repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
ThomasMiconi/htmresearch
projects/sequence_prediction/discrete_sequences/plotSequenceLengthExperiment.py
12
6654
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Plot temporal noise experiment result """ import os import pickle from matplotlib import pyplot as plt import matplotlib as mpl import numpy as np from plot import plotAccuracy from plot import movingAverage from plot import readExperiment mpl.rcParams['pdf.fonttype'] = 42 plt.ion() plt.close('all') def computeAccuracyEnding(predictions, truths, iterations, resets=None, randoms=None, num=None, sequenceCounter=None): """ Compute accuracy on the sequence ending """ accuracy = [] numIteration = [] numSequences = [] for i in xrange(len(predictions) - 1): if num is not None and i > num: continue if truths[i] is None: continue # identify the end of sequence if resets is not None or randoms is not None: if not (resets[i+1] or randoms[i+1]): continue correct = truths[i] is None or truths[i] in predictions[i] accuracy.append(correct) numSequences.append(sequenceCounter[i]) numIteration.append(iterations[i]) return (accuracy, numIteration, numSequences) def computeAccuracy(predictions, truths, iterations, resets=None, randoms=None, num=None, sequenceCounter=None): """ Compute accuracy on the whole sequence """ accuracy = [] numIteration = [] numSequences = [] for i in xrange(len(predictions) - 1): if num is not None and i > num: continue if truths[i] is None: continue correct = truths[i] is None or truths[i] in predictions[i] accuracy.append(correct) numSequences.append(sequenceCounter[i]) numIteration.append(iterations[i]) return (accuracy, numIteration, numSequences) if __name__ == '__main__': lengths = [10, 20, 40, 60, 80, 100] tmResults = os.path.join("tm/results", "high-order-variable-length") try: # Load raw experiment results # You have to run the experiments in ./tm # python tm_suite.py --experiment="high-order-variable-length" -d expResults = {} for length in lengths: experiment = os.path.join(tmResults, "sequence_length"+"{:.1f}".format(length), "0.log") print "Load Experiment", experiment data = readExperiment(experiment) (accuracy, numIteration, numSequences) = computeAccuracyEnding( data['predictions'], data['truths'], data['iterations'], resets=data['resets'], randoms=data['randoms'], sequenceCounter=data['sequenceCounter']) (accuracyAll, numIterationAll, numSequencesAll) = computeAccuracy( data['predictions'], data['truths'], data['iterations'], resets=data['resets'], randoms=data['randoms'], sequenceCounter=data['sequenceCounter']) expResult = {"length": length, "accuracy": accuracy, "numIteration": numIteration, "numSequences": numSequences, "accuracyAll": accuracyAll, "numIterationAll": numIterationAll, "numSequencesAll": numSequencesAll} expResults[length] = expResult output = open(os.path.join(tmResults, 'SequenceLengthExperiment.pkl'), 'wb') pickle.dump(expResults, output, -1) output.close() except: print "Cannot find raw experiment results" print "Plot using saved processed experiment results" input = open(os.path.join(tmResults, 'SequenceLengthExperiment.pkl'), 'rb') expResults = pickle.load(input) # load processed experiment results and plot them numSequenceRequired = [] numIterationRequired = [] lengths = np.sort(expResults.keys()) plt.close('all') plt.figure(1) for length in lengths: expResult = expResults[length] accuracy = expResult["accuracy"] numIteration = expResult["numIteration"] numSequences = expResult["numSequences"] movingData = movingAverage(accuracy, min(len(accuracy), 100)) numSequenceRequired.append( numSequences[np.where(np.array(movingData) >= 0.999)[0][1]]) numIterationRequired.append( numIteration[np.where(np.array(movingData) >= 0.999)[0][1]]) plt.figure(1) plotAccuracy((accuracy, numSequences), window=100, type=type, label='NoiseExperiment', hideTraining=True, lineSize=1.0) plt.xlabel('# of sequences seen') plt.figure(2) plotAccuracy((expResult["accuracyAll"], expResult["numSequencesAll"]), window=1000, type=type, label='NoiseExperiment', hideTraining=True, lineSize=1.0) plt.xlabel('# of sequences seen') for fig in [1, 2]: plt.figure(fig) plt.ylabel('Prediction accuracy') plt.ylim([0, 1.05]) plt.legend(lengths, loc=4) plt.figure(1) plt.savefig('./result/sequence_length_experiment_performance.pdf') plt.figure(2) plt.xlim([0, 100]) plt.savefig('./result/sequence_length_experiment_performance_overall.pdf') plt.figure() plt.plot(lengths, numSequenceRequired, '-*') plt.xlabel(' Sequence Order ') plt.ylabel(' # Sequences seen to achieve perfect prediction') plt.savefig('./result/requred_sequence_number_vs_sequence_order.pdf') plt.figure() plt.plot(lengths, numIterationRequired, '-*') plt.xlabel(' Sequence Order ') plt.ylabel(' # Elements seen to achieve perfect prediction') plt.savefig('./result/requred_elements_number_vs_sequence_order.pdf')
agpl-3.0
kwecht/BABS-GUI
code/BabsClasses.py
1
6969
######################################################################## # # Kevin Wecht 4 November 2014 # # Bay Area Bicycle Share (BABS) Open Data Challenge # ######################################################################## # # This file contains user defined classes to assist the # analysis of BABS data. # # OUTLINE # PlotOptions - holds information from widgets to determine # what to show in the plot window. # GridParams - holds information about the grid layout of the GUI # ######################################################################## # Import modules required by these functions import pandas as pd import pdb ######################################################################## # Set up grid on which to place widgets in the QtGui Window class GridParams: """Class to hold grid parameters for the QtGui Window.""" # Set default values for grid size def __init__(self): # Number of cells in each direction self.nrow = 48 self.ncol = 72 # Spacing between cells self.spacing = 2 # Area occupied by matplotlib plot. # Leave 4 rows and 12 cols to the around the main plot self.plotnrow = self.nrow - 8 self.plotncol = self.ncol - 12 self.plotrow0 = 0 # Place self.plotcol0 = 0 self.plotrow1 = self.plotnrow + self.plotrow0 - 1 # -1 to be inclusive range self.plotcol1 = self.plotncol + self.plotcol0 - 1 # Area occupied by plot options self.optnrow = self.nrow - self.plotnrow self.optncol = self.ncol - self.plotncol self.optrow0 = 0 self.optcol0 = self.plotcol1 + 1 self.optrow1 = self.optrow0 + self.optnrow - 1 self.optcol1 = self.optcol0 + self.optncol - 1 # Number of filter options to squeeze into each column self.nfiltercol = 3 # Row offsets of each sub-section in the options section self.maintype_row0 = 0 self.maingroup_row0 = 1 self.timegroup_row0 = 3 self.bingroup_row0 = 3 self.divisiongroup_row0 = 7 self.overgroup_row0 = 12 self.filtergroup_row0 = 17 # Define class to hold parameters that determine what to plot in the main widget. class PlotOptions: """Class to hold info determining what to plot in the main window.""" # Initialize some options to plot number of rides per week def __init__(self): # Integer indicating the type of information to show # {0 'timeseries'|1 'histogram'} self.typeid = 0 # Integer indicating the value to plot # {0 'nrides'|1 'duration'|2 'distance'} self.barid = 0 # Integer indicating the way to bin the data # {0 'Time (other)'|1 'Number of Rides'|2 'Day of Week'|3 'Hour of Day'|4 'Region'} self.binid = 0 # String that indicates which variable along which to # divide the main variable plotted # For example, we can divide each bar in the plot into two segments: # annual customers and recent (casual) customers. # {options here} self.division = '' self.division_types = [] # {['Subscriber','Customer'], ['Monday','Tuesday',...], ...} # Time over which to average data. # Used when plotting timeseries and # histogram (optional) for daily or weekly average values (ex. daily mean rides) # Must be a whole number of days self.dT = '7D' # Default weekly average. Monthly = 30, daily = 1 # Plot dimensions. If empty, use default dimensions in the data. self.xlim = [] self.ylim = [] # Set additional values to plot over the bars. # {weather('temp', 'precip', 'wind') | 'nrides' | 'duration'} self.overtype = [] # Filter options # {date range, time of day, day of week, region, weather, station ID} self.filters = {} # Populate plot options with the selections in the GUI window # named MainWindow. # This overides the default options selected above #self.populate(MainWindow) # Method to fill options from currently selected widgets in the gui def populate(self,MainWindow): """Populate plot options using the selections in the GUI window. INPUT MainWindow - Instance of a class that defines our main GUI window""" # 1. From drop down list indicating plot type self.typeid = MainWindow.mainType.currentIndex() # 2. From drop down list indicating which variable to plot in bars self.barid = MainWindow.mainGroup.currentIndex() # 3. From drop down list indicating how to bin the data self.binid = MainWindow.binGroup.currentIndex() # 3. From text entry telling by what time step to bin data number = int(str(MainWindow.timeText.text())) unit = str(MainWindow.timeGroup.currentText())[0] self.dT = str(number)+unit # 2. From radio buttons indicating by which variable we should # divide the bars. self.division = str(MainWindow.divisionGroup.checkedButton().objectName()) if self.division=='Customer Type': self.division_types=['Subscriber','Customer'] elif self.division=='Hour of Day': self.division_types = [str(val) for val in range(24)] elif self.division=='Day of Week': self.division_types = ['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','Sunday'] elif self.division=='Region': self.division_types = ['San Francisco','San Jose','Mountain View','Redwood City','Palo Alto'] # 3. From check buttons indicating what to overplot self.overtype = [] for button in MainWindow.overGroup.buttons(): if button.isChecked(): self.overtype.append(str(button.text())) # 4. From filter check boxes indicating what to trim from data # Store filter information in dictionary in which the keys are # 'Customer Type', 'Region', 'Day of Week', 'Hour of Day' self.filters = {} filtergroups = [MainWindow.filterGroup_customer, MainWindow.filterGroup_region, MainWindow.filterGroup_dayofweek, MainWindow.filterGroup_hourofday] for group in filtergroups: groupname = str(group.objectName()) unchecked = [] for button in group.buttons(): if not button.isChecked(): if groupname=="Day of Week": unchecked.append(str(group.id(button))) else: unchecked.append(str(button.text())) if unchecked!=[]: self.filters[groupname] = unchecked
mit
larsmans/scikit-learn
sklearn/covariance/tests/test_robust_covariance.py
31
3340
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.covariance import empirical_covariance, MinCovDet, \ EllipticEnvelope X = datasets.load_iris().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_mcd(): """Tests the FastMCD algorithm implementation """ ### Small data set # test without outliers (random independent normal data) launch_mcd_on_dataset(100, 5, 0, 0.01, 0.1, 80) # test with a contaminated data set (medium contamination) launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70) # test with a contaminated data set (strong contamination) launch_mcd_on_dataset(100, 5, 40, 0.1, 0.1, 50) ### Medium data set launch_mcd_on_dataset(1000, 5, 450, 0.1, 0.1, 540) ### Large data set launch_mcd_on_dataset(1700, 5, 800, 0.1, 0.1, 870) ### 1D data set launch_mcd_on_dataset(500, 1, 100, 0.001, 0.001, 350) def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov, tol_support): rand_gen = np.random.RandomState(0) data = rand_gen.randn(n_samples, n_features) # add some outliers outliers_index = rand_gen.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5) data[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False pure_data = data[inliers_mask] # compute MCD by fitting an object mcd_fit = MinCovDet(random_state=rand_gen).fit(data) T = mcd_fit.location_ S = mcd_fit.covariance_ H = mcd_fit.support_ # compare with the estimates learnt from the inliers error_location = np.mean((pure_data.mean(0) - T) ** 2) assert(error_location < tol_loc) error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2) assert(error_cov < tol_cov) assert(np.sum(H) >= tol_support) assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_) def test_mcd_issue1127(): # Check that the code does not break with X.shape = (3, 1) # (i.e. n_support = n_samples) rnd = np.random.RandomState(0) X = rnd.normal(size=(3, 1)) mcd = MinCovDet() mcd.fit(X) def test_outlier_detection(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) print(clf.threshold) assert_raises(Exception, clf.predict, X) assert_raises(Exception, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) decision = clf.decision_function(X, raw_values=True) decision_transformed = clf.decision_function(X, raw_values=False) assert_array_almost_equal( decision, clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decision_transformed < 0))
bsd-3-clause
chrishavlin/nyc_taxi_viz
src/taxi_plotmod.py
1
12395
""" taxi_plotmod.py module for plotting and processing taxi data Copyright (C) 2016 Chris Havlin, <https://chrishavlin.wordpress.com> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. The database is NOT distributed with the code here. Data source: NYC Taxi & Limousine Commision, TLC Trip Record Data <http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml> """ """-------------- Import libraries: -----------------""" import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import datetime as dt """--------- Classes ------------""" class binned_variable(object): """ class for variables binned by time """ def __init__(self,name,time_b,varmin=0,varmax=1): self.varname = name # variable name self.time_be = time_b # time bins, edge values self.time_bc = (time_b[0:time_b.size-1]+time_b[1:time_b.size])/2.0 # time bin center values self.varmin=varmin self.varmax=varmax def bin_the_values(self,VarBig,Var_list): # initialize the output self.mean=np.zeros((self.time_be.size-1,1)) self.med=np.zeros((self.time_be.size-1,1)) self.firstquart=np.zeros((self.time_be.size-1,1)) self.thirdquart=np.zeros((self.time_be.size-1,1)) self.std=np.zeros((self.time_be.size-1,1)) self.N=np.zeros((self.time_be.size-1,1)) # extract variable of interest from full dataset var0 = VarBig[:,Var_list.index(self.varname)] time0 = VarBig[:,0] # calculate standard deviation,mean,median and number of obs in each bin for i_bin in range(self.time_bc.size): var2bin = var0[time0>self.time_be[i_bin]] time = time0[time0>self.time_be[i_bin]] var2bin = var2bin[time<self.time_be[i_bin+1]] var2bin = var2bin[var2bin>self.varmin] var2bin = var2bin[var2bin<self.varmax] self.mean[i_bin]=var2bin.mean() self.med[i_bin]=np.median(var2bin) self.std[i_bin]=var2bin.std() self.N[i_bin]=var2bin.size self.thirdquart[i_bin]=np.median(var2bin[np.where(var2bin>self.med[i_bin])]) self.firstquart[i_bin]=np.median(var2bin[np.where(var2bin<self.med[i_bin])]) def bin_hist(self,VarBig,Var_list,bin_edge1,bin_edge2): # extract variable of interest from full dataset var0 = VarBig[:,Var_list.index(self.varname)] time0 = VarBig[:,Var_list.index('pickup_time_hr')] bin_var=var0[time0>bin_edge1] time=time0[time0>bin_edge1] bin_var=bin_var[time<bin_edge2] bin_var = bin_var[bin_var>self.varmin] bin_var = bin_var[bin_var<self.varmax] self.hist_id=bin_var self.hist_id_N=bin_var.size self.hist_id_mean=bin_var.mean() self.hist_id_med=np.median(bin_var) """--------- Functions ------------""" def map_proc(VarBig,Var_list,bin_varname,bin_min,bin_max,Pickup,nx,ny, bottom_left=[40.697089, -74.027397],top_left=[40.823067, -74.027397], bottom_right=[40.697089, -73.914240],top_right=[40.823067,-73.914240]): """ Input Variables: VarBig The 2-D array of all variables Var_list The list identifying the columns of VarBig bin_varname The name of the variable to bin bin_min, bin_max The min/max value of the variable to bin Pickup Boolean true/false. If true, the variable of interest (bin_varname) will be binned by the pick up location. If false, the drop off location. nx,ny Number of bin-nodes in x and y (i.e., number of bins in x is nx-1) bottom_left, top_left, etc. Grid dimensions: lat/lon points defining the corners of a rectangle Some useful lat/lon points Manhattan: bottom_left=[40.697089, -74.027397],top_left=[40.823067, -74.027397], bottom_right=[40.697089, -73.914240],top_right=[40.823067,-73.914240] Wall Street: bottom_left=[40.701035, -74.022382],top_left=[40.715075, -74.022382], bottom_right=[40.701035, -74.000207],top_right=[40.715075,-74.000207] Columbus Circle: bottom_left=[40.765505, -73.985891],top_left=[40.770369, -73.985891], bottom_right=[40.765505, -73.978744],top_right=[40.770369,-73.978744] """ # build cell node grid x=np.linspace(bottom_left[1],bottom_right[1],nx) # defined on cell corners y=np.linspace(bottom_left[0],top_left[0],ny) # defined on cell corners # cell center grid xc=(x[0:x.size-1]+x[1:x.size])/2 yc=(y[0:y.size-1]+y[1:y.size])/2 # create an empty TaxiCount array TotCount=np.zeros((ny-1,nx-1)) # defined on cell centers MeanClr=np.zeros((ny-1,nx-1)) # defined on cell centers # pull out lat/lon and variable lists depending on pickup or dropoff if Pickup: BigLat=VarBig[:,Var_list.index('pickup_lat')] BigLon=VarBig[:,Var_list.index('pickup_lon')] else: BigLat=VarBig[:,Var_list.index('drop_lat')] BigLon=VarBig[:,Var_list.index('drop_lon')] ColorVar= VarBig[:,Var_list.index(bin_varname)] indc=1 # count, but loop over variable nV = ColorVar.size dx = abs(xc[1]-xc[0]) dy = abs(yc[1]-yc[0]) prevprog=0 print 'Binning',bin_varname,', with Nvar=',nV for iV in range(nV-1): prog= round(float(iV) / float(nV-1) * 100) if prog % 5 == 0 and prog != prevprog: print ' ',int(prog),'% complete ...' prevprog=prog if ColorVar[iV]>bin_min and ColorVar[iV]<bin_max: xi=BigLon[iV] yi=BigLat[iV] i_y=np.where(abs(yi-yc)<dy/2.0) i_x=np.where(abs(xi-xc)<dx/2.0) if i_y[0].size==1 and i_x[0].size==1: TotCount[i_y[0],i_x[0]]=TotCount[i_y[0],i_x[0]]+1 MeanClr[i_y[0],i_x[0]]=MeanClr[i_y[0],i_x[0]]+ColorVar[iV] non0=np.where(TotCount>0) if non0[0].size>0: MeanClr[non0]=np.divide(MeanClr[non0],TotCount[non0]) print 'Completed binning of ',bin_varname return TotCount,MeanClr,x,y def plt_map(Zvar,minZ,maxZ,x,y,LogPlot=False,ShowFig=True,SaveFig=False,savename=' ', dim_x_in=4,dim_y_in=6,figdpi=180): """ maps a spatially binned variable using pcolormesh input: Zvar 2D array of binned data minZ min value for color scale maxZ max value for color scale x x dimension, defining nodes of Zvar bins y y dimension, defining nodes of Zvar bins LogPlot will use log10(Zvar) if True ShowFig display the figure after plotting? SaveFig save the figure? savename if saving, the filename dim_x_in x dimension of figure dim_y_in y dimension of figure figdpi if saving, the dpi resolution to use """ if LogPlot==True: Zvar = np.log10(Zvar) minZ = np.log10(minZ) maxZ = np.log10(maxZ) # mask the variable Z = Zvar # cell edges [Xgrid,Ygrid]=np.meshgrid(x,y) # get cell centers and make the meshgrid xc = (x[0:x.size-1]+x[1:x.size])/2 yc = (y[0:y.size-1]+y[1:y.size])/2 [Xgridc,Ygridc]=np.meshgrid(xc,yc) # now plot it! fig=plt.figure() fig.set_size_inches(dim_x_in,dim_y_in,forward=True) pcol=plt.pcolormesh(Xgrid,Ygrid,Z,cmap=cm.hot,linewidth=0) pcol.set_edgecolor('face') plt.axis('off') plt.clim(minZ,maxZ) plt.colorbar() if SaveFig: fig.savefig(savename+'.png',bbox_inches='tight',format='png', dpi=figdpi) if ShowFig: print 'close figure to continue...' plt.show() def find_N_unique_vs_t(Var,Var_list,times): ''' finds number of cabs hired at given time points. hired cabs at a given time, N(t), defined as: N(t) = Npickups(t) + Nactive(t) where Npickups is the number of pickups at t, exactly, and Nactive is the number of cabs with a pickup time before t and a drop off time after t. input: Var The 2-D array of all variables Var_list The list identifying the columns of Var times The time points to calculate N output: N_unique Number of cabs at time points Speed Average speed at each time point ''' N_t=len(times) pick=Var[:,Var_list.index('pickup_time_hr')] elap=Var[:,Var_list.index('elapsed_time_min')]/60.0 drop=pick[:]+elap[:] speed=Var[:,Var_list.index('speed_mph')] # copy values with pickup within certain time, offset it. id_move=np.where(pick>=21.0) pick=np.append(pick,pick[id_move[0]]-24.0) drop=np.append(drop,drop[id_move[0]]-24.0) speed=np.append(speed,speed[id_move[0]]) # initialize the taxi count and speed arrays N_unique = np.zeros(times.shape) Speed = np.zeros(times.shape) for it in range(0,N_t,1): current_time=times[it] id_pickup=np.where((drop >= current_time) & (pick<=current_time)) if len(id_pickup[0])>0: N_unique[it]=len(id_pickup[0]) Speed[it]=speed[id_pickup[0]].mean() return N_unique,Speed,times def plt_two_d_histogram(bin_varname,VarMin,VarMax,time_b,VarBig,Var_list): # median vs time bin_inst=binned_variable(bin_varname,time_b,VarMin,VarMax) bin_inst.bin_the_values(VarBig,Var_list) # cull data by by min,max for 2d histogram plot max_unbin=bin_inst.varmax min_unbin=bin_inst.varmin unbinned_value = VarBig[:,Var_list.index(bin_varname)] time = VarBig[:,Var_list.index('pickup_time_hr')] time = time[unbinned_value>=min_unbin] unbinned_value = unbinned_value[unbinned_value>=min_unbin] time = time[unbinned_value<=max_unbin] unbinned_value = unbinned_value[unbinned_value<=max_unbin] # plot 2d histogram clr = (0.3,0.3,0.3) plt.subplot(1,3,1) plt.hist2d(time,unbinned_value,(48,30),cmap=cm.hot) plt.colorbar() plt.plot(bin_inst.time_bc,bin_inst.mean,color=(0.6,0.6,0.6),linewidth=3) plt.plot(bin_inst.time_bc,bin_inst.med,color=clr,linewidth=3) plt.plot(bin_inst.time_bc,bin_inst.firstquart,color=clr,linewidth=3) plt.plot(bin_inst.time_bc,bin_inst.thirdquart,color=clr,linewidth=3) plt.xlim([0,24]) plt.ylim([min_unbin,max_unbin]) plt.ylim([min_unbin,50]) plt.ylabel(bin_varname) plt.xlabel('time of day [24-hr]') # some selected 1-D histograms plt.subplot(1,3,2) bin_inst.bin_hist(VarBig,Var_list,5,6) LAB='5-6,'+str(bin_inst.hist_id_N) + ',' + str(round(bin_inst.hist_id_med,1)) LAB = LAB + ',' + str(round(bin_inst.hist_id_mean,1)) plt.hist(bin_inst.hist_id,bins=50,histtype='step',normed=True,label=LAB) bin_inst.bin_hist(VarBig,Var_list,9,18) LAB='9-18,' +str(bin_inst.hist_id_N) + ',' + str(round(bin_inst.hist_id_med,1)) LAB = LAB + ',' + str(round(bin_inst.hist_id_mean,1)) plt.hist(bin_inst.hist_id,bins=50,histtype='step',normed=True,label=LAB) bin_inst.bin_hist(VarBig,Var_list,20,24) LAB='20-24,'+str(bin_inst.hist_id_N) + ',' + str(round(bin_inst.hist_id_med,1)) LAB = LAB + ',' + str(round(bin_inst.hist_id_mean,1)) plt.hist(bin_inst.hist_id,bins=50,histtype='step',normed=True,label=LAB) plt.ylabel('bin N / tot N') plt.xlabel(bin_varname) plt.ylim([0,0.15]) plt.legend() # interquartile range (midspread) plot plt.subplot(1,3,3) plt.plot(bin_inst.time_bc,abs(bin_inst.firstquart-bin_inst.thirdquart),color=clr,linewidth=3) plt.xlabel('time of day [24-hr]') plt.ylabel('spread of ' + bin_varname + ' (first - third quartiles)') plt.xlim([0,24]) plt.show()
gpl-3.0
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
python-packages/mne-python-0.10/examples/time_frequency/plot_source_label_time_frequency.py
19
3767
""" ========================================================= Compute power and phase lock in label of the source space ========================================================= Compute time-frequency maps of power and phase lock in the source space. The inverse method is linear based on dSPM inverse operator. The example also shows the difference in the time-frequency maps when they are computed with and without subtracting the evoked response from each epoch. The former results in induced activity only while the latter also includes evoked (stimulus-locked) activity. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample from mne.minimum_norm import read_inverse_operator, source_induced_power print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' label_name = 'Aud-rh' fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name tmin, tmax, event_id = -0.2, 0.5, 2 # Setup for reading the raw data raw = io.Raw(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') inverse_operator = read_inverse_operator(fname_inv) include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # Picks MEG channels picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True, stim=False, include=include, exclude='bads') reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6) # Load epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject, preload=True) # Compute a source estimate per frequency band including and excluding the # evoked response frequencies = np.arange(7, 30, 2) # define frequencies of interest label = mne.read_label(fname_label) n_cycles = frequencies / 3. # different number of cycle per frequency # subtract the evoked response in order to exclude evoked activity epochs_induced = epochs.copy().subtract_evoked() plt.close('all') for ii, (this_epochs, title) in enumerate(zip([epochs, epochs_induced], ['evoked + induced', 'induced only'])): # compute the source space power and phase lock power, phase_lock = source_induced_power( this_epochs, inverse_operator, frequencies, label, baseline=(-0.1, 0), baseline_mode='percent', n_cycles=n_cycles, n_jobs=1) power = np.mean(power, axis=0) # average over sources phase_lock = np.mean(phase_lock, axis=0) # average over sources times = epochs.times ########################################################################## # View time-frequency plots plt.subplots_adjust(0.1, 0.08, 0.96, 0.94, 0.2, 0.43) plt.subplot(2, 2, 2 * ii + 1) plt.imshow(20 * power, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', vmin=0., vmax=30., cmap='RdBu_r') plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') plt.title('Power (%s)' % title) plt.colorbar() plt.subplot(2, 2, 2 * ii + 2) plt.imshow(phase_lock, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', vmin=0, vmax=0.7, cmap='RdBu_r') plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') plt.title('Phase-lock (%s)' % title) plt.colorbar() plt.show()
bsd-3-clause
mangate/ConvNetSent
process_data_subj.py
1
3164
__author__ = 'mangate' import numpy as np import cPickle from collections import defaultdict import re import pandas as pd import os.path from process_data_common import load_bin_vec, add_unknown_words, get_W def build_data_cv(data_folder, cv=10, clean_string=True): """ Loads data and split into 10 folds. """ revs = [] obj_file = data_folder[0] subj_file = data_folder[1] vocab = defaultdict(float) files = [obj_file, subj_file] for i in range(len(files)): with open(files[i], "rb") as f: for line in f: rev = [] rev.append(line.strip()) if clean_string: orig_rev = clean_str(" ".join(rev)) else: orig_rev = " ".join(rev).lower() words = set(orig_rev.split()) for word in words: vocab[word] += 1 datum = {"y":i, "text": orig_rev, "num_words": len(orig_rev.split()), "split": np.random.randint(0,cv)} revs.append(datum) return revs, vocab def clean_str(string, TREC=False): """ Tokenization/string cleaning for all datasets except for SST. Every dataset is lower cased except for TREC """ string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string) string = re.sub(r"\'s", " \'s", string) string = re.sub(r"\'ve", " \'ve", string) string = re.sub(r"n\'t", " n\'t", string) string = re.sub(r"\'re", " \'re", string) string = re.sub(r"\'d", " \'d", string) string = re.sub(r"\'ll", " \'ll", string) string = re.sub(r",", " , ", string) string = re.sub(r"!", " ! ", string) string = re.sub(r"\(", " \( ", string) string = re.sub(r"\)", " \) ", string) string = re.sub(r"\?", " \? ", string) string = re.sub(r"\s{2,}", " ", string) return string.strip() if TREC else string.strip().lower() def process_data(file_name): if os.path.isfile(file_name): print "file {} already exists".format(file_name) return print "creating dataset..." # load data print "loading data...", data_folder = ["data/subj/plot.tok.gt9.5000", "data/subj/quote.tok.gt9.5000"] revs, vocab = build_data_cv(data_folder, cv=10, clean_string=True) max_l = np.max(pd.DataFrame(revs)["num_words"]) print "data loaded!" print "number of sentences: " + str(len(revs)) print "vocab size: " + str(len(vocab)) print "max sentence length: " + str(max_l) # load word2vec print "loading word2vec vectors...", w2v_file = 'data/GoogleNews-vectors-negative300.bin' w2v = load_bin_vec(w2v_file, vocab) print "num words already in word2vec: " + str(len(w2v)) print "word2vec loaded!" #Addind random vectors for all unknown words add_unknown_words(w2v, vocab) W, word_idx_map = get_W(w2v) rand_vecs = {} add_unknown_words(rand_vecs, vocab) W2, _ = get_W(rand_vecs) # dump to pickle file cPickle.dump([revs, W, W2, word_idx_map, vocab, max_l], open(file_name, "wb")) print "dataset created!"
mit
nlpub/russe-evaluation
russe/evaluation/evaluate_test.py
1
3013
#!/usr/bin/env python from os.path import join, splitext, basename, dirname from pandas import read_csv, Series from collections import defaultdict import argparse from sys import stderr from evaluate import hj_evaluation, semantic_relation_classification_evaluation TEST = True # if true use *-test.csv for evaulation, else use *-train.csv DATA_DIR = "." # the directory where *-test.csv and *-train.csv lives HJ_TEST = join(DATA_DIR, "hj-test.csv" if TEST else "hj-train.csv") RT_TEST = join(DATA_DIR, "rt-test.csv" if TEST else "rt-train.csv") AE_TEST = join(DATA_DIR, "ae-test.csv" if TEST else "ae-train.csv") AE2_TEST = join(DATA_DIR, "ae2-test.csv" if TEST else "ae2-train.csv") def get_test(test_fpath): test_df = read_csv(test_fpath, ',', encoding='utf8') test = defaultdict(dict) for i, r in test_df.iterrows(): test[r["word1"]][r["word2"]] = r["sim"] return test def create_usim(df_fpath, test_fpath): print "golden standard:", df_fpath print "test.csv:", test_fpath test = get_test(test_fpath) df = read_csv(df_fpath, ',', encoding='utf8') not_found_num = 0 usim_lst = [] for i, r in df.iterrows(): w1 = r["word1"] w2 = r["word2"] found = w1 in test and w2 in test[w1] usim = test[w1][w2] if found else 0.0 if not found: #print w1, w2 not_found_num += 1 usim_lst.append(usim) df["usim"] = Series(usim_lst) print "not found", not_found_num, "of", i print "used", i - not_found_num usim_fpath = join(dirname(test_fpath), splitext(basename(df_fpath))[0] + "-usim.csv") df.to_csv(usim_fpath, encoding="utf-8", index=False, sep=",") print "golden standard + test.csv:", usim_fpath, "\n" return usim_fpath def evaluation(args): print "test.csv:", args.test_fpath hj_fpath = create_usim(HJ_TEST, args.test_fpath) rt_fpath = create_usim(RT_TEST, args.test_fpath) ae_fpath = create_usim(AE_TEST, args.test_fpath) ae2_fpath = create_usim(AE2_TEST, args.test_fpath) r = {} r["hj"] = hj_evaluation(hj_fpath) r["aehj"] = hj_evaluation(ae_fpath) r["ae2hj"] = hj_evaluation(ae2_fpath) r["rt-avep"], r["rt-accuracy"] = semantic_relation_classification_evaluation(rt_fpath) r["ae-avep"], r["ae-accuracy"] = semantic_relation_classification_evaluation(ae_fpath) r["ae2-avep"], r["ae2-accuracy"] = semantic_relation_classification_evaluation(ae2_fpath) print >> stderr, "hj\trt-avep\trt-accuracy\tae-avep\tae-accuracy\tae2-avep\tae2-accuracy" print >> stderr, "%(hj).5f\t%(rt-avep).5f\t%(rt-accuracy).5f\t%(ae-avep).5f\t%(ae-accuracy).5f\t%(ae2-avep).5f\t%(ae2-accuracy).5f" % r def main(): parser = argparse.ArgumentParser(description='Evaluate from test.csv file.') parser.set_defaults(func=evaluation) parser.add_argument('test_fpath', help='Path to test.csv file.') args = parser.parse_args() args.func(args) if __name__ == '__main__': main()
mit
lmcinnes/umap
doc/bokeh_digits_plot.py
1
1809
import numpy as np from sklearn.datasets import load_digits import pandas as pd digits = load_digits() import umap reducer = umap.UMAP(random_state=42) embedding = reducer.fit_transform(digits.data) from io import BytesIO from PIL import Image import base64 def embeddable_image(data): img_data = 255 - 15 * data.astype(np.uint8) image = Image.fromarray(img_data, mode="L").resize((64, 64), Image.BICUBIC) buffer = BytesIO() image.save(buffer, format="png") for_encoding = buffer.getvalue() return "data:image/png;base64," + base64.b64encode(for_encoding).decode() from bokeh.plotting import figure, show, output_file from bokeh.models import HoverTool, ColumnDataSource, CategoricalColorMapper from bokeh.palettes import Spectral10 output_file("basic_usage_bokeh_example.html") digits_df = pd.DataFrame(embedding, columns=("x", "y")) digits_df["digit"] = [str(x) for x in digits.target] digits_df["image"] = list(map(embeddable_image, digits.images)) datasource = ColumnDataSource(digits_df) color_mapping = CategoricalColorMapper( factors=[str(9 - x) for x in digits.target_names], palette=Spectral10 ) plot_figure = figure( title="UMAP projection of the Digits dataset", plot_width=600, plot_height=600, tools=("pan, wheel_zoom, reset"), ) plot_figure.add_tools( HoverTool( tooltips=""" <div> <div> <img src='@image' style='float: left; margin: 5px 5px 5px 5px'/> </div> <div> <span style='font-size: 16px; color: #224499'>Digit:</span> <span style='font-size: 18px'>@digit</span> </div> </div> """ ) ) plot_figure.circle( "x", "y", source=datasource, color=dict(field="digit", transform=color_mapping), line_alpha=0.6, fill_alpha=0.6, size=4, ) show(plot_figure)
bsd-3-clause
xubenben/data-science-from-scratch
code/working_with_data.py
61
16549
from __future__ import division from collections import Counter, defaultdict from functools import partial from linear_algebra import shape, get_row, get_column, make_matrix, \ vector_mean, vector_sum, dot, magnitude, vector_subtract, scalar_multiply from statistics import correlation, standard_deviation, mean from probability import inverse_normal_cdf from gradient_descent import maximize_batch import math, random, csv import matplotlib.pyplot as plt import dateutil.parser def bucketize(point, bucket_size): """floor the point to the next lower multiple of bucket_size""" return bucket_size * math.floor(point / bucket_size) def make_histogram(points, bucket_size): """buckets the points and counts how many in each bucket""" return Counter(bucketize(point, bucket_size) for point in points) def plot_histogram(points, bucket_size, title=""): histogram = make_histogram(points, bucket_size) plt.bar(histogram.keys(), histogram.values(), width=bucket_size) plt.title(title) plt.show() def compare_two_distributions(): random.seed(0) uniform = [random.randrange(-100,101) for _ in range(200)] normal = [57 * inverse_normal_cdf(random.random()) for _ in range(200)] plot_histogram(uniform, 10, "Uniform Histogram") plot_histogram(normal, 10, "Normal Histogram") def random_normal(): """returns a random draw from a standard normal distribution""" return inverse_normal_cdf(random.random()) xs = [random_normal() for _ in range(1000)] ys1 = [ x + random_normal() / 2 for x in xs] ys2 = [-x + random_normal() / 2 for x in xs] def scatter(): plt.scatter(xs, ys1, marker='.', color='black', label='ys1') plt.scatter(xs, ys2, marker='.', color='gray', label='ys2') plt.xlabel('xs') plt.ylabel('ys') plt.legend(loc=9) plt.show() def correlation_matrix(data): """returns the num_columns x num_columns matrix whose (i, j)th entry is the correlation between columns i and j of data""" _, num_columns = shape(data) def matrix_entry(i, j): return correlation(get_column(data, i), get_column(data, j)) return make_matrix(num_columns, num_columns, matrix_entry) def make_scatterplot_matrix(): # first, generate some random data num_points = 100 def random_row(): row = [None, None, None, None] row[0] = random_normal() row[1] = -5 * row[0] + random_normal() row[2] = row[0] + row[1] + 5 * random_normal() row[3] = 6 if row[2] > -2 else 0 return row random.seed(0) data = [random_row() for _ in range(num_points)] # then plot it _, num_columns = shape(data) fig, ax = plt.subplots(num_columns, num_columns) for i in range(num_columns): for j in range(num_columns): # scatter column_j on the x-axis vs column_i on the y-axis if i != j: ax[i][j].scatter(get_column(data, j), get_column(data, i)) # unless i == j, in which case show the series name else: ax[i][j].annotate("series " + str(i), (0.5, 0.5), xycoords='axes fraction', ha="center", va="center") # then hide axis labels except left and bottom charts if i < num_columns - 1: ax[i][j].xaxis.set_visible(False) if j > 0: ax[i][j].yaxis.set_visible(False) # fix the bottom right and top left axis labels, which are wrong because # their charts only have text in them ax[-1][-1].set_xlim(ax[0][-1].get_xlim()) ax[0][0].set_ylim(ax[0][1].get_ylim()) plt.show() def parse_row(input_row, parsers): """given a list of parsers (some of which may be None) apply the appropriate one to each element of the input_row""" return [parser(value) if parser is not None else value for value, parser in zip(input_row, parsers)] def parse_rows_with(reader, parsers): """wrap a reader to apply the parsers to each of its rows""" for row in reader: yield parse_row(row, parsers) def try_or_none(f): """wraps f to return None if f raises an exception assumes f takes only one input""" def f_or_none(x): try: return f(x) except: return None return f_or_none def parse_row(input_row, parsers): return [try_or_none(parser)(value) if parser is not None else value for value, parser in zip(input_row, parsers)] def try_parse_field(field_name, value, parser_dict): """try to parse value using the appropriate function from parser_dict""" parser = parser_dict.get(field_name) # None if no such entry if parser is not None: return try_or_none(parser)(value) else: return value def parse_dict(input_dict, parser_dict): return { field_name : try_parse_field(field_name, value, parser_dict) for field_name, value in input_dict.iteritems() } # # # MANIPULATING DATA # # def picker(field_name): """returns a function that picks a field out of a dict""" return lambda row: row[field_name] def pluck(field_name, rows): """turn a list of dicts into the list of field_name values""" return map(picker(field_name), rows) def group_by(grouper, rows, value_transform=None): # key is output of grouper, value is list of rows grouped = defaultdict(list) for row in rows: grouped[grouper(row)].append(row) if value_transform is None: return grouped else: return { key : value_transform(rows) for key, rows in grouped.iteritems() } def percent_price_change(yesterday, today): return today["closing_price"] / yesterday["closing_price"] - 1 def day_over_day_changes(grouped_rows): # sort the rows by date ordered = sorted(grouped_rows, key=picker("date")) # zip with an offset to get pairs of consecutive days return [{ "symbol" : today["symbol"], "date" : today["date"], "change" : percent_price_change(yesterday, today) } for yesterday, today in zip(ordered, ordered[1:])] # # # RESCALING DATA # # def scale(data_matrix): num_rows, num_cols = shape(data_matrix) means = [mean(get_column(data_matrix,j)) for j in range(num_cols)] stdevs = [standard_deviation(get_column(data_matrix,j)) for j in range(num_cols)] return means, stdevs def rescale(data_matrix): """rescales the input data so that each column has mean 0 and standard deviation 1 ignores columns with no deviation""" means, stdevs = scale(data_matrix) def rescaled(i, j): if stdevs[j] > 0: return (data_matrix[i][j] - means[j]) / stdevs[j] else: return data_matrix[i][j] num_rows, num_cols = shape(data_matrix) return make_matrix(num_rows, num_cols, rescaled) # # DIMENSIONALITY REDUCTION # X = [ [20.9666776351559,-13.1138080189357], [22.7719907680008,-19.8890894944696], [25.6687103160153,-11.9956004517219], [18.0019794950564,-18.1989191165133], [21.3967402102156,-10.8893126308196], [0.443696899177716,-19.7221132386308], [29.9198322142127,-14.0958668502427], [19.0805843080126,-13.7888747608312], [16.4685063521314,-11.2612927034291], [21.4597664701884,-12.4740034586705], [3.87655283720532,-17.575162461771], [34.5713920556787,-10.705185165378], [13.3732115747722,-16.7270274494424], [20.7281704141919,-8.81165591556553], [24.839851437942,-12.1240962157419], [20.3019544741252,-12.8725060780898], [21.9021426929599,-17.3225432396452], [23.2285885715486,-12.2676568419045], [28.5749111681851,-13.2616470619453], [29.2957424128701,-14.6299928678996], [15.2495527798625,-18.4649714274207], [26.5567257400476,-9.19794350561966], [30.1934232346361,-12.6272709845971], [36.8267446011057,-7.25409849336718], [32.157416823084,-10.4729534347553], [5.85964365291694,-22.6573731626132], [25.7426190674693,-14.8055803854566], [16.237602636139,-16.5920595763719], [14.7408608850568,-20.0537715298403], [6.85907008242544,-18.3965586884781], [26.5918329233128,-8.92664811750842], [-11.2216019958228,-27.0519081982856], [8.93593745011035,-20.8261235122575], [24.4481258671796,-18.0324012215159], [2.82048515404903,-22.4208457598703], [30.8803004755948,-11.455358009593], [15.4586738236098,-11.1242825084309], [28.5332537090494,-14.7898744423126], [40.4830293441052,-2.41946428697183], [15.7563759125684,-13.5771266003795], [19.3635588851727,-20.6224770470434], [13.4212840786467,-19.0238227375766], [7.77570680426702,-16.6385739839089], [21.4865983854408,-15.290799330002], [12.6392705930724,-23.6433305964301], [12.4746151388128,-17.9720169566614], [23.4572410437998,-14.602080545086], [13.6878189833565,-18.9687408182414], [15.4077465943441,-14.5352487124086], [20.3356581548895,-10.0883159703702], [20.7093833689359,-12.6939091236766], [11.1032293684441,-14.1383848928755], [17.5048321498308,-9.2338593361801], [16.3303688220188,-15.1054735529158], [26.6929062710726,-13.306030567991], [34.4985678099711,-9.86199941278607], [39.1374291499406,-10.5621430853401], [21.9088956482146,-9.95198845621849], [22.2367457578087,-17.2200123442707], [10.0032784145577,-19.3557700653426], [14.045833906665,-15.871937521131], [15.5640911917607,-18.3396956121887], [24.4771926581586,-14.8715313479137], [26.533415556629,-14.693883922494], [12.8722580202544,-21.2750596021509], [24.4768291376862,-15.9592080959207], [18.2230748567433,-14.6541444069985], [4.1902148367447,-20.6144032528762], [12.4332594022086,-16.6079789231489], [20.5483758651873,-18.8512560786321], [17.8180560451358,-12.5451990696752], [11.0071081078049,-20.3938092335862], [8.30560561422449,-22.9503944138682], [33.9857852657284,-4.8371294974382], [17.4376502239652,-14.5095976075022], [29.0379635148943,-14.8461553663227], [29.1344666599319,-7.70862921632672], [32.9730697624544,-15.5839178785654], [13.4211493998212,-20.150199857584], [11.380538260355,-12.8619410359766], [28.672631499186,-8.51866271785711], [16.4296061111902,-23.3326051279759], [25.7168371582585,-13.8899296143829], [13.3185154732595,-17.8959160024249], [3.60832478605376,-25.4023343597712], [39.5445949652652,-11.466377647931], [25.1693484426101,-12.2752652925707], [25.2884257196471,-7.06710309184533], [6.77665715793125,-22.3947299635571], [20.1844223778907,-16.0427471125407], [25.5506805272535,-9.33856532270204], [25.1495682602477,-7.17350567090738], [15.6978431006492,-17.5979197162642], [37.42780451491,-10.843637288504], [22.974620174842,-10.6171162611686], [34.6327117468934,-9.26182440487384], [34.7042513789061,-6.9630753351114], [15.6563953929008,-17.2196961218915], [25.2049825789225,-14.1592086208169] ] def de_mean_matrix(A): """returns the result of subtracting from every value in A the mean value of its column. the resulting matrix has mean 0 in every column""" nr, nc = shape(A) column_means, _ = scale(A) return make_matrix(nr, nc, lambda i, j: A[i][j] - column_means[j]) def direction(w): mag = magnitude(w) return [w_i / mag for w_i in w] def directional_variance_i(x_i, w): """the variance of the row x_i in the direction w""" return dot(x_i, direction(w)) ** 2 def directional_variance(X, w): """the variance of the data in the direction w""" return sum(directional_variance_i(x_i, w) for x_i in X) def directional_variance_gradient_i(x_i, w): """the contribution of row x_i to the gradient of the direction-w variance""" projection_length = dot(x_i, direction(w)) return [2 * projection_length * x_ij for x_ij in x_i] def directional_variance_gradient(X, w): return vector_sum(directional_variance_gradient_i(x_i,w) for x_i in X) def first_principal_component(X): guess = [1 for _ in X[0]] unscaled_maximizer = maximize_batch( partial(directional_variance, X), # is now a function of w partial(directional_variance_gradient, X), # is now a function of w guess) return direction(unscaled_maximizer) def first_principal_component_sgd(X): guess = [1 for _ in X[0]] unscaled_maximizer = maximize_stochastic( lambda x, _, w: directional_variance_i(x, w), lambda x, _, w: directional_variance_gradient_i(x, w), X, [None for _ in X], guess) return direction(unscaled_maximizer) def project(v, w): """return the projection of v onto w""" coefficient = dot(v, w) return scalar_multiply(coefficient, w) def remove_projection_from_vector(v, w): """projects v onto w and subtracts the result from v""" return vector_subtract(v, project(v, w)) def remove_projection(X, w): """for each row of X projects the row onto w, and subtracts the result from the row""" return [remove_projection_from_vector(x_i, w) for x_i in X] def principal_component_analysis(X, num_components): components = [] for _ in range(num_components): component = first_principal_component(X) components.append(component) X = remove_projection(X, component) return components def transform_vector(v, components): return [dot(v, w) for w in components] def transform(X, components): return [transform_vector(x_i, components) for x_i in X] if __name__ == "__main__": print "correlation(xs, ys1)", correlation(xs, ys1) print "correlation(xs, ys2)", correlation(xs, ys2) # safe parsing data = [] with open("comma_delimited_stock_prices.csv", "rb") as f: reader = csv.reader(f) for line in parse_rows_with(reader, [dateutil.parser.parse, None, float]): data.append(line) for row in data: if any(x is None for x in row): print row print "stocks" with open("stocks.txt", "rb") as f: reader = csv.DictReader(f, delimiter="\t") data = [parse_dict(row, { 'date' : dateutil.parser.parse, 'closing_price' : float }) for row in reader] max_aapl_price = max(row["closing_price"] for row in data if row["symbol"] == "AAPL") print "max aapl price", max_aapl_price # group rows by symbol by_symbol = defaultdict(list) for row in data: by_symbol[row["symbol"]].append(row) # use a dict comprehension to find the max for each symbol max_price_by_symbol = { symbol : max(row["closing_price"] for row in grouped_rows) for symbol, grouped_rows in by_symbol.iteritems() } print "max price by symbol" print max_price_by_symbol # key is symbol, value is list of "change" dicts changes_by_symbol = group_by(picker("symbol"), data, day_over_day_changes) # collect all "change" dicts into one big list all_changes = [change for changes in changes_by_symbol.values() for change in changes] print "max change", max(all_changes, key=picker("change")) print "min change", min(all_changes, key=picker("change")) # to combine percent changes, we add 1 to each, multiply them, and subtract 1 # for instance, if we combine +10% and -20%, the overall change is # (1 + 10%) * (1 - 20%) - 1 = 1.1 * .8 - 1 = -12% def combine_pct_changes(pct_change1, pct_change2): return (1 + pct_change1) * (1 + pct_change2) - 1 def overall_change(changes): return reduce(combine_pct_changes, pluck("change", changes)) overall_change_by_month = group_by(lambda row: row['date'].month, all_changes, overall_change) print "overall change by month" print overall_change_by_month print "rescaling" data = [[1, 20, 2], [1, 30, 3], [1, 40, 4]] print "original: ", data print "scale: ", scale(data) print "rescaled: ", rescale(data) print print "PCA" Y = de_mean_matrix(X) components = principal_component_analysis(Y, 2) print "principal components", components print "first point", Y[0] print "first point transformed", transform_vector(Y[0], components)
