2],[1,3,3],[4],[2], []], 'cs': [['a','b','a','b'],['e','e'],['h'],['i','j'], ['k']] }) expected_result['bs'] = expected_result['bs'].astype(list) self.__assert_concat_result_equal(result.sort('a'), expected_result.sort('a'), ['bs','cs']) #exception fail if there is not column with self.assertRaises(TypeError): sf.groupby('a', aggregate.CONCAT()) with self.assertRaises(KeyError): sf.groupby('a', aggregate.CONCAT('nonexist')) with self.assertRaises(TypeError): sf.groupby('a', aggregate.CONCAT('e', 'a')) def test_select_one(self): sf = SFrame({'a':[1,1,2,2,3,3,4,4,5,5],'b':[1,2,3,4,5,6,7,8,9,10]}) res = list(sf.groupby('a', {'b':aggregate.SELECT_ONE('b')})) self.assertEqual(len(res), 5) for i in res: self.assertTrue(i['b'] == 2 * i['a'] or i['b'] == 2 * i['a'] - 1) def test_unique(self): sf = SFrame({'a':[1,1,2,2,3,3,4,4,5,5],'b':[1,2,3,4,5,6,7,8,9,10]}) self.assertEqual(len(sf.unique()), 10) vals = [1,1,2,2,3,3,4,4, None, None] sf = SFrame({'a':vals,'b':vals}) res = sf.unique() self.assertEqual(len(res), 5) self.assertEqual(set(res['a']), set([1,2,3,4,None])) self.assertEqual(set(res['b']), set([1,2,3,4,None])) def test_append_empty(self): sf_with_data = SFrame(data=self.dataframe) empty_sf = SFrame() self.assertFalse(sf_with_data.append(empty_sf) is sf_with_data) self.assertFalse(empty_sf.append(sf_with_data) is sf_with_data) self.assertFalse(empty_sf.append(empty_sf) is empty_sf) def test_append_all_match(self): sf1 = SFrame(data=self.dataframe) sf2 = SFrame(data=self.dataframe2) new_sf = sf1.append(sf2) assert_frame_equal(self.dataframe.append(self.dataframe2, ignore_index=True), new_sf.to_dataframe()) def test_append_lazy(self): sf1 = SFrame(data=self.dataframe) sf2 = SFrame(data=self.dataframe2) new_sf = sf1.append(sf2) self.assertTrue(new_sf.__is_materialized__()) filter_sf1 = SArray([1 for i in range(sf1.num_rows())] + [0 for i in range(sf2.num_rows())]) filter_sf2 = SArray([0 for i in range(sf1.num_rows())] + [1 for i in range(sf2.num_rows())]) new_sf1 = new_sf[filter_sf1] new_sf2 = new_sf[filter_sf2] assert_frame_equal(self.dataframe.append(self.dataframe2, ignore_index=True), new_sf.to_dataframe()) assert_frame_equal(sf1.to_dataframe(), new_sf1.to_dataframe()) assert_frame_equal(sf2.to_dataframe(), new_sf2.to_dataframe()) row = sf1.head(1) sf = SFrame() for i in range(10): sf = sf.append(row) df = sf.to_dataframe() for i in range(10): self.assertEqual(list(df.iloc[[i]]), list(sf.head(1).to_dataframe().iloc[[0]])) def test_recursive_append(self): sf = SFrame() for i in range(200): sf = sf.append(SFrame(data = self.dataframe)) #consume sf.__materialize__() def test_print_sframe(self): sf = SFrame() def _test_print(): sf.__repr__() sf._repr_html_() try: from StringIO import StringIO except ImportError: from io import StringIO output = StringIO() sf.print_rows(output_file=output) n = 20 sf['int'] = [i for i in range(n)] sf['float'] = [float(i) for i in range(n)] sf['str'] = [str(i) for i in range(n)] uc = '\xe5\xa4\xa7\xe5\xa4\xb4' # dato pronounced in chinese, big head sf['unicode'] = [uc for i in range(n)] sf['array'] = [array.array('d', [i]) for i in range(n)] sf['list'] = [[i, float(i), [i]] for i in range(n)] utc = dt.datetime.strptime('2011-01-21 02:37:21', '%Y-%m-%d %H:%M:%S') sf['dt'] = [utc for i in range(n)] sf['img'] = [Image() for i in range(n)] sf['long_str'] = ["".join([str(i)] * 50) for i in range(n)] sf['long_unicode'] = ["".join([uc] * 50) for i in range(n)] sf['bad_unicode'] = ['\x9d' + uc for i in range(n)] _test_print() def test_print_lazy_sframe(self): sf1 = SFrame(data=self.dataframe) self.assertTrue(sf1.__is_materialized__()) sf2 = sf1[sf1['int_data'] > 3] sf2.__repr__() sf2.__str__() self.assertFalse(sf2.__is_materialized__()) len(sf2) self.assertTrue(sf2.__is_materialized__()) def test_append_order_diff(self): # name match but column order not match sf1 = SFrame(data=self.dataframe) sf2 = SFrame(data=self.dataframe2) sf2.swap_columns('int_data', 'string_data') new_sf = sf1.append(sf2) assert_frame_equal(self.dataframe.append(self.dataframe2, ignore_index=True), new_sf.to_dataframe()) def test_append_empty_sframe(self): sf = SFrame(data=self.dataframe) other = SFrame() # non empty append empty assert_frame_equal(sf.append(other).to_dataframe(), self.dataframe) # empty append non empty assert_frame_equal(other.append(sf).to_dataframe(), self.dataframe) #empty append empty assert_frame_equal(other.append(other).to_dataframe(), pd.DataFrame()) def test_append_exception(self): sf = SFrame(data=self.dataframe) # column number not match other = SFrame() other.add_column(SArray(), "test") self.assertRaises(RuntimeError, lambda: sf.append(other)) # column not the same # column name not match other = SFrame() names = sf.column_names() for name in sf.column_names(): other.add_column(SArray(), name) names[0] = 'some name not match' self.assertRaises(RuntimeError, lambda: sf.append(other)) # name match but column type order not match sf1 = SFrame(data=self.dataframe) sf2 = SFrame(data=self.dataframe2) #change one column type sf1["int_data"] = sf2.select_column("int_data").astype(float) self.assertRaises(RuntimeError, lambda: sf.append(other)) def test_simple_joins(self): inner_expected = SFrame() inner_expected.add_column(SArray(['Robinson','Jones','Smith','Heisenberg','Rafferty']), 'last_name') inner_expected.add_column(SArray([34,33,34,33,31]), 'dep_id') inner_expected.add_column(SArray(['Clerical','Engineering','Clerical','Engineering','Sales']), 'dep_name') # Tests the "natural join" case beg = time.time() res = self.employees_sf.join(self.departments_sf) end = time.time() print("Really small join: " + str(end-beg) + " s") self.__assert_join_results_equal(res, inner_expected) left_join_row = SFrame() left_join_row.add_column(SArray(['John']), 'last_name') left_join_row.add_column(SArray([None], int), 'dep_id') left_join_row.add_column(SArray([None], str), 'dep_name') left_expected = inner_expected.append(left_join_row) # Left outer join, passing string to 'on' res = self.employees_sf.join(self.departments_sf, how='left', on='dep_id') self.__assert_join_results_equal(res, left_expected) right_join_row = SFrame() right_join_row.add_column(SArray([None], str), 'last_name') right_join_row.add_column(SArray([35]), 'dep_id') right_join_row.add_column(SArray(['Marketing']), 'dep_name') right_expected = inner_expected.append(right_join_row) # Right outer join, passing list to 'on' res = self.employees_sf.join(self.departments_sf, how='right', on=['dep_id']) self.__assert_join_results_equal(res, right_expected) outer_expected = left_expected.append(right_join_row) # Full outer join, passing dict to 'on' res = self.employees_sf.join(self.departments_sf, how='outer', on={'dep_id':'dep_id'}) self.__assert_join_results_equal(res, outer_expected) # Test a join on non-matching key res = self.employees_sf.join(self.departments_sf, on={'last_name':'dep_name'}) self.assertEquals(res.num_rows(), 0) self.assertEquals(res.num_cols(), 3) self.assertEquals(res.column_names(), ['last_name', 'dep_id', 'dep_id.1']) # Test a join on a non-unique key bad_departments = SFrame() bad_departments['dep_id'] = SArray([33,33,31,31]) bad_departments['dep_name'] = self.departments_sf['dep_name'] no_pk_expected = SFrame() no_pk_expected['last_name'] = SArray(['Rafferty','Rafferty','Heisenberg','Jones','Heisenberg','Jones']) no_pk_expected['dep_id'] = SArray([31,31,33,33,33,33]) no_pk_expected['dep_name'] = SArray(['Clerical','Marketing','Sales','Sales','Engineering','Engineering']) res = self.employees_sf.join(bad_departments, on='dep_id') self.__assert_join_results_equal(res, no_pk_expected) # Left join on non-unique key bad_departments = bad_departments.append(right_join_row[['dep_id', 'dep_name']]) bad_departments = bad_departments.append(right_join_row[['dep_id', 'dep_name']]) no_pk_expected = no_pk_expected.append(right_join_row) no_pk_expected = no_pk_expected.append(right_join_row) no_pk_expected = no_pk_expected[['dep_id', 'dep_name', 'last_name']] res = bad_departments.join(self.employees_sf, on='dep_id', how='left') self.__assert_join_results_equal(res, no_pk_expected) def test_big_composite_join(self): # Create a semi large SFrame with composite primary key (letter, number) letter_keys = [] number_keys = [] data = [] for i in string.ascii_lowercase: for j in range(0,100): letter_keys.append(i) number_keys.append(j) which = j % 3 if which == 0: data.append(string.ascii_uppercase) elif which == 1: data.append(string.digits) elif which == 2: data.append(string.hexdigits) pk_gibberish = SFrame() pk_gibberish['letter'] = SArray(letter_keys, str) pk_gibberish['number'] = SArray(number_keys, int) pk_gibberish['data'] = SArray(data, str) # Some rows that won't match more_data = [] more_letter_keys = [] more_number_keys = [] for i in range(0,40000): more_data.append('fish') more_letter_keys.append('A') more_number_keys.append(200) for i in range(0,80): for j in range(100,1000): more_data.append('waffles') more_letter_keys.append(letter_keys[j]) more_number_keys.append(number_keys[j]) # Non-matching row in this stretch if j == 147: more_letter_keys[-1] = 'A' for i in range(0,5000): more_data.append('pizza') more_letter_keys.append('Z') more_number_keys.append(400) join_with_gibberish = SFrame() join_with_gibberish['data'] = SArray(more_data, str) join_with_gibberish['moredata'] = SArray(more_data, str) join_with_gibberish['a_number'] = SArray(more_number_keys, int) join_with_gibberish['a_letter'] = SArray(more_letter_keys, str) expected_answer = SFrame() exp_letter = [] exp_number = [] exp_data = [] for i in range(0,80): exp_letter.extend(letter_keys[100:147]) exp_number.extend(number_keys[100:147]) exp_letter.extend(letter_keys[148:1000]) exp_number.extend(number_keys[148:1000]) exp_data.extend(data[100:147]) exp_data.extend(data[148:1000]) expected_answer['letter'] = SArray(exp_letter, str) expected_answer['number'] = SArray(exp_number, int) expected_answer['data'] = SArray(exp_data, str) expected_answer['data.1'] = 'waffles' expected_answer['moredata'] = 'waffles' beg = time.time() res = pk_gibberish.join(join_with_gibberish, on={'letter':'a_letter','number':'a_number'}) end = time.time() print("Join took " + str(end-beg) + " seconds") self.__assert_join_results_equal(res, expected_answer) def test_convert_dataframe_empty(self): sf = SFrame() sf['a'] = SArray([], int) df = sf.to_dataframe() self.assertEqual(df['a'].dtype, int) sf1 = SFrame(df) self.assertEquals(sf1['a'].dtype(), int) self.assertEqual(sf1.num_rows(), 0) def test_replace_one_column(self): sf = SFrame() sf['a'] = [1,2,3] self.assertEquals(list(sf['a']), [1,2,3]) # this should succeed as we are replacing a new column sf['a'] = [1,2] self.assertEquals(list(sf['a']), [1,2]) # failed to add new column should revert original sframe with self.assertRaises(TypeError): sf['a'] = [1,2,'a'] self.assertEquals(list(sf['a']), [1,2]) # add a column with different length should fail if there are more than one column sf = SFrame() sf['a'] = [1,2,3] sf['b'] = ['a', 'b', 'c'] with self.assertRaises(RuntimeError): sf['a'] = [1,2] def test_filter_by(self): # Set up SFrame to filter by sf = SFrame() sf.add_column(SArray(self.int_data), "ints") sf.add_column(SArray(self.float_data), "floats") sf.add_column(SArray(self.string_data), "strings") # Normal cases res = sf.filter_by(SArray(self.int_data), "ints") self.__assert_join_results_equal(res, sf) res = sf.filter_by(SArray(self.int_data), "ints", exclude=True) self.assertEquals(list(res), []) res = sf.filter_by([5,6], "ints") exp = SFrame() exp.add_column(SArray(self.int_data[4:6]), "ints") exp.add_column(SArray(self.float_data[4:6]), "floats") exp.add_column(SArray(self.string_data[4:6]), "strings") self.__assert_join_results_equal(res, exp) exp_opposite = SFrame() exp_opposite.add_column(SArray(self.int_data[:4]+self.int_data[6:]), "ints") exp_opposite.add_column(SArray(self.float_data[:4]+self.float_data[6:]), "floats") exp_opposite.add_column(SArray(self.string_data[:4]+self.string_data[6:]), "strings") res = sf.filter_by([5,6], "ints", exclude=True) self.__assert_join_results_equal(res, exp_opposite) exp_one = SFrame() exp_one.add_column(SArray(self.int_data[4:5]), "ints") exp_one.add_column(SArray(self.float_data[4:5]), "floats") exp_one.add_column(SArray(self.string_data[4:5]), "strings") exp_all_but_one = SFrame() exp_all_but_one.add_column(SArray(self.int_data[:4]+self.int_data[5:]), "ints") exp_all_but_one.add_column(SArray(self.float_data[:4]+self.float_data[5:]), "floats") exp_all_but_one.add_column(SArray(self.string_data[:4]+self.string_data[5:]), "strings") res = sf.filter_by(5, "ints") self.__assert_join_results_equal(res, exp_one) res = sf.filter_by(5, "ints", exclude=True) self.__assert_join_results_equal(res, exp_all_but_one) res = sf.filter_by("5", "strings") self.__assert_join_results_equal(res, exp_one) res = sf.filter_by(5, "ints", exclude=True) self.__assert_join_results_equal(res, exp_all_but_one) # Only missing values res = sf.filter_by([77,77,88,88], "ints") # Test against empty SFrame with correct columns/types self.__assert_join_results_equal(res, exp_one[exp_one['ints'] == 9000]) res = sf.filter_by([77,77,88,88], "ints", exclude=True) self.__assert_join_results_equal(res, sf) # Duplicate values res = sf.filter_by([6,6,5,5,6,5,5,6,5,5,5], "ints") self.__assert_join_results_equal(res, exp) res = sf.filter_by([6,6,5,5,6,5,5,6,5,5,5], "ints", exclude=True) self.__assert_join_results_equal(res, exp_opposite) # Duplicate and missing res = sf.filter_by([11,12,46,6,6,55,5,5], "ints") self.__assert_join_results_equal(res, exp) res = sf.filter_by([11,12,46,6,6,55,5,5], "ints", exclude=True) self.__assert_join_results_equal(res, exp_opposite) # Type mismatch with self.assertRaises(TypeError): res = sf.filter_by(["hi"], "ints") # Column doesn't exist with self.assertRaises(KeyError): res = sf.filter_by([1,2], "intssss") # Something that can't be turned into an SArray with self.assertRaises(Exception): res = sf.filter_by({1:2,3:4}, "ints") # column_name not given as string with self.assertRaises(TypeError): res = sf.filter_by(1,2) # Duplicate column names after join. Should be last because of the # renames. sf.rename({'ints':'id','floats':'id1','strings':'id11'}) exp.rename({'ints':'id','floats':'id1','strings':'id11'}) exp_opposite.rename({'ints':'id','floats':'id1','strings':'id11'}) res = sf.filter_by([5,6], "id") self.__assert_join_results_equal(res, exp) res = sf.filter_by([5,6], "id", exclude=True) self.__assert_join_results_equal(res, exp_opposite) # XXXXXX: should be inner function def __test_to_from_dataframe(self, data, type): sf = SFrame() sf['a'] = data df = sf.to_dataframe() sf1 = SFrame(df) self.assertTrue(sf1.dtype()[0]== type) df = pd.DataFrame({'val': data}) sf1 = SFrame(df) self.assertTrue(sf1.dtype()[0]== type) def test_to_from_dataframe(self): self.__test_to_from_dataframe([1,2,3], int) self.__test_to_from_dataframe(['a', 'b', 'c'], str) self.__test_to_from_dataframe([1.0, 2.0, 3.0], float) self.__test_to_from_dataframe([[1, 'b', {'a': 1}], [1,2,3]], list) self.__test_to_from_dataframe([{'a':1, 1:None}, {'b':2}], dict) self.__test_to_from_dataframe([[1,2],[1,2],[]], array.array) def test_pack_columns_exception(self): sf = SFrame() sf['a'] = [1, 2, 3, None, None] sf['b'] = [None, '2', '3', None, '5'] sf['c'] = [None, 2.0, 3.0, None, 5.0] # cannot pack non array value into array with self.assertRaises(TypeError): sf.pack_columns(dtype=array.array) # cannnot given non numeric na vlaue to array with self.assertRaises(ValueError): sf.pack_columns(dtype=array.array, fill_na='c') # cannot pack non exist columns with self.assertRaises(ValueError): sf.pack_columns(['d','a']) # dtype has to be dict/array/list with self.assertRaises(ValueError): sf.pack_columns(dtype=str) # pack duplicate columns with self.assertRaises(ValueError): sf.pack_columns(['a','a']) # pack partial columns to array, should fail if for columns that are not numeric with self.assertRaises(TypeError): sf.pack_columns(['a','b'], dtype=array.array) with self.assertRaises(TypeError): sf.pack_columns(column_prefix = 1) with self.assertRaises(ValueError): sf.pack_columns(column_prefix = '1') with self.assertRaises(ValueError): sf.pack_columns(column_prefix = 'c', columns=['a', 'b']) def test_pack_columns2(self): sf = SFrame() sf['id'] = [1, 2, 3, 4] sf['category.a'] = [None, '2', '3', None] sf['category.b'] = [None, 2.0, None, 4.0] expected = SArray([ [None, None], ['2', 2.0], ['3', None], [None, 4.0]]) result = sf.pack_columns(column_prefix='category') self.assertEqual(result.column_names(), ['id', 'category']) self.__assert_sarray_equal(result['id'], sf['id']) self.__assert_sarray_equal(result['category'], expected) result = sf.pack_columns(column_prefix='category', new_column_name="new name") self.assertEqual(result.column_names(), ['id', 'new name']) self.__assert_sarray_equal(result['id'], sf['id']) self.__assert_sarray_equal(result['new name'], expected) # default dtype is list result = sf.pack_columns(column_prefix='category', dtype=list) self.assertEqual(result.column_names(), ['id', 'category']) self.__assert_sarray_equal(result['category'], expected) # remove prefix == True by default expected = SArray([ {}, {'a':'2', 'b':2.0}, {'a':'3'}, {'b':4.0} ]) result = sf.pack_columns(column_prefix='category', dtype=dict) self.__assert_sarray_equal(result['category'], expected) # remove prefix == False expected = SArray([ {}, {'category.a':'2', 'category.b':2.0}, {'category.a':'3'}, {'category.b':4.0} ]) result = sf.pack_columns(column_prefix='category', dtype=dict, remove_prefix=False) self.assertEqual(result.column_names(), ['id', 'category']) self.__assert_sarray_equal(result['category'], expected) # fill_na expected = SArray([ {'a':1, 'b':1}, {'a':'2', 'b':2.0}, {'a':'3', 'b':1}, {'a':1, 'b':4.0} ]) result = sf.pack_columns(column_prefix='category', dtype=dict, fill_na = 1) self.__assert_sarray_equal(result['category'], expected) expected = SArray([ [1], [2], [3], [4]], list) result = sf.pack_columns(['id'], new_column_name='id') self.assertEqual(sorted(result.column_names()), sorted(['id', 'category.a', 'category.b'])) self.__assert_sarray_equal(result['id'], expected) def test_pack_columns(self): sf = SFrame() sf['id'] = [1, 2, 3, 4, 5] sf['b'] = [None, '2', '3', None, '5'] sf['c'] = [None, 2.0, 3.0, None, 5.0] expected_all_default = SArray([ [1, None, None], [2, '2', 2.0], [3, '3', 3.0], [4, None, None], [5, '5', 5.0] ]) # pack all columns, all default values self.__assert_sarray_equal(sf.pack_columns()['X1'], expected_all_default) expected_ab_default = SArray([ [1, None], [2, '2'], [3, '3'], [4, None], [5, '5'] ]) expected_all_fillna_1 = SArray([ [1, -1, -1], [2, '2', 2.0], [3, '3', 3.0], [4, -1, -1], [5, '5', 5.0] ]) # pack all columns do not drop na and also fill with some value result = sf.pack_columns(fill_na=-1) self.assertEqual(result.column_names(), ['X1']) self.__assert_sarray_equal(result['X1'], expected_all_fillna_1) # pack partial columns, all default value result = sf.pack_columns(['id','b']) self.assertEqual(result.column_names(), ['c','X2']) self.__assert_sarray_equal(result['c'], sf['c']) self.__assert_sarray_equal(result['X2'], expected_ab_default) expected_sarray_ac_fillna_default = SArray([ [1, float('NaN')], [2, 2.0], [3, 3.0], [4, float('NaN')], [5, 5.0] ]) result = sf.pack_columns(['id','c'], dtype=array.array) self.assertEqual(result.column_names(), ['b', 'X2']) self.__assert_sarray_equal(result['b'], sf['b']) self.__assert_sarray_equal(result['X2'], expected_sarray_ac_fillna_default) expected_dict_default = SArray([ {'id': 1}, {'id': 2, 'b':'2', 'c': 2.0}, {'id': 3, 'b':'3', 'c': 3.0}, {'id':4 }, {'id':5, 'b':'5', 'c': 5.0} ]) result = sf.pack_columns(dtype=dict) self.__assert_sarray_equal(result['X1'], expected_dict_default) expected_dict_fillna = SArray([ {'id': 1, 'b':-1, 'c': -1}, {'id': 2, 'b':'2', 'c': 2.0}, {'id': 3, 'b':'3', 'c': 3.0}, {'id': 4, 'b':-1, 'c': -1}, {'id': 5, 'b':'5', 'c': 5.0} ]) result = sf.pack_columns(dtype=dict, fill_na=-1) self.__assert_sarray_equal(result['X1'], expected_dict_fillna) # pack large number of rows sf = SFrame() num_rows = 100000 sf['a'] = range(0, num_rows); sf['b'] = range(0, num_rows); result = sf.pack_columns(['a', 'b']); self.assertEqual(len(result), num_rows); def test_pack_columns_dtype(self): a = SFrame({'name':[-140500967,-1405039672],'data':[3,4]}) b = a.pack_columns(['name','data'],dtype=array.array) expected = SArray([[-140500967, 3],[-1405039672,4]]) self.__assert_sarray_equal(b['X1'], expected) def test_unpack_dict_mixtype(self): sf = SFrame({'a':[{'a':["haha", "hoho"]}, {'a':array.array('d', [1,2,3])}]}) sf = sf.unpack('a', column_name_prefix = '') self.assertEqual(sf['a'].dtype(), list) sf = SFrame({'a':[{'a':["haha", "hoho"]}, {'a':None}]}) sf = sf.unpack('a', column_name_prefix = '') self.assertEqual(sf['a'].dtype(), list) sa = SArray([{'a':array.array('d', [1,2,3])}, {'a':None}]) sf = sa.unpack(column_name_prefix = '') self.assertEqual(sf['a'].dtype(), array.array) sa = SArray([{'a':array.array('d', [1,2,3])}, {'a':{'b':1}}]) sf = sa.unpack(column_name_prefix = '') self.assertEqual(sf['a'].dtype(), str) sa = SArray([{'a': 1, 'b': 0.1}, {'a': 0.1, 'b': 1}]) sf = sa.unpack(column_name_prefix = '') self.assertEqual(sf['a'].dtype(), float) self.assertEqual(sf['b'].dtype(), float) def test_unpack_list(self): sa = SArray([ [1, None, None], [2, '2', 2.0], [3, '3', 3.0], [4, None, None], [5, '5', 5.0] ]) expected = SFrame() expected ['a'] = [1, 2, 3, 4, 5] expected ['b'] = [None, '2', '3', None, '5'] expected ['c'] = [None, 2.0, 3.0, None, 5.0] result = sa.unpack(); result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) result = sa.unpack(column_name_prefix='ttt'); self.assertEqual(result.column_names(), ['ttt.0', 'ttt.1', 'ttt.2']) result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # column types result = sa.unpack(column_types=[int, str, float]); result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # more column types result = sa.unpack(column_types=[int, str, float, int]); result.rename(dict(zip(result.column_names(), ['a','b','c','d']))) e = expected.select_columns(['a','b','c']) e.add_column(SArray([None for i in range(5)], int),'d') assert_frame_equal(result.to_dataframe(), e.to_dataframe()) # less column types result = sa.unpack(column_types=[int, str]); result.rename(dict(zip(result.column_names(), ['a','b']))) e = expected.select_columns(['a','b']) assert_frame_equal(result.to_dataframe(), e.to_dataframe()) # fill na_value e = SFrame() e['a'] = [1, 2, None, 4, 5] e['b'] = [None, '2', '3', None, '5'] e['c'] = [None, 2.0, None, None, 5.0] result = sa.unpack(na_value=3); result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), e.to_dataframe()) # wrong length with self.assertRaises(TypeError): sa.unpack(column_name_prefix=['a','b']) # wrong type with self.assertRaises(RuntimeError): sa.unpack(column_types = [str, int, float]) # wrong limit types with self.assertRaises(TypeError): sa.unpack(limit=["1"]) # int array cannot be unpacked with self.assertRaises(TypeError): SArray([1,2,3,4]).unpack() # column name must be a string with self.assertRaises(TypeError): sa.unpack(1) # invalid column type with self.assertRaises(TypeError): sa.unpack(column_types = int) # invalid column type with self.assertRaises(TypeError): sa.unpack(column_types = [np.array]) # cannot infer type if no values with self.assertRaises(RuntimeError): SArray([], list).unpack() def test_unpack_array(self): import array sa = SArray([ array.array('d', [1, 1, 0]), array.array('d', [2, -1, 1]), array.array('d', [3, 3, 2]), array.array('d', [-1, 2, 3]), array.array('d', [5, 5, 4]) ]) expected = SFrame() expected ['a'] = [1.0, 2.0, 3.0, -1.0, 5.0] expected ['b'] = [1.0, -1.0, 3.0, 2.0, 5.0] expected ['c'] = [0.0, 1.0, 2.0, 3.0, 4.0] result = sa.unpack(); result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # right amount column names result = sa.unpack(column_name_prefix = 'unpacked'); result.rename(dict(zip(result.column_names(), ['t.0', 't.1', 't.2']))) result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # column types result = sa.unpack(column_types=[int, str, float]); result.rename(dict(zip(result.column_names(), ['a','b','c']))) expected['a'] = expected['a'].astype(int) expected['b'] = expected['b'].astype(str) expected['c'] = expected['c'].astype(float) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) # more column types result = sa.unpack(column_types=[int, str, float, int]); result.rename(dict(zip(result.column_names(), ['a','b','c','d']))) e = expected.select_columns(['a','b','c']) e.add_column(SArray([None for i in range(5)], int),'d') assert_frame_equal(result.to_dataframe(), e.to_dataframe()) # less column types result = sa.unpack(column_types=[int, str]); result.rename(dict(zip(result.column_names(), ['a','b']))) e = expected.select_columns(['a','b']) assert_frame_equal(result.to_dataframe(), e.to_dataframe()) # fill na_value e = SFrame() e['a'] = SArray([1, 2, 3, None, 5], float) e['b'] = SArray([1, None, 3, 2, 5], float) e['c'] = SArray([0, 1, 2, 3, 4], float) result = sa.unpack(na_value=-1); result.rename(dict(zip(result.column_names(), ['a','b','c']))) assert_frame_equal(result.to_dataframe(), e.to_dataframe()) def test_unpack_dict(self): sf = SFrame() sf["user_id"] = [1,2,3,4,5,6,7] sf["is_restaurant"] = [1, 1,0,0, 1, None, None] sf["is_retail"] = [None,1,1,None,1, None, None] sf["is_electronics"] = ["yes", "no","yes",None,"no", None, None] packed_sf = SFrame() packed_sf['user_id'] = sf['user_id'] packed_sf["category"] = [ {"is_restaurant": 1, "is_electronics": "yes"}, {"is_restaurant": 1, "is_retail": 1, "is_electronics": "no"}, {"is_restaurant": 0, "is_retail": 1, "is_electronics": "yes"}, {"is_restaurant": 0 }, {"is_restaurant": 1, "is_retail": 1, "is_electronics": "no"}, { }, None] with self.assertRaises(TypeError): packed_sf['user_id'].unpack() with self.assertRaises(TypeError): packed_sf['category'].unpack(1) with self.assertRaises(TypeError): packed_sf['category'].unpack(value_types = [int]) # unpack only one column expected_sf = SFrame() expected_sf["is_retail"] = sf["is_retail"] unpacked_sf = packed_sf['category'].unpack(limit=["is_retail"], column_types=[int], column_name_prefix=None) assert_frame_equal(unpacked_sf.to_dataframe(), expected_sf.to_dataframe()) # unpack all unpacked_sf = packed_sf['category'].unpack(column_name_prefix=None, column_types=[int, int, str], limit=["is_restaurant", "is_retail", "is_electronics"]) assert_frame_equal(unpacked_sf.to_dataframe(), sf[["is_restaurant", "is_retail", "is_electronics"]].to_dataframe()) # auto infer types, the column order may be different, so use order here before comparison unpacked_sf = packed_sf["category"].unpack() unpacked_sf.rename({ "X.is_restaurant": "is_restaurant", "X.is_retail": "is_retail", "X.is_electronics": "is_electronics" }) assert_frame_equal(unpacked_sf.to_dataframe().sort(axis=1), sf[["is_restaurant", "is_retail", "is_electronics"]].to_dataframe().sort(axis=1)) unpacked_sf = packed_sf["category"].unpack(na_value = 0, column_name_prefix="new") expected = SFrame() expected["new.is_restaurant"] = [1, 1,None,None, 1, None, None] expected["new.is_retail"] = [None,1,1,None,1, None, None] expected["new.is_electronics"] = ["yes", "no","yes",None,"no", None, None] assert_frame_equal(unpacked_sf.to_dataframe().sort(axis=1), expected.to_dataframe().sort(axis=1)) # unpack a dictionary key integer as key sa = SArray([ {1: 'a'}, {2: 'b'} ]) result = sa.unpack() expected = SFrame({'X.1':['a', None], 'X.2':[None, 'b']}) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) result = sa.unpack(limit=[2]) expected = SFrame({'X.2':[None, 'b']}) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) result = sa.unpack(limit=[2], column_name_prefix="expanded") expected = SFrame({'expanded.2':[None, 'b']}) assert_frame_equal(result.to_dataframe(), expected.to_dataframe()) sa = SArray([{i:i} for i in range(500)]) unpacked_sa = sa.unpack() self.assertEqual(len(unpacked_sa), len(sa)) i = 0 for v in unpacked_sa: for j in range(500): val = v['X.' + str(j)] if (j == i): self.assertEqual(val, i); else: self.assertEqual(val, None); i = i + 1 # if types don't agree, convert to string automatically sa = SArray([{'a':1},{'a': 'a_3'}]) sf = sa.unpack() self.assertEqual(sf.column_types(), [str]) sa = SArray([{'a':None}, {'a': 1}]) sf = sa.unpack() self.assertEqual(sf.column_types(), [int]) sa = SArray([{'a':1}, {'a': None}]) sf = sa.unpack() self.assertEqual(sf.column_types(), [int]) # type inferrence is already at server side even if limit is given sa = SArray([{'c'+str(i): i if i % 2 == 0 else 'v' + str(i)} for i in range(1000)]) unpacked = sa.unpack(limit=['c'+str(i) for i in range(10)], column_name_prefix="") for i in range(10): v = unpacked[i] for j in range(10): if (j != i): self.assertEqual(v['c'+str(j)], None) elif j % 2 == 0: self.assertEqual(v['c'+str(j)], j) else: self.assertEqual(v['c'+str(j)], 'v' + str(j)) def test_unpack_sframe(self): sf = SFrame() sf['user_id'] = range(7) sf["category"] = [ {"is_restaurant": 1, "is_electronics": "yes"}, {"is_restaurant": 1, "is_retail": 1, "is_electronics": "no"}, {"is_restaurant": 0, "is_retail": 1, "is_electronics": "yes"}, {"is_restaurant": 0 }, {"is_restaurant": 1, "is_retail": 1, "is_electronics": "no"}, { }, None] sf['list'] = [ None, range(1), range(2), range(3), range(1), range(2), range(3), ] with self.assertRaises(TypeError): sf.unpack('user_id') expected = SFrame() expected['user_id'] = sf['user_id'] expected['list'] = sf['list'] expected["is_restaurant"] = [1, 1,0,0, 1, None, None] expected["is_retail"] = [None,1,1,None,1, None, None] expected["is_electronics"] = ["yes", "no","yes",None,"no", None, None] result = sf.unpack('category') result.rename({ 'category.is_restaurant': 'is_restaurant', 'category.is_retail': 'is_retail', 'category.is_electronics': 'is_electronics' }) assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='category', column_name_prefix="") assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='category', column_name_prefix="abc") result.rename({ 'abc.is_restaurant': 'is_restaurant', 'abc.is_retail': 'is_retail', 'abc.is_electronics': 'is_electronics' }) assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='category', column_name_prefix="", column_types=[str], limit=['is_restaurant']) new_expected = expected[['user_id', 'list', 'is_restaurant']] new_expected['is_restaurant'] = new_expected['is_restaurant'].astype(str) assert_frame_equal(new_expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='category', column_name_prefix="", na_value = None) assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='list') expected = SFrame() expected['user_id'] = sf['user_id'] expected['list.0'] = [None,0,0,0, 0,0,0] expected['list.1'] = [None,None,1,1, None,1,1] expected['list.2'] = [None,None,None,2, None, None,2] expected['category'] = sf['category'] assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) result = sf.unpack(unpack_column='list', na_value= 2) expected = SFrame() expected['user_id'] = sf['user_id'] expected['list.0'] = [None,0,0,0, 0,0,0] expected['list.1'] = [None,None,1,1, None,1,1] expected['list.2'] = [None,None,None,None, None, None,None] expected['category'] = sf['category'] assert_frame_equal(expected.to_dataframe().sort(axis=1), result.to_dataframe().sort(axis=1)) # auto resolving conflicting names sf = SFrame() sf['a'] = range(100) sf['b'] = [range(5) for i in range(100)] sf['b.0'] = range(100) sf['b.0.1'] = range(100) result = sf.unpack('b') self.assertEqual(result.column_names(), ['a', 'b.0', 'b.0.1', 'b.0.1.1', 'b.1.1.1', 'b.2.1.1', 'b.3.1.1', 'b.4.1.1']) sf = SFrame() sf['a'] = range(100) sf['b'] = [{'str1': i, 'str2':i + 1} for i in range(100)] sf['b.str1'] = range(100) result = sf.unpack('b') self.assertEqual(len(result.column_names()), 4) def test_stack_dict(self): sf = SFrame() sf["user_id"] = [1,2,3,4,5] sf["user_name"] = ['user' + str(i) for i in list(sf['user_id'])] sf["category"] = [ {"is_restaurant": 1, }, {"is_restaurant": 0, "is_retail": 1 }, { "is_retail": 0 }, {}, None] expected_sf = SFrame(); expected_sf["user_id"] = [1,2, 2, 3,4,5] expected_sf["user_name"] = ['user' + str(i) for i in list(expected_sf['user_id'])] expected_sf['category'] = ['is_restaurant', 'is_restaurant', 'is_retail', 'is_retail', None, None] expected_sf['value'] = [1,0,1,0, None, None] df_expected = expected_sf.to_dataframe().sort(['user_id', 'category']).reset_index(drop=True) with self.assertRaises(TypeError): sf.stack() with self.assertRaises(ValueError): sf.stack('sss') with self.assertRaises(ValueError): sf.stack('category', ['user_id', 'value']) # normal case stacked_sf = sf.stack('category', ['category', 'value']) assert_frame_equal(stacked_sf.to_dataframe().sort(["user_id", "category"]).reset_index(drop=True), df_expected) # set column types stacked_sf = sf.stack('category') self.assertTrue(stacked_sf.column_types()[2] == str) self.assertTrue(stacked_sf.column_types()[3] == int) # auto generate column names stacked_sf = sf.stack('category') new_column_names = stacked_sf.column_names() self.assertTrue(len(new_column_names) == 4) expected_sf.rename({'category':new_column_names[2], 'value':new_column_names[3]}) df_expected = expected_sf.to_dataframe().sort(['user_id', new_column_names[2]]).reset_index(drop=True) assert_frame_equal(stacked_sf.to_dataframe().sort(["user_id", new_column_names[2]]).reset_index(drop=True), df_expected) #dropna expected_sf = SFrame(); expected_sf["user_id"] = [1,2, 2, 3, 4, 5] expected_sf["user_name"] = ['user' + str(i) for i in list(expected_sf['user_id'])] expected_sf['category'] = ['is_restaurant', 'is_restaurant', 'is_retail', 'is_retail', None, None] expected_sf['value'] = [1,0,1,0, None, None] df_expected = expected_sf.to_dataframe().sort(['user_id', 'category']).reset_index(drop=True) stacked_sf = sf.stack('category', ['category','value'], drop_na = False) assert_frame_equal(stacked_sf.to_dataframe().sort(["user_id", "category"]).reset_index(drop=True), df_expected) sf = SFrame() sf['a'] = SArray(([{}] * 100) + [{'a':1}]) # its a dict need 2 types with self.assertRaises(ValueError): sf.stack('a',['key', 'value'], new_column_type=[str]) with self.assertRaises(ValueError): sf.stack('a',['key', 'value'], new_column_type=str) sf.stack('a',['key', 'value'], new_column_type=[str, int]) expected_sf = SFrame() expected_sf['key'] = SArray([None] * 100 + ["a"]) expected_sf['value'] = SArray([None] * 100 + [1]) def test_stack_list(self): sf = SFrame() sf["a"] = [1,2,3,4,5] sf["b"] = [['a', 'b'], ['c'], ['d'],['e', None], None] expected_result = SFrame() expected_result['a'] = [1,1,2,3,4,4,5] expected_result['X1'] = ['a','b','c','d','e',None, None] with self.assertRaises(TypeError): sf.stack() with self.assertRaises(ValueError): sf.stack('sss') with self.assertRaises(TypeError): sf.stack('a') with self.assertRaises(TypeError): sf.stack('b', ["something"]) result = sf.stack("b", drop_na = False) stacked_column_name = result.column_names()[1] expected_result.rename({'X1':stacked_column_name}) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) # default drop_na=False result = sf.stack("b") assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) result = sf.stack("b", new_column_name = "b", drop_na = False) expected_result.rename({stacked_column_name: 'b'}) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) result = sf.stack("b", new_column_name = "b", drop_na = False) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) # drop_na=True result = sf.stack("b", drop_na = True) expected_result = SFrame() expected_result['a'] = [1,1,2,3,4,4] expected_result[result.column_names()[1]] = ['a','b','c','d','e',None] assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) sf = SFrame() n = 1000000 sf['a'] = range(1,n) sf['b'] = [[str(i), str(i+1)] for i in range(1,n)] result = sf.stack('b') self.assertTrue(len(result), n * 2) sf = SFrame() sf['a'] = SArray(([[]] * 100) + [['a','b']]) # its a dict need 2 types with self.assertRaises(ValueError): sf.stack('a', 'a', new_column_type=[str, int]) sf.stack('a', 'a', new_column_type=str) expected_sf = SFrame() expected_sf['a'] = SArray([None] * 100 + ["a", "b"]) def test_stack_vector(self): sf = SFrame() sf["a"] = [1,2,3,4,5] sf["b"] = [[1],[1,2],[1,2,3],[1,2,3,4],None] expected_result = SFrame() expected_result['a'] = [1,2,2,3,3,3,4,4,4,4,5] expected_result['X1'] = [1,1,2,1,2,3,1,2,3,4,None] with self.assertRaises(TypeError): sf.stack() with self.assertRaises(ValueError): sf.stack('sss') with self.assertRaises(TypeError): sf.stack('a') with self.assertRaises(TypeError): sf.stack('b', ["something"]) result = sf.stack("b", drop_na = False) stacked_column_name = result.column_names()[1] expected_result.rename({'X1':stacked_column_name}) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) # default drop_na=False result = sf.stack("b") assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) result = sf.stack("b", new_column_name = "b", drop_na = False) expected_result.rename({stacked_column_name: 'b'}) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) result = sf.stack("b", new_column_name = "b", drop_na = False) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) # drop_na=True result = sf.stack("b", drop_na = True) expected_result = SFrame() expected_result['a'] = [1,2,2,3,3,3,4,4,4,4] expected_result[result.column_names()[1]] = SArray([1,1,2,1,2,3,1,2,3,4], float) assert_frame_equal(result.to_dataframe(), expected_result.to_dataframe()) import array sf = SFrame() sf['a'] = SArray(([array.array('d')] * 100) + [array.array('d',[1.0,2.0])]) # its a dict need 2 types with self.assertRaises(ValueError): sf.stack('a', 'a', new_column_type=[str, int]) sf.stack('a', 'a', new_column_type=int) expected_sf = SFrame() expected_sf['a'] = SArray([None] * 100 + [1, 2]) def test_unstack_dict(self): sf = SFrame() sf["user_id"] = [1,2,3,4] sf["user_name"] = ['user' + str(i) for i in list(sf['user_id'])] sf["categories"] = [ {"is_restaurant": 1, }, {"is_restaurant": 0, "is_retail": 1 }, { "is_retail": 0 }, None] stacked_sf = sf.stack('categories', ['category', 'value'], drop_na=False) # normal unstack unstacked_sf = stacked_sf.unstack(column=['category', 'value'], new_column_name = 'categories') # these frames are *almost* equal except user4 will be {} instead of None assert_frame_equal(sf.fillna('categories',{}).to_dataframe(), unstacked_sf.to_dataframe().sort("user_id").reset_index(drop=True)) # missing new column name unstacked_sf = stacked_sf.unstack(['category', 'value']) self.assertEqual(len(unstacked_sf.column_names()), 3) unstacked_sf.rename({unstacked_sf.column_names()[2] : 'categories'}) assert_frame_equal(sf.fillna('categories',{}).to_dataframe(), unstacked_sf.to_dataframe().sort("user_id").reset_index(drop=True)) # missing column names with self.assertRaises(KeyError): stacked_sf.unstack(['category','value1']) # wrong input with self.assertRaises(TypeError): stacked_sf.unstack(['category']) # duplicate new column name with self.assertRaises(RuntimeError): unstacked_sf = stacked_sf.unstack(['category', 'value'], 'user_name') def test_unstack_list(self): sf = SFrame() sf['a'] = [1,2,3,4] sf['b'] = [range(10), range(20), range(30), range(50)] stacked_sf = sf.stack('b', new_column_name = 'new_b') unstacked_sf = stacked_sf.unstack('new_b', new_column_name = 'b') self.__assert_concat_result_equal(sf.sort('a'), unstacked_sf.sort('a'), ['b']) unstacked_sf = stacked_sf.unstack('new_b') unstacked_sf.rename({unstacked_sf.column_names()[1]: 'b'}) self.__assert_concat_result_equal(sf.sort('a'), unstacked_sf.sort('a'), ['b']) unstacked_sf = stacked_sf.unstack('new_b', new_column_name='b') unstacked_sf.rename({unstacked_sf.column_names()[1]: 'b'}) self.__assert_concat_result_equal(sf.sort('a'), unstacked_sf.sort('a'), ['b']) with self.assertRaises(RuntimeError): stacked_sf.unstack('new_b', new_column_name='a') with self.assertRaises(TypeError): stacked_sf.unstack(['new_b']) with self.assertRaises(KeyError): stacked_sf.unstack('non exist') def test_content_identifier(self): sf = SFrame({"a":[1,2,3,4],"b":["1","2","3","4"]}) a1 = sf['a'].__get_content_identifier__() a2 = sf['a'].__get_content_identifier__() self.assertEquals(a1, a2) def test_random_access(self): t1 = list(range(0,100000)) t2 = [str(i) for i in t1] t = [{'t1':t1[i], 't2':t2[i]} for i in range(len(t1))]; s = SFrame({'t1':t1,'t2':t2}) # simple slices self.__test_equal(s[1:10000], pd.DataFrame(t[1:10000])) self.__test_equal(s[0:10000:3], pd.DataFrame(t[0:10000:3])) self.__test_equal(s[1:10000:3], pd.DataFrame(t[1:10000:3])) self.__test_equal(s[2:10000:3], pd.DataFrame(t[2:10000:3])) self.__test_equal(s[3:10000:101], pd.DataFrame(t[3:10000:101])) # negative slices self.__test_equal(s[-5:], pd.DataFrame(t[-5:])) self.__test_equal(s[-1:], pd.DataFrame(t[-1:])) self.__test_equal(s[-100:-10], pd.DataFrame(t[-100:-10])) self.__test_equal(s[-100:-10:2], pd.DataFrame(t[-100:-10:2])) # single element reads self.assertEqual(s[511], t[511]) self.assertEqual(s[1912],t[1912]) self.assertEqual(s[-1], t[-1]) self.assertEqual(s[-10],t[-10]) # edge case odities self.__test_equal(s[10:100:100], pd.DataFrame(t[10:100:100])) self.__test_equal(s[-100:len(s):10], pd.DataFrame(t[-100:len(t):10])) self.assertEqual(len(s[-1:-2]), 0) self.assertEqual(len(s[-1:-1000:2]), 0) with self.assertRaises(IndexError): s[len(s)] def sort_n_rows(self, nrows=100): nrows += 1 sf = SFrame() sf['a'] = range(1, nrows) sf['b'] = [float(i) for i in range(1,nrows)] sf['c'] = [str(i) for i in range(1,nrows)] sf['d'] = [[i, i+1] for i in range(1,nrows)] reversed_sf = SFrame() reversed_sf['a'] = range(nrows-1, 0, -1) reversed_sf['b'] = [float(i) for i in range(nrows-1, 0, -1)] reversed_sf['c'] = [str(i) for i in range(nrows-1, 0, -1)] reversed_sf['d'] = [[i, i+1] for i in range(nrows-1, 0, -1)] with self.assertRaises(TypeError): sf.sort() with self.assertRaises(TypeError): sf.sort(1) with self.assertRaises(TypeError): sf.sort("d") with self.assertRaises(ValueError): sf.sort("nonexist") with self.assertRaises(TypeError): sf.sort({'a':True}) result = sf.sort('a') assert_frame_equal(sf.to_dataframe(), result.to_dataframe()); # try a lazy input result = sf[sf['a'] > 10].sort('a') assert_frame_equal(sf[sf['a'] > 10].to_dataframe(), result.to_dataframe()); result = sf.sort('a', ascending = False) assert_frame_equal(reversed_sf.to_dataframe(), result.to_dataframe()); # lazy reversed result = sf[sf['a'] > 10].sort('a', ascending = False) assert_frame_equal(reversed_sf[reversed_sf['a'] > 10].to_dataframe(), result.to_dataframe()); # lazy reversed result = sf[sf['a'] > 10].sort('a', ascending = False) assert_frame_equal(reversed_sf[reversed_sf['a'] > 10].to_dataframe(), result.to_dataframe()); # sort two columns result = sf.sort(['a', 'b']) assert_frame_equal(sf.to_dataframe(), result.to_dataframe()); result = sf.sort(['a', 'c'], ascending = False) assert_frame_equal(reversed_sf.to_dataframe(), result.to_dataframe()); result = sf.sort([('a', True), ('b', False)]) assert_frame_equal(sf.to_dataframe(), result.to_dataframe()); result = sf.sort([('a', False), ('b', True)]) assert_frame_equal(reversed_sf.to_dataframe(), result.to_dataframe()); # empty sort should not throw sf = SFrame({'x':[]}) sf.sort('x') def test_sort(self): #self.sort_n_rows(100) for i in range(1, 10): self.sort_n_rows(i) def test_dropna(self): # empty case sf = SFrame() self.assertEquals(len(sf.dropna()), 0) # normal case self.__test_equal(self.employees_sf.dropna(), self.employees_sf[0:5].to_dataframe()) test_split = self.employees_sf.dropna_split() self.__test_equal(test_split[0], self.employees_sf[0:5].to_dataframe()) self.__test_equal(test_split[1], self.employees_sf[5:6].to_dataframe()) # create some other test sframe test_sf = SFrame({'ints':SArray([None,None,3,4,None], int), 'floats':SArray([np.nan,2.,3.,4.,np.nan],float), 'strs':SArray(['1',np.nan,'','4',None], str), 'lists':SArray([[1],None,[],[1,1,1,1],None], list), 'dicts':SArray([{1:2},{2:3},{},{4:5},None], dict)}) # another normal, but more interesting case self.__test_equal(test_sf.dropna(), pd.DataFrame({'ints':[3,4],'floats':[3.,4.],'strs':['','4'],'lists':[[],[1,1,1,1]],'dicts':[{},{4:5}]})) test_split = test_sf.dropna_split() self.__test_equal(test_split[0], test_sf[2:4].to_dataframe()) self.__test_equal(test_split[1], test_sf[0:2].append(test_sf[4:5]).to_dataframe()) # the 'all' case self.__test_equal(test_sf.dropna(how='all'), test_sf[0:4].to_dataframe()) test_split = test_sf.dropna_split(how='all') self.__test_equal(test_split[0], test_sf[0:4].to_dataframe()) self.__test_equal(test_split[1], test_sf[4:5].to_dataframe()) # select some columns self.__test_equal(test_sf.dropna(['ints','floats'], how='all'), test_sf[1:4].to_dataframe()) test_split = test_sf.dropna_split(['ints','floats'], how='all') self.__test_equal(test_split[0], test_sf[1:4].to_dataframe()) self.__test_equal(test_split[1], test_sf[0:1].append(test_sf[4:5]).to_dataframe()) self.__test_equal(test_sf.dropna('strs'), test_sf[0:4].to_dataframe()) test_split = test_sf.dropna_split('strs') self.__test_equal(test_split[0], test_sf[0:4].to_dataframe()) self.__test_equal(test_split[1], test_sf[4:5].to_dataframe()) self.__test_equal(test_sf.dropna(['strs','dicts']), test_sf[0:4].to_dataframe()) test_split = test_sf.dropna_split(['strs','dicts']) self.__test_equal(test_split[0], test_sf[0:4].to_dataframe()) self.__test_equal(test_split[1], test_sf[4:5].to_dataframe()) # bad stuff with self.assertRaises(TypeError): test_sf.dropna(1) test_sf.dropna([1,2]) test_sf.dropna('strs', how=1) test_sf.dropna_split(1) test_sf.dropna_split([1,2]) test_sf.dropna_split('strs', how=1) with self.assertRaises(ValueError): test_sf.dropna('ints', how='blah') test_sf.dropna_split('ints', how='blah') with self.assertRaises(RuntimeError): test_sf.dropna('dontexist') test_sf.dropna_split('dontexist') def test_add_row_number(self): sf = SFrame(self.__create_test_df(400000)) sf = sf.add_row_number('id') self.assertEquals(list(sf['id']), list(range(0,400000))) del sf['id'] sf = sf.add_row_number('id', -20000) self.assertEquals(list(sf['id']), list(range(-20000,380000))) del sf['id'] sf = sf.add_row_number('id', 40000) self.assertEquals(list(sf['id']), list(range(40000,440000))) with self.assertRaises(RuntimeError): sf.add_row_number('id') with self.assertRaises(TypeError): sf = sf.add_row_number(46) sf = sf.add_row_number('id2',start='hi') def test_check_lazy_sframe_size(self): # empty sframe, materialized, has_size sf = SFrame() self.assertTrue(sf.__is_materialized__()) self.assertTrue(sf.__has_size__()) # add one column, not materialized, has_size sf['a'] = range(1000) self.assertTrue(sf.__is_materialized__()) self.assertTrue(sf.__has_size__()) # materialize it, materialized, has_size sf['a'] = range(1000) sf.__materialize__() self.assertTrue(sf.__is_materialized__()) self.assertTrue(sf.__has_size__()) # logical filter, not materialized, not has_size sf = sf[sf['a'] > 5000] self.assertFalse(sf.__is_materialized__()) self.assertFalse(sf.__has_size__()) def test_lazy_logical_filter_sarray(self): g=SArray(range(10000)) g2=SArray(range(10000)) a=g[g>10] a2=g2[g>10] z=a[a2>20] self.assertEqual(len(z), 9979) def test_lazy_logical_filter_sframe(self): g=SFrame({'a':range(10000)}) g2=SFrame({'a':range(10000)}) a=g[g['a']>10] a2=g2[g['a']>10] z=a[a2['a']>20] self.assertEqual(len(z), 9979) def test_sframe_to_rdd(self): if not HAS_PYSPARK: print("Did not run Pyspark unit tests!") return sc = SparkContext('local') # Easiest case: single column of integers test_rdd = sc.parallelize(range(100)) sf = SFrame.from_rdd(test_rdd) self.assertTrue(sf.num_cols(), 1) self.assertTrue(sf.column_names(), ['X1']) # We cast integers to floats to be safe on varying types self.assertEquals([float(i) for i in range(0,100)], list(sf['X1'])) sc.stop() def test_rdd_to_sframe(self): if not HAS_PYSPARK: print("Did not run Pyspark unit tests!") return sc = SparkContext('local') # Easiest case: single column of integers sf = SFrame({'column_name':range(100)}) test_rdd = sf.to_rdd(sc) res = test_rdd.collect() self.assertEquals(res, [{'column_name':long(i)} for i in range(100)]) sc.stop() def test_column_manipulation_of_lazy_sframe(self): g=SFrame({'a':[1,2,3,4,5],'id':[1,2,3,4,5]}) g = g[g['id'] > 2] del g['id'] # if lazy column deletion is quirky, this will cause an exception self.assertEquals(list(g[0:2]['a']), [3,4]) g=SFrame({'a':[1,2,3,4,5],'id':[1,2,3,4,5]}) g = g[g['id'] > 2] g.swap_columns('a','id') # if lazy column swap is quirky, this will cause an exception self.assertEquals(list(g[0:2]['a']), [3,4]) def test_empty_sarray(self): with util.TempDirectory() as f: sf = SArray() sf.save(f) sf2 = SArray(f) self.assertEquals(len(sf2), 0) def test_empty_sframe(self): with util.TempDirectory() as f: sf = SFrame() sf.save(f) sf2 = SFrame(f) self.assertEquals(len(sf2), 0) self.assertEquals(sf2.num_columns(), 0) def test_none_column(self): sf = SFrame({'a':[1,2,3,4,5]}) sf['b'] = None self.assertEqual(sf['b'].dtype(), float) df = pd.DataFrame({'a': [1,2,3,4,5], 'b': [None,None,None,None,None]}) self.__test_equal(sf, df) sa = SArray.from_const(None, 100) self.assertEquals(list(sa), [None] * 100) self.assertEqual(sa.dtype(), float) def test_apply_with_partial(self): sf = SFrame({'a': [1, 2, 3, 4, 5]}) def concat_fn(character, row): return '%s%d' % (character, row['a']) my_partial_fn = functools.partial(concat_fn, 'x') sa = sf.apply(my_partial_fn) self.assertEqual(list(sa), ['x1', 'x2', 'x3', 'x4', 'x5']) def test_apply_with_functor(self): sf = SFrame({'a': [1, 2, 3, 4, 5]}) class Concatenator(object): def __init__(self, character): self.character = character def __call__(self, row): return '%s%d' % (self.character, row['a']) concatenator = Concatenator('x') sa = sf.apply(concatenator) self.assertEqual(list(sa), ['x1', 'x2', 'x3', 'x4', 'x5']) def test_save_sframe(self): '''save lazily evaluated SFrame should not matrialize to target folder ''' data = SFrame() data['x'] = range(100) data['x'] = data['x'] > 50 #lazy and good tmp_dir = tempfile.mkdtemp() data.save(tmp_dir) shutil.rmtree(tmp_dir) print(data) def test_empty_argmax_does_not_fail(self): # an empty argmax should not result in a crash sf = SFrame({'id': [0, 0, 0, 1, 1, 2, 2], 'value': [3.0, 2.0, 2.3, None, None, 4.3, 1.3], 'category': ['A', 'B', 'A', 'E', 'A', 'A', 'B']}) sf.groupby('id', aggregate.ARGMAX('value', 'category')) def test_cache_invalidation(self): # Changes to the SFrame should invalidate the indexing cache. X = SFrame({'a' : range(4000), 'b' : range(4000)}) for i in range(0, 4000, 20): self.assertEqual(X[i], {'a' : i, 'b' : i}) X['a'] = range(1000, 5000) for i in range(0, 4000, 20): self.assertEqual(X[i], {'a' : 1000 + i, 'b' : i}) del X['b'] for i in range(0, 4000, 20): self.assertEqual(X[i], {'a' : 1000 + i}) X['b'] = X['a'] for i in range(0, 4000, 20): self.assertEqual(X[i], {'a' : 1000 + i, 'b' : 1000 + i}) X.rename({'b' : 'c'}) for i in range(0, 4000, 20): self.assertEqual(X[i], {'a' : 1000 + i, 'c' : 1000 + i}) def test_to_numpy(self): X = SFrame({'a' : range(100), 'b' : range(100)}) import numpy as np import numpy.testing as nptest Y = np.transpose(np.array([range(100), range(100)])) nptest.assert_array_equal(X.to_numpy(), Y) X['b'] = X['b'].astype(str) s = [str(i) for i in range(100)] Y = np.transpose(np.array([s, s])) nptest.assert_array_equal(X.to_numpy(), Y) @mock.patch(__name__+'.sqlite3.Cursor', spec=True) @mock.patch(__name__+'.sqlite3.Connection', spec=True) def test_from_sql(self, mock_conn, mock_cursor): # Set up mock connection and cursor conn = mock_conn('example.db') curs = mock_cursor() conn.cursor.return_value = curs sf_type_codes = [44,44,41,22,114,199,43] sf_data = list(zip(*self.all_type_cols)) sf_iter = sf_data.__iter__() def mock_fetchone(): try: return next(sf_iter) except StopIteration: return None def mock_fetchmany(size=1): count = 0 ret_list = [] for i in sf_iter: if count == curs.arraysize: break ret_list.append(i) count += 1 return ret_list curs.fetchone.side_effect = mock_fetchone curs.fetchmany.side_effect = mock_fetchmany curs.description = [['X'+str(i+1),sf_type_codes[i]]+[None for j in range(5)] for i in range(len(sf_data[0]))] # bigger than cache, no Nones sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=5, dbapi_module=dbapi2_mock()) _assert_sframe_equal(sf, self.sf_all_types) # smaller than cache, no Nones sf_iter = sf_data.__iter__() sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=100, dbapi_module=dbapi2_mock()) _assert_sframe_equal(sf, self.sf_all_types) none_col = [None for i in range(5)] nones_in_cache = list(zip(*[none_col for i in range(len(sf_data[0]))])) none_sf = SFrame({'X'+str(i):none_col for i in range(1,len(sf_data[0])+1)}) test_data = (nones_in_cache+sf_data) sf_iter = test_data.__iter__() # more None rows than cache & types in description sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=5, dbapi_module=dbapi2_mock()) sf_inferred_types = SFrame() expected_types = [float,float,str,str,str,str,dt.datetime] for i in zip(self.sf_all_types.column_names(),expected_types): new_col = SArray(none_col).astype(i[1]) new_col = new_col.append(self.sf_all_types[i[0]].apply(lambda x: i[1](x) if i[1] is not dt.datetime else x)) sf_inferred_types.add_column(new_col) # Don't test the string representation of dict and list; there are # funky consistency issues with the string representations of these sf.remove_columns(['X5', 'X6']) sf_inferred_types.remove_columns(['X5', 'X6']) _assert_sframe_equal(sf, sf_inferred_types) # more None rows than cache & no type information for i in range(len(curs.description)): curs.description[i][1] = None sf_iter = test_data.__iter__() sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=5, dbapi_module=dbapi2_mock()) sf_inferred_types = SFrame() expected_types = [str for i in range(len(sf_data[0]))] for i in zip(self.sf_all_types.column_names(),expected_types): new_col = SArray(none_col).astype(i[1]) new_col = new_col.append(self.sf_all_types[i[0]].apply(lambda x: str(x))) sf_inferred_types.add_column(new_col) # Don't test the string representation of dict, could be out of order sf.remove_columns(['X5', 'X6']) sf_inferred_types.remove_columns(['X5', 'X6']) _assert_sframe_equal(sf, sf_inferred_types) ### column_type_hints tests sf_iter = test_data.__iter__() sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=5, dbapi_module=dbapi2_mock(), column_type_hints=str) sf.remove_columns(['X5', 'X6']) _assert_sframe_equal(sf, sf_inferred_types) # Provide unhintable types sf_iter = test_data.