unlicense
eroicaleo/LearningPython
HandsOnML/ch09/house_gd_optimizer.py
1
1309
#!/usr/bin/env python import numpy as np import tensorflow as tf from sklearn.datasets import fetch_california_housing from sklearn.preprocessing import StandardScaler learning_rate = 0.01 n_epochs = 10000 def scaler_norm(a): return StandardScaler().fit(a).transform(a) housing = fetch_california_housing() m, n = housing.data.shape housing_data_norm = scaler_norm(housing.data) housing_data_plus_bias = np.c_[np.ones((m, 1)), housing_data_norm] y_norm = scaler_norm(housing.target.reshape(-1, 1)) X = tf.constant(housing_data_plus_bias, dtype=tf.float32, name='X') y = tf.constant(y_norm, dtype=tf.float32, name='y') XT = tf.transpose(X) theta = tf.Variable(tf.random_uniform([n+1, 1], -1.0, 1.0), dtype=tf.float32, name='theta') y_pred = tf.matmul(X, theta) error = y_pred - y mse = tf.reduce_mean(tf.square(error), name='mse') optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) training_op = optimizer.minimize(mse) init = tf.global_variables_initializer() print('#'*80) print('## Autodiff Gradient descent') print('#'*80) with tf.Session() as sess: init.run() for epoch in range(n_epochs): if epoch % 100 == 0: print('Epoch', epoch, 'MSE = ', mse.eval()) sess.run(training_op) best_theta = theta.eval() print(best_theta)
mit
tayebzaidi/HonorsThesisTZ
ThesisCode/classification/plot_tsne.py
2
4642
#!/usr/bin/env python import sys import os import json import numpy as np from sklearn import preprocessing from sklearn.manifold import TSNE # sys.path.insert(1,'~/Multicore-TSNE') # from MulticoreTSNE import MulticoreTSNE as TSNE import matplotlib import matplotlib.pyplot as plt import matplotlib.lines as mlines def main(): metric = "correlation" #"euclidean", "mahalanobis" # the best perplexity seems to be ~300 - it's essentially the number of neighbors you think share a label best_learning_rate = 100 maxiter = 2000 coeffs = [] labels = [] keys = [] # supply filename as argument 1 fn = sys.argv[1] # there's just too little data in this dataset to warrant all those groups #groups = { 0:(u'II', u'II P', u'IIb', u'IIn'), # 1:(u'Ia',), # 2:( u'Ia Pec', u'Ia-02cx'), # 3:(u'Ib', u'Ib Pec', u'Ib-n/IIb-n', u'Ib/c',\ # u'Ibn', u'Ic', u'Ic BL', u'Ic Pec', u'Ic/Ic-bl'), # 4:(u'SLSN', u'SLSN-I', u'SLSN-II')} groups = { 0:(u'II', u'II P', u'IIb', u'IIn',\ u'Ib', u'Ib Pec', u'Ib-n/IIb-n', u'Ib/c',\ u'Ibn', u'Ic', u'Ic BL', u'Ic Pec', u'Ic/Ic-bl',\ u'SLSN', u'SLSN-I', u'SLSN-II'), 1:(u'Ia',)} #2:( u'Ia Pec', u'Ia-02cx'), #3:(u'Ib', u'Ib Pec', u'Ib-n/IIb-n', u'Ib/c',\ # u'Ibn', u'Ic', u'Ic BL', u'Ic Pec', u'Ic/Ic-bl'), #4:(u'SLSN', u'SLSN-I', u'SLSN-II')} # parse the data with open(fn, 'r') as f: d = json.load(f) for key in d.keys(): keys.append(key) coeffs.append(d[key]['coeffs']) type = d[key]['type'] for group, types in groups.items(): if type in types: labels.append(group) continue coeffs = np.array(coeffs) labels = np.array(labels) keys = np.array(keys) colors = ['C{:n}'.format(x) for x in labels] ucolors = ['C{:n}'.format(x) for x in sorted(np.unique(labels))] #stringlabels = ['II', 'Ia', 'Iax', 'Ib/c', 'SLSN'] stringlabels = ['Ia', 'Non-Ia'] # make the TSNE X_scaled = preprocessing.scale(coeffs) model = TSNE(n_components=2, random_state=0, perplexity=float(sys.argv[2]),\ n_iter=maxiter, verbose=2, learning_rate=100, init="pca", metric=metric) # there's an alternate package from github, but doesn't matter for this dataset since it is small #model = TSNE(n_jobs=8, n_iter=max_iter, method='exact', perplexity=float(sys.argv[2])) # find the transformation to a 2D space X_scaled = preprocessing.scale(coeffs) out = model.fit_transform(X_scaled) ###Print outliers and check manually #x first print(out.shape) bad_idxs_x = mad_based_outlier(out[:,0]) bad_idxs_y = mad_based_outlier(out[:,1]) print(keys[bad_idxs_x]) print(keys[bad_idxs_y]) bad_idxs = np.bitwise_or(bad_idxs_x, bad_idxs_y) out = np.delete(out, np.where(bad_idxs==True), 0) labels = elim_idxs(labels, bad_idxs_x, bad_idxs_y) keys = elim_idxs(keys, bad_idxs_x, bad_idxs_y) colors = elim_idxs(colors, bad_idxs_x, bad_idxs_y) ucolors = elim_idxs(ucolors, bad_idxs_x, bad_idxs_y) # plot the results fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(1,1,1) ax.scatter(out[:,0], out[:,1], c=colors, alpha=0.7) # add a legend lines = [] for col, type in zip(ucolors, stringlabels): lines.append(mlines.Line2D([], [], color=col, marker='o', ls='None', ms=10, label=type)) ax.legend(handles=lines, frameon=False, fontsize='large') # label axes ax.set_xlabel('TSNE u', fontsize='x-large') ax.set_ylabel('TSNE v', fontsize='x-large') ax.set_title(sys.argv[3], fontsize='xx-large') #ax.set_ylim(-5,5) #ax.set_xlim(-5,5) plt.tight_layout() # save plot outf = os.path.basename(fn) fig.savefig('tsne_{}.pdf'.format(outf.replace('.json',''))) plt.ion() plt.show(fig) plt.close(fig) def elim_idxs(obj, idxs_x, idxs_y): return np.delete(np.delete(obj, idxs_x), idxs_y) ###Code copied from stack overflow 22354094 for MAD outlier detection def mad_based_outlier(points, thresh=3.5): if len(points.shape) == 1: points = points[:,None] median = np.median(points, axis=0) diff = np.sum((points - median)**2, axis=-1) diff = np.sqrt(diff) med_abs_deviation = np.median(diff) modified_z_score = 0.6745 * diff / med_abs_deviation return modified_z_score > thresh if __name__=='__main__': sys.exit(main())
gpl-3.0
sem-geologist/hyperspy
hyperspy/learn/svd_pca.py
7
3075
# -*- coding: utf-8 -*- # Copyright 2007-2016 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANdata WARRANTdata; without even the implied warranty of # MERCHANTABILITdata or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # dataou should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import logging import numpy as np import scipy.linalg from hyperspy.misc.machine_learning.import_sklearn import ( fast_svd, sklearn_installed) _logger = logging.getLogger(__name__) def svd_pca(data, fast=False, output_dimension=None, centre=None, auto_transpose=True): """Perform PCA using SVD. Parameters ---------- data : numpy array MxN array of input data (M variables, N trials) fast : bool Wheter to use randomized svd estimation to estimate a limited number of componentes given by output_dimension output_dimension : int Number of components to estimate when fast is True centre : None | 'variables' | 'trials' If None no centring is applied. If 'variable' the centring will be performed in the variable axis. If 'trials', the centring will be performed in the 'trials' axis. auto_transpose : bool If True, automatically transposes the data to boost performance Returns ------- factors : numpy array loadings : numpy array explained_variance : numpy array mean : numpy array or None (if center is None) """ N, M = data.shape if centre is not None: if centre == 'variables': mean = data.mean(1)[:, np.newaxis] elif centre == 'trials': mean = data.mean(0)[np.newaxis, :] else: raise AttributeError( 'centre must be one of: None, variables, trials') data -= mean else: mean = None if auto_transpose is True: if N < M: _logger.info("Auto transposing the data") data = data.T else: auto_transpose = False if fast is True and sklearn_installed is True: if output_dimension is None: raise ValueError('When using fast_svd it is necessary to ' 'define the output_dimension') U, S, V = fast_svd(data, output_dimension) else: U, S, V = scipy.linalg.svd(data, full_matrices=False) if auto_transpose is False: factors = V.T explained_variance = S ** 2 / N loadings = U * S else: loadings = V.T explained_variance = S ** 2 / N factors = U * S return factors, loadings, explained_variance, mean
gpl-3.0
ramidas/ChIA-PET_sigvis
drawSignal.py
1
2104
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division import sys from matplotlib import pyplot as plt import numpy as np import argparse def getKaryotype(fname): """returns dictionary e.g.: {'chr13': 115169878, ... } """ data = [i.strip().split() for i in open(fname) if i[:3] == 'chr'] hs = {} for i in data: hs[i[6]] = int(i[5]) return hs def drawSignals(karyotype, chromosome, signalFiles, segments): for f in signalFiles: y = np.fromfile(f, dtype=np.uint16) if y.size > 1e6: every = int(y.size//1e6) print "[ \033[1;33mWARN\033[1;m ] Your data from {} are very big so they were probed every {:d} point so they could fit in circa 1 000 000 points. Sorry :(".format(f.name, every) y = y[0::every] x = np.linspace(0,karyotype[chromosome],len(y)) print "Plotting {}".format(f.name) bla = plt.plot(x,y, '-', label=f.name) color = bla[-1].get_color() plt.fill_between(x,y, color = color, alpha=0.1) if segments: tmp = [i.strip().split() for i in segments ] segByPrzemek = [int(i[1]) for i in tmp if i[0] == chromosome] plt.plot(segByPrzemek,[0 for i in xrange(len(segByPrzemek))],'d',color='yellow',linestyle="none" ) plt.legend() plt.grid() plt.title("ChIA-PET signal for {}".format(chromosome)) plt.show() def main(): parser = argparse.ArgumentParser(description='Script for plotting ChIA-PET signal') parser.add_argument('karyotype', help='karyotype in Circos format') parser.add_argument('chromosome', help='chromosome. Np chr22') parser.add_argument('signalFiles', type=argparse.FileType('r'), nargs='+', help="filenames with signal saved in numpy np.uint16 binary format") parser.add_argument('-s', '--segments', type=argparse.FileType('r'), help="name of file with segments") args = parser.parse_args() karyotype = getKaryotype(args.karyotype) drawSignals(karyotype, args.chromosome, args.signalFiles, args.segments) if __name__ == '__main__': main()
mit
smartscheduling/scikit-learn-categorical-tree
benchmarks/bench_plot_lasso_path.py
301
4003
"""Benchmarks of Lasso regularization path computation using Lars and CD The input data is mostly low rank but is a fat infinite tail. """ from __future__ import print_function from collections import defaultdict import gc import sys from time import time import numpy as np from sklearn.linear_model import lars_path from sklearn.linear_model import lasso_path from sklearn.datasets.samples_generator import make_regression def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') dataset_kwargs = { 'n_samples': n_samples, 'n_features': n_features, 'n_informative': n_features / 10, 'effective_rank': min(n_samples, n_features) / 10, #'effective_rank': None, 'bias': 0.0, } print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) X, y = make_regression(**dataset_kwargs) gc.collect() print("benchmarking lars_path (with Gram):", end='') sys.stdout.flush() tstart = time() G = np.dot(X.T, X) # precomputed Gram matrix Xy = np.dot(X.T, y) lars_path(X, y, Xy=Xy, Gram=G, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (with Gram)'].append(delta) gc.collect() print("benchmarking lars_path (without Gram):", end='') sys.stdout.flush() tstart = time() lars_path(X, y, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (without Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (with Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=True) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (with Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (without Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=False) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (without Gram)'].append(delta) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(10, 2000, 5).astype(np.int) features_range = np.linspace(10, 2000, 5).astype(np.int) results = compute_bench(samples_range, features_range) max_time = max(max(t) for t in results.values()) fig = plt.figure('scikit-learn Lasso path benchmark results') i = 1 for c, (label, timings) in zip('bcry', sorted(results.items())): ax = fig.add_subplot(2, 2, i, projection='3d') X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.8) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) #ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.set_zlim3d(0.0, max_time * 1.1) ax.set_title(label) #ax.legend() i += 1 plt.show()
bsd-3-clause
TomAugspurger/pandas
pandas/tests/frame/methods/test_duplicated.py
1
3190
import re import numpy as np import pytest from pandas import DataFrame, Series, date_range import pandas._testing as tm @pytest.mark.parametrize("subset", ["a", ["a"], ["a", "B"]]) def test_duplicated_with_misspelled_column_name(subset): # GH 19730 df = DataFrame({"A": [0, 0, 1], "B": [0, 0, 1], "C": [0, 0, 1]}) msg = re.escape("Index(['a'], dtype='object')") with pytest.raises(KeyError, match=msg): df.duplicated(subset) @pytest.mark.slow def test_duplicated_do_not_fail_on_wide_dataframes(): # gh-21524 # Given the wide dataframe with a lot of columns # with different (important!) values data = {f"col_{i:02d}": np.random.randint(0, 1000, 30000) for i in range(100)} df = DataFrame(data).T result = df.duplicated() # Then duplicates produce the bool Series as a result and don't fail during # calculation. Actual values doesn't matter here, though usually it's all # False in this case assert isinstance(result, Series) assert result.dtype == np.bool @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, True, False, True])), ("last", Series([True, True, False, False, False])), (False, Series([True, True, True, False, True])), ], ) def test_duplicated_keep(keep, expected): df = DataFrame({"A": [0, 1, 1, 2, 0], "B": ["a", "b", "b", "c", "a"]}) result = df.duplicated(keep=keep) tm.assert_series_equal(result, expected) @pytest.mark.xfail(reason="GH#21720; nan/None falsely considered equal") @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, True, False, True])), ("last", Series([True, True, False, False, False])), (False, Series([True, True, True, False, True])), ], ) def test_duplicated_nan_none(keep, expected): df = DataFrame({"C": [np.nan, 3, 3, None, np.nan]}, dtype=object) result = df.duplicated(keep=keep) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("subset", [None, ["A", "B"], "A"]) def test_duplicated_subset(subset, keep): df = DataFrame( { "A": [0, 1, 1, 2, 0], "B": ["a", "b", "b", "c", "a"], "C": [np.nan, 3, 3, None, np.nan], } ) if subset is None: subset = list(df.columns) elif isinstance(subset, str): # need to have a DataFrame, not a Series # -> select columns with singleton list, not string subset = [subset] expected = df[subset].duplicated(keep=keep) result = df.duplicated(keep=keep, subset=subset) tm.assert_series_equal(result, expected) def test_duplicated_on_empty_frame(): # GH 25184 df = DataFrame(columns=["a", "b"]) dupes = df.duplicated("a") result = df[dupes] expected = df.copy() tm.assert_frame_equal(result, expected) def test_frame_datetime64_duplicated(): dates = date_range("2010-07-01", end="2010-08-05") tst = DataFrame({"symbol": "AAA", "date": dates}) result = tst.duplicated(["date", "symbol"]) assert (-result).all() tst = DataFrame({"date": dates}) result = tst.duplicated() assert (-result).all()
bsd-3-clause
siutanwong/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
230
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
allthroughthenight/aces
python/drivers/linear_wave_theory.py
1
12795
import sys import math sys.path.append('../functions') from base_driver import BaseDriver from helper_objects import BaseField import USER_INPUT from ERRWAVBRK1 import ERRWAVBRK1 from WAVELEN import WAVELEN import numpy as np import matplotlib.pyplot as plt from EXPORTER import EXPORTER ## ACES Update to MATLAB #------------------------------------------------------------- # Driver for Linear Wave Theory (page 2-1 in ACES User's Guide) # Yields first-order approximations for various wave parameters of wave # motion as predicted by linear wave theory # Transferred by: Mary Anderson, USACE-CHL-Coastal Processes Branch # Date Created: March 17, 2011 # Date Modified: June 26th, 2016 by yaprak # Requires the following functions: # ERRWAVBRK1 # WAVELEN # MAIN VARIABLE LIST: # INPUT # H: wave height (m or ft) # T: wave period (sec) # d: water depth (m or ft) # z: vertical coordinate (m or ft) # xL: horizontal coordinate as fraction of wavelength (x/L) # OUTPUT # L: wavelength (m or ft) # C: wave celerity (m/sec or ft/sec) # Cg: group celerity (m/sec or ft/sec) # E: energy density (N-m/m^2 or ft-lb/ft^2) # Ef: energy flux (N-m/sec-m or ft-lb/sec-ft) # Ur: Ursell number # eta: surface elevation (m or ft) # px: horizontal particle displacement (m or ft) # LOOK AT PZ AND PY # pz: vertical particle displacement (m or ft) # u: horizontal particle velocity (m/sec or ft/sec) # w: vertical particle velocity (m/sec or ft/sec) # dudt: horizontal particle acceleration (m/sec^2 or ft/sec^2) # dwdt: vertical particle accleration (m/sec^2 or ft/sec^2) # pres: pressure (N/m^2 or lb ft^2 ) ## ------------------------------------------------------------- class LinearWaveTheory(BaseDriver): def __init__(self, H = None, T = None, d = None,\ z = None, xL = None): self.exporter = EXPORTER("output/exportLinearWaveTheory") if H != None: self.isSingleCase = True self.defaultValueH = H if T != None: self.isSingleCase = True self.defaultValueT = T if d != None: self.isSingleCase = True self.defaultValue_d = d if z != None: self.isSingleCase = True self.defaultValue_z = z if xL != None: self.isSingleCase = True self.defaultValue_xL = xL super(LinearWaveTheory, self).__init__() self.exporter.close() # end __init__ def userInput(self): super(LinearWaveTheory, self).userInput() self.waterType, self.rho =\ USER_INPUT.SALT_FRESH_WATER(self.isMetric) # end userInput def defineInputDataList(self): self.inputList = [] if not hasattr(self, "defaultValueH"): self.inputList.append(BaseField(\ "H: wave height (%s)" % self.labelUnitDist, 0.1, 200.0)) if not hasattr(self, "defaultValueT"): self.inputList.append(BaseField(\ "T: wave period (sec)", 1.0, 1000.0)) if not hasattr(self, "defaultValue_d"): self.inputList.append(BaseField(\ "d: water depth (%s)" % self.labelUnitDist, 0.1, 5000.0)) if not hasattr(self, "defaultValue_z"): self.inputList.append(BaseField(\ "z: vertical coordinate (%s)" % self.labelUnitDist,\ -5100.0, 100.0)) if not hasattr(self, "defaultValue_xL"): self.inputList.append(BaseField(\ "xL: horizontal coordinate as fraction of wavelength (x/L)",\ 0.0, 1.0)) # end defineInputDataList def fileOutputRequestInit(self): self.fileOutputRequestMain(defaultFilename = "linear_wave_theory") def getCalcValues(self, caseInputList): currIndex = 0 if hasattr(self, "defaultValueH"): H = self.defaultValueH else: H = caseInputList[currIndex] currIndex = currIndex + 1 if hasattr(self, "defaultValueT"): T = self.defaultValueT else: T = caseInputList[currIndex] currIndex = currIndex + 1 if hasattr(self, "defaultValue_d"): d = self.defaultValue_d else: d = caseInputList[currIndex] currIndex = currIndex + 1 if hasattr(self, "defaultValue_z"): z = self.defaultValue_z else: z = caseInputList[currIndex] currIndex = currIndex + 1 if hasattr(self, "defaultValue_xL"): xL = self.defaultValue_xL else: xL = caseInputList[currIndex] currIndex = currIndex + 1 return H, T, d, z, xL # end getCalcValues def performCalculations(self, caseInputList, caseIndex = 0): H, T, d, z, xL = self.getCalcValues(caseInputList) dataDict = {"H": H, "T": T, "d": d, "z": z, "xL": xL} twopi = 2*math.pi nIteration = 50 L, k = WAVELEN(d, T, nIteration, self.g) theta = xL*twopi #theta=(kx-wt) where arbitrarily t=0 and k=2*pi/L # Check for monochromatic wave breaking (depth limited - no slope) Hb = ERRWAVBRK1(d, 0.78) if not (H < Hb): self.errorMsg = "Error: Input wave broken (Hb = %6.2f %s)" %\ (Hb, self.labelUnitDist) print(self.errorMsg) self.fileOutputWriteMain(dataDict, caseIndex) return # Check to make sure vertical coordinate is within waveform eta = (H/2)*math.cos(theta) if not (z < eta and (z + d) > 0): self.errorMsg = "Error: Point outside waveform." print(self.errorMsg) self.fileOutputWriteMain(dataDict, caseIndex) return # Main Computations arg = (2*k*d/(math.sinh(2*k*d))) tot = d + z C = L/T Cg = 0.5*(1 + arg)*C E = (1.0/8.0)*self.rho*self.g*(H**2) Ef = E*Cg Ur = L**2*H/(d**3) px = (-H/2)*(math.cosh(k*tot)/math.sinh(k*d))*math.sin(theta) py = (H/2)*(math.sinh(k*tot)/math.sinh(k*d))*math.cos(theta) u = (H*math.pi/T)*(math.cosh(k*tot)/math.sinh(k*d))*math.cos(theta) w = (H*math.pi/T)*(math.sinh(k*tot)/math.sinh(k*d))*math.sin(theta) dudt = (H*2*math.pi**2/(T**2))*(math.cosh(k*tot)/math.sinh(k*d))*math.sin(theta) dwdt = (-H*2*math.pi**2/(T**2))*(math.sinh(k*tot)/math.sinh(k*d))*math.cos(theta) pres = -self.rho*self.g*z + self.rho*self.g*(H/2)*(math.cosh(k*tot)/math.cosh(k*d))*math.cos(theta) # plotting waveform if self.isSingleCase: plotxL = np.arange(-1, 1, 0.001) plottheta = plotxL * np.pi * 2 ploteta = (H / 2) * np.cos(plottheta) plotu = (H * np.pi / T) * (np.cosh(k * tot) / np.sinh(k * d)) * np.cos(plottheta) plotw = (H * np.pi / T) * (np.sinh(k * tot) / np.sinh(k * d)) * np.sin(plottheta) plt.subplot(3, 1, 1) plt.plot(plotxL, ploteta, lw=2) plt.ylabel('Elevation [%s]' % self.labelUnitDist) plt.ylim(min(ploteta) - 1, max(ploteta) + 1) plt.axhline(color = 'r', linestyle = '--') # subplot plt.subplot(3, 1, 2) plt.plot(plotxL, plotu, lw=2) plt.axhline(color = 'r', linestyle = '--') plt.ylabel('Velocity, u [%s/s]' % self.labelUnitDist) plt.ylim(min(plotu) - 1, max(plotu) + 1) # subplot plt.subplot(3, 1, 3) plt.plot(plotxL, plotw, lw=2) plt.axhline(color = 'r', linestyle = '--') plt.ylabel('Velocity, w [%s/s]' % self.labelUnitDist) plt.ylim(min(plotw) - 1, max(plotw) + 1) plt.tight_layout(pad=0.4) plt.show() print("\t\t\t\t\tUnits") print("Wavelength\t\t\t%-6.2f\t%s" % (L, self.labelUnitDist)) print("Celerity\t\t\t%-6.2f\t%s/s" % (C, self.labelUnitDist)) print("Group speed\t\t\t%-6.2f\t%s/s" % (Cg, self.labelUnitDist)) print("Energy density\t\t\t%-8.2f%s-%s/%s^2" %\ (E, self.labelUnitWt, self.labelUnitDist, self.labelUnitDist)) print("Energy flux\t\t\t%-8.2f%s-%s/%s-s" %\ (Ef, self.labelUnitWt, self.labelUnitDist, self.labelUnitDist)) print("Ursell number\t\t\t%-6.2f" % Ur) print("Water Surface Elevation\t\t%-6.2f\t%s" %\ (eta, self.labelUnitDist)) print("Horz. displacement\t\t%-6.2f\t%s" % (px, self.labelUnitDist)) print("Vert. displacement\t\t%-6.2f\t%s" % (py, self.labelUnitDist)) print("Horz. velocity\t\t\t%-6.2f\t%s/s" % (u, self.labelUnitDist)) print("Vert. velocity\t\t\t%-6.2f\t%s/s" % (w, self.labelUnitDist)) print("Horz. acceleration\t\t%-6.2f\t%s/s^2" %\ (dudt, self.labelUnitDist)) print("Vert. acceleration\t\t%-6.2f\t%s/s^2" %\ (dwdt, self.labelUnitDist)) print("Pressure\t\t\t%-8.2f%s/%s^2" %\ (pres, self.labelUnitWt, self.labelUnitDist)) dataDict["L"] = L dataDict["C"] = C dataDict["Cg"] = Cg dataDict["E"] = E dataDict["Ef"] = Ef dataDict["Ur"] = Ur dataDict["eta"] = eta dataDict["px"] = px dataDict["py"] = py dataDict["u"] = u dataDict["w"] = w dataDict["dudt"] = dudt dataDict["dwdt"] = dwdt dataDict["pres"] = pres self.fileOutputWriteMain(dataDict, caseIndex) # end performCalculations def fileOutputWriteData(self, dataDict): self.fileRef.write("Linear Wave Theory Summary\n\n"); self.fileRef.write("Input\n") self.fileRef.write("Wave heights\t\t\t%8.2f %s\n" %\ (dataDict["H"], self.labelUnitDist)) self.fileRef.write("Wave period\t\t\t%8.2f s\n" % dataDict["T"]) self.fileRef.write("Water depth\t\t\t%8.2f %s\n" %\ (dataDict["d"], self.labelUnitDist)) self.fileRef.write("Vertical coordinate\t\t%8.2f %s\n" %\ (dataDict["z"], self.labelUnitDist)) self.fileRef.write("Horizontal coordinate as\t%8.2f (x/L)\n" %\ dataDict["xL"]) self.fileRef.write("fraction of wavelength\n\n") if self.errorMsg != None: self.fileRef.write("%s\n" % self.errorMsg) else: self.fileRef.write("Item\t\t\t\tValue\t\tUnits\n") self.fileRef.write("Wavelength\t\t\t%8.2f\t%s\n" % (dataDict["L"], self.labelUnitDist)) self.fileRef.write("Celerity\t\t\t%8.2f\t%s/s\n" % (dataDict["C"], self.labelUnitDist)) self.fileRef.write("Group speed\t\t\t%8.2f\t%s/s\n" % (dataDict["Cg"], self.labelUnitDist)) self.fileRef.write("Energy density\t\t\t%8.2f\t%s-%s/%s^2\n" %\ (dataDict["E"], self.labelUnitWt, self.labelUnitDist, self.labelUnitDist)) self.fileRef.write("Energy flux\t\t\t%8.2f\t%s-%s/%s-s\n" %\ (dataDict["Ef"], self.labelUnitWt, self.labelUnitDist, self.labelUnitDist)) self.fileRef.write("Ursell number\t\t\t%8.2f\n" % dataDict["Ur"]) self.fileRef.write("Water Surface Elevation\t\t%8.2f\t%s\n" %\ (dataDict["eta"], self.labelUnitDist)) self.fileRef.write("Horz. displacement\t\t%8.2f\t%s\n" % (dataDict["px"], self.labelUnitDist)) self.fileRef.write("Vert. displacement\t\t%8.2f\t%s\n" % (dataDict["py"], self.labelUnitDist)) self.fileRef.write("Horz. velocity\t\t\t%8.2f\t%s/s\n" % (dataDict["u"], self.labelUnitDist)) self.fileRef.write("Vert. velocity\t\t\t%8.2f\t%s/s\n" % (dataDict["w"], self.labelUnitDist)) self.fileRef.write("Horz. acceleration\t\t%8.2f\t%s/s^2\n" %\ (dataDict["dudt"], self.labelUnitDist)) self.fileRef.write("Vert. acceleration\t\t%8.2f\t%s/s^2\n" %\ (dataDict["dwdt"], self.labelUnitDist)) self.fileRef.write("Pressure\t\t\t%8.2f\t%s/%s^2\n" %\ (dataDict["pres"], self.labelUnitWt, self.labelUnitDist)) exportData = [dataDict["H"], dataDict["T"], dataDict["d"], dataDict["z"], dataDict["xL"] ] if self.errorMsg != None: exportData.append(self.errorMsg) else: exportData = exportData + [dataDict["L"], dataDict["C"],\ dataDict["Cg"], dataDict["E"], dataDict["Ef"],dataDict["Ur"], dataDict["eta"],\ dataDict["px"], dataDict["py"], dataDict["u"], dataDict["w"], dataDict["dudt"],\ dataDict["dwdt"], dataDict["pres"]] self.exporter.writeData(exportData) # end fileOutputWriteData driver = LinearWaveTheory()
gpl-3.0
sergeykolychev/mxnet
example/gluon/dcgan.py
30
8796
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import matplotlib as mpl mpl.use('Agg') from matplotlib import pyplot as plt import argparse import mxnet as mx from mxnet import gluon from mxnet.gluon import nn from mxnet import autograd import numpy as np import logging from datetime import datetime import os import time def fill_buf(buf, i, img, shape): n = buf.shape[0]//shape[1] m = buf.shape[1]//shape[0] sx = (i%m)*shape[0] sy = (i//m)*shape[1] buf[sy:sy+shape[1], sx:sx+shape[0], :] = img return None def visual(title, X, name): assert len(X.shape) == 4 X = X.transpose((0, 2, 3, 1)) X = np.clip((X - np.min(X))*(255.0/(np.max(X) - np.min(X))), 0, 255).astype(np.uint8) n = np.ceil(np.sqrt(X.shape[0])) buff = np.zeros((int(n*X.shape[1]), int(n*X.shape[2]), int(X.shape[3])), dtype=np.uint8) for i, img in enumerate(X): fill_buf(buff, i, img, X.shape[1:3]) buff = buff[:,:,::-1] plt.imshow(buff) plt.title(title) plt.savefig(name) parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default='cifar10', help='dataset to use. options are cifar10 and imagenet.') parser.add_argument('--batch-size', type=int, default=64, help='input batch size') parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector') parser.add_argument('--ngf', type=int, default=64) parser.add_argument('--ndf', type=int, default=64) parser.add_argument('--nepoch', type=int, default=25, help='number of epochs to train for') parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') parser.add_argument('--cuda', action='store_true', help='enables cuda') parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') parser.add_argument('--netG', default='', help="path to netG (to continue training)") parser.add_argument('--netD', default='', help="path to netD (to continue training)") parser.add_argument('--outf', default='./results', help='folder to output images and model checkpoints') parser.add_argument('--check-point', default=True, help="save results at each epoch or not") opt = parser.parse_args() print(opt) logging.basicConfig(level=logging.DEBUG) ngpu = int(opt.ngpu) nz = int(opt.nz) ngf = int(opt.ngf) ndf = int(opt.ndf) nc = 3 if opt.cuda: ctx = mx.gpu(0) else: ctx = mx.cpu() check_point = bool(opt.check_point) outf = opt.outf if not os.path.exists(outf): os.makedirs(outf) def transformer(data, label): # resize to 64x64 data = mx.image.imresize(data, 64, 64) # transpose from (64, 64, 3) to (3, 64, 64) data = mx.nd.transpose(data, (2,0,1)) # normalize to [-1, 1] data = data.astype(np.float32)/128 - 1 # if image is greyscale, repeat 3 times to get RGB image. if data.shape[0] == 1: data = mx.nd.tile(data, (3, 1, 1)) return data, label train_data = gluon.data.DataLoader( gluon.data.vision.MNIST('./data', train=True, transform=transformer), batch_size=opt.batch_size, shuffle=True, last_batch='discard') val_data = gluon.data.DataLoader( gluon.data.vision.MNIST('./data', train=False, transform=transformer), batch_size=opt.batch_size, shuffle=False) # build the generator netG = nn.Sequential() with netG.name_scope(): # input is Z, going into a convolution netG.add(nn.Conv2DTranspose(ngf * 8, 4, 1, 0, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf*8) x 4 x 4 netG.add(nn.Conv2DTranspose(ngf * 4, 4, 2, 1, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf*8) x 8 x 8 netG.add(nn.Conv2DTranspose(ngf * 2, 4, 2, 1, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf*8) x 16 x 16 netG.add(nn.Conv2DTranspose(ngf, 4, 2, 1, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf*8) x 32 x 32 netG.add(nn.Conv2DTranspose(nc, 4, 2, 1, use_bias=False)) netG.add(nn.Activation('tanh')) # state size. (nc) x 64 x 64 # build the discriminator netD = nn.Sequential() with netD.name_scope(): # input is (nc) x 64 x 64 netD.add(nn.Conv2D(ndf, 4, 2, 1, use_bias=False)) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf) x 32 x 32 netD.add(nn.Conv2D(ndf * 2, 4, 2, 1, use_bias=False)) netD.add(nn.BatchNorm()) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf) x 16 x 16 netD.add(nn.Conv2D(ndf * 4, 4, 2, 1, use_bias=False)) netD.add(nn.BatchNorm()) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf) x 8 x 8 netD.add(nn.Conv2D(ndf * 8, 4, 2, 1, use_bias=False)) netD.add(nn.BatchNorm()) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf) x 4 x 4 netD.add(nn.Conv2D(2, 4, 1, 0, use_bias=False)) # loss loss = gluon.loss.SoftmaxCrossEntropyLoss() # initialize the generator and the discriminator netG.initialize(mx.init.Normal(0.02), ctx=ctx) netD.initialize(mx.init.Normal(0.02), ctx=ctx) # trainer for the generator and the discriminator trainerG = gluon.Trainer(netG.collect_params(), 'adam', {'learning_rate': opt.lr, 'beta1': opt.beta1}) trainerD = gluon.Trainer(netD.collect_params(), 'adam', {'learning_rate': opt.lr, 'beta1': opt.beta1}) # ============printing============== real_label = mx.nd.ones((opt.batch_size,), ctx=ctx) fake_label = mx.nd.zeros((opt.batch_size,), ctx=ctx) metric = mx.metric.Accuracy() print('Training... ') stamp = datetime.now().strftime('%Y_%m_%d-%H_%M') iter = 0 for epoch in range(opt.nepoch): tic = time.time() btic = time.time() for data, _ in train_data: ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### # train with real_t data = data.as_in_context(ctx) noise = mx.nd.random.normal(0, 1, shape=(opt.batch_size, nz, 1, 1), ctx=ctx) with autograd.record(): output = netD(data) output = output.reshape((opt.batch_size, 2)) errD_real = loss(output, real_label) metric.update([real_label,], [output,]) fake = netG(noise) output = netD(fake.detach()) output = output.reshape((opt.batch_size, 2)) errD_fake = loss(output, fake_label) errD = errD_real + errD_fake errD.backward() metric.update([fake_label,], [output,]) trainerD.step(opt.batch_size) ############################ # (2) Update G network: maximize log(D(G(z))) ########################### with autograd.record(): output = netD(fake) output = output.reshape((-1, 2)) errG = loss(output, real_label) errG.backward() trainerG.step(opt.batch_size) name, acc = metric.get() # logging.info('speed: {} samples/s'.format(opt.batch_size / (time.time() - btic))) logging.info('discriminator loss = %f, generator loss = %f, binary training acc = %f at iter %d epoch %d' %(mx.nd.mean(errD).asscalar(), mx.nd.mean(errG).asscalar(), acc, iter, epoch)) if iter % 1 == 0: visual('gout', fake.asnumpy(), name=os.path.join(outf,'fake_img_iter_%d.png' %iter)) visual('data', data.asnumpy(), name=os.path.join(outf,'real_img_iter_%d.png' %iter)) iter = iter + 1 btic = time.time() name, acc = metric.get() metric.reset() logging.info('\nbinary training acc at epoch %d: %s=%f' % (epoch, name, acc)) logging.info('time: %f' % (time.time() - tic)) if check_point: netG.save_params(os.path.join(outf,'generator_epoch_%d.params' %epoch)) netD.save_params(os.path.join(outf,'discriminator_epoch_%d.params' % epoch)) netG.save_params(os.path.join(outf, 'generator.params')) netD.save_params(os.path.join(outf, 'discriminator.params'))
apache-2.0
cdemulde/wwdata
setup.py
1
1774
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() with open('./docs/history.rst') as history_file: history = history_file.read() requirements = [ 'pandas', 'numpy', 'dateutils', 'scipy', 'matplotlib', 'statsmodels', 'xlrd', #'tkinter' ] setup_requirements = [ # TODO(cdemulde): put setup requirements (distutils extensions, etc.) here ] test_requirements = [ # TODO: put package test requirements here ] setup( name='wwdata', version='0.2.0', description="Data analysis package aimed at data obtained in the context of (waste)water", long_description=readme + '\n\n' + history, author="Chaim De Mulder", author_email='[email protected]', url='https://github.com/UGentBIOMATH/wwdata', packages=find_packages(include=['wwdata']), include_package_data=True, install_requires=requirements, license="GNU General Public License v3", zip_safe=False, keywords='wwdata', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)', 'Natural Language :: English', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], test_suite='tests', tests_require=requirements, setup_requires=setup_requirements, )
agpl-3.0
jzt5132/scikit-learn
examples/ensemble/plot_gradient_boosting_oob.py
230
4762
""" ====================================== Gradient Boosting Out-of-Bag estimates ====================================== Out-of-bag (OOB) estimates can be a useful heuristic to estimate the "optimal" number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. ``subsample < 1.0``), the estimates are derived from the improvement in loss based on the examples not included in the bootstrap sample (the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but remains a fairly good approximation for a small number of trees. The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is computationally more demanding. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn.cross_validation import KFold from sklearn.cross_validation import train_test_split # Generate data (adapted from G. Ridgeway's gbm example) n_samples = 1000 random_state = np.random.RandomState(13) x1 = random_state.uniform(size=n_samples) x2 = random_state.uniform(size=n_samples) x3 = random_state.randint(0, 4, size=n_samples) p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3))) y = random_state.binomial(1, p, size=n_samples) X = np.c_[x1, x2, x3] X = X.astype(np.float32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=9) # Fit classifier with out-of-bag estimates params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5, 'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3} clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) acc = clf.score(X_test, y_test) print("Accuracy: {:.4f}".format(acc)) n_estimators = params['n_estimators'] x = np.arange(n_estimators) + 1 def heldout_score(clf, X_test, y_test): """compute deviance scores on ``X_test`` and ``y_test``. """ score = np.zeros((n_estimators,), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): score[i] = clf.loss_(y_test, y_pred) return score def cv_estimate(n_folds=3): cv = KFold(n=X_train.shape[0], n_folds=n_folds) cv_clf = ensemble.GradientBoostingClassifier(**params) val_scores = np.zeros((n_estimators,), dtype=np.float64) for train, test in cv: cv_clf.fit(X_train[train], y_train[train]) val_scores += heldout_score(cv_clf, X_train[test], y_train[test]) val_scores /= n_folds return val_scores # Estimate best n_estimator using cross-validation cv_score = cv_estimate(3) # Compute best n_estimator for test data test_score = heldout_score(clf, X_test, y_test) # negative cumulative sum of oob improvements cumsum = -np.cumsum(clf.oob_improvement_) # min loss according to OOB oob_best_iter = x[np.argmin(cumsum)] # min loss according to test (normalize such that first loss is 0) test_score -= test_score[0] test_best_iter = x[np.argmin(test_score)] # min loss according to cv (normalize such that first loss is 0) cv_score -= cv_score[0] cv_best_iter = x[np.argmin(cv_score)] # color brew for the three curves oob_color = list(map(lambda x: x / 256.0, (190, 174, 212))) test_color = list(map(lambda x: x / 256.0, (127, 201, 127))) cv_color = list(map(lambda x: x / 256.0, (253, 192, 134))) # plot curves and vertical lines for best iterations plt.plot(x, cumsum, label='OOB loss', color=oob_color) plt.plot(x, test_score, label='Test loss', color=test_color) plt.plot(x, cv_score, label='CV loss', color=cv_color) plt.axvline(x=oob_best_iter, color=oob_color) plt.axvline(x=test_best_iter, color=test_color) plt.axvline(x=cv_best_iter, color=cv_color) # add three vertical lines to xticks xticks = plt.xticks() xticks_pos = np.array(xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter]) xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ['OOB', 'CV', 'Test']) ind = np.argsort(xticks_pos) xticks_pos = xticks_pos[ind] xticks_label = xticks_label[ind] plt.xticks(xticks_pos, xticks_label) plt.legend(loc='upper right') plt.ylabel('normalized loss') plt.xlabel('number of iterations') plt.show()
bsd-3-clause
mortbauer/openfoam-extend-Breeder-other-scripting-PyFoam
PyFoam/Basics/MatplotlibTimelines.py
2
6466
# ICE Revision: $Id$ """Plots a collection of timelines""" from PyFoam.Error import warning,error from PyFoam.Basics.CustomPlotInfo import readCustomPlotInfo,CustomPlotInfo from .GeneralPlotTimelines import GeneralPlotTimelines from platform import uname firstTimeImport=True class MatplotlibTimelines(GeneralPlotTimelines): """This class opens a matplotlib window and plots a timelines-collection in it""" figureNr=1 def __init__(self, timelines, custom, showWindow=True, registry=None): """@param timelines: The timelines object @type timelines: TimeLineCollection @param custom: A CustomplotInfo-object. Values in this object usually override the other options """ self.hasSubplotHost=True try: global plt,matplotlib,firstTimeImport,SubplotHost import matplotlib if not showWindow and firstTimeImport: # matplotlib.use("MacOSX") matplotlib.use("agg") firstTimeImport=False import matplotlib.pyplot as plt try: from mpl_toolkits.axes_grid.parasite_axes import SubplotHost except ImportError: self.hasSubplotHost=False warning("Matplotlib-Version does not support SubplotHost") except ImportError: error("Matplotlib not installed.") GeneralPlotTimelines.__init__(self,timelines,custom,showWindow=showWindow,registry=registry) self.figNr=MatplotlibTimelines.figureNr MatplotlibTimelines.figureNr+=1 self.figure=None self.title="" self.xlabel="" self.ylabel="" self.ylabel2="" try: if self.spec.xlabel: self.setXLabel(self.spec.xlabel) except AttributeError: pass try: if self.spec.ylabel: self.setYLabel(self.spec.ylabel) except AttributeError: pass try: if self.spec.y2label: self.setYLabel2(self.spec.y2label) except AttributeError: pass self.axis1=None self.axis2=None self.setTitle(self.spec.theTitle) self.with_=self.spec.with_ if not self.with_ in ['lines','points','dots','steps','linespoints']: warning("'with'-style",self.with_,"not implemented, using 'lines'") self.with_='lines' self.redo() def buildData(self,times,name,title,lastValid): """Build the implementation specific data @param times: The vector of times for which data exists @param name: the name under which the data is stored in the timeline @param title: the title under which this will be displayed""" a=self.axis1 if self.testAlternate(name): a=self.axis2 data=self.data.getValues(name) tm=times if len(tm)>0 and not lastValid: tm=tm[:-1] data=data[:-1] plotIt=True try: if self.spec.logscale and min(data)<=0: plotIt=False except AttributeError: pass if self.spec.start!=None or self.spec.end!=None: start=self.spec.start end=self.spec.end if start==None: start=tm[0] if end==None: end=tm[-1] self.axis1.set_xbound(lower=start,upper=end) self.axis1.set_autoscalex_on(False) if self.axis2: self.axis2.set_xbound(lower=start,upper=end) self.axis2.set_autoscalex_on(False) drawstyle='default' marker='' linestyle='-' if self.with_=='lines': pass elif self.with_=='steps': drawstyle='steps' elif self.with_=='points': linestyle='' marker='*' elif self.with_=='dots': linestyle='' marker='.' elif self.with_=='linespoints': marker='*' else: warning("'with'-style",self.with_,"not implemented, using 'lines'") if plotIt: a.plot(tm, data, label=title, drawstyle=drawstyle, marker=marker, linestyle=linestyle) def preparePlot(self): """Prepare the plotting window""" plt.hot() self.figure=plt.figure(self.figNr) self.figure.clear() # this is black magic that makes the legend work with two axes if self.hasSubplotHost: self.axis1=SubplotHost(self.figure,111) self.figure.add_subplot(self.axis1) else: self.axis1=self.figure.add_subplot(111) self.axis1.set_xlabel(self.xlabel) self.axis1.set_ylabel(self.ylabel) if len(self.alternate)>0: self.axis2=self.axis1.twinx() self.axis2.set_ylabel(self.ylabel2) try: if self.spec.logscale: self.axis1.set_yscale("log") if self.axis2: self.axis2.set_yscale("log") except AttributeError: pass def doReplot(self): """Replot the whole data""" if self.hasSubplotHost: l=self.axis1.legend(fancybox=True) else: l=plt.legend(fancybox=True) # l.get_frame().set_fill(False) if l: l.get_frame().set_alpha(0.7) l.get_texts()[0].set_size(10) plt.suptitle(self.title) plt.grid(True) plt.draw() # plt.show() def actualSetTitle(self,title): """Sets the title""" self.title=title def setXLabel(self,title): """Sets the label on the X-Axis""" self.xlabel=title def setYLabel(self,title): """Sets the label on the first Y-Axis""" self.ylabel=title def setYLabel2(self,title): """Sets the label on the second Y-Axis""" self.ylabel2=title def doHardcopy(self,filename,form): """Write the contents of the plot to disk @param filename: Name of the file without type extension @param form: String describing the format""" self.figure.savefig(filename+"."+form,format=form) # Should work with Python3 and Python2
gpl-2.0
BigDataforYou/movie_recommendation_workshop_1
big_data_4_you_demo_1/venv/lib/python2.7/site-packages/pandas/io/tests/json/test_json_norm.py
2
7841
import nose from pandas import DataFrame import numpy as np import pandas.util.testing as tm from pandas.io.json import json_normalize, nested_to_record def _assert_equal_data(left, right): if not left.columns.equals(right.columns): left = left.reindex(columns=right.columns) tm.assert_frame_equal(left, right) class TestJSONNormalize(tm.TestCase): def setUp(self): self.state_data = [ {'counties': [{'name': 'Dade', 'population': 12345}, {'name': 'Broward', 'population': 40000}, {'name': 'Palm Beach', 'population': 60000}], 'info': {'governor': 'Rick Scott'}, 'shortname': 'FL', 'state': 'Florida'}, {'counties': [{'name': 'Summit', 'population': 1234}, {'name': 'Cuyahoga', 'population': 1337}], 'info': {'governor': 'John Kasich'}, 'shortname': 'OH', 'state': 'Ohio'}] def test_simple_records(self): recs = [{'a': 1, 'b': 2, 'c': 3}, {'a': 4, 'b': 5, 'c': 6}, {'a': 7, 'b': 8, 'c': 9}, {'a': 10, 'b': 11, 'c': 12}] result = json_normalize(recs) expected = DataFrame(recs) tm.assert_frame_equal(result, expected) def test_simple_normalize(self): result = json_normalize(self.state_data[0], 'counties') expected = DataFrame(self.state_data[0]['counties']) tm.assert_frame_equal(result, expected) result = json_normalize(self.state_data, 'counties') expected = [] for rec in self.state_data: expected.extend(rec['counties']) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) result = json_normalize(self.state_data, 'counties', meta='state') expected['state'] = np.array(['Florida', 'Ohio']).repeat([3, 2]) tm.assert_frame_equal(result, expected) def test_more_deeply_nested(self): data = [{'country': 'USA', 'states': [{'name': 'California', 'cities': [{'name': 'San Francisco', 'pop': 12345}, {'name': 'Los Angeles', 'pop': 12346}] }, {'name': 'Ohio', 'cities': [{'name': 'Columbus', 'pop': 1234}, {'name': 'Cleveland', 'pop': 1236}]} ] }, {'country': 'Germany', 'states': [{'name': 'Bayern', 'cities': [{'name': 'Munich', 'pop': 12347}] }, {'name': 'Nordrhein-Westfalen', 'cities': [{'name': 'Duesseldorf', 'pop': 1238}, {'name': 'Koeln', 'pop': 1239}]} ] } ] result = json_normalize(data, ['states', 'cities'], meta=['country', ['states', 'name']]) # meta_prefix={'states': 'state_'}) ex_data = {'country': ['USA'] * 4 + ['Germany'] * 3, 'states.name': ['California', 'California', 'Ohio', 'Ohio', 'Bayern', 'Nordrhein-Westfalen', 'Nordrhein-Westfalen'], 'name': ['San Francisco', 'Los Angeles', 'Columbus', 'Cleveland', 'Munich', 'Duesseldorf', 'Koeln'], 'pop': [12345, 12346, 1234, 1236, 12347, 1238, 1239]} expected = DataFrame(ex_data, columns=result.columns) tm.assert_frame_equal(result, expected) def test_shallow_nested(self): data = [{'state': 'Florida', 'shortname': 'FL', 'info': { 'governor': 'Rick Scott' }, 'counties': [{'name': 'Dade', 'population': 12345}, {'name': 'Broward', 'population': 40000}, {'name': 'Palm Beach', 'population': 60000}]}, {'state': 'Ohio', 'shortname': 'OH', 'info': { 'governor': 'John Kasich' }, 'counties': [{'name': 'Summit', 'population': 1234}, {'name': 'Cuyahoga', 'population': 1337}]}] result = json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']]) ex_data = {'name': ['Dade', 'Broward', 'Palm Beach', 'Summit', 'Cuyahoga'], 'state': ['Florida'] * 3 + ['Ohio'] * 2, 'shortname': ['FL', 'FL', 'FL', 'OH', 'OH'], 'info.governor': ['Rick Scott'] * 3 + ['John Kasich'] * 2, 'population': [12345, 40000, 60000, 1234, 1337]} expected = DataFrame(ex_data, columns=result.columns) tm.assert_frame_equal(result, expected) def test_meta_name_conflict(self): data = [{'foo': 'hello', 'bar': 'there', 'data': [{'foo': 'something', 'bar': 'else'}, {'foo': 'something2', 'bar': 'else2'}]}] self.assertRaises(ValueError, json_normalize, data, 'data', meta=['foo', 'bar']) result = json_normalize(data, 'data', meta=['foo', 'bar'], meta_prefix='meta') for val in ['metafoo', 'metabar', 'foo', 'bar']: self.assertTrue(val in result) def test_record_prefix(self): result = json_normalize(self.state_data[0], 'counties') expected = DataFrame(self.state_data[0]['counties']) tm.assert_frame_equal(result, expected) result = json_normalize(self.state_data, 'counties', meta='state', record_prefix='county_') expected = [] for rec in self.state_data: expected.extend(rec['counties']) expected = DataFrame(expected) expected = expected.rename(columns=lambda x: 'county_' + x) expected['state'] = np.array(['Florida', 'Ohio']).repeat([3, 2]) tm.assert_frame_equal(result, expected) class TestNestedToRecord(tm.TestCase): def test_flat_stays_flat(self): recs = [dict(flat1=1, flat2=2), dict(flat1=3, flat2=4), ] result = nested_to_record(recs) expected = recs self.assertEqual(result, expected) def test_one_level_deep_flattens(self): data = dict(flat1=1, dict1=dict(c=1, d=2)) result = nested_to_record(data) expected = {'dict1.c': 1, 'dict1.d': 2, 'flat1': 1} self.assertEqual(result, expected) def test_nested_flattens(self): data = dict(flat1=1, dict1=dict(c=1, d=2), nested=dict(e=dict(c=1, d=2), d=2)) result = nested_to_record(data) expected = {'dict1.c': 1, 'dict1.d': 2, 'flat1': 1, 'nested.d': 2, 'nested.e.c': 1, 'nested.e.d': 2} self.assertEqual(result, expected) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure', '-s'], exit=False)
mit
joernhees/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
270
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
kazemakase/scikit-learn
examples/linear_model/plot_theilsen.py
232
3615
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] ############################################################################## # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') ############################################################################## # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.show()
bsd-3-clause
aschleg/mathpy
mathpy/stats/hypothesis.py
1
10914
# encoding=utf8 import numpy as np import pandas as pd from collections import namedtuple from scipy.stats import t, norm, rankdata from mathpy.stats.summary import var def ttest(y1, y2=None, mu=None, var_equal=False): r""" Performs one and two-sample t-tests. Parameters ---------- y1 First sample to test y2 Second sample. Optional mu Optional, sets the mean for comparison in the one sample t-test. Default 0. var_equal Optional, default False. If False, Welch's t-test for unequal variance and sample sizes is used. If True, equal variance between samples is assumed and Student's t-test is used. Returns ------- namedtuple Namedtuple containing following values: t-value degrees of freedom p-value confidence intervals sample means Notes ----- Welch's t-test is an adaption of Student's t test and is more performant when the sample variances and size are unequal. The test still depends on the assumption of the underlying population distributions being normally distributed. Welch's t test is defined as: .. math:: t = \frac{\bar{X_1} - \bar{X_2}}{\sqrt{\frac{s_{1}^{2}}{N_1} + \frac{s_{2}^{2}}{N_2}}} where: :math:`\bar{X}` is the sample mean, :math:`s^2` is the sample variance, :math:`n` is the sample size If the :code:`var_equal` argument is True, Student's t-test is used, which assumes the two samples have equal variance. The t statistic is computed as: .. math:: t = \frac{\bar{X}_1 - \bar{X}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} where: .. math:: s_p = \sqrt{\frac{(n_1 - 1)s^2_{X_1} + (n_2 - 1)s^2_{X_2}}{n_1 + n_2 - 2} References ---------- Rencher, A. C., & Christensen, W. F. (2012). Methods of multivariate analysis (3rd Edition). Student's t-test. (2017, June 20). In Wikipedia, The Free Encyclopedia. From https://en.wikipedia.org/w/index.php?title=Student%27s_t-test&oldid=786562367 """ if isinstance(y1, (pd.DataFrame, pd.Series)): y1 = y1.values.squeeze() elif isinstance(y1, np.ndarray) is False: y1 = np.array(y1) if y1.ndim != 1: raise ValueError('y must be one-dimensional') n1 = y1.shape[0] s1 = var(y1) ybar1 = np.mean(y1) if y2 is not None: if isinstance(y2, (pd.DataFrame, pd.Series)): y2 = y2.values.squeeze() elif isinstance(y2, np.ndarray) is False: y2 = np.array(y2) if y2.ndim != 1: raise ValueError('y must be one-dimensional') n2 = y2.shape[0] s2 = var(y2) ybar2 = np.mean(y2) if var_equal is False: tval = float((ybar1 - ybar2) / np.sqrt(s1 / n1 + s2 / n2)) else: sp = np.sqrt(((n1 - 1.) * s1 + (n2 - 1.) * s2) / (n1 + n2 - 2.)) tval = float((ybar1 - ybar2) / (sp * np.sqrt(1. / n1 + 1. / n2))) else: ybar2, n2, s2 = 0.0, 1.0, 0.0 if mu is None: mu = 0.0 tval = float((ybar1 - mu) / np.sqrt(s1 / n1)) dof = degrees_of_freedom(y1, y2) pvalue = _student_t_pvalue(np.absolute(tval), dof) intervals = _t_conf_int((ybar1, n1, s1), dof=dof, y=(ybar2, n2, s2)) if y2 is not None: tTestResult = namedtuple('tTestResult', ['tvalue', 'dof', 'pvalue', 'confint', 'x_mean', 'y_mean']) tt = tTestResult(tvalue=tval, dof=dof, pvalue=pvalue, confint=intervals, x_mean=ybar1, y_mean=ybar2) else: tTestResult = namedtuple('tTestResult', ['tvalue', 'dof', 'pvalue', 'confint', 'x_mean']) tt = tTestResult(tvalue=tval, dof=dof, pvalue=pvalue, confint=intervals, x_mean=ybar1) return tt def mann_whitney(y1, y2, continuity=True): r""" Performs the nonparametric Mann-Whitney U test of two independent sample groups. Parameters ---------- y1 One-dimensional array-like (Pandas Series or DataFrame, Numpy array, or list) designating first sample y2 One-dimensional array-like (Pandas Series or DataFrame, Numpy array, or list) designating second sample to compare to first continuity Boolean, optional. If True, apply the continuity correction of :math:`\frac{1}{2}` to the mean rank. Returns ------- namedtuple Namedtuple of following entries that contain resulting Mann-Whitney test statistics. Mann-Whitney U Test Statistic: The U Statistic of the Mann-Whitney test Mean Rank: The mean rank of U statistic Sigma: the standard deviation of U z-value: The standardized value of U p-value: p-value of U statistic compared to critical value Notes ----- The Mann-Whitney U test is a nonparametric hypothesis test that tests the null hypothesis that there is an equally likely chance that a randomly selected observation from one sample will be less than or greater than a randomly selected observation from a second sample. Nonparametric methods are so named since they do not rely on the assumption of normality of the data. The test statistic in the Mann-Whitney setting is denoted as :math:`U` and is the minimum of the summed ranks of the two samples. The null hypothesis is rejected if :math:`U \leq U_0`, where :math:`U_0` is found in a table for small sample sizes. For larger sample sizes, :math:`U` is approximately normally distributed. The test is nonparametric in the sense it uses the ranks of the values rather than the values themselves. Therefore, the values are ordered then ranked from 1 (smallest value) to the largest value. Ranks of tied values get the mean of the ranks the values would have received. For example, for a set of data points :math:`\{4, 7, 7, 8\}` the ranks are :math:`\{1, 2.5, 2.5, 4\}`. The :math:`2.5` rank comes from :math:`2 + 3 = 5 / 2`. The ranks are then added for the values for both samples. The sum of the ranks for each sample are typically denoted by :math:`R_k` where :math:`k` is a sample indicator. :math:`U` for the two samples in the test, is given by: References ---------- Mann–Whitney U test. (2017, June 20). In Wikipedia, The Free Encyclopedia. From https://en.wikipedia.org/w/index.php?title=Mann%E2%80%93Whitney_U_test&oldid=786593885 """ if isinstance(y1, (pd.DataFrame, pd.Series)): y11 = y1.values.squeeze() elif isinstance(y1, np.ndarray) is False: y11 = np.array(y1) else: y11 = np.copy(y1) if isinstance(y2, (pd.DataFrame, pd.Series)): y22 = y2.values.squeeze() elif isinstance(y1, np.ndarray) is False: y22 = np.array(y2) else: y22 = y2.copy() n1, n2 = y11.shape[0], y22.shape[0] ranks = np.concatenate((y11, y22)) ranks = rankdata(ranks, 'average') ranks = ranks[:n1] n = n1 + n2 u1 = n1 * n2 + (n1 * (n1 + 1)) / 2. - np.sum(ranks) u2 = n1 * n2 - u1 u = np.minimum(u1, u2) mu = (n1 * n2) / 2. + (0.5 * continuity) rankcounts = np.unique(ranks, return_counts=True)[1] sigma = np.sqrt(((n1 * n2) * (n + 1)) / 12. * (1 - np.sum(rankcounts ** 3 - rankcounts) / float(n ** 3 - n))) z = (np.absolute(u - mu)) / sigma p = 1 - norm.cdf(z) MannWhitneyResult = namedtuple('MannWhitneyResult', ['u', 'meanrank', 'sigma', 'zvalue', 'pvalue']) mwr = MannWhitneyResult(u=u, meanrank=mu, sigma=sigma, zvalue=z, pvalue=p) return mwr def degrees_of_freedom(y1, y2=None, var_equal=False): r""" Computes the degrees of freedom of one or two samples. Parameters ---------- y1 : array-like First sample to test. Must be one-dimensional y2 : array-like, optional Second sample. Must be one-dimensional var_equal Optional, default False. If False, Welch's t-test for unequal variance and sample sizes is used. If True, equal variance between samples is assumed and Student's t-test is used. Returns ------- float the degrees of freedom Notes ----- When Welch's t test is used, the Welch-Satterthwaite equation for approximating the degrees of freedom should be used and is defined as: .. math:: \large v \approx \frac{\left(\frac{s_{1}^2}{N_1} + \frac{s_{2}^2}{N_2}\right)^2}{\frac{\left(\frac{s_1^2}{N_1^{2}}\right)^2}{v_1} + \frac{\left(\frac{s_2^2}{N_2^{2}}\right)^2}{v_2}} If the two samples are assumed to have equal variance, the degrees of freedoms become simply: .. math:: v = n_1 + n_2 - 2 In the case of one sample, the degrees of freedom are: .. math:: v = n - 1 References ---------- Rencher, A. C., & Christensen, W. F. (2012). Methods of multivariate analysis (3rd Edition). Welch's t-test. (2017, June 16). In Wikipedia, The Free Encyclopedia. From https://en.wikipedia.org/w/index.php?title=Welch%27s_t-test&oldid=785961228 """ if isinstance(y1, (pd.DataFrame, pd.Series)): y1 = y1.values.squeeze() else: y1 = np.array(y1) if y1.ndim != 1: raise ValueError('y must be one-dimensional') n1 = y1.shape[0] s1 = var(y1) v1 = n1 - 1 if y2 is not None: if isinstance(y2, (pd.DataFrame, pd.Series)): y2 = y2.values.squeeze() elif isinstance(y2, np.ndarray) is False: y2 = np.array(y2) if y2.ndim != 1: raise ValueError('y must be one-dimensional') n2 = y2.shape[0] s2 = var(y2) v2 = n2 - 1 if var_equal is False: v = np.power((s1 / n1 + s2 / n2), 2) / (np.power((s1 / n1), 2) / v1 + np.power((s2 / n2), 2) / v2) else: v = n1 + n2 - 2 else: v = v1 return float(v) def _t_conf_int(x, dof, y=None): xbar, xn, xvar = x[0], x[1], x[2] if y is not None: ybar, yn, yvar = y[0], y[1], y[2] low_interval = (xbar - ybar) + t.ppf(0.025, dof) * np.sqrt(xvar / xn + yvar / yn) high_interval = (xbar - ybar) - t.ppf(0.025, dof) * np.sqrt(xvar / xn + yvar / yn) else: low_interval = xbar + 1.96 * np.sqrt((xbar * (1 - xbar)) / xn) high_interval = xbar - 1.96 * np.sqrt((xbar * (1 - xbar)) / xn) return float(low_interval), float(high_interval) def _student_t_pvalue(n, dof, test='two-tail'): p = (1. - t.cdf(n, dof)) if test == 'two-tail': p *= 2. return p
mit
AIML/scikit-learn
examples/svm/plot_svm_margin.py
318
2328
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM Margins Example ========================================================= The plots below illustrate the effect the parameter `C` has on the separation line. A large value of `C` basically tells our model that we do not have that much faith in our data's distribution, and will only consider points close to line of separation. A small value of `C` includes more/all the observations, allowing the margins to be calculated using all the data in the area. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # figure number fignum = 1 # fit the model for name, penalty in (('unreg', 1), ('reg', 0.05)): clf = svm.SVC(kernel='linear', C=penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy + a * margin yy_up = yy - a * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -4.8 x_max = 4.2 y_min = -6 y_max = 6 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
ueshin/apache-spark
python/pyspark/pandas/config.py
14
15723
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Infrastructure of options for pandas-on-Spark. """ from contextlib import contextmanager import json from typing import Any, Callable, Dict, Iterator, List, Tuple, Union # noqa: F401 (SPARK-34943) from pyspark._globals import _NoValue, _NoValueType from pyspark.pandas.utils import default_session __all__ = ["get_option", "set_option", "reset_option", "options", "option_context"] class Option: """ Option class that defines an option with related properties. This class holds all information relevant to the one option. Also, Its instance can validate if the given value is acceptable or not. It is currently for internal usage only. Parameters ---------- key: str, keyword-only argument the option name to use. doc: str, keyword-only argument the documentation for the current option. default: Any, keyword-only argument default value for this option. types: Union[Tuple[type, ...], type], keyword-only argument default is str. It defines the expected types for this option. It is used with `isinstance` to validate the given value to this option. check_func: Tuple[Callable[[Any], bool], str], keyword-only argument default is a function that always returns `True` with a empty string. It defines: - a function to check the given value to this option - the error message to show when this check is failed When new value is set to this option, this function is called to check if the given value is valid. Examples -------- >>> option = Option( ... key='option.name', ... doc="this is a test option", ... default="default", ... types=(float, int), ... check_func=(lambda v: v > 0, "should be a positive float")) >>> option.validate('abc') # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... TypeError: The value for option 'option.name' was <class 'str'>; however, expected types are [(<class 'float'>, <class 'int'>)]. >>> option.validate(-1.1) Traceback (most recent call last): ... ValueError: should be a positive float >>> option.validate(1.1) """ def __init__( self, *, key: str, doc: str, default: Any, types: Union[Tuple[type, ...], type] = str, check_func: Tuple[Callable[[Any], bool], str] = (lambda v: True, "") ): self.key = key self.doc = doc self.default = default self.types = types self.check_func = check_func def validate(self, v: Any) -> None: """ Validate the given value and throw an exception with related information such as key. """ if not isinstance(v, self.types): raise TypeError( "The value for option '%s' was %s; however, expected types are " "[%s]." % (self.key, type(v), str(self.types)) ) if not self.check_func[0](v): raise ValueError(self.check_func[1]) # Available options. # # NOTE: if you are fixing or adding an option here, make sure you execute `show_options()` and # copy & paste the results into show_options 'docs/source/user_guide/options.rst' as well. # See the examples below: # >>> from pyspark.pandas.config import show_options # >>> show_options() _options = [ Option( key="display.max_rows", doc=( "This sets the maximum number of rows pandas-on-Spark should output when printing out " "various output. For example, this value determines the number of rows to be " "shown at the repr() in a dataframe. Set `None` to unlimit the input length. " "Default is 1000." ), default=1000, types=(int, type(None)), check_func=( lambda v: v is None or v >= 0, "'display.max_rows' should be greater than or equal to 0.", ), ), Option( key="compute.max_rows", doc=( "'compute.max_rows' sets the limit of the current pandas-on-Spark DataFrame. " "Set `None` to unlimit the input length. When the limit is set, it is executed " "by the shortcut by collecting the data into the driver, and then using the pandas " "API. If the limit is unset, the operation is executed by PySpark. Default is 1000." ), default=1000, types=(int, type(None)), check_func=( lambda v: v is None or v >= 0, "'compute.max_rows' should be greater than or equal to 0.", ), ), Option( key="compute.shortcut_limit", doc=( "'compute.shortcut_limit' sets the limit for a shortcut. " "It computes specified number of rows and use its schema. When the dataframe " "length is larger than this limit, pandas-on-Spark uses PySpark to compute." ), default=1000, types=int, check_func=( lambda v: v >= 0, "'compute.shortcut_limit' should be greater than or equal to 0.", ), ), Option( key="compute.ops_on_diff_frames", doc=( "This determines whether or not to operate between two different dataframes. " "For example, 'combine_frames' function internally performs a join operation which " "can be expensive in general. So, if `compute.ops_on_diff_frames` variable is not " "True, that method throws an exception." ), default=False, types=bool, ), Option( key="compute.default_index_type", doc=("This sets the default index type: sequence, distributed and distributed-sequence."), default="sequence", types=str, check_func=( lambda v: v in ("sequence", "distributed", "distributed-sequence"), "Index type should be one of 'sequence', 'distributed', 'distributed-sequence'.", ), ), Option( key="compute.ordered_head", doc=( "'compute.ordered_head' sets whether or not to operate head with natural ordering. " "pandas-on-Spark does not guarantee the row ordering so `head` could return some " "rows from distributed partitions. If 'compute.ordered_head' is set to True, " "pandas-on-Spark performs natural ordering beforehand, but it will cause a " "performance overhead." ), default=False, types=bool, ), Option( key="plotting.max_rows", doc=( "'plotting.max_rows' sets the visual limit on top-n-based plots such as `plot.bar` " "and `plot.pie`. If it is set to 1000, the first 1000 data points will be used " "for plotting. Default is 1000." ), default=1000, types=int, check_func=( lambda v: v is v >= 0, "'plotting.max_rows' should be greater than or equal to 0.", ), ), Option( key="plotting.sample_ratio", doc=( "'plotting.sample_ratio' sets the proportion of data that will be plotted for sample-" "based plots such as `plot.line` and `plot.area`. " "This option defaults to 'plotting.max_rows' option." ), default=None, types=(float, type(None)), check_func=( lambda v: v is None or 1 >= v >= 0, "'plotting.sample_ratio' should be 1.0 >= value >= 0.0.", ), ), Option( key="plotting.backend", doc=( "Backend to use for plotting. Default is plotly. " "Supports any package that has a top-level `.plot` method. " "Known options are: [matplotlib, plotly]." ), default="plotly", types=str, ), ] # type: List[Option] _options_dict = dict(zip((option.key for option in _options), _options)) # type: Dict[str, Option] _key_format = "pandas_on_Spark.{}".format class OptionError(AttributeError, KeyError): pass def show_options() -> None: """ Make a pretty table that can be copied and pasted into public documentation. This is currently for an internal purpose. Examples -------- >>> show_options() # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE ================... =======... =====================... Option Default Description ================... =======... =====================... display.max_rows 1000 This sets the maximum... ... ================... =======... =====================... """ import textwrap header = ["Option", "Default", "Description"] row_format = "{:<31} {:<14} {:<53}" print(row_format.format("=" * 31, "=" * 14, "=" * 53)) print(row_format.format(*header)) print(row_format.format("=" * 31, "=" * 14, "=" * 53)) for option in _options: doc = textwrap.fill(option.doc, 53) formatted = "".join([line + "\n" + (" " * 47) for line in doc.split("\n")]).rstrip() print(row_format.format(option.key, repr(option.default), formatted)) print(row_format.format("=" * 31, "=" * 14, "=" * 53)) def get_option(key: str, default: Union[Any, _NoValueType] = _NoValue) -> Any: """ Retrieves the value of the specified option. Parameters ---------- key : str The key which should match a single option. default : object The default value if the option is not set yet. The value should be JSON serializable. Returns ------- result : the value of the option Raises ------ OptionError : if no such option exists and the default is not provided """ _check_option(key) if default is _NoValue: default = _options_dict[key].default _options_dict[key].validate(default) return json.loads(default_session().conf.get(_key_format(key), default=json.dumps(default))) def set_option(key: str, value: Any) -> None: """ Sets the value of the specified option. Parameters ---------- key : str The key which should match a single option. value : object New value of option. The value should be JSON serializable. Returns ------- None """ _check_option(key) _options_dict[key].validate(value) default_session().conf.set(_key_format(key), json.dumps(value)) def reset_option(key: str) -> None: """ Reset one option to their default value. Pass "all" as argument to reset all options. Parameters ---------- key : str If specified only option will be reset. Returns ------- None """ _check_option(key) default_session().conf.unset(_key_format(key)) @contextmanager def option_context(*args: Any) -> Iterator[None]: """ Context manager to temporarily set options in the `with` statement context. You need to invoke as ``option_context(pat, val, [(pat, val), ...])``. Examples -------- >>> with option_context('display.max_rows', 10, 'compute.max_rows', 5): ... print(get_option('display.max_rows'), get_option('compute.max_rows')) 10 5 >>> print(get_option('display.max_rows'), get_option('compute.max_rows')) 1000 1000 """ if len(args) == 0 or len(args) % 2 != 0: raise ValueError("Need to invoke as option_context(pat, val, [(pat, val), ...]).") opts = dict(zip(args[::2], args[1::2])) orig_opts = {key: get_option(key) for key in opts} try: for key, value in opts.items(): set_option(key, value) yield finally: for key, value in orig_opts.items(): set_option(key, value) def _check_option(key: str) -> None: if key not in _options_dict: raise OptionError( "No such option: '{}'. Available options are [{}]".format( key, ", ".join(list(_options_dict.keys())) ) ) class DictWrapper: """provide attribute-style access to a nested dict""" def __init__(self, d: Dict[str, Option], prefix: str = ""): object.__setattr__(self, "d", d) object.__setattr__(self, "prefix", prefix) def __setattr__(self, key: str, val: Any) -> None: prefix = object.__getattribute__(self, "prefix") d = object.__getattribute__(self, "d") if prefix: prefix += "." canonical_key = prefix + key candidates = [ k for k in d.keys() if all(x in k.split(".") for x in canonical_key.split(".")) ] if len(candidates) == 1 and candidates[0] == canonical_key: set_option(canonical_key, val) else: raise OptionError( "No such option: '{}'. Available options are [{}]".format( key, ", ".join(list(_options_dict.keys())) ) ) def __getattr__(self, key: str) -> Union["DictWrapper", Any]: prefix = object.__getattribute__(self, "prefix") d = object.__getattribute__(self, "d") if prefix: prefix += "." canonical_key = prefix + key candidates = [ k for k in d.keys() if all(x in k.split(".") for x in canonical_key.split(".")) ] if len(candidates) == 1 and candidates[0] == canonical_key: return get_option(canonical_key) elif len(candidates) == 0: raise OptionError( "No such option: '{}'. Available options are [{}]".format( key, ", ".join(list(_options_dict.keys())) ) ) else: return DictWrapper(d, canonical_key) def __dir__(self) -> List[str]: prefix = object.__getattribute__(self, "prefix") d = object.__getattribute__(self, "d") if prefix == "": candidates = d.keys() offset = 0 else: candidates = [k for k in d.keys() if all(x in k.split(".") for x in prefix.split("."))] offset = len(prefix) + 1 # prefix (e.g. "compute.") to trim. return [c[offset:] for c in candidates] options = DictWrapper(_options_dict) def _test() -> None: import os import doctest import sys from pyspark.sql import SparkSession import pyspark.pandas.config os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.pandas.config.__dict__.copy() globs["ps"] = pyspark.pandas spark = ( SparkSession.builder.master("local[4]").appName("pyspark.pandas.config tests").getOrCreate() ) (failure_count, test_count) = doctest.testmod( pyspark.pandas.config, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, ) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
cheeseywhiz/cheeseywhiz
latex/apb_sea_monkey_report/sim.py
1
3497
import dataclasses import enum import functools import multiprocessing import pprint import random import time from matplotlib import pyplot as plt import numpy as np N_CONTROL = 40 N_CONTROL_SWIM = 14 N_TEST = 84 N_TEST_SWIM = 0 SAMPLE_SIZE = 20 N_SAMPLES = 10_000 def timeit(func): @functools.wraps(func) def wrapped(*args, **kwargs): t_0 = time.perf_counter() try: value = func(*args, **kwargs) finally: t_1 = time.perf_counter() print(f'{func.__name__} execution time {t_1 - t_0} seconds') return value return wrapped Treatment = enum.Enum('Treatment', 'control test') @dataclasses.dataclass class SeaMonkey: treatment: Treatment is_swimming: bool def do_experiment(): return [ *([SeaMonkey(Treatment.control, True)] * N_CONTROL_SWIM), *([SeaMonkey(Treatment.control, False)] * (N_CONTROL - N_CONTROL_SWIM)), *([SeaMonkey(Treatment.test, True)] * N_TEST_SWIM), *([SeaMonkey(Treatment.test, False)] * (N_TEST - N_TEST_SWIM)), ] def get_observations(sample): control_swim = 0 control_not_swim = 0 test_swim = 0 test_not_swim = 0 for sea_monkey in sample: if sea_monkey.treatment is Treatment.control: if sea_monkey.is_swimming: control_swim += 1 else: control_not_swim += 1 elif sea_monkey.treatment is Treatment.test: if sea_monkey.is_swimming: test_swim += 1 else: test_not_swim += 1 return np.array([ [control_swim, control_not_swim], [test_swim, test_not_swim], ]) def table_sums(table): row_sums = [sum(row) for row in table] column_sums = [ sum(row[i] for row in table) for i in range(table.shape[1])] return row_sums, column_sums, table.sum() def get_expected(observations): row_sums, column_sums, table_sum = table_sums(observations) expected = np.empty(observations.shape) for i, row in enumerate(observations): for j, _ in enumerate(row): row_sum = row_sums[i] column_sum = column_sums[j] expected[i][j] = row_sum * column_sum / table_sum return expected def get_chisq_gen(population): while True: sample = random.sample(population, SAMPLE_SIZE) observations = get_observations(sample) expected = get_expected(observations) if expected.all(): yield (((observations - expected) ** 2) / expected).sum() @timeit def get_chisqs(population): chisq_gen = get_chisq_gen(population) return np.array([ next(chisq_gen) for _ in range(N_SAMPLES) ]) def get_chisqs_from_experiment(): population = do_experiment() return get_chisqs(population) def describe(data): five_num_sum = np.quantile(data, [0, 1 / 4, 1 / 2, 3 / 4, 1]) return { 'minimum': five_num_sum[0], '1st quartile': five_num_sum[1], 'median': five_num_sum[2], '3rd quartile': five_num_sum[3], 'maximum': five_num_sum[4], 'mean': data.mean(), 'standard deviation': data.std(), 'legth': data.size, } def analyze(data): pprint.pprint(describe(data)) plt.hist(data) plt.show() def main(): chisqs = get_chisqs_from_experiment() analyze(chisqs) if __name__ == '__main__': main()
mit
Yiangos01/ADE2017
testingCleansing.py
1
21082
# -*- coding: utf-8 -*- import nltk import string import csv # coding=utf-8 import math, re, string, requests, json from itertools import product from inspect import getsourcefile from os.path import abspath, join, dirname import pandas as pd import re import string ##Constants## # (empirically derived mean sentiment intensity rating increase for booster words) B_INCR = 0.293 B_DECR = -0.293 # (empirically derived mean sentiment intensity rating increase for using # ALLCAPs to emphasize a word) C_INCR = 0.733 N_SCALAR = -0.74 # for removing punctuation REGEX_REMOVE_PUNCTUATION = re.compile('[%s]' % re.escape(string.punctuation)) PUNC_LIST = [".", "!", "?", ",", ";", ":", "-", "'", "\"", "!!", "!!!", "??", "???", "?!?", "!?!", "?!?!", "!?!?"] NEGATE = \ ["aint", "arent", "cannot", "cant", "couldnt", "darent", "didnt", "doesnt", "ain't", "aren't", "can't", "couldn't", "daren't", "didn't", "doesn't", "dont", "hadnt", "hasnt", "havent", "isnt", "mightnt", "mustnt", "neither", "don't", "hadn't", "hasn't", "haven't", "isn't", "mightn't", "mustn't", "neednt", "needn't", "never", "none", "nope", "nor", "not", "nothing", "nowhere", "oughtnt", "shant", "shouldnt", "uhuh", "wasnt", "werent", "oughtn't", "shan't", "shouldn't", "uh-uh", "wasn't", "weren't", "without", "wont", "wouldnt", "won't", "wouldn't", "rarely", "seldom", "despite"] # booster/dampener 'intensifiers' or 'degree adverbs' # http://en.wiktionary.org/wiki/Category:English_degree_adverbs BOOSTER_DICT = \ {"absolutely": B_INCR, "amazingly": B_INCR, "awfully": B_INCR, "completely": B_INCR, "considerably": B_INCR, "decidedly": B_INCR, "deeply": B_INCR, "effing": B_INCR, "enormously": B_INCR, "entirely": B_INCR, "especially": B_INCR, "exceptionally": B_INCR, "extremely": B_INCR, "fabulously": B_INCR, "flipping": B_INCR, "flippin": B_INCR, "fricking": B_INCR, "frickin": B_INCR, "frigging": B_INCR, "friggin": B_INCR, "fully": B_INCR, "fucking": B_INCR, "greatly": B_INCR, "hella": B_INCR, "highly": B_INCR, "hugely": B_INCR, "incredibly": B_INCR, "intensely": B_INCR, "majorly": B_INCR, "more": B_INCR, "most": B_INCR, "particularly": B_INCR, "purely": B_INCR, "quite": B_INCR, "really": B_INCR, "remarkably": B_INCR, "so": B_INCR, "substantially": B_INCR, "thoroughly": B_INCR, "totally": B_INCR, "tremendously": B_INCR, "uber": B_INCR, "unbelievably": B_INCR, "unusually": B_INCR, "utterly": B_INCR, "very": B_INCR, "almost": B_DECR, "barely": B_DECR, "hardly": B_DECR, "just enough": B_DECR, "kind of": B_DECR, "kinda": B_DECR, "kindof": B_DECR, "kind-of": B_DECR, "less": B_DECR, "little": B_DECR, "marginally": B_DECR, "occasionally": B_DECR, "partly": B_DECR, "scarcely": B_DECR, "slightly": B_DECR, "somewhat": B_DECR, "sort of": B_DECR, "sorta": B_DECR, "sortof": B_DECR, "sort-of": B_DECR} # check for special case idioms using a sentiment-laden keyword known to VADER SPECIAL_CASE_IDIOMS = {"the shit": 3, "the bomb": 3, "bad ass": 1.5, "yeah right": -2, "cut the mustard": 2, "kiss of death": -1.5, "hand to mouth": -2} ##Static methods## def negated(input_words, include_nt=True): """ Determine if input contains negation words """ neg_words = [] neg_words.extend(NEGATE) for word in neg_words: if word in input_words: return True if include_nt: for word in input_words: if "n't" in word: return True if "least" in input_words: i = input_words.index("least") if i > 0 and input_words[i-1] != "at": return True return False def normalize(score, alpha=15): """ Normalize the score to be between -1 and 1 using an alpha that approximates the max expected value """ norm_score = score/math.sqrt((score*score) + alpha) if norm_score < -1.0: return -1.0 elif norm_score > 1.0: return 1.0 else: return norm_score def allcap_differential(words): """ Check whether just some words in the input are ALL CAPS :param list words: The words to inspect :returns: `True` if some but not all items in `words` are ALL CAPS """ is_different = False allcap_words = 0 for word in words: if word.isupper(): allcap_words += 1 cap_differential = len(words) - allcap_words if cap_differential > 0 and cap_differential < len(words): is_different = True return is_different def scalar_inc_dec(word, valence, is_cap_diff): """ Check if the preceding words increase, decrease, or negate/nullify the valence """ scalar = 0.0 word_lower = word.lower() if word_lower in BOOSTER_DICT: scalar = BOOSTER_DICT[word_lower] if valence < 0: scalar *= -1 #check if booster/dampener word is in ALLCAPS (while others aren't) if word.isupper() and is_cap_diff: if valence > 0: scalar += C_INCR else: scalar -= C_INCR return scalar class SentiText(object): """ Identify sentiment-relevant string-level properties of input text. """ def __init__(self, text): if not isinstance(text, str): text = str(text.encode('utf-8')) self.text = text self.words_and_emoticons = self._words_and_emoticons() # doesn't separate words from\ # adjacent punctuation (keeps emoticons & contractions) self.is_cap_diff = allcap_differential(self.words_and_emoticons) def _words_plus_punc(self): """ Returns mapping of form: { 'cat,': 'cat', ',cat': 'cat', } """ no_punc_text = REGEX_REMOVE_PUNCTUATION.sub('', self.text) # removes punctuation (but loses emoticons & contractions) words_only = no_punc_text.split() # remove singletons words_only = set( w for w in words_only if len(w) > 1 ) # the product gives ('cat', ',') and (',', 'cat') punc_before = {''.join(p): p[1] for p in product(PUNC_LIST, words_only)} punc_after = {''.join(p): p[0] for p in product(words_only, PUNC_LIST)} words_punc_dict = punc_before words_punc_dict.update(punc_after) return words_punc_dict def _words_and_emoticons(self): """ Removes leading and trailing puncutation Leaves contractions and most emoticons Does not preserve punc-plus-letter emoticons (e.g. :D) """ wes = self.text.split() words_punc_dict = self._words_plus_punc() wes = [we for we in wes if len(we) > 1] for i, we in enumerate(wes): if we in words_punc_dict: wes[i] = words_punc_dict[we] return wes class SentimentIntensityAnalyzer(object): """ Give a sentiment intensity score to sentences. """ def __init__(self, lexicon_file="vader_lexicon.txt"): _this_module_file_path_ = abspath(getsourcefile(lambda:0)) lexicon_full_filepath = join(dirname(_this_module_file_path_), lexicon_file) with open(lexicon_full_filepath) as f: self.lexicon_full_filepath = f.read() self.lexicon = self.make_lex_dict() def make_lex_dict(self): """ Convert lexicon file to a dictionary """ lex_dict = {} for line in self.lexicon_full_filepath.split('\n'): (word, measure) = line.strip().split('\t')[0:2] lex_dict[word] = float(measure) return lex_dict def polarity_scores(self, text): """ Return a float for sentiment strength based on the input text. Positive values are positive valence, negative value are negative valence. """ sentitext = SentiText(text) #text, words_and_emoticons, is_cap_diff = self.preprocess(text) sentiments = [] words_and_emoticons = sentitext.words_and_emoticons for item in words_and_emoticons: valence = 0 i = words_and_emoticons.index(item) if (i < len(words_and_emoticons) - 1 and item.lower() == "kind" and \ words_and_emoticons[i+1].lower() == "of") or \ item.lower() in BOOSTER_DICT: sentiments.append(valence) continue sentiments = self.sentiment_valence(valence, sentitext, item, i, sentiments) sentiments = self._but_check(words_and_emoticons, sentiments) valence_dict = self.score_valence(sentiments, text) return valence_dict def sentiment_valence(self, valence, sentitext, item, i, sentiments): is_cap_diff = sentitext.is_cap_diff words_and_emoticons = sentitext.words_and_emoticons item_lowercase = item.lower() if item_lowercase in self.lexicon: #get the sentiment valence valence = self.lexicon[item_lowercase] #check if sentiment laden word is in ALL CAPS (while others aren't) if item.isupper() and is_cap_diff: if valence > 0: valence += C_INCR else: valence -= C_INCR for start_i in range(0,3): if i > start_i and words_and_emoticons[i-(start_i+1)].lower() not in self.lexicon: # dampen the scalar modifier of preceding words and emoticons # (excluding the ones that immediately preceed the item) based # on their distance from the current item. s = scalar_inc_dec(words_and_emoticons[i-(start_i+1)], valence, is_cap_diff) if start_i == 1 and s != 0: s = s*0.95 if start_i == 2 and s != 0: s = s*0.9 valence = valence+s valence = self._never_check(valence, words_and_emoticons, start_i, i) if start_i == 2: valence = self._idioms_check(valence, words_and_emoticons, i) # future work: consider other sentiment-laden idioms # other_idioms = # {"back handed": -2, "blow smoke": -2, "blowing smoke": -2, # "upper hand": 1, "break a leg": 2, # "cooking with gas": 2, "in the black": 2, "in the red": -2, # "on the ball": 2,"under the weather": -2} valence = self._least_check(valence, words_and_emoticons, i) sentiments.append(valence) return sentiments def _least_check(self, valence, words_and_emoticons, i): # check for negation case using "least" if i > 1 and words_and_emoticons[i-1].lower() not in self.lexicon \ and words_and_emoticons[i-1].lower() == "least": if words_and_emoticons[i-2].lower() != "at" and words_and_emoticons[i-2].lower() != "very": valence = valence*N_SCALAR elif i > 0 and words_and_emoticons[i-1].lower() not in self.lexicon \ and words_and_emoticons[i-1].lower() == "least": valence = valence*N_SCALAR return valence def _but_check(self, words_and_emoticons, sentiments): # check for modification in sentiment due to contrastive conjunction 'but' if 'but' in words_and_emoticons or 'BUT' in words_and_emoticons: try: bi = words_and_emoticons.index('but') except ValueError: bi = words_and_emoticons.index('BUT') for sentiment in sentiments: si = sentiments.index(sentiment) if si < bi: sentiments.pop(si) sentiments.insert(si, sentiment*0.5) elif si > bi: sentiments.pop(si) sentiments.insert(si, sentiment*1.5) return sentiments def _idioms_check(self, valence, words_and_emoticons, i): onezero = "{0} {1}".format(words_and_emoticons[i-1], words_and_emoticons[i]) twoonezero = "{0} {1} {2}".format(words_and_emoticons[i-2], words_and_emoticons[i-1], words_and_emoticons[i]) twoone = "{0} {1}".format(words_and_emoticons[i-2], words_and_emoticons[i-1]) threetwoone = "{0} {1} {2}".format(words_and_emoticons[i-3], words_and_emoticons[i-2], words_and_emoticons[i-1]) threetwo = "{0} {1}".format(words_and_emoticons[i-3], words_and_emoticons[i-2]) sequences = [onezero, twoonezero, twoone, threetwoone, threetwo] for seq in sequences: if seq in SPECIAL_CASE_IDIOMS: valence = SPECIAL_CASE_IDIOMS[seq] break if len(words_and_emoticons)-1 > i: zeroone = "{0} {1}".format(words_and_emoticons[i], words_and_emoticons[i+1]) if zeroone in SPECIAL_CASE_IDIOMS: valence = SPECIAL_CASE_IDIOMS[zeroone] if len(words_and_emoticons)-1 > i+1: zeroonetwo = "{0} {1} {2}".format(words_and_emoticons[i], words_and_emoticons[i+1], words_and_emoticons[i+2]) if zeroonetwo in SPECIAL_CASE_IDIOMS: valence = SPECIAL_CASE_IDIOMS[zeroonetwo] # check for booster/dampener bi-grams such as 'sort of' or 'kind of' if threetwo in BOOSTER_DICT or twoone in BOOSTER_DICT: valence = valence+B_DECR return valence def _never_check(self, valence, words_and_emoticons, start_i, i): if start_i == 0: if negated([words_and_emoticons[i-1]]): valence = valence*N_SCALAR if start_i == 1: if words_and_emoticons[i-2] == "never" and\ (words_and_emoticons[i-1] == "so" or words_and_emoticons[i-1] == "this"): valence = valence*1.5 elif negated([words_and_emoticons[i-(start_i+1)]]): valence = valence*N_SCALAR if start_i == 2: if words_and_emoticons[i-3] == "never" and \ (words_and_emoticons[i-2] == "so" or words_and_emoticons[i-2] == "this") or \ (words_and_emoticons[i-1] == "so" or words_and_emoticons[i-1] == "this"): valence = valence*1.25 elif negated([words_and_emoticons[i-(start_i+1)]]): valence = valence*N_SCALAR return valence def _punctuation_emphasis(self, sum_s, text): # add emphasis from exclamation points and question marks ep_amplifier = self._amplify_ep(text) qm_amplifier = self._amplify_qm(text) punct_emph_amplifier = ep_amplifier+qm_amplifier return punct_emph_amplifier def _amplify_ep(self, text): # check for added emphasis resulting from exclamation points (up to 4 of them) ep_count = text.count("!") if ep_count > 4: ep_count = 4 # (empirically derived mean sentiment intensity rating increase for # exclamation points) ep_amplifier = ep_count*0.292 return ep_amplifier def _amplify_qm(self, text): # check for added emphasis resulting from question marks (2 or 3+) qm_count = text.count("?") qm_amplifier = 0 if qm_count > 1: if qm_count <= 3: # (empirically derived mean sentiment intensity rating increase for # question marks) qm_amplifier = qm_count*0.18 else: qm_amplifier = 0.96 return qm_amplifier def _sift_sentiment_scores(self, sentiments): # want separate positive versus negative sentiment scores pos_sum = 0.0 neg_sum = 0.0 neu_count = 0 for sentiment_score in sentiments: if sentiment_score > 0: pos_sum += (float(sentiment_score) +1) # compensates for neutral words that are counted as 1 if sentiment_score < 0: neg_sum += (float(sentiment_score) -1) # when used with math.fabs(), compensates for neutrals if sentiment_score == 0: neu_count += 1 return pos_sum, neg_sum, neu_count def score_valence(self, sentiments, text): if sentiments: sum_s = float(sum(sentiments)) # compute and add emphasis from punctuation in text punct_emph_amplifier = self._punctuation_emphasis(sum_s, text) if sum_s > 0: sum_s += punct_emph_amplifier elif sum_s < 0: sum_s -= punct_emph_amplifier compound = normalize(sum_s) # discriminate between positive, negative and neutral sentiment scores pos_sum, neg_sum, neu_count = self._sift_sentiment_scores(sentiments) if pos_sum > math.fabs(neg_sum): pos_sum += (punct_emph_amplifier) elif pos_sum < math.fabs(neg_sum): neg_sum -= (punct_emph_amplifier) total = pos_sum + math.fabs(neg_sum) + neu_count pos = math.fabs(pos_sum / total) neg = math.fabs(neg_sum / total) neu = math.fabs(neu_count / total) else: compound = 0.0 pos = 0.0 neg = 0.0 neu = 0.0 sentiment_dict = \ {"neg" : round(neg, 3), "neu" : round(neu, 3), "pos" : round(pos, 3), "compound" : round(compound, 4)} return sentiment_dict ##BeingMaryJane LiveEvents, #BlackAdam news, #CCR17 news,#CookSchoolGBC liveEvents #['#2Awesome','#bbcaq','#bbcfootball','#BeerBods','#BeingMaryJane','#BernieEcclestone','#Bett2017','#bettchat','#BigWeekend','#BlackAdam','#CCR17', #'#CheckatradeTrophy','#Concentrix','#CookSchoolGBC' if __name__ == '__main__': exclude2=['#4HSepang','#Advtravelconf','#AJBellNBL','#All80sHour','#andersonprog','#arcgap','#archantawards','#BBCIntroducingOnRadioWales','#BestFans2017', '#bloggersbookfeast','#botchedupbodies','#brainwashingstacey','#BritainsBenefitTenants','#C4PopUp','#CBBStacey','#ccvideo','#cdfcouncil','#cfginvest17', '#CleggQMUL','#cmawards16','#CookSchoolGBC','#covhour','#creativeshootout17','#CremeEggHuntingSeason','#diaries17','#DisruptionSWT','#diversetv','#DolanTwinsNewVideo', '#eastawardsni','#ENLScores','#ESRCRacisms','#FashionRules','#Fidelio','#FreedomsRoad','#GetYourTattsOut','#GSFestivals','#heavenclubspa','#homelesssunday', '#IAmLegend','#ifgdirector','#insecttunage','#InspireMBG2017','#itsgoneviral','#ITVBoxing','#kimcarnival','#LateJunction','#loudertogetherlaunch','#LoveSpecies', '#MakeSomeoneSmelly','#MarioKart101','#MarstonGreen','#midlandshour','#MSFTBurnsSupper','#Muskedragons','#NapaSplash2017','#NiNoKuni2','#nogutsnoglory', '#ODEONScreenUnseen','#ODIFridays','#oneshow','#PoemsAboutTrumpAndMay','#producttank','#r4mediashow','#RLhfctor','#RoadsPolice2017','#RSAeducation','#RSALies', '#schoolfunding','#seeyouinthefields','#SGTNN2','#ShakespeareSunday','#silvertowntunnel','#socinnpolicy','#Sportscene','#StDwynwensDay','#stereounderground','#SuperSunday', '#sussexgrad','#TheBigQuestions','#TheresaAndDonald','#ThisMorning','#TrapNominatedLIVE','#TuringLecture','#TW3Awards','#UKCA17','#USdebate','#WesternSecurity','#windinthewillows','#WoolfWorks', '#WordsByCamila','#worldwideawards','Adama Traore','Airdrie Savings Bank','Alex Bray','Andy Welsh','Annie Power','Article 50','Bart McQueen','Cammy Smith','Chris Clements','Danny Murphy','Don Bersy','Fashion Business','Future Islands','Gail Porter','Handsworth','Highs of 5C','Howard Webb','James Bree','Jamie Hanson','Joel Matip','Josh Windass','Kasim','Keith Curle','Lazar Markovic','Leon Barrett-Hazle','Liz Carr','Lord Bracadale','Luke Amos','Marcus Haber','Marston Green','Mason Mount','Members of Muirfield','Michael Bowditch','Munster v Toulouse','Napoli','Niall Keown','Pascal Lamy','Paul Hunter','Premier Bond','Ravel Morrison','Reigate','Sam Billings','Samoa','Scottish Event Campus','Serena Williams','Sir Patrick Coghlin','Str8 Grove','Stuart Findlay','Tommy Fleetwood','Tsonga','Wasps','West Indies in March','Young Progress Makers','HALF TIME'] exclude=['DON\'T GO TO SLEEP','Emmanuel Adebayor'] analyzer = SentimentIntensityAnalyzer() tweets = pd.read_csv('data.csv',sep='\t') print 'name\tcategory\tid\ttweet_id\tuser_id\ttweet_text\thashtags_count\turl_count\tis_retweeted\tlang\tretweet_count\tfavorite_count\tdate\ttime\ttopic\tneg\tneu\tpos\tcompound\tquest\texla\tlength' for tweet in tweets.values: to_lang="en" if tweet[14] not in exclude: if 'hour' not in tweet[14].lower(): vs = analyzer.polarity_scores(tweet[5]) exla=0 if "!" in tweet[5]: exla=1 # Question quest=0 if "?" in tweet[5]: quest=1 # Length length=len(tweet[5]) print '\t'.join(str(x) for x in list(tweet))+"\t"+str(vs['neg'])+"\t"+str(vs['neu'])+"\t"+str(vs['pos'])+"\t"+str(vs['compound'])+"\t"+str(quest)+"\t"+str(exla)+"\t"+str(length)
gpl-3.0
tejasckulkarni/hydrology
ch_634/ch_634_stage_area.py
2
4549