__iter__() expected_types = [int,float,str,array.array,list,dict,dt.datetime] with self.assertRaises(TypeError): sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=5, dbapi_module=dbapi2_mock(), column_type_hints=expected_types) sf_iter = test_data.__iter__() expected_types = {'X'+str(i+1):expected_types[i] for i in range(3)} sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=10, dbapi_module=dbapi2_mock(), column_type_hints=expected_types) _assert_sframe_equal(sf[5:],self.sf_all_types) # Test a float forced to a str sf_iter = test_data.__iter__() expected_types['X2'] = str self.sf_all_types['X2'] = self.sf_all_types['X2'].apply(lambda x: str(x)) sf = SFrame.from_sql(conn, "SELECT * FROM test_table", type_inference_rows=10, dbapi_module=dbapi2_mock(), column_type_hints=expected_types) _assert_sframe_equal(sf[5:],self.sf_all_types) # Type unsupported by sframe curs.description = [['X1',44],['X2',44]] sf_iter = [[complex(4.5,3),1], [complex(3.4,5),2]].__iter__() sf = SFrame.from_sql(conn, "SELECT * FROM test_table") expected_sf = SFrame({'X1':["(4.5+3j)","(3.4+5j)"],'X2':[1,2]}) _assert_sframe_equal(sf, expected_sf) # bad DBAPI version! bad_version = dbapi2_mock() bad_version.apilevel = "1.0 " with self.assertRaises(NotImplementedError): sf = SFrame.from_sql(conn, "SELECT * FROM test_table", dbapi_module=bad_version) # Bad module with self.assertRaises(AttributeError): sf = SFrame.from_sql(conn, "SELECT * FROM test_table", dbapi_module=os) # Bad connection with self.assertRaises(AttributeError): sf = SFrame.from_sql(4, "SELECT * FROM test_table") # Empty query result curs.description = [] sf = SFrame.from_sql(conn, "SELECT * FROM test_table", dbapi_module=dbapi2_mock()) _assert_sframe_equal(sf, SFrame()) @mock.patch(__name__+'.sqlite3.Cursor', spec=True) @mock.patch(__name__+'.sqlite3.Connection', spec=True) def test_to_sql(self, mock_conn, mock_cursor): conn = mock_conn('example.db') curs = mock_cursor() insert_stmt = "INSERT INTO ins_test (X1,X2,X3,X4,X5,X6,X7) VALUES ({0},{1},{2},{3},{4},{5},{6})" num_cols = len(self.sf_all_types.column_names()) test_cases = [ ('qmark',insert_stmt.format(*['?' for i in range(num_cols)])), ('numeric',insert_stmt.format(*[':'+str(i) for i in range(1,num_cols+1)])), ('named',insert_stmt.format(*[':X'+str(i) for i in range(1,num_cols+1)])), ('format',insert_stmt.format(*['%s' for i in range(num_cols)])), ('pyformat',insert_stmt.format(*['%(X'+str(i)+')s' for i in range(1,num_cols+1)])), ] for i in test_cases: conn.cursor.return_value = curs mock_mod = dbapi2_mock() mock_mod.paramstyle = i[0] self.sf_all_types.to_sql(conn, "ins_test", dbapi_module=mock_mod) conn.cursor.assert_called_once_with() calls = [] col_names = self.sf_all_types.column_names() for j in self.sf_all_types: if i[0] == 'named' or i[0] == 'pyformat': calls.append(mock.call(i[1],j)) else: calls.append(mock.call(i[1],[j[k] for k in col_names])) curs.execute.assert_has_calls(calls, any_order=False) self.assertEquals(curs.execute.call_count, len(self.sf_all_types)) conn.commit.assert_called_once_with() curs.close.assert_called_once_with() conn.reset_mock() curs.reset_mock() # bad DBAPI version! bad_version = dbapi2_mock() bad_version.apilevel = "1.0 " with self.assertRaises(NotImplementedError): self.sf_all_types.to_sql(conn, "ins_test", dbapi_module=bad_version) # bad paramstyle bad_paramstyle = dbapi2_mock() bad_paramstyle.paramstyle = 'foo' with self.assertRaises(TypeError): self.sf_all_types.to_sql(conn, "ins_test", dbapi_module=bad_paramstyle) def test_materialize(self): sf = SFrame({'a':range(100)}) sf = sf[sf['a'] > 10] self.assertFalse(sf.is_materialized()) sf.materialize() self.assertTrue(sf.is_materialized()) def test_materialization_slicing(self): # Has been known to fail. g=SFrame({'a':range(100)})[:10] g['b'] = g['a'] + 1 g['b'].materialize() g.materialize() def test_copy(self): from copy import copy sf = generate_random_sframe(100, "Cns") sf_copy = copy(sf) assert sf is not sf_copy _assert_sframe_equal(sf, sf_copy) def test_deepcopy(self): from copy import deepcopy sf = generate_random_sframe(100, "Cns") sf_copy = deepcopy(sf) assert sf is not sf_copy _assert_sframe_equal(sf, sf_copy) if __name__ == "__main__": import sys # Check if we are supposed to connect to another server for i, v in enumerate(sys.argv): if v.startswith("ipc://"): _launch(v) # The rest of the arguments need to get passed through to # the unittest module del sys.argv[i] break unittest.main()
bsd-3-clause
NuGrid/NuGridPy
nugridpy/grain.py
1
61226
''' grain.py is a collection of routines to analyze presolar grain data (and can probably be extended to observational data at a later stage). This class load the current version of the presolar grain database for further processing. A private databse can be given as well as described later. Several routines (see below and NuGrid book) can be used to filter, plot, and retrieve grain data. The presolar grain database is supported by the group at Washington University, mainly Frank Gyngard. The database can be found at http://presolar.wustl.edu/PGD/Presolar_Grain_Database.html Important note: This script assumes that you have a full SVN tree checked out (or actually, that you have at least the utils folder and the validation folder on the same level checked out. Usage of these tools ==================== For questions, bug reports, please contact [email protected] Reto Trappitsch for the NuGrid collaboration Developing notes ================ data header should be safed lowercase always -> use .lower() argument also for comparison w/ user input therefore! if updating the database with new files creates a utf16 error while reading in the database, open it in excel, save the file, and try again. if this does not work, good luck... ''' from __future__ import division from __future__ import print_function from __future__ import absolute_import from builtins import input from builtins import zip from builtins import str from builtins import range from past.utils import old_div import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import os import sys import xlrd from .utils import * from .data_plot import * ### find the path to the tree ### class gdb(DataPlot, Utils): ''' This class provides easy access to the presolar grain databse, as described in the header The databse is read in by default, however you can choose a private database and if you do so, if you want to use the private database exclusively or together with the whole database. If you use a private datafile, make sure it is in the same structure as the presolar grain database. The most important thing is that you have a column named 'Notes' before the data start. Everything on the right there is data, on the left description of the data. You don't have to have all the data columns if you don't have data, but the header of the data columns needs to be exactly the same as the in the database. Look at validation/grain_data xls files if you want to see an example of the formatting / or use it as a template. Parameters ---------- fname : string filename to your private database, if not in the main tree structure with other databse, give full path. gdbdir : string In case you have not a full svn tree installed, choose the correct path to all the data here gdbload : boolean, optional True or False: Do you want to load the grain database or not? The default is True. iniabufile : string, optional Which initial abundances should be used to calculate delta values. Here we assume complete SVN tree (need USEEPP). Give absolute path otherwise. The default is 'frames/mppnp/USEEPP/iniab2.0E-02GN93.ppn'. ''' def __init__(self, fname=None, gdbdir=None, gdbload=True, iniabufile='frames/mppnp/USEEPP/iniab2.0E-02GN93.ppn'): print('Reading in... this takes a little bit') if iniabufile[0] != '/': iniabufile = get_svnpath() + iniabufile # grab data header_desc, header_data, desc, data = preprocessor(fname,gdbdir,gdbload) # make dictionary descdict = dict(list(zip(header_desc,list(range(len(header_desc)))))) datadict = dict(list(zip(header_data,list(range(len(header_data)))))) # style definer header_style, style = style_creator(desc,descdict) styledict = dict(list(zip(header_style,list(range(len(header_style)))))) # make private instances w/ all the data self._header_desc = header_desc self._header_data = header_data self._header_style = header_style self._desc = desc self._data = data self._style = style self._descdict = descdict self._datadict = datadict self._styledict = styledict # make the working data self.header_desc = header_desc self.header_data = header_data self.header_style = header_style self.desc = desc self.data = data self.style = style self.descdict = descdict self.datadict = datadict self.styledict = styledict self.inut = iniabu(iniabufile) def __del__(self): print('Presolar grain database available at: http://presolar.wustl.edu/PGD/Presolar_Grain_Database.html') def reset_filter(self): ''' Resets the filter and goes back to initialized value. This routine also resets the style if you have changed it. ''' self.header_desc = self._header_desc self.header_data = self._header_data self.header_style = self._header_style self.desc = self._desc self.data = self._data self.style = self._style self.descdict = self._descdict self.datadict = self._datadict self.styledict = self._styledict def info(self, graintype=True, group=True, reference=False, phase=True): ''' This routine gives you informations what kind of grains are currently available in your filtered version. It gives you the type of grains available. More to be implemented upon need. Parameters ---------- graintype, group, references, phase : boolean What do you wanna print for information. There can be a lot of references, hence references default is False. ''' # create a list with all graintypes gtype_info = [] group_info = [] ref_info = [] phase_info = [] # how many grains in database print('There are ' + str(len(self.data)) + ' grains in your database.\n') # graintypes if graintype: for i in range(len(self.desc)): gtype_tmp = self.desc[i][self.descdict['Type']] wrtchk = True for j in range(len(gtype_info)): if gtype_info[j] == gtype_tmp: wrtchk = False break if wrtchk: gtype_info.append(gtype_tmp) print('Available graintypes are:') print('-------------------------') print(gtype_info) # groups if group: for i in range(len(self.desc)): group_tmp = self.desc[i][self.descdict['Group']] wrtchk = True for j in range(len(group_info)): if group_info[j] == group_tmp: wrtchk = False break if wrtchk: group_info.append(group_tmp) print('\nAvailable groups of grains (for silicates and oxides) are:') print('----------------------------------------------------------') print(group_info) # Phases if phase: for i in range(len(self.desc)): phase_tmp = self.desc[i][self.descdict['Phase']] wrtchk = True for j in range(len(phase_info)): if phase_info[j] == phase_tmp: wrtchk = False break if wrtchk: phase_info.append(phase_tmp) print('\nAvailable Phases of grains are:') print('----------------------------------------------------------') print(phase_info) # references if reference: for i in range(len(self.desc)): ref_tmp = self.desc[i][self.descdict['Reference']] wrtchk = True for j in range(len(ref_info)): if ref_info[j] == ref_tmp: wrtchk = False break if wrtchk: ref_info.append(ref_tmp) print('\nReferences for grains:') print('----------------------') print(ref_info) def filter_desc(self, graintype=None, group=None, reference=None, size=None, phase=None): ''' This routine is to filter for description elements. You can check what is available in the description by running, >>> i.header_desc() where i is the instance you loaded. You can run the filter multiple times! You can filter for the following types: Parameters ---------- graintype : string or list Give graintypes as either 'M' for only mainstream or more than one ['M','Z']. group : integer or list Group of graintypes, important for oxides and silicates, since they are split into groups and not into types. Example 1, or give a list [1,3]. reference : string or list Give the reference you want to filter for, try an i.info() to pick the right name! You can select a single referennce as string or multiple references in as a list. size : string Filter for grain sizes, give '<5.0' or '>5.0' as a string for larger or smaller than a given grainsize in um. Only data with known grainsizes are chosen. Often grain sizes are given in a times b, where a and b are the minumum and maximum measurements from an image. If you give a >5.0 then grains with the smaller dimension >5um are taken into account. If you want <5.0 then grains with the upper dimension <5um are taken into account. ''' # filter for graintype if graintype != None: indexing = [] # index file on which lines to pick if type(graintype) == str: graintype = [graintype] # filter for typ in graintype: for i in range(len(self.desc)): if self.desc[i][self.descdict['Type']] == typ: indexing.append(i) # filter: self._filter_desc(indexing) # filter for graintype if phase != None: indexing = [] # index file on which lines to pick if type(phase) == str: phase = [phase] # filter for typ in phase: for i in range(len(self.desc)): if self.desc[i][self.descdict['Phase']] == typ: indexing.append(i) # filter: self._filter_desc(indexing) # filter for group (oxides and silicates) if group != None: indexing = [] # index file on which lines to pick if type(group) != list: group = [group] # filter for grp in group: for i in range(len(self.desc)): if self.desc[i][self.descdict['Group']] == str(int(grp)): indexing.append(i) # filter: self._filter_desc(indexing) # filter for reference if reference != None: indexing = [] # index file on which lines to pick if type(reference) != list: reference = [reference] # filter for ri in range(len(reference)): for i in range(len(self.desc)): if self.desc[i][self.descdict['Reference']] == reference[ri]: indexing.append(i) # filter: self._filter_desc(indexing) # filter for grainzise if size != None: indexing = [] # index file on which lines to pick # filter operator = size[0:1] size = float(size[1:len(size)]) for i in range(len(self.desc)): if self.desc[i][self.descdict['Size (microns)']] != '': try: # print self.desc[i][self.descdict['Size (microns)']] comperator1 = self.desc[i][self.descdict['Size (microns)']].split('x')[0] comperator2 = self.desc[i][self.descdict['Size (microns)']].split('x')[1] comperator = [float(comperator1),float(comperator2)] if operator == '<': comperator = np.min(comperator) else: comperator = np.max(comperator) except IndexError or AttributeError: try: comperator = float(self.desc[i][self.descdict['Size (microns)']]) except ValueError: continue if operator == '>': if comperator > size: indexing.append(i) elif operator == '<': if comperator < size: indexing.append(i) else: continue # filter: self._filter_desc(indexing) def _filter_desc(self, indexing): ''' Private function to filter data, goes with filter_desc ''' # now filter data if len(indexing) > 0: desc_tmp = np.zeros((len(indexing),len(self.header_desc)),dtype='|S1024') data_tmp = np.zeros((len(indexing),len(self.header_data))) style_tmp= np.zeros((len(indexing),len(self.header_style)),dtype='|S1024') for i in range(len(indexing)): for j in range(len(self.header_desc)): desc_tmp[i][j] = self.desc[indexing[i]][j] for k in range(len(self.header_data)): data_tmp[i][k] = self.data[indexing[i]][k] for l in range(len(self.header_style)): style_tmp[i][l]= self.style[indexing[i]][l] self.desc = desc_tmp self.data = data_tmp self.style= style_tmp else: print('No filter selected or no data found!') def filter_single_grain(self): ''' This subroutine is to filter out single grains. It is kind of useless if you have tons of data still in the list. To work on there, you have other filters (filter_desc and filter_data) available! This filter gives an index to every grain, plots the most important information, and then asks you to pick a filter. No input necessary, input is given during the routine ''' my_index = 0 my_grains = [['Index','Label','Type','Group','Meteorite','Mineralogy','C12/C13','d(Si29/Si30)','d(Si30/Si29)']] # add the data to this grain list for it in range(len(self.data)): my_grains.append([my_index,self.desc[it][self.descdict['Grain Label']], self.desc[it][self.descdict['Type']], self.desc[it][self.descdict['Group']], self.desc[it][self.descdict['Meteorite']], self.desc[it][self.descdict['Mineralogy']], self.data[it][self.datadict['12c/13c']], self.data[it][self.datadict['d(29si/28si)']], self.data[it][self.datadict['d(30si/28si)']]]) my_index += 1 for prt_line in my_grains: print(prt_line) # now write the selector for the index of the grains to select which one should be # available and which ones should be dumped usr_input = '' usr_input = input('Select the grains by index that you want to use. Please separate the indeces by a comma, e.g., 1 or 0,2,3,4\n') # process user index if usr_input == '': print('No data selected to filter.') return None elif len(usr_input) == 1: usr_index = [usr_input] else: usr_index = usr_input.split(',') for it in range(len(usr_index)): usr_index[it] = int(usr_index[it]) # filter desc_tmp = np.zeros((len(usr_index),len(self.header_desc)),dtype='|S1024') data_tmp = np.zeros((len(usr_index),len(self.header_data))) style_tmp= np.zeros((len(usr_index),len(self.header_style)),dtype='|S1024') for i in range(len(usr_index)): for j in range(len(self.header_desc)): desc_tmp[i][j] = self.desc[usr_index[i]][j] for k in range(len(self.header_data)): data_tmp[i][k] = self.data[usr_index[i]][k] for l in range(len(self.header_style)): style_tmp[i][l]= self.style[usr_index[i]][l] self.desc = desc_tmp self.data = data_tmp self.style= style_tmp def filter_data(self, isos, limit, delta=True): ''' This subroutine filters isotopic values according to the limit you give. You can filter in ratio or in delta space. Parameters ---------- isos : list isotopes you want to filter for, e.g., give as ['Si-28', 'Si-30'] for the 28/30 ratio. limit : string what do you want to filter for, e.g., ratio or delta > 100, then give '>100'. delta : boolean, optional do you wanna filter in delta space, then set to True, otherwise to False. The default is True. ''' # check availability dat_index, delta_b, ratio_b = self.check_availability(isos) if dat_index == -1: print('Isotopes selected are not available. Check i.datadict (where i is your instance) for availability of isotopes.') return None # select if larger or smaller and define limit if limit[0:1] == '>': comperator = 'gt' elif limit[0:1] == '<': comperator = 'st' else: print('Comperator not specified. Limit must be given as \'>5.\' for example.') return None try: limit = float(limit[1:len(limit)]) except ValueError: print('Limit must be given as \'>5.\' for example.') return None # now calculate the actual limit to compare with, depending on if it delta or not or whatsoever if delta == delta_b: # input and available same if ratio_b: # one over if delta: tmp = self.delta_to_ratio(isos,limit,oneover=True) comp_lim = self.ratio_to_delta(isos,tmp) # check else: comp_lim = old_div(1.,limit) # check else: # all fine comp_lim = limit else: # input and availability not the same if ratio_b: # one over if delta: # delta given, ratio one over wanted comp_lim = self.delta_to_ratio(isos,limit,oneover=True) else: # ratio given, delta one over wanted comp_lim = self.ratio_to_delta(isos,limit,oneover=True) else: # not one over if delta: # delta given, ratio wanted comp_lim = self.delta_to_ratio(isos,limit) else: comp_lim = self.ratio_to_delta(isos,limit) # indexing vector indexing = [] for i in range(len(self.data)): dat_val = self.data[i][dat_index] if comperator == 'st': if dat_val < comp_lim: indexing.append(i) else: if dat_val > comp_lim: indexing.append(i) # now filter data if len(indexing) > 0: desc_tmp = np.zeros((len(indexing),len(self.header_desc)),dtype='|S1024') data_tmp = np.zeros((len(indexing),len(self.header_data))) for i in range(len(indexing)): for j in range(len(self.header_desc)): desc_tmp[i][j] = self.desc[indexing[i]][j] for k in range(len(self.header_data)): data_tmp[i][k] = self.data[indexing[i]][k] self.desc = desc_tmp self.data = data_tmp else: print('No filter selected!') def filter_uncertainty(self, isos, limit, delta=True): ''' This subroutine filters isotopic values according to the limit you give. You can filter in ratio or in delta space. This routine is based on the uncertainties, e.g., if you want to select only high quality data. Parameters ---------- isos : list Isotopes you want to filter for, e.g., give as ['Si-28', 'Si-30'] for the 28/30 ratio. limit : string What do you want to filter for, e.g., ratio or delta > 100, then give '>100'. delta : boolean, optional Do you wanna filter in delta space, then set to True, otherwise to False. The default is True. ''' # check availability dat_index, delta_b, ratio_b = self.check_availability(isos) if dat_index == -1: print('Isotopes selected are not available. Check i.datadict (where i is your instance) for availability of isotopes.') return None # select if larger or smaller and define limit if limit[0:1] == '>': comperator = 'gt' elif limit[0:1] == '<': comperator = 'st' else: print('Comperator not specified. Limit must be given as \'>5.\' for example.') return None try: limit = float(limit[1:len(limit)]) except ValueError: print('Limit must be given as \'>5.\' for example.') return None # now calculate the actual limit to compare with, depending on if it delta or not or whatsoever if delta == delta_b: # input and available same if ratio_b: # one over if delta: tmp = self.delta_to_ratio(isos,limit,oneover=True) comp_lim = self.ratio_to_delta(isos,tmp) # check else: comp_lim = old_div(1.,limit) # check else: # all fine comp_lim = limit else: # input and availability not the same if ratio_b: # one over if delta: # delta given, ratio one over wanted comp_lim = self.delta_to_ratio(isos,limit,oneover=True) else: # ratio given, delta one over wanted comp_lim = self.ratio_to_delta(isos,limit,oneover=True) else: # not one over if delta: # delta given, ratio wanted comp_lim = self.delta_to_ratio(isos,limit) else: comp_lim = self.ratio_to_delta(isos,limit) # indexing vector indexing = [] for i in range(len(self.data)): dat_val = self.data[i][dat_index+1] if comperator == 'st': if dat_val < comp_lim: indexing.append(i) else: if dat_val > comp_lim: indexing.append(i) # now filter data if len(indexing) > 0: desc_tmp = np.zeros((len(indexing),len(self.header_desc)),dtype='|S1024') data_tmp = np.zeros((len(indexing),len(self.header_data))) for i in range(len(indexing)): for j in range(len(self.header_desc)): desc_tmp[i][j] = self.desc[indexing[i]][j] for k in range(len(self.header_data)): data_tmp[i][k] = self.data[indexing[i]][k] self.desc = desc_tmp self.data = data_tmp else: print('No filter selected!') def style_chg_label(self,type,symb=None,edc=None,fac=None,smbsz=None,edw=None,lab=None): ''' This routine changes the plotting style that is set by default. The style is changed according the the label that you choose. Changing according to reference, use style_chg_ref() function! You can change it back to default by resetting the filter using g.reset_filter() routine, assuming that g is your instance. The format that is used here is: ['Symbol', 'Edge color', 'Face color', 'Symbol size', 'Edge width' ,'Label'] You can see the current styles by running Attention: You have to give values to all variables that are compatible with the python mathplotlib. If not, it's your fault if nothing works. g.style Parameters ---------- type : string Select the label of the grains you want to change. symb : string, optional Select new symbol. None for no change. edc : string, optional Select new edge color. None for no change. fac : string, optional Select new face color. None for no change. smbsz : string, optional Select new symbol size. None for no change. edw : string, optional Select new edge width. None for no change. lab : string, optional Select new label. None for no change. Watch out, if you want to do more specifications later, the type will have changed to the new label. ''' # do stuff for selected type for i in range(len(self.style)): # check if type is correct, otherwise continue directly if self.style[i][self.styledict['Label']] == type: # change symbol: if symb != None: self.style[i][self.styledict['Symbol']] = symb # change edge color if edc != None: self.style[i][self.styledict['Edge color']] = edc # change face color if fac != None: self.style[i][self.styledict['Face color']] = fac # change symbol size if smbsz != None: self.style[i][self.styledict['Symbol size']] = smbsz # change edge width if edw != None: self.style[i][self.styledict['Edge width']] = edw # change label if lab != None: self.style[i][self.styledict['Label']] = lab def style_chg_ref(self,ref,symb=None,edc=None,fac=None,smbsz=None,edw=None,lab=None): ''' This routine changes the plotting style that is set by default. The style is changed according the the reference of the paper as given in the grain database. For change according to type of grain, use the routine syle_chg_label(). ['Symbol', 'Edge color', 'Face color', 'Symbol size', 'Edge width' ,'Label'] You can see the current styles by running Attention: You have to give values to all variables that are compatible with the python mathplotlib. If not, it's your fault if nothing works. g.style Parameters ---------- ref : string Select the reference of the grains you want to change. symb : string, optional Select new symbol. None for no change. edc : string, optional Select new edge color. None for no change. fac : string, optional Select new face color. None for no change. smbsz : string, optional Select new symbol size. None for no change. edw : string, optional Select new edge width. None for no change. lab : string, optional Select new label. None for no change. ''' # do stuff for selected reference for i in range(len(self.style)): # check if reference is correct, otherwise continue directly if self.desc[i][self.descdict['Reference']] == ref: # change symbol: if symb != None: self.style[i][self.styledict['Symbol']] = symb # change edge color if edc != None: self.style[i][self.styledict['Edge color']] = edc # change face color if fac != None: self.style[i][self.styledict['Face color']] = fac # change symbol size if smbsz != None: self.style[i][self.styledict['Symbol size']] = smbsz # change edge width if edw != None: self.style[i][self.styledict['Edge width']] = edw # change label if lab != None: self.style[i][self.styledict['Label']] = lab ##### PLOTTING PREPARATOR ##### def plot_ratio_return(self, isox, isoy, deltax=True, deltay=True): ''' This routine returns data isotopic data to plot from the filtered list of data. Parameters ---------- isox : list Isotopes for x axis in standard format ['Si-28','Si-30']. isoy : list Same as isox but for y axis. deltax : boolean, optional If true then x-axis values are in delta format. The default is True. deltay : boolean, optional Same as for x-axis but for y-axis. The default is True. Returns ------- grpl_xdata grain plot x-axis data. grpl_xerr x-axis error bars. grpl_ydata grain plot y-axis data. grpl_yerr y-axis error bars. grpl_style style data for the different symbols. ''' # check availability