__author__ = 'kiruba' import matplotlib.pyplot as plt import pandas as pd from matplotlib import rc from scipy.interpolate import griddata from matplotlib import cm from matplotlib.path import * from mpl_toolkits.mplot3d import axes3d, Axes3D import matplotlib as mpl import matplotlib.colors as mc import checkdam.checkdam as cd # latex parameters rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']}) rc('text', usetex=True) plt.rc('text', usetex=True) plt.rc('font', family='serif', size=18) base_file = '/media/kiruba/New Volume/milli_watershed/stream_profile/634/base_profile_634.csv' df_base = pd.read_csv(base_file, header=-1, skiprows=1) # correction df_base.ix[1,5] = -0.02 df_base.ix[2,5] = -0.03 # print df_base.head() df_base.ix[1:,1:] = df_base.ix[1:, 1:].add(0.03) # print df_base.head() df_base_trans = df_base.T df_base_trans.columns = df_base_trans.ix[0, 0:] # print df_base_trans df_base_trans = df_base_trans.ix[1:, 1500:] # created_profile = created_profile[sorted(created_profile.columns)] created_profile = df_base_trans # print created_profile.head() sorted_df = created_profile.iloc[0:, 1:] sorted_df = sorted_df[sorted(sorted_df.columns)] sorted_df = sorted_df.join(created_profile.iloc[0:, 0], how='right') created_profile = cd.set_column_sequence(sorted_df, [1500]) # print created_profile.head() # raise SystemExit(0) """ Create (x,y,z) point cloud """ z_array = created_profile.iloc[0:, 1:] columns = z_array.columns z_array = z_array.values index = created_profile.iloc[0:,0] df = pd.DataFrame(z_array, columns=columns).set_index(index) data_1 = [] for y, row in df.iteritems(): for x, z in row.iteritems(): data_1.append((x, y, z)) data_1_df = pd.DataFrame(data_1, columns=['x', 'y', 'z']) # print data_1_df.dtypes # raise SystemExit(0) X = data_1_df.x Y = data_1_df.y Z = data_1_df.z ## contour and 3d surface plotting fig = plt.figure(figsize=plt.figaspect(0.5)) ax = fig.gca(projection='3d') # ax = fig.add_subplot(1, 2, 1, projection='3d') xi = np.linspace(X.min(), X.max(), 100) yi = np.linspace(Y.min(), Y.max(), 100) # print len(xi) # print len(yi) # print len(Z) zi = griddata((X, Y), Z, (xi[None, :], yi[:, None]), method='linear') # create a uniform spaced grid xig, yig = np.meshgrid(xi, yi) surf = ax.plot_wireframe(X=xig, Y=yig, Z=zi, rstride=5, cstride=3, linewidth=1)#, cmap=cm.coolwarm, antialiased=False) # 3d plot # inter_1 = [] # inter_1.append((xi, yi, zi)) # inter = pd.DataFrame(inter_1, columns=['x', 'y', 'z']) # inter.to_csv('/media/kiruba/New Volume/r/r_dir/stream_profile/new_code/591/inter.csv') # interpolation data output # fig.colorbar(surf, shrink=0.5, aspect=5) rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']}) rc('text', usetex=True) # plt.rc('text', usetex=True) # plt.rc('font', family='serif') # plt.xlabel(r'\textbf{X} (m)') # plt.ylabel(r'\textbf{Y} (m)') # plt.title(r"Profile for 591", fontsize=16) plt.gca().invert_xaxis() # reverses x axis # # ax = fig # plt.savefig('/media/kiruba/New Volume/r/r_dir/stream_profile/new_code/591/linear_interpolation') plt.show() # raise SystemExit(0) # ## trace contours # Refer: Nikolai Shokhirev http://www.numericalexpert.com/blog/area_calculation/ check_dam_height = 0.64 #metre levels = [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1,0.2, 0.3,0.4, 0.5, 0.6, 0.64, 0.7, 0.8] #, 3.93] cmap = cm.hot norm = mc.BoundaryNorm(levels, cmap.N ) plt.figure(figsize=(11.69, 8.27)) CS = plt.contourf(xi, yi, zi, len(levels), alpha=.75, norm=norm, levels=levels) C = plt.contour(xi, yi, zi, len(levels), colors='black', linewidth=.5, levels=levels) plt.clabel(C, inline=1, fontsize=10) plt.colorbar(CS, shrink=0.5, aspect=5) plt.yticks(np.arange(0,30, 5)) plt.xticks(np.arange(-6,6, 2)) plt.grid() plt.gca().invert_xaxis() plt.savefig('/media/kiruba/New Volume/ACCUWA_Data/python_plots/check_dam_634/cont_2d') plt.show() contour_a = cd.contour_area(CS) cont_area_df = pd.DataFrame(contour_a, columns=['Z', 'Area']) plt.plot(cont_area_df['Z'], cont_area_df['Area']) plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.ylabel(r'\textbf{Area} ($m^2$)') plt.xlabel(r'\textbf{Stage} (m)') plt.savefig('/media/kiruba/New Volume/ACCUWA_Data/python_plots/check_dam_634/cont_area_634') plt.show() cont_area_df.to_csv('/media/kiruba/New Volume/ACCUWA_Data/Checkdam_water_balance/ch_634/cont_area.csv') created_profile.iloc[0] = created_profile.columns # print created_profile created_profile.to_csv('/media/kiruba/New Volume/ACCUWA_Data/Checkdam_water_balance/ch_634/created_profile_634.csv')
gpl-3.0
joshloyal/scikit-learn
sklearn/ensemble/__init__.py
153
1382
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification, regression and anomaly detection. """ from .base import BaseEnsemble from .forest import RandomForestClassifier from .forest import RandomForestRegressor from .forest import RandomTreesEmbedding from .forest import ExtraTreesClassifier from .forest import ExtraTreesRegressor from .bagging import BaggingClassifier from .bagging import BaggingRegressor from .iforest import IsolationForest from .weight_boosting import AdaBoostClassifier from .weight_boosting import AdaBoostRegressor from .gradient_boosting import GradientBoostingClassifier from .gradient_boosting import GradientBoostingRegressor from .voting_classifier import VotingClassifier from . import bagging from . import forest from . import weight_boosting from . import gradient_boosting from . import partial_dependence __all__ = ["BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "IsolationForest", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "VotingClassifier", "bagging", "forest", "gradient_boosting", "partial_dependence", "weight_boosting"]
bsd-3-clause
rhetoricked/WrittenCommunication2016
Module3Biber.py
1
30828
''' GenderGenreMod3 Copyright 2016 Brian N. Larson and licensors GENDER/GENRE PROJECT CODE: Module 3 This code is the third segment used to generate and analyze the data for the article Gender/Genre: The Lack of Gendered Register in Texts Requiring Genre Knowledge. _Written Communication_, 33(4), 360–384. https://doi.org/10.1177/0741088316667927 (the "Article"). If you use this code, you should cite to the Article. This module tallies the instances of the features identified by Biber (1988, 1995) as constituting the involved-informational dimension in linguistic register. It performs the analysis on all three versions of the corpus, Fulltext, Facttext, and Nonfacttext. (The Article reported only on Fulltext.) WORKS CITED Biber, D. (1988). Variation across speech and writing. Cambridge U.K.: Cambridge University Press. Biber, D. (1995). Dimensions of register variation : a cross-linguistic comparison. Cambridge ;;New York: Cambridge University Press. ''' #!/usr/bin/env python from __future__ import division #Set up run-time variables for files and directories. import os import shutil import sys import pickle import logging import datetime now = datetime.datetime.now().strftime("%y-%m-%d %H.%M.%S") from io import StringIO #"For strings StringIO can be used like a file opened in #text mode." See https://docs.python.org/3/library/io.html import nltk import numpy, re, pprint, matplotlib, pylab #re is for regular expressions import scipy.stats as stats import csv from lxml import etree # This parser change for lxml results from this recommendation: # http://lxml.de/FAQ.html#why-doesn-t-the-pretty-print-option-reformat-my-xml-output parser = etree.XMLParser(remove_blank_text=True) #it affects subsequent etree.parse calls that use it as a second argument #Sentence tokenizer (sentence splitter using sent_tokenize default, which is?) from nltk.tokenize import sent_tokenize #Word tokenizer Version using TreebankWorkTokenizer from nltk.tokenize import TreebankWordTokenizer tokenizer = TreebankWordTokenizer() ###### #DIRECTORY AND FILE VARIABLES ###### #These set some of the working directories and files. They are set manually, #and users should be sure that the directories exist and are empty before running #the code. #Following line is name selected for directory with corpora out from Module 2. existingNLTK_dir = "NLTKCorporaUncatUntag/" #Use next five lines only if you want to solicit end-user input regarding #directorly print ("\n \n \nYou must enter a directory path for a directory that contains ") print ("a folder called " + existingNLTK_dir + " with corpora files from Module 2.") print ("And THAT folder has to have a Pickles/ directory in it.") print ("Be sure to include the / at the end of the path! \n \n") home_dir = input("Enter the path for the data working directory root:") run_root = home_dir xml_dir = run_root + "XMLOutfromPython/" pickle_dir = run_root + "NLTKCorporaUncatUntag/Pickles/" ##### #DEBUGGING CODE ##### #The following lines relate to options for debugging the code. #The following line sets up debugging, which allows the recording of notices #regarding the progress of the module to be printed to the screen or recorded #in a log file. logging_file = home_dir + 'Module3Biber' + " " + str(now + ".log") logging.basicConfig(filename=logging_file, filemode='w', level=logging.DEBUG) #To log to a file, add these parameters to previous basicConfig: # filename=logging_file, filemode='w', #To log to the console, delete the parameters in the previous line. #This code records some basic run information logging.debug(" Gender/genre Module 3Biber: Run " + str(now)) logging.debug(" Run on data in " + home_dir) logging.debug(" Source of corpora files out from Module 2: " + existingNLTK_dir) logging.debug(" Output from this module in: " + pickle_dir) #For testing, it may be desirable to pull just a few papers. The next variable works #with code below to select only those files from the start_wd directory that #begin with these characters. Note that these are strings and should be only #four characters long. sought_papers = ["1007", "1055", "1116", "2013", "2021"] ##### #WORD LISTS ##### #The following lines load various wordlists used in this module. with open((run_root + "PrivateVerbs.txt"), encoding = "utf-8") as f: privateVerbs = f.read().splitlines() with open((run_root + "PubVerbs.txt"), encoding = "utf-8") as f: publicVerbs = f.read().splitlines() with open((run_root + "SuaVerbs.txt"), encoding = "utf-8") as f: suasiveVerbs = f.read().splitlines() priPubSuaVerbs = privateVerbs + publicVerbs + suasiveVerbs with open((run_root + "Contractions.txt"), encoding = "utf-8") as f: contracts = f.read().splitlines() with open((run_root + "AllP-Whp.txt"), encoding = "utf-8") as f: allP_whP = f.read().splitlines() with open((run_root + "Amplifiers.txt"), encoding = "utf-8") as f: amplifiers = f.read().splitlines() with open((run_root + "CL-P.txt"), encoding = "utf-8") as f: clpunct = f.read().splitlines() allpunct = clpunct allpunct.append(',') with open((run_root + "Not.txt"), encoding = "utf-8") as f: analyticNeg = f.read().splitlines() with open((run_root + "Dem.txt"), encoding = "utf-8") as f: demonstrative = f.read().splitlines() with open((run_root + "FirstPers.txt"), encoding = "utf-8") as f: firstPersPro = f.read().splitlines() with open((run_root + "IndefPro.txt"), encoding = "utf-8") as f: indefPro = f.read().splitlines() with open((run_root + "SecPers.txt"), encoding = "utf-8") as f: secPersPro = f.read().splitlines() with open((run_root + "Subpro.txt"), encoding = "utf-8") as f: subjectPro = f.read().splitlines() with open((run_root + "WhoWords.txt"), encoding = "utf-8") as f: whoWords = f.read().splitlines() with open((run_root + "WHPwords.txt"), encoding = "utf-8") as f: wHPWords = f.read().splitlines() def process(section): nltkcorpus_dir = run_root + existingNLTK_dir + section + "/" logging_file = nltkcorpus_dir + "3BiberLog " + section + ".log" #5-1 moved out to global or deleted. results_file = pickle_dir + section + "Features.pickle" csv_out_file = run_root + "BiberOutput " + section + " " + str(now) + ".csv" #papers will be a list of dictionaries. Each dictionary will have the features for one paper. papers = [ ] def getgender(paper_num): #Move this function outside the process function. logging.debug(paper_num + " GET GENDER") logging.debug("\n_____") #Go into the XML document to get the gender. for f in os.listdir(xml_dir): if f.startswith(paper_num): xml_doc_full_path = xml_dir + f gate_doc = etree.parse(xml_doc_full_path, parser) #Parse file with defined parser creating ElementTree doc_root = gate_doc.getroot() #Get root Element of parsed file logging.debug("\n\n") # For debugging. logging.debug ("XML Paper " + paper_num + " loaded.") # This is just for debugging. #These lines grab the Analysis_Gender value from the text and assign it to var gender. We'll use it to categorize the NLTK corpus #and to withhold non-gender-categorized texts from the corpus. This prolly should be a function, but that will happen later. gender = "" gg = doc_root.find("GG") quest = gg.find("Questionnaire") for i in quest.iter("Feature"): if i.get("Name") == "Analysis_Gender": gender = i.get("Value") logging.debug("Gender: " + str(gender)) #for debugging return gender #Begin loop over papers #For each paper, we want to do these things: #Create a dictionary containing the following keys/values. # 1. Gender of text author. # See Biber 1995, p. 142, Table 6.1 for explanation of items. # See Reymann 2002 for discussion of implementation for automation. # Involved end: # 2. Count of private verbs: Tagged as verb and in list. # 3. Count of THAT-deletion: # a. PUB/PRV/SUA + demonstrative pronoun/SUBJPRO5 # b. PUB/PRV/SUA + PRO/N + AUX/V # c. PUB/PRV/SUA + ADJ/ADV/DET/POSSPRO + (ADJ) + N + AUX/V # d. See lists of public, private, suasive verbs; dems; subpros # 4. Count of Contractions. See list. # 5. Count of Present-tense verbs. Use tagger tag VBP or VBZ # 6. Count of Second-person pronouns. See SecPers list. # 7. Count of DO as pro-verb. Any form of do (do does did done) NOT # in the following: # a. DO + (ADV) + V (DO as auxiliary) # b. ALL-P/WHP + DO (where ALL-P/WHP is in file AllP-Whp.txt) # 8. Count of Analytic negation (with 'not' or 'n't') # 9. Count of demonstrative pronouns. # that/this/these/those + V/AUX/WHP/and # 10. Count of General emphatics # a. for sure # b. a lot # c. such a # d. real + ADJ # e. so + ADJ # f. DO + V # g. just # h. really # i. most # j. more # 11. Count First-person pronouns. See FirstPers.txt. # 12. Count of Pronoun IT. Count all instances of it. # 13. Count of BE as main verb. # Form of BE: be, is are, was, were, been--followed by any of these # DT / PRP$ / IN / JJ / JJR / JJS # 14. Count of Causative subordination. Just count BECAUSE # 15. Count of Discourse particles. CL-P followed by any of: # well / now / anyway / anyhow / anyways # 16. Count of Indefinite pronouns. # a. any of IndefPro.txt OR # b. no one # 17. Count of General hedges. Did not use all of Reymann, only # at about / something like / more or less / almost / maybe # 18. Count of Amplifiers. If word is in Amplifiers. # 19. Count of Sentence relatives. Comma followed by which. # 20. Count of WH questions. Sentence boundary or CL-P + WhoWord.txt + MD # 21. Count of Possibility modals. All of can, could, may, and might # 22. Count of Non-phrasal coordination. Skipped here. # 23. Count of WH clauses. PUB/PRV/SUA + WHP/WHO + not(MD) # 24. Count of Final prepositions. IN followed by CL-P or comma. # 25. Count of (Adverbs). RB, RBR, RBS # Informational end: # 26. Count of Nouns. # 27. Mean Word Length. Mean length of all non-punct. # 28. Count of prepositions. IN, less 24. Did not exclude those that # function as time and place adverbials, conjuncts or subordinators. # 29. Type-token ratio. Frequency count of types within first 400 words. # 30. Count of Attributive adjectives. JJ/JJR/JJS + (JJ/JJR/JJS or Noun) # 31. Count of (Place adverbials) Skipped here # 32. Count of (Agentless passives) Skipped here # 33. Count of (Past participial postnominal clauses) Skipped here. for file_name in os.listdir(nltkcorpus_dir): paper_num = file_name[0:4] #Note: this makes paper_num a str if ((not file_name.startswith('.')) ) : #Screens out Mac OS hidden files, #names of which start '.' #If you want only limited files, add this condition to the preceding if-statement: and paper_num in sought_papers #and then uses only files BNL #selected in sought_papers list above filepath = nltkcorpus_dir + file_name logging.debug("\n*************************************************************************") logging.debug ("LOADING " + filepath) logging.debug ("\n*************************************************************************") print("\n*************************************************************************") print ("LOADING " + filepath) print ("\n*************************************************************************") #opens the subject file , reads its contents, and closes it. f = open(filepath, encoding="utf-8") infile = f.read() f.close() #Declare the feature dictionary for this paper paper_dict = { } paper_dict["A_papernum"] = paper_num #NO-NORMALIZE #Populate the dictionary with key/0 for each feature in the list of features. paper_dict["A_tokens"] = 0 # Total tokens in paper NO-NORMALIZE paper_dict["A_sents"] = 0 #Total sentences in paper NO-NORMALIZE paper_dict["A_words"] = 0 #Total number of non-punct tokens. NO-NORMALIZE paper_dict["01Gender"] = getgender(paper_num) #NO-NORMALIZE paper_dict["02PrivateVerbs"] = 0 #Private verbs. paper_dict["03ThatDeletion"] = 0 # paper_dict["04Contractions"] = 0 paper_dict["05PresVerbs"] = 0 #Present-tense verbs. paper_dict["06SecPersPrn"] = 0 #Second-person pronouns paper_dict["07DOproverb"] = 0 #Definition below. paper_dict["08AnalyticNeg"] = 0 #Negation with not or n't paper_dict["9DemoPron"] = 0 #Demonstrative pronouns paper_dict["10GenEmphatics"] = 0 # paper_dict["11FirstPersPrn"] = 0 #First-pe rson pronouns paper_dict["12It"] = 0 #count of IT paper_dict["13BeMain"] = 0 #BE as a main verb paper_dict["14CauseSub"] = 0 # Count because paper_dict["15DiscPart"] = 0 #Count as specified. paper_dict["16IndefPro"] = 0 # Indefinite pronouns paper_dict["17GenHedges"] = 0 #Count of general hedges paper_dict["18Amplifiers"] = 0 paper_dict["19SentRelatives"] = 0 #Sentence followed by which. paper_dict["20WhQuestion"] = 0 # Wh questions. paper_dict["21PossModals"] = 0 # Possibility modals. paper_dict["22NonPhrasalCoord"] = 0 #Skipping. paper_dict["23WhClauses"] = 0 #WH clauses. paper_dict["24FinalPreps"] = 0 #Final prepositions. paper_dict["25Adverbs"] = 0 paper_dict["26Nouns"] = 0 paper_dict["27WordLength"] = 0 #mean length of non-punct words NO-NORMALIZE paper_dict["28Preps"] = 0 #Prepositions (other than 24) paper_dict["29TTRatio"] = 0 # Type-token ratio NO-NORMALIZE paper_dict["30AttribAdj"] = 0 #Attributive adjectives paper_dict["31PlaceAdverbs"] = 0 #Place adverbials. Skipped here. paper_dict["32AgentlessPass"] = 0 #Agentless passives. Skipped here. paper_dict["33PPPC"] = 0 #Past participial postnominal clauses. Skipped here. logging.debug("\n_____") logging.debug("Paper " + paper_num + "'s number of features: " + str(len(paper_dict))) logging.debug("\n_____") first400TTypes = [] aggWordLength = 0 #Tokenize infile into sentences. The result is a list of sentences. sentences = sent_tokenize(infile) paper_dict["A_sents"] = len(sentences) #Begin loop over sentences in paper. logging.debug("\n_____") logging.debug(paper_num + " LOOP OVER SENTENCES") logging.debug("\n_____") sentence_counter = 0 for i in sentences: #For each sentence in the paper... logging.debug("\nPaper-Sentence number: " + paper_num + "-" + str(sentence_counter)) logging.debug(i) # This is just for debug. #Word-tokenize it. tokenized = tokenizer.tokenize(i) #Result is a list of word-tokens. logging.debug("\nTokenized sentence: " + str(sentence_counter)) logging.debug(tokenized) #for debug only #POS Tag it postagged = nltk.pos_tag(tokenized) #Result is a list of #tuples, with word-token and pos-token. logging.debug("\nPOS tagged sentence: " + str(sentence_counter)) logging.debug(postagged) #for debug only l = len(postagged) logging.debug("Sentence length: " + str(l)) #for i in postagged: for index, token in enumerate(postagged): paper_dict["A_tokens"] += 1 #Increments paper token counter. #THESE LINES SET THE CURRENT AND CONTEXT TOKEN VALUES. this_token = postagged[index] this_type = this_token[0].lower() this_tag = this_token[1] #print("This: " + str(this_type) + " " + (str(this_tag))) if index > 0: prevToken = postagged[index - 1] else: prevToken = ["NULL","NULL"] prev_type = prevToken[0] prev_tag = prevToken[1] #print("Prev: " + str(prev_type) + " " + (str(prev_tag))) if index < (l - 1): token1 = postagged[index + 1] else: token1 = ["NULL","NULL"] t1_type = token1[0] t1_tag = token1[1] #print("T1: " + str(t1_type) + " " + (str(t1_tag))) if index < (l - 2): token2 = postagged[index + 2] else: token2 = ["NULL","NULL"] t2_type = token2[0] t2_tag = token2[1] #print("T2: " + str(t2_type) + " " + (str(t2_tag))) if index < (l - 3): token3 = postagged[index + 3] else: token3 = ["NULL","NULL"] t3_type = token3[0] t3_tag = token3[1] #print("T3: " + str(t3_type) + " " + (str(t3_tag))) #print("T4 if") if index < (l - 4): token4 = postagged[index + 4] else: #print("T4 else") token4 = ["NULL","NULL"] #print("T4 assignments") t4_type = token4[0] t4_tag = token4[1] #print("T4: " + str(t4_type) + " " + (str(t4_tag))) #DONE SETTING TOKEN VALUES. if not (this_type in allpunct): paper_dict["A_words"] += 1 aggWordLength += len(this_type) if not (paper_dict["A_words"]>400): if this_type not in first400TTypes: first400TTypes.append(this_type) if this_type in privateVerbs: paper_dict["02PrivateVerbs"] += 1 if ((#Condition 1 (this_type in priPubSuaVerbs) and ((t1_type in demonstrative) or (t1_type in subjectPro))) or (#Condition 2 (this_type in priPubSuaVerbs) and (t1_tag in ["PRP", "NN", "NNS", "NNP", "NNPS"]) and (t2_tag in ["MD", "VB", "VBD", "VBG", "VBN", "VBP"]) ) or (#Condition 3a (this_type in priPubSuaVerbs) and (t1_tag in ["JJ", "JJR", "JJS", "RB", "RBR", "RBS", "DT", "PRP$"]) and (t2_tag in ["NN", "NNS", "NNP", "NNPS"]) and (t3_tag in ["MD", "VB", "VBD", "VBG", "VBN", "VBP"]) ) or (#Condition 3b (this_type in priPubSuaVerbs) and (t1_tag in ["JJ", "JJR", "JJS", "RB", "RBR", "RBS", "DT", "PRP$"]) and (t2_tag in ["JJ", "JJR", "JJS"]) and (t3_tag in ["NN", "NNS", "NNP", "NNPS"]) and (t4_tag in ["MD", "VB", "VBD", "VBG", "VBN", "VBP"]) ) ): logging.debug("THAT deletion: " + this_type + " " + t1_type + " " + t2_type + " " + t3_type + " " + t4_type) paper_dict["03ThatDeletion"] += 1 if this_type in contracts: paper_dict["04Contractions"] += 1 if this_tag in ['VBP', 'VBZ']: paper_dict["05PresVerbs"] += 1 if this_type in secPersPro: paper_dict["06SecPersPrn"] += 1 if ( this_type in ["do", "does", "did", "doing", "done"] and not ((#Condition 1a (t1_type in ["VB", "VBD", "VBG", "VBN", "VBP"]) ) or (#Condition 1b (t1_type in ["RB", "RBR", "RBS"]) and (t2_type in ["VB", "VBD", "VBG", "VBN", "VBP"]) ) or (#Condition 2 (prev_type in allP_whP) or (prev_type == "NULL") ) )): paper_dict["07DOproverb"] += 1 if this_type in analyticNeg: paper_dict["08AnalyticNeg"] += 1 if ((this_type in demonstrative) and ( (t1_tag in ["MD", "VB", "VBD", "VBG", "VBN", "VBP"]) or (t1_type == "and") or (t1_type in wHPWords))): paper_dict["9DemoPron"] += 1 logging.debug("Demonstrative pron: " + prev_type + " " + this_type + " " + t1_type + " " + t2_type) if ( (#Condition 1 (this_type in ["just", "really", "most", "more"]) ) or (#Condition 2 (this_type == "for" and t1_type == "sure") or (this_type == "a" and t1_type == "lot") or (this_type == "such" and t1_type == "a") or (this_type in ["real", "so"] and t1_tag == "JJ") or (this_type in ["do", "does", "did", "doing", "done"] and t1_type in ["VB", "VBD", "VBG", "VBN", "VBP"]) )): paper_dict["10GenEmphatics"] += 1 logging.debug("General emphatic: " + this_type + " " + t1_type) if this_type in firstPersPro: paper_dict["11FirstPersPrn"] += 1 if this_type == "it": paper_dict["12It"] += 1 if (this_type in ["be", "is", "are", "was", "were", "been", "being"] and t1_tag in ["DT", "PRP$", "IN", "JJ", "JJR", "JJS"]): paper_dict["13BeMain"] += 1 logging.debug("BE main verb: " + this_type + " " + t1_type) if this_type == "because": paper_dict["14CauseSub"] += 1 if (this_type in ["well", "now", "anyway", "anyhow", "anyways"] and (prev_type in clpunct or prev_type == "NULL")): paper_dict["15DiscPart"] += 1 logging.debug("Discourse particle: " + prev_type + " " + this_type) if (this_type in indefPro or this_type == "no" and t1_type == "one"): paper_dict["16IndefPro"] += 1 logging.debug("Indef pronoun: " + this_type + " " + t1_type) if (this_type in ['almost', 'maybe'] or ((this_type == "at" and t1_type == "about") or (this_type == "something" and t1_type == "like") or (this_type == "more" and t1_type == "or" and t2_type == "less") ) ): paper_dict["17GenHedges"] += 1 logging.debug("General hedge: " + this_type + " " + t1_type + " " + t2_type) if this_type in amplifiers: paper_dict["18Amplifiers"] += 1 if (prev_type == "," and this_type == "which"): paper_dict["19SentRelatives"] += 1 logging.debug("Sentence relative: " + prev_type + " " + this_type + " " + t1_type) if (this_type in whoWords and (prev_type == "NULL" or prev_type in clpunct) and (t1_tag == "MD")): paper_dict["20WhQuestion"] += 1 logging.debug("WH question: " + prev_type + " " + this_type + " " + t1_type) if this_type in ['can', 'could', 'may', 'might']: paper_dict["21PossModals"] += 1 if ( ((this_type in wHPWords) or (this_type in whoWords)) and (prev_type in priPubSuaVerbs) and not (t1_tag == "MD") ): paper_dict["23WhClauses"] += 1 logging.debug("WH clause: " + prev_type + " " + this_type + " " + t1_type) if (this_tag == "IN" and (t1_type in clpunct or t1_type == ",") ): paper_dict["24FinalPreps"] += 1 logging.debug("Final preposition: " + this_type + " " + t1_type) if this_tag in ['RB', 'RBR', 'RBS']: paper_dict["25Adverbs"] += 1 if this_tag in ['NN', 'NNP', 'NNS', 'NNPS']: paper_dict["26Nouns"] += 1 if this_tag == 'IN': paper_dict["28Preps"] += 1 if (this_tag in ["JJ", "JJR", "JJS"] and t1_tag in ["JJ", "JJR", "JJS", "NN", "NNS", "NNP", "NNPS"]): paper_dict["30AttribAdj"] += 1 sentence_counter += 1 paper_dict["29TTRatio"] = len(first400TTypes)/4 paper_dict["27WordLength"] = aggWordLength/paper_dict["A_words"] paper_dict["28Preps"] = paper_dict["28Preps"] - paper_dict["24FinalPreps"] #Normalize values #First ID keys that don't get normalized noNormalize = ["A_papernum", "A_tokens", "A_sents", "A_words", "01Gender", "27WordLength", "29TTRatio"] normalTokens = paper_dict["A_tokens"] #print("Number of tokens: " + str(normalTokens)) for key, val in paper_dict.items(): #print(key + " Value: " + str(val)) if key not in noNormalize: #print(key + " needs normalizing") paper_dict[key] = val/normalTokens*1000 #print(paper_dict[key]) # print(i) #Now we need to normalize the data. #1. Multiply value of each of the following types of feature by 1/#tokens: functionwords, postags. #2. Multiply value of each of trigrams 4/#tokens #3. Multiply value of each of bigrams 2/#tokens # tokensfactor = 1 / paper_dict["A_tokens"] # bigramsfactor = tokensfactor * 2 # trigramsfactor = tokensfactor * 4 # print("Factors: Tokens = " + str(tokensfactor) + " Bigrams = " + str(bigramsfactor) + " Trigrams = " + str(trigramsfactor)) # for i in paper_dict.keys(): # if i.startswith("F_") or i.startswith("POS_"): # paper_dict[i] = paper_dict[i] * tokensfactor # if i.startswith("Bi_"): # paper_dict[i] = paper_dict[i] * bigramsfactor # if i.startswith("Tri_"): # paper_dict[i] = paper_dict[i] * trigramsfactor # #Use following three lines for debug only #print "Feature set:" #for key in sorted(paper_dict.iterkeys()): # print "%s: %s" % (key, paper_dict[key]) papers.append(paper_dict) with open(results_file, "wb") as resPickle: pickle.dump(papers, resPickle) with open(csv_out_file, "w") as csv_out: headers = list(papers[1].keys()) csvwriter = csv.DictWriter(csv_out, delimiter=',', fieldnames=headers) csvwriter.writerow(dict((fn,fn) for fn in headers)) for row in papers: csvwriter.writerow(row) process("Nonfacttext") process("Facttext") process("Fulltext")
gpl-3.0
ikassi/menpo
setup.py
1
2496
import sys from setuptools import setup, find_packages from Cython.Build import cythonize import numpy as np from buildhelpers.shaders import build_c_shaders # ---- C/C++ EXTENSIONS ---- # cython_modules = ["menpo/geodesics/kirsanov.pyx", "menpo/shape/mesh/cpptrimesh.pyx", "menpo/shape/mesh/normals.pyx", "menpo/interpolation/cinterp.pyx", "menpo/transform/fastpwa.pyx", "menpo/features/cppimagewindowiterator.pyx"] cython_exts = cythonize(cython_modules, nthreads=2, quiet=True) # ---- OPENGL C EXTENSIONS ---- # # first, convert the plain text shaders into C string literals build_c_shaders() opengl_c_cython_modules = ["menpo/rasterize/copengl.pyx"] opengl_c_exts = cythonize(opengl_c_cython_modules, nthreads=2, quiet=True) # unfortunately, OpenGL is just different on OS X/Linux if sys.platform.startswith('linux'): for c_ext in opengl_c_exts: c_ext.libraries += ['GL', 'GLU', 'glfw'] elif sys.platform == 'darwin': for c_ext in opengl_c_exts: c_ext.libraries += ['glfw3'] # TODO why does it compile without these on OS X?! #c_ext.extra_compile_args += ['-framework OpenGL', # '-framework Cocoa', '-framework IOKit', # '-framework CoreVideo'] setup(name='menpo', version='0.2', description='iBUG Facial Modelling Toolkit', author='James Booth', author_email='[email protected]', include_dirs=[np.get_include()], ext_modules=cython_exts + opengl_c_exts, packages=find_packages(), install_requires=[# Core 'numpy>=1.8.0', 'scipy>=0.12.0', 'Cython>=0.20.1', # req on OS X Mavericks # Image 'Pillow>=2.0.0', 'scikit-image>=0.8.2', # 3D import 'menpo-pyvrml97==2.3.0a4', 'cyassimp>=0.1.2', # Visualization 'matplotlib>=1.2.1', # Need to decide if this is really needed 'decorator>=3.4.0', # Docs and testing 'Sphinx>=1.2b1', 'numpydoc>=0.4', 'nose>=1.3.0'], extras_require={'3d': 'mayavi>=4.3.0'} )
bsd-3-clause
J4sp3r/damrobot
Project/lib/util.py
1
1474
#!/usr/local/bin/python import cv2,os import numpy as np import matplotlib.pyplot as plt from lib import log def imshow(img): cv2.namedWindow("preview") cv2.imshow("preview",img) rval = True while rval: key = cv2.waitKey(27) if key == 27: # exit on ESC break cv2.destroyWindow("preview") def imshow2(img): plt.subplot(111),plt.imshow(img),plt.title('Output') plt.show() def imgresize(img,w,h): return cv2.resize(img,(w, h), interpolation = cv2.INTER_CUBIC) def getpos(img,ratio): width = img.shape[0] width2 = int(width*ratio) height = img.shape[1] height2 = int(height*ratio) pts1 = np.float32([[(width-width2)*0.5-1,(height-height2)*0.5-1],[(width-width2)*0.5+width2-1,(height-height2)*0.5-1],[(width-width2)*0.5-1,(height-height2)*0.5+height2-1],[(width-width2)*0.5+width2-1,(height-height2)*0.5+height2-1]]) pts2 = np.float32([[0,0],[width2-1,0],[0,height2-1],[width2-1,height2-1]]) retval = cv2.getPerspectiveTransform(pts1,pts2) warp = cv2.warpPerspective(img,retval,(width2,height2)) return warp def board2file(board,file): f = open(file,'w') for x in range(8): rule = "" first = True for y in range(8): if first: first = False else: rule += "," rule += str(board[x][y]) if x < 7: rule += "\n" f.write(rule) f.close() def state(path,state): f = open(path + "\\files\\state.txt",'w') f.write(state) f.close() def newboard(path): f = open(path + "\\files\\newbord.txt",'w') f.write("true") f.close()
mit
soulmachine/scikit-learn
sklearn/pipeline.py
8
16439
""" The :mod:`sklearn.pipeline` module implements utilities to build a composite estimator, as a chain of transforms and estimators. """ # Author: Edouard Duchesnay # Gael Varoquaux # Virgile Fritsch # Alexandre Gramfort # Lars Buitinck # Licence: BSD from collections import defaultdict import numpy as np from scipy import sparse from .base import BaseEstimator, TransformerMixin from .externals.joblib import Parallel, delayed from .externals import six from .utils import tosequence from .externals.six import iteritems __all__ = ['Pipeline', 'FeatureUnion'] # One round of beers on me if someone finds out why the backslash # is needed in the Attributes section so as not to upset sphinx. class Pipeline(BaseEstimator): """Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implements fit and transform methods. The final estimator needs only implements fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. Parameters ---------- steps: list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. Examples -------- >>> from sklearn import svm >>> from sklearn.datasets import samples_generator >>> from sklearn.feature_selection import SelectKBest >>> from sklearn.feature_selection import f_regression >>> from sklearn.pipeline import Pipeline >>> # generate some data to play with >>> X, y = samples_generator.make_classification( ... n_informative=5, n_redundant=0, random_state=42) >>> # ANOVA SVM-C >>> anova_filter = SelectKBest(f_regression, k=5) >>> clf = svm.SVC(kernel='linear') >>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)]) >>> # You can set the parameters using the names issued >>> # For instance, fit using a k of 10 in the SelectKBest >>> # and a parameter 'C' of the svm >>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y) ... # doctest: +ELLIPSIS Pipeline(steps=[...]) >>> prediction = anova_svm.predict(X) >>> anova_svm.score(X, y) # doctest: +ELLIPSIS 0.77... """ # BaseEstimator interface def __init__(self, steps): self.named_steps = dict(steps) names, estimators = zip(*steps) if len(self.named_steps) != len(steps): raise ValueError("Names provided are not unique: %s" % (names,)) # shallow copy of steps self.steps = tosequence(zip(names, estimators)) transforms = estimators[:-1] estimator = estimators[-1] for t in transforms: if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(t, "transform")): raise TypeError("All intermediate steps a the chain should " "be transforms and implement fit and transform" " '%s' (type %s) doesn't)" % (t, type(t))) if not hasattr(estimator, "fit"): raise TypeError("Last step of chain should implement fit " "'%s' (type %s) doesn't)" % (estimator, type(estimator))) def get_params(self, deep=True): if not deep: return super(Pipeline, self).get_params(deep=False) else: out = self.named_steps.copy() for name, step in six.iteritems(self.named_steps): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out # Estimator interface def _pre_transform(self, X, y=None, **fit_params): fit_params_steps = dict((step, {}) for step, _ in self.steps) for pname, pval in six.iteritems(fit_params): step, param = pname.split('__', 1) fit_params_steps[step][param] = pval Xt = X for name, transform in self.steps[:-1]: if hasattr(transform, "fit_transform"): Xt = transform.fit_transform(Xt, y, **fit_params_steps[name]) else: Xt = transform.fit(Xt, y, **fit_params_steps[name]) \ .transform(Xt) return Xt, fit_params_steps[self.steps[-1][0]] def fit(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) self.steps[-1][-1].fit(Xt, y, **fit_params) return self def fit_transform(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data using the final estimator.""" Xt, fit_params = self._pre_transform(X, y, **fit_params) if hasattr(self.steps[-1][-1], 'fit_transform'): return self.steps[-1][-1].fit_transform(Xt, y, **fit_params) else: return self.steps[-1][-1].fit(Xt, y, **fit_params).transform(Xt) def predict(self, X): """Applies transforms to the data, and the predict method of the final estimator. Valid only if the final estimator implements predict.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict(Xt) def predict_proba(self, X): """Applies transforms to the data, and the predict_proba method of the final estimator. Valid only if the final estimator implements predict_proba.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_proba(Xt) def decision_function(self, X): """Applies transforms to the data, and the decision_function method of the final estimator. Valid only if the final estimator implements decision_function.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].decision_function(Xt) def predict_log_proba(self, X): Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_log_proba(Xt) def transform(self, X): """Applies transforms to the data, and the transform method of the final estimator. Valid only if the final estimator implements transform.""" Xt = X for name, transform in self.steps: Xt = transform.transform(Xt) return Xt def inverse_transform(self, X): if X.ndim == 1: X = X[None, :] Xt = X for name, step in self.steps[::-1]: Xt = step.inverse_transform(Xt) return Xt def score(self, X, y=None): """Applies transforms to the data, and the score method of the final estimator. Valid only if the final estimator implements score.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].score(Xt, y) @property def _pairwise(self): # check if first estimator expects pairwise input return getattr(self.steps[0][1], '_pairwise', False) def _name_estimators(estimators): """Generate names for estimators.""" names = [type(estimator).__name__.lower() for estimator in estimators] namecount = defaultdict(int) for est, name in zip(estimators, names): namecount[name] += 1 for k, v in list(six.iteritems(namecount)): if v == 1: del namecount[k] for i in reversed(range(len(estimators))): name = names[i] if name in namecount: names[i] += "-%d" % namecount[name] namecount[name] -= 1 return list(zip(names, estimators)) def make_pipeline(*steps): """Construct a Pipeline from the given estimators. This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, they will be given names automatically based on their types. Examples -------- >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB()) # doctest: +NORMALIZE_WHITESPACE Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('gaussiannb', GaussianNB())]) Returns ------- p : Pipeline """ return Pipeline(_name_estimators(steps)) def _fit_one_transformer(transformer, X, y): return transformer.fit(X, y) def _transform_one(transformer, name, X, transformer_weights): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output return transformer.transform(X) * transformer_weights[name] return transformer.transform(X) def _fit_transform_one(transformer, name, X, y, transformer_weights, **fit_params): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed * transformer_weights[name], transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed * transformer_weights[name], transformer if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed, transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed, transformer class FeatureUnion(BaseEstimator, TransformerMixin): """Concatenates results of multiple transformer objects. This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer. Parameters ---------- transformer_list: list of (string, transformer) tuples List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer. n_jobs: int, optional Number of jobs to run in parallel (default 1). transformer_weights: dict, optional Multiplicative weights for features per transformer. Keys are transformer names, values the weights. """ def __init__(self, transformer_list, n_jobs=1, transformer_weights=None): self.transformer_list = transformer_list self.n_jobs = n_jobs self.transformer_weights = transformer_weights def get_feature_names(self): """Get feature names from all transformers. Returns ------- feature_names : list of strings Names of the features produced by transform. """ feature_names = [] for name, trans in self.transformer_list: if not hasattr(trans, 'get_feature_names'): raise AttributeError("Transformer %s does not provide" " get_feature_names." % str(name)) feature_names.extend([name + "__" + f for f in trans.get_feature_names()]) return feature_names def fit(self, X, y=None): """Fit all transformers using X. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data, used to fit transformers. """ transformers = Parallel(n_jobs=self.n_jobs)( delayed(_fit_one_transformer)(trans, X, y) for name, trans in self.transformer_list) self._update_transformer_list(transformers) return self def fit_transform(self, X, y=None, **fit_params): """Fit all transformers using X, transform the data and concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ result = Parallel(n_jobs=self.n_jobs)( delayed(_fit_transform_one)(trans, name, X, y, self.transformer_weights, **fit_params) for name, trans in self.transformer_list) Xs, transformers = zip(*result) self._update_transformer_list(transformers) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def transform(self, X): """Transform X separately by each transformer, concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ Xs = Parallel(n_jobs=self.n_jobs)( delayed(_transform_one)(trans, name, X, self.transformer_weights) for name, trans in self.transformer_list) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def get_params(self, deep=True): if not deep: return super(FeatureUnion, self).get_params(deep=False) else: out = dict(self.transformer_list) for name, trans in self.transformer_list: for key, value in iteritems(trans.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out def _update_transformer_list(self, transformers): self.transformer_list[:] = [ (name, new) for ((name, old), new) in zip(self.transformer_list, transformers) ] # XXX it would be nice to have a keyword-only n_jobs argument to this function, # but that's not allowed in Python 2.x. def make_union(*transformers): """Construct a FeatureUnion from the given transformers. This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting. Examples -------- >>> from sklearn.decomposition import PCA, TruncatedSVD >>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE FeatureUnion(n_jobs=1, transformer_list=[('pca', PCA(copy=True, n_components=None, whiten=False)), ('truncatedsvd', TruncatedSVD(algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0))], transformer_weights=None) Returns ------- f : FeatureUnion """ return FeatureUnion(_name_estimators(transformers))
bsd-3-clause
Karel-van-de-Plassche/bokeh
bokeh/sampledata/periodic_table.py
5
3181
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2017, Anaconda, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Provide a periodic table data set. It exposes an attribute ``elements`` which is a pandas Dataframe with the following fields: .. code-block:: python elements['atomic Number'] (units: g/cm^3) elements['symbol'] elements['name'] elements['atomic mass'] (units: amu) elements['CPK'] (convention for molecular modeling color) elements['electronic configuration'] elements['electronegativity'] (units: Pauling) elements['atomic radius'] (units: pm) elements['ionic radius'] (units: pm) elements['van der waals radius'] (units: pm) elements['ionization enerygy'] (units: kJ/mol) elements['electron affinity'] (units: kJ/mol) elements['phase'] (standard state: solid, liquid, gas) elements['bonding type'] elements['melting point'] (units: K) elements['boiling point'] (units: K) elements['density'] (units: g/cm^3) elements['type'] (see below) elements['year discovered'] elements['group'] elements['period'] where element types are: actinoid alkali metal alkaline earth metal halogen, lanthanoid metal metalloid noble gas nonmetal transition metalloid ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function, unicode_literals import logging log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports # External imports # Bokeh imports from ..util.sampledata import package_csv #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'elements', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #----------------------------------------------------------------------------- elements = package_csv('periodic_table', 'elements.csv')
bsd-3-clause
lukeiwanski/tensorflow
tensorflow/contrib/learn/python/learn/estimators/kmeans.py
15
11087
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of k-means clustering on top of `Estimator` API (deprecated). This module is deprecated. Please use @{tf.contrib.factorization.KMeansClustering} instead of @{tf.contrib.learn.KMeansClustering}. It has a similar interface, but uses the @{tf.estimator.Estimator} API instead of @{tf.contrib.learn.Estimator}. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy as np from tensorflow.contrib.factorization.python.ops import clustering_ops from tensorflow.python.training import training_util from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModelFnOps from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops.control_flow_ops import with_dependencies from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary from tensorflow.python.training import session_run_hook from tensorflow.python.training.session_run_hook import SessionRunArgs from tensorflow.python.util.deprecation import deprecated _USE_TF_CONTRIB_FACTORIZATION = ( 'Please use tf.contrib.factorization.KMeansClustering instead of' ' tf.contrib.learn.KMeansClustering. It has a similar interface, but uses' ' the tf.estimator.Estimator API instead of tf.contrib.learn.Estimator.') class _LossRelativeChangeHook(session_run_hook.SessionRunHook): """Stops when the change in loss goes below a tolerance.""" def __init__(self, tolerance): """Initializes _LossRelativeChangeHook. Args: tolerance: A relative tolerance of change between iterations. """ self._tolerance = tolerance self._prev_loss = None def begin(self): self._loss_tensor = ops.get_default_graph().get_tensor_by_name( KMeansClustering.LOSS_OP_NAME + ':0') assert self._loss_tensor is not None def before_run(self, run_context): del run_context return SessionRunArgs( fetches={KMeansClustering.LOSS_OP_NAME: self._loss_tensor}) def after_run(self, run_context, run_values): loss = run_values.results[KMeansClustering.LOSS_OP_NAME] assert loss is not None if self._prev_loss is not None: relative_change = (abs(loss - self._prev_loss) / (1 + abs(self._prev_loss))) if relative_change < self._tolerance: run_context.request_stop() self._prev_loss = loss class _InitializeClustersHook(session_run_hook.SessionRunHook): """Initializes clusters or waits for cluster initialization.""" def __init__(self, init_op, is_initialized_op, is_chief): self._init_op = init_op self._is_chief = is_chief self._is_initialized_op = is_initialized_op def after_create_session(self, session, _): assert self._init_op.graph == ops.get_default_graph() assert self._is_initialized_op.graph == self._init_op.graph while True: try: if session.run(self._is_initialized_op): break elif self._is_chief: session.run(self._init_op) else: time.sleep(1) except RuntimeError as e: logging.info(e) def _parse_tensor_or_dict(features): """Helper function to parse features.""" if isinstance(features, dict): keys = sorted(features.keys()) with ops.colocate_with(features[keys[0]]): features = array_ops.concat([features[k] for k in keys], 1) return features def _kmeans_clustering_model_fn(features, labels, mode, params, config): """Model function for KMeansClustering estimator.""" assert labels is None, labels (all_scores, model_predictions, losses, is_initialized, init_op, training_op) = clustering_ops.KMeans( _parse_tensor_or_dict(features), params.get('num_clusters'), initial_clusters=params.get('training_initial_clusters'), distance_metric=params.get('distance_metric'), use_mini_batch=params.get('use_mini_batch'), mini_batch_steps_per_iteration=params.get( 'mini_batch_steps_per_iteration'), random_seed=params.get('random_seed'), kmeans_plus_plus_num_retries=params.get( 'kmeans_plus_plus_num_retries')).training_graph() incr_step = state_ops.assign_add(training_util.get_global_step(), 1) loss = math_ops.reduce_sum(losses, name=KMeansClustering.LOSS_OP_NAME) summary.scalar('loss/raw', loss) training_op = with_dependencies([training_op, incr_step], loss) predictions = { KMeansClustering.ALL_SCORES: all_scores[0], KMeansClustering.CLUSTER_IDX: model_predictions[0], } eval_metric_ops = {KMeansClustering.SCORES: loss} training_hooks = [_InitializeClustersHook( init_op, is_initialized, config.is_chief)] relative_tolerance = params.get('relative_tolerance') if relative_tolerance is not None: training_hooks.append(_LossRelativeChangeHook(relative_tolerance)) return ModelFnOps( mode=mode, predictions=predictions, eval_metric_ops=eval_metric_ops, loss=loss, train_op=training_op, training_hooks=training_hooks) # TODO(agarwal,ands): support sharded input. class KMeansClustering(estimator.Estimator): """An Estimator for K-Means clustering. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ SQUARED_EUCLIDEAN_DISTANCE = clustering_ops.SQUARED_EUCLIDEAN_DISTANCE COSINE_DISTANCE = clustering_ops.COSINE_DISTANCE RANDOM_INIT = clustering_ops.RANDOM_INIT KMEANS_PLUS_PLUS_INIT = clustering_ops.KMEANS_PLUS_PLUS_INIT SCORES = 'scores' CLUSTER_IDX = 'cluster_idx' CLUSTERS = 'clusters' ALL_SCORES = 'all_scores' LOSS_OP_NAME = 'kmeans_loss' @deprecated(None, _USE_TF_CONTRIB_FACTORIZATION) def __init__(self, num_clusters, model_dir=None, initial_clusters=RANDOM_INIT, distance_metric=SQUARED_EUCLIDEAN_DISTANCE, random_seed=0, use_mini_batch=True, mini_batch_steps_per_iteration=1, kmeans_plus_plus_num_retries=2, relative_tolerance=None, config=None): """Creates a model for running KMeans training and inference. Args: num_clusters: number of clusters to train. model_dir: the directory to save the model results and log files. initial_clusters: specifies how to initialize the clusters for training. See clustering_ops.kmeans for the possible values. distance_metric: the distance metric used for clustering. See clustering_ops.kmeans for the possible values. random_seed: Python integer. Seed for PRNG used to initialize centers. use_mini_batch: If true, use the mini-batch k-means algorithm. Else assume full batch. mini_batch_steps_per_iteration: number of steps after which the updated cluster centers are synced back to a master copy. See clustering_ops.py for more details. kmeans_plus_plus_num_retries: For each point that is sampled during kmeans++ initialization, this parameter specifies the number of additional points to draw from the current distribution before selecting the best. If a negative value is specified, a heuristic is used to sample O(log(num_to_sample)) additional points. relative_tolerance: A relative tolerance of change in the loss between iterations. Stops learning if the loss changes less than this amount. Note that this may not work correctly if use_mini_batch=True. config: See Estimator """ params = {} params['num_clusters'] = num_clusters params['training_initial_clusters'] = initial_clusters params['distance_metric'] = distance_metric params['random_seed'] = random_seed params['use_mini_batch'] = use_mini_batch params['mini_batch_steps_per_iteration'] = mini_batch_steps_per_iteration params['kmeans_plus_plus_num_retries'] = kmeans_plus_plus_num_retries params['relative_tolerance'] = relative_tolerance super(KMeansClustering, self).__init__( model_fn=_kmeans_clustering_model_fn, params=params, model_dir=model_dir, config=config) @deprecated(None, _USE_TF_CONTRIB_FACTORIZATION) def predict_cluster_idx(self, input_fn=None): """Yields predicted cluster indices.""" key = KMeansClustering.CLUSTER_IDX results = super(KMeansClustering, self).predict( input_fn=input_fn, outputs=[key]) for result in results: yield result[key] @deprecated(None, _USE_TF_CONTRIB_FACTORIZATION) def score(self, input_fn=None, steps=None): """Predict total sum of distances to nearest clusters. Note that this function is different from the corresponding one in sklearn which returns the negative of the sum of distances. Args: input_fn: see predict. steps: see predict. Returns: Total sum of distances to nearest clusters. """ return np.sum( self.evaluate( input_fn=input_fn, steps=steps)[KMeansClustering.SCORES]) @deprecated(None, _USE_TF_CONTRIB_FACTORIZATION) def transform(self, input_fn=None, as_iterable=False): """Transforms each element to distances to cluster centers. Note that this function is different from the corresponding one in sklearn. For SQUARED_EUCLIDEAN distance metric, sklearn transform returns the EUCLIDEAN distance, while this function returns the SQUARED_EUCLIDEAN distance. Args: input_fn: see predict. as_iterable: see predict Returns: Array with same number of rows as x, and num_clusters columns, containing distances to the cluster centers. """ key = KMeansClustering.ALL_SCORES results = super(KMeansClustering, self).predict( input_fn=input_fn, outputs=[key], as_iterable=as_iterable) if not as_iterable: return results[key] else: return results @deprecated(None, _USE_TF_CONTRIB_FACTORIZATION) def clusters(self): """Returns cluster centers.""" return super(KMeansClustering, self).get_variable_value(self.CLUSTERS)
apache-2.0
amnona/heatsequer
heatsequer/experiment/sorting.py
1
14671
#!/usr/bin/env python """ heatsequer experiment sorting module """ # amnonscript __version__ = "0.9" import heatsequer as hs import numpy as np import copy from sklearn.preprocessing import scale from scipy import cluster,spatial,stats def sortbacteria(exp,inplace=False,logit=True): """ sort bacteria according to taxonomy (alphabetically) input: exp : experiment the experiment to sort inplace : bool True to sort in place (replace current experiment), False to create a new experiment logit : bool True to add to command log, False to skip (if called from other heatsequer function) output: newexp : experiment The sorted experiment (by taxonomy name) """ params=locals() hs.Debug(1,'Sorting %d bacteria by taxonomy' % len(exp.seqs)) tax=exp.tax svals,sidx=hs.isort(tax) newexp=hs.reorderbacteria(exp,sidx,inplace=inplace) if logit: newexp.filters.append('sorted bacteria by taxonomy') hs.addcommand(newexp,"sortbacteria",params=params,replaceparams={'exp':exp}) return newexp def clusterbacteria(exp,minreads=0,uselog=True): """ cluster bacteria in an experiment according to similar behavior input: exp : Experiment minreads : int the minimal number of reads to keep before clustering (to make faster) uselog : bool True to log transform reads for clustering (before normalizing), false to use full reads output: newexp : Experiment the filtered and clustered experiment """ params=locals() if exp.sparse: exp=hs.copyexp(exp,todense=True) newexp=hs.filterminreads(exp,minreads,logit=False) # normalize each row (bacteria) to sum 1 dat=copy.copy(newexp.data) if uselog: dat[dat<=2]=2 dat=np.log2(dat) dat=scale(dat,axis=1,copy=False) # cluster dm=spatial.distance.pdist(dat,metric='euclidean') ll=cluster.hierarchy.single(dm) order=cluster.hierarchy.leaves_list(ll) newexp=hs.reorderbacteria(newexp,order) hs.addcommand(newexp,"clusterbacteria",params=params,replaceparams={'exp':exp}) newexp.filters.append("cluster bacteria minreads=%d" % minreads) return newexp def clustersamples(exp,minreads=0): """ cluster samples in an experiment according to similar behavior input: exp :Experiment minreads : int the minimal original number of reads per sample to keep it output: newexp : Experiment the filtered and clustered experiment """ params=locals() if exp.sparse: exp=hs.copyexp(exp,todense=True) newexp=hs.filterorigreads(exp,minreads) # normalize each row (bacteria) to sum 1 dat=copy.copy(newexp.data) dat=np.transpose(dat) dat[dat<=2]=2 dat=np.log2(dat) # cluster dm=spatial.distance.pdist(dat,metric='braycurtis') ll=cluster.hierarchy.single(dm) order=cluster.hierarchy.leaves_list(ll) newexp=hs.reordersamples(newexp,order) hs.addcommand(newexp,"clustersamples",params=params,replaceparams={'exp':exp}) newexp.filters.append("cluster samples minreads=%d" % minreads) return newexp def sortsamples(exp,field,numeric=False,logit=True): """ sort samples according to field input: exp : Experiment field : string name of the field to sort by numeric : bool True for numeric values in field, false for text output: newexp : Experiment the sorted experiment """ params=locals() fvals=hs.getfieldvals(exp,field) if numeric: fvals=hs.tofloat(fvals) svals,sidx=hs.isort(fvals) newexp=hs.reordersamples(exp,sidx) if logit: hs.addcommand(newexp,"sortsamples",params=params,replaceparams={'exp':exp}) newexp.filters.append('sorted samples by field %s' % field) return newexp def sortbyfreq(expdat,field=False,value=False,exact=False,exclude=False,logscale=True,useabs=False,reverse=False): """ sort bacteria in experiment according to frequency sorting is performed based on a subset of samples (field/val/exact) and then all the experiment is sorted according to them input: expdat : Experiment field : string name of the field to filter samples for freq. sorting or False for all samples value : string value of samples to use for the freq. sorting exact : bool is the value exact or partial string exclude : bool True to sort on all samples except the field/value ones, False to sort only on field/value samples (default=False) logscale : bool True (default) to use log2 transform for frequencies before mean and sorting, False to use original values useabs : bool True to sort by absolute value of freq, False (default) to sort by freq reverse: bool False (default) to have high freq. bacteria last, True to have high freq bacteria first output: newexp : Experiment the experiment with bacteria sorted according to subgroup freq. """ params=locals() if field: texp=hs.filtersamples(expdat,field,value,exact=exact,exclude=exclude) else: texp=hs.copyexp(expdat) if logscale: texp.data[texp.data<2]=2 texp.data=np.log2(texp.data) if useabs: meanvals=hs.mean(np.abs(texp.data),axis=1) else: meanvals=hs.mean(texp.data,axis=1) svals,sidx=hs.isort(meanvals) if reverse: sidx=sidx[::-1] newexp=hs.reorderbacteria(expdat,sidx) newexp.filters.append("sort by freq field=%s value=%s" % (field,value)) hs.addcommand(newexp,"sortbyfreq",params=params,replaceparams={'expdat':expdat}) return newexp def sortbyvariance(expdat,field=False,value=False,exact=False,norm=False): """ sort bacteria by their variance sorting is performed based on a subset of samples (field/val/exact) and then all the experiment is sorted according to them input: expdat : Experiment field : string name of the field to filter samples for freq. sorting or False for all samples value : string value of samples to use for the freq. sorting exact : bool is the value exact or partial string norm : bool - False to sort by varinace, True to sort by variance/mean output: newexp : Experiment the experiment with bacteria sorted according to subgroup freq. """ params=locals() if field: texp=hs.filtersamples(expdat,field,value,exact=exact) else: texp=copy.deepcopy(expdat) svals=np.std(texp.data,axis=1) if norm: svals=svals/np.mean(texp.data,axis=1) svals,sidx=hs.isort(svals) newexp=hs.reorderbacteria(expdat,sidx) newexp.filters.append("sort by variance field=%s value=%s normalize=%s" % (field,value,norm)) hs.addcommand(newexp,"sortbyvariance",params=params,replaceparams={'expdat':expdat}) return newexp def sortbygroupdiff(expdat,field,val1,val2): """ sort bacteria in the experiment by the difference in the mean between the 2 groups (val1,val2 in field) input: expdat field - the name of the field for the 2 groups val1,val2 - the values for the 2 groups output: newexp - the experiment with sorted bacteria """ params=locals() exp1=hs.filtersamples(expdat,field,val1,exact=True) exp2=hs.filtersamples(expdat,field,val2,exact=True) m1=np.mean(np.log2(exp1.data+2),axis=1) m2=np.mean(np.log2(exp2.data+2),axis=1) diff=(m1-m2)/(m1+m2+20) sv,si=hs.isort(diff) newexp=hs.reorderbacteria(expdat,si) newexp.filters.append("sort by group difference field=%s val1=%s val2=%s" % (field,val1,val2)) hs.addcommand(newexp,"sortbygroupdiff",params=params,replaceparams={'expdat':expdat}) return newexp def sortcorrelation(expdat,method='all'): """ EXPERIMENTAL sort bacteria according to highest correlation/anti-correlation input: expdat method: pres - use correlation only on samples where present in one of the two sequnences all - use correlation on all samples (default) output: newexp - the experiment with bacteria sorted by correlation (each time next bacteria the most abs(corr) to the current bacteria) """ params=locals() cdat=copy.copy(expdat.data) cdat[cdat<=2]=2 cdat=np.log2(cdat) cdat=scale(cdat,axis=1,copy=False,with_mean=False) hs.Debug(6,"Calculating correlation matrix") cmat=np.corrcoef(cdat) hs.Debug(6,"sorting bacteria") cmat=np.abs(cmat) cmat-=np.identity(len(expdat.seqs)) maxpos=np.argmax(cmat) maxpos=np.unravel_index(maxpos,np.shape(cmat)) order=[maxpos[0]] ubact=np.arange(len(expdat.seqs)) ubact=np.delete(ubact,maxpos[0]) maxpos=maxpos[0] while len(ubact)>0: cdat=cmat[ubact,maxpos] cdat=cdat.flatten() maxpos=np.argmax(cdat) order.append(ubact[maxpos]) ubact=np.delete(ubact,maxpos) newexp=hs.reorderbacteria(expdat,order) newexp.filters.append("correlation sort") hs.addcommand(newexp,"sortcorrelation",params=params,replaceparams={'expdat':expdat}) return newexp ############ # add sort by center of mass (for time/1d series) ########### def sortbycentermass(expdat,field=False,numeric=True,uselog=True): """ sort bacteria in the experiment according to a 1d gradient by calculating the center of mass input: expdat field : string the name of the field to sort by or False to skip sorting numeric : bool True if the sort field is numeric (ignored if no sort field) uselog : bool True to log transform the data before mass center calculation output: newexp - the experiment with sorted bacteria """ params=locals() if field: newexp=hs.sortsamples(expdat,field,numeric=numeric) else: newexp=hs.copyexp(expdat) dat=newexp.data if uselog: dat[dat<1]=1 dat=np.log2(dat) cm=[] multpos=np.arange(len(newexp.samples)) for cseqind in range(len(newexp.seqs)): cm.append(np.dot(dat[cseqind,:],multpos)/np.sum(dat[cseqind,:])) sv,si=hs.isort(cm) newexp=hs.reorderbacteria(expdat,si) newexp.filters.append("sort by center of mass field=%s, uselog=%s" % (field,uselog)) hs.addcommand(newexp,"sortbycentermass",params=params,replaceparams={'expdat':expdat}) return newexp def sortbysign(expdat,field=False,value='',exclude=False,exact=True,maxfval=0.2): """ sort bacteria in the experiment based on the number of positive/negative samples (ignoring nans) input: expdat : Experiment field,value,exclude,exact : name of field and value of field in order to sort based only on these samples or field=False for all samples (default) maxfval - the maximal f-value output: newexp : Experiment sorted by difference between positive/negative """ params=locals() if field: texp=hs.filtersamples(expdat,field,value,exact=exact,exclude=exclude) else: texp=hs.copyexp(expdat) texp.data=np.sign(texp.data) numpos=np.nansum(texp.data>0,axis=1) numneg=np.nansum(texp.data<0,axis=1) pval=np.ones(len(numpos)) for cpos in range(len(pval)): if numpos[cpos]==0 and numneg[cpos]==0: continue pval1=stats.binom.cdf(numpos[cpos],numpos[cpos]+numneg[cpos],0.5) pval2=stats.binom.cdf(numneg[cpos],numpos[cpos]+numneg[cpos],0.5) pval[cpos]=np.min([pval1,pval2]) signs=np.nanmean(texp.data,axis=1) fval=hs.fdr(pval) keep=np.where(np.array(fval)<=maxfval)[0] newexp=hs.reorderbacteria(expdat,keep) signs=signs[keep] si=np.argsort(signs) newexp=hs.reorderbacteria(newexp,si) newexp.filters.append("sort by sign field %s max-f-val %f" % (field,maxfval)) hs.addcommand(newexp,"sortbysign",params=params,replaceparams={'expdat':expdat}) return newexp def sortbyseqsfirst(expdat,seqs,addline=True): """ sort bacteria in expdat by first putting the bacteria from seqs (according to the order there) and then all the other expdat bacteria input: expdat : Experiment The experiment to sort the bacteria in seqs : list of squences ('ACGT') the bacteria to order first addline : bool True (default) to add a horizontal line to the plot info. False to not add output: newexp : Experiment similar to expdat but bacteria in seqs appearing first """ params=locals() newseqs=copy.copy(seqs) for cseq in expdat.seqs: if cseq not in seqs: newseqs.append(cseq) newexp=hs.filterseqs(expdat,newseqs) if addline: newexp.hlines.append(len(seqs)) newexp.filters.append("sort by sequence list first based on %d sequences" % len(seqs)) hs.addcommand(newexp,"sortbyseqsfirst",params=params,replaceparams={'expdat':expdat}) return newexp def reversebacteria(expdat): """ reverse the order of bacteria in the experiment input: expdat : Experiment the experiment to reorder ourput: newexp : Experiment with bacteria order reversed (last bacteria first) """ params=locals() newexp=hs.reorderbacteria(expdat,np.arange(len(expdat.seqs)-1,-1,-1)) newpos=[] for linepos in newexp.hlines: newpos.append(len(expdat.seqs)-linepos) newexp.hlines=newpos newexp.filters.append("reverse bacteria order") hs.addcommand(newexp,"reversebacteria",params=params,replaceparams={'expdat':expdat}) return newexp def sortbyexp(expdat,sortexp): """ sort the bacteria in expdat by first putting the bacteria in sortexp (in the order there) and then the other bacteria in expdat input: expdat : Experiment the experiment to sort sortexp : Experiment the experiment used to sort the bacteria first output: newexp : experiment sorted with sortexp bacteria first, then the others """ params=locals() hs.Debug(2,'sort by exp') numfromseqs=0 seqs=[] for cseq in sortexp.seqs: if cseq in expdat.seqdict: seqs.append(cseq) numfromseqs+=1 for cseq in expdat.seqs: if cseq not in sortexp.seqdict: seqs.append(cseq) newexp=hs.filterseqs(expdat,seqs) newexp.hlines.append(len(sortexp.seqs)) hs.Debug(6,'found %d out of %d sequences and put them first' % (numfromseqs,len(sortexp.seqs))) newexp.filters.append("sort bacteria using experiment %s" % sortexp.studyname) hs.addcommand(newexp,"sortbyexp",params=params,replaceparams={'expdat':expdat,'sortexp':sortexp}) return newexp def sortsamplesbybactfreq(expdat,seq): """ sort samples based on the frequency of sequence seq input: expdat : Experiment seq : str (ACGT) output: newexp : Experiment with samples sorted based on frequency of sequence seq (from low to high) """ params=locals() seqdat=expdat.data[expdat.seqdict[seq],:] si=np.argsort(seqdat) newexp=hs.reordersamples(expdat,si) newexp.filters.append("sort samples by bacteria frequency") hs.addcommand(newexp,"sortsamplesbybactfreq",params=params,replaceparams={'expdat':expdat}) return newexp def sortbyprev(expdat,minreads=1,reverse=False): """ sort bacteria in experiment according to prevalence expdat : Experiment minreads : float minimal number of reads in order to call a bacteria present reverse : book True to reverse the order output: newexp : Experiment the experiment with bacteria sorted according to subgroup freq. """ params=locals() texp=hs.copyexp(expdat) texp.data= texp.data>=minreads meanvals=hs.mean(texp.data,axis=1) svals,sidx=hs.isort(meanvals) if reverse: sidx=sidx[::-1] newexp=hs.reorderbacteria(expdat,sidx) newexp.filters.append("sort by prevalence") hs.addcommand(newexp,"sortbyprev",params=params,replaceparams={'expdat':expdat}) return newexp
bsd-3-clause
barney-NG/pyCAMTracker
src/filterpy/kalman/tests/test_fm.py
2
2152
# -*- coding: utf-8 -*- """Copyright 2015 Roger R Labbe Jr. FilterPy library. http://github.com/rlabbe/filterpy Documentation at: https://filterpy.readthedocs.org Supporting book at: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python This is licensed under an MIT license. See the readme.MD file for more information. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy.random as random import numpy as np import matplotlib.pyplot as plt from filterpy.kalman import FadingKalmanFilter DO_PLOT = False def test_noisy_1d(): f = FadingKalmanFilter (5., dim_x=2, dim_z=1) f.X = np.array([[2.], [0.]]) # initial state (location and velocity) f.F = np.array([[1.,1.], [0.,1.]]) # state transition matrix f.H = np.array([[1.,0.]]) # Measurement function f.P *= 1000. # covariance matrix f.R = 5 # state uncertainty f.Q = 0.0001 # process uncertainty measurements = [] results = [] zs = [] for t in range (100): # create measurement = t plus white noise z = t + random.randn()*20 zs.append(z) # perform kalman filtering f.update(z) f.predict() # save data results.append (f.X[0,0]) measurements.append(z) # now do a batch run with the stored z values so we can test that # it is working the same as the recursive implementation. # give slightly different P so result is slightly different f.X = np.array([[2.,0]]).T f.P = np.eye(2)*100. m,c,_,_ = f.batch_filter(zs,update_first=False) # plot data if DO_PLOT: p1, = plt.plot(measurements,'r', alpha=0.5) p2, = plt.plot (results,'b') p4, = plt.plot(m[:,0], 'm') p3, = plt.plot ([0,100],[0,100], 'g') # perfect result plt.legend([p1,p2, p3, p4], ["noisy measurement", "KF output", "ideal", "batch"], loc=4) plt.show() if __name__ == "__main__": DO_PLOT = True test_noisy_1d()
mit
bnaul/scikit-learn
sklearn/metrics/_plot/tests/test_plot_confusion_matrix.py
3
11535
import pytest import numpy as np from numpy.testing import assert_allclose from numpy.testing import assert_array_equal from sklearn.compose import make_column_transformer from sklearn.datasets import make_classification from sklearn.exceptions import NotFittedError from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC, SVR from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.metrics import ConfusionMatrixDisplay # TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved pytestmark = pytest.mark.filterwarnings( "ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:" "matplotlib.*") @pytest.fixture(scope="module") def n_classes(): return 5 @pytest.fixture(scope="module") def data(n_classes): X, y = make_classification(n_samples=100, n_informative=5, n_classes=n_classes, random_state=0) return X, y @pytest.fixture(scope="module") def fitted_clf(data): return SVC(kernel='linear', C=0.01).fit(*data) @pytest.fixture(scope="module") def y_pred(data, fitted_clf): X, _ = data return fitted_clf.predict(X) def test_error_on_regressor(pyplot, data): X, y = data est = SVR().fit(X, y) msg = "plot_confusion_matrix only supports classifiers" with pytest.raises(ValueError, match=msg): plot_confusion_matrix(est, X, y) def test_error_on_invalid_option(pyplot, fitted_clf, data): X, y = data msg = (r"normalize must be one of \{'true', 'pred', 'all', " r"None\}") with pytest.raises(ValueError, match=msg): plot_confusion_matrix(fitted_clf, X, y, normalize='invalid') @pytest.mark.parametrize("with_labels", [True, False]) @pytest.mark.parametrize("with_display_labels", [True, False]) def test_plot_confusion_matrix_custom_labels(pyplot, data, y_pred, fitted_clf, n_classes, with_labels, with_display_labels): X, y = data ax = pyplot.gca() labels = [2, 1, 0, 3, 4] if with_labels else None display_labels = ['b', 'd', 'a', 'e', 'f'] if with_display_labels else None cm = confusion_matrix(y, y_pred, labels=labels) disp = plot_confusion_matrix(fitted_clf, X, y, ax=ax, display_labels=display_labels, labels=labels) assert_allclose(disp.confusion_matrix, cm) if with_display_labels: expected_display_labels = display_labels elif with_labels: expected_display_labels = labels else: expected_display_labels = list(range(n_classes)) expected_display_labels_str = [str(name) for name in expected_display_labels] x_ticks = [tick.get_text() for tick in disp.ax_.get_xticklabels()] y_ticks = [tick.get_text() for tick in disp.ax_.get_yticklabels()] assert_array_equal(disp.display_labels, expected_display_labels) assert_array_equal(x_ticks, expected_display_labels_str) assert_array_equal(y_ticks, expected_display_labels_str) @pytest.mark.parametrize("normalize", ['true', 'pred', 'all', None]) @pytest.mark.parametrize("include_values", [True, False]) def test_plot_confusion_matrix(pyplot, data, y_pred, n_classes, fitted_clf, normalize, include_values): X, y = data ax = pyplot.gca() cmap = 'plasma' cm = confusion_matrix(y, y_pred) disp = plot_confusion_matrix(fitted_clf, X, y, normalize=normalize, cmap=cmap, ax=ax, include_values=include_values) assert disp.ax_ == ax if normalize == 'true': cm = cm / cm.sum(axis=1, keepdims=True) elif normalize == 'pred': cm = cm / cm.sum(axis=0, keepdims=True) elif normalize == 'all': cm = cm / cm.sum() assert_allclose(disp.confusion_matrix, cm) import matplotlib as mpl assert isinstance(disp.im_, mpl.image.AxesImage) assert disp.im_.get_cmap().name == cmap assert isinstance(disp.ax_, pyplot.Axes) assert isinstance(disp.figure_, pyplot.Figure) assert disp.ax_.get_ylabel() == "True label" assert disp.ax_.get_xlabel() == "Predicted label" x_ticks = [tick.get_text() for tick in disp.ax_.get_xticklabels()] y_ticks = [tick.get_text() for tick in disp.ax_.get_yticklabels()] expected_display_labels = list(range(n_classes)) expected_display_labels_str = [str(name) for name in expected_display_labels] assert_array_equal(disp.display_labels, expected_display_labels) assert_array_equal(x_ticks, expected_display_labels_str) assert_array_equal(y_ticks, expected_display_labels_str) image_data = disp.im_.get_array().data assert_allclose(image_data, cm) if include_values: assert disp.text_.shape == (n_classes, n_classes) fmt = '.2g' expected_text = np.array([format(v, fmt) for v in cm.ravel(order="C")]) text_text = np.array([ t.get_text() for t in disp.text_.ravel(order="C")]) assert_array_equal(expected_text, text_text) else: assert disp.text_ is None def test_confusion_matrix_display(pyplot, data, fitted_clf, y_pred, n_classes): X, y = data cm = confusion_matrix(y, y_pred) disp = plot_confusion_matrix(fitted_clf, X, y, normalize=None, include_values=True, cmap='viridis', xticks_rotation=45.0) assert_allclose(disp.confusion_matrix, cm) assert disp.text_.shape == (n_classes, n_classes) rotations = [tick.get_rotation() for tick in disp.ax_.get_xticklabels()] assert_allclose(rotations, 45.0) image_data = disp.im_.get_array().data assert_allclose(image_data, cm) disp.plot(cmap='plasma') assert disp.im_.get_cmap().name == 'plasma' disp.plot(include_values=False) assert disp.text_ is None disp.plot(xticks_rotation=90.0) rotations = [tick.get_rotation() for tick in disp.ax_.get_xticklabels()] assert_allclose(rotations, 90.0) disp.plot(values_format='e') expected_text = np.array([format(v, 'e') for v in cm.ravel(order="C")]) text_text = np.array([ t.get_text() for t in disp.text_.ravel(order="C")]) assert_array_equal(expected_text, text_text) def test_confusion_matrix_contrast(pyplot): # make sure text color is appropriate depending on background cm = np.eye(2) / 2 disp = ConfusionMatrixDisplay(cm, display_labels=[0, 1]) disp.plot(cmap=pyplot.cm.gray) # diagonal text is black assert_allclose(disp.text_[0, 0].get_color(), [0.0, 0.0, 0.0, 1.0]) assert_allclose(disp.text_[1, 1].get_color(), [0.0, 0.0, 0.0, 1.0]) # off-diagonal text is white assert_allclose(disp.text_[0, 1].get_color(), [1.0, 1.0, 1.0, 1.0]) assert_allclose(disp.text_[1, 0].get_color(), [1.0, 1.0, 1.0, 1.0]) disp.plot(cmap=pyplot.cm.gray_r) # diagonal text is white assert_allclose(disp.text_[0, 1].get_color(), [0.0, 0.0, 0.0, 1.0]) assert_allclose(disp.text_[1, 0].get_color(), [0.0, 0.0, 0.0, 1.0]) # off-diagonal text is black assert_allclose(disp.text_[0, 0].get_color(), [1.0, 1.0, 1.0, 1.0]) assert_allclose(disp.text_[1, 1].get_color(), [1.0, 1.0, 1.0, 1.0]) # Regression test for #15920 cm = np.array([[19, 34], [32, 58]]) disp = ConfusionMatrixDisplay(cm, display_labels=[0, 1]) disp.plot(cmap=pyplot.cm.Blues) min_color = pyplot.cm.Blues(0) max_color = pyplot.cm.Blues(255) assert_allclose(disp.text_[0, 0].get_color(), max_color) assert_allclose(disp.text_[0, 1].get_color(), max_color) assert_allclose(disp.text_[1, 0].get_color(), max_color) assert_allclose(disp.text_[1, 1].get_color(), min_color) @pytest.mark.parametrize( "clf", [LogisticRegression(), make_pipeline(StandardScaler(), LogisticRegression()), make_pipeline(make_column_transformer((StandardScaler(), [0, 1])), LogisticRegression())]) def test_confusion_matrix_pipeline(pyplot, clf, data, n_classes): X, y = data with pytest.raises(NotFittedError): plot_confusion_matrix(clf, X, y) clf.fit(X, y) y_pred = clf.predict(X) disp = plot_confusion_matrix(clf, X, y) cm = confusion_matrix(y, y_pred) assert_allclose(disp.confusion_matrix, cm) assert disp.text_.shape == (n_classes, n_classes) @pytest.mark.parametrize("colorbar", [True, False]) def test_plot_confusion_matrix_colorbar(pyplot, data, fitted_clf, colorbar): X, y = data def _check_colorbar(disp, has_colorbar): if has_colorbar: assert disp.im_.colorbar is not None assert disp.im_.colorbar.__class__.__name__ == "Colorbar" else: assert disp.im_.colorbar is None disp = plot_confusion_matrix(fitted_clf, X, y, colorbar=colorbar) _check_colorbar(disp, colorbar) # attempt a plot with the opposite effect of colorbar disp.plot(colorbar=not colorbar) _check_colorbar(disp, not colorbar) @pytest.mark.parametrize("values_format", ['e', 'n']) def test_confusion_matrix_text_format(pyplot, data, y_pred, n_classes, fitted_clf, values_format): # Make sure plot text is formatted with 'values_format'. X, y = data cm = confusion_matrix(y, y_pred) disp = plot_confusion_matrix(fitted_clf, X, y, include_values=True, values_format=values_format) assert disp.text_.shape == (n_classes, n_classes) expected_text = np.array([format(v, values_format) for v in cm.ravel()]) text_text = np.array([ t.get_text() for t in disp.text_.ravel()]) assert_array_equal(expected_text, text_text) def test_confusion_matrix_standard_format(pyplot): cm = np.array([[10000000, 0], [123456, 12345678]]) plotted_text = ConfusionMatrixDisplay( cm, display_labels=[False, True]).plot().text_ # Values should be shown as whole numbers 'd', # except the first number which should be shown as 1e+07 (longer length) # and the last number will be shown as 1.2e+07 (longer length) test = [t.get_text() for t in plotted_text.ravel()] assert test == ['1e+07', '0', '123456', '1.2e+07'] cm = np.array([[0.1, 10], [100, 0.525]]) plotted_text = ConfusionMatrixDisplay( cm, display_labels=[False, True]).plot().text_ # Values should now formatted as '.2g', since there's a float in # Values are have two dec places max, (e.g 100 becomes 1e+02) test = [t.get_text() for t in plotted_text.ravel()] assert test == ['0.1', '10', '1e+02', '0.53'] @pytest.mark.parametrize("display_labels, expected_labels", [ (None, ["0", "1"]), (["cat", "dog"], ["cat", "dog"]), ]) def test_default_labels(pyplot, display_labels, expected_labels): cm = np.array([[10, 0], [12, 120]]) disp = ConfusionMatrixDisplay(cm, display_labels=display_labels).plot() x_ticks = [tick.get_text() for tick in disp.ax_.get_xticklabels()] y_ticks = [tick.get_text() for tick in disp.ax_.get_yticklabels()] assert_array_equal(x_ticks, expected_labels) assert_array_equal(y_ticks, expected_labels)
bsd-3-clause
kuntzer/binfind
scripts/dang_stars_2_plot.py
1
6564
import numpy as np from matplotlib import pyplot as plt import itertools import os import binfind.utils as u import figures white_plot = False if white_plot: # Include this for presentations: import matplotlib.font_manager as fm from matplotlib import rc prop = fm.FontProperties(fname='/usr/share/texmf/fonts/opentype/public/tex-gyre/texgyreadventor-regular.otf') #rc('font', **{'fname':'/usr/share/texmf/fonts/opentype/public/tex-gyre/texgyreadventor-regular.otf'}) rc('font', **{'family':'TeX Gyre Adventor','size':14}) #### End else: figures.set_fancy(txtsize=18) reload_data = False e_req = 0.01#2e-4 r_req = 0.05#1e-3 n_angsep = 15 n_con = 15 # Minimum separation of the stars to be qualified as binaries crits_angsep = np.linspace(1, 15, n_angsep) # Max contrast to be qualified as binaries crits_contrast = np.linspace(0.1, 1.5, n_con)#np.linspace(0.1, 0.015, 7) save = True outdir = 'data/binfind_percent_meas/dang_stars' e1_deforms = [] e2_deforms = [] r2_deforms = [] if reload_data: criteria = list(itertools.product(*[crits_angsep, crits_contrast])) for iix, (crit_angsep, crit_contrast) in enumerate(criteria): ca, cc, e1_deform, e2_deform, r2_deform = u.readpickle(os.path.join(outdir, 'dang_stars_{:d}_{:1.1f}.pkl'.format(int(crit_angsep), crit_contrast))) e1_deforms.append(np.percentile(e1_deform, [95])[0]) e2_deforms.append(np.percentile(e2_deform, [95])[0]) r2_deforms.append(np.percentile(r2_deform, [95])[0]) print iix, crit_angsep, crit_contrast, e1_deforms[-1], e2_deforms[-1], r2_deforms[-1] # e1_deforms = np.asarray(e1_deforms) e2_deforms = np.asarray(e2_deforms) r2_deforms = np.asarray(r2_deforms) e1_deform = e1_deforms.reshape([n_angsep, n_con]) e2_deform = e2_deforms.reshape([n_angsep, n_con]) r2_deform = r2_deforms.reshape([n_angsep, n_con]) u.writepickle([e1_deform, e2_deform, r2_deform], os.path.join(outdir, 'resume_dang_stars.pkl')) else: e1_deform, e2_deform, r2_deform = u.readpickle(os.path.join(outdir, 'resume_dang_stars.pkl')) # Let's start by constructing the meshgrid and then the data variable x = crits_angsep y = crits_contrast dx = (x[1]-x[0])/2. dy = (y[1]-y[0])/2. x = np.hstack([x, x[-1] + 2.*dx]) y = np.hstack([y, y[-1] + 2.*dy]) X, Y = np.meshgrid(x-dx,y-dy) fig1 = plt.figure() # Round up to the nearest 0.05 #vmin = np.round(Zd.min() * 20) / 20 #vmax = np.round(Zd.max() * 20) / 20 CS = plt.pcolormesh(X, Y, e1_deform.T, cmap=plt.get_cmap("inferno_r"))#, vmin=vmin, vmax=vmax) #plt.axis([X.min(),X.max(),Y.min(),Y.max()]) #plt.xticks(x[:-1][::2]) #plt.yticks(y[:-1]) cbar = plt.colorbar(CS)#, ticks=np.linspace(0,1,21)) cbar.set_label(r"$\Delta e_1$") plt.xlabel(r"$\mathrm{Angular\ separation\ [mas]}$") plt.ylabel(r"$\mathrm{Contrast\ [mag]}$") plt.axis([X.min(),X.max(),Y.min(),Y.max()]) fig2 = plt.figure() # Round up to the nearest 0.05 #vmin = np.round(Zd.min() * 20) / 20 #vmax = np.round(Zd.max() * 20) / 20 CS = plt.pcolormesh(X, Y, e2_deform.T, cmap=plt.get_cmap("inferno_r"))#, vmin=vmin, vmax=vmax) #plt.axis([X.min(),X.max(),Y.min(),Y.max()]) #plt.xticks(x[:-1][::2]) #plt.yticks(y[:-1]) cbar = plt.colorbar(CS)#, ticks=np.linspace(0,1,21)) cbar.set_label(r"$\Delta e_2$") plt.xlabel(r"$\mathrm{Angular\ separation\ [mas]}$") plt.ylabel(r"$\mathrm{Contrast\ [mag]}$") plt.axis([X.min(),X.max(),Y.min(),Y.max()]) fig3 = plt.figure() # Round up to the nearest 0.05 #vmin = np.round(Zd.min() * 20) / 20 #vmax = np.round(Zd.max() * 20) / 20 CS = plt.pcolormesh(X, Y, r2_deform.T, cmap=plt.get_cmap("inferno_r"))#, vmin=vmin, vmax=vmax) #plt.axis([X.min(),X.max(),Y.min(),Y.max()]) #plt.xticks(x[:-1][::2]) #plt.yticks(y[:-1]) cbar = plt.colorbar(CS)#, ticks=np.linspace(0,1,21)) cbar.set_label(r"$\Delta R^2/R^2$") plt.xlabel(r"$\mathrm{Angular\ separation\ [mas]}$") plt.ylabel(r"$\mathrm{Contrast\ [mag]}$") plt.axis([X.min(),X.max(),Y.min(),Y.max()]) fig4 = plt.figure(figsize=(8.8,7.2)) ax = plt.subplot(111) # Round up to the nearest 0.05 #vmin = np.round(Zd.min() * 20) / 20 #vmax = np.round(Zd.max() * 20) / 20 mean_budg = (r2_deform.T / r_req + (e1_deform + e2_deform).T / e_req)/3. * 100 mean_budg = ((e1_deform + e2_deform).T)/2. * 1e2 r_tab = r2_deform.T * 1e2 CS1 = plt.pcolormesh(X, Y, r2_deform.T / r_req, cmap=plt.get_cmap("inferno_r")) vmaxe = np.round(mean_budg.max() / .10, 0) * .10 vmine = np.round(mean_budg.min() / .10, 0) * .10 tt = 1e3 vmaxr = np.round(r_tab.max() * tt, 0) / tt vminr = np.floor( np.round(r_tab.min() * tt, 0) / tt * 1e2) / 1e2 print vmine print vminr, vmaxr print r2_deform.min(), r2_deform.max() #CS1 = plt.pcolormesh(X, Y, r_tab, cmap=plt.get_cmap("inferno_r"), vmin=vminr, vmax=vmaxr) CS = plt.pcolormesh(X, Y, mean_budg, cmap=plt.get_cmap("inferno_r"), vmin=vmine, vmax=vmaxe) plt.xticks(x[:-1][::2]) plt.yticks(y[:-1][::2]) import matplotlib.ticker as ticker tickse = np.arange(vmine, vmaxe, .5) ticksr = np.linspace(vminr, vmaxr, 5) cbar = plt.colorbar(CS, ticks=tickse, pad=0.01) if white_plot: commonticks = ["%1.1f%; %1.2f%$" % (tickse[ii], ticksr[ii]) for ii in range(len(tickse))] else: commonticks = [r"$\smallskip%1.1f\%%$" % tickse[ii] + "\n" + r"$%1.2f\%%$" % (ticksr[ii]) for ii in range(len(tickse))] cbar.ax.set_yticklabels(commonticks, ha = 'left') if white_plot: cbar.set_label("$\Delta$e/e_0;\,\Delta R^2/R_0^2$", color="white") plt.xlabel("Maximum angular separation [mas]") plt.ylabel("Minimum contrast [mag]") else: cbar.set_label(r"$\langle\Delta e_i/e_{0,i}\rangle;\,\langle\Delta R^2/R^2_{0}\rangle$") plt.xlabel(r"$\mathrm{Angular\ separation\ [mas]}$") plt.ylabel(r"$\mathrm{Contrast\ [mag]}$") plt.axis([X.min(),X.max(),Y.min(),Y.max()]) if white_plot: [ ax.spines[s].set_color('white') for s in ax.spines] ax.xaxis.label.set_color('white') ax.tick_params(axis='x', colors='white') ax.yaxis.label.set_color('white') ax.tick_params(axis='y', colors='white') #cbar.outline.set_color('w') #set colorbar box color cbar.ax.yaxis.set_tick_params(color='w') #set colorbar ticks color cbytick_obj = plt.getp(cbar.ax.axes, 'yticklabels') #tricky plt.setp(cbytick_obj, color='w') #cbar.outline.set_color('w') if save: figures.savefig(os.path.join(outdir, "dang_e1"), fig1, fancy=True, pdf_transparence=True) figures.savefig(os.path.join(outdir, "dang_e2"), fig2, fancy=True, pdf_transparence=True) figures.savefig(os.path.join(outdir, "dang_r2"), fig3, fancy=True, pdf_transparence=True) figures.savefig(os.path.join(outdir, "dang_summary"), fig4, fancy=True, pdf_transparence=True) plt.show()
mit
tomsib2001/speaker-recognition
main_kp.py
1
6821
# -*- coding: utf-8 -*- # traitement global des fichiers wav import os,numpy as np,octaveIO as oio,string,subprocess import fisher import random from sklearn import mixture from kernel_perceptron import kp import pickle def gmm(x, nbG): g=mixture.GMM(n_components=nbG) g.fit(x) return g def createDataFiles(nbc, nbG): if not os.path.exists('data'): os.makedirs('data') print "Please add some data, I don't work for free" else: mfccs=[] #contiendra l'ensemble des mfccs dic={} mu=[] pi=[] num=0 for root, dirs, files in os.walk('data'): #print root,dirs,files for file in files: if file.endswith(".wav"): # print "treating file "+file nameInDic=os.path.split(root)[-1] # print "-> "+nameInDic name=os.path.splitext(file)[0] fileName = os.path.join(root, name) wavFile = fileName+'.wav' mfccFile = fileName+'mfcc.mat' #contient 'c' #print string.join(['octave','--eval','cepstraux('+'\''+wavFile+'\',\''+mfccFile+'\')']) subprocess.call(['octave', '--silent', '--eval','cepstraux('+'\''+wavFile+'\',\''+mfccFile+'\')']) c=oio.retrieve(mfccFile,['c'])[0] l=np.size(c, 0) #nombre total de frames nbv=l/nbc if(not dic.has_key(nameInDic)): dic[nameInDic]=[] for j in xrange(nbv): binf=j*nbc bsup=(j+1)*nbc newvf=c[binf:bsup] #vecteur de frames à ajouter mfccs.append(newvf) #ajout dans l'ensemble global #Calcul des gmm g = gmm(newvf, nbG) mu_j = g.means pi_j = g.weights mu.append(mu_j) pi.append(pi_j) dic[nameInDic].append(num) num+=1 return mfccs, mu, pi, dic def gmms(data, nbG): c0 = np.concatenate(data) g=gmm(c0, nbG) mu0=g.means sig0=g.covars return mu0, sig0 def build_labels(name,dic): size = sum(len(val) for val in dic.itervalues()) res = np.zeros(size) for key in dic: if key==name: val=1 else: val=-1 for i in dic[key]: res[i]=val return res def make_training_set(name,dic,m): """Take m random adversaries to help train <name>""" nameKeys=dic[name] advKeys=[dic[key] for key in dic if key<>name] advs = random.sample(advKeys,min(len(advKeys),m)) return {name : nameKeys, '#mechant' : advs} #r1: taux de données de name utilisé pour l'apprentissage #r2*|{données de name utilisé pour l'apprentissage}|: nombre de données hors name pour l'apprentissage #le reste pour les tests #leaveOut est une liste de noms de locuteurs éventuels à ne pas inclure dans le training def make_sets(name, dic, r1, r2,leaveOut=[]): nameKeys=dic[name] advKeys_=np.concatenate([dic[key] for key in dic if (key<>name and key not in leaveOut)]) if leaveOut: advKeysLeaveOut_ = np.concatenate([dic[key] for key in dic if (key<>name and key in leaveOut)]) advKeysLeaveOut=advKeysLeaveOut_.tolist() else: advKeysLeaveOut = [] advKeys=advKeys_.tolist() l1=len(nameKeys) lp1=int(r1*l1) l2=len(advKeys) lp2=min(int(r2*lp1), l2) advs=random.sample(advKeys,lp2) for i in advs: advKeys.remove(i) testLengthAdv = l2/2 # on ne teste que sur la moitié de ce qui reste pour pouvoir faire un "blind" test sur un troisième ensemble, xTest2 testLengthName = l1/2 xApp=nameKeys[0:lp1]+advs xTest=nameKeys[lp1:testLengthName]+advKeys[0:testLengthAdv] xTestPlus=testLengthName-lp1 xTestMinus=testLengthAdv xTest2 = nameKeys[(testLengthName+1):l1]+advKeys[(testLengthAdv+1):]+advKeysLeaveOut xTest2Plus=(l1-testLengthName-1) xTest2Minus=(len(advKeys)-1 -testLengthAdv)+len(advKeysLeaveOut) yApp=[1 for i in xrange(lp1)]+[-1 for i in xrange(lp2)] yTest=[1 for i in xrange(xTestPlus)]+[-1 for i in xrange(xTestMinus)] yTest2=[1 for i in xrange(xTest2Plus)]+[-1 for i in xrange(xTest2Minus)] return xApp, yApp, xTest, yTest,xTest2,yTest2 def train(name,mu0,sig0,mu,pi, xApp, yApp, verbose=False, stop=100000): #print('learning ' + name) # y = build_labels(name,dic) # x=range(len(mu)) #xApp, yApp, xTest, yTest = make_sets(name, dic, r1, r2) def k(i,j): res = fisher.K(xApp,i,j,mu[i],mu[j],sig0,pi[i],pi[j],mu0) return res return kp(xApp, yApp, k, verbose=verbose, stop=stop) def predKP(w, b, mu, pi, mu0, sig0, xTest): # print 'prediction...' yPred=[] T=len(w) for i in xTest: #calcule <w,i-eme> v=[w[j]*fisher.K(w, j, i, mu[j], mu[i], sig0, pi[j], pi[j], mu0) for j in xrange(T)] tmp=sum(v) + b yPred.append(tmp) return yPred def evalKP(yPred, yTest): ok = 0 tot = len(yTest) for i in xrange(tot): ok+=(yPred[i]*yTest[i] > 0) return ok/float(tot) def test_make_sets(r1, r2,leaveOut=[]): dic={'a':[1, 5, 7, 23, 18, 4, 2], 'b':[8, 9, 10], 'c':[6, 11, 12]} # print dic res = make_sets('a', dic, r1, r2,leaveOut) return dic,res #dic, res = test_make_sets(0.2, 1.2,['b']) #print dic,res nbc=100 # nbG=50 # name='gerra' # r1=0.6 # r2=2.0 # mfccs, mu, pi, dic = createDataFiles(nbc, nbG) # print name # xApp, yApp, xOpp, yOpp, xTest, yTest = make_sets(name, dic, r1, r2) # print 'GMM sur l\'ensemble des points\n' # mu0, sig0 = gmms([mfccs[i] for i in xApp], nbG) # print 'start training' # w, b, ind = train(name, mu0, sig0, mu, pi, xApp, yApp, verbose=True) # acc = evalKP(predKP(w, b, mu, pi, mu0, sig0, xTest), yTest) # print ind, acc def optimisation(names, nbGs, r1, r2, stop=100000): res={} for nbG in nbGs: mfccs, mu, pi, dic = createDataFiles(nbc, nbG) pickle.dump(dic, open('data_kp'+str(nbG)+'.dat', 'wb')) for name in names: xApp, yApp, xOpp, yOpp, xTest, yTest = make_sets(name, dic, r1, r2) mu0, sig0 = gmms([mfccs[i] for i in xApp], nbG) w, b, it = train(name, mu0, sig0, mu, pi, xApp, yApp, stop=stop) acc = evalKP(predKP(w, b, mu, pi, mu0, sig0, xTest), yTest) res[(name, nbG)]=acc print name, nbG, acc, it return res res = optimisation(['gerra', 'sarkozy', 'L4', 'thomas'], [10, 30, 40, 50, 70, 100], 0.6, 2.0, stop=300) pickle.dump(res, open('resultats_kp.dat', 'wb'))
mit
degoldschmidt/pytrack-analysis
pytrack_analysis/preprocessing.py
1
1182
from scipy import signal import numpy as np import pandas as pd import time def interpolate(*args): if len(args) > 1: return [arg.interpolate() for arg in args] elif len(args) == 1: return args[0].interpolate() else: return None def to_mm(_data, px2mm): return _data * px2mm def gaussian_filter(*args, _len=16, _sigma=1.6): if len(args) > 1: return [gaussian_filtered(arg, _len=_len, _sigma=_sigma) for arg in args] elif len(args) == 1: return gaussian_filtered(args[0], _len=_len, _sigma=_sigma) else: return None def gaussian_filter_np(_X, _len=16, _sigma=1.6): return gaussian_filtered(_X, _len=_len, _sigma=_sigma) def gaussian_filtered(_X, _len=16, _sigma=1.6): norm = np.sqrt(2*np.pi)*_sigma ### Scipy's gaussian window is not normalized window = signal.gaussian(_len+1, std=_sigma)/norm outdf = pd.DataFrame({}, index=_X.index) for col in _X.columns: convo = np.convolve(_X[col], window, "same") ## eliminate boundary effects convo[:_len] = _X[col].iloc[:_len] convo[-_len:] = _X[col].iloc[-_len:] outdf[col] = convo return outdf
gpl-3.0
detrout/debian-statsmodels
examples/incomplete/dates.py
29
1251
""" Using dates with timeseries models """ import statsmodels.api as sm import pandas as pd # Getting started # --------------- data = sm.datasets.sunspots.load() # Right now an annual date series must be datetimes at the end of the year. dates = sm.tsa.datetools.dates_from_range('1700', length=len(data.endog)) # Using Pandas # ------------ # Make a pandas TimeSeries or DataFrame endog = pd.TimeSeries(data.endog, index=dates) # and instantiate the model ar_model = sm.tsa.AR(endog, freq='A') pandas_ar_res = ar_model.fit(maxlag=9, method='mle', disp=-1) # Let's do some out-of-sample prediction pred = pandas_ar_res.predict(start='2005', end='2015') print(pred) # Using explicit dates # -------------------- ar_model = sm.tsa.AR(data.endog, dates=dates, freq='A') ar_res = ar_model.fit(maxlag=9, method='mle', disp=-1) pred = ar_res.predict(start='2005', end='2015') print(pred) # This just returns a regular array, but since the model has date information # attached, you can get the prediction dates in a roundabout way. print(ar_res.data.predict_dates) # This attribute only exists if predict has been called. It holds the dates # associated with the last call to predict. #..TODO: should this be attached to the results instance?