index_x, delta_b_x, ratio_b_x = self.check_availability(isox) index_y, delta_b_y, ratio_b_y = self.check_availability(isoy) if index_x == -1 or index_y == -1: print('Following input data are not available in the database. Revise your input.') if index_x == -1: print('x axis data not available') if index_y == -1: print('y axis data not available') return None # create x and y data as 1d vectors, also error bars xdata_vec = np.zeros((len(self.data))) ydata_vec = np.zeros((len(self.data))) xdata_err = np.zeros((len(self.data))) ydata_err = np.zeros((len(self.data))) for it in range(len(self.data)): xdata_vec[it] = self.data[it][index_x] ydata_vec[it] = self.data[it][index_y] xdata_err[it] = self.data[it][index_x+1] ydata_err[it] = self.data[it][index_y+1] # index data that are nan index_nan = [] for it in range(len(xdata_vec)): if np.isnan(xdata_vec[it]) or np.isnan(ydata_vec[it]): index_nan.append(it) # make range of all incides index_filtered = list(range(len(xdata_vec))) for it in range(len(index_nan)): index_filtered.remove(index_nan[it]) xdata_tmp = np.zeros((len(index_filtered))) ydata_tmp = np.zeros((len(index_filtered))) xerr_tmp = np.zeros((len(index_filtered))) yerr_tmp = np.zeros((len(index_filtered))) style_plt = np.zeros((len(index_filtered),len(self.header_style)),dtype='|S1024') for i in range(len(index_filtered)): xdata_tmp[i] = xdata_vec[index_filtered[i]] ydata_tmp[i] = ydata_vec[index_filtered[i]] xerr_tmp[i] = xdata_err[index_filtered[i]] yerr_tmp[i] = ydata_err[index_filtered[i]] for j in range(len(style_plt[i])): style_plt[i][j] = self.style[index_filtered[i]][j] xdata_vec = xdata_tmp ydata_vec = ydata_tmp xdata_err = xerr_tmp ydata_err = yerr_tmp # loop through error and set nans to 0 for i in range(len(xdata_err)): if np.isnan(xdata_err[i]): xdata_err[i] = 0. if np.isnan(ydata_err[i]): ydata_err[i] = 0. # make start stop index for groups start_stop = [] start = 0 for it in range(len(xdata_vec)-1): if (style_plt[it] == style_plt[it+1]).all(): continue else: stop = it + 1 start_stop.append([start,stop]) start = stop # last entry if start_stop == []: start_stop.append([0,len(xdata_vec)]) else: start_stop.append([start_stop[len(start_stop)-1][1],len(xdata_vec)+1]) # now append things to return variables grain_plt_xdata = [] grain_plt_ydata = [] grain_plt_xerr = [] grain_plt_yerr = [] grain_plt_style = [] for i in range(len(start_stop)): grain_plt_xdata.append(xdata_vec[start_stop[i][0]:start_stop[i][1]]) grain_plt_ydata.append(ydata_vec[start_stop[i][0]:start_stop[i][1]]) grain_plt_xerr.append(xdata_err[start_stop[i][0]:start_stop[i][1]]) grain_plt_yerr.append(ydata_err[start_stop[i][0]:start_stop[i][1]]) grain_plt_style.append(style_plt[start_stop[i][0]]) return [grain_plt_xdata,grain_plt_xerr,grain_plt_ydata,grain_plt_yerr,grain_plt_style] def plot_pattern_return(self, isos, delta=True): ''' This routine returns data isotopic data to plot from the filtered list of data. Parameters ---------- isos : list Isotopes for x axis in standard format [['Si-30','Si-28'],['Si-29','Si-30'],...] isoy : list Same as isox but for y axis. deltay: boolean, optional Same as for x-axis but for y-axis. The default is True. Returns ------- grpl_data grain plot x-axis data. grpl_err x-axis error bars. grpl_style style data for the different symbols. ''' # check availability index = [] delta_b = [] ratio_b = [] for i in range(len(isos)): tmpi,tmpd,tmpr = self.check_availability(isos[i]) index.append(tmpi) delta_b.append(tmpd) ratio_b.append(tmpd) for i in range(len(index)): if index[i] == -1: print('Input not available for: ' + isos[i] + '. Revise!') return None # create x and y data as 1d vectors, also error bars data_vec = np.zeros((len(self.data),len(isos))) data_err = np.zeros((len(self.data),len(isos))) for it in range(len(self.data)): for jt in range(len(isos)): data_vec[it][jt] = self.data[it][index[jt]] data_err[it][jt] = self.data[it][index[jt]+1] # index data that are nan index_nan = [] for it in range(len(data_vec)): for jt in range(len(data_vec[it])): if np.isnan(data_vec[it][jt]): index_nan.append(it) # make range of all incides index_filtered = list(range(len(data_vec))) for it in range(len(index_nan)): index_filtered.remove(index_nan[it]) data_tmp = np.zeros((len(index_filtered),len(isos))) err_tmp = np.zeros((len(index_filtered),len(isos))) style_plt = np.zeros((len(index_filtered),len(self.header_style)),dtype='|S1024') for i in range(len(index_filtered)): data_tmp[i] = data_vec[index_filtered[i]] err_tmp[i] = data_err[index_filtered[i]] for j in range(len(style_plt[i])): style_plt[i][j] = self.style[i][j] xdata_vec = xdata_tmp ydata_vec = ydata_tmp xdata_err = xerr_tmp ydata_err = yerr_tmp # loop through error and set nans to 0 for i in range(len(xdata_err)): if np.isnan(xdata_err[i]): xdata_err[i] = 0. if np.isnan(ydata_err[i]): ydata_err[i] = 0. # FIXME here # make start stop index for groups start_stop = [] start = 0 for it in range(len(xdata_vec)-1): if (style_plt[it] == style_plt[it+1]).all(): continue else: stop = it start_stop.append([start,stop]) start = stop+1 # last entry if start_stop == []: start_stop.append([0,len(xdata_vec)]) else: start_stop.append([start_stop[len(start_stop)-1][1]+1,len(xdata_vec)]) # now append things to return variables grain_plt_xdata = [] grain_plt_ydata = [] grain_plt_xerr = [] grain_plt_yerr = [] grain_plt_style = [] for i in range(len(start_stop)): grain_plt_xdata.append(xdata_vec[start_stop[i][0]:start_stop[i][1]]) grain_plt_ydata.append(ydata_vec[start_stop[i][0]:start_stop[i][1]]) grain_plt_xerr.append(xdata_err[start_stop[i][0]:start_stop[i][1]]) grain_plt_yerr.append(ydata_err[start_stop[i][0]:start_stop[i][1]]) grain_plt_style.append(style_plt[start_stop[i][0]]) return [grain_plt_xdata,grain_plt_xerr,grain_plt_ydata,grain_plt_yerr,grain_plt_style] ##### SMALL HELPER ROUTINES ##### def check_availability(self, isos): ''' This routine checks if the requested set of isotopes is available in the dataset. Parameters ---------- isos : list set of isotopes in format ['Si-28','Si-30']. Returns ------- list [index, delta_b, ratio_b]. index: where is it. delta_b: is it a delta value or not? ratio_ib: True if ratio is inverted, false if not ''' # make names iso1name = iso_name_converter(isos[0]) iso2name = iso_name_converter(isos[1]) ratio = iso1name + '/' + iso2name ratio_inv = iso2name + '/' + iso1name delta = 'd(' + iso1name + '/' + iso2name + ')' delta_inv = 'd(' + iso2name + '/' + iso1name + ')' index = -1 # search for data entry try: index = self.datadict[ratio] delta_b = False ratio_b = False except KeyError: try: index = self.datadict[ratio_inv] delta_b = False ratio_b = True except KeyError: try: index = self.datadict[delta] delta_b = True ratio_b = False except KeyError: try: index = self.datadict[delta_inv] delta_b = True ratio_b = True except KeyError: index = -1 delta_b = None ratio_b = None return index, delta_b, ratio_b def ratio_to_delta(self, isos_ss, ratio, oneover=False): ''' Transforms an isotope ratio into a delta value Parameters ---------- isos_ss: list or float list w/ isotopes, e.g., ['N-14','N-15'] OR the solar system ratio. ratio : float ratio of the isotopes to transform. oneover : boolean take the inverse of the ratio before transforming (never inverse of delta value!). The default is False. Returns ------- float delta value ''' # define if isos_ss is the ratio or the isotopes if type(isos_ss) == float: ss_ratio = isos_ss elif type(isos_ss) == list: ss_ratio = self.inut.isoratio_init(isos_ss) else: print('Check input of isos_ss into ratio_to_delta routine') return None # check if one over is necessary or not if oneover: ratio = old_div(1,ratio) # calculate delta value delta = (old_div(ratio, ss_ratio) - 1.) * 1000. return delta def delta_to_ratio(self, isos_ss, delta, oneover=False): ''' Transforms a delta value into an isotopic ratio Parameters ---------- isos_ss : list or float list w/ isotopes, e.g., ['N-14','N-15'] OR the solar system ratio. delta : float delta value of the isotopes to transform. oneover : boolean take the inverse of the ratio before returning it (never of the delta value!). The default is False. Returns ------- float delta value ''' # define if isos_ss is the ratio or the isotopes if type(isos_ss) == float: ss_ratio = isos_ss elif type(isos_ss) == list: ss_ratio = self.inut.isoratio_init(isos_ss) else: print('Check input of isos_ss into ratio_to_delta routine') return None # transform to ratio ratio = (old_div(delta, 1000.) + 1) * ss_ratio # one over necessary or not? if oneover: ratio = old_div(1,ratio) return ratio ##### SMALL SUBROUTINES THAT DO NOT NEED TO BE INSIDE THE CLASS, KIND OF GRAIN.PY SPECIFIC UTILS ##### def iso_name_converter(iso): ''' Converts the name of the given isotope (input), e.g., 'N-14' to 14N as used later to compare w/ grain database. ''' sp = iso.split('-') output = sp[1] + sp[0] return output.lower() def get_svnpath(): ''' This subroutine gives back the path of the whole svn tree installation, which is necessary for the script to run. ''' svnpathtmp = __file__ splitsvnpath = svnpathtmp.split('/') if len(splitsvnpath) == 1: svnpath = os.path.abspath('.') + '/../../' else: svnpath = '' for i in range(len(splitsvnpath)-3): svnpath += splitsvnpath[i] + '/' return svnpath ############################ ##### BIG PREPROCESSOR ##### ############################ # subroutine that reads in data and splits into nice numpy arrays def preprocessor(fname,gdbdir,gdbload, wb_sic=None): if gdbdir == None: # path to svn svnpathtmp = get_svnpath() gdbdir = svnpathtmp + 'validation/grain_data/' # grain data directory # Initialize private file if available if fname != None: wb_pri = xlrd.open_workbook(gdbdir + fname) sh_pri = wb_pri.sheet_by_index(0) print('Private file ' + fname + ' initialized.') # Initialize grain database if gdbload: # SiC wb_sic = xlrd.open_workbook(gdbdir + 'SiC-All.xls') sh_sic = wb_sic.sheet_by_index(0) # Graphites wb_gra = xlrd.open_workbook(gdbdir + 'graphite-All.xls') sh_gra = wb_gra.sheet_by_index(0) # Oxides and Silicates wb_oxi = xlrd.open_workbook(gdbdir + 'oxide-silicate-all.xls') sh_oxi = wb_oxi.sheet_by_index(0) # Misc grains wb_mis = xlrd.open_workbook(gdbdir + 'miscellaneous-SiN.xls') sh_mis = wb_mis.sheet_by_index(0) # now bring all files together into one database (if private is not the only file specified) header_data = list() # header for data header_desc = list() # header for description if gdbload: # SiC - first file head = sh_sic.row_values(0) # now split up to header_data and header_desc headswtch=True # switch from description to data for head_i in head: if headswtch: # write description header writeswtch = True for i in range(len(header_desc)): if header_desc[i] == head_i: writeswtch = False if writeswtch: if head_i.replace(' ','') != '': header_desc.append(head_i) if len(head_i) >= 5: if head_i[0:5] == 'Notes': headswtch = False else: # write data header writeswtch = True for i in range(len(header_data)): if header_data[i] == head_i: writeswtch = False if writeswtch: if head_i.replace(' ','') != '': header_data.append(head_i) # Graphites head = sh_gra.row_values(0) headswtch=True # switch from description to data for head_i in head: if headswtch: # write description header writeswtch = True for i in range(len(header_desc)): if header_desc[i] == head_i: writeswtch = False if writeswtch: if head_i.replace(' ','') != '': header_desc.append(head_i) if len(head_i) >= 5: if head_i[0:5] == 'Notes': headswtch = False else: # write data header writeswtch = True for i in range(len(header_data)): if header_data[i] == head_i: writeswtch = False if writeswtch: if head_i.replace(' ','') != '': header_data.append(head_i) # Silicates and Oxides head = sh_oxi.row_values(0) headswtch=True # switch from description to data for head_i in head: if headswtch: # write description header writeswtch = True for i in range(len(header_desc)): if header_desc[i] == head_i: writeswtch = False if writeswtch: if head_i.replace(' ','') != '': header_desc.append(head_i) if len(head_i) >= 5: if head_i[0:5] == 'Notes': headswtch = False else: # write data header writeswtch = True for i in range(len(header_data)): if header_data[i] == head_i: writeswtch = False if writeswtch: if head_i.replace(' ','') != '': header_data.append(head_i) # Misc head = sh_mis.row_values(0) headswtch=True # switch from description to data for head_i in head: if headswtch: # write description header writeswtch = True for i in range(len(header_desc)): if header_desc[i] == head_i: writeswtch = False if writeswtch: if head_i.replace(' ','') != '': header_desc.append(head_i) if len(head_i) >= 5: if head_i[0:5] == 'Notes': headswtch = False else: # write data header writeswtch = True for i in range(len(header_data)): if header_data[i] == head_i: writeswtch = False if writeswtch: if head_i.replace(' ','') != '': header_data.append(head_i) # Private file if fname != None: head = sh_pri.row_values(0) headswtch=True # switch from description to data for head_i in head: if headswtch: # write description header writeswtch = True for i in range(len(header_desc)): if header_desc[i] == head_i: writeswtch = False if writeswtch: if head_i.replace(' ','') != '': header_desc.append(head_i) if len(head_i) >= 5: if head_i[0:5] == 'Notes': headswtch = False else: # write data header writeswtch = True for i in range(len(header_data)): if header_data[i] == head_i: writeswtch = False if writeswtch: if head_i.replace(' ','') != '': header_data.append(head_i) # Raise error if nothing is specified if gdbload == False and fname == None: print('Nothing to load is specified!') return [],[],[],[] if gdbload: # Prepare the data -> description and data, fill it into appropriate forms # total amount of data entries sic_len = len(sh_sic.col_values(0)) gra_len = len(sh_gra.col_values(0)) oxi_len = len(sh_oxi.col_values(0)) mis_len = len(sh_mis.col_values(0)) totdata = sic_len + gra_len + oxi_len + mis_len - 4 if fname != None: pri_len = len(sh_pri.col_values(0)) totdata += pri_len - 1 totdata = int(totdata) else: pri_len = len(sh_pri.col_values(0)) totdata = pri_len - 1 # initialize the description list descr = np.zeros((totdata,len(header_desc)+1),dtype='|S1024') # string with 1024 characters # initialize data array data = np.zeros((totdata,len(header_data))) for i in range(len(data)): for j in range(len(data[i])): data[i][j] = nan jadder = 0 if gdbload: # SiC sic_hdict = dict(list(zip(sh_sic.row_values(0),np.arange(len(sh_sic.row_values(0)))))) # description data for i in range(len(header_desc)): try: dat_tmp = sh_sic.col_values(sic_hdict[header_desc[i]]) except KeyError: dat_tmp = False if dat_tmp != False: for j in range(1,len(dat_tmp)): if type(dat_tmp[j]) == float: dat_tmp[j] = str(dat_tmp[j]) if dat_tmp[j].replace(' ','') != '': try: descr[j+jadder-1][i] = dat_tmp[j] except UnicodeEncodeError: descr[j+jadder-1][i] == '' # actual data descr[j+jadder-1][len(header_desc)] = 'SiC' for i in range(len(header_data)): try: dat_tmp = sh_sic.col_values(sic_hdict[header_data[i]]) except KeyError: dat_tmp = False if dat_tmp!= False: for j in range(1,len(dat_tmp)): if type(dat_tmp[j]) != float: dat_tmp_append = nan else: dat_tmp_append = float(dat_tmp[j]) data[j-1][i] = dat_tmp_append jadder += sic_len - 1 # Graphites gra_hdict = dict(list(zip(sh_gra.row_values(0),np.arange(len(sh_gra.row_values(0)))))) # description data for i in range(len(header_desc)): try: dat_tmp = sh_gra.col_values(gra_hdict[header_desc[i]]) except KeyError: dat_tmp = False if dat_tmp != False: for j in range(1,len(dat_tmp)): if type(dat_tmp[j]) == float: dat_tmp[j] = str(dat_tmp[j]) if dat_tmp[j].replace(' ','') != '': try: descr[j+jadder-1][i] = dat_tmp[j] except UnicodeEncodeError: descr[j+jadder-1][i] == '' descr[j+jadder-1][len(header_desc)] = 'Graphites' # actual data for i in range(len(header_data)): try: dat_tmp = sh_gra.col_values(gra_hdict[header_data[i]]) except KeyError: dat_tmp = False if dat_tmp!= False: for j in range(1,len(dat_tmp)): if type(dat_tmp[j]) != float: dat_tmp_append = nan else: dat_tmp_append = float(dat_tmp[j]) data[j+jadder-1][i] = dat_tmp_append jadder += gra_len - 1 # Oxides oxi_hdict = dict(list(zip(sh_oxi.row_values(0),np.arange(len(sh_oxi.row_values(0)))))) # description data for i in range(len(header_desc)): try: dat_tmp = sh_oxi.col_values(oxi_hdict[header_desc[i]]) except KeyError: dat_tmp = False if dat_tmp != False: for j in range(1,len(dat_tmp)): if type(dat_tmp[j]) == float: dat_tmp[j] = str(dat_tmp[j]) if dat_tmp[j].replace(' ','') != '': try: descr[j+jadder-1][i] = dat_tmp[j] except UnicodeEncodeError: descr[j+jadder-1][i] == '' descr[j+jadder-1][len(header_desc)] = 'Oxides, Silicates' # actual data for i in range(len(header_data)): try: dat_tmp = sh_oxi.col_values(oxi_hdict[header_data[i]]) except KeyError: dat_tmp = False if dat_tmp!= False: for j in range(1,len(dat_tmp)): if type(dat_tmp[j]) != float: dat_tmp_append = nan else: dat_tmp_append = float(dat_tmp[j]) data[j+jadder-1][i] = dat_tmp_append jadder += oxi_len - 1 # Misc mis_hdict = dict(list(zip(sh_mis.row_values(0),np.arange(len(sh_mis.row_values(0)))))) # description data for i in range(len(header_desc)): try: dat_tmp = sh_mis.col_values(mis_hdict[header_desc[i]]) except KeyError: dat_tmp = False if dat_tmp != False: for j in range(1,len(dat_tmp)): if type(dat_tmp[j]) == float: dat_tmp[j] = str(dat_tmp[j]) if dat_tmp[j].replace(' ','') != '': try: descr[j+jadder-1][i] = dat_tmp[j] except UnicodeEncodeError: descr[j+jadder-1][i] == '' descr[j+jadder-1][len(header_desc)] = 'Misc' # actual data for i in range(len(header_data)): try: dat_tmp = sh_mis.col_values(mis_hdict[header_data[i]]) except KeyError: dat_tmp = False if dat_tmp!= False: for j in range(1,len(dat_tmp)): if type(dat_tmp[j]) != float: dat_tmp_append = nan else: dat_tmp_append = float(dat_tmp[j]) data[j+jadder-1][i] = dat_tmp_append jadder += mis_len - 1 # Private file if fname != None: pri_hdict = dict(list(zip(sh_pri.row_values(0),np.arange(len(sh_pri.row_values(0)))))) # description data for i in range(len(header_desc)): try: dat_tmp = sh_pri.col_values(pri_hdict[header_desc[i]]) except KeyError: dat_tmp = False if dat_tmp != False: for j in range(1,len(dat_tmp)): if type(dat_tmp[j]) == float: dat_tmp[j] = str(dat_tmp[j]) if dat_tmp[j].replace(' ','') != '': try: descr[j+jadder-1][i] = dat_tmp[j] except UnicodeEncodeError: descr[j+jadder-1][i] == '' # actual data descr[j+jadder-1][len(header_desc)] = 'Private' for i in range(len(header_data)): try: dat_tmp = sh_pri.col_values(pri_hdict[header_data[i]]) except KeyError: dat_tmp = False if dat_tmp!= False: for j in range(1,len(dat_tmp)): if type(dat_tmp[j]) != float: dat_tmp_append = nan else: dat_tmp_append = float(dat_tmp[j]) data[j+jadder-1][i] = dat_tmp_append # make the data header lower case for i in range(len(header_data)): header_data[i] = header_data[i].lower() header_desc.append('Database') return header_desc, header_data, descr, data ### style creator ### def style_creator(desc,descdict): # make style definitions for plotting and everything header_style = ['Symbol', 'Edge color', 'Face color', 'Symbol size', 'Edge width','Label'] style = np.zeros((len(desc),len(header_style)),dtype='|S1024') # fill the styles in for i in range(len(style)): style[i][4] = '1' # edge width # SiC grains if desc[i][descdict['Database']] == 'SiC': style[i][0] = 'o' # symbol style[i][3] = '8' # symbol size if desc[i][descdict['Type']] == 'M': style[i][1] = '0.4' style[i][5] = 'SiC M' elif desc[i][descdict['Type']] == 'X': style[i][1] = 'b' style[i][5] = 'SiC X' elif desc[i][descdict['Type']] == 'Y': style[i][1] = 'g' style[i][5] = 'SiC Y' elif desc[i][descdict['Type']] == 'Z': style[i][1] = 'r' style[i][5] = 'SiC Z' elif desc[i][descdict['Type']] == 'AB': style[i][1] = 'c' style[i][5] = 'SiC AB' elif desc[i][descdict['Type']] == 'C' or desc[i][descdict['Type']] == 'U/C': style[i][1] = 'y' style[i][5] = 'SiC C' elif desc[i][descdict['Type']] == 'N': style[i][1] = 'm' style[i][5] = 'SiC nova' else: style[i][1] = '0.7' style[i][5] = 'SiC unclassified' style[i][2] = style[i][1] elif desc[i][descdict['Database']] == 'Graphites': style[i][0] = 's' # symbol style[i][3] = '8' # symbol size if desc[i][descdict['Type']] == 'HD': style[i][1] = '0.4' style[i][5] = 'Graphite HD' elif desc[i][descdict['Type']] == 'LD': style[i][1] = 'b' style[i][5] = 'Graphite LD' else: style[i][1] = '0.7' style[i][5] = 'Graphite' style[i][2] = style[i][1] elif desc[i][descdict['Database']] == 'Oxides, Silicates': style[i][0] = '^' # symbol style[i][3] = '8' # symbol size if desc[i][descdict['Group']] == '1': style[i][1] = '0.4' style[i][5] = 'Oxide / Silicate Group 1' elif desc[i][descdict['Group']] == '2': style[i][1] = 'b' style[i][5] = 'Oxide / Silicate Group 2' elif desc[i][descdict['Group']] == '3': style[i][1] = 'g' style[i][5] = 'Oxide / Silicate Group 3' elif desc[i][descdict['Group']] == '4': style[i][1] = 'r' style[i][5] = 'Oxide / Silicate Group 4' else: style[i][1] = '0.7' style[i][5] = 'Oxide / Silicate' style[i][2] = style[i][1] elif desc[i][descdict['Database']] == 'Misc': style[i][0] = 'v' style[i][3] = '8' style[i][1] = '0.4' style[i][2] = style[i][1] style[i][5] = 'Misc' elif desc[i][descdict['Database']] == 'Private': style[i][0] = '>' style[i][1] = '0.4' style[i][3] = '8' style[i][2] = style[i][1] style[i][5] = 'Private' else: style[i][0] = '+' style[i][1] = '0.4' style[i][3] = '8' style[i][2] = style[i][1] style[i][5] = 'Unknown' return header_style, style
bsd-3-clause
466152112/hyperopt
hyperopt/tests/test_vectorize.py
7
7707
import numpy as np from hyperopt.pyll import as_apply, scope, rec_eval, clone, dfs from hyperopt.pyll.stochastic import recursive_set_rng_kwarg from hyperopt import base, fmin, rand from hyperopt.vectorize import VectorizeHelper from hyperopt.vectorize import replace_repeat_stochastic from hyperopt.pyll_utils import hp_choice from hyperopt.pyll_utils import hp_uniform from hyperopt.pyll_utils import hp_quniform from hyperopt.pyll_utils import hp_loguniform from hyperopt.pyll_utils import hp_qloguniform def config0(): p0 = scope.uniform(0, 1) p1 = scope.uniform(2, 3) p2 = scope.one_of(-1, p0) p3 = scope.one_of(-2, p1) p4 = 1 p5 = [3, 4, p0] p6 = scope.one_of(-3, p1) d = locals() d['p1'] = None # -- don't sample p1 all the time, only if p3 says so s = as_apply(d) return s def test_clone(): config = config0() config2 = clone(config) nodeset = set(dfs(config)) assert not any(n in nodeset for n in dfs(config2)) foo = recursive_set_rng_kwarg( config, scope.rng_from_seed(5)) r = rec_eval(foo) print r r2 = rec_eval( recursive_set_rng_kwarg( config2, scope.rng_from_seed(5))) print r2 assert r == r2 def test_vectorize_trivial(): N = as_apply(15) p0 = hp_uniform('p0', 0, 1) loss = p0 print loss expr_idxs = scope.range(N) vh = VectorizeHelper(loss, expr_idxs, build=True) vloss = vh.v_expr full_output = as_apply([vloss, vh.idxs_by_label(), vh.vals_by_label()]) fo2 = replace_repeat_stochastic(full_output) new_vc = recursive_set_rng_kwarg( fo2, as_apply(np.random.RandomState(1)), ) #print new_vc losses, idxs, vals = rec_eval(new_vc) print 'losses', losses print 'idxs p0', idxs['p0'] print 'vals p0', vals['p0'] p0dct = dict(zip(idxs['p0'], vals['p0'])) for ii, li in enumerate(losses): assert p0dct[ii] == li def test_vectorize_simple(): N = as_apply(15) p0 = hp_uniform('p0', 0, 1) loss = p0 ** 2 print loss expr_idxs = scope.range(N) vh = VectorizeHelper(loss, expr_idxs, build=True) vloss = vh.v_expr full_output = as_apply([vloss, vh.idxs_by_label(), vh.vals_by_label()]) fo2 = replace_repeat_stochastic(full_output) new_vc = recursive_set_rng_kwarg( fo2, as_apply(np.random.RandomState(1)), ) #print new_vc losses, idxs, vals = rec_eval(new_vc) print 'losses', losses print 'idxs p0', idxs['p0'] print 'vals p0', vals['p0'] p0dct = dict(zip(idxs['p0'], vals['p0'])) for ii, li in enumerate(losses): assert p0dct[ii] ** 2 == li def test_vectorize_multipath(): N = as_apply(15) p0 = hp_uniform('p0', 0, 1) loss = hp_choice('p1', [1, p0, -p0]) ** 2 expr_idxs = scope.range(N) vh = VectorizeHelper(loss, expr_idxs, build=True) vloss = vh.v_expr print vloss full_output = as_apply([vloss, vh.idxs_by_label(), vh.vals_by_label()]) new_vc = recursive_set_rng_kwarg( full_output, as_apply(np.random.RandomState(1)), ) losses, idxs, vals = rec_eval(new_vc) print 'losses', losses print 'idxs p0', idxs['p0'] print 'vals p0', vals['p0'] print 'idxs p1', idxs['p1'] print 'vals p1', vals['p1'] p0dct = dict(zip(idxs['p0'], vals['p0'])) p1dct = dict(zip(idxs['p1'], vals['p1'])) for ii, li in enumerate(losses): print ii, li if p1dct[ii] != 0: assert li == p0dct[ii] ** 2 else: assert li == 1 def test_vectorize_config0(): p0 = hp_uniform('p0', 0, 1) p1 = hp_loguniform('p1', 2, 3) p2 = hp_choice('p2', [-1, p0]) p3 = hp_choice('p3', [-2, p1]) p4 = 1 p5 = [3, 4, p0] p6 = hp_choice('p6', [-3, p1]) d = locals() d['p1'] = None # -- don't sample p1 all the time, only if p3 says so config = as_apply(d) N = as_apply('N:TBA') expr = config expr_idxs = scope.range(N) vh = VectorizeHelper(expr, expr_idxs, build=True) vconfig = vh.v_expr full_output = as_apply([vconfig, vh.idxs_by_label(), vh.vals_by_label()]) if 1: print '=' * 80 print 'VECTORIZED' print full_output print '\n' * 1 fo2 = replace_repeat_stochastic(full_output) if 0: print '=' * 80 print 'VECTORIZED STOCHASTIC' print fo2 print '\n' * 1 new_vc = recursive_set_rng_kwarg( fo2, as_apply(np.random.RandomState(1)) ) if 0: print '=' * 80 print 'VECTORIZED STOCHASTIC WITH RNGS' print new_vc Nval = 10 foo, idxs, vals = rec_eval(new_vc, memo={N: Nval}) print 'foo[0]', foo[0] print 'foo[1]', foo[1] assert len(foo) == Nval if 0: # XXX refresh these values to lock down sampler assert foo[0] == { 'p0': 0.39676747423066994, 'p1': None, 'p2': 0.39676747423066994, 'p3': 2.1281244479293568, 'p4': 1, 'p5': (3, 4, 0.39676747423066994) } assert foo[1] != foo[2] print idxs print vals['p3'] print vals['p6'] print idxs['p1'] print vals['p1'] assert len(vals['p3']) == Nval assert len(vals['p6']) == Nval assert len(idxs['p1']) < Nval p1d = dict(zip(idxs['p1'], vals['p1'])) for ii, (p3v, p6v) in enumerate(zip(vals['p3'], vals['p6'])): if p3v == p6v == 0: assert ii not in idxs['p1'] if p3v: assert foo[ii]['p3'] == p1d[ii] if p6v: print 'p6', foo[ii]['p6'], p1d[ii] assert foo[ii]['p6'] == p1d[ii] def test_distributions(): # test that the distributions come out right # XXX: test more distributions space = { 'loss': ( hp_loguniform('lu', -2, 2) + hp_qloguniform('qlu', np.log(1 + 0.01), np.log(20), 2) + hp_quniform('qu', -4.999, 5, 1) + hp_uniform('u', 0, 10)), 'status': 'ok'} trials = base.Trials() N = 1000 fmin(lambda x: x, space=space, algo=rand.suggest, trials=trials, max_evals=N, rstate=np.random.RandomState(124), catch_eval_exceptions=False) assert len(trials) == N idxs, vals = base.miscs_to_idxs_vals(trials.miscs) print idxs.keys() COUNTMAX = 130 COUNTMIN = 70 # -- loguniform log_lu = np.log(vals['lu']) assert len(log_lu) == N assert -2 < np.min(log_lu) assert np.max(log_lu) < 2 h = np.histogram(log_lu)[0] print h assert np.all(COUNTMIN < h) assert np.all(h < COUNTMAX) # -- quantized log uniform qlu = vals['qlu'] assert np.all(np.fmod(qlu, 2) == 0) assert np.min(qlu) == 2 assert np.max(qlu) == 20 bc_qlu = np.bincount(qlu) assert bc_qlu[2] > bc_qlu[4] > bc_qlu[6] > bc_qlu[8] # -- quantized uniform qu = vals['qu'] assert np.min(qu) == -5 assert np.max(qu) == 5 assert np.all(np.fmod(qu, 1) == 0) bc_qu = np.bincount(np.asarray(qu).astype('int') + 5) assert np.all(40 < bc_qu), bc_qu # XXX: how to get the distribution flat # with new rounding rule? assert np.all(bc_qu < 125), bc_qu assert np.all(bc_qu < COUNTMAX) # -- uniform u = vals['u'] assert np.min(u) > 0 assert np.max(u) < 10 h = np.histogram(u)[0] print h assert np.all(COUNTMIN < h) assert np.all(h < COUNTMAX) #import matplotlib.pyplot as plt #plt.hist(np.log(vals['node_2'])) #plt.show()
bsd-3-clause
hitszxp/scikit-learn
sklearn/metrics/__init__.py
2
3262
""" The :mod:`sklearn.metrics` module includes score functions, performance metrics and pairwise metrics and distance computations. """ from .ranking import auc from .ranking import average_precision_score from .ranking import coverage_error from .ranking import label_ranking_average_precision_score from .ranking import precision_recall_curve from .ranking import roc_auc_score from .ranking import roc_curve from .classification import accuracy_score from .classification import classification_report from .classification import confusion_matrix from .classification import f1_score from .classification import fbeta_score from .classification import hamming_loss from .classification import hinge_loss from .classification import jaccard_similarity_score from .classification import log_loss from .classification import matthews_corrcoef from .classification import precision_recall_fscore_support from .classification import precision_score from .classification import recall_score from .classification import zero_one_loss from . import cluster from .cluster import adjusted_mutual_info_score from .cluster import adjusted_rand_score from .cluster import completeness_score from .cluster import consensus_score from .cluster import homogeneity_completeness_v_measure from .cluster import homogeneity_score from .cluster import mutual_info_score from .cluster import normalized_mutual_info_score from .cluster import silhouette_samples from .cluster import silhouette_score from .cluster import v_measure_score from .pairwise import euclidean_distances from .pairwise import pairwise_distances from .pairwise import pairwise_distances_argmin from .pairwise import pairwise_distances_argmin_min from .pairwise import pairwise_kernels from .regression import explained_variance_score from .regression import mean_absolute_error from .regression import mean_squared_error from .regression import median_absolute_error from .regression import r2_score from .scorer import make_scorer from .scorer import SCORERS # Deprecated in 0.16 from .ranking import auc_score __all__ = [ 'accuracy_score', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'auc', 'average_precision_score', 'classification_report', 'cluster', 'completeness_score', 'confusion_matrix', 'consensus_score', 'coverage_error', 'euclidean_distances', 'explained_variance_score', 'f1_score', 'fbeta_score', 'hamming_loss', 'hinge_loss', 'homogeneity_completeness_v_measure', 'homogeneity_score', 'jaccard_similarity_score', 'label_ranking_average_precision_score', 'log_loss', 'make_scorer', 'matthews_corrcoef', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error', 'mutual_info_score', 'normalized_mutual_info_score', 'pairwise_distances', 'pairwise_distances_argmin', 'pairwise_distances_argmin_min', 'pairwise_distances_argmin_min', 'pairwise_kernels', 'precision_recall_curve', 'precision_recall_fscore_support', 'precision_score', 'r2_score', 'recall_score', 'roc_auc_score', 'roc_curve', 'SCORERS', 'silhouette_samples', 'silhouette_score', 'v_measure_score', 'zero_one_loss', ]
bsd-3-clause
pkruskal/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
297
1247
# Author: Mathieu Blondel <[email protected]> # License: BSD 3 clause import time import pylab as pl from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) pl.figure('scikit-learn parallel %s benchmark results' % func.__name__) pl.plot(sample_sizes, one_core, label="one core") pl.plot(sample_sizes, multi_core, label="multi core") pl.xlabel('n_samples') pl.ylabel('Time (s)') pl.title('Parallel %s' % func.__name__) pl.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) pl.show()
bsd-3-clause
3manuek/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
247
2432
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Andreas Mueller <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plot_outer_labeled, = plt.plot(X[labels == outer, 0], X[labels == outer, 1], 'rs') plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.') plot_inner_labeled, = plt.plot(X[labels == inner, 0], X[labels == inner, 1], 'bs') plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled), ('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left', numpoints=1, shadow=False) plt.title("Raw data (2 classes=red and blue)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs') plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs') plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'), 'upper left', numpoints=1, shadow=False) plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
duane-edgington/stoqs
stoqs/contrib/analysis/drift_data.py
3
21334
#!/usr/bin/env python __author__ = "Mike McCann" __copyright__ = "Copyright 2014, MBARI" __license__ = "GPL" __maintainer__ = "Mike McCann" __email__ = "mccann at mbari.org" __status__ = "Development" __doc__ = ''' Script produce products (plots, kml, etc.) to help understand drifting data. - Make progressive vector diagram from moored ADCP data (read from STOQS) - Plot drogued drifter, ship, and other data (read from Tracking DB) - Plot sensor data (read from STOQS) Output as a .png map, .kml file, or ... Mike McCann MBARI 22 September 2014 @var __date__: Date of last svn commit @undocumented: __doc__ parser @author: __author__ @status: __status__ @license: __license__ ''' import os import sys project_dir = os.path.join(os.path.dirname(__file__), "../../") # settings.py is two dirs up sys.path.insert(0, project_dir) if 'DJANGO_SETTINGS_MODULE' not in os.environ: os.environ['DJANGO_SETTINGS_MODULE'] = 'config.settings.local' import django django.setup() import csv import time import pyproj import requests import matplotlib import matplotlib.pyplot as plt import numpy as np import pytz from datetime import datetime from collections import defaultdict from contextlib import closing from django.conf import settings from stoqs.models import MeasuredParameter, NominalLocation, ActivityParameter from django.http import HttpRequest from utils.Viz.plotting import readCLT from utils.Viz.KML import KML from mpl_toolkits.basemap import Basemap class Drift(): '''Data and methods to support drift data product preparation ''' trackDrift = defaultdict(lambda: {'es': [], 'lon': [], 'lat': []}) # To be keyed by platform name adcpDrift = defaultdict(lambda: {'es': [], 'lon': [], 'lat': []}) # To be keyed by depth # Not to be confused with Stokes Drift - To be keyed by parameter,platform,min,max stoqsDrift = defaultdict(lambda: {'es': [], 'lon': [], 'lat': [], 'depth': [], 'datavalue':[]}) def loadTrackingData(self): '''Fill up trackDrift dictionary ''' for url in self.args.trackData: # Careful - trackingdb returns the records in reverse time order if self.args.verbose: print('Opening', url) with closing(requests.get(url, stream=True)) as resp: if resp.status_code != 200: logger.error('Cannot read %s, resp.status_code = %s', url, resp.status_code) return r_decoded = (line.decode('utf-8') for line in resp.iter_lines()) for r in csv.DictReader(r_decoded): # Use logic to skip inserting values if one or the other or both start and end are specified if self.startDatetime: if datetime.utcfromtimestamp(float(r['epochSeconds'])) < self.startDatetime: continue if self.endDatetime: if datetime.utcfromtimestamp(float(r['epochSeconds'])) > self.endDatetime: continue self.trackDrift[r['platformName']]['es'].insert(0, float(r['epochSeconds'])) self.trackDrift[r['platformName']]['lat'].insert(0, float(r['latitude'])) self.trackDrift[r['platformName']]['lon'].insert(0, float(r['longitude'])) def computeADCPDrift(self): '''Read data from database and put computed progressive vectors into adcpDrift dictionary ''' if self.args.adcpPlatform: adcpQS = MeasuredParameter.objects.using(self.args.database).filter( measurement__instantpoint__activity__platform__name=self.args.adcpPlatform) if self.startDatetime: adcpQS = adcpQS.filter(measurement__instantpoint__timevalue__gte=self.startDatetime) if self.endDatetime: adcpQS = adcpQS.filter(measurement__instantpoint__timevalue__lte=self.endDatetime) if self.args.adcpMinDepth: adcpQS = adcpQS.filter(measurement__depth__gte=self.args.adcpMinDepth) if self.args.adcpMaxDepth: adcpQS = adcpQS.filter(measurement__depth__lte=self.args.adcpMaxDepth) utd = adcpQS.filter(parameter__standard_name='eastward_sea_water_velocity').values_list( 'datavalue', 'measurement__instantpoint__timevalue', 'measurement__depth').order_by( 'measurement__depth', 'measurement__instantpoint__timevalue') vtd = adcpQS.filter(parameter__standard_name='northward_sea_water_velocity').values_list( 'datavalue', 'measurement__instantpoint__timevalue', 'measurement__depth').order_by( 'measurement__depth', 'measurement__instantpoint__timevalue') # Compute positions (progressive vectors) - horizontal displacement in meters x = defaultdict(lambda: []) y = defaultdict(lambda: []) last_udiff = None for i, ((u, ut, ud), (v, vt, vd)) in enumerate(zip(utd, vtd)): try: udiff = utd[i+1][1] - ut vdiff = vtd[i+1][1] - vt except IndexError as e: # Extrapolate using last time difference, assuming it's regular and that we are at the last point, works only for very last point udiff = last_udiff vdiff = last_udiff else: last_udiff = udiff if udiff != vdiff: raise Exception('udiff != vdiff') else: dt = udiff.seconds + udiff.days * 24 * 3600 if dt < 0: # For intermediate depths where (utd[i+1][1] - ut) is a diff with the time of the next depth dt = last_dt if ud != vd: raise Exception('ud != vd') else: x[ud].append(u * dt / 100) y[vd].append(v * dt / 100) self.adcpDrift[ud]['es'].append(time.mktime(ut.timetuple())) last_dt = dt # Work in UTM space to add x & y offsets to begining position of the mooring g0 = NominalLocation.objects.using(self.args.database).filter(activity__platform__name=self.args.adcpPlatform).values_list('geom')[0][0] p = pyproj.Proj(proj='utm', zone=10, ellps='WGS84') e0, n0 = p(g0.x, g0.y) for depth in x: eList = np.cumsum([e0] + x[depth]) nList = np.cumsum([n0] + y[depth]) lonList, latList = p(eList, nList, inverse=True) self.adcpDrift[depth]['lon'] = lonList self.adcpDrift[depth]['lat'] = latList def loadSTOQSData(self): '''Fill up stoqsDrift dictionary with platform_parameter as key ''' for url in self.args.stoqsData: # Careful - trackingdb returns the records in reverse time order if self.args.verbose: print('Opening', url) with closing(requests.get(url.replace(' ', '%20'), stream=True)) as resp: if resp.status_code != 200: logger.error('Cannot read %s, resp.status_code = %s', url, resp.status_code) return r_decoded = (line.decode('utf-8') for line in resp.iter_lines()) for r in csv.DictReader(r_decoded): # Use logic to skip inserting values if one or the other or both start and end are specified dt = datetime.strptime(r['measurement__instantpoint__timevalue'], '%Y-%m-%d %H:%M:%S') if self.startDatetime: if dt < self.startDatetime: continue if self.endDatetime: if dt > self.endDatetime: continue if self.args.verbose > 1: print(r) apQS = ActivityParameter.objects.using(self.args.database).filter( activity__name=r['measurement__instantpoint__activity__name'], parameter__name=r['parameter__name']) # Mash together a key composed of parameter, platform, min, max for the Activity key = "%s,%s,%f,%f" % ( r['parameter__name'], r['measurement__instantpoint__activity__platform__name'], apQS[0].p025, apQS[0].p975 ) self.stoqsDrift[key]['es'].append(time.mktime(dt.timetuple())) lon, lat = r['measurement__geom'].split('(')[-1].split(')')[0].split(' ') self.stoqsDrift[key]['lat'].append(float(lat)) self.stoqsDrift[key]['lon'].append(float(lon)) self.stoqsDrift[key]['depth'].append(float(r['measurement__depth'])) self.stoqsDrift[key]['datavalue'].append(r['datavalue']) def process(self): '''Read in data and build structures that we can generate products from ''' if self.args.trackData: self.loadTrackingData() if self.args.adcpPlatform: self.computeADCPDrift() if self.args.stoqsData: self.loadSTOQSData() def getExtent(self): '''For all data members find the min and max latitude and longitude ''' if self.args.extent: return [float(e) for e in self.args.extent] else: lonMin = 180 lonMax = -180 latMin = 90 latMax = -90 for drift in (self.trackDrift, self.adcpDrift, self.stoqsDrift): for k,v in list(drift.items()): if np.min(v['lon']) < lonMin: lonMin = np.min(v['lon']) if np.max(v['lon']) > lonMax: lonMax = np.max(v['lon']) if np.min(v['lat']) < latMin: latMin = np.min(v['lat']) if np.max(v['lat']) > latMax: latMax = np.max(v['lat']) # Expand the computed extent by extendDeg degrees extendDeg = self.args.extend return lonMin - extendDeg, latMin - extendDeg, lonMax + extendDeg, latMax + extendDeg def createPNG(self, fileName=None, forGeotiff=False): '''Draw processed data on a map and save it as a .png file ''' if not forGeotiff: fig = plt.figure(figsize=(18, 12)) ax = plt.axes() else: fig = plt.figure() ax = fig.add_axes((0,0,1,1)) if not fileName: fileName = self.args.pngFileName e = self.getExtent() m = Basemap(llcrnrlon=e[0], llcrnrlat=e[1], urcrnrlon=e[2], urcrnrlat=e[3], projection='cyl', resolution='l', ax=ax) if not forGeotiff: m.arcgisimage(server='http://services.arcgisonline.com/ArcGIS', service='Ocean_Basemap') for depth, drift in list(self.adcpDrift.items()): m.plot(drift['lon'], drift['lat'], '-', c='black', linewidth=1) plt.text(drift['lon'][-1], drift['lat'][-1], '%i m' % depth, size='small') for platform, drift in list(self.trackDrift.items()): # Ad hoc coloring of platforms... if platform.startswith('stella'): color = 'yellow' elif platform.startswith('daphne'): color = 'orange' elif platform.startswith('makai'): color = 'magenta' else: color = 'red' m.plot(drift['lon'], drift['lat'], '-', c=color, linewidth=2) plt.text(drift['lon'][-1], drift['lat'][-1], platform, size='small') # Plot each data point with it's own color based on the activity statistics from STOQS coloredDotSize = 30 clt = readCLT(os.path.join(settings.ROOT_DIR('static'), 'colormaps', 'jetplus.txt')) cm_jetplus = matplotlib.colors.ListedColormap(np.array(clt)) for key, drift in list(self.stoqsDrift.items()): min, max = key.split(',')[2:4] ax.scatter(drift['lon'], drift['lat'], c=drift['datavalue'], s=coloredDotSize, cmap=cm_jetplus, lw=0, vmin=min, vmax=max) label = '%s from %s' % tuple(key.split(',')[:2]) plt.text(drift['lon'][-1], drift['lat'][-1], label, size='small') nowLocal = str(pytz.utc.localize(datetime.now()).astimezone(pytz.timezone('America/Los_Angeles'))).split('.')[0] plt.text(0.99, 0.01, 'Created: ' + nowLocal + ' Local', horizontalalignment='right', verticalalignment='bottom', transform=ax.transAxes) if not forGeotiff: m.drawparallels(np.linspace(e[1],e[3],num=3), labels=[True,False,False,False], linewidth=0) m.drawmeridians(np.linspace(e[0],e[2],num=3), labels=[False,False,False,True], linewidth=0) try: plt.title(self.title) except AttributeError: pass fig.savefig(fileName) print('Wrote file', self.args.pngFileName) else: plt.axis('off') try: plt.text(0.5, 0.95, self.title, horizontalalignment='center', verticalalignment='top', transform=ax.transAxes) except AttributeError: pass fig.savefig(fileName, transparent=True, dpi=300, bbox_inches='tight', pad_inches=0) plt.clf() plt.close() def createGeoTiff(self): '''Your image must be only the geoplot with no decorations like axis titles, axis labels, etc., and you will need accurate upper-left and lower-right coordinates in EPSG:4326 projection, also known as WGS 84 projection,... The syntax is pretty straightforward, something like the following will convert your image to the correct format: gdal_translate <image.png> <image.tiff> -a_ullr -122.25 37.1 -121.57365 36.67558 There is also a python wrapper for the GDAL library https://pypi.python.org/pypi/GDAL/ ''' e = self.getExtent() self.createPNG(self.args.geotiffFileName + '.png', forGeotiff=True) cmd = 'gdal_translate %s %s -a_ullr %s %s %s %s' % (self.args.geotiffFileName + '.png', self.args.geotiffFileName, e[0], e[3], e[2], e[1]) print("Executing:\n", cmd) os.system(cmd) os.remove(self.args.geotiffFileName + '.png') print('Wrote file', self.args.geotiffFileName) def createKML(self): '''Reuse STOQS utils/Viz code to build some simple KML. Use 'position' for Parameter Name. Fudge data value to distinguish platforms by color, use 0.0 for depth except for adcp data. ''' request = HttpRequest() qs = None qparams = {} stoqs_object_name = None kml = KML(request, qs, qparams, stoqs_object_name, withTimeStamps=True, withLineStrings=True, withFullIconURL=True) # Put data into form that KML() expects - use different datavalues (-1, 1) to color the platforms dataHash = defaultdict(lambda: []) colors = {} values = np.linspace(-1, 1, len(list(self.trackDrift.keys()))) for i, k in enumerate(self.trackDrift.keys()): colors[k] = values[i] for platform, drift in list(self.trackDrift.items()): for es, lo, la in zip(drift['es'], drift['lon'], drift['lat']): dataHash[platform].append([datetime.utcfromtimestamp(es), lo, la, 0.0, 'position', colors[platform], platform]) for depth, drift in list(self.adcpDrift.items()): for es, lo, la in zip(drift['es'], drift['lon'], drift['lat']): dataHash[depth].append([datetime.utcfromtimestamp(es), lo, la, float(depth), 'position', 0.0, 'adcp']) for key, drift in list(self.stoqsDrift.items()): parm, plat = key.split(',')[:2] for es, lo, la, de, dv in zip(drift['es'], drift['lon'], drift['lat'], drift['depth'], drift['datavalue']): dataHash[parm].append([datetime.utcfromtimestamp(es), lo, la, de, parm, dv, plat]) try: title = self.title except AttributeError: title = 'Product of STOQS drift_data.py' description = self.commandline.replace('&','&amp;') kml = kml.makeKML(self.args.database, dataHash, 'position', title, description, 0.0, 0.0 ) fh = open(self.args.kmlFileName, 'w') fh.write(kml) fh.close() print('Wrote file', self.args.kmlFileName) def process_command_line(self): '''The argparse library is included in Python 2.7 and is an added package for STOQS. ''' import argparse from argparse import RawTextHelpFormatter examples = 'Examples:' + '\n\n' examples += "M1 ADCP progressive vector diagram and Stella and Rachel Carson position data:\n" examples += sys.argv[0] + " --database stoqs_september2014 --adcpPlatform M1_Mooring --adcpMinDepth 30 --adcpMaxDepth 40" examples += " --trackData http://odss.mbari.org/trackingdb/position/stella101/between/20140922T171500/20141010T000000/data.csv" examples += " http://odss.mbari.org/trackingdb/position/R_CARSON/between/20140922T171500/20141010T000000/data.csv" examples += " http://odss.mbari.org/trackingdb/position/stella122/between/20140922T171500/20141010T000000/data.csv" examples += " --pngFileName foo.png --start 20140923T180000 --end 20140925T150000" examples += "\n" examples += '\nIf running from cde-package replace ".py" with ".py.cde".' parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter, description='Script to produce products to help understand drift caused by currents in the ocean', epilog=examples) parser.add_argument('-d', '--database', action='store', help='Database alias', default='stoqs_september2014') parser.add_argument('--adcpPlatform', action='store', help='STOQS Platform Name for ADCP data') parser.add_argument('--adcpMinDepth', action='store', help='Minimum depth of ADCP data for progressive vector data', type=float) parser.add_argument('--adcpMaxDepth', action='store', help='Maximum depth of ADCP data for progressive vector data', type=float) parser.add_argument('--trackData', action='store', help='List of MBARItracking database .csv urls for data from drifters, ships, etc.', nargs='*', default=[]) parser.add_argument('--stoqsData', action='store', help='List of STOQS MeasuredParameter Data Access .csv urls for parameter data', nargs='*', default=[]) parser.add_argument('--start', action='store', help='Start time in YYYYMMDDTHHMMSS format') parser.add_argument('--end', action='store', help='End time in YYYYMMDDTHHMMSS format') parser.add_argument('--extend', action='store', help='Extend the data extent for the map boundaries by this value in degrees', default=0.05, type=float) parser.add_argument('--extent', action='store', help='Space separated specific map boundary in degrees: ll_lon ll_lat ur_lon ur_lat', nargs=4, default=[]) parser.add_argument('--title', action='store', help='Title for plots, will override default title created if --start specified') parser.add_argument('--kmlFileName', action='store', help='Name of file for KML output') parser.add_argument('--pngFileName', action='store', help='Name of file for PNG image of map') parser.add_argument('--geotiffFileName', action='store', help='Name of file for geotiff image of map') parser.add_argument('-v', '--verbose', nargs='?', choices=[1,2,3], type=int, help='Turn on verbose output. Higher number = more output.', const=1) self.args = parser.parse_args() self.commandline = ' '.join(sys.argv) self.startDatetime = None # Make both naiive and timezone aware datetime data members if self.args.start: self.startDatetime = datetime.strptime(self.args.start, '%Y%m%dT%H%M%S') self.startDatetimeUTC = pytz.utc.localize(self.startDatetime) self.startDatetimeLocal = self.startDatetimeUTC.astimezone(pytz.timezone('America/Los_Angeles')) self.title = 'Drift since %s' % self.startDatetimeLocal self.endDatetime = None if self.args.end: self.endDatetime = datetime.strptime(self.args.end, '%Y%m%dT%H%M%S') self.endDatetimeUTC = pytz.utc.localize(self.endDatetime) self.endDatetimeLocal = self.endDatetimeUTC.astimezone(pytz.timezone('America/Los_Angeles')) if self.args.title: self.title = self.args.title if __name__ == '__main__': d = Drift() d.process_command_line() d.process() if d.args.pngFileName: d.createPNG() if d.args.geotiffFileName: d.createGeoTiff() if d.args.kmlFileName: d.createKML()
gpl-3.0
datapythonista/pandas
pandas/tests/frame/methods/test_update.py
3
4604
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Series, date_range, ) import pandas._testing as tm class TestDataFrameUpdate: def test_update_nan(self): # #15593 #15617 # test 1 df1 = DataFrame({"A": [1.0, 2, 3], "B": date_range("2000", periods=3)}) df2 = DataFrame({"A": [None, 2, 3]}) expected = df1.copy() df1.update(df2, overwrite=False) tm.assert_frame_equal(df1, expected) # test 2 df1 = DataFrame({"A": [1.0, None, 3], "B": date_range("2000", periods=3)}) df2 = DataFrame({"A": [None, 2, 3]}) expected = DataFrame({"A": [1.0, 2, 3], "B": date_range("2000", periods=3)}) df1.update(df2, overwrite=False) tm.assert_frame_equal(df1, expected) def test_update(self): df = DataFrame( [[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]] ) other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other) expected = DataFrame( [[1.5, np.nan, 3], [3.6, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]] ) tm.assert_frame_equal(df, expected) def test_update_dtypes(self): # gh 3016 df = DataFrame( [[1.0, 2.0, False, True], [4.0, 5.0, True, False]], columns=["A", "B", "bool1", "bool2"], ) other = DataFrame([[45, 45]], index=[0], columns=["A", "B"]) df.update(other) expected = DataFrame( [[45.0, 45.0, False, True], [4.0, 5.0, True, False]], columns=["A", "B", "bool1", "bool2"], ) tm.assert_frame_equal(df, expected) def test_update_nooverwrite(self): df = DataFrame( [[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]] ) other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other, overwrite=False) expected = DataFrame( [[1.5, np.nan, 3], [1.5, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 3.0]] ) tm.assert_frame_equal(df, expected) def test_update_filtered(self): df = DataFrame( [[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]] ) other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other, filter_func=lambda x: x > 2) expected = DataFrame( [[1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]] ) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "bad_kwarg, exception, msg", [ # errors must be 'ignore' or 'raise' ({"errors": "something"}, ValueError, "The parameter errors must.*"), ({"join": "inner"}, NotImplementedError, "Only left join is supported"), ], ) def test_update_raise_bad_parameter(self, bad_kwarg, exception, msg): df = DataFrame([[1.5, 1, 3.0]]) with pytest.raises(exception, match=msg): df.update(df, **bad_kwarg) def test_update_raise_on_overlap(self): df = DataFrame( [[1.5, 1, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]] ) other = DataFrame([[2.0, np.nan], [np.nan, 7]], index=[1, 3], columns=[1, 2]) with pytest.raises(ValueError, match="Data overlaps"): df.update(other, errors="raise") def test_update_from_non_df(self): d = {"a": Series([1, 2, 3, 4]), "b": Series([5, 6, 7, 8])} df = DataFrame(d) d["a"] = Series([5, 6, 7, 8]) df.update(d) expected = DataFrame(d) tm.assert_frame_equal(df, expected) d = {"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]} df = DataFrame(d) d["a"] = [5, 6, 7, 8] df.update(d) expected = DataFrame(d) tm.assert_frame_equal(df, expected) def test_update_datetime_tz(self): # GH 25807 result = DataFrame([pd.Timestamp("2019", tz="UTC")]) result.update(result) expected = DataFrame([pd.Timestamp("2019", tz="UTC")]) tm.assert_frame_equal(result, expected) def test_update_with_different_dtype(self): # GH#3217 df = DataFrame({"a": [1, 3], "b": [np.nan, 2]}) df["c"] = np.nan df["c"].update(Series(["foo"], index=[0])) expected = DataFrame({"a": [1, 3], "b": [np.nan, 2], "c": ["foo", np.nan]}) tm.assert_frame_equal(df, expected)
bsd-3-clause
Titan-C/scikit-learn
examples/neighbors/plot_regression.py
15
1402
""" ============================ Nearest Neighbors regression ============================ Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target using both barycenter and constant weights. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause (C) INRIA # ############################################################################# # Generate sample data import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors np.random.seed(0) X = np.sort(5 * np.random.rand(40, 1), axis=0) T = np.linspace(0, 5, 500)[:, np.newaxis] y = np.sin(X).ravel() # Add noise to targets y[::5] += 1 * (0.5 - np.random.rand(8)) # ############################################################################# # Fit regression model n_neighbors = 5 for i, weights in enumerate(['uniform', 'distance']): knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights) y_ = knn.fit(X, y).predict(T) plt.subplot(2, 1, i + 1) plt.scatter(X, y, c='k', label='data') plt.plot(T, y_, c='g', label='prediction') plt.axis('tight') plt.legend() plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
RomainBrault/OVFM
OVFM/DataGeneration.py
1
2814