bsd-3-clause
shangwuhencc/scikit-learn
sklearn/decomposition/pca.py
192
23117
""" Principal Component Analysis """ # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Michael Eickenberg <[email protected]> # # License: BSD 3 clause from math import log, sqrt import numpy as np from scipy import linalg from scipy.special import gammaln from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, as_float_array from ..utils import check_array from ..utils.extmath import fast_dot, fast_logdet, randomized_svd from ..utils.validation import check_is_fitted def _assess_dimension_(spectrum, rank, n_samples, n_features): """Compute the likelihood of a rank ``rank`` dataset The dataset is assumed to be embedded in gaussian noise of shape(n, dimf) having spectrum ``spectrum``. Parameters ---------- spectrum: array of shape (n) Data spectrum. rank: int Tested rank value. n_samples: int Number of samples. n_features: int Number of features. Returns ------- ll: float, The log-likelihood Notes ----- This implements the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` """ if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the" " dataset") pu = -rank * log(2.) for i in range(rank): pu += (gammaln((n_features - i) / 2.) - log(np.pi) * (n_features - i) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank + 1.) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def _infer_dimension_(spectrum, n_samples, n_features): """Infers the dimension of a dataset of shape (n_samples, n_features) The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() class PCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. This implementation uses the scipy.linalg implementation of the singular value decomposition. It only works for dense arrays and is not scalable to large dimensional data. The time complexity of this implementation is ``O(n ** 3)`` assuming n ~ n_samples ~ n_features. Read more in the :ref:`User Guide <PCA>`. Parameters ---------- n_components : int, None or string Number of components to keep. if n_components is not set all components are kept:: n_components == min(n_samples, n_features) if n_components == 'mle', Minka\'s MLE is used to guess the dimension if ``0 < n_components < 1``, select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. whiten : bool, optional When True (False by default) the `components_` vectors are divided by n_samples times singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making there data respect some hard-wired assumptions. Attributes ---------- components_ : array, [n_components, n_features] Principal axes in feature space, representing the directions of maximum variance in the data. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. n_components_ : int The estimated number of components. Relevant when n_components is set to 'mle' or a number between 0 and 1 to select using explained variance. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to computed the estimated data covariance and score samples. Notes ----- For n_components='mle', this class uses the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` Implements the probabilistic PCA model from: M. Tipping and C. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622 via the score and score_samples methods. See http://www.miketipping.com/papers/met-mppca.pdf Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this implementation, running fit twice on the same matrix can lead to principal components with signs flipped (change in direction). For this reason, it is important to always use the same estimator object to transform data in a consistent fashion. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(copy=True, n_components=2, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- RandomizedPCA KernelPCA SparsePCA TruncatedSVD """ def __init__(self, n_components=None, copy=True, whiten=False): self.n_components = n_components self.copy = copy self.whiten = whiten def fit(self, X, y=None): """Fit the model with X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(X) return self def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ U, S, V = self._fit(X) U = U[:, :self.n_components_] if self.whiten: # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples) U *= sqrt(X.shape[0]) else: # X_new = X * V = U * S * V^T * V = U * S U *= S[:self.n_components_] return U def _fit(self, X): """Fit the model on X Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- U, s, V : ndarrays The SVD of the input data, copied and centered when requested. """ X = check_array(X) n_samples, n_features = X.shape X = as_float_array(X, copy=self.copy) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ U, S, V = linalg.svd(X, full_matrices=False) explained_variance_ = (S ** 2) / n_samples explained_variance_ratio_ = (explained_variance_ / explained_variance_.sum()) components_ = V n_components = self.n_components if n_components is None: n_components = n_features elif n_components == 'mle': if n_samples < n_features: raise ValueError("n_components='mle' is only supported " "if n_samples >= n_features") n_components = _infer_dimension_(explained_variance_, n_samples, n_features) elif not 0 <= n_components <= n_features: raise ValueError("n_components=%r invalid for n_features=%d" % (n_components, n_features)) if 0 < n_components < 1.0: # number of components for which the cumulated explained variance # percentage is superior to the desired threshold ratio_cumsum = explained_variance_ratio_.cumsum() n_components = np.sum(ratio_cumsum < n_components) + 1 # Compute noise covariance using Probabilistic PCA model # The sigma2 maximum likelihood (cf. eq. 12.46) if n_components < n_features: self.noise_variance_ = explained_variance_[n_components:].mean() else: self.noise_variance_ = 0. # store n_samples to revert whitening when getting covariance self.n_samples_ = n_samples self.components_ = components_[:n_components] self.explained_variance_ = explained_variance_[:n_components] explained_variance_ratio_ = explained_variance_ratio_[:n_components] self.explained_variance_ratio_ = explained_variance_ratio_ self.n_components_ = n_components return (U, S, V) def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision def transform(self, X): """Apply the dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X): """Transform data back to its original space, i.e., return an input X_original whose transform would be X Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) """ check_is_fitted(self, 'mean_') if self.whiten: return fast_dot( X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_ def score_samples(self, X): """Return the log-likelihood of each sample See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: array, shape (n_samples,) Log-likelihood of each sample under the current model """ check_is_fitted(self, 'mean_') X = check_array(X) Xr = X - self.mean_ n_features = X.shape[1] log_like = np.zeros(X.shape[0]) precision = self.get_precision() log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like def score(self, X, y=None): """Return the average log-likelihood of all samples See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: float Average log-likelihood of the samples under the current model """ return np.mean(self.score_samples(X)) class RandomizedPCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) using randomized SVD Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. Read more in the :ref:`User Guide <RandomizedPCA>`. Parameters ---------- n_components : int, optional Maximum number of components to keep. When not given or None, this is set to n_features (the second dimension of the training data). copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. iterated_power : int, optional Number of iterations for the power method. 3 by default. whiten : bool, optional When True (False by default) the `components_` vectors are divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Attributes ---------- components_ : array, [n_components, n_features] Components with maximum variance. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. \ k is not set then all components are stored and the sum of explained \ variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import RandomizedPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = RandomizedPCA(n_components=2) >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE RandomizedPCA(copy=True, iterated_power=3, n_components=2, random_state=None, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- PCA TruncatedSVD References ---------- .. [Halko2009] `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` .. [MRT] `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` """ def __init__(self, n_components=None, copy=True, iterated_power=3, whiten=False, random_state=None): self.n_components = n_components self.copy = copy self.iterated_power = iterated_power self.whiten = whiten self.random_state = random_state def fit(self, X, y=None): """Fit the model with X by extracting the first principal components. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(check_array(X)) return self def _fit(self, X): """Fit the model to the data X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X : ndarray, shape (n_samples, n_features) The input data, copied, centered and whitened when requested. """ random_state = check_random_state(self.random_state) X = np.atleast_2d(as_float_array(X, copy=self.copy)) n_samples = X.shape[0] # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components U, S, V = randomized_svd(X, n_components, n_iter=self.iterated_power, random_state=random_state) self.explained_variance_ = exp_var = (S ** 2) / n_samples full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var if self.whiten: self.components_ = V / S[:, np.newaxis] * sqrt(n_samples) else: self.components_ = V return X def transform(self, X, y=None): """Apply dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X = fast_dot(X, self.components_.T) return X def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) X = self._fit(X) return fast_dot(X, self.components_.T) def inverse_transform(self, X, y=None): """Transform data back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform. """ check_is_fitted(self, 'mean_') X_original = fast_dot(X, self.components_) if self.mean_ is not None: X_original = X_original + self.mean_ return X_original
bsd-3-clause
astroML/astroML
examples/datasets/plot_sdss_specgals.py
2
1802
""" SDSS Spectroscopic Galaxy Sample -------------------------------- This figure shows photometric colors of the SDSS spectroscopic galaxy sample. """ # Author: Jake VanderPlas <[email protected]> # License: BSD # The figure is an example from astroML: see http://astroML.github.com import numpy as np from matplotlib import pyplot as plt from astropy.visualization import hist from astroML.datasets import fetch_sdss_specgals data = fetch_sdss_specgals() #------------------------------------------------------------ # plot the RA/DEC in an area-preserving projection RA = data['ra'] DEC = data['dec'] # convert coordinates to degrees RA -= 180 RA *= np.pi / 180 DEC *= np.pi / 180 ax = plt.axes(projection='mollweide') ax.grid() plt.scatter(RA, DEC, s=1, lw=0, c=data['z'], cmap=plt.cm.copper, vmin=0, vmax=0.4) plt.title('SDSS DR8 Spectroscopic Galaxies') cb = plt.colorbar(cax=plt.axes([0.05, 0.1, 0.9, 0.05]), orientation='horizontal', ticks=np.linspace(0, 0.4, 9)) cb.set_label('redshift') #------------------------------------------------------------ # plot the r vs u-r color-magnitude diagram u = data['modelMag_u'] r = data['modelMag_r'] rPetro = data['petroMag_r'] plt.figure() ax = plt.axes() plt.scatter(u - r, rPetro, s=1, lw=0, c=data['z'], cmap=plt.cm.copper, vmin=0, vmax=0.4) plt.colorbar(ticks=np.linspace(0, 0.4, 9)).set_label('redshift') plt.xlim(0.5, 5.5) plt.ylim(18, 12.5) plt.xlabel('u-r') plt.ylabel('rPetrosian') #------------------------------------------------------------ # plot a histogram of the redshift plt.figure() hist(data['z'], bins='knuth', histtype='stepfilled', ec='k', fc='#F5CCB0') plt.xlim(0, 0.4) plt.xlabel('z (redshift)') plt.ylabel('dN/dz(z)') plt.show()
bsd-2-clause
widdowquinn/Teaching-2015-03-17-UoD_compgenvis
workshop_1/bs32010/ex02.py
2
2123
# ex02.py # # Functions and data useful in exercise 2 (k-mer spectra) of # the BS32010 course at the University of Dundee import pandas as pd from collections import defaultdict import os bact_datadir = "genome_data/gc_content" files = {"Mycoplasma genitalium": ("NC_018495.fna", "NC_018496.fna", "NC_018497.fna", "NC_018498.fna"), "Mycoplasma pneumoniae": ("NC_000912.fna", "NC_016807.fna", "NC_017504.fna", "NC_020076.fna"), "Nostoc punctiforme": ("NC_010628.fna",), "Escherichia coli": ("NC_000913.fna", "NC_002695.fna", "NC_004431.fna", "NC_010468.fna"), "Mycobacterium tuberculosis": ("NC_016934.fna", "NC_017523.fna", "NC_022350.fna", "NC_000962.fna")} bacteria = files.keys() bact_files = {} for k, v in files.items(): bact_files[k] = tuple([os.path.join(bact_datadir, fn) for fn in v]) def count_str_kmers(instr, k, kdict=None): """Counts sequences of size k in instr, populating kdict. Loops over instr with a window of size k, populating the dictionary kdict with a count of occurrences of each k-mer. Returns the dictionary kdict. """ if kdict is None: kdict = defaultdict(int) for idx in range(len(instr)-k): kdict[instr[idx:idx+k]] += 1 return kdict def count_seq_kmers(inseq, k): """Counts kmers of size k in the sequence inseq. Counts kmers in forward and reverse directions, returning a Pandas dataframe of k-mer and count. """ kdict = count_str_kmers(str(inseq.seq), k) kdict = count_str_kmers(str(inseq.reverse_complement().seq), k, kdict) df = pd.DataFrame.from_dict(kdict, orient="index") df.columns = ("frequency",) return df
mit
RNAer/qiita
qiita_db/metadata_template/prep_template.py
1
19189
# ----------------------------------------------------------------------------- # Copyright (c) 2014--, The Qiita Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from __future__ import division from os.path import join from time import strftime from qiita_core.exceptions import IncompetentQiitaDeveloperError from qiita_db.exceptions import (QiitaDBColumnError, QiitaDBUnknownIDError, QiitaDBError, QiitaDBExecutionError) from qiita_db.sql_connection import SQLConnectionHandler from qiita_db.ontology import Ontology from qiita_db.util import (get_emp_status, convert_to_id, convert_from_id, get_mountpoint, infer_status) from .base_metadata_template import BaseSample, MetadataTemplate from .util import load_template_to_dataframe from .constants import (TARGET_GENE_DATA_TYPES, RENAME_COLS_DICT, REQUIRED_TARGET_GENE_COLS) class PrepSample(BaseSample): r"""Class that models a sample present in a PrepTemplate. See Also -------- BaseSample Sample """ _table = "common_prep_info" _table_prefix = "prep_" _column_table = "prep_columns" _id_column = "prep_template_id" def _check_template_class(self, md_template): r"""Checks that md_template is of the correct type Parameters ---------- md_template : PrepTemplate The metadata template Raises ------ IncompetentQiitaDeveloperError If `md_template` is not a PrepTemplate object """ if not isinstance(md_template, PrepTemplate): raise IncompetentQiitaDeveloperError() class PrepTemplate(MetadataTemplate): r"""Represent the PrepTemplate of a raw data. Provides access to the tables in the DB that holds the sample preparation information. See Also -------- MetadataTemplate SampleTemplate """ _table = "common_prep_info" _table_prefix = "prep_" _column_table = "prep_columns" _id_column = "prep_template_id" translate_cols_dict = {'emp_status_id': 'emp_status'} id_cols_handlers = {'emp_status_id': get_emp_status()} str_cols_handlers = {'emp_status_id': get_emp_status(key='emp_status_id')} _sample_cls = PrepSample @classmethod def create(cls, md_template, raw_data, study, data_type, investigation_type=None): r"""Creates the metadata template in the database Parameters ---------- md_template : DataFrame The metadata template file contents indexed by samples Ids raw_data : RawData The raw_data to which the prep template belongs to. study : Study The study to which the prep template belongs to. data_type : str or int The data_type of the prep template investigation_type : str, optional The investigation type, if relevant Returns ------- A new instance of `cls` to access to the PrepTemplate stored in the DB Raises ------ QiitaDBColumnError If the investigation_type is not valid If a required column is missing in md_template """ # If the investigation_type is supplied, make sure it is one of # the recognized investigation types if investigation_type is not None: cls.validate_investigation_type(investigation_type) # Get a connection handler conn_handler = SQLConnectionHandler() queue_name = "CREATE_PREP_TEMPLATE_%d" % raw_data.id conn_handler.create_queue(queue_name) # Check if the data_type is the id or the string if isinstance(data_type, (int, long)): data_type_id = data_type data_type_str = convert_from_id(data_type, "data_type", conn_handler) else: data_type_id = convert_to_id(data_type, "data_type", conn_handler) data_type_str = data_type md_template = cls._clean_validate_template(md_template, study.id, data_type_str, conn_handler) # Insert the metadata template # We need the prep_id for multiple calls below, which currently is not # supported by the queue system. Thus, executing this outside the queue prep_id = conn_handler.execute_fetchone( "INSERT INTO qiita.prep_template (data_type_id, raw_data_id, " "investigation_type) VALUES (%s, %s, %s) RETURNING " "prep_template_id", (data_type_id, raw_data.id, investigation_type))[0] cls._add_common_creation_steps_to_queue(md_template, prep_id, conn_handler, queue_name) try: conn_handler.execute_queue(queue_name) except Exception: # Clean up row from qiita.prep_template conn_handler.execute( "DELETE FROM qiita.prep_template where " "{0} = %s".format(cls._id_column), (prep_id,)) # Check if sample IDs present here but not in sample template sql = ("SELECT sample_id from qiita.required_sample_info WHERE " "study_id = %s") # Get list of study sample IDs, prep template study IDs, # and their intersection prep_samples = set(md_template.index.values) unknown_samples = prep_samples.difference( s[0] for s in conn_handler.execute_fetchall(sql, [study.id])) if unknown_samples: raise QiitaDBExecutionError( 'Samples found in prep template but not sample template: ' '%s' % ', '.join(unknown_samples)) # some other error we haven't seen before so raise it raise pt = cls(prep_id) pt.generate_files() return pt @classmethod def validate_investigation_type(self, investigation_type): """Simple investigation validation to avoid code duplication Parameters ---------- investigation_type : str The investigation type, should be part of the ENA ontology Raises ------- QiitaDBColumnError The investigation type is not in the ENA ontology """ ontology = Ontology(convert_to_id('ENA', 'ontology')) terms = ontology.terms + ontology.user_defined_terms if investigation_type not in terms: raise QiitaDBColumnError("'%s' is Not a valid investigation_type. " "Choose from: %s" % (investigation_type, ', '.join(terms))) @classmethod def _check_template_special_columns(cls, md_template, data_type): r"""Checks for special columns based on obj type Parameters ---------- md_template : DataFrame The metadata template file contents indexed by sample ids data_type : str The data_type of the template. Returns ------- set The set of missing columns Notes ----- Sometimes people use different names for the same columns. We just rename them to use the naming that we expect, so this is normalized across studies. """ # We only have column requirements if the data type of the raw data # is one of the target gene types missing_cols = set() if data_type in TARGET_GENE_DATA_TYPES: md_template.rename(columns=RENAME_COLS_DICT, inplace=True) # Check for all required columns for target genes studies missing_cols = REQUIRED_TARGET_GENE_COLS.difference( md_template.columns) return missing_cols @classmethod def delete(cls, id_): r"""Deletes the table from the database Parameters ---------- id_ : obj The object identifier Raises ------ QiitaDBExecutionError If the prep template already has a preprocessed data QiitaDBUnknownIDError If no prep template with id = id_ exists """ table_name = cls._table_name(id_) conn_handler = SQLConnectionHandler() if not cls.exists(id_): raise QiitaDBUnknownIDError(id_, cls.__name__) preprocessed_data_exists = conn_handler.execute_fetchone( "SELECT EXISTS(SELECT * FROM qiita.prep_template_preprocessed_data" " WHERE prep_template_id=%s)", (id_,))[0] if preprocessed_data_exists: raise QiitaDBExecutionError("Cannot remove prep template %d " "because a preprocessed data has been" " already generated using it." % id_) # Delete the prep template filepaths conn_handler.execute( "DELETE FROM qiita.prep_template_filepath WHERE " "prep_template_id = %s", (id_, )) # Drop the prep_X table conn_handler.execute( "DROP TABLE qiita.{0}".format(table_name)) # Remove the rows from common_prep_info conn_handler.execute( "DELETE FROM qiita.{0} where {1} = %s".format(cls._table, cls._id_column), (id_,)) # Remove the rows from prep_columns conn_handler.execute( "DELETE FROM qiita.{0} where {1} = %s".format(cls._column_table, cls._id_column), (id_,)) # Remove the row from prep_template conn_handler.execute( "DELETE FROM qiita.prep_template where " "{0} = %s".format(cls._id_column), (id_,)) def data_type(self, ret_id=False): """Returns the data_type or the data_type id Parameters ---------- ret_id : bool, optional If true, return the id instead of the string, default false. Returns ------- str or int string value of data_type or data_type_id if ret_id is True """ ret = "_id" if ret_id else "" conn_handler = SQLConnectionHandler() return conn_handler.execute_fetchone( "SELECT d.data_type{0} FROM qiita.data_type d JOIN " "qiita.prep_template p ON p.data_type_id = d.data_type_id WHERE " "p.prep_template_id=%s".format(ret), (self.id,))[0] @property def raw_data(self): conn_handler = SQLConnectionHandler() return conn_handler.execute_fetchone( "SELECT raw_data_id FROM qiita.prep_template " "WHERE prep_template_id=%s", (self.id,))[0] @property def preprocessed_data(self): conn_handler = SQLConnectionHandler() prep_datas = conn_handler.execute_fetchall( "SELECT preprocessed_data_id FROM " "qiita.prep_template_preprocessed_data WHERE prep_template_id=%s", (self.id,)) return [x[0] for x in prep_datas] @property def preprocessing_status(self): r"""Tells if the data has been preprocessed or not Returns ------- str One of {'not_preprocessed', 'preprocessing', 'success', 'failed'} """ conn_handler = SQLConnectionHandler() return conn_handler.execute_fetchone( "SELECT preprocessing_status FROM qiita.prep_template " "WHERE {0}=%s".format(self._id_column), (self.id,))[0] @preprocessing_status.setter def preprocessing_status(self, state): r"""Update the preprocessing status Parameters ---------- state : str, {'not_preprocessed', 'preprocessing', 'success', 'failed'} The current status of preprocessing Raises ------ ValueError If the state is not known. """ if (state not in ('not_preprocessed', 'preprocessing', 'success') and not state.startswith('failed:')): raise ValueError('Unknown state: %s' % state) conn_handler = SQLConnectionHandler() conn_handler.execute( "UPDATE qiita.prep_template SET preprocessing_status = %s " "WHERE {0} = %s".format(self._id_column), (state, self.id)) @property def investigation_type(self): conn_handler = SQLConnectionHandler() sql = ("SELECT investigation_type FROM qiita.prep_template " "WHERE {0} = %s".format(self._id_column)) return conn_handler.execute_fetchone(sql, [self._id])[0] @investigation_type.setter def investigation_type(self, investigation_type): r"""Update the investigation type Parameters ---------- investigation_type : str The investigation type to set, should be part of the ENA ontology Raises ------ QiitaDBColumnError If the investigation type is not a valid ENA ontology """ if investigation_type is not None: self.validate_investigation_type(investigation_type) conn_handler = SQLConnectionHandler() conn_handler.execute( "UPDATE qiita.prep_template SET investigation_type = %s " "WHERE {0} = %s".format(self._id_column), (investigation_type, self.id)) @property def study_id(self): """Gets the study id with which this prep template is associated Returns ------- int The ID of the study with which this prep template is associated """ conn = SQLConnectionHandler() sql = ("SELECT srd.study_id FROM qiita.prep_template pt JOIN " "qiita.study_raw_data srd ON pt.raw_data_id = srd.raw_data_id " "WHERE prep_template_id = %d" % self.id) study_id = conn.execute_fetchone(sql) if study_id: return study_id[0] else: raise QiitaDBError("No studies found associated with prep " "template ID %d" % self._id) def generate_files(self): r"""Generates all the files that contain data from this template """ # figuring out the filepath of the prep template _id, fp = get_mountpoint('templates')[0] fp = join(fp, '%d_prep_%d_%s.txt' % (self.study_id, self._id, strftime("%Y%m%d-%H%M%S"))) # storing the template self.to_file(fp) # adding the fp to the object self.add_filepath(fp) # creating QIIME mapping file self.create_qiime_mapping_file(fp) def create_qiime_mapping_file(self, prep_template_fp): """This creates the QIIME mapping file and links it in the db. Parameters ---------- prep_template_fp : str The prep template filepath that should be concatenated to the sample template go used to generate a new QIIME mapping file Returns ------- filepath : str The filepath of the created QIIME mapping file Raises ------ ValueError If the prep template is not a subset of the sample template """ rename_cols = { 'barcode': 'BarcodeSequence', 'barcodesequence': 'BarcodeSequence', 'primer': 'LinkerPrimerSequence', 'linkerprimersequence': 'LinkerPrimerSequence', 'description': 'Description', } # getting the latest sample template conn_handler = SQLConnectionHandler() sql = """SELECT filepath_id, filepath FROM qiita.filepath JOIN qiita.sample_template_filepath USING (filepath_id) WHERE study_id=%s ORDER BY filepath_id DESC""" sample_template_fname = conn_handler.execute_fetchall( sql, (self.study_id,))[0][1] _, fp = get_mountpoint('templates')[0] sample_template_fp = join(fp, sample_template_fname) # reading files via pandas st = load_template_to_dataframe(sample_template_fp) pt = load_template_to_dataframe(prep_template_fp) st_sample_names = set(st.index) pt_sample_names = set(pt.index) if not pt_sample_names.issubset(st_sample_names): raise ValueError( "Prep template is not a sub set of the sample template, files:" "%s %s - samples: %s" % (sample_template_fp, prep_template_fp, str(pt_sample_names-st_sample_names))) mapping = pt.join(st, lsuffix="_prep") mapping.rename(columns=rename_cols, inplace=True) # Gets the orginal mapping columns and readjust the order to comply # with QIIME requirements cols = mapping.columns.values.tolist() cols.remove('BarcodeSequence') cols.remove('LinkerPrimerSequence') cols.remove('Description') new_cols = ['BarcodeSequence', 'LinkerPrimerSequence'] new_cols.extend(cols) new_cols.append('Description') mapping = mapping[new_cols] # figuring out the filepath for the QIIME map file _id, fp = get_mountpoint('templates')[0] filepath = join(fp, '%d_prep_%d_qiime_%s.txt' % (self.study_id, self.id, strftime("%Y%m%d-%H%M%S"))) # Save the mapping file mapping.to_csv(filepath, index_label='#SampleID', na_rep='unknown', sep='\t') # adding the fp to the object self.add_filepath(filepath) return filepath @property def status(self): """The status of the prep template Returns ------- str The status of the prep template Notes ----- The status of a prep template is inferred by the status of the processed data generated from this prep template. If no processed data has been generated with this prep template; then the status is 'sandbox'. """ conn_handler = SQLConnectionHandler() sql = """SELECT processed_data_status FROM qiita.processed_data_status pds JOIN qiita.processed_data pd USING (processed_data_status_id) JOIN qiita.preprocessed_processed_data ppd_pd USING (processed_data_id) JOIN qiita.prep_template_preprocessed_data pt_ppd USING (preprocessed_data_id) WHERE pt_ppd.prep_template_id=%s""" pd_statuses = conn_handler.execute_fetchall(sql, (self._id,)) return infer_status(pd_statuses)
bsd-3-clause
saketkc/statsmodels
statsmodels/base/model.py
25
76781
from __future__ import print_function from statsmodels.compat.python import iterkeys, lzip, range, reduce import numpy as np from scipy import stats from statsmodels.base.data import handle_data from statsmodels.tools.tools import recipr, nan_dot from statsmodels.stats.contrast import ContrastResults, WaldTestResults from statsmodels.tools.decorators import resettable_cache, cache_readonly import statsmodels.base.wrapper as wrap from statsmodels.tools.numdiff import approx_fprime from statsmodels.formula import handle_formula_data from statsmodels.compat.numpy import np_matrix_rank from statsmodels.base.optimizer import Optimizer _model_params_doc = """ Parameters ---------- endog : array-like 1-d endogenous response variable. The dependent variable. exog : array-like A nobs x k array where `nobs` is the number of observations and `k` is the number of regressors. An intercept is not included by default and should be added by the user. See :func:`statsmodels.tools.add_constant`.""" _missing_param_doc = """\ missing : str Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. If 'raise', an error is raised. Default is 'none.'""" _extra_param_doc = """ hasconst : None or bool Indicates whether the RHS includes a user-supplied constant. If True, a constant is not checked for and k_constant is set to 1 and all result statistics are calculated as if a constant is present. If False, a constant is not checked for and k_constant is set to 0. """ class Model(object): __doc__ = """ A (predictive) statistical model. Intended to be subclassed not used. %(params_doc)s %(extra_params_doc)s Notes ----- `endog` and `exog` are references to any data provided. So if the data is already stored in numpy arrays and it is changed then `endog` and `exog` will change as well. """ % {'params_doc' : _model_params_doc, 'extra_params_doc' : _missing_param_doc + _extra_param_doc} def __init__(self, endog, exog=None, **kwargs): missing = kwargs.pop('missing', 'none') hasconst = kwargs.pop('hasconst', None) self.data = self._handle_data(endog, exog, missing, hasconst, **kwargs) self.k_constant = self.data.k_constant self.exog = self.data.exog self.endog = self.data.endog self._data_attr = [] self._data_attr.extend(['exog', 'endog', 'data.exog', 'data.endog']) if 'formula' not in kwargs: # won't be able to unpickle without these self._data_attr.extend(['data.orig_endog', 'data.orig_exog']) # store keys for extras if we need to recreate model instance # we don't need 'missing', maybe we need 'hasconst' self._init_keys = list(kwargs.keys()) if hasconst is not None: self._init_keys.append('hasconst') def _get_init_kwds(self): """return dictionary with extra keys used in model.__init__ """ kwds = dict(((key, getattr(self, key, None)) for key in self._init_keys)) return kwds def _handle_data(self, endog, exog, missing, hasconst, **kwargs): data = handle_data(endog, exog, missing, hasconst, **kwargs) # kwargs arrays could have changed, easier to just attach here for key in kwargs: if key in ['design_info', 'formula']: # leave attached to data continue # pop so we don't start keeping all these twice or references try: setattr(self, key, data.__dict__.pop(key)) except KeyError: # panel already pops keys in data handling pass return data @classmethod def from_formula(cls, formula, data, subset=None, *args, **kwargs): """ Create a Model from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model data : array-like The data for the model. See Notes. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a `pandas.DataFrame` args : extra arguments These are passed to the model kwargs : extra keyword arguments These are passed to the model with one exception. The ``eval_env`` keyword is passed to patsy. It can be either a :class:`patsy:patsy.EvalEnvironment` object or an integer indicating the depth of the namespace to use. For example, the default ``eval_env=0`` uses the calling namespace. If you wish to use a "clean" environment set ``eval_env=-1``. Returns ------- model : Model instance Notes ------ data must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame. """ #TODO: provide a docs template for args/kwargs from child models #TODO: subset could use syntax. issue #469. if subset is not None: data = data.ix[subset] eval_env = kwargs.pop('eval_env', None) if eval_env is None: eval_env = 2 elif eval_env == -1: from patsy import EvalEnvironment eval_env = EvalEnvironment({}) else: eval_env += 1 # we're going down the stack again missing = kwargs.get('missing', 'drop') if missing == 'none': # with patys it's drop or raise. let's raise. missing = 'raise' tmp = handle_formula_data(data, None, formula, depth=eval_env, missing=missing) ((endog, exog), missing_idx, design_info) = tmp kwargs.update({'missing_idx': missing_idx, 'missing': missing, 'formula': formula, # attach formula for unpckling 'design_info': design_info}) mod = cls(endog, exog, *args, **kwargs) mod.formula = formula # since we got a dataframe, attach the original mod.data.frame = data return mod @property def endog_names(self): return self.data.ynames @property def exog_names(self): return self.data.xnames def fit(self): """ Fit a model to data. """ raise NotImplementedError def predict(self, params, exog=None, *args, **kwargs): """ After a model has been fit predict returns the fitted values. This is a placeholder intended to be overwritten by individual models. """ raise NotImplementedError class LikelihoodModel(Model): """ Likelihood model is a subclass of Model. """ def __init__(self, endog, exog=None, **kwargs): super(LikelihoodModel, self).__init__(endog, exog, **kwargs) self.initialize() def initialize(self): """ Initialize (possibly re-initialize) a Model instance. For instance, the design matrix of a linear model may change and some things must be recomputed. """ pass # TODO: if the intent is to re-initialize the model with new data then this # method needs to take inputs... def loglike(self, params): """ Log-likelihood of model. """ raise NotImplementedError def score(self, params): """ Score vector of model. The gradient of logL with respect to each parameter. """ raise NotImplementedError def information(self, params): """ Fisher information matrix of model Returns -Hessian of loglike evaluated at params. """ raise NotImplementedError def hessian(self, params): """ The Hessian matrix of the model """ raise NotImplementedError def fit(self, start_params=None, method='newton', maxiter=100, full_output=True, disp=True, fargs=(), callback=None, retall=False, skip_hessian=False, **kwargs): """ Fit method for likelihood based models Parameters ---------- start_params : array-like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. method : str, optional The `method` determines which solver from `scipy.optimize` is used, and it can be chosen from among the following strings: - 'newton' for Newton-Raphson, 'nm' for Nelder-Mead - 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno (BFGS) - 'lbfgs' for limited-memory BFGS with optional box constraints - 'powell' for modified Powell's method - 'cg' for conjugate gradient - 'ncg' for Newton-conjugate gradient - 'basinhopping' for global basin-hopping solver The explicit arguments in `fit` are passed to the solver, with the exception of the basin-hopping solver. Each solver has several optional arguments that are not the same across solvers. See the notes section below (or scipy.optimize) for the available arguments and for the list of explicit arguments that the basin-hopping solver supports. maxiter : int, optional The maximum number of iterations to perform. full_output : bool, optional Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool, optional Set to True to print convergence messages. fargs : tuple, optional Extra arguments passed to the likelihood function, i.e., loglike(x,*args) callback : callable callback(xk), optional Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool, optional Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. skip_hessian : bool, optional If False (default), then the negative inverse hessian is calculated after the optimization. If True, then the hessian will not be calculated. However, it will be available in methods that use the hessian in the optimization (currently only with `"newton"`). kwargs : keywords All kwargs are passed to the chosen solver with one exception. The following keyword controls what happens after the fit:: warn_convergence : bool, optional If True, checks the model for the converged flag. If the converged flag is False, a ConvergenceWarning is issued. Notes ----- The 'basinhopping' solver ignores `maxiter`, `retall`, `full_output` explicit arguments. Optional arguments for solvers (see returned Results.mle_settings):: 'newton' tol : float Relative error in params acceptable for convergence. 'nm' -- Nelder Mead xtol : float Relative error in params acceptable for convergence ftol : float Relative error in loglike(params) acceptable for convergence maxfun : int Maximum number of function evaluations to make. 'bfgs' gtol : float Stop when norm of gradient is less than gtol. norm : float Order of norm (np.Inf is max, -np.Inf is min) epsilon If fprime is approximated, use this value for the step size. Only relevant if LikelihoodModel.score is None. 'lbfgs' m : int This many terms are used for the Hessian approximation. factr : float A stop condition that is a variant of relative error. pgtol : float A stop condition that uses the projected gradient. epsilon If fprime is approximated, use this value for the step size. Only relevant if LikelihoodModel.score is None. maxfun : int Maximum number of function evaluations to make. bounds : sequence (min, max) pairs for each element in x, defining the bounds on that parameter. Use None for one of min or max when there is no bound in that direction. 'cg' gtol : float Stop when norm of gradient is less than gtol. norm : float Order of norm (np.Inf is max, -np.Inf is min) epsilon : float If fprime is approximated, use this value for the step size. Can be scalar or vector. Only relevant if Likelihoodmodel.score is None. 'ncg' fhess_p : callable f'(x,*args) Function which computes the Hessian of f times an arbitrary vector, p. Should only be supplied if LikelihoodModel.hessian is None. avextol : float Stop when the average relative error in the minimizer falls below this amount. epsilon : float or ndarray If fhess is approximated, use this value for the step size. Only relevant if Likelihoodmodel.hessian is None. 'powell' xtol : float Line-search error tolerance ftol : float Relative error in loglike(params) for acceptable for convergence. maxfun : int Maximum number of function evaluations to make. start_direc : ndarray Initial direction set. 'basinhopping' niter : integer The number of basin hopping iterations. niter_success : integer Stop the run if the global minimum candidate remains the same for this number of iterations. T : float The "temperature" parameter for the accept or reject criterion. Higher "temperatures" mean that larger jumps in function value will be accepted. For best results `T` should be comparable to the separation (in function value) between local minima. stepsize : float Initial step size for use in the random displacement. interval : integer The interval for how often to update the `stepsize`. minimizer : dict Extra keyword arguments to be passed to the minimizer `scipy.optimize.minimize()`, for example 'method' - the minimization method (e.g. 'L-BFGS-B'), or 'tol' - the tolerance for termination. Other arguments are mapped from explicit argument of `fit`: - `args` <- `fargs` - `jac` <- `score` - `hess` <- `hess` """ Hinv = None # JP error if full_output=0, Hinv not defined if start_params is None: if hasattr(self, 'start_params'): start_params = self.start_params elif self.exog is not None: # fails for shape (K,)? start_params = [0] * self.exog.shape[1] else: raise ValueError("If exog is None, then start_params should " "be specified") # TODO: separate args from nonarg taking score and hessian, ie., # user-supplied and numerically evaluated estimate frprime doesn't take # args in most (any?) of the optimize function nobs = self.endog.shape[0] f = lambda params, *args: -self.loglike(params, *args) / nobs score = lambda params, *args: -self.score(params, *args) / nobs try: hess = lambda params, *args: -self.hessian(params, *args) / nobs except: hess = None if method == 'newton': score = lambda params, *args: self.score(params, *args) / nobs hess = lambda params, *args: self.hessian(params, *args) / nobs #TODO: why are score and hess positive? warn_convergence = kwargs.pop('warn_convergence', True) optimizer = Optimizer() xopt, retvals, optim_settings = optimizer._fit(f, score, start_params, fargs, kwargs, hessian=hess, method=method, disp=disp, maxiter=maxiter, callback=callback, retall=retall, full_output=full_output) #NOTE: this is for fit_regularized and should be generalized cov_params_func = kwargs.setdefault('cov_params_func', None) if cov_params_func: Hinv = cov_params_func(self, xopt, retvals) elif method == 'newton' and full_output: Hinv = np.linalg.inv(-retvals['Hessian']) / nobs elif not skip_hessian: try: Hinv = np.linalg.inv(-1 * self.hessian(xopt)) except: #might want custom warning ResultsWarning? NumericalWarning? from warnings import warn warndoc = ('Inverting hessian failed, no bse or ' 'cov_params available') warn(warndoc, RuntimeWarning) Hinv = None if 'cov_type' in kwargs: cov_kwds = kwargs.get('cov_kwds', {}) kwds = {'cov_type':kwargs['cov_type'], 'cov_kwds':cov_kwds} else: kwds = {} if 'use_t' in kwargs: kwds['use_t'] = kwargs['use_t'] #prints for debugging #print('kwargs inLikelihoodModel.fit', kwargs) #print('kwds inLikelihoodModel.fit', kwds) #TODO: add Hessian approximation and change the above if needed mlefit = LikelihoodModelResults(self, xopt, Hinv, scale=1., **kwds) #TODO: hardcode scale? if isinstance(retvals, dict): mlefit.mle_retvals = retvals if warn_convergence and not retvals['converged']: from warnings import warn from statsmodels.tools.sm_exceptions import ConvergenceWarning warn("Maximum Likelihood optimization failed to converge. " "Check mle_retvals", ConvergenceWarning) mlefit.mle_settings = optim_settings return mlefit #TODO: the below is unfinished class GenericLikelihoodModel(LikelihoodModel): """ Allows the fitting of any likelihood function via maximum likelihood. A subclass needs to specify at least the log-likelihood If the log-likelihood is specified for each observation, then results that require the Jacobian will be available. (The other case is not tested yet.) Notes ----- Optimization methods that require only a likelihood function are 'nm' and 'powell' Optimization methods that require a likelihood function and a score/gradient are 'bfgs', 'cg', and 'ncg'. A function to compute the Hessian is optional for 'ncg'. Optimization method that require a likelihood function, a score/gradient, and a Hessian is 'newton' If they are not overwritten by a subclass, then numerical gradient, Jacobian and Hessian of the log-likelihood are caclulated by numerical forward differentiation. This might results in some cases in precision problems, and the Hessian might not be positive definite. Even if the Hessian is not positive definite the covariance matrix of the parameter estimates based on the outer product of the Jacobian might still be valid. Examples -------- see also subclasses in directory miscmodels import statsmodels.api as sm data = sm.datasets.spector.load() data.exog = sm.add_constant(data.exog) # in this dir from model import GenericLikelihoodModel probit_mod = sm.Probit(data.endog, data.exog) probit_res = probit_mod.fit() loglike = probit_mod.loglike score = probit_mod.score mod = GenericLikelihoodModel(data.endog, data.exog, loglike, score) res = mod.fit(method="nm", maxiter = 500) import numpy as np np.allclose(res.params, probit_res.params) """ def __init__(self, endog, exog=None, loglike=None, score=None, hessian=None, missing='none', extra_params_names=None, **kwds): # let them be none in case user wants to use inheritance if not loglike is None: self.loglike = loglike if not score is None: self.score = score if not hessian is None: self.hessian = hessian self.__dict__.update(kwds) # TODO: data structures? #TODO temporary solution, force approx normal #self.df_model = 9999 #somewhere: CacheWriteWarning: 'df_model' cannot be overwritten super(GenericLikelihoodModel, self).__init__(endog, exog, missing=missing) # this won't work for ru2nmnl, maybe np.ndim of a dict? if exog is not None: #try: self.nparams = (exog.shape[1] if np.ndim(exog) == 2 else 1) if extra_params_names is not None: self._set_extra_params_names(extra_params_names) def _set_extra_params_names(self, extra_params_names): # check param_names if extra_params_names is not None: if self.exog is not None: self.exog_names.extend(extra_params_names) else: self.data.xnames = extra_params_names self.nparams = len(self.exog_names) #this is redundant and not used when subclassing def initialize(self): if not self.score: # right now score is not optional self.score = approx_fprime if not self.hessian: pass else: # can use approx_hess_p if we have a gradient if not self.hessian: pass #Initialize is called by #statsmodels.model.LikelihoodModel.__init__ #and should contain any preprocessing that needs to be done for a model from statsmodels.tools import tools if self.exog is not None: # assume constant self.df_model = float(np_matrix_rank(self.exog) - 1) self.df_resid = (float(self.exog.shape[0] - np_matrix_rank(self.exog))) else: self.df_model = np.nan self.df_resid = np.nan super(GenericLikelihoodModel, self).initialize() def expandparams(self, params): ''' expand to full parameter array when some parameters are fixed Parameters ---------- params : array reduced parameter array Returns ------- paramsfull : array expanded parameter array where fixed parameters are included Notes ----- Calling this requires that self.fixed_params and self.fixed_paramsmask are defined. *developer notes:* This can be used in the log-likelihood to ... this could also be replaced by a more general parameter transformation. ''' paramsfull = self.fixed_params.copy() paramsfull[self.fixed_paramsmask] = params return paramsfull def reduceparams(self, params): return params[self.fixed_paramsmask] def loglike(self, params): return self.loglikeobs(params).sum(0) def nloglike(self, params): return -self.loglikeobs(params).sum(0) def loglikeobs(self, params): return -self.nloglikeobs(params) def score(self, params): ''' Gradient of log-likelihood evaluated at params ''' kwds = {} kwds.setdefault('centered', True) return approx_fprime(params, self.loglike, **kwds).ravel() def score_obs(self, params, **kwds): ''' Jacobian/Gradient of log-likelihood evaluated at params for each observation. ''' #kwds.setdefault('epsilon', 1e-4) kwds.setdefault('centered', True) return approx_fprime(params, self.loglikeobs, **kwds) jac = np.deprecate(score_obs, 'jac', 'score_obs', "Use score_obs method." " jac will be removed in 0.7.") def hessian(self, params): ''' Hessian of log-likelihood evaluated at params ''' from statsmodels.tools.numdiff import approx_hess # need options for hess (epsilon) return approx_hess(params, self.loglike) def fit(self, start_params=None, method='nm', maxiter=500, full_output=1, disp=1, callback=None, retall=0, **kwargs): """ Fit the model using maximum likelihood. The rest of the docstring is from statsmodels.LikelihoodModel.fit """ if start_params is None: if hasattr(self, 'start_params'): start_params = self.start_params else: start_params = 0.1 * np.ones(self.nparams) fit_method = super(GenericLikelihoodModel, self).fit mlefit = fit_method(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) genericmlefit = GenericLikelihoodModelResults(self, mlefit) #amend param names exog_names = [] if (self.exog_names is None) else self.exog_names k_miss = len(exog_names) - len(mlefit.params) if not k_miss == 0: if k_miss < 0: self._set_extra_params_names( ['par%d' % i for i in range(-k_miss)]) else: # I don't want to raise after we have already fit() import warnings warnings.warn('more exog_names than parameters', UserWarning) return genericmlefit #fit.__doc__ += LikelihoodModel.fit.__doc__ class Results(object): """ Class to contain model results Parameters ---------- model : class instance the previously specified model instance params : array parameter estimates from the fit model """ def __init__(self, model, params, **kwd): self.__dict__.update(kwd) self.initialize(model, params, **kwd) self._data_attr = [] def initialize(self, model, params, **kwd): self.params = params self.model = model if hasattr(model, 'k_constant'): self.k_constant = model.k_constant def predict(self, exog=None, transform=True, *args, **kwargs): """ Call self.model.predict with self.params as the first argument. Parameters ---------- exog : array-like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. args, kwargs : Some models can take additional arguments or keywords, see the predict method of the model for the details. Returns ------- prediction : ndarray or pandas.Series See self.model.predict """ if transform and hasattr(self.model, 'formula') and exog is not None: from patsy import dmatrix exog = dmatrix(self.model.data.design_info.builder, exog) if exog is not None: exog = np.asarray(exog) if exog.ndim == 1 and (self.model.exog.ndim == 1 or self.model.exog.shape[1] == 1): exog = exog[:, None] exog = np.atleast_2d(exog) # needed in count model shape[1] return self.model.predict(self.params, exog, *args, **kwargs) #TODO: public method? class LikelihoodModelResults(Results): """ Class to contain results from likelihood models Parameters ----------- model : LikelihoodModel instance or subclass instance LikelihoodModelResults holds a reference to the model that is fit. params : 1d array_like parameter estimates from estimated model normalized_cov_params : 2d array Normalized (before scaling) covariance of params. (dot(X.T,X))**-1 scale : float For (some subset of models) scale will typically be the mean square error from the estimated model (sigma^2) Returns ------- **Attributes** mle_retvals : dict Contains the values returned from the chosen optimization method if full_output is True during the fit. Available only if the model is fit by maximum likelihood. See notes below for the output from the different methods. mle_settings : dict Contains the arguments passed to the chosen optimization method. Available if the model is fit by maximum likelihood. See LikelihoodModel.fit for more information. model : model instance LikelihoodResults contains a reference to the model that is fit. params : ndarray The parameters estimated for the model. scale : float The scaling factor of the model given during instantiation. tvalues : array The t-values of the standard errors. Notes ----- The covariance of params is given by scale times normalized_cov_params. Return values by solver if full_output is True during fit: 'newton' fopt : float The value of the (negative) loglikelihood at its minimum. iterations : int Number of iterations performed. score : ndarray The score vector at the optimum. Hessian : ndarray The Hessian at the optimum. warnflag : int 1 if maxiter is exceeded. 0 if successful convergence. converged : bool True: converged. False: did not converge. allvecs : list List of solutions at each iteration. 'nm' fopt : float The value of the (negative) loglikelihood at its minimum. iterations : int Number of iterations performed. warnflag : int 1: Maximum number of function evaluations made. 2: Maximum number of iterations reached. converged : bool True: converged. False: did not converge. allvecs : list List of solutions at each iteration. 'bfgs' fopt : float Value of the (negative) loglikelihood at its minimum. gopt : float Value of gradient at minimum, which should be near 0. Hinv : ndarray value of the inverse Hessian matrix at minimum. Note that this is just an approximation and will often be different from the value of the analytic Hessian. fcalls : int Number of calls to loglike. gcalls : int Number of calls to gradient/score. warnflag : int 1: Maximum number of iterations exceeded. 2: Gradient and/or function calls are not changing. converged : bool True: converged. False: did not converge. allvecs : list Results at each iteration. 'lbfgs' fopt : float Value of the (negative) loglikelihood at its minimum. gopt : float Value of gradient at minimum, which should be near 0. fcalls : int Number of calls to loglike. warnflag : int Warning flag: - 0 if converged - 1 if too many function evaluations or too many iterations - 2 if stopped for another reason converged : bool True: converged. False: did not converge. 'powell' fopt : float Value of the (negative) loglikelihood at its minimum. direc : ndarray Current direction set. iterations : int Number of iterations performed. fcalls : int Number of calls to loglike. warnflag : int 1: Maximum number of function evaluations. 2: Maximum number of iterations. converged : bool True : converged. False: did not converge. allvecs : list Results at each iteration. 'cg' fopt : float Value of the (negative) loglikelihood at its minimum. fcalls : int Number of calls to loglike. gcalls : int Number of calls to gradient/score. warnflag : int 1: Maximum number of iterations exceeded. 2: Gradient and/ or function calls not changing. converged : bool True: converged. False: did not converge. allvecs : list Results at each iteration. 'ncg' fopt : float Value of the (negative) loglikelihood at its minimum. fcalls : int Number of calls to loglike. gcalls : int Number of calls to gradient/score. hcalls : int Number of calls to hessian. warnflag : int 1: Maximum number of iterations exceeded. converged : bool True: converged. False: did not converge. allvecs : list Results at each iteration. """ # by default we use normal distribution # can be overwritten by instances or subclasses use_t = False def __init__(self, model, params, normalized_cov_params=None, scale=1., **kwargs): super(LikelihoodModelResults, self).__init__(model, params) self.normalized_cov_params = normalized_cov_params self.scale = scale # robust covariance # We put cov_type in kwargs so subclasses can decide in fit whether to # use this generic implementation if 'use_t' in kwargs: use_t = kwargs['use_t'] if use_t is not None: self.use_t = use_t if 'cov_type' in kwargs: cov_type = kwargs.get('cov_type', 'nonrobust') cov_kwds = kwargs.get('cov_kwds', {}) if cov_type == 'nonrobust': self.cov_type = 'nonrobust' self.cov_kwds = {'description' : 'Standard Errors assume that the ' + 'covariance matrix of the errors is correctly ' + 'specified.'} else: from statsmodels.base.covtype import get_robustcov_results if cov_kwds is None: cov_kwds = {} use_t = self.use_t # TODO: we shouldn't need use_t in get_robustcov_results get_robustcov_results(self, cov_type=cov_type, use_self=True, use_t=use_t, **cov_kwds) def normalized_cov_params(self): raise NotImplementedError def _get_robustcov_results(self, cov_type='nonrobust', use_self=True, use_t=None, **cov_kwds): from statsmodels.base.covtype import get_robustcov_results if cov_kwds is None: cov_kwds = {} if cov_type == 'nonrobust': self.cov_type = 'nonrobust' self.cov_kwds = {'description' : 'Standard Errors assume that the ' + 'covariance matrix of the errors is correctly ' + 'specified.'} else: # TODO: we shouldn't need use_t in get_robustcov_results get_robustcov_results(self, cov_type=cov_type, use_self=True, use_t=use_t, **cov_kwds) @cache_readonly def llf(self): return self.model.loglike(self.params) @cache_readonly def bse(self): return np.sqrt(np.diag(self.cov_params())) @cache_readonly def tvalues(self): """ Return the t-statistic for a given parameter estimate. """ return self.params / self.bse @cache_readonly def pvalues(self): if self.use_t: df_resid = getattr(self, 'df_resid_inference', self.df_resid) return stats.t.sf(np.abs(self.tvalues), df_resid)*2 else: return stats.norm.sf(np.abs(self.tvalues))*2 def cov_params(self, r_matrix=None, column=None, scale=None, cov_p=None, other=None): """ Returns the variance/covariance matrix. The variance/covariance matrix can be of a linear contrast of the estimates of params or all params multiplied by scale which will usually be an estimate of sigma^2. Scale is assumed to be a scalar. Parameters ---------- r_matrix : array-like Can be 1d, or 2d. Can be used alone or with other. column : array-like, optional Must be used on its own. Can be 0d or 1d see below. scale : float, optional Can be specified or not. Default is None, which means that the scale argument is taken from the model. other : array-like, optional Can be used when r_matrix is specified. Returns ------- cov : ndarray covariance matrix of the parameter estimates or of linear combination of parameter estimates. See Notes. Notes ----- (The below are assumed to be in matrix notation.) If no argument is specified returns the covariance matrix of a model ``(scale)*(X.T X)^(-1)`` If contrast is specified it pre and post-multiplies as follows ``(scale) * r_matrix (X.T X)^(-1) r_matrix.T`` If contrast and other are specified returns ``(scale) * r_matrix (X.T X)^(-1) other.T`` If column is specified returns ``(scale) * (X.T X)^(-1)[column,column]`` if column is 0d OR ``(scale) * (X.T X)^(-1)[column][:,column]`` if column is 1d """ if (hasattr(self, 'mle_settings') and self.mle_settings['optimizer'] in ['l1', 'l1_cvxopt_cp']): dot_fun = nan_dot else: dot_fun = np.dot if (cov_p is None and self.normalized_cov_params is None and not hasattr(self, 'cov_params_default')): raise ValueError('need covariance of parameters for computing ' '(unnormalized) covariances') if column is not None and (r_matrix is not None or other is not None): raise ValueError('Column should be specified without other ' 'arguments.') if other is not None and r_matrix is None: raise ValueError('other can only be specified with r_matrix') if cov_p is None: if hasattr(self, 'cov_params_default'): cov_p = self.cov_params_default else: if scale is None: scale = self.scale cov_p = self.normalized_cov_params * scale if column is not None: column = np.asarray(column) if column.shape == (): return cov_p[column, column] else: #return cov_p[column][:, column] return cov_p[column[:, None], column] elif r_matrix is not None: r_matrix = np.asarray(r_matrix) if r_matrix.shape == (): raise ValueError("r_matrix should be 1d or 2d") if other is None: other = r_matrix else: other = np.asarray(other) tmp = dot_fun(r_matrix, dot_fun(cov_p, np.transpose(other))) return tmp else: # if r_matrix is None and column is None: return cov_p #TODO: make sure this works as needed for GLMs def t_test(self, r_matrix, cov_p=None, scale=None, use_t=None): """ Compute a t-test for a each linear hypothesis of the form Rb = q Parameters ---------- r_matrix : array-like, str, tuple - array : If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. It is assumed that the linear combination is equal to zero. - str : The full hypotheses to test can be given as a string. See the examples. - tuple : A tuple of arrays in the form (R, q). If q is given, can be either a scalar or a length p row vector. cov_p : array-like, optional An alternative estimate for the parameter covariance matrix. If None is given, self.normalized_cov_params is used. scale : float, optional An optional `scale` to use. Default is the scale specified by the model fit. use_t : bool, optional If use_t is None, then the default of the model is used. If use_t is True, then the p-values are based on the t distribution. If use_t is False, then the p-values are based on the normal distribution. Returns ------- res : ContrastResults instance The results for the test are attributes of this results instance. The available results have the same elements as the parameter table in `summary()`. Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> results = sm.OLS(data.endog, data.exog).fit() >>> r = np.zeros_like(results.params) >>> r[5:] = [1,-1] >>> print(r) [ 0. 0. 0. 0. 0. 1. -1.] r tests that the coefficients on the 5th and 6th independent variable are the same. >>> T_test = results.t_test(r) >>> print(T_test) <T contrast: effect=-1829.2025687192481, sd=455.39079425193762, t=-4.0167754636411717, p=0.0015163772380899498, df_denom=9> >>> T_test.effect -1829.2025687192481 >>> T_test.sd 455.39079425193762 >>> T_test.tvalue -4.0167754636411717 >>> T_test.pvalue 0.0015163772380899498 Alternatively, you can specify the hypothesis tests using a string >>> from statsmodels.formula.api import ols >>> dta = sm.datasets.longley.load_pandas().data >>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR' >>> results = ols(formula, dta).fit() >>> hypotheses = 'GNPDEFL = GNP, UNEMP = 2, YEAR/1829 = 1' >>> t_test = results.t_test(hypotheses) >>> print(t_test) See Also --------- tvalues : individual t statistics f_test : for F tests patsy.DesignInfo.linear_constraint """ from patsy import DesignInfo names = self.model.data.param_names LC = DesignInfo(names).linear_constraint(r_matrix) r_matrix, q_matrix = LC.coefs, LC.constants num_ttests = r_matrix.shape[0] num_params = r_matrix.shape[1] if (cov_p is None and self.normalized_cov_params is None and not hasattr(self, 'cov_params_default')): raise ValueError('Need covariance of parameters for computing ' 'T statistics') if num_params != self.params.shape[0]: raise ValueError('r_matrix and params are not aligned') if q_matrix is None: q_matrix = np.zeros(num_ttests) else: q_matrix = np.asarray(q_matrix) q_matrix = q_matrix.squeeze() if q_matrix.size > 1: if q_matrix.shape[0] != num_ttests: raise ValueError("r_matrix and q_matrix must have the same " "number of rows") if use_t is None: #switch to use_t false if undefined use_t = (hasattr(self, 'use_t') and self.use_t) _t = _sd = None _effect = np.dot(r_matrix, self.params) # nan_dot multiplies with the convention nan * 0 = 0 # Perform the test if num_ttests > 1: _sd = np.sqrt(np.diag(self.cov_params( r_matrix=r_matrix, cov_p=cov_p))) else: _sd = np.sqrt(self.cov_params(r_matrix=r_matrix, cov_p=cov_p)) _t = (_effect - q_matrix) * recipr(_sd) df_resid = getattr(self, 'df_resid_inference', self.df_resid) if use_t: return ContrastResults(effect=_effect, t=_t, sd=_sd, df_denom=df_resid) else: return ContrastResults(effect=_effect, statistic=_t, sd=_sd, df_denom=df_resid, distribution='norm') def f_test(self, r_matrix, cov_p=None, scale=1.0, invcov=None): """ Compute the F-test for a joint linear hypothesis. This is a special case of `wald_test` that always uses the F distribution. Parameters ---------- r_matrix : array-like, str, or tuple - array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. - str : The full hypotheses to test can be given as a string. See the examples. - tuple : A tuple of arrays in the form (R, q), ``q`` can be either a scalar or a length k row vector. cov_p : array-like, optional An alternative estimate for the parameter covariance matrix. If None is given, self.normalized_cov_params is used. scale : float, optional Default is 1.0 for no scaling. invcov : array-like, optional A q x q array to specify an inverse covariance matrix based on a restrictions matrix. Returns ------- res : ContrastResults instance The results for the test are attributes of this results instance. Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> results = sm.OLS(data.endog, data.exog).fit() >>> A = np.identity(len(results.params)) >>> A = A[1:,:] This tests that each coefficient is jointly statistically significantly different from zero. >>> print(results.f_test(A)) <F contrast: F=330.28533923463488, p=4.98403052872e-10, df_denom=9, df_num=6> Compare this to >>> results.fvalue 330.2853392346658 >>> results.f_pvalue 4.98403096572e-10 >>> B = np.array(([0,0,1,-1,0,0,0],[0,0,0,0,0,1,-1])) This tests that the coefficient on the 2nd and 3rd regressors are equal and jointly that the coefficient on the 5th and 6th regressors are equal. >>> print(results.f_test(B)) <F contrast: F=9.740461873303655, p=0.00560528853174, df_denom=9, df_num=2> Alternatively, you can specify the hypothesis tests using a string >>> from statsmodels.datasets import longley >>> from statsmodels.formula.api import ols >>> dta = longley.load_pandas().data >>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR' >>> results = ols(formula, dta).fit() >>> hypotheses = '(GNPDEFL = GNP), (UNEMP = 2), (YEAR/1829 = 1)' >>> f_test = results.f_test(hypotheses) >>> print(f_test) See Also -------- statsmodels.stats.contrast.ContrastResults wald_test t_test patsy.DesignInfo.linear_constraint Notes ----- The matrix `r_matrix` is assumed to be non-singular. More precisely, r_matrix (pX pX.T) r_matrix.T is assumed invertible. Here, pX is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full. """ res = self.wald_test(r_matrix, cov_p=cov_p, scale=scale, invcov=invcov, use_f=True) return res #TODO: untested for GLMs? def wald_test(self, r_matrix, cov_p=None, scale=1.0, invcov=None, use_f=None): """ Compute a Wald-test for a joint linear hypothesis. Parameters ---------- r_matrix : array-like, str, or tuple - array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. - str : The full hypotheses to test can be given as a string. See the examples. - tuple : A tuple of arrays in the form (R, q), ``q`` can be either a scalar or a length p row vector. cov_p : array-like, optional An alternative estimate for the parameter covariance matrix. If None is given, self.normalized_cov_params is used. scale : float, optional Default is 1.0 for no scaling. invcov : array-like, optional A q x q array to specify an inverse covariance matrix based on a restrictions matrix. use_f : bool If True, then the F-distribution is used. If False, then the asymptotic distribution, chisquare is used. If use_f is None, then the F distribution is used if the model specifies that use_t is True. The test statistic is proportionally adjusted for the distribution by the number of constraints in the hypothesis. Returns ------- res : ContrastResults instance The results for the test are attributes of this results instance. See also -------- statsmodels.stats.contrast.ContrastResults f_test t_test patsy.DesignInfo.linear_constraint Notes ----- The matrix `r_matrix` is assumed to be non-singular. More precisely, r_matrix (pX pX.T) r_matrix.T is assumed invertible. Here, pX is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full. """ if use_f is None: #switch to use_t false if undefined use_f = (hasattr(self, 'use_t') and self.use_t) from patsy import DesignInfo names = self.model.data.param_names LC = DesignInfo(names).linear_constraint(r_matrix) r_matrix, q_matrix = LC.coefs, LC.constants if (self.normalized_cov_params is None and cov_p is None and invcov is None and not hasattr(self, 'cov_params_default')): raise ValueError('need covariance of parameters for computing ' 'F statistics') cparams = np.dot(r_matrix, self.params[:, None]) J = float(r_matrix.shape[0]) # number of restrictions if q_matrix is None: q_matrix = np.zeros(J) else: q_matrix = np.asarray(q_matrix) if q_matrix.ndim == 1: q_matrix = q_matrix[:, None] if q_matrix.shape[0] != J: raise ValueError("r_matrix and q_matrix must have the same " "number of rows") Rbq = cparams - q_matrix if invcov is None: cov_p = self.cov_params(r_matrix=r_matrix, cov_p=cov_p) if np.isnan(cov_p).max(): raise ValueError("r_matrix performs f_test for using " "dimensions that are asymptotically " "non-normal") invcov = np.linalg.inv(cov_p) if (hasattr(self, 'mle_settings') and self.mle_settings['optimizer'] in ['l1', 'l1_cvxopt_cp']): F = nan_dot(nan_dot(Rbq.T, invcov), Rbq) else: F = np.dot(np.dot(Rbq.T, invcov), Rbq) df_resid = getattr(self, 'df_resid_inference', self.df_resid) if use_f: F /= J return ContrastResults(F=F, df_denom=df_resid, df_num=invcov.shape[0]) else: return ContrastResults(chi2=F, df_denom=J, statistic=F, distribution='chi2', distargs=(J,)) def wald_test_terms(self, skip_single=False, extra_constraints=None, combine_terms=None): """ Compute a sequence of Wald tests for terms over multiple columns This computes joined Wald tests for the hypothesis that all coefficients corresponding to a `term` are zero. `Terms` are defined by the underlying formula or by string matching. Parameters ---------- skip_single : boolean If true, then terms that consist only of a single column and, therefore, refers only to a single parameter is skipped. If false, then all terms are included. extra_constraints : ndarray not tested yet combine_terms : None or list of strings Each string in this list is matched to the name of the terms or the name of the exogenous variables. All columns whose name includes that string are combined in one joint test. Returns ------- test_result : result instance The result instance contains `table` which is a pandas DataFrame with the test results: test statistic, degrees of freedom and pvalues. Examples -------- >>> res_ols = ols("np.log(Days+1) ~ C(Duration, Sum)*C(Weight, Sum)", data).fit() >>> res_ols.wald_test_terms() <class 'statsmodels.stats.contrast.WaldTestResults'> F P>F df constraint df denom Intercept 279.754525 2.37985521351e-22 1 51 C(Duration, Sum) 5.367071 0.0245738436636 1 51 C(Weight, Sum) 12.432445 3.99943118767e-05 2 51 C(Duration, Sum):C(Weight, Sum) 0.176002 0.83912310946 2 51 >>> res_poi = Poisson.from_formula("Days ~ C(Weight) * C(Duration)", data).fit(cov_type='HC0') >>> wt = res_poi.wald_test_terms(skip_single=False, combine_terms=['Duration', 'Weight']) >>> print(wt) chi2 P>chi2 df constraint Intercept 15.695625 7.43960374424e-05 1 C(Weight) 16.132616 0.000313940174705 2 C(Duration) 1.009147 0.315107378931 1 C(Weight):C(Duration) 0.216694 0.897315972824 2 Duration 11.187849 0.010752286833 3 Weight 30.263368 4.32586407145e-06 4 """ # lazy import from collections import defaultdict result = self if extra_constraints is None: extra_constraints = [] if combine_terms is None: combine_terms = [] design_info = getattr(result.model.data.orig_exog, 'design_info', None) if design_info is None and extra_constraints is None: raise ValueError('no constraints, nothing to do') identity = np.eye(len(result.params)) constraints = [] combined = defaultdict(list) if design_info is not None: for term in design_info.terms: cols = design_info.slice(term) name = term.name() constraint_matrix = identity[cols] # check if in combined for cname in combine_terms: if cname in name: combined[cname].append(constraint_matrix) k_constraint = constraint_matrix.shape[0] if skip_single: if k_constraint == 1: continue constraints.append((name, constraint_matrix)) combined_constraints = [] for cname in combine_terms: combined_constraints.append((cname, np.vstack(combined[cname]))) else: # check by exog/params names if there is no formula info for col, name in enumerate(result.model.exog_names): constraint_matrix = identity[col] # check if in combined for cname in combine_terms: if cname in name: combined[cname].append(constraint_matrix) if skip_single: continue constraints.append((name, constraint_matrix)) combined_constraints = [] for cname in combine_terms: combined_constraints.append((cname, np.vstack(combined[cname]))) use_t = result.use_t distribution = ['chi2', 'F'][use_t] res_wald = [] index = [] for name, constraint in constraints + combined_constraints + extra_constraints: wt = result.wald_test(constraint) row = [wt.statistic.item(), wt.pvalue, constraint.shape[0]] if use_t: row.append(wt.df_denom) res_wald.append(row) index.append(name) # distribution nerutral names col_names = ['statistic', 'pvalue', 'df_constraint'] if use_t: col_names.append('df_denom') # TODO: maybe move DataFrame creation to results class from pandas import DataFrame table = DataFrame(res_wald, index=index, columns=col_names) res = WaldTestResults(None, distribution, None, table=table) # TODO: remove temp again, added for testing res.temp = constraints + combined_constraints + extra_constraints return res def conf_int(self, alpha=.05, cols=None, method='default'): """ Returns the confidence interval of the fitted parameters. Parameters ---------- alpha : float, optional The significance level for the confidence interval. ie., The default `alpha` = .05 returns a 95% confidence interval. cols : array-like, optional `cols` specifies which confidence intervals to return method : string Not Implemented Yet Method to estimate the confidence_interval. "Default" : uses self.bse which is based on inverse Hessian for MLE "hjjh" : "jac" : "boot-bse" "boot_quant" "profile" Returns -------- conf_int : array Each row contains [lower, upper] limits of the confidence interval for the corresponding parameter. The first column contains all lower, the second column contains all upper limits. Examples -------- >>> import statsmodels.api as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> results = sm.OLS(data.endog, data.exog).fit() >>> results.conf_int() array([[-5496529.48322745, -1467987.78596704], [ -177.02903529, 207.15277984], [ -0.1115811 , 0.03994274], [ -3.12506664, -0.91539297], [ -1.5179487 , -0.54850503], [ -0.56251721, 0.460309 ], [ 798.7875153 , 2859.51541392]]) >>> results.conf_int(cols=(2,3)) array([[-0.1115811 , 0.03994274], [-3.12506664, -0.91539297]]) Notes ----- The confidence interval is based on the standard normal distribution. Models wish to use a different distribution should overwrite this method. """ bse = self.bse if self.use_t: dist = stats.t df_resid = getattr(self, 'df_resid_inference', self.df_resid) q = dist.ppf(1 - alpha / 2, df_resid) else: dist = stats.norm q = dist.ppf(1 - alpha / 2) if cols is None: lower = self.params - q * bse upper = self.params + q * bse else: cols = np.asarray(cols) lower = self.params[cols] - q * bse[cols] upper = self.params[cols] + q * bse[cols] return np.asarray(lzip(lower, upper)) def save(self, fname, remove_data=False): ''' save a pickle of this instance Parameters ---------- fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. remove_data : bool If False (default), then the instance is pickled without changes. If True, then all arrays with length nobs are set to None before pickling. See the remove_data method. In some cases not all arrays will be set to None. Notes ----- If remove_data is true and the model result does not implement a remove_data method then this will raise an exception. ''' from statsmodels.iolib.smpickle import save_pickle if remove_data: self.remove_data() save_pickle(self, fname) @classmethod def load(cls, fname): ''' load a pickle, (class method) Parameters ---------- fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. Returns ------- unpickled instance ''' from statsmodels.iolib.smpickle import load_pickle return load_pickle(fname) def remove_data(self): '''remove data arrays, all nobs arrays from result and model This reduces the size of the instance, so it can be pickled with less memory. Currently tested for use with predict from an unpickled results and model instance. .. warning:: Since data and some intermediate results have been removed calculating new statistics that require them will raise exceptions. The exception will occur the first time an attribute is accessed that has been set to None. Not fully tested for time series models, tsa, and might delete too much for prediction or not all that would be possible. The list of arrays to delete is maintained as an attribute of the result and model instance, except for cached values. These lists could be changed before calling remove_data. ''' def wipe(obj, att): #get to last element in attribute path p = att.split('.') att_ = p.pop(-1) try: obj_ = reduce(getattr, [obj] + p) #print(repr(obj), repr(att)) #print(hasattr(obj_, att_)) if hasattr(obj_, att_): #print('removing3', att_) setattr(obj_, att_, None) except AttributeError: pass model_attr = ['model.' + i for i in self.model._data_attr] for att in self._data_attr + model_attr: #print('removing', att) wipe(self, att) data_in_cache = getattr(self, 'data_in_cache', []) data_in_cache += ['fittedvalues', 'resid', 'wresid'] for key in data_in_cache: try: self._cache[key] = None except (AttributeError, KeyError): pass class LikelihoodResultsWrapper(wrap.ResultsWrapper): _attrs = { 'params': 'columns', 'bse': 'columns', 'pvalues': 'columns', 'tvalues': 'columns', 'resid': 'rows', 'fittedvalues': 'rows', 'normalized_cov_params': 'cov', } _wrap_attrs = _attrs _wrap_methods = { 'cov_params': 'cov', 'conf_int': 'columns' } wrap.populate_wrapper(LikelihoodResultsWrapper, LikelihoodModelResults) class ResultMixin(object): @cache_readonly def df_modelwc(self): # collect different ways of defining the number of parameters, used for # aic, bic if hasattr(self, 'df_model'): if hasattr(self, 'hasconst'): hasconst = self.hasconst else: # default assumption hasconst = 1 return self.df_model + hasconst else: return self.params.size @cache_readonly def aic(self): return -2 * self.llf + 2 * (self.df_modelwc) @cache_readonly def bic(self): return -2 * self.llf + np.log(self.nobs) * (self.df_modelwc) @cache_readonly def score_obsv(self): '''cached Jacobian of log-likelihood ''' return self.model.score_obs(self.params) jacv = np.deprecate(score_obsv, 'jacv', 'score_obsv', "Use score_obsv attribute." " jacv will be removed in 0.7.") @cache_readonly def hessv(self): '''cached Hessian of log-likelihood ''' return self.model.hessian(self.params) @cache_readonly def covjac(self): ''' covariance of parameters based on outer product of jacobian of log-likelihood ''' ## if not hasattr(self, '_results'): ## raise ValueError('need to call fit first') ## #self.fit() ## self.jacv = jacv = self.jac(self._results.params) jacv = self.score_obsv return np.linalg.inv(np.dot(jacv.T, jacv)) @cache_readonly def covjhj(self): '''covariance of parameters based on HJJH dot product of Hessian, Jacobian, Jacobian, Hessian of likelihood name should be covhjh ''' jacv = self.score_obsv hessv = self.hessv hessinv = np.linalg.inv(hessv) ## self.hessinv = hessin = self.cov_params() return np.dot(hessinv, np.dot(np.dot(jacv.T, jacv), hessinv)) @cache_readonly def bsejhj(self): '''standard deviation of parameter estimates based on covHJH ''' return np.sqrt(np.diag(self.covjhj)) @cache_readonly def bsejac(self): '''standard deviation of parameter estimates based on covjac ''' return np.sqrt(np.diag(self.covjac)) def bootstrap(self, nrep=100, method='nm', disp=0, store=1): """simple bootstrap to get mean and variance of estimator see notes Parameters ---------- nrep : int number of bootstrap replications method : str optimization method to use disp : bool If true, then optimization prints results store : bool If true, then parameter estimates for all bootstrap iterations are attached in self.bootstrap_results Returns ------- mean : array mean of parameter estimates over bootstrap replications std : array standard deviation of parameter estimates over bootstrap replications Notes ----- This was mainly written to compare estimators of the standard errors of the parameter estimates. It uses independent random sampling from the original endog and exog, and therefore is only correct if observations are independently distributed. This will be moved to apply only to models with independently distributed observations. """ results = [] print(self.model.__class__) hascloneattr = True if hasattr(self, 'cloneattr') else False for i in range(nrep): rvsind = np.random.randint(self.nobs, size=self.nobs) #this needs to set startparam and get other defining attributes #need a clone method on model fitmod = self.model.__class__(self.endog[rvsind], self.exog[rvsind, :]) if hascloneattr: for attr in self.model.cloneattr: setattr(fitmod, attr, getattr(self.model, attr)) fitres = fitmod.fit(method=method, disp=disp) results.append(fitres.params) results = np.array(results) if store: self.bootstrap_results = results return results.mean(0), results.std(0), results def get_nlfun(self, fun): #I think this is supposed to get the delta method that is currently #in miscmodels count (as part of Poisson example) pass class GenericLikelihoodModelResults(LikelihoodModelResults, ResultMixin): """ A results class for the discrete dependent variable models. ..Warning : The following description has not been updated to this version/class. Where are AIC, BIC, ....? docstring looks like copy from discretemod Parameters ---------- model : A DiscreteModel instance mlefit : instance of LikelihoodResults This contains the numerical optimization results as returned by LikelihoodModel.fit(), in a superclass of GnericLikelihoodModels Returns ------- *Attributes* Warning most of these are not available yet aic : float Akaike information criterion. -2*(`llf` - p) where p is the number of regressors including the intercept. bic : float Bayesian information criterion. -2*`llf` + ln(`nobs`)*p where p is the number of regressors including the intercept. bse : array The standard errors of the coefficients. df_resid : float See model definition. df_model : float See model definition. fitted_values : array Linear predictor XB. llf : float Value of the loglikelihood llnull : float Value of the constant-only loglikelihood llr : float Likelihood ratio chi-squared statistic; -2*(`llnull` - `llf`) llr_pvalue : float The chi-squared probability of getting a log-likelihood ratio statistic greater than llr. llr has a chi-squared distribution with degrees of freedom `df_model`. prsquared : float McFadden's pseudo-R-squared. 1 - (`llf`/`llnull`) """ def __init__(self, model, mlefit): self.model = model self.endog = model.endog self.exog = model.exog self.nobs = model.endog.shape[0] # TODO: possibly move to model.fit() # and outsource together with patching names if hasattr(model, 'df_model'): self.df_model = model.df_model else: self.df_model = len(mlefit.params) # retrofitting the model, used in t_test TODO: check design self.model.df_model = self.df_model if hasattr(model, 'df_resid'): self.df_resid = model.df_resid else: self.df_resid = self.endog.shape[0] - self.df_model # retrofitting the model, used in t_test TODO: check design self.model.df_resid = self.df_resid self._cache = resettable_cache() self.__dict__.update(mlefit.__dict__) def summary(self, yname=None, xname=None, title=None, alpha=.05): """Summarize the Regression Results Parameters ----------- yname : string, optional Default is `y` xname : list of strings, optional Default is `var_##` for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['Maximum Likelihood']), ('Date:', None), ('Time:', None), ('No. Observations:', None), ('Df Residuals:', None), # [self.df_resid]), ('Df Model:', None), # [self.df_model]) ] top_right = [ # ('R-squared:', ["%#8.3f" % self.rsquared]), # ('Adj. R-squared:', ["%#8.3f" % self.rsquared_adj]), # ('F-statistic:', ["%#8.4g" % self.fvalue] ), # ('Prob (F-statistic):', ["%#6.3g" % self.f_pvalue]), ('Log-Likelihood:', None), # ["%#6.4g" % self.llf]), ('AIC:', ["%#8.4g" % self.aic]), ('BIC:', ["%#8.4g" % self.bic]) ] if title is None: title = self.model.__class__.__name__ + ' ' + "Results" #create summary table instance from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=False) return smry
bsd-3-clause
Edu-Glez/Bank_sentiment_analysis
env/lib/python3.6/site-packages/pandas/tseries/timedeltas.py
7
6047
""" timedelta support tools """ import numpy as np import pandas as pd import pandas.tslib as tslib from pandas.types.common import (_ensure_object, is_integer_dtype, is_timedelta64_dtype, is_list_like) from pandas.types.generic import ABCSeries, ABCIndexClass from pandas.util.decorators import deprecate_kwarg @deprecate_kwarg(old_arg_name='coerce', new_arg_name='errors', mapping={True: 'coerce', False: 'raise'}) def to_timedelta(arg, unit='ns', box=True, errors='raise', coerce=None): """ Convert argument to timedelta Parameters ---------- arg : string, timedelta, list, tuple, 1-d array, or Series unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an integer/float number box : boolean, default True - If True returns a Timedelta/TimedeltaIndex of the results - if False returns a np.timedelta64 or ndarray of values of dtype timedelta64[ns] errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception - If 'coerce', then invalid parsing will be set as NaT - If 'ignore', then invalid parsing will return the input Returns ------- ret : timedelta64/arrays of timedelta64 if parsing succeeded Examples -------- Parsing a single string to a Timedelta: >>> pd.to_timedelta('1 days 06:05:01.00003') Timedelta('1 days 06:05:01.000030') >>> pd.to_timedelta('15.5us') Timedelta('0 days 00:00:00.000015') Parsing a list or array of strings: >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']) TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT], dtype='timedelta64[ns]', freq=None) Converting numbers by specifying the `unit` keyword argument: >>> pd.to_timedelta(np.arange(5), unit='s') TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'], dtype='timedelta64[ns]', freq=None) >>> pd.to_timedelta(np.arange(5), unit='d') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None) """ unit = _validate_timedelta_unit(unit) if errors not in ('ignore', 'raise', 'coerce'): raise ValueError("errors must be one of 'ignore', " "'raise', or 'coerce'}") if arg is None: return arg elif isinstance(arg, ABCSeries): from pandas import Series values = _convert_listlike(arg._values, unit=unit, box=False, errors=errors) return Series(values, index=arg.index, name=arg.name) elif isinstance(arg, ABCIndexClass): return _convert_listlike(arg, unit=unit, box=box, errors=errors, name=arg.name) elif is_list_like(arg) and getattr(arg, 'ndim', 1) == 1: return _convert_listlike(arg, unit=unit, box=box, errors=errors) elif getattr(arg, 'ndim', 1) > 1: raise TypeError('arg must be a string, timedelta, list, tuple, ' '1-d array, or Series') # ...so it must be a scalar value. Return scalar. return _coerce_scalar_to_timedelta_type(arg, unit=unit, box=box, errors=errors) _unit_map = { 'Y': 'Y', 'y': 'Y', 'W': 'W', 'w': 'W', 'D': 'D', 'd': 'D', 'days': 'D', 'Days': 'D', 'day': 'D', 'Day': 'D', 'M': 'M', 'H': 'h', 'h': 'h', 'm': 'm', 'T': 'm', 'S': 's', 's': 's', 'L': 'ms', 'MS': 'ms', 'ms': 'ms', 'US': 'us', 'us': 'us', 'NS': 'ns', 'ns': 'ns', } def _validate_timedelta_unit(arg): """ provide validation / translation for timedelta short units """ try: return _unit_map[arg] except: if arg is None: return 'ns' raise ValueError("invalid timedelta unit {0} provided".format(arg)) def _coerce_scalar_to_timedelta_type(r, unit='ns', box=True, errors='raise'): """Convert string 'r' to a timedelta object.""" try: result = tslib.convert_to_timedelta64(r, unit) except ValueError: if errors == 'raise': raise elif errors == 'ignore': return r # coerce result = pd.NaT if box: result = tslib.Timedelta(result) return result def _convert_listlike(arg, unit='ns', box=True, errors='raise', name=None): """Convert a list of objects to a timedelta index object.""" if isinstance(arg, (list, tuple)) or not hasattr(arg, 'dtype'): arg = np.array(list(arg), dtype='O') # these are shortcut-able if is_timedelta64_dtype(arg): value = arg.astype('timedelta64[ns]') elif is_integer_dtype(arg): value = arg.astype('timedelta64[{0}]'.format( unit)).astype('timedelta64[ns]', copy=False) else: try: value = tslib.array_to_timedelta64(_ensure_object(arg), unit=unit, errors=errors) value = value.astype('timedelta64[ns]', copy=False) except ValueError: if errors == 'ignore': return arg else: # This else-block accounts for the cases when errors='raise' # and errors='coerce'. If errors == 'raise', these errors # should be raised. If errors == 'coerce', we shouldn't # expect any errors to be raised, since all parsing errors # cause coercion to pd.NaT. However, if an error / bug is # introduced that causes an Exception to be raised, we would # like to surface it. raise if box: from pandas import TimedeltaIndex value = TimedeltaIndex(value, unit='ns', name=name) return value
apache-2.0
redreamality/daft
examples/galex.py
7
2540
""" The GALEX Photon Catalog ======================== This is the Hogg \& Schiminovich model for how photons turn into counts in the GALEX satellite data stream. Note the use of relative positioning. """ from matplotlib import rc rc("font", family="serif", size=12) rc("text", usetex=True) import daft pgm = daft.PGM([5.4, 5.4], origin=[1.2, 1.2]) wide = 1.5 verywide = 1.5 * wide dy = 0.75 # electrons el_x, el_y = 2., 2. pgm.add_plate(daft.Plate([el_x - 0.6, el_y - 0.6, 2.2, 2 * dy + 0.3], label="electrons $i$")) pgm.add_node(daft.Node("xabc", r"xa$_i$,xabc$_i$,ya$_i$,\textit{etc}", el_x + 0.5, el_y + 0 * dy, aspect=2.3 * wide, observed=True)) pgm.add_node(daft.Node("xyti", r"$x_i,y_i,t_i$", el_x + 1., el_y + 1 * dy, aspect=wide)) pgm.add_edge("xyti", "xabc") # intensity fields ph_x, ph_y = el_x + 2.5, el_y + 3 * dy pgm.add_node(daft.Node("Ixyt", r"$I_{\nu}(x,y,t)$", ph_x, ph_y, aspect=verywide)) pgm.add_edge("Ixyt", "xyti") pgm.add_node(daft.Node("Ixnt", r"$I_{\nu}(\xi,\eta,t)$", ph_x, ph_y + 1 * dy, aspect=verywide)) pgm.add_edge("Ixnt", "Ixyt") pgm.add_node(daft.Node("Iadt", r"$I_{\nu}(\alpha,\delta,t)$", ph_x, ph_y + 2 * dy, aspect=verywide)) pgm.add_edge("Iadt", "Ixnt") # s/c sc_x, sc_y = ph_x + 1.5, ph_y - 1.5 * dy pgm.add_node(daft.Node("dark", r"dark", sc_x, sc_y - 1 * dy, aspect=wide)) pgm.add_edge("dark", "xyti") pgm.add_node(daft.Node("flat", r"flat", sc_x, sc_y, aspect=wide)) pgm.add_edge("flat", "xyti") pgm.add_node(daft.Node("att", r"att", sc_x, sc_y + 3 * dy)) pgm.add_edge("att", "Ixnt") pgm.add_node(daft.Node("optics", r"optics", sc_x, sc_y + 2 * dy, aspect=wide)) pgm.add_edge("optics", "Ixyt") pgm.add_node(daft.Node("psf", r"psf", sc_x, sc_y + 1 * dy)) pgm.add_edge("psf", "xyti") pgm.add_node(daft.Node("fee", r"f.e.e.", sc_x, sc_y - 2 * dy, aspect=wide)) pgm.add_edge("fee", "xabc") # sky pgm.add_node(daft.Node("sky", r"sky", sc_x, sc_y + 4 * dy)) pgm.add_edge("sky", "Iadt") # stars star_x, star_y = el_x, el_y + 4 * dy pgm.add_plate(daft.Plate([star_x - 0.6, star_y - 0.6, 2.2, 2 * dy + 0.3], label="stars $n$")) pgm.add_node(daft.Node("star adt", r"$I_{\nu,n}(\alpha,\delta,t)$", star_x + 0.5, star_y + 1 * dy, aspect=verywide)) pgm.add_edge("star adt", "Iadt") pgm.add_node(daft.Node("star L", r"$L_{\nu,n}(t)$", star_x + 1, star_y, aspect=wide)) pgm.add_edge("star L", "star adt") pgm.add_node(daft.Node("star pos", r"$\vec{x_n}$", star_x, star_y)) pgm.add_edge("star pos", "star adt") # done pgm.render() pgm.figure.savefig("galex.pdf") pgm.figure.savefig("galex.png", dpi=150)
mit
rabipanda/tensorflow
tensorflow/examples/tutorials/word2vec/word2vec_basic.py
4
12759
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Basic word2vec example.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import math import os import sys import argparse import random from tempfile import gettempdir import zipfile import numpy as np from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from tensorflow.contrib.tensorboard.plugins import projector # Give a folder path as an argument with '--log_dir' to save # TensorBoard summaries. Default is a log folder in current directory. current_path = os.path.dirname(os.path.realpath(sys.argv[0])) parser = argparse.ArgumentParser() parser.add_argument( '--log_dir', type=str, default=os.path.join(current_path, 'log'), help='The log directory for TensorBoard summaries.') FLAGS, unparsed = parser.parse_known_args() # Create the directory for TensorBoard variables if there is not. if not os.path.exists(FLAGS.log_dir): os.makedirs(FLAGS.log_dir) # Step 1: Download the data. url = 'http://mattmahoney.net/dc/' # pylint: disable=redefined-outer-name def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" local_filename = os.path.join(gettempdir(), filename) if not os.path.exists(local_filename): local_filename, _ = urllib.request.urlretrieve(url + filename, local_filename) statinfo = os.stat(local_filename) if statinfo.st_size == expected_bytes: print('Found and verified', filename) else: print(statinfo.st_size) raise Exception('Failed to verify ' + local_filename + '. Can you get to it with a browser?') return local_filename filename = maybe_download('text8.zip', 31344016) # Read the data into a list of strings. def read_data(filename): """Extract the first file enclosed in a zip file as a list of words.""" with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return data vocabulary = read_data(filename) print('Data size', len(vocabulary)) # Step 2: Build the dictionary and replace rare words with UNK token. vocabulary_size = 50000 def build_dataset(words, n_words): """Process raw inputs into a dataset.""" count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(n_words - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: index = dictionary.get(word, 0) if index == 0: # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reversed_dictionary # Filling 4 global variables: # data - list of codes (integers from 0 to vocabulary_size-1). # This is the original text but words are replaced by their codes # count - map of words(strings) to count of occurrences # dictionary - map of words(strings) to their codes(integers) # reverse_dictionary - maps codes(integers) to words(strings) data, count, dictionary, reverse_dictionary = build_dataset( vocabulary, vocabulary_size) del vocabulary # Hint to reduce memory. print('Most common words (+UNK)', count[:5]) print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]]) data_index = 0 # Step 3: Function to generate a training batch for the skip-gram model. def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) if data_index + span > len(data): data_index = 0 buffer.extend(data[data_index:data_index + span]) data_index += span for i in range(batch_size // num_skips): context_words = [w for w in range(span) if w != skip_window] words_to_use = random.sample(context_words, num_skips) for j, context_word in enumerate(words_to_use): batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[context_word] if data_index == len(data): buffer.extend(data[0:span]) data_index = span else: buffer.append(data[data_index]) data_index += 1 # Backtrack a little bit to avoid skipping words in the end of a batch data_index = (data_index + len(data) - span) % len(data) return batch, labels batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0], reverse_dictionary[labels[i, 0]]) # Step 4: Build and train a skip-gram model. batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. num_sampled = 64 # Number of negative examples to sample. # We pick a random validation set to sample nearest neighbors. Here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. These 3 variables are used only for # displaying model accuracy, they don't affect calculation. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.random.choice(valid_window, valid_size, replace=False) graph = tf.Graph() with graph.as_default(): # Input data. with tf.name_scope('inputs'): train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device('/cpu:0'): # Look up embeddings for inputs. with tf.name_scope('embeddings'): embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss with tf.name_scope('weights'): nce_weights = tf.Variable( tf.truncated_normal( [vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) with tf.name_scope('biases'): nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. # Explanation of the meaning of NCE loss: # http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/ with tf.name_scope('loss'): loss = tf.reduce_mean( tf.nn.nce_loss( weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # Add the loss value as a scalar to summary. tf.summary.scalar('loss', loss) # Construct the SGD optimizer using a learning rate of 1.0. with tf.name_scope('optimizer'): optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Merge all summaries. merged = tf.summary.merge_all() # Add variable initializer. init = tf.global_variables_initializer() # Create a saver. saver = tf.train.Saver() # Step 5: Begin training. num_steps = 100001 with tf.Session(graph=graph) as session: # Open a writer to write summaries. writer = tf.summary.FileWriter(FLAGS.log_dir, session.graph) # We must initialize all variables before we use them. init.run() print('Initialized') average_loss = 0 for step in xrange(num_steps): batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # Define metadata variable. run_metadata = tf.RunMetadata() # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() # Also, evaluate the merged op to get all summaries from the returned "summary" variable. # Feed metadata variable to session for visualizing the graph in TensorBoard. _, summary, loss_val = session.run( [optimizer, merged, loss], feed_dict=feed_dict, run_metadata=run_metadata) average_loss += loss_val # Add returned summaries to writer in each step. writer.add_summary(summary, step) # Add metadata to visualize the graph for the last run. if step == (num_steps - 1): writer.add_run_metadata(run_metadata, 'step%d' % step) if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. print('Average loss at step ', step, ': ', average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = 'Nearest to %s:' % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = '%s %s,' % (log_str, close_word) print(log_str) final_embeddings = normalized_embeddings.eval() # Write corresponding labels for the embeddings. with open(FLAGS.log_dir + '/metadata.tsv', 'w') as f: for i in xrange(vocabulary_size): f.write(reverse_dictionary[i] + '\n') # Save the model for checkpoints. saver.save(session, os.path.join(FLAGS.log_dir, 'model.ckpt')) # Create a configuration for visualizing embeddings with the labels in TensorBoard. config = projector.ProjectorConfig() embedding_conf = config.embeddings.add() embedding_conf.tensor_name = embeddings.name embedding_conf.metadata_path = os.path.join(FLAGS.log_dir, 'metadata.tsv') projector.visualize_embeddings(writer, config) writer.close() # Step 6: Visualize the embeddings. # pylint: disable=missing-docstring # Function to draw visualization of distance between embeddings. def plot_with_labels(low_dim_embs, labels, filename): assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings' plt.figure(figsize=(18, 18)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate( label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.savefig(filename) try: # pylint: disable=g-import-not-at-top from sklearn.manifold import TSNE import matplotlib.pyplot as plt tsne = TSNE( perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact') plot_only = 500 low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels, os.path.join(gettempdir(), 'tsne.png')) except ImportError as ex: print('Please install sklearn, matplotlib, and scipy to show embeddings.') print(ex)
apache-2.0
dhruv13J/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
247
2432
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Andreas Mueller <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plot_outer_labeled, = plt.plot(X[labels == outer, 0], X[labels == outer, 1], 'rs') plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.') plot_inner_labeled, = plt.plot(X[labels == inner, 0], X[labels == inner, 1], 'bs') plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled), ('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left', numpoints=1, shadow=False) plt.title("Raw data (2 classes=red and blue)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs') plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs') plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'), 'upper left', numpoints=1, shadow=False) plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
Windy-Ground/scikit-learn
sklearn/tests/test_isotonic.py
230
11087
import numpy as np import pickle from sklearn.isotonic import (check_increasing, isotonic_regression, IsotonicRegression) from sklearn.utils.testing import (assert_raises, assert_array_equal, assert_true, assert_false, assert_equal, assert_array_almost_equal, assert_warns_message, assert_no_warnings) from sklearn.utils import shuffle def test_permutation_invariance(): # check that fit is permuation invariant. # regression test of missing sorting of sample-weights ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0) y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight) y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x) assert_array_equal(y_transformed, y_transformed_s) def test_check_increasing_up(): x = [0, 1, 2, 3, 4, 5] y = [0, 1.5, 2.77, 8.99, 8.99, 50] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_up_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_down(): x = [0, 1, 2, 3, 4, 5] y = [0, -1.5, -2.77, -8.99, -8.99, -50] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_increasing_down_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, -2, -3, -4, -5] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_ci_warn(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, 2, -3, 4, -5] # Check that we got increasing=False and CI interval warning is_increasing = assert_warns_message(UserWarning, "interval", check_increasing, x, y) assert_false(is_increasing) def test_isotonic_regression(): y = np.array([3, 7, 5, 9, 8, 7, 10]) y_ = np.array([3, 6, 6, 8, 8, 8, 10]) assert_array_equal(y_, isotonic_regression(y)) x = np.arange(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(ir.transform(x), ir.predict(x)) # check that it is immune to permutation perm = np.random.permutation(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) # check we don't crash when all x are equal: ir = IsotonicRegression() assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y)) def test_isotonic_regression_ties_min(): # Setup examples with ties on minimum x = [0, 1, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5, 6] y_true = [0, 1.5, 1.5, 3, 4, 5, 6] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_max(): # Setup examples with ties on maximum x = [1, 2, 3, 4, 5, 5] y = [1, 2, 3, 4, 5, 6] y_true = [1, 2, 3, 4, 5.5, 5.5] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_secondary_(): """ Test isotonic regression fit, transform and fit_transform against the "secondary" ties method and "pituitary" data from R "isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Set values based on pituitary example and the following R command detailed in the paper above: > library("isotone") > data("pituitary") > res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") > res1$x `isotone` version: 1.0-2, 2014-09-07 R version: R version 3.1.1 (2014-07-10) """ x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] y_true = [22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 24.25, 24.25] # Check fit, transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true, 4) assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4) def test_isotonic_regression_reversed(): y = np.array([10, 9, 10, 7, 6, 6.1, 5]) y_ = IsotonicRegression(increasing=False).fit_transform( np.arange(len(y)), y) assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) def test_isotonic_regression_auto_decreasing(): # Set y and x for decreasing y = np.array([10, 9, 10, 7, 6, 6.1, 5]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship decreases is_increasing = y_[0] < y_[-1] assert_false(is_increasing) def test_isotonic_regression_auto_increasing(): # Set y and x for decreasing y = np.array([5, 6.1, 6, 7, 10, 9, 10]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship increases is_increasing = y_[0] < y_[-1] assert_true(is_increasing) def test_assert_raises_exceptions(): ir = IsotonicRegression() rng = np.random.RandomState(42) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7, 3], [0.1, 0.6]) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7]) assert_raises(ValueError, ir.fit, rng.randn(3, 10), [0, 1, 2]) assert_raises(ValueError, ir.transform, rng.randn(3, 10)) def test_isotonic_sample_weight_parameter_default_value(): # check if default value of sample_weight parameter is one ir = IsotonicRegression() # random test data rng = np.random.RandomState(42) n = 100 x = np.arange(n) y = rng.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) # check if value is correctly used weights = np.ones(n) y_set_value = ir.fit_transform(x, y, sample_weight=weights) y_default_value = ir.fit_transform(x, y) assert_array_equal(y_set_value, y_default_value) def test_isotonic_min_max_boundaries(): # check if min value is used correctly ir = IsotonicRegression(y_min=2, y_max=4) n = 6 x = np.arange(n) y = np.arange(n) y_test = [2, 2, 2, 3, 4, 4] y_result = np.round(ir.fit_transform(x, y)) assert_array_equal(y_result, y_test) def test_isotonic_sample_weight(): ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24] received_y = ir.fit_transform(x, y, sample_weight=sample_weight) assert_array_equal(expected_y, received_y) def test_isotonic_regression_oob_raise(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") ir.fit(x, y) # Check that an exception is thrown assert_raises(ValueError, ir.predict, [min(x) - 10, max(x) + 10]) def test_isotonic_regression_oob_clip(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) # Predict from training and test x and check that min/max match. y1 = ir.predict([min(x) - 10, max(x) + 10]) y2 = ir.predict(x) assert_equal(max(y1), max(y2)) assert_equal(min(y1), min(y2)) def test_isotonic_regression_oob_nan(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="nan") ir.fit(x, y) # Predict from training and test x and check that we have two NaNs. y1 = ir.predict([min(x) - 10, max(x) + 10]) assert_equal(sum(np.isnan(y1)), 2) def test_isotonic_regression_oob_bad(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="xyz") # Make sure that we throw an error for bad out_of_bounds value assert_raises(ValueError, ir.fit, x, y) def test_isotonic_regression_oob_bad_after(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") # Make sure that we throw an error for bad out_of_bounds value in transform ir.fit(x, y) ir.out_of_bounds = "xyz" assert_raises(ValueError, ir.transform, x) def test_isotonic_regression_pickle(): y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL) ir2 = pickle.loads(ir_ser) np.testing.assert_array_equal(ir.predict(x), ir2.predict(x)) def test_isotonic_duplicate_min_entry(): x = [0, 0, 1] y = [0, 0, 1] ir = IsotonicRegression(increasing=True, out_of_bounds="clip") ir.fit(x, y) all_predictions_finite = np.all(np.isfinite(ir.predict(x))) assert_true(all_predictions_finite) def test_isotonic_zero_weight_loop(): # Test from @ogrisel's issue: # https://github.com/scikit-learn/scikit-learn/issues/4297 # Get deterministic RNG with seed rng = np.random.RandomState(42) # Create regression and samples regression = IsotonicRegression() n_samples = 50 x = np.linspace(-3, 3, n_samples) y = x + rng.uniform(size=n_samples) # Get some random weights and zero out w = rng.uniform(size=n_samples) w[5:8] = 0 regression.fit(x, y, sample_weight=w) # This will hang in failure case. regression.fit(x, y, sample_weight=w)
bsd-3-clause
tttor/csipb-jamu-prj
predictor/connectivity/classifier/selfblm/devel.py
1
5474