import math import numpy import numpy.linalg import numpy.random import Model def generate_inputs( nb_data, i_dim, shape = 'cube' ): inputs = 2 * numpy.random.rand( nb_data, i_dim ) - 1 if shape == 'ball': return inputs[ numpy.linalg.norm( inputs, ord = 2, axis = 1 ) <= 1, : ] elif shape == 'sphere': return inputs / numpy.linalg.norm( inputs, ord = 2, axis = 1 )[ :, numpy.newaxis ] elif 'cube': return inputs def generate_outputs( X, model ): model.coefs = numpy.random.normal( 0, 1, model.coefs.shape ) return model( X ) def mesh2array( X, Y ): arr = numpy.empty( ( X.size, 2 ) ) arr[ :, 0 ] = X.ravel( ) arr[ :, 1 ] = Y.ravel( ) return arr def array2mesh( arr, side = None ): if side == None: side = int( math.sqrt( arr.shape[ 0 ] ) ) X = arr[ :, 0 ].reshape( ( side, side ) ) Y = arr[ :, 1 ].reshape( ( side, side ) ) return X, Y def generate_2Dvectorfield( side, model, shape = ( -1, 1, -1, 1 ), w = None ): model.coefs = numpy.random.normal( 0, 1, model.coefs.shape ) Y, X = numpy.mgrid[ shape[ 0 ]:shape[ 1 ]:side*1j, shape[ 0 ]:shape[ 1 ]:side*1j ] U, V = array2mesh( model( mesh2array( X, Y ) ), side ) return X, Y, U, V, w def plot_error( filename = 'sgd_error.txt' ): import matplotlib.pyplot as plt error = numpy.genfromtxt( filename, skip_header = 1, delimiter = ' ' ) fig1, axarr = plt.subplots( 3, 2 ) axarr[ 0, 0 ].plot( error[ :, 0 ], error[ :, 1 ] ) # axarr[ 0, 0 ].set_xlabel( 'Iterations' ) axarr[ 0, 0 ].set_ylabel( 'MSE' ) axarr[ 0, 1 ].plot( error[ :, 1 ], error[ :, 4 ] ) # axarr[ 0, 1 ].set_xlabel( 'MSE' ) axarr[ 0, 1 ].set_ylabel( '$1/D\sum_{i=0}^D\Theta_i=0$' ) axarr[ 0, 1 ].set_xscale( 'log' ) axarr[ 0, 1 ].invert_xaxis() axarr[ 1, 0 ].plot( error[ :, 0 ], error[ :, 2 ] ) # axarr[ 1, 0 ].set_xlabel( 'Iterations' ) axarr[ 1, 0 ].set_ylabel( '$||\Theta||_1$' ) axarr[ 1, 1 ].plot( error[ :, 1 ], error[ :, 2 ] ) # axarr[ 1, 1 ].set_xlabel( 'MSE' ) axarr[ 1, 1 ].set_ylabel( '$||\Theta||_1$' ) axarr[ 1, 1 ].set_xscale( 'log' ) axarr[ 1, 1 ].invert_xaxis( ) axarr[ 2, 0 ].plot( error[ :, 0 ], error[ :, 3 ] ) axarr[ 2, 0 ].set_xlabel( 'Iterations' ) axarr[ 2, 0 ].set_ylabel( '$||\Theta||_2$' ) axarr[ 2, 1 ].plot( error[ :, 1 ], error[ :, 3 ] ) axarr[ 2, 1 ].set_xlabel( 'MSE' ) axarr[ 2, 1 ].set_ylabel( '$||\Theta||_2$' ) axarr[ 2, 1 ].set_xscale( 'log' ) axarr[ 2, 1 ].invert_xaxis( ) plt.show() def mean_score( scores ): import scipy.stats as sps """Print the empirical mean score and standard deviation of the scores of a cross validation""" return ( "Mean score: {0} (+/-{1})" ).format( numpy.mean( scores ), sps.sem( scores ) )
mit
ElDeveloper/scikit-learn
sklearn/discriminant_analysis.py
4
27419
""" Linear Discriminant Analysis and Quadratic Discriminant Analysis """ # Authors: Clemens Brunner # Martin Billinger # Matthieu Perrot # Mathieu Blondel # License: BSD 3-Clause from __future__ import print_function import warnings import numpy as np from scipy import linalg from .externals.six import string_types from .externals.six.moves import xrange from .base import BaseEstimator, TransformerMixin, ClassifierMixin from .linear_model.base import LinearClassifierMixin from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance from .utils.multiclass import unique_labels from .utils import check_array, check_X_y from .utils.validation import check_is_fitted from .utils.fixes import bincount from .utils.multiclass import check_classification_targets from .preprocessing import StandardScaler __all__ = ['LinearDiscriminantAnalysis', 'QuadraticDiscriminantAnalysis'] def _cov(X, shrinkage=None): """Estimate covariance matrix (using optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. shrinkage : string or float, optional Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- s : array, shape (n_features, n_features) Estimated covariance matrix. """ shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, string_types): if shrinkage == 'auto': sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = sc.scale_ * ledoit_wolf(X)[0] * sc.scale_ # scale back elif shrinkage == 'empirical': s = empirical_covariance(X) else: raise ValueError('unknown shrinkage parameter') elif isinstance(shrinkage, float) or isinstance(shrinkage, int): if shrinkage < 0 or shrinkage > 1: raise ValueError('shrinkage parameter must be between 0 and 1') s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError('shrinkage must be of string or int type') return s def _class_means(X, y): """Compute class means. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like, shape (n_features,) Class means. """ means = [] classes = np.unique(y) for group in classes: Xg = X[y == group, :] means.append(Xg.mean(0)) return np.asarray(means) def _class_cov(X, y, priors=None, shrinkage=None): """Compute class covariance matrix. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like, shape (n_classes,) Class priors. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- cov : array-like, shape (n_features, n_features) Class covariance matrix. """ classes = np.unique(y) covs = [] for group in classes: Xg = X[y == group, :] covs.append(np.atleast_2d(_cov(Xg, shrinkage))) return np.average(covs, axis=0, weights=priors) class LinearDiscriminantAnalysis(BaseEstimator, LinearClassifierMixin, TransformerMixin): """Linear Discriminant Analysis A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix. The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions. Parameters ---------- solver : string, optional Solver to use, possible values: - 'svd': Singular value decomposition (default). Does not compute the covariance matrix, therefore this solver is recommended for data with a large number of features. - 'lsqr': Least squares solution, can be combined with shrinkage. - 'eigen': Eigenvalue decomposition, can be combined with shrinkage. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Note that shrinkage works only with 'lsqr' and 'eigen' solvers. priors : array, optional, shape (n_classes,) Class priors. n_components : int, optional Number of components (< n_classes - 1) for dimensionality reduction. store_covariance : bool, optional Additionally compute class covariance matrix (default False). tol : float, optional Threshold used for rank estimation in SVD solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : array, shape (n_features,) Intercept term. covariance_ : array-like, shape (n_features, n_features) Covariance matrix (shared by all classes). explained_variance_ratio_ : array, shape (n_components,) Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0. Only available when eigen solver is used. means_ : array-like, shape (n_classes, n_features) Class means. priors_ : array-like, shape (n_classes,) Class priors (sum to 1). scalings_ : array-like, shape (rank, n_classes - 1) Scaling of the features in the space spanned by the class centroids. xbar_ : array-like, shape (n_features,) Overall mean. classes_ : array-like, shape (n_classes,) Unique class labels. See also -------- sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis: Quadratic Discriminant Analysis Notes ----- The default solver is 'svd'. It can perform both classification and transform, and it does not rely on the calculation of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the 'svd' solver cannot be used with shrinkage. The 'lsqr' solver is an efficient algorithm that only works for classification. It supports shrinkage. The 'eigen' solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used for both classification and transform, and it supports shrinkage. However, the 'eigen' solver needs to compute the covariance matrix, so it might not be suitable for situations with a high number of features. Examples -------- >>> import numpy as np >>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = LinearDiscriminantAnalysis() >>> clf.fit(X, y) LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] """ def __init__(self, solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=1e-4): self.solver = solver self.shrinkage = shrinkage self.priors = priors self.n_components = n_components self.store_covariance = store_covariance # used only in svd solver self.tol = tol # used only in svd solver def _solve_lsqr(self, X, y, shrinkage): """Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with optional shrinkage), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_eigen(self, X, y, shrinkage): """Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) Sw = self.covariance_ # within scatter St = _cov(X, shrinkage) # total scatter Sb = St - Sw # between scatter evals, evecs = linalg.eigh(Sb, Sw) self.explained_variance_ratio_ = np.sort(evals / np.sum(evals))[::-1] evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors # evecs /= np.linalg.norm(evecs, axis=0) # doesn't work with numpy 1.6 evecs /= np.apply_along_axis(np.linalg.norm, 0, evecs) self.scalings_ = evecs self.coef_ = np.dot(self.means_, evecs).dot(evecs.T) self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_svd(self, X, y): """SVD solver. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. """ n_samples, n_features = X.shape n_classes = len(self.classes_) self.means_ = _class_means(X, y) if self.store_covariance: self.covariance_ = _class_cov(X, y, self.priors_) Xc = [] for idx, group in enumerate(self.classes_): Xg = X[y == group, :] Xc.append(Xg - self.means_[idx]) self.xbar_ = np.dot(self.priors_, self.means_) Xc = np.concatenate(Xc, axis=0) # 1) within (univariate) scaling by with classes std-dev std = Xc.std(axis=0) # avoid division by zero in normalization std[std == 0] = 1. fac = 1. / (n_samples - n_classes) # 2) Within variance scaling X = np.sqrt(fac) * (Xc / std) # SVD of centered (within)scaled data U, S, V = linalg.svd(X, full_matrices=False) rank = np.sum(S > self.tol) if rank < n_features: warnings.warn("Variables are collinear.") # Scaling of within covariance is: V' 1/S scalings = (V[:rank] / std).T / S[:rank] # 3) Between variance scaling # Scale weighted centers X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T).T, scalings) # Centers are living in a space with n_classes-1 dim (maximum) # Use SVD to find projection in the space spanned by the # (n_classes) centers _, S, V = linalg.svd(X, full_matrices=0) rank = np.sum(S > self.tol * S[0]) self.scalings_ = np.dot(scalings, V.T[:, :rank]) coef = np.dot(self.means_ - self.xbar_, self.scalings_) self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) + np.log(self.priors_)) self.coef_ = np.dot(coef, self.scalings_.T) self.intercept_ -= np.dot(self.xbar_, self.coef_.T) def fit(self, X, y, store_covariance=None, tol=None): """Fit LinearDiscriminantAnalysis model according to the given training data and parameters. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array, shape (n_samples,) Target values. """ if store_covariance: warnings.warn("The parameter 'store_covariance' is deprecated as " "of version 0.17 and will be removed in 0.19. The " "parameter is no longer necessary because the value " "is set via the estimator initialisation or " "set_params method.", DeprecationWarning) self.store_covariance = store_covariance if tol: warnings.warn("The parameter 'tol' is deprecated as of version " "0.17 and will be removed in 0.19. The parameter is " "no longer necessary because the value is set via " "the estimator initialisation or set_params method.", DeprecationWarning) self.tol = tol X, y = check_X_y(X, y, ensure_min_samples=2, estimator=self) self.classes_ = unique_labels(y) if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = bincount(y_t) / float(len(y)) else: self.priors_ = np.asarray(self.priors) if (self.priors_ < 0).any(): raise ValueError("priors must be non-negative") if self.priors_.sum() != 1: warnings.warn("The priors do not sum to 1. Renormalizing", UserWarning) self.priors_ = self.priors_ / self.priors_.sum() if self.solver == 'svd': if self.shrinkage is not None: raise NotImplementedError('shrinkage not supported') self._solve_svd(X, y) elif self.solver == 'lsqr': self._solve_lsqr(X, y, shrinkage=self.shrinkage) elif self.solver == 'eigen': self._solve_eigen(X, y, shrinkage=self.shrinkage) else: raise ValueError("unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver)) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2) self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0], ndmin=1) return self def transform(self, X): """Project data to maximize class separation. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data. """ if self.solver == 'lsqr': raise NotImplementedError("transform not implemented for 'lsqr' " "solver (use 'svd' or 'eigen').") check_is_fitted(self, ['xbar_', 'scalings_'], all_or_any=any) X = check_array(X) if self.solver == 'svd': X_new = np.dot(X - self.xbar_, self.scalings_) elif self.solver == 'eigen': X_new = np.dot(X, self.scalings_) n_components = X.shape[1] if self.n_components is None \ else self.n_components return X_new[:, :n_components] def predict_proba(self, X): """Estimate probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated probabilities. """ prob = self.decision_function(X) prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if len(self.classes_) == 2: # binary case return np.column_stack([1 - prob, prob]) else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob def predict_log_proba(self, X): """Estimate log probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated log probabilities. """ return np.log(self.predict_proba(X)) class QuadraticDiscriminantAnalysis(BaseEstimator, ClassifierMixin): """ Quadratic Discriminant Analysis A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class. Parameters ---------- priors : array, optional, shape = [n_classes] Priors on classes reg_param : float, optional Regularizes the covariance estimate as ``(1-reg_param)*Sigma + reg_param*np.eye(n_features)`` Attributes ---------- covariances_ : list of array-like, shape = [n_features, n_features] Covariance matrices of each class. means_ : array-like, shape = [n_classes, n_features] Class means. priors_ : array-like, shape = [n_classes] Class priors (sum to 1). rotations_ : list of arrays For each class k an array of shape [n_features, n_k], with ``n_k = min(n_features, number of elements in class k)`` It is the rotation of the Gaussian distribution, i.e. its principal axis. scalings_ : list of arrays For each class k an array of shape [n_k]. It contains the scaling of the Gaussian distributions along its principal axes, i.e. the variance in the rotated coordinate system. store_covariances : boolean If True the covariance matrices are computed and stored in the `self.covariances_` attribute. tol : float, optional, default 1.0e-4 Threshold used for rank estimation. Examples -------- >>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = QuadraticDiscriminantAnalysis() >>> clf.fit(X, y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0, store_covariances=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.discriminant_analysis.LinearDiscriminantAnalysis: Linear Discriminant Analysis """ def __init__(self, priors=None, reg_param=0., store_covariances=False, tol=1.0e-4): self.priors = np.asarray(priors) if priors is not None else None self.reg_param = reg_param self.store_covariances = store_covariances self.tol = tol def fit(self, X, y, store_covariances=None, tol=None): """Fit the model according to the given training data and parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) """ if store_covariances: warnings.warn("The parameter 'store_covariances' is deprecated as " "of version 0.17 and will be removed in 0.19. The " "parameter is no longer necessary because the value " "is set via the estimator initialisation or " "set_params method.", DeprecationWarning) self.store_covariances = store_covariances if tol: warnings.warn("The parameter 'tol' is deprecated as of version " "0.17 and will be removed in 0.19. The parameter is " "no longer necessary because the value is set via " "the estimator initialisation or set_params method.", DeprecationWarning) self.tol = tol X, y = check_X_y(X, y) check_classification_targets(y) self.classes_, y = np.unique(y, return_inverse=True) n_samples, n_features = X.shape n_classes = len(self.classes_) if n_classes < 2: raise ValueError('y has less than 2 classes') if self.priors is None: self.priors_ = bincount(y) / float(n_samples) else: self.priors_ = self.priors cov = None if self.store_covariances: cov = [] means = [] scalings = [] rotations = [] for ind in xrange(n_classes): Xg = X[y == ind, :] meang = Xg.mean(0) means.append(meang) if len(Xg) == 1: raise ValueError('y has only 1 sample in class %s, covariance ' 'is ill defined.' % str(self.classes_[ind])) Xgc = Xg - meang # Xgc = U * S * V.T U, S, Vt = np.linalg.svd(Xgc, full_matrices=False) rank = np.sum(S > self.tol) if rank < n_features: warnings.warn("Variables are collinear") S2 = (S ** 2) / (len(Xg) - 1) S2 = ((1 - self.reg_param) * S2) + self.reg_param if self.store_covariances: # cov = V * (S^2 / (n-1)) * V.T cov.append(np.dot(S2 * Vt.T, Vt)) scalings.append(S2) rotations.append(Vt.T) if self.store_covariances: self.covariances_ = cov self.means_ = np.asarray(means) self.scalings_ = scalings self.rotations_ = rotations return self def _decision_function(self, X): check_is_fitted(self, 'classes_') X = check_array(X) norm2 = [] for i in range(len(self.classes_)): R = self.rotations_[i] S = self.scalings_[i] Xm = X - self.means_[i] X2 = np.dot(Xm, R * (S ** (-0.5))) norm2.append(np.sum(X2 ** 2, 1)) norm2 = np.array(norm2).T # shape = [len(X), n_classes] u = np.asarray([np.sum(np.log(s)) for s in self.scalings_]) return (-0.5 * (norm2 + u) + np.log(self.priors_)) def decision_function(self, X): """Apply decision function to an array of samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples (test vectors). Returns ------- C : array, shape = [n_samples, n_classes] or [n_samples,] Decision function values related to each class, per sample. In the two-class case, the shape is [n_samples,], giving the log likelihood ratio of the positive class. """ dec_func = self._decision_function(X) # handle special case of two classes if len(self.classes_) == 2: return dec_func[:, 1] - dec_func[:, 0] return dec_func def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] """ d = self._decision_function(X) y_pred = self.classes_.take(d.argmax(1)) return y_pred def predict_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior probabilities of classification per class. """ values = self._decision_function(X) # compute the likelihood of the underlying gaussian models # up to a multiplicative constant. likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis]) # compute posterior probabilities return likelihood / likelihood.sum(axis=1)[:, np.newaxis] def predict_log_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior log-probabilities of classification per class. """ # XXX : can do better to avoid precision overflows probas_ = self.predict_proba(X) return np.log(probas_)
bsd-3-clause
ozak/geopandas
benchmarks/plotting.py
4
2124
import random from geopandas import GeoDataFrame, GeoSeries from shapely.geometry import Point, LineString, Polygon, MultiPolygon import numpy as np class Bench: param_names = ['geom_type'] params = [('Point', 'LineString', 'Polygon', 'MultiPolygon', 'mixed')] def setup(self, geom_type): if geom_type == 'Point': geoms = GeoSeries([Point(i, i) for i in range(1000)]) elif geom_type == 'LineString': geoms = GeoSeries([LineString([(random.random(), random.random()) for _ in range(5)]) for _ in range(100)]) elif geom_type == 'Polygon': geoms = GeoSeries([Polygon([(random.random(), random.random()) for _ in range(3)]) for _ in range(100)]) elif geom_type == 'MultiPolygon': geoms = GeoSeries( [MultiPolygon([Polygon([(random.random(), random.random()) for _ in range(3)]) for _ in range(3)]) for _ in range(20)]) elif geom_type == 'mixed': g1 = GeoSeries([Point(i, i) for i in range(100)]) g2 = GeoSeries([LineString([(random.random(), random.random()) for _ in range(5)]) for _ in range(100)]) g3 = GeoSeries([Polygon([(random.random(), random.random()) for _ in range(3)]) for _ in range(100)]) geoms = g1 geoms.iloc[np.random.randint(0, 100, 50)] = g2 geoms.iloc[np.random.randint(0, 100, 33)] = g3 print(geoms.geom_type.value_counts()) df = GeoDataFrame({'geometry': geoms, 'values': np.random.randn(len(geoms))}) self.geoms = geoms self.df = df def time_plot_series(self, *args): self.geoms.plot() def time_plot_values(self, *args): self.df.plot(column='values')
bsd-3-clause
Obus/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
261
4490
import unittest import sys import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less, assert_equal from sklearn.mixture.tests.test_gmm import GMMTester from sklearn.externals.six.moves import cStringIO as StringIO np.seterr(all='warn') def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) def test_verbose_boolean(): # checks that the output for the verbose output is the same # for the flag values '1' and 'True' # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm_bool = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=True) dpgmm_int = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: # generate output with the boolean flag dpgmm_bool.fit(X) verbose_output = sys.stdout verbose_output.seek(0) bool_output = verbose_output.readline() # generate output with the int flag dpgmm_int.fit(X) verbose_output = sys.stdout verbose_output.seek(0) int_output = verbose_output.readline() assert_equal(bool_output, int_output) finally: sys.stdout = old_stdout def test_verbose_first_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) assert np.allclose(v, log_normalize(a), rtol=0.01) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp
bsd-3-clause
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
python-packages/nolearn-0.5/nolearn/model.py
2
2706
import warnings import numpy as np from sklearn.base import BaseEstimator from sklearn.externals.joblib import delayed from sklearn.externals.joblib import Parallel warnings.warn(""" The nolearn.model module will be removed in nolearn 0.6. If you want to continue to use this module, please consider copying the code into your own project. """) class AbstractModel(object): """A small abstraction around :class:`~sklearn.pipeline.Pipeline` objects. Allows the convenient parametrization of the underlying pipeline through :attr:`~AbstractModel.params`. """ default_params = dict() def __init__(self, **kwargs): """ :param kwargs: Keyword arguments correspond to pipeline parameters, and will override parameters in :attr:`~AbstractModel.default_params`. """ params = self.default_params.copy() params.update(kwargs) self.params = params def __call__(self): """ :rtype: :class:`~sklearn.pipeline.Pipeline` """ pipeline = self.pipeline pipeline.set_params(**self.params) return pipeline @property def pipeline(self): # pragma: no cover raise NotImplementedError() def _avgest_fit_est(est, i, X, y, verbose): if verbose: print "[AveragingEstimator] estimator_%s.fit() ..." % i return est.fit(X, y) def _avgest_predict_proba(est, i, X, verbose): if verbose: print "[AveragingEstimator] estimator_%s.predict_proba() ..." % i return est.predict_proba(X) class AveragingEstimator(BaseEstimator): """An estimator that wraps a list of other estimators and returns their average for :meth:`fit`, :meth:`predict` and :meth:`predict_proba`. """ def __init__(self, estimators, verbose=0, n_jobs=1): """ :param estimators: List of estimator objects. """ self.estimators = estimators self.verbose = verbose self.n_jobs = n_jobs def fit(self, X, y): result = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_avgest_fit_est)(est, i, X, y, self.verbose) for i, est in enumerate(self.estimators)) self.estimators = result return self def predict(self, X): return np.argmax(self.predict_proba(X), axis=1) def predict_proba(self, X): result = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_avgest_predict_proba)(est, i, X, self.verbose) for i, est in enumerate(self.estimators)) for proba in result[1:]: result[0] += proba return result[0] / len(self.estimators)
bsd-3-clause
mila-iqia/babyai
scripts/il_dataeff.py
1
1237
#!/usr/bin/env python3 import argparse import pandas import os import json from babyai import plotting parser = argparse.ArgumentParser("Analyze data efficiency of imitation learning") parser.add_argument('--path', default='.') parser.add_argument("--regex", default='.*') parser.add_argument("--patience", default=2, type=int) parser.add_argument("--window", default=1, type=int) parser.add_argument("--limit", default="frames") parser.add_argument("report") args = parser.parse_args() if os.path.exists(args.report): raise ValueError("report directory already exists") os.mkdir(args.report) summary_path = os.path.join(args.report, 'summary.csv') figure_path = os.path.join(args.report, 'visualization.png') result_path = os.path.join(args.report, 'result.json') df_logs = pandas.concat(plotting.load_logs(args.path), sort=True) df_success_rate, normal_time = plotting.best_within_normal_time( df_logs, args.regex, patience=args.patience, window=args.window, limit=args.limit, summary_path=summary_path) result = plotting.estimate_sample_efficiency( df_success_rate, visualize=True, figure_path=figure_path) result['normal_time'] = normal_time with open(result_path, 'w') as dst: json.dump(result, dst)
bsd-3-clause
loli/sklearn-ensembletrees
examples/tree/plot_tree_regression_multioutput.py
43
1791
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model clf_1 = DecisionTreeRegressor(max_depth=2) clf_2 = DecisionTreeRegressor(max_depth=5) clf_3 = DecisionTreeRegressor(max_depth=8) clf_1.fit(X, y) clf_2.fit(X, y) clf_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = clf_1.predict(X_test) y_2 = clf_2.predict(X_test) y_3 = clf_3.predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
jdrudolph/scikit-bio
skbio/stats/ordination/_redundancy_analysis.py
8
8953
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from scipy.linalg import svd, lstsq from skbio._base import OrdinationResults from ._utils import corr, svd_rank, scale from skbio.util._decorator import experimental @experimental(as_of="0.4.0") def rda(y, x, scale_Y=False, scaling=1): r"""Compute redundancy analysis, a type of canonical analysis. It is related to PCA and multiple regression because the explained variables `y` are fitted to the explanatory variables `x` and PCA is then performed on the fitted values. A similar process is performed on the residuals. RDA should be chosen if the studied gradient is small, and CCA when it's large, so that the contingency table is sparse. Parameters ---------- y : pd.DataFrame :math:`n \times p` response matrix, where :math:`n` is the number of samples and :math:`p` is the number of features. Its columns need be dimensionally homogeneous (or you can set `scale_Y=True`). This matrix is also referred to as the community matrix that commonly stores information about species abundances x : pd.DataFrame :math:`n \times m, n \geq m` matrix of explanatory variables, where :math:`n` is the number of samples and :math:`m` is the number of metadata variables. Its columns need not be standardized, but doing so turns regression coefficients into standard regression coefficients. scale_Y : bool, optional Controls whether the response matrix columns are scaled to have unit standard deviation. Defaults to `False`. scaling : int Scaling type 1 produces a distance biplot. It focuses on the ordination of rows (samples) because their transformed distances approximate their original euclidean distances. Especially interesting when most explanatory variables are binary. Scaling type 2 produces a correlation biplot. It focuses on the relationships among explained variables (`y`). It is interpreted like scaling type 1, but taking into account that distances between objects don't approximate their euclidean distances. See more details about distance and correlation biplots in [1]_, \S 9.1.4. Returns ------- OrdinationResults Object that stores the computed eigenvalues, the proportion explained by each of them (per unit), transformed coordinates for feature and samples, biplot scores, sample constraints, etc. Notes ----- The algorithm is based on [1]_, \S 11.1, and is expected to give the same results as ``rda(y, x)`` in R's package vegan. See Also -------- cca References ---------- .. [1] Legendre P. and Legendre L. 1998. Numerical Ecology. Elsevier, Amsterdam. """ Y = y.as_matrix() X = x.as_matrix() n, p = y.shape n_, m = x.shape if n != n_: raise ValueError( "Both data matrices must have the same number of rows.") if n < m: # Mmm actually vegan is able to do this case, too raise ValueError( "Explanatory variables cannot have less rows than columns.") sample_ids = y.index feature_ids = y.columns # Centre response variables (they must be dimensionally # homogeneous) Y = scale(Y, with_std=scale_Y) # Centre explanatory variables X = scale(X, with_std=False) # Distribution of variables should be examined and transformed # if necessary (see paragraph 4 in p. 580 L&L 1998) # Compute Y_hat (fitted values by multivariate linear # regression, that is, linear least squares). Formula 11.6 in # L&L 1998 involves solving the normal equations, but that fails # when cond(X) ~ eps**(-0.5). A more expensive but much more # stable solution (fails when cond(X) ~ eps**-1) is computed # using the QR decomposition of X = QR: # (11.6) Y_hat = X [X' X]^{-1} X' Y # = QR [R'Q' QR]^{-1} R'Q' Y # = QR [R' R]^{-1} R'Q' Y # = QR R^{-1} R'^{-1} R' Q' Y # = Q Q' Y # and B (matrix of regression coefficients) # (11.4) B = [X' X]^{-1} X' Y # = R^{-1} R'^{-1} R' Q' Y # = R^{-1} Q' # Q, R = np.linalg.qr(X) # Y_hat = Q.dot(Q.T).dot(Y) # B = scipy.linalg.solve_triangular(R, Q.T.dot(Y)) # This works provided X has full rank. When not, you can still # fix it using R's pseudoinverse or partitioning R. To avoid any # issues, like the numerical instability when trying to # reproduce an example in L&L where X was rank-deficient, we'll # just use `np.linalg.lstsq`, which uses the SVD decomposition # under the hood and so it's also more expensive. B, _, rank_X, _ = lstsq(X, Y) Y_hat = X.dot(B) # Now let's perform PCA on the fitted values from the multiple # regression u, s, vt = svd(Y_hat, full_matrices=False) # vt are the right eigenvectors, which is what we need to # perform PCA. That is, we're changing points in Y_hat from the # canonical basis to the orthonormal basis given by the right # eigenvectors of Y_hat (or equivalently, the eigenvectors of # the covariance matrix Y_hat.T.dot(Y_hat)) # See 3) in p. 583 in L&L 1998 rank = svd_rank(Y_hat.shape, s) # Theoretically, there're at most min(p, m, n - 1) non-zero eigenvalues U = vt[:rank].T # U as in Fig. 11.2 # Ordination in the space of response variables. Its columns are # sample scores. (Eq. 11.12) F = Y.dot(U) # Ordination in the space of explanatory variables. Its columns # are fitted sample scores. (Eq. 11.13) Z = Y_hat.dot(U) # Canonical coefficients (formula 11.14) # C = B.dot(U) # Not used Y_res = Y - Y_hat # PCA on the residuals u_res, s_res, vt_res = svd(Y_res, full_matrices=False) # See 9) in p. 587 in L&L 1998 rank_res = svd_rank(Y_res.shape, s_res) # Theoretically, there're at most min(p, n - 1) non-zero eigenvalues as U_res = vt_res[:rank_res].T F_res = Y_res.dot(U_res) # Ordination in the space of residuals eigenvalues = np.r_[s[:rank], s_res[:rank_res]] # Compute scores if scaling not in {1, 2}: raise NotImplementedError("Only scalings 1, 2 available for RDA.") # According to the vegan-FAQ.pdf, the scaling factor for scores # is (notice that L&L 1998 says in p. 586 that such scaling # doesn't affect the interpretation of a biplot): pc_ids = ['RDA%d' % (i+1) for i in range(len(eigenvalues))] eigvals = pd.Series(eigenvalues, index=pc_ids) const = np.sum(eigenvalues**2)**0.25 if scaling == 1: scaling_factor = const elif scaling == 2: scaling_factor = eigenvalues / const feature_scores = np.hstack((U, U_res)) * scaling_factor sample_scores = np.hstack((F, F_res)) / scaling_factor feature_scores = pd.DataFrame(feature_scores, index=feature_ids, columns=pc_ids) sample_scores = pd.DataFrame(sample_scores, index=sample_ids, columns=pc_ids) # TODO not yet used/displayed sample_constraints = pd.DataFrame(np.hstack((Z, F_res)) / scaling_factor, index=sample_ids, columns=pc_ids) # Vegan seems to compute them as corr(X[:, :rank_X], # u) but I don't think that's a good idea. In fact, if # you take the example shown in Figure 11.3 in L&L 1998 you # can see that there's an arrow for each of the 4 # environmental variables (depth, coral, sand, other) even if # other = not(coral or sand) biplot_scores = pd.DataFrame(corr(X, u)) # The "Correlations of environmental variables with sample # scores" from table 11.4 are quite similar to vegan's biplot # scores, but they're computed like this: # corr(X, F)) p_explained = pd.Series(eigenvalues / eigenvalues.sum(), index=pc_ids) return OrdinationResults('RDA', 'Redundancy Analysis', eigvals=eigvals, proportion_explained=p_explained, features=feature_scores, samples=sample_scores, biplot_scores=biplot_scores, sample_constraints=sample_constraints)
bsd-3-clause
jmanday/Master
TFM/scripts/comparison.py
1
2086
######################################################################### ### Jesus Garcia Manday ### segmentation.py ### @Descripcion: script para realizar la segmentacion de las imagenes de ### iris y obtener la textura del mismo a traves de dos ### metodos posibles "caht" y "wahet" ######################################################################### import os import commands import sys import pandas as pd PATH_EXECUTABLE = "/Users/jesusgarciamanday/Documents/Master/TFM/USITv1.0.3/" PATH_DATABASES = "/Users/jesusgarciamanday/Documents/Master/TFM/databases/CASIA V4/" PATH_DATABASES_2 = "/Users/jesusgarciamanday/Documents/Master/TFM/databases/CASIA\ V4/" PATH_OUTPUTS = "/Users/jesusgarciamanday/Documents/Master/TFM/outputs/segmentation/" PATH_OUTPUTS2 = "/Users/jesusgarciamanday/Documents/Master/TFM/outputs/feature extraction/" def getImagesCASIAV4(): vnames_images = [] direc = os.chdir(PATH_DATABASES) cmd = ("ls " + PATH_DATABASES_2) res = commands.getstatusoutput(cmd) if res[0] == 0: vimages = res[1].split() for img in vimages: name_img = img.split('.') if name_img[1] == 'jpg': vnames_images.append(img) else: print ("Error:" + str(res[0])) print ("Descripcion: " + res[1]) df = pd.DataFrame([[img, 0, 0, 0, 0, 0, 0, 0] for img in vnames_images], columns = ['image', 'lg', 'qsw', 'ko', 'cr', 'cb', 'dct', 'gfcf']) df.to_csv(PATH_OUTPUTS2 + 'results.csv', index=False) return vnames_images if __name__ == "__main__": #mode_seg = sys.argv[1] images_CASIAV4 = getImagesCASIAV4() #direc = os.chdir(PATH_EXECUTABLE) #for img in images_CASIAV4: # cmd = ("./" + mode_seg + " -i " + PATH_DATABASES_2 + img + " -o " + PATH_OUTPUTS + "/" + mode_seg + "/" + img.split('.')[0] + "-texture.png" + " -s 512 64 -e") # res = commands.getstatusoutput(cmd) # if(res[0] != 0): # print ("Error:" + str(res[0])) # print ("Descripcion: " + res[1])
apache-2.0
pandagod/textclassifier
eval.py
1
5935
#! /usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division import tensorflow as tf import numpy as np import os import time import datetime import data_helpers from text_cnn import TextCNN from tensorflow.contrib import learn import csv import sys import pandas as pd from bs4 import BeautifulSoup import MySQLdb from langdetect import detect import pickle import logging # Parameters # ================================================== # Data Parameters tf.flags.DEFINE_string("positive_data_file", "./data/rt-polaritydata/rt-polarity.pos", "Data source for the positive data.") tf.flags.DEFINE_string("negative_data_file", "./data/rt-polaritydata/rt-polarity.neg", "Data source for the positive data.") # Eval Parameters tf.flags.DEFINE_integer("batch_size", 128, "Batch Size (default: 64)") #tf.flags.DEFINE_string("checkpoint_dir", "/Users/zqiao/PycharmProjects/cnn-text-classification-tf/runs/1492410542/checkpoints/", "Checkpoint directory from training run") tf.flags.DEFINE_string("checkpoint_dir", "./runs/1520514294/checkpoints/", "Checkpoint directory from training run") tf.flags.DEFINE_boolean("eval_train", False, "Evaluate on all training data") # Misc Parameters tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") FLAGS = tf.flags.FLAGS FLAGS._parse_flags() print("\nParameters:") for attr, value in sorted(FLAGS.__flags.items()): print("{}={}".format(attr.upper(), value)) print("") f = open('./y_target.pickle', 'rb') lb = pickle.load(f) # CHANGE THIS: Load data. Load your own data here if FLAGS.eval_train: file = open('./dev_data.pickle', 'rb') x_test,y_test,x_id_test= pickle.load(file) y_test = np.argmax(y_test,axis=1) else: x_raw=[] y_test=[] ids=[] y_raw=[] db = MySQLdb.connect("10.249.71.213", "root", "root", "ai") cursor = db.cursor() sql = "SELECT sr_number,l1_topic,l2_topic,body,first_l2_topic,subject FROM test01010110" try: cursor.execute(sql) results = cursor.fetchall() except: sys.stdout.write("Error: unable to fecth data" + '\n') db.close() i=0 j=0 for row in results: text = BeautifulSoup((row[3]).decode('utf8', 'ignore'), "html.parser").get_text() try: if text!='' and text!='NULL' and detect(text)=='en': i =i+1 if row[2]==row[4]: j=j+1 ids.append(row[0]) x_raw.append(data_helpers.clean_str(row[5]+" "+text)) y_raw.append(row[2]) except: print row[0] print("actual correct rate is ") print (j/i) print y_raw print lb.transform(y_raw) y_test = np.argmax(lb.transform(y_raw),axis=1) print y_test # Map data into vocabulary vocab_path = os.path.join(FLAGS.checkpoint_dir, "..", "vocab") vocab_processor = learn.preprocessing.VocabularyProcessor.restore(vocab_path) x_test = np.array(list(vocab_processor.transform(x_raw))) print("\nEvaluating...\n") # Evaluation # ================================================== print FLAGS.checkpoint_dir checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) #checkpoint_file = FLAGS.checkpoint_dir+'model-2900' graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name input_x = graph.get_operation_by_name("input_x").outputs[0] # input_y = graph.get_operation_by_name("input_y").outputs[0] dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0] # Tensors we want to evaluate predictions = graph.get_operation_by_name("output/predictions").outputs[0] # Generate batches for one epoch batches = data_helpers.batch_iter(list(x_test), FLAGS.batch_size, 1, shuffle=False) # Collect the predictions here all_predictions = [] for x_test_batch in batches: batch_predictions = sess.run(predictions, {input_x: x_test_batch, dropout_keep_prob: 1.0}) all_predictions = np.concatenate([all_predictions, batch_predictions]) print y_test print all_predictions print lb.classes_ #print x_id_test result = tf.contrib.metrics.confusion_matrix(y_test, all_predictions, len(lb.classes_)).eval() correct_rate =[] for index, row in enumerate(result): correct_rate.append([row[index]/np.sum(row)]) data = np.hstack((result, correct_rate)) df = pd.DataFrame(data=data, index=lb.classes_, columns=np.concatenate((lb.classes_,["correct rate"]))) df.to_csv("confusion_matrix", sep=',', encoding='utf-8') print df # Print accuracy if y_test is defined if y_test is not None: correct_predictions = float(sum(all_predictions == y_test)) print("Total number of test examples: {}".format(len(y_test))) print("Total number of predicted examples: {}".format(len(all_predictions))) print("Accuracy: {:g}".format(correct_predictions/float(len(y_test)))) # Save the evaluation to a csv predictions_human_readable = np.column_stack((np.array(ids), np.array(y_test),[lb.classes_[int(label)] for label in all_predictions])) out_path = os.path.join(FLAGS.checkpoint_dir, "..", "prediction.csv") print("Saving evaluation to {0}".format(out_path)) with open(out_path, 'w') as f: csv.writer(f).writerows(predictions_human_readable)
apache-2.0
balazssimon/ml-playground
udemy/Machine Learning A-Z/Part 2 - Regression/regression_template.py
1
1457
# Regression Template # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2].values # Splitting the dataset into the Training set and Test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Feature Scaling """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) sc_y = StandardScaler() y_train = sc_y.fit_transform(y_train)""" # Fitting the Regression Model to the dataset # Create your regressor here # Predicting a new result y_pred = regressor.predict(X_test) # Visualising the Regression results plt.scatter(X_train, y_train, color = 'red') plt.plot(X_train, regressor.predict(X_train), color = 'blue') plt.title('Truth or Bluff (Regression Model)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show() # Visualising the Regression results (for higher resolution and smoother curve) X_grid = np.arange(min(X), max(X), 0.1) X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(X_train, y_train, color = 'red') plt.plot(X_grid, regressor.predict(X_grid), color = 'blue') plt.title('Truth or Bluff (Regression Model)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show()
apache-2.0
fspaolo/scikit-learn
sklearn/feature_extraction/tests/test_feature_hasher.py
9
2694
from __future__ import unicode_literals import numpy as np from sklearn.feature_extraction import FeatureHasher from nose.tools import assert_raises, assert_true from numpy.testing import assert_array_equal, assert_equal def test_feature_hasher_dicts(): h = FeatureHasher(n_features=16) assert_equal("dict", h.input_type) raw_X = [{"dada": 42, "tzara": 37}, {"gaga": 17}] X1 = FeatureHasher(n_features=16).transform(raw_X) gen = (iter(d.items()) for d in raw_X) X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen) assert_array_equal(X1.toarray(), X2.toarray()) def test_feature_hasher_strings(): # mix byte and Unicode strings; note that "foo" is a duplicate in row 0 raw_X = [["foo", "bar", "baz", "foo".encode("ascii")], ["bar".encode("ascii"), "baz", "quux"]] for lg_n_features in (7, 9, 11, 16, 22): n_features = 2 ** lg_n_features it = (x for x in raw_X) # iterable h = FeatureHasher(n_features, non_negative=True, input_type="string") X = h.transform(it) assert_equal(X.shape[0], len(raw_X)) assert_equal(X.shape[1], n_features) assert_true(np.all(X.data > 0)) assert_equal(X[0].sum(), 4) assert_equal(X[1].sum(), 3) assert_equal(X.nnz, 6) def test_feature_hasher_pairs(): raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": 2}, {"baz": 3, "quux": 4, "foo": -1}]) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert_equal([1, 2], x1_nz) assert_equal([1, 3, 4], x2_nz) def test_hash_empty_input(): n_features = 16 raw_X = [[], (), iter(range(0))] h = FeatureHasher(n_features=n_features, input_type="string") X = h.transform(raw_X) assert_array_equal(X.A, np.zeros((len(raw_X), n_features))) def test_hasher_invalid_input(): assert_raises(ValueError, FeatureHasher, input_type="gobbledygook") assert_raises(ValueError, FeatureHasher, n_features=-1) assert_raises(ValueError, FeatureHasher, n_features=0) assert_raises(TypeError, FeatureHasher, n_features='ham') h = FeatureHasher(n_features=np.uint16(2 ** 6)) assert_raises(ValueError, h.transform, []) assert_raises(Exception, h.transform, [[5.5]]) assert_raises(Exception, h.transform, [[None]]) def test_hasher_set_params(): """Test delayed input validation in fit (useful for grid search).""" hasher = FeatureHasher() hasher.set_params(n_features=np.inf) assert_raises(TypeError, hasher.fit)
bsd-3-clause
sunzhxjs/JobGIS
lib/python2.7/site-packages/pandas/tseries/tests/test_tslib.py
9
44977
import nose from distutils.version import LooseVersion import numpy as np from pandas import tslib import pandas._period as period import datetime from pandas.core.api import Timestamp, Series, Timedelta, Period, to_datetime from pandas.tslib import get_timezone from pandas._period import period_asfreq, period_ordinal from pandas.tseries.index import date_range, DatetimeIndex from pandas.tseries.frequencies import get_freq import pandas.tseries.tools as tools import pandas.tseries.offsets as offsets import pandas.util.testing as tm import pandas.compat as compat from pandas.util.testing import assert_series_equal import pandas.compat as compat class TestTimestamp(tm.TestCase): def test_constructor(self): base_str = '2014-07-01 09:00' base_dt = datetime.datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calendar self.assertEqual(calendar.timegm(base_dt.timetuple()) * 1000000000, base_expected) tests = [(base_str, base_dt, base_expected), ('2014-07-01 10:00', datetime.datetime(2014, 7, 1, 10), base_expected + 3600 * 1000000000), ('2014-07-01 09:00:00.000008000', datetime.datetime(2014, 7, 1, 9, 0, 0, 8), base_expected + 8000), ('2014-07-01 09:00:00.000000005', Timestamp('2014-07-01 09:00:00.000000005'), base_expected + 5)] tm._skip_if_no_pytz() tm._skip_if_no_dateutil() import pytz import dateutil timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, date, expected in tests: for result in [Timestamp(date_str), Timestamp(date)]: # only with timestring self.assertEqual(result.value, expected) self.assertEqual(tslib.pydt_to_i8(result), expected) # re-creation shouldn't affect to internal value result = Timestamp(result) self.assertEqual(result.value, expected) self.assertEqual(tslib.pydt_to_i8(result), expected) # with timezone for tz, offset in timezones: for result in [Timestamp(date_str, tz=tz), Timestamp(date, tz=tz)]: expected_tz = expected - offset * 3600 * 1000000000 self.assertEqual(result.value, expected_tz) self.assertEqual(tslib.pydt_to_i8(result), expected_tz) # should preserve tz result = Timestamp(result) self.assertEqual(result.value, expected_tz) self.assertEqual(tslib.pydt_to_i8(result), expected_tz) # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected - offset * 3600 * 1000000000 self.assertEqual(result.value, expected_utc) self.assertEqual(tslib.pydt_to_i8(result), expected_utc) def test_constructor_with_stringoffset(self): # GH 7833 base_str = '2014-07-01 11:00:00+02:00' base_dt = datetime.datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calendar self.assertEqual(calendar.timegm(base_dt.timetuple()) * 1000000000, base_expected) tests = [(base_str, base_expected), ('2014-07-01 12:00:00+02:00', base_expected + 3600 * 1000000000), ('2014-07-01 11:00:00.000008000+02:00', base_expected + 8000), ('2014-07-01 11:00:00.000000005+02:00', base_expected + 5)] tm._skip_if_no_pytz() tm._skip_if_no_dateutil() import pytz import dateutil timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, expected in tests: for result in [Timestamp(date_str)]: # only with timestring self.assertEqual(result.value, expected) self.assertEqual(tslib.pydt_to_i8(result), expected) # re-creation shouldn't affect to internal value result = Timestamp(result) self.assertEqual(result.value, expected) self.assertEqual(tslib.pydt_to_i8(result), expected) # with timezone for tz, offset in timezones: result = Timestamp(date_str, tz=tz) expected_tz = expected self.assertEqual(result.value, expected_tz) self.assertEqual(tslib.pydt_to_i8(result), expected_tz) # should preserve tz result = Timestamp(result) self.assertEqual(result.value, expected_tz) self.assertEqual(tslib.pydt_to_i8(result), expected_tz) # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected self.assertEqual(result.value, expected_utc) self.assertEqual(tslib.pydt_to_i8(result), expected_utc) # This should be 2013-11-01 05:00 in UTC -> converted to Chicago tz result = Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago') self.assertEqual(result.value, Timestamp('2013-11-01 05:00').value) expected_repr = "Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago')" self.assertEqual(repr(result), expected_repr) self.assertEqual(result, eval(repr(result))) # This should be 2013-11-01 05:00 in UTC -> converted to Tokyo tz (+09:00) result = Timestamp('2013-11-01 00:00:00-0500', tz='Asia/Tokyo') self.assertEqual(result.value, Timestamp('2013-11-01 05:00').value) expected_repr = "Timestamp('2013-11-01 14:00:00+0900', tz='Asia/Tokyo')" self.assertEqual(repr(result), expected_repr) self.assertEqual(result, eval(repr(result))) def test_constructor_invalid(self): with tm.assertRaisesRegexp(TypeError, 'Cannot convert input'): Timestamp(slice(2)) with tm.assertRaisesRegexp(ValueError, 'Cannot convert Period'): Timestamp(Period('1000-01-01')) def test_conversion(self): # GH 9255 ts = Timestamp('2000-01-01') result = ts.to_pydatetime() expected = datetime.datetime(2000, 1, 1) self.assertEqual(result, expected) self.assertEqual(type(result), type(expected)) result = ts.to_datetime64() expected = np.datetime64(ts.value, 'ns') self.assertEqual(result, expected) self.assertEqual(type(result), type(expected)) self.assertEqual(result.dtype, expected.dtype) def test_repr(self): tm._skip_if_no_pytz() tm._skip_if_no_dateutil() dates = ['2014-03-07', '2014-01-01 09:00', '2014-01-01 00:00:00.000000001'] # dateutil zone change (only matters for repr) import dateutil if dateutil.__version__ >= LooseVersion('2.3') and dateutil.__version__ <= LooseVersion('2.4.0'): timezones = ['UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/US/Pacific'] else: timezones = ['UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/America/Los_Angeles'] freqs = ['D', 'M', 'S', 'N'] for date in dates: for tz in timezones: for freq in freqs: # avoid to match with timezone name freq_repr = "'{0}'".format(freq) if tz.startswith('dateutil'): tz_repr = tz.replace('dateutil', '') else: tz_repr = tz date_only = Timestamp(date) self.assertIn(date, repr(date_only)) self.assertNotIn(tz_repr, repr(date_only)) self.assertNotIn(freq_repr, repr(date_only)) self.assertEqual(date_only, eval(repr(date_only))) date_tz = Timestamp(date, tz=tz) self.assertIn(date, repr(date_tz)) self.assertIn(tz_repr, repr(date_tz)) self.assertNotIn(freq_repr, repr(date_tz)) self.assertEqual(date_tz, eval(repr(date_tz))) date_freq = Timestamp(date, offset=freq) self.assertIn(date, repr(date_freq)) self.assertNotIn(tz_repr, repr(date_freq)) self.assertIn(freq_repr, repr(date_freq)) self.assertEqual(date_freq, eval(repr(date_freq))) date_tz_freq = Timestamp(date, tz=tz, offset=freq) self.assertIn(date, repr(date_tz_freq)) self.assertIn(tz_repr, repr(date_tz_freq)) self.assertIn(freq_repr, repr(date_tz_freq)) self.assertEqual(date_tz_freq, eval(repr(date_tz_freq))) # this can cause the tz field to be populated, but it's redundant to information in the datestring tm._skip_if_no_pytz() import pytz date_with_utc_offset = Timestamp('2014-03-13 00:00:00-0400', tz=None) self.assertIn('2014-03-13 00:00:00-0400', repr(date_with_utc_offset)) self.assertNotIn('tzoffset', repr(date_with_utc_offset)) self.assertIn('pytz.FixedOffset(-240)', repr(date_with_utc_offset)) expr = repr(date_with_utc_offset).replace("'pytz.FixedOffset(-240)'", 'pytz.FixedOffset(-240)') self.assertEqual(date_with_utc_offset, eval(expr)) def test_bounds_with_different_units(self): out_of_bounds_dates = ( '1677-09-21', '2262-04-12', ) time_units = ('D', 'h', 'm', 's', 'ms', 'us') for date_string in out_of_bounds_dates: for unit in time_units: self.assertRaises( ValueError, Timestamp, np.datetime64(date_string, dtype='M8[%s]' % unit) ) in_bounds_dates = ( '1677-09-23', '2262-04-11', ) for date_string in in_bounds_dates: for unit in time_units: Timestamp( np.datetime64(date_string, dtype='M8[%s]' % unit) ) def test_tz(self): t = '2014-02-01 09:00' ts = Timestamp(t) local = ts.tz_localize('Asia/Tokyo') self.assertEqual(local.hour, 9) self.assertEqual(local, Timestamp(t, tz='Asia/Tokyo')) conv = local.tz_convert('US/Eastern') self.assertEqual(conv, Timestamp('2014-01-31 19:00', tz='US/Eastern')) self.assertEqual(conv.hour, 19) # preserves nanosecond ts = Timestamp(t) + offsets.Nano(5) local = ts.tz_localize('Asia/Tokyo') self.assertEqual(local.hour, 9) self.assertEqual(local.nanosecond, 5) conv = local.tz_convert('US/Eastern') self.assertEqual(conv.nanosecond, 5) self.assertEqual(conv.hour, 19) def test_tz_localize_ambiguous(self): ts = Timestamp('2014-11-02 01:00') ts_dst = ts.tz_localize('US/Eastern', ambiguous=True) ts_no_dst = ts.tz_localize('US/Eastern', ambiguous=False) rng = date_range('2014-11-02', periods=3, freq='H', tz='US/Eastern') self.assertEqual(rng[1], ts_dst) self.assertEqual(rng[2], ts_no_dst) self.assertRaises(ValueError, ts.tz_localize, 'US/Eastern', ambiguous='infer') # GH 8025 with tm.assertRaisesRegexp(TypeError, 'Cannot localize tz-aware Timestamp, use ' 'tz_convert for conversions'): Timestamp('2011-01-01' ,tz='US/Eastern').tz_localize('Asia/Tokyo') with tm.assertRaisesRegexp(TypeError, 'Cannot convert tz-naive Timestamp, use ' 'tz_localize to localize'): Timestamp('2011-01-01').tz_convert('Asia/Tokyo') def test_tz_localize_roundtrip(self): for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/US/Pacific']: for t in ['2014-02-01 09:00', '2014-07-08 09:00', '2014-11-01 17:00', '2014-11-05 00:00']: ts = Timestamp(t) localized = ts.tz_localize(tz) self.assertEqual(localized, Timestamp(t, tz=tz)) with tm.assertRaises(TypeError): localized.tz_localize(tz) reset = localized.tz_localize(None) self.assertEqual(reset, ts) self.assertTrue(reset.tzinfo is None) def test_tz_convert_roundtrip(self): for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/US/Pacific']: for t in ['2014-02-01 09:00', '2014-07-08 09:00', '2014-11-01 17:00', '2014-11-05 00:00']: ts = Timestamp(t, tz='UTC') converted = ts.tz_convert(tz) reset = converted.tz_convert(None) self.assertEqual(reset, Timestamp(t)) self.assertTrue(reset.tzinfo is None) self.assertEqual(reset, converted.tz_convert('UTC').tz_localize(None)) def test_barely_oob_dts(self): one_us = np.timedelta64(1).astype('timedelta64[us]') # By definition we can't go out of bounds in [ns], so we # convert the datetime64s to [us] so we can go out of bounds min_ts_us = np.datetime64(Timestamp.min).astype('M8[us]') max_ts_us = np.datetime64(Timestamp.max).astype('M8[us]') # No error for the min/max datetimes Timestamp(min_ts_us) Timestamp(max_ts_us) # One us less than the minimum is an error self.assertRaises(ValueError, Timestamp, min_ts_us - one_us) # One us more than the maximum is an error self.assertRaises(ValueError, Timestamp, max_ts_us + one_us) def test_utc_z_designator(self): self.assertEqual(get_timezone(Timestamp('2014-11-02 01:00Z').tzinfo), 'UTC') def test_now(self): # #9000 ts_from_string = Timestamp('now') ts_from_method = Timestamp.now() ts_datetime = datetime.datetime.now() ts_from_string_tz = Timestamp('now', tz='US/Eastern') ts_from_method_tz = Timestamp.now(tz='US/Eastern') # Check that the delta between the times is less than 1s (arbitrarily small) delta = Timedelta(seconds=1) self.assertTrue(abs(ts_from_method - ts_from_string) < delta) self.assertTrue(abs(ts_datetime - ts_from_method) < delta) self.assertTrue(abs(ts_from_method_tz - ts_from_string_tz) < delta) self.assertTrue(abs(ts_from_string_tz.tz_localize(None) - ts_from_method_tz.tz_localize(None)) < delta) def test_today(self): ts_from_string = Timestamp('today') ts_from_method = Timestamp.today() ts_datetime = datetime.datetime.today() ts_from_string_tz = Timestamp('today', tz='US/Eastern') ts_from_method_tz = Timestamp.today(tz='US/Eastern') # Check that the delta between the times is less than 1s (arbitrarily small) delta = Timedelta(seconds=1) self.assertTrue(abs(ts_from_method - ts_from_string) < delta) self.assertTrue(abs(ts_datetime - ts_from_method) < delta) self.assertTrue(abs(ts_from_method_tz - ts_from_string_tz) < delta) self.assertTrue(abs(ts_from_string_tz.tz_localize(None) - ts_from_method_tz.tz_localize(None)) < delta) def test_fields(self): def check(value, equal): # that we are int/long like self.assertTrue(isinstance(value, (int, compat.long))) self.assertEqual(value, equal) # GH 10050 ts = Timestamp('2015-05-10 09:06:03.000100001') check(ts.year, 2015) check(ts.month, 5) check(ts.day, 10) check(ts.hour, 9) check(ts.minute, 6) check(ts.second, 3) self.assertRaises(AttributeError, lambda : ts.millisecond) check(ts.microsecond, 100) check(ts.nanosecond, 1) check(ts.dayofweek, 6) check(ts.quarter, 2) check(ts.dayofyear, 130) check(ts.week, 19) check(ts.daysinmonth, 31) check(ts.daysinmonth, 31) def test_nat_fields(self): # GH 10050 ts = Timestamp('NaT') self.assertTrue(np.isnan(ts.year)) self.assertTrue(np.isnan(ts.month)) self.assertTrue(np.isnan(ts.day)) self.assertTrue(np.isnan(ts.hour)) self.assertTrue(np.isnan(ts.minute)) self.assertTrue(np.isnan(ts.second)) self.assertTrue(np.isnan(ts.microsecond)) self.assertTrue(np.isnan(ts.nanosecond)) self.assertTrue(np.isnan(ts.dayofweek)) self.assertTrue(np.isnan(ts.quarter)) self.assertTrue(np.isnan(ts.dayofyear)) self.assertTrue(np.isnan(ts.week)) self.assertTrue(np.isnan(ts.daysinmonth)) self.assertTrue(np.isnan(ts.days_in_month)) class TestDatetimeParsingWrappers(tm.TestCase): def test_does_not_convert_mixed_integer(self): bad_date_strings = ( '-50000', '999', '123.1234', 'm', 'T' ) for bad_date_string in bad_date_strings: self.assertFalse( tslib._does_string_look_like_datetime(bad_date_string) ) good_date_strings = ( '2012-01-01', '01/01/2012', 'Mon Sep 16, 2013', '01012012', '0101', '1-1', ) for good_date_string in good_date_strings: self.assertTrue( tslib._does_string_look_like_datetime(good_date_string) ) def test_parsers(self): cases = {'2011-01-01': datetime.datetime(2011, 1, 1), '2Q2005': datetime.datetime(2005, 4, 1), '2Q05': datetime.datetime(2005, 4, 1), '2005Q1': datetime.datetime(2005, 1, 1), '05Q1': datetime.datetime(2005, 1, 1), '2011Q3': datetime.datetime(2011, 7, 1), '11Q3': datetime.datetime(2011, 7, 1), '3Q2011': datetime.datetime(2011, 7, 1), '3Q11': datetime.datetime(2011, 7, 1), # quarterly without space '2000Q4': datetime.datetime(2000, 10, 1), '00Q4': datetime.datetime(2000, 10, 1), '4Q2000': datetime.datetime(2000, 10, 1), '4Q00': datetime.datetime(2000, 10, 1), '2000q4': datetime.datetime(2000, 10, 1), '2000-Q4': datetime.datetime(2000, 10, 1), '00-Q4': datetime.datetime(2000, 10, 1), '4Q-2000': datetime.datetime(2000, 10, 1), '4Q-00': datetime.datetime(2000, 10, 1), '2000q4': datetime.datetime(2000, 10, 1), '00q4': datetime.datetime(2000, 10, 1), '2005': datetime.datetime(2005, 1, 1), '2005-11': datetime.datetime(2005, 11, 1), '2005 11': datetime.datetime(2005, 11, 1), '11-2005': datetime.datetime(2005, 11, 1), '11 2005': datetime.datetime(2005, 11, 1), '200511': datetime.datetime(2020, 5, 11), '20051109': datetime.datetime(2005, 11, 9), '20051109 10:15': datetime.datetime(2005, 11, 9, 10, 15), '20051109 08H': datetime.datetime(2005, 11, 9, 8, 0), '2005-11-09 10:15': datetime.datetime(2005, 11, 9, 10, 15), '2005-11-09 08H': datetime.datetime(2005, 11, 9, 8, 0), '2005/11/09 10:15': datetime.datetime(2005, 11, 9, 10, 15), '2005/11/09 08H': datetime.datetime(2005, 11, 9, 8, 0), "Thu Sep 25 10:36:28 2003": datetime.datetime(2003, 9, 25, 10, 36, 28), "Thu Sep 25 2003": datetime.datetime(2003, 9, 25), "Sep 25 2003": datetime.datetime(2003, 9, 25), "January 1 2014": datetime.datetime(2014, 1, 1), # GH 10537 '2014-06': datetime.datetime(2014, 6, 1), '06-2014': datetime.datetime(2014, 6, 1), '2014-6': datetime.datetime(2014, 6, 1), '6-2014': datetime.datetime(2014, 6, 1), } for date_str, expected in compat.iteritems(cases): result1, _, _ = tools.parse_time_string(date_str) result2 = to_datetime(date_str) result3 = to_datetime([date_str]) result4 = to_datetime(np.array([date_str], dtype=object)) result5 = Timestamp(date_str) result6 = DatetimeIndex([date_str])[0] result7 = date_range(date_str, freq='S', periods=1) self.assertEqual(result1, expected) self.assertEqual(result2, expected) self.assertEqual(result3, expected) self.assertEqual(result4, expected) self.assertEqual(result5, expected) self.assertEqual(result6, expected) self.assertEqual(result7, expected) # NaT result1, _, _ = tools.parse_time_string('NaT') result2 = to_datetime('NaT') result3 = Timestamp('NaT') result4 = DatetimeIndex(['NaT'])[0] self.assertTrue(result1 is tslib.NaT) self.assertTrue(result1 is tslib.NaT) self.assertTrue(result1 is tslib.NaT) self.assertTrue(result1 is tslib.NaT) def test_parsers_quarter_invalid(self): cases = ['2Q 2005', '2Q-200A', '2Q-200', '22Q2005', '6Q-20', '2Q200.'] for case in cases: self.assertRaises(ValueError, tools.parse_time_string, case) def test_parsers_dayfirst_yearfirst(self): # str : dayfirst, yearfirst, expected cases = {'10-11-12': [(False, False, datetime.datetime(2012, 10, 11)), (True, False, datetime.datetime(2012, 11, 10)), (False, True, datetime.datetime(2010, 11, 12)), (True, True, datetime.datetime(2010, 11, 12))], '20/12/21': [(False, False, datetime.datetime(2021, 12, 20)), (True, False, datetime.datetime(2021, 12, 20)), (False, True, datetime.datetime(2020, 12, 21)), (True, True, datetime.datetime(2020, 12, 21))]} tm._skip_if_no_dateutil() from dateutil.parser import parse for date_str, values in compat.iteritems(cases): for dayfirst, yearfirst ,expected in values: result1, _, _ = tools.parse_time_string(date_str, dayfirst=dayfirst, yearfirst=yearfirst) result2 = to_datetime(date_str, dayfirst=dayfirst, yearfirst=yearfirst) result3 = DatetimeIndex([date_str], dayfirst=dayfirst, yearfirst=yearfirst)[0] # Timestamp doesn't support dayfirst and yearfirst self.assertEqual(result1, expected) self.assertEqual(result2, expected) self.assertEqual(result3, expected) # compare with dateutil result dateutil_result = parse(date_str, dayfirst=dayfirst, yearfirst=yearfirst) self.assertEqual(dateutil_result, expected) def test_parsers_timestring(self): tm._skip_if_no_dateutil() from dateutil.parser import parse # must be the same as dateutil result cases = {'10:15': (parse('10:15'), datetime.datetime(1, 1, 1, 10, 15)), '9:05': (parse('9:05'), datetime.datetime(1, 1, 1, 9, 5)) } for date_str, (exp_now, exp_def) in compat.iteritems(cases): result1, _, _ = tools.parse_time_string(date_str) result2 = to_datetime(date_str) result3 = to_datetime([date_str]) result4 = Timestamp(date_str) result5 = DatetimeIndex([date_str])[0] # parse time string return time string based on default date # others are not, and can't be changed because it is used in # time series plot self.assertEqual(result1, exp_def) self.assertEqual(result2, exp_now) self.assertEqual(result3, exp_now) self.assertEqual(result4, exp_now) self.assertEqual(result5, exp_now) def test_parsers_monthfreq(self): cases = {'201101': datetime.datetime(2011, 1, 1, 0, 0), '200005': datetime.datetime(2000, 5, 1, 0, 0)} for date_str, expected in compat.iteritems(cases): result1, _, _ = tools.parse_time_string(date_str, freq='M') result2 = tools._to_datetime(date_str, freq='M') self.assertEqual(result1, expected) self.assertEqual(result2, expected) def test_parsers_quarterly_with_freq(self): msg = 'Incorrect quarterly string is given, quarter must be between 1 and 4: 2013Q5' with tm.assertRaisesRegexp(tslib.DateParseError, msg): tools.parse_time_string('2013Q5') # GH 5418 msg = 'Unable to retrieve month information from given freq: INVLD-L-DEC-SAT' with tm.assertRaisesRegexp(tslib.DateParseError, msg): tools.parse_time_string('2013Q1', freq='INVLD-L-DEC-SAT') cases = {('2013Q2', None): datetime.datetime(2013, 4, 1), ('2013Q2', 'A-APR'): datetime.datetime(2012, 8, 1), ('2013-Q2', 'A-DEC'): datetime.datetime(2013, 4, 1)} for (date_str, freq), exp in compat.iteritems(cases): result, _, _ = tools.parse_time_string(date_str, freq=freq) self.assertEqual(result, exp) class TestArrayToDatetime(tm.TestCase): def test_parsing_valid_dates(self): arr = np.array(['01-01-2013', '01-02-2013'], dtype=object) self.assert_numpy_array_equal( tslib.array_to_datetime(arr), np.array( [ '2013-01-01T00:00:00.000000000-0000', '2013-01-02T00:00:00.000000000-0000' ], dtype='M8[ns]' ) ) arr = np.array(['Mon Sep 16 2013', 'Tue Sep 17 2013'], dtype=object) self.assert_numpy_array_equal( tslib.array_to_datetime(arr), np.array( [ '2013-09-16T00:00:00.000000000-0000', '2013-09-17T00:00:00.000000000-0000' ], dtype='M8[ns]' ) ) def test_number_looking_strings_not_into_datetime(self): # #4601 # These strings don't look like datetimes so they shouldn't be # attempted to be converted arr = np.array(['-352.737091', '183.575577'], dtype=object) self.assert_numpy_array_equal(tslib.array_to_datetime(arr, errors='ignore'), arr) arr = np.array(['1', '2', '3', '4', '5'], dtype=object) self.assert_numpy_array_equal(tslib.array_to_datetime(arr, errors='ignore'), arr) def test_coercing_dates_outside_of_datetime64_ns_bounds(self): invalid_dates = [ datetime.date(1000, 1, 1), datetime.datetime(1000, 1, 1), '1000-01-01', 'Jan 1, 1000', np.datetime64('1000-01-01'), ] for invalid_date in invalid_dates: self.assertRaises( ValueError, tslib.array_to_datetime, np.array([invalid_date], dtype='object'), errors='raise', ) self.assertTrue( np.array_equal( tslib.array_to_datetime( np.array([invalid_date], dtype='object'), errors='coerce', ), np.array([tslib.iNaT], dtype='M8[ns]') ) ) arr = np.array(['1/1/1000', '1/1/2000'], dtype=object) self.assert_numpy_array_equal( tslib.array_to_datetime(arr, errors='coerce'), np.array( [ tslib.iNaT, '2000-01-01T00:00:00.000000000-0000' ], dtype='M8[ns]' ) ) def test_coerce_of_invalid_datetimes(self): arr = np.array(['01-01-2013', 'not_a_date', '1'], dtype=object) # Without coercing, the presence of any invalid dates prevents # any values from being converted self.assert_numpy_array_equal(tslib.array_to_datetime(arr,errors='ignore'), arr) # With coercing, the invalid dates becomes iNaT self.assert_numpy_array_equal( tslib.array_to_datetime(arr, errors='coerce'), np.array( [ '2013-01-01T00:00:00.000000000-0000', tslib.iNaT, tslib.iNaT ], dtype='M8[ns]' ) ) def test_parsing_timezone_offsets(self): # All of these datetime strings with offsets are equivalent # to the same datetime after the timezone offset is added dt_strings = [ '01-01-2013 08:00:00+08:00', '2013-01-01T08:00:00.000000000+0800', '2012-12-31T16:00:00.000000000-0800', '12-31-2012 23:00:00-01:00', ] expected_output = tslib.array_to_datetime( np.array(['01-01-2013 00:00:00'], dtype=object) ) for dt_string in dt_strings: self.assert_numpy_array_equal( tslib.array_to_datetime( np.array([dt_string], dtype=object) ), expected_output ) class TestTimestampNsOperations(tm.TestCase): def setUp(self): self.timestamp = Timestamp(datetime.datetime.utcnow()) def assert_ns_timedelta(self, modified_timestamp, expected_value): value = self.timestamp.value modified_value = modified_timestamp.value self.assertEqual(modified_value - value, expected_value) def test_timedelta_ns_arithmetic(self): self.assert_ns_timedelta(self.timestamp + np.timedelta64(-123, 'ns'), -123) def test_timedelta_ns_based_arithmetic(self): self.assert_ns_timedelta(self.timestamp + np.timedelta64(1234567898, 'ns'), 1234567898) def test_timedelta_us_arithmetic(self): self.assert_ns_timedelta(self.timestamp + np.timedelta64(-123, 'us'), -123000) def test_timedelta_ms_arithmetic(self): time = self.timestamp + np.timedelta64(-123, 'ms') self.assert_ns_timedelta(time, -123000000) def test_nanosecond_string_parsing(self): ts = Timestamp('2013-05-01 07:15:45.123456789') # GH 7878 expected_repr = '2013-05-01 07:15:45.123456789' expected_value = 1367392545123456789 self.assertEqual(ts.value, expected_value) self.assertIn(expected_repr, repr(ts)) ts = Timestamp('2013-05-01 07:15:45.123456789+09:00', tz='Asia/Tokyo') self.assertEqual(ts.value, expected_value - 9 * 3600 * 1000000000) self.assertIn(expected_repr, repr(ts)) ts = Timestamp('2013-05-01 07:15:45.123456789', tz='UTC') self.assertEqual(ts.value, expected_value) self.assertIn(expected_repr, repr(ts)) ts = Timestamp('2013-05-01 07:15:45.123456789', tz='US/Eastern') self.assertEqual(ts.value, expected_value + 4 * 3600 * 1000000000) self.assertIn(expected_repr, repr(ts)) def test_nanosecond_timestamp(self): # GH 7610 expected = 1293840000000000005 t = Timestamp('2011-01-01') + offsets.Nano(5) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000005')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 5) t = Timestamp(t) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000005')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 5) t = Timestamp(np.datetime64('2011-01-01 00:00:00.000000005Z')) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000005')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 5) expected = 1293840000000000010 t = t + offsets.Nano(5) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000010')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 10) t = Timestamp(t) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000010')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 10) t = Timestamp(np.datetime64('2011-01-01 00:00:00.000000010Z')) self.assertEqual(repr(t), "Timestamp('2011-01-01 00:00:00.000000010')") self.assertEqual(t.value, expected) self.assertEqual(t.nanosecond, 10) def test_nat_arithmetic(self): # GH 6873 nat = tslib.NaT t = Timestamp('2014-01-01') dt = datetime.datetime(2014, 1, 1) delta = datetime.timedelta(3600) # Timestamp / datetime for (left, right) in [(nat, nat), (nat, t), (dt, nat)]: # NaT + Timestamp-like should raise TypeError with tm.assertRaises(TypeError): left + right with tm.assertRaises(TypeError): right + left # NaT - Timestamp-like (or inverse) returns NaT self.assertTrue((left - right) is tslib.NaT) self.assertTrue((right - left) is tslib.NaT) # timedelta-like # offsets are tested in test_offsets.py for (left, right) in [(nat, delta)]: # NaT + timedelta-like returns NaT self.assertTrue((left + right) is tslib.NaT) # timedelta-like + NaT should raise TypeError with tm.assertRaises(TypeError): right + left self.assertTrue((left - right) is tslib.NaT) with tm.assertRaises(TypeError): right - left class TestTslib(tm.TestCase): def test_intraday_conversion_factors(self): self.assertEqual(period_asfreq(1, get_freq('D'), get_freq('H'), False), 24) self.assertEqual(period_asfreq(1, get_freq('D'), get_freq('T'), False), 1440) self.assertEqual(period_asfreq(1, get_freq('D'), get_freq('S'), False), 86400) self.assertEqual(period_asfreq(1, get_freq('D'), get_freq('L'), False), 86400000) self.assertEqual(period_asfreq(1, get_freq('D'), get_freq('U'), False), 86400000000) self.assertEqual(period_asfreq(1, get_freq('D'), get_freq('N'), False), 86400000000000) self.assertEqual(period_asfreq(1, get_freq('H'), get_freq('T'), False), 60) self.assertEqual(period_asfreq(1, get_freq('H'), get_freq('S'), False), 3600) self.assertEqual(period_asfreq(1, get_freq('H'), get_freq('L'), False), 3600000) self.assertEqual(period_asfreq(1, get_freq('H'), get_freq('U'), False), 3600000000) self.assertEqual(period_asfreq(1, get_freq('H'), get_freq('N'), False), 3600000000000) self.assertEqual(period_asfreq(1, get_freq('T'), get_freq('S'), False), 60) self.assertEqual(period_asfreq(1, get_freq('T'), get_freq('L'), False), 60000) self.assertEqual(period_asfreq(1, get_freq('T'), get_freq('U'), False), 60000000) self.assertEqual(period_asfreq(1, get_freq('T'), get_freq('N'), False), 60000000000) self.assertEqual(period_asfreq(1, get_freq('S'), get_freq('L'), False), 1000) self.assertEqual(period_asfreq(1, get_freq('S'), get_freq('U'), False), 1000000) self.assertEqual(period_asfreq(1, get_freq('S'), get_freq('N'), False), 1000000000) self.assertEqual(period_asfreq(1, get_freq('L'), get_freq('U'), False), 1000) self.assertEqual(period_asfreq(1, get_freq('L'), get_freq('N'), False), 1000000) self.assertEqual(period_asfreq(1, get_freq('U'), get_freq('N'), False), 1000) def test_period_ordinal_start_values(self): # information for 1.1.1970 self.assertEqual(0, period_ordinal(1970, 1, 1, 0, 0, 0, 0, 0, get_freq('A'))) self.assertEqual(0, period_ordinal(1970, 1, 1, 0, 0, 0, 0, 0, get_freq('M'))) self.assertEqual(1, period_ordinal(1970, 1, 1, 0, 0, 0, 0, 0, get_freq('W'))) self.assertEqual(0, period_ordinal(1970, 1, 1, 0, 0, 0, 0, 0, get_freq('D'))) self.assertEqual(0, period_ordinal(1970, 1, 1, 0, 0, 0, 0, 0, get_freq('B'))) def test_period_ordinal_week(self): self.assertEqual(1, period_ordinal(1970, 1, 4, 0, 0, 0, 0, 0, get_freq('W'))) self.assertEqual(2, period_ordinal(1970, 1, 5, 0, 0, 0, 0, 0, get_freq('W'))) self.assertEqual(2284, period_ordinal(2013, 10, 6, 0, 0, 0, 0, 0, get_freq('W'))) self.assertEqual(2285, period_ordinal(2013, 10, 7, 0, 0, 0, 0, 0, get_freq('W'))) def test_period_ordinal_business_day(self): # Thursday self.assertEqual(11415, period_ordinal(2013, 10, 3, 0, 0, 0, 0, 0, get_freq('B'))) # Friday self.assertEqual(11416, period_ordinal(2013, 10, 4, 0, 0, 0, 0, 0, get_freq('B'))) # Saturday self.assertEqual(11417, period_ordinal(2013, 10, 5, 0, 0, 0, 0, 0, get_freq('B'))) # Sunday self.assertEqual(11417, period_ordinal(2013, 10, 6, 0, 0, 0, 0, 0, get_freq('B'))) # Monday self.assertEqual(11417, period_ordinal(2013, 10, 7, 0, 0, 0, 0, 0, get_freq('B'))) # Tuesday self.assertEqual(11418, period_ordinal(2013, 10, 8, 0, 0, 0, 0, 0, get_freq('B'))) def test_tslib_tz_convert(self): def compare_utc_to_local(tz_didx, utc_didx): f = lambda x: tslib.tz_convert_single(x, 'UTC', tz_didx.tz) result = tslib.tz_convert(tz_didx.asi8, 'UTC', tz_didx.tz) result_single = np.vectorize(f)(tz_didx.asi8) self.assert_numpy_array_equal(result, result_single) def compare_local_to_utc(tz_didx, utc_didx): f = lambda x: tslib.tz_convert_single(x, tz_didx.tz, 'UTC') result = tslib.tz_convert(utc_didx.asi8, tz_didx.tz, 'UTC') result_single = np.vectorize(f)(utc_didx.asi8) self.assert_numpy_array_equal(result, result_single) for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern', 'Europe/Moscow']: # US: 2014-03-09 - 2014-11-11 # MOSCOW: 2014-10-26 / 2014-12-31 tz_didx = date_range('2014-03-01', '2015-01-10', freq='H', tz=tz) utc_didx = date_range('2014-03-01', '2015-01-10', freq='H') compare_utc_to_local(tz_didx, utc_didx) # local tz to UTC can be differ in hourly (or higher) freqs because of DST compare_local_to_utc(tz_didx, utc_didx) tz_didx = date_range('2000-01-01', '2020-01-01', freq='D', tz=tz) utc_didx = date_range('2000-01-01', '2020-01-01', freq='D') compare_utc_to_local(tz_didx, utc_didx) compare_local_to_utc(tz_didx, utc_didx) tz_didx = date_range('2000-01-01', '2100-01-01', freq='A', tz=tz) utc_didx = date_range('2000-01-01', '2100-01-01', freq='A') compare_utc_to_local(tz_didx, utc_didx) compare_local_to_utc(tz_didx, utc_didx) # Check empty array result = tslib.tz_convert(np.array([], dtype=np.int64), tslib.maybe_get_tz('US/Eastern'), tslib.maybe_get_tz('Asia/Tokyo')) self.assert_numpy_array_equal(result, np.array([], dtype=np.int64)) # Check all-NaT array result = tslib.tz_convert(np.array([tslib.iNaT], dtype=np.int64), tslib.maybe_get_tz('US/Eastern'), tslib.maybe_get_tz('Asia/Tokyo')) self.assert_numpy_array_equal(result, np.array([tslib.iNaT], dtype=np.int64)) def test_shift_months(self): s = DatetimeIndex([Timestamp('2000-01-05 00:15:00'), Timestamp('2000-01-31 00:23:00'), Timestamp('2000-01-01'), Timestamp('2000-02-29'), Timestamp('2000-12-31')]) for years in [-1, 0, 1]: for months in [-2, 0, 2]: actual = DatetimeIndex(tslib.shift_months(s.asi8, years * 12 + months)) expected = DatetimeIndex([x + offsets.DateOffset(years=years, months=months) for x in s]) tm.assert_index_equal(actual, expected) class TestTimestampOps(tm.TestCase): def test_timestamp_and_datetime(self): self.assertEqual((Timestamp(datetime.datetime(2013, 10, 13)) - datetime.datetime(2013, 10, 12)).days, 1) self.assertEqual((datetime.datetime(2013, 10, 12) - Timestamp(datetime.datetime(2013, 10, 13))).days, -1) def test_timestamp_and_series(self): timestamp_series = Series(date_range('2014-03-17', periods=2, freq='D', tz='US/Eastern')) first_timestamp = timestamp_series[0] delta_series = Series([np.timedelta64(0, 'D'), np.timedelta64(1, 'D')]) assert_series_equal(timestamp_series - first_timestamp, delta_series) assert_series_equal(first_timestamp - timestamp_series, -delta_series) def test_addition_subtraction_types(self): # Assert on the types resulting from Timestamp +/- various date/time objects datetime_instance = datetime.datetime(2014, 3, 4) timedelta_instance = datetime.timedelta(seconds=1) # build a timestamp with a frequency, since then it supports addition/subtraction of integers timestamp_instance = date_range(datetime_instance, periods=1, freq='D')[0] self.assertEqual(type(timestamp_instance + 1), Timestamp) self.assertEqual(type(timestamp_instance - 1), Timestamp) # Timestamp + datetime not supported, though subtraction is supported and yields timedelta # more tests in tseries/base/tests/test_base.py self.assertEqual(type(timestamp_instance - datetime_instance), Timedelta) self.assertEqual(type(timestamp_instance + timedelta_instance), Timestamp) self.assertEqual(type(timestamp_instance - timedelta_instance), Timestamp) # Timestamp +/- datetime64 not supported, so not tested (could possibly assert error raised?) timedelta64_instance = np.timedelta64(1, 'D') self.assertEqual(type(timestamp_instance + timedelta64_instance), Timestamp) self.assertEqual(type(timestamp_instance - timedelta64_instance), Timestamp) def test_addition_subtraction_preserve_frequency(self): timestamp_instance = date_range('2014-03-05', periods=1, freq='D')[0] timedelta_instance = datetime.timedelta(days=1) original_freq = timestamp_instance.freq self.assertEqual((timestamp_instance + 1).freq, original_freq) self.assertEqual((timestamp_instance - 1).freq, original_freq) self.assertEqual((timestamp_instance + timedelta_instance).freq, original_freq) self.assertEqual((timestamp_instance - timedelta_instance).freq, original_freq) timedelta64_instance = np.timedelta64(1, 'D') self.assertEqual((timestamp_instance + timedelta64_instance).freq, original_freq) self.assertEqual((timestamp_instance - timedelta64_instance).freq, original_freq) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], [period.D_RESO, period.D_RESO, period.D_RESO, period.D_RESO, period.H_RESO, period.T_RESO, period.S_RESO, period.MS_RESO, period.US_RESO]): for tz in [None, 'Asia/Tokyo', 'US/Eastern', 'dateutil/US/Eastern']: idx = date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) result = period.resolution(idx.asi8, idx.tz) self.assertEqual(result, expected) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
mit
djgagne/scikit-learn
examples/calibration/plot_calibration.py
225
4795
""" ====================================== Probability calibration of classifiers ====================================== When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However, not all classifiers provide well-calibrated probabilities, some being over-confident while others being under-confident. Thus, a separate calibration of predicted probabilities is often desirable as a postprocessing. This example illustrates two different methods for this calibration and evaluates the quality of the returned probabilities using Brier's score (see http://en.wikipedia.org/wiki/Brier_score). Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score. """ print(__doc__) # Author: Mathieu Blondel <[email protected]> # Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from sklearn.datasets import make_blobs from sklearn.naive_bayes import GaussianNB from sklearn.metrics import brier_score_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.cross_validation import train_test_split n_samples = 50000 n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here # Generate 3 blobs with 2 classes where the second blob contains # half positive samples and half negative samples. Probability in this # blob is therefore 0.5. centers = [(-5, -5), (0, 0), (5, 5)] X, y = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0, centers=centers, shuffle=False, random_state=42) y[:n_samples // 2] = 0 y[n_samples // 2:] = 1 sample_weight = np.random.RandomState(42).rand(y.shape[0]) # split train, test for calibration X_train, X_test, y_train, y_test, sw_train, sw_test = \ train_test_split(X, y, sample_weight, test_size=0.9, random_state=42) # Gaussian Naive-Bayes with no calibration clf = GaussianNB() clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with isotonic calibration clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_isotonic.fit(X_train, y_train, sw_train) prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with sigmoid calibration clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') clf_sigmoid.fit(X_train, y_train, sw_train) prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1] print("Brier scores: (the smaller the better)") clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test) print("No calibration: %1.3f" % clf_score) clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic, sw_test) print("With isotonic calibration: %1.3f" % clf_isotonic_score) clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid, sw_test) print("With sigmoid calibration: %1.3f" % clf_sigmoid_score) ############################################################################### # Plot the data and the predicted probabilities plt.figure() y_unique = np.unique(y) colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size)) for this_y, color in zip(y_unique, colors): this_X = X_train[y_train == this_y] this_sw = sw_train[y_train == this_y] plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50, c=color, alpha=0.5, label="Class %s" % this_y) plt.legend(loc="best") plt.title("Data") plt.figure() order = np.lexsort((prob_pos_clf, )) plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score) plt.plot(prob_pos_isotonic[order], 'g', linewidth=3, label='Isotonic calibration (%1.3f)' % clf_isotonic_score) plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3, label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score) plt.plot(np.linspace(0, y_test.size, 51)[1::2], y_test[order].reshape(25, -1).mean(1), 'k', linewidth=3, label=r'Empirical') plt.ylim([-0.05, 1.05]) plt.xlabel("Instances sorted according to predicted probability " "(uncalibrated GNB)") plt.ylabel("P(y=1)") plt.legend(loc="upper left") plt.title("Gaussian naive Bayes probabilities") plt.show()
bsd-3-clause