#!/usr/bin/python import numpy as np import json import time import sys import matplotlib.pyplot as plt from sklearn import svm from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score from sklearn.preprocessing import MinMaxScaler sys.path.append('../../utility') import yamanishi_data_util as yam sys.path.append('../cluster/kmedoid') import kmedoid from generateNegativeData import genNegativeData from selfblm import SELFBLM def main(): if len(sys.argv)!=5: print ("python blmniisvm_experiment.py [DataSetCode] [evalMode]" " [dataPath] [outPath]") return classParam = dict(name='blmnii',proba=True) dataset = sys.argv[1] evalMode = sys.argv[2] dataPath = sys.argv[3] outPath = sys.argv[4] print "Building Data" connMat,comList,proList = yam.loadComProConnMat(dataset,dataPath+"/Adjacency") kernel = yam.loadKernel(dataset,dataPath) comListIdx = [i for i,_ in enumerate(comList)] proListIdx = [i for i,_ in enumerate(proList)] nComp = len(comList) nProtein = len(proList) comSimMat = np.zeros((nComp,nComp), dtype=float) proSimMat = np.zeros((nProtein,nProtein), dtype=float) for row,i in enumerate(comList): for col,j in enumerate(comList): comSimMat[row][col] = (kernel[(i,j)]+kernel[(j,i)])/2 for row,i in enumerate(proList): for col,j in enumerate(proList): proSimMat[row][col] = (kernel[(i,j)]+kernel[(j,i)])/2 comSimMat = regularizationKernel(comSimMat) proSimMat = regularizationKernel(proSimMat) print "Clustering" comDisMat = kmedoid.simToDis(comSimMat) proDisMat = kmedoid.simToDis(proSimMat) _,proClust = kmedoid.kMedoids(len(proList)/2, proDisMat) _,comClust = kmedoid.kMedoids(len(comList)/2, comDisMat) print "Generate Negative Data" connMat = genNegativeData(connMat,proClust,comClust) # PLACEHOLDER # Split Data pairData = [] connList = [] print "Split Dataset..." if evalMode == "loocv": nFold = len(comListIdx) kSplit = KFold(n_splits=nFold,shuffle=True) comSplit = kSplit.split(comListIdx) nFold = len(proListIdx) kSplit = KFold(n_splits=nFold,shuffle=True) proSplit = kSplit.split(proListIdx) elif evalMode == "kfold": nFold = 10 kSplit = KFold(n_splits=nFold, shuffle=True) comSplit = kSplit.split(comListIdx) proSplit = kSplit.split(proListIdx) else: assert(False) predictedData = np.zeros((len(comList),len(proList)),dtype=float) splitPred = [] proTestList = [] proTrainList = [] comTestList = [] comTrainList = [] for trainIndex, testIndex in proSplit: proTestList.append([i for i in testIndex]) proTrainList.append([i for i in trainIndex]) for trainIndex, testIndex in comSplit: comTestList.append([i for i in testIndex]) comTrainList.append([i for i in trainIndex]) predRes = [] testData = [] print "Predicting..." for ii,i in enumerate(comTestList): for jj,j in enumerate(proTestList): sys.stdout.write("\r%03d of %03d||%03d of %03d" % (jj+1, len(proTestList), ii+1,len(comTestList),)) sys.stdout.flush() predictor = SELFBLM(classParam, connMat, comSimMat, proSimMat, [comTrainList[ii],proTrainList[jj]],[i,j]) for comp in i: for prot in j: predRes.append(predictor.predict([(comp,prot)])) if connMat[comp][prot] == 1: testData.append(1) else: testData.append(-1) # run core selfBLM # Evaluate prediction print "\nCalculate Performance" key = 'PredictionUsingSelfBLM' precision, recall, _ = precision_recall_curve(testData, predRes) prAUC = average_precision_score(testData, predRes, average='micro') print "Visualiation" lineType = 'k-.' perf = {'precision': precision, 'recall': recall, 'prAUC': prAUC, 'lineType': lineType} perf2 = {'prAUC': prAUC, 'nTest': nComp*nProtein} with open(outPath+'perf_selfblm_'+evalMode+'_'+dataset+'_perf.json', 'w') as fp: json.dump(perf2, fp, indent=2, sort_keys=True) plt.clf() plt.figure() plt.plot(perf['recall'], perf['precision'], perf['lineType'], label= key+' (area = %0.2f)' % perf['prAUC'], lw=2) plt.ylim([-0.05, 1.05]) plt.xlim([-0.05, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Precision-Recall Curve') plt.legend(loc="lower left") plt.savefig(outPath+'/pr_curve_'+ dataset +'_'+evalMode+'_selfblm.png', bbox_inches='tight') # http://stackoverflow.com/questions/29644180/gram-matrix-kernel-in-svms-not-positive-semi-definite?rq=1 def regularizationKernel(mat): eps = 0.1 m,n = mat.shape assert(m==n) while isPSDKernel(mat) == False: for i in range(m): mat[i][i] = mat[i][i] + eps return mat def isPSDKernel(mat,eps = 1e-8): E,V = np.linalg.eigh(mat) return np.all(E > -eps) and np.all(np.isreal(E)) if __name__ == '__main__': start_time = time.time() main() print "Program is running for :"+str(time.time()-start_time)
mit
appapantula/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <[email protected] # Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
Averroes/statsmodels
statsmodels/graphics/tests/test_factorplots.py
27
1513
import numpy as np from nose import SkipTest from pandas import Series from statsmodels.graphics.factorplots import interaction_plot try: import matplotlib.pyplot as plt import matplotlib have_matplotlib = True except ImportError: have_matplotlib = False class TestInteractionPlot(object): @classmethod def setupClass(cls): if not have_matplotlib: raise SkipTest('matplotlib not available') np.random.seed(12345) cls.weight = np.random.randint(1,4,size=60) cls.duration = np.random.randint(1,3,size=60) cls.days = np.log(np.random.randint(1,30, size=60)) def test_plot_both(self): fig = interaction_plot(self.weight, self.duration, self.days, colors=['red','blue'], markers=['D','^'], ms=10) plt.close(fig) def test_plot_rainbow(self): fig = interaction_plot(self.weight, self.duration, self.days, markers=['D','^'], ms=10) plt.close(fig) def test_plot_pandas(self): weight = Series(self.weight, name='Weight') duration = Series(self.duration, name='Duration') days = Series(self.days, name='Days') fig = interaction_plot(weight, duration, days, markers=['D','^'], ms=10) ax = fig.axes[0] trace = ax.get_legend().get_title().get_text() assert trace == 'Duration' assert ax.get_ylabel() == 'mean of Days' assert ax.get_xlabel() == 'Weight' plt.close(fig)
bsd-3-clause
GORDON17/py_rrfm_re
server/services/similarity_service_backup.py
2
13374
import os, json, gc import pandas as pd import numpy as np from scipy.spatial import distance from scipy.stats import pearsonr from urllib2 import Request, urlopen from pandas.io.json import json_normalize from configurations.env_configs import * # def interests_sim(id): # df_new = _matrix() # df_profile_t = df_new[df_new.columns[13:]] # print df_profile_t.shape # index = _index_of(id, df_new) # profile_d = distance.pdist(df_profile_t, metric='matching') # profile_D = distance.squareform(profile_d) # p_r = profile_D[index].tolist() # sim = pd.Series(p_r) # df_new['count_of_interests'] = (1 - sim.values) * len(df_profile_t.columns) # df_new['count_of_interests'] = df_new['count_of_interests'].astype(int) # List = [i[0] for i in sorted(enumerate(p_r), key=lambda x:x[1])][0:21] # return df_new.ix[List][['V2', 'count_of_interests']]#['V2'] # def interests_sim_with_loc(id, location, uri): # # df_new = _matrix_with_loc(location) # # df_profile_t = df_new[df_new.columns[14:]] # df_new = _interests_matrix_with_loc(location, uri) # df_profile_t = df_new[df_new.columns[2:]] # index = _index_of(id, df_new) # profile_d = distance.pdist(df_profile_t, metric='matching') # profile_D = distance.squareform(profile_d) # p_r = profile_D[index].tolist() # del profile_d # del profile_D # gc.collect() # sim = pd.Series(p_r) # df_new['interest_similarity'] = 1 - sim.values # df_new['interest_count'] = (1 - sim.values) * len(df_profile_t.columns) # df_new['interest_count'] = df_new['interest_count'].astype(int) # # List = [i[0] for i in sorted(enumerate(p_r), key=lambda x:x[1])][0:21] # # return df_new.ix[List][['account_id', 'interest_count']]#['V2'] # return df_new def events_sim(id): df_new = _matrix() df_event_t = df_new[df_new.columns[2:13]] index = _index_of(id, df_new) df_event_t = df_event_t.div(df_event_t.sum(axis=1), axis=0) # event_D = np.corrcoef(df_event_t) # e_r = event_D[index].tolist() # sim = pd.Series(e_r) # df_new['similarity_percentage'] = sim.values # List = [i[0] for i in sorted(enumerate(e_r), key=lambda x:x[1], reverse=True)][0:21] # print event_D.shape event_d = distance.pdist(df_event_t, metric='euclidean') event_D = distance.squareform(event_d) e_r = event_D[index].tolist() sim = pd.Series(e_r) df_new['similarity_percentage'] = 1 - sim.values List = [i[0] for i in sorted(enumerate(e_r), key=lambda x:x[1])][0:21] return df_new.ix[List][['V2', 'similarity_percentage']]#['V2'] def events_sim_with_loc(id, location, uri): df_new = _events_matrix_with_loc(location, uri) df_event_t = df_new[df_new.columns[2:]] index = _index_of(id, df_new) df_event_t = df_event_t.div(df_event_t.sum(axis=1), axis=0) # event_D = np.corrcoef(df_event_t) # e_r = event_D[index].tolist() # sim = pd.Series(e_r) # df_new['similarity_percentage'] = sim.values # List = [i[0] for i in sorted(enumerate(e_r), key=lambda x:x[1], reverse=True)][0:21] # print event_D.shape event_d = distance.pdist(df_event_t, metric='correlation') event_D = distance.squareform(event_d) del df_event_t del event_d e_r = event_D[index].tolist() del event_D gc.collect() sim = pd.Series(e_r) df_new['similarity_percentage'] = 1 - sim.values # List = [i[0] for i in sorted(enumerate(e_r), key=lambda x:x[1])][0:21] # return df_new.ix[List][['account_id', 'email', 'similarity_percentage']]#['V2'] return df_new def _matrix_with_loc(location): df_profile = _social_interests_data() df_profile[['account_id']] = df_profile[['account_id']].astype(int) df_profile['location'].fillna('empty', inplace=True) df_profile = pd.pivot_table(df_profile, index=['account_id', 'location'], columns='social', values='indicator') df_profile_t = df_profile.reset_index() df_profile_t = df_profile_t.fillna(value=0) df_profile_t = df_profile_t[(df_profile_t.location == '') | (df_profile_t.location == 'empty') | (df_profile_t.location.str.contains(location))] df_event = _event_types_data() df_event[['account_id']] = df_event[['account_id']].astype(int) df_event[['count']] = df_event[['count']].astype(int) df_event[['event_type']] = df_event[['event_type']].astype(int) df_event = pd.pivot_table(df_event, index=['account_id', 'email'], columns='event_type', values='count') df_event_t = df_event.reset_index() df_event_t = df_event_t.fillna(value=0) df_new = df_event_t.set_index('account_id').join(df_profile_t.set_index('account_id')) df_new = df_new.dropna() df_new = df_new.sort_values(by='email', ascending=False) df_new = df_new.reset_index() print df_new[df_new.account_id == 28071].index.tolist()[0] return df_new def _matrix(): df_profile = pd.read_csv(_datasets_path() + 'profile dataset.csv', names=['V1', 'V2', 'V3']) df_profile = df_profile.pivot(index='V1', columns='V2', values='V3') df_profile_t = df_profile.reset_index() df_profile_t = df_profile_t.fillna(value=0) print(df_profile_t.shape) df_event = pd.read_csv(_datasets_path() + 'query event type.csv', names=['V1', 'V2', 'V3', 'V4']) df_event = pd.pivot_table(df_event, index=['V1', 'V2'], columns='V3', values='V4') df_event_t = df_event.reset_index() df_event_t = df_event_t.fillna(value=0) print(df_event_t.shape) df_new = df_event_t.set_index('V1').join(df_profile_t.set_index('V1')) print df_new.shape df_new = df_new.dropna() df_new = df_new.sort_values(by='V2', ascending=False) df_new = df_new.reset_index() print df_new.shape return df_new def _index_of(id, df): return df[df.account_id == id].index.tolist()[0] def _datasets_path(): return os.path.abspath("") + "/datasets/" # def _social_interests_data(): # print ("Sending request to:", SOCIAL_INTERESTS_URI) # request=Request(SOCIAL_INTERESTS_URI) # profiles = json.loads(urlopen(request).read()) # df = pd.DataFrame(profiles) # print df.shape # return df # def _event_types_data(): # print ("Sending request to:", EVENT_TYPES_URI) # request=Request(EVENT_TYPES_URI) # events = json.loads(urlopen(request).read()) # df = pd.DataFrame(events) # print df.shape # return df def _request_data(uri): print ("Sending request to:", uri) request = Request(uri) request.add_header('HTTP_X_IVY_SESSION_TOKEN', RAILS_TOKEN) data = json.loads(urlopen(request).read()) df = pd.DataFrame(data) print ("Requested data shape:", df.shape) return df # def _interests_matrix_with_loc(location, uri): # df_profile = _request_data(uri) # df_profile[['account_id']] = df_profile[['account_id']].astype(int) # df_profile['location'].fillna('empty', inplace=True) # df_profile_t = pd.pivot_table(df_profile, index=['account_id', 'location'], columns=['social'], values='indicator') # del df_profile # gc.collect() # df_profile_t = df_profile_t.reset_index() # df_profile_t = df_profile_t.fillna(value=0) # df_profile_t = df_profile_t[(df_profile_t.location == '') | (df_profile_t.location == 'empty') | (df_profile_t.location.str.contains(location))] # df_profile_f = df_profile_t.dropna() # del df_profile_t # gc.collect() # df_profile_s = df_profile_f.sort_values(by='account_id', ascending=True) # del df_profile_f # gc.collect() # df_profile_s.reset_index(drop=True, inplace=True) # return df_profile_s def _events_matrix_with_loc(location, uri): df_event = _request_data(uri) df_event[['account_id']] = df_event[['account_id']].astype(int) df_event[['count']] = df_event[['count']].astype(int) df_event[['event_type']] = df_event[['event_type']].astype(int) df_event_t = pd.pivot_table(df_event, index=['account_id', 'email'], columns='event_type', values='count') del df_event gc.collect() df_event_t.reset_index(inplace=True) df_event_t = df_event_t.fillna(value=0) df_event_s = df_event_t.sort_values(by='account_id', ascending=True) del df_event_t gc.collect() df_event_s.reset_index(drop=True, inplace=True) return df_event_s # interest similarity # # from configurations.env_configs import * # from mongodb import update_interests_table # from account_service import * # def process_interest_similarity(uri): # # df_accounts = _request_data(ACCOUNTS_URI) # # df_accounts['location'].fillna('empty', inplace=True) # df_accounts = get_accounts() # df_profile = _request_data(uri) # size = df_profile.size() # for index, account in df_accounts.iterrows(): # if not df_profile[df_profile.account_id == account.id].empty: # size = size - 1 # print("interest similarity account left", size) # print("processing interest similarity for account: ", account.id) # df = _interests_sim_with_loc(account, df_profile) # update_interests_table(account.id, df, INTEREST_TYPES['social']) # print("finished interest similarity for account: ", account.id) # def _interests_sim_with_loc(account, df_profile): # # df_new = _matrix_with_loc(location) # # df_profile_t = df_new[df_new.columns[14:]] # df_new = _interests_matrix_with_loc(account.location, df_profile) # df_profile_t = df_new[df_new.columns[2:]] # index = _index_of(account.id, df_new) # profile_d = distance.pdist(df_profile_t, metric='matching') # profile_D = distance.squareform(profile_d) # p_r = profile_D[index].tolist() # del profile_d # del profile_D # gc.collect() # sim = pd.Series(p_r) # df_new['interest_similarity'] = 1 - sim.values # df_new['interest_count'] = (1 - sim.values) * len(df_profile_t.columns) # df_new['interest_count'] = df_new['interest_count'].astype(int) # List = [i[0] for i in sorted(enumerate(p_r), key=lambda x:x[1])][0:21] # return df_new.ix[List] # # return df_new # def _interests_matrix_with_loc(location, df): # df_profile = df.copy() # df_profile[['account_id']] = df_profile[['account_id']].astype(int) # df_profile['location'].fillna('empty', inplace=True) # df_profile_t = pd.pivot_table(df_profile, index=['account_id', 'location'], columns=['social'], values='indicator') # del df_profile # gc.collect() # df_profile_t = df_profile_t.reset_index() # df_profile_t = df_profile_t.fillna(value=0) # df_profile_t = df_profile_t[(df_profile_t.location == '') | (df_profile_t.location == 'empty') | (df_profile_t.location.str.contains(location))] # df_profile_f = df_profile_t.dropna() # del df_profile_t # gc.collect() # df_profile_s = df_profile_f.sort_values(by='account_id', ascending=True) # del df_profile_f # gc.collect() # df_profile_s.reset_index(drop=True, inplace=True) # return df_profile_s # refactor for performance from mongodb import update_interests_table def process_interest_similarity(uri, type, params): df_profile = _request_data(uri) structured_df = _manipulate_profile_matrix(df_profile) del df_profile gc.collect() # df_profile_t = structured_df[structured_df.columns[4:]] print ("Structured profile matrix shape:", structured_df[structured_df.columns[4:]].shape) df_interest_sim = _calculate_similarity(structured_df[structured_df.columns[4:]]) profile_len = len(structured_df[structured_df.columns[4:]].columns) # del df_profile_t # gc.collect() count = 1 prepared_df = structured_df[['account_id', 'location', 'nationality', 'chapter']].copy() del structured_df gc.collect() for index, profile in prepared_df.iterrows(): sim_for_account = df_interest_sim[index].tolist() sim_list = pd.Series(sim_for_account) df = prepared_df.copy() df['interest_similarity'] = 1 - sim_list.values df['interest_count'] = (1 - sim_list.values) * profile_len df['interest_count'] = df['interest_count'].astype(int) df_profile_f = _filtered_profile_matrix(df, profile, params) #df[(df.location == '') | (df.location == 'empty') | (df.location.str.contains(profile.location))] df_profile_r = df_profile_f.sort_values(by='interest_similarity', ascending=0)[1:10] update_interests_table(profile.account_id, df_profile_r, type) print('Processed interest similarity: ', count) count += 1 del df_interest_sim del prepared_df gc.collect() def _filtered_profile_matrix(df, profile, params): df_copy = df.copy() if params['location']: df_copy = df_copy[(df_copy.location.str.contains(profile.location))] #(df_copy.location == '') | (df_copy.location == 'empty') | if params['chapter']: df_copy = df_copy[(df_copy.chapter == profile.chapter)] if params['nationality']: df_copy = df_copy[(df_copy.nationality == profile.nationality)] return df_copy def _manipulate_profile_matrix(df): df_profile = df.copy() df_profile[['account_id']] = df_profile[['account_id']].astype(int) df_profile[['chapter']] = df_profile[['chapter']].astype(int) df_profile['location'].fillna('empty', inplace=True) df_profile['nationality'].fillna('empty', inplace=True) df_profile['chapter'].fillna(0, inplace=True) df_profile_t = pd.pivot_table(df_profile, index=['account_id', 'location', 'nationality', 'chapter'], columns=['social'], values='indicator') del df_profile gc.collect() df_profile_t.reset_index(inplace=True) df_profile_t.fillna(value=0, inplace=True) df_profile_t.dropna(inplace=True) df_profile_t.sort_values(by='account_id', ascending=True, inplace=True) df_profile_t.reset_index(drop=True, inplace=True) return df_profile_t def _calculate_similarity(df): profile_d = distance.pdist(df, metric='matching') profile_D = distance.squareform(profile_d) del profile_d gc.collect() return profile_D
mit
yavalvas/yav_com
build/matplotlib/unit/threading_test.py
1
1771
#! /usr/bin/python """ Test by Karen Tracey for threading problem reported in http://www.mail-archive.com/[email protected]/msg04819.html and solved by JDH in git commit 175e3ec5bed9144. """ from __future__ import print_function import os import threading import traceback import numpy as np from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure thread_count = 8 max_iterations = 50 exception_raised = False def png_thread(tn): png_fname = 'out%d.png' % tn vals = 100 + 15 * np.random.randn(10000) i = 0 excp = None global exception_raised while not exception_raised and i < max_iterations: i += 1 png_f = open(png_fname, 'wb') try: fig = Figure() ax = fig.add_subplot(111) ax.hist(vals, 50) FigureCanvas(fig).print_png(png_f) except Exception, excp: pass png_f.close() if excp: print('png_thread %d failed on iteration %d:' % (tn, i)) print(traceback.format_exc(excp)) exception_raised = True else: print('png_thread %d completed iteration %d.' % (tn, i)) os.unlink(png_fname) def main(tc): threads = [] for i in range(tc): threads.append(threading.Thread(target=png_thread, args=(i+1,))) for t in threads: t.start() for t in threads: t.join() if not exception_raised: msg = 'Success! %d threads completed %d iterations with no exceptions raised.' else: msg = 'Failed! Exception raised before %d threads completed %d iterations.' print(msg % (tc, max_iterations)) if __name__== "__main__": main(thread_count)
mit
joeldg/bowhead
app/Scripts/close_prediction.py
1
2487
#!/usr/local/bin/python import pandas as pd import redis import sys from os.path import join, dirname import os import dotenv import numpy as np from sklearn.linear_model import LinearRegression dotenv.load(join(dirname(__file__), '../../.env')) r = redis.StrictRedis(host=os.environ.get('REDIS_HOST'), port=os.environ.get('REDIS_PORT'), db=0) book = r.get('laravel:tempbook') if sys.version_info[0] < 3: from StringIO import StringIO else: from io import StringIO TDATA=StringIO(book) df = pd.read_csv(TDATA) to_forecast = df.close.values dates = df.id.values # mean absolute percentage error def mape(ypred, ytrue): """ returns the mean absolute percentage error """ idx = ytrue != 0.0 return 100*np.mean(np.abs(ypred[idx]-ytrue[idx])/ytrue[idx]) def organize_data(to_forecast, window, horizon): """ Input: to_forecast, univariate time series organized as numpy array window, number of items to use in the forecast window horizon, horizon of the forecast Output: X, a matrix where each row contains a forecast window y, the target values for each row of X """ shape = to_forecast.shape[:-1] + (to_forecast.shape[-1] - window + 1, window) strides = to_forecast.strides + (to_forecast.strides[-1],) X = np.lib.stride_tricks.as_strided(to_forecast, shape=shape, strides=strides) y = np.array([X[i+horizon][-1] for i in range(len(X)-horizon)]) return X[:-horizon], y k = 4 # number of previous observations to use h = 1 # forecast horizon X,y = organize_data(to_forecast, k, h) m = 10 # number of samples to take in account regressor = LinearRegression(normalize=True) regressor.fit(X[:m], y[:m]) #print regressor.coef_ #print 'The error is:%0.2f%%' % mape(regressor.predict(X[m:]),y[m:]) #print y[m:] #print regressor.predict(X[m:]) #print str(regressor.predict(X[m:])).strip('[]') #print ', '.join(map(str, y[m:])) # print out and pop off the last number for the prediction. print ','.join(map(str, regressor.predict(X[m:]))) """ http://glowingpython.blogspot.com/2015/01/forecasting-beer-consumption-with.html figure(figsize=(8,6)) plot(y, label='True demand', color='#377EB8', linewidth=2) plot(regressor.predict(X), '--', color='#EB3737', linewidth=3, label='Prediction') plot(y[:m], label='Train data', color='#3700B8', linewidth=2) xticks(arange(len(dates))[1::4],dates[1::4], rotation=45) legend(loc='upper right') ylabel('beer consumed (millions of litres)') show() """
apache-2.0
zxc2694/STM32F429_Quadrotor
program/pythonGUI/ultrasonic.py
1
2344
################################################################################ # File name: ultrasonic.py # # Function: Display the flight height of quadcopter from stm32f4 using Python (matplotlib) # # Reference:http://electronut.in/plotting-real-time-data-from-arduino-using-python/ # ################################################################################ import sys, serial import numpy as np from time import sleep from collections import deque from matplotlib import pyplot as plt # class that holds analog data for N samples class AnalogData: # constr def __init__(self, maxLen): self.d = deque([0.0]*maxLen) self.maxLen = maxLen # ring buffer def addToBuf(self, buf, val): if len(buf) < self.maxLen: buf.append(val) else: buf.pop() buf.appendleft(val) #Add new data def add(self, data): assert(len(data) == 1) self.addToBuf(self.d, data[0]) # plot class class AnalogPlot: # constr def __init__(self, analogData): # set plot to animated plt.ion() plt.figure(figsize=(9,8)) self.dline, = plt.plot(analogData.d,label="Distance",color="red") plt.xlabel("Time") plt.ylabel("distance (cm)") plt.title("Ultrasonic distance") plt.legend() #Show label figure. plt.ylim([0, 2000]) # Vertical axis scale. plt.grid() # update plot def update(self, analogData): self.dline.set_ydata(analogData.d) plt.draw() def main(): # expects 1 arg - serial port string if(len(sys.argv) != 2): print "Type:" print "sudo chmod 777 /dev/ttyUSB0" print "python ultrasonic.py '/dev/ttyUSB0'" # command hint exit(1) #strPort = '/dev/tty.usbserial-A7006Yqh' strPort = sys.argv[1]; # plot parameters analogData = AnalogData(200) # Horizontal axis scale. analogPlot = AnalogPlot(analogData) print "plotting data..." a = 1 # open serial port ser = serial.Serial(strPort, 9600) # set Baudrate while True: try: line = ser.readline() data = [float(val) for val in line.split()] if (a < 10): # to ignore the wrong data that cause the failure while python GUI start a = a + 1 else: print data[0] if(len(data) == 1): # number of data sets analogData.add(data) analogPlot.update(analogData) except KeyboardInterrupt: print "exiting" break # close serial ser.flush() ser.close() # call main if __name__ == '__main__': main()
mit
louispotok/pandas
pandas/tests/indexes/interval/test_construction.py
1
14167
from __future__ import division import pytest import numpy as np from functools import partial from pandas import ( Interval, IntervalIndex, Index, Int64Index, Float64Index, Categorical, CategoricalIndex, date_range, timedelta_range, period_range, notna) from pandas.compat import lzip from pandas.core.dtypes.common import is_categorical_dtype from pandas.core.dtypes.dtypes import IntervalDtype import pandas.core.common as com import pandas.util.testing as tm @pytest.fixture(params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(params=[None, 'foo']) def name(request): return request.param class Base(object): """ Common tests for all variations of IntervalIndex construction. Input data to be supplied in breaks format, then converted by the subclass method get_kwargs_from_breaks to the expected format. """ @pytest.mark.parametrize('breaks', [ [3, 14, 15, 92, 653], np.arange(10, dtype='int64'), Int64Index(range(-10, 11)), Float64Index(np.arange(20, 30, 0.5)), date_range('20180101', periods=10), date_range('20180101', periods=10, tz='US/Eastern'), timedelta_range('1 day', periods=10)]) def test_constructor(self, constructor, breaks, closed, name): result_kwargs = self.get_kwargs_from_breaks(breaks, closed) result = constructor(closed=closed, name=name, **result_kwargs) assert result.closed == closed assert result.name == name assert result.dtype.subtype == getattr(breaks, 'dtype', 'int64') tm.assert_index_equal(result.left, Index(breaks[:-1])) tm.assert_index_equal(result.right, Index(breaks[1:])) @pytest.mark.parametrize('breaks, subtype', [ (Int64Index([0, 1, 2, 3, 4]), 'float64'), (Int64Index([0, 1, 2, 3, 4]), 'datetime64[ns]'), (Int64Index([0, 1, 2, 3, 4]), 'timedelta64[ns]'), (Float64Index([0, 1, 2, 3, 4]), 'int64'), (date_range('2017-01-01', periods=5), 'int64'), (timedelta_range('1 day', periods=5), 'int64')]) def test_constructor_dtype(self, constructor, breaks, subtype): # GH 19262: conversion via dtype parameter expected_kwargs = self.get_kwargs_from_breaks(breaks.astype(subtype)) expected = constructor(**expected_kwargs) result_kwargs = self.get_kwargs_from_breaks(breaks) iv_dtype = IntervalDtype(subtype) for dtype in (iv_dtype, str(iv_dtype)): result = constructor(dtype=dtype, **result_kwargs) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('breaks', [ [np.nan] * 2, [np.nan] * 4, [np.nan] * 50]) def test_constructor_nan(self, constructor, breaks, closed): # GH 18421 result_kwargs = self.get_kwargs_from_breaks(breaks) result = constructor(closed=closed, **result_kwargs) expected_subtype = np.float64 expected_values = np.array(breaks[:-1], dtype=object) assert result.closed == closed assert result.dtype.subtype == expected_subtype tm.assert_numpy_array_equal(result.values, expected_values) @pytest.mark.parametrize('breaks', [ [], np.array([], dtype='int64'), np.array([], dtype='float64'), np.array([], dtype='datetime64[ns]'), np.array([], dtype='timedelta64[ns]')]) def test_constructor_empty(self, constructor, breaks, closed): # GH 18421 result_kwargs = self.get_kwargs_from_breaks(breaks) result = constructor(closed=closed, **result_kwargs) expected_values = np.array([], dtype=object) expected_subtype = getattr(breaks, 'dtype', np.int64) assert result.empty assert result.closed == closed assert result.dtype.subtype == expected_subtype tm.assert_numpy_array_equal(result.values, expected_values) @pytest.mark.parametrize('breaks', [ tuple('0123456789'), list('abcdefghij'), np.array(list('abcdefghij'), dtype=object), np.array(list('abcdefghij'), dtype='<U1')]) def test_constructor_string(self, constructor, breaks): # GH 19016 msg = ('category, object, and string subtypes are not supported ' 'for IntervalIndex') with tm.assert_raises_regex(TypeError, msg): constructor(**self.get_kwargs_from_breaks(breaks)) @pytest.mark.parametrize('cat_constructor', [ Categorical, CategoricalIndex]) def test_constructor_categorical_valid(self, constructor, cat_constructor): # GH 21243/21253 if isinstance(constructor, partial) and constructor.func is Index: # Index is defined to create CategoricalIndex from categorical data pytest.skip() breaks = np.arange(10, dtype='int64') expected = IntervalIndex.from_breaks(breaks) cat_breaks = cat_constructor(breaks) result_kwargs = self.get_kwargs_from_breaks(cat_breaks) result = constructor(**result_kwargs) tm.assert_index_equal(result, expected) def test_generic_errors(self, constructor): # filler input data to be used when supplying invalid kwargs filler = self.get_kwargs_from_breaks(range(10)) # invalid closed msg = "invalid option for 'closed': invalid" with tm.assert_raises_regex(ValueError, msg): constructor(closed='invalid', **filler) # unsupported dtype msg = 'dtype must be an IntervalDtype, got int64' with tm.assert_raises_regex(TypeError, msg): constructor(dtype='int64', **filler) # invalid dtype msg = 'data type "invalid" not understood' with tm.assert_raises_regex(TypeError, msg): constructor(dtype='invalid', **filler) # no point in nesting periods in an IntervalIndex periods = period_range('2000-01-01', periods=10) periods_kwargs = self.get_kwargs_from_breaks(periods) msg = 'Period dtypes are not supported, use a PeriodIndex instead' with tm.assert_raises_regex(ValueError, msg): constructor(**periods_kwargs) # decreasing values decreasing_kwargs = self.get_kwargs_from_breaks(range(10, -1, -1)) msg = 'left side of interval must be <= right side' with tm.assert_raises_regex(ValueError, msg): constructor(**decreasing_kwargs) class TestFromArrays(Base): """Tests specific to IntervalIndex.from_arrays""" @pytest.fixture def constructor(self): return IntervalIndex.from_arrays def get_kwargs_from_breaks(self, breaks, closed='right'): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by IntervalIndex.from_arrays """ return {'left': breaks[:-1], 'right': breaks[1:]} def test_constructor_errors(self): # GH 19016: categorical data data = Categorical(list('01234abcde'), ordered=True) msg = ('category, object, and string subtypes are not supported ' 'for IntervalIndex') with tm.assert_raises_regex(TypeError, msg): IntervalIndex.from_arrays(data[:-1], data[1:]) # unequal length left = [0, 1, 2] right = [2, 3] msg = 'left and right must have the same length' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays(left, right) @pytest.mark.parametrize('left_subtype, right_subtype', [ (np.int64, np.float64), (np.float64, np.int64)]) def test_mixed_float_int(self, left_subtype, right_subtype): """mixed int/float left/right results in float for both sides""" left = np.arange(9, dtype=left_subtype) right = np.arange(1, 10, dtype=right_subtype) result = IntervalIndex.from_arrays(left, right) expected_left = Float64Index(left) expected_right = Float64Index(right) expected_subtype = np.float64 tm.assert_index_equal(result.left, expected_left) tm.assert_index_equal(result.right, expected_right) assert result.dtype.subtype == expected_subtype class TestFromBreaks(Base): """Tests specific to IntervalIndex.from_breaks""" @pytest.fixture def constructor(self): return IntervalIndex.from_breaks def get_kwargs_from_breaks(self, breaks, closed='right'): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by IntervalIndex.from_breaks """ return {'breaks': breaks} def test_constructor_errors(self): # GH 19016: categorical data data = Categorical(list('01234abcde'), ordered=True) msg = ('category, object, and string subtypes are not supported ' 'for IntervalIndex') with tm.assert_raises_regex(TypeError, msg): IntervalIndex.from_breaks(data) def test_length_one(self): """breaks of length one produce an empty IntervalIndex""" breaks = [0] result = IntervalIndex.from_breaks(breaks) expected = IntervalIndex.from_breaks([]) tm.assert_index_equal(result, expected) class TestFromTuples(Base): """Tests specific to IntervalIndex.from_tuples""" @pytest.fixture def constructor(self): return IntervalIndex.from_tuples def get_kwargs_from_breaks(self, breaks, closed='right'): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by IntervalIndex.from_tuples """ if len(breaks) == 0: return {'data': breaks} tuples = lzip(breaks[:-1], breaks[1:]) if isinstance(breaks, (list, tuple)): return {'data': tuples} elif is_categorical_dtype(breaks): return {'data': breaks._constructor(tuples)} return {'data': com._asarray_tuplesafe(tuples)} def test_constructor_errors(self): # non-tuple tuples = [(0, 1), 2, (3, 4)] msg = 'IntervalIndex.from_tuples received an invalid item, 2' with tm.assert_raises_regex(TypeError, msg.format(t=tuples)): IntervalIndex.from_tuples(tuples) # too few/many items tuples = [(0, 1), (2,), (3, 4)] msg = 'IntervalIndex.from_tuples requires tuples of length 2, got {t}' with tm.assert_raises_regex(ValueError, msg.format(t=tuples)): IntervalIndex.from_tuples(tuples) tuples = [(0, 1), (2, 3, 4), (5, 6)] with tm.assert_raises_regex(ValueError, msg.format(t=tuples)): IntervalIndex.from_tuples(tuples) def test_na_tuples(self): # tuple (NA, NA) evaluates the same as NA as an elemenent na_tuple = [(0, 1), (np.nan, np.nan), (2, 3)] idx_na_tuple = IntervalIndex.from_tuples(na_tuple) idx_na_element = IntervalIndex.from_tuples([(0, 1), np.nan, (2, 3)]) tm.assert_index_equal(idx_na_tuple, idx_na_element) class TestClassConstructors(Base): """Tests specific to the IntervalIndex/Index constructors""" @pytest.fixture(params=[IntervalIndex, partial(Index, dtype='interval')], ids=['IntervalIndex', 'Index']) def constructor(self, request): return request.param def get_kwargs_from_breaks(self, breaks, closed='right'): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by the IntervalIndex/Index constructors """ if len(breaks) == 0: return {'data': breaks} ivs = [Interval(l, r, closed) if notna(l) else l for l, r in zip(breaks[:-1], breaks[1:])] if isinstance(breaks, list): return {'data': ivs} elif is_categorical_dtype(breaks): return {'data': breaks._constructor(ivs)} return {'data': np.array(ivs, dtype=object)} def test_generic_errors(self, constructor): """ override the base class implementation since errors are handled differently; checks unnecessary since caught at the Interval level """ pass def test_constructor_errors(self, constructor): # mismatched closed inferred from intervals vs constructor. ivs = [Interval(0, 1, closed='both'), Interval(1, 2, closed='both')] msg = 'conflicting values for closed' with tm.assert_raises_regex(ValueError, msg): constructor(ivs, closed='neither') # mismatched closed within intervals ivs = [Interval(0, 1, closed='right'), Interval(2, 3, closed='left')] msg = 'intervals must all be closed on the same side' with tm.assert_raises_regex(ValueError, msg): constructor(ivs) # scalar msg = (r'IntervalIndex\(...\) must be called with a collection of ' 'some kind, 5 was passed') with tm.assert_raises_regex(TypeError, msg): constructor(5) # not an interval msg = ("type <(class|type) 'numpy.int64'> with value 0 " "is not an interval") with tm.assert_raises_regex(TypeError, msg): constructor([0, 1]) class TestFromIntervals(TestClassConstructors): """ Tests for IntervalIndex.from_intervals, which is deprecated in favor of the IntervalIndex constructor. Same tests as the IntervalIndex constructor, plus deprecation test. Should only need to delete this class when removed. """ @pytest.fixture def constructor(self): def from_intervals_ignore_warnings(*args, **kwargs): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): return IntervalIndex.from_intervals(*args, **kwargs) return from_intervals_ignore_warnings def test_deprecated(self): ivs = [Interval(0, 1), Interval(1, 2)] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): IntervalIndex.from_intervals(ivs)
bsd-3-clause
kadrlica/pointing
pointing/pointing.py
1
29180
#!/usr/bin/env python """ Where you at? """ import sys,os import logging from collections import OrderedDict as odict from datetime import datetime,timedelta,tzinfo import dateutil.parser import mpl_toolkits.basemap as basemap from matplotlib.patches import Ellipse, Circle import matplotlib.patheffects as patheffects from _tkinter import TclError import numpy as np import pylab as plt import ephem __author__ = "Alex Drlica-Wagner" __email__ = "[email protected]" __version__ = "2.1.3" MAXREF=5000 # Maximum number of refreshes DECAM=1.1 # DECam radius (deg) # Accurate DECam marker size depends on figsize and DPI # This is a mess... FIGSIZE=(10.5,8.5) SCALE=np.sqrt((8.0*6.0)/(FIGSIZE[0]*FIGSIZE[1])) DPI=80; FILTERS = ['u','g','r','i','z','Y','VR'] BANDS = FILTERS + ['all'] COLORS = odict([ ('none','black'), ('u','blue'), ('g','green'), ('r','red'), ('i','gold'), ('z','magenta'), ('Y','black'), ('VR','gray'), ]) # Allowed map projections PROJ = odict([ ('ortho' , dict(projection='ortho',celestial=True)), ('moll' , dict(projection='moll',celestial=True)), ('mol' , dict(projection='moll',celestial=True)), ('ait' , dict(projection='hammer',celestial=True)), ('mbt' , dict(projection='mbtfpq',celestial=True)), ('mbtfpq' , dict(projection='mbtfpq',celestial=True)), ('mcbryde', dict(projection='mbtfpq',celestial=True)), ]) # Derived from telra,teldec of 10000 exposures SN = odict([ ('E1',(7.874, -43.010)), ('E2',(9.500, -43.999)), ('X1',(34.476, -4.931)), ('X2',(35.664,-6.413)), ('X3',(36.449, -4.601)), ('S1',(42.818, 0.000)), ('S2',(41.193, -0.991)), ('C1',(54.274, -27.113)), ('C2',(54.274, -29.090)), ('C3',(52.647, -28.101)), ]) SN_LABELS = odict([ ('SN-E',(8,-41)), ('SN-X',(35,-12)), ('SN-S',(45,1)), ('SN-C',(55,-35)), ]) # The allowed footprint outlines FOOTPRINTS = ['none','des','des-sn','smash','maglites','bliss','decals','delve'] # CTIO location taken from: #http://www.ctio.noao.edu/noao/content/Coordinates-Observatories-Cerro-Tololo-and-Cerro-Pachon #http://arxiv.org/pdf/1210.1616v3.pdf #(-30h 10m 10.73s, -70h 48m 23.52s, 2213m) TEL_LON = -70.80653 TEL_LAT = -30.169647 TEL_HEIGHT = 2213 # Create the observatory object CTIO = ephem.Observer() CTIO.lon,CTIO.lat = str(TEL_LON),str(TEL_LAT) CTIO.elevation = TEL_HEIGHT def get_datadir(): """ Path to data directory. """ return os.path.join(os.path.dirname(os.path.realpath(__file__)),'data') def setdefaults(kwargs,defaults): """ set dictionary with defaults. """ for k,v in defaults.items(): kwargs.setdefault(k,v) return kwargs def gal2cel(glon, glat): """ Converts Galactic (deg) to Celestial J2000 (deg) coordinates """ glat = np.radians(glat) sin_glat = np.sin(glat) cos_glat = np.cos(glat) glon = np.radians(glon) ra_gp = np.radians(192.85948) de_gp = np.radians(27.12825) lcp = np.radians(122.932) sin_lcp_glon = np.sin(lcp - glon) cos_lcp_glon = np.cos(lcp - glon) sin_d = (np.sin(de_gp) * sin_glat) \ + (np.cos(de_gp) * cos_glat * cos_lcp_glon) ramragp = np.arctan2(cos_glat * sin_lcp_glon, (np.cos(de_gp) * sin_glat) \ - (np.sin(de_gp) * cos_glat * cos_lcp_glon)) dec = np.arcsin(sin_d) ra = (ramragp + ra_gp + (2. * np.pi)) % (2. * np.pi) return np.degrees(ra), np.degrees(dec) def cel2gal(ra, dec): """ Converts Celestial J2000 (deg) to Calactic (deg) coordinates """ dec = np.radians(dec) sin_dec = np.sin(dec) cos_dec = np.cos(dec) ra = np.radians(ra) ra_gp = np.radians(192.85948) de_gp = np.radians(27.12825) sin_ra_gp = np.sin(ra - ra_gp) cos_ra_gp = np.cos(ra - ra_gp) lcp = np.radians(122.932) sin_b = (np.sin(de_gp) * sin_dec) \ + (np.cos(de_gp) * cos_dec * cos_ra_gp) lcpml = np.arctan2(cos_dec * sin_ra_gp, (np.cos(de_gp) * sin_dec) \ - (np.sin(de_gp) * cos_dec * cos_ra_gp)) glat = np.arcsin(sin_b) glon = (lcp - lcpml + (2. * np.pi)) % (2. * np.pi) return np.degrees(glon), np.degrees(glat) # Stupid timezone definition ZERO = timedelta(0) HOUR = timedelta(hours=1) class UTC(tzinfo): """UTC""" def utcoffset(self, dt): return ZERO def tzname(self, dt): return "UTC" def dst(self, dt): return ZERO def safe_proj(bmap,lon,lat,inverse=False): """ Remove points outside of projection Parameters: ----------- bmap : basemap lon : longitude lat : latitude inverse : inverse projection Returns: -------- x,y : projected coordinates """ x,y = bmap(np.atleast_1d(lon),np.atleast_1d(lat),inverse=inverse) x[np.abs(x) > 1e29] = None y[np.abs(y) > 1e29] = None return x,y def get_boundary(bmap,projection,fact=0.99): # Check that point inside boundary # Doesn't work for 'ait' and 'moll' projections if projection in basemap._pseudocyl: # This was estimated by eye... rminor=9.00995e6; rmajor = 2*rminor boundary = Ellipse((rmajor,rminor), 2*(fact*rmajor),2*(fact*rminor)) else: boundary = Ellipse((bmap.rmajor,bmap.rminor), 2*(fact*bmap.rmajor),2*(fact*bmap.rminor)) return boundary def airmass_angle(x=1.4): """ Zenith angle for a given airmass limit """ return 90.-np.degrees(np.arcsin(1./x)) def load_data(opts): """ Load the data (either from DB of file). Parameters: ----------- opts : command line options Returns: -------- data : numpy recarray """ since = parse_since(opts.since) propid = '%' if opts.propid is None else opts.propid dtype=[('expnum',int),('telra',float),('teldec',float),('filter',object)] if opts.infile is None: selection = ['id','telra','teldec','filter'] #filter = "exposed = TRUE AND flavor LIKE '%s' AND date > '%s' AND propid LIKE '%s' ORDER BY id DESC"%(opts.flavor,since.isoformat(),propid) filter = "exposed = TRUE AND flavor SIMILAR TO '%s' AND date > '%s' AND propid LIKE '%s' ORDER BY id DESC"%(opts.flavor,since.isoformat(),propid) # Use the FNAL mirror to avoid overloading CTIO try: from database import Database except ImportError: from pointing.database import Database db = Database(dbname='db-'+opts.db) db.connect() query = "SELECT %s FROM exposure WHERE %s"%(','.join(selection),filter) #query = "SELECT id as expnum,telra as ra,teldec as dec,filter as band FROM exposure WHERE exposed = TRUE AND flavor LIKE 'object' and telra between 80 and 82 AND teldec between -71 and -69" data = db.execute(query) if len(data): ret = np.rec.array(data,dtype=dtype) else: ret = np.rec.recarray(0,dtype=dtype) return ret else: return np.loadtxt(opts.infile,dtype=dtype) def mjd(datetime): """ Modified Julian Date (MJD) """ mjd_epoch = dateutil.parser.parse('1858-11-17T00:00:00Z') mjd_date = (datetime-mjd_epoch).total_seconds()/float(24*60*60) return mjd_date def lmst(observatory): """ Calculate Local Mean Sidereal Time (LMST) """ lmst = np.degrees(observatory.sidereal_time()) logging.debug('Using pyephem for LMST: %.3f'%lmst) return lmst def moon(datetime): """ Moon location Parameters: ----------- datetime : the datetime of moon location request Returns: -------- (ra, dec), phase : moon parameters [(deg, deg), %] """ moon = ephem.Moon() moon.compute(CTIO) moon_phase = moon.moon_phase * 100 moon_ra,moon_dec = np.degrees([moon.ra,moon.dec]) return (moon_ra, moon_dec),moon_phase def boolean(string): """ Convert strings to booleans for argparse """ string = string.lower() if string in ['0', 'f', 'false', 'no', 'off']: return False elif string in ['1', 't', 'true', 'yes', 'on']: return True else: raise ValueError() def splash_screen(): """ Splash text to print """ splash = """Running Alex Drlica-Wagner's DECam pointing script...""" logging.info(splash) def parse_utc(value): """ Parse isoformat 'utc' option string. """ if value is None: utc = datetime.now(tz=UTC()) elif isinstance(value,datetime): utc = value else: utc = dateutil.parser.parse(value,tzinfos={'UTC':UTC}) logging.debug("UTC: %s"%utc.strftime('%Y-%m-%d %H:%M:%S')) return utc def parse_since(value): """ Parse isoformat 'since' option string. """ if value is None: since = datetime.now(tz=UTC()) - timedelta(hours=12) elif isinstance(value,datetime): since = value elif value.lower() in ['all','none','forever']: since = dateutil.parser.parse('2012-01-01 12:00',tzinfos={'UTC':UTC}) else: since = dateutil.parser.parse(value,tzinfos={'UTC':UTC}) logging.debug("Since: %s"%since.strftime('%Y-%m-%d %H:%M:%S')) return since def draw_constellation(bmap,name): """ Draw a map of the constellations (work in progress). """ from constellations import CONSTELLATIONS points = np.array(CONSTELLATIONS[name]) drawtype = points[:,0] radeg = points[:,1] * 1.0 / 1800 * 15 decdeg = points[:,2] * 1.0 / 60 print(radeg,decdeg) verts = zip(safe_proj(bmap,radeg,decdeg)) codes = [XEPHEM2PATH[c] for c in points[:,0]] print(x,y) def draw_milky_way(bmap,width=10,**kwargs): """ Draw the Milky Way galaxy. """ defaults = dict(color='k',lw=1.5,ls='-') setdefaults(kwargs,defaults) logging.debug("Plotting the Milky Way") glon = np.linspace(0,360,500) glat = np.zeros_like(glon) ra,dec = gal2cel(glon,glat) ra -= 360*(ra > 180) proj = safe_proj(bmap,ra,dec) bmap.plot(*proj,**kwargs) if width: kwargs.update(dict(ls='--',lw=1)) for delta in [+width,-width]: ra,dec = gal2cel(glon,glat+delta) proj = safe_proj(bmap,ra,dec) bmap.plot(*proj,**kwargs) def draw_des(bmap,**kwargs): """ Plot the DES wide-field footprint. Parameters: ----------- bmap : The basemap object kwargs : Various plotting arguments Returns: -------- None """ # Plot the wide-field survey footprint logging.debug("Plotting footprint: %s"%opts.footprint) #basedir = os.path.dirname(os.path.abspath(__file__)) infile = os.path.join(get_datadir(),'des-round19-poly.txt') perim = np.loadtxt(infile,dtype=[('ra',float),('dec',float)]) proj = safe_proj(bmap,perim['ra'],perim['dec']) bmap.plot(*proj,**kwargs) def draw_des_sn(bmap,**kwargs): """ Plot the DES supernova fields. Parameters: ----------- bmap : The basemap object kwargs : Various plotting arguments Returns: -------- None """ # Plot the SN fields logging.debug("Plotting DES supernova fields.") boundary = get_boundary(bmap,kwargs.pop('projection',None),fact=0.99) for v in SN.values(): if not boundary.contains_point(bmap(*v)): continue # This does the projection correctly, but fails at boundary bmap.tissot(v[0],v[1],DECAM,100,**kwargs) # The SN labels sntxt_kwargs = dict(zorder=kwargs['zorder'],fontsize=12, bbox=dict(boxstyle='round,pad=0',fc='w',ec='none', alpha=0.25)) for k,v in SN_LABELS.items(): plt.gca().annotate(k,bmap(*v),**sntxt_kwargs) def draw_smash(bmap,**kwargs): """ Draw the SMASH fields Parameters: ----------- bmap : The basemap object kwargs : Various plotting arguments Returns: -------- None """ filename = os.path.join(get_datadir(),'smash_fields_final.txt') smash=np.genfromtxt(filename,dtype=[('ra',float),('dec',float)],usecols=[4,5]) smash_x,smash_y = safe_proj(bmap,smash['ra'],smash['dec']) kwargs.update(dict(facecolor='none')) bmap.scatter(smash_x,smash_y,color='k',**kwargs) def draw_maglites(bmap,**kwargs): """ Plot the MagLiteS Phase-I footprint. Parameters: ----------- bmap : The basemap object kwargs : Various plotting arguments Returns: -------- None """ # Plot the wide-field survey footprint logging.debug("Plotting MagLiteS footprint") infile = os.path.join(get_datadir(),'maglites-poly.txt') perim = np.loadtxt(infile,dtype=[('ra',float),('dec',float)]) proj = safe_proj(bmap,perim['ra'],perim['dec']) bmap.plot(*proj,**kwargs) def draw_maglites2(bmap,**kwargs): """ Plot the MagLiteS Phase-II footprint. Parameters: ----------- bmap : The basemap object kwargs : Various plotting arguments Returns: -------- None """ # Plot the wide-field survey footprint logging.debug("Plotting footprint: %s"%opts.footprint) infile = os.path.join(get_datadir(),'maglitesII-poly.txt') perim = np.loadtxt(infile,dtype=[('ra',float),('dec',float),('poly',int)]) for p in np.unique(perim['poly']): sel = (perim['poly'] == p) proj = safe_proj(bmap,perim[sel]['ra'],perim[sel]['dec']) bmap.plot(*proj,**kwargs) def draw_bliss(bmap,**kwargs): """ Plot the BLISS wide-field footprint. Parameters: ----------- bmap : The basemap object kwargs : Various plotting arguments Returns: -------- None """ # Plot the wide-field survey footprint logging.debug("Plotting footprint: %s"%opts.footprint) infile = os.path.join(get_datadir(),'bliss-poly.txt') perim = np.loadtxt(infile,dtype=[('ra',float),('dec',float),('poly',int)]) for p in np.unique(perim['poly']): sel = (perim['poly'] == p) proj = safe_proj(bmap,perim[sel]['ra'],perim[sel]['dec']) bmap.plot(*proj,**kwargs) def draw_decals(bmap,**kwargs): """ Plot the DECaLS wide-field footprint. Parameters: ----------- bmap : The basemap object kwargs : Various plotting arguments Returns: -------- None """ # Plot the wide-field survey footprint logging.debug("Plotting footprint: %s"%opts.footprint) infile = os.path.join(get_datadir(),'decals-poly.txt') perim = np.loadtxt(infile,dtype=[('ra',float),('dec',float),('poly',int)]) for p in np.unique(perim['poly']): sel = (perim['poly'] == p) proj = safe_proj(bmap,perim[sel]['ra'],perim[sel]['dec']) bmap.plot(*proj,**kwargs) def draw_delve(bmap,**kwargs): """ Draw DELVE footprint """ defaults=dict(color='red', lw=2) setdefaults(kwargs,defaults) logging.debug("Plotting footprint: %s"%opts.footprint) deep = odict([ ('SextansB', (150.00, 5.33, 3.0)), ('IC5152', (330.67, -51.30, 3.0)), ('NGC300', ( 13.72, -37.68, 3.0)), ('NGC55', ( 3.79, -39.22, 3.0)), ]) boundary = get_boundary(bmap,kwargs.pop('projection',None),fact=0.98) for ra,dec,radius in deep.values(): if not boundary.contains_point(bmap(ra,dec)): continue # This does the projection correctly, but fails at boundary bmap.tissot(ra,dec,radius,100,fc='none',edgecolor=kwargs['color'],lw=kwargs['lw']) #for ra,dec,radius in deep.values(): # # This doesn't deal with boundaries well # #self.tissot(ra, dec, radius, 100, fc='none',**kwargs) # x,y = safe_proj(bmap,np.array([ra]), np.array([dec])) # bmap.scatter(x,y,facecolor='none',edgecolor=kwargs['color'],lw=2,s=400) filename = os.path.join(get_datadir(),'delve-poly.txt') perim = np.loadtxt(filename,dtype=[('ra',float),('dec',float),('poly',int)]) for p in np.unique(perim['poly']): sel = (perim['poly'] == p) proj = safe_proj(bmap,perim[sel]['ra'],perim[sel]['dec']) bmap.plot(*proj,**kwargs) def plot(opts): """ Core plotting function. Creates the basemap, overplots all of the requested features, and returns the map object. Parameters: ----------- opts : command line options Returns: -------- m : the basemap object """ utc = parse_utc(opts.utc) CTIO.date = utc since = parse_since(opts.since) # Grab the data data = load_data(opts) # Subselect the data sel = np.in1d(data['filter'],FILTERS) if opts.band in FILTERS: sel &= (data['filter'] == opts.band) data = data[sel] expnum,telra,teldec,band = data['expnum'],data['telra'],data['teldec'],data['filter'] # Set the colors if opts.color: nexp = len(expnum) ncolors = len(COLORS) color_repeat = np.repeat(COLORS.keys(),nexp).reshape(ncolors,nexp) color_idx = np.argmax(band==color_repeat,axis=0) color = np.array(COLORS.values())[color_idx] else: color = COLORS['none'] # Select the exposure of interest if opts.expnum: match = np.char.array(expnum).endswith(str(opts.expnum)) if not match.any(): msg = "Exposure matching %s not found"%opts.expnum raise ValueError(msg) idx = np.nonzero(match)[0][0] elif len(data)==0: idx = slice(None) else: idx = 0 # Create the figure if plt.get_fignums(): fig,ax = plt.gcf(),plt.gca() else: fig,ax = plt.subplots(figsize=FIGSIZE,dpi=DPI) fig.canvas.set_window_title("DECam Pointings") #fig,ax = plt.subplots() # Zenith position lon_zen=lmst(CTIO); lat_zen = TEL_LAT # Create the Basemap proj_kwargs = PROJ[opts.proj] # Centering position if proj_kwargs['projection'] in basemap._pseudocyl: ### This should work, but doesn't. ### Compare lon_0=-80.58345277606 to lon_0=-80.6 or lon_0=-80.5 #lon_0=lon_zen-360*(lon_zen>180),lat_zen=0 lon_0,lat_0 = 0,0 else: lon_0,lat_0 = -lon_zen, lat_zen # Center position proj_kwargs.update(lon_0=lon_0,lat_0=lat_0) bmap = basemap.Basemap(**proj_kwargs) def format_coord(x,y): #Format matplotlib cursor to display RA, Dec lon,lat = safe_proj(bmap,x,y,inverse=True) lon += 360*(lon < 0) return 'ra=%1.3f, dec=%1.3f'%(lon,lat) plt.gca().format_coord = format_coord parallels = np.arange(-90.,120.,30.) bmap.drawparallels(parallels) meridians = np.arange(0.,420.,60.) bmap.drawmeridians(meridians) for mer in meridians[:-1]: plt.annotate(r'$%i^{\circ}$'%mer,bmap(mer,5),ha='center') plt.annotate('West',xy=(1.0,0.5),ha='left',xycoords='axes fraction') plt.annotate('East',xy=(0.0,0.5),ha='right',xycoords='axes fraction') # markersize defined at minimum distortion point if proj_kwargs['projection'] in basemap._pseudocyl: x1,y1=ax.transData.transform(bmap(lon_0,lat_0+DECAM)) x2,y2=ax.transData.transform(bmap(lon_0,lat_0-DECAM)) else: x1,y1=ax.transData.transform(bmap(lon_zen,lat_zen+DECAM)) x2,y2=ax.transData.transform(bmap(lon_zen,lat_zen-DECAM)) # Since markersize defined in "points" in scales with figsize/dpi size = SCALE * (y1-y2)**2 # Scale the marker size to the size of an exposure exp_zorder = 10 exp_kwargs = dict(s=size,marker='H',zorder=exp_zorder,edgecolor='k',lw=1) # Projected exposure locations x,y = safe_proj(bmap,telra,teldec) # Plot exposure of interest if len(data): logging.debug("Plotting exposure: %i (%3.2f,%3.2f)"%(expnum[idx],telra[idx],teldec[idx])) # Hacked path effect (fix if matplotlib is updated) bmap.scatter(x[idx],y[idx],color='w',**dict(exp_kwargs,edgecolor='w',s=70,lw=2)) bmap.scatter(x[idx],y[idx],color=color,**dict(exp_kwargs,alpha=1.0,linewidth=2)) # Once matplotlib is updated #x = bmap.scatter(x[idx],y[idx],color=color,**exp_kwargs) #ef = patheffects.withStroke(foreground="w", linewidth=3) #x.set_path_effects([ef]) # Plot previous exposures nexp_kwargs = dict(exp_kwargs) nexp_kwargs.update(zorder=exp_zorder-1,alpha=0.2,edgecolor='none')#,lw=0) exp_slice = slice(None,opts.numexp) numexp = len(x[exp_slice]) logging.debug("Plotting last %s exposures"%(numexp)) bmap.scatter(x[exp_slice],y[exp_slice],color=color[exp_slice],**nexp_kwargs) # Plot zenith position & focal plane scale zen_x,zen_y = bmap(lon_zen,lat_zen) #zen_kwargs = dict(color='green',alpha=0.75,lw=1,zorder=0) zen_kwargs = dict(color='green',alpha=0.75,lw=1,zorder=1000) if opts.zenith: logging.debug("Plotting zenith: (%.2f,%.2f)"%(lon_zen,lat_zen)) bmap.plot(zen_x,zen_y,'+',ms=10,**zen_kwargs) logging.debug("Plotting focal plane scale.") bmap.tissot(lon_zen, lat_zen, DECAM, 100, fc='none', **zen_kwargs) # To test exposure size #bmap.tissot(lon_zen, lat_zen, DECAM, 100, fc='none', **zen_kwargs) #bmap.scatter(*bmap(lon_zen,lat_zen),**nexp_kwargs) #bmap.tissot(0, 0, DECAM, 100, fc='none', **zen_kwargs) #bmap.scatter(*bmap(0,0),**nexp_kwargs) # Plot airmass circle if opts.airmass < 1: logging.warning("Airmass must be greater than one.") opts.airmass = np.nan else: logging.debug("Plotting airmass: %s"%opts.airmass) angle = airmass_angle(opts.airmass) bmap.tissot(lon_zen, lat_zen, angle, 100, fc='none',**zen_kwargs) # Moon location and phase (moon_ra,moon_dec),moon_phase = moon(utc) if opts.moon: logging.debug("Plotting moon: %i%%,(%.1f,%.1f)"%(moon_phase,moon_ra,moon_dec)) moon_txt = '%i%%'%moon_phase #bbox = dict(boxstyle='circle,pad=0.4',fc='k',ec='k',alpha=0.25,lw=2) moon_kwargs = dict(zorder=exp_zorder-1,fontsize=11,va='center',ha='center',weight='bold') ax.annotate(moon_txt,bmap(moon_ra,moon_dec),**moon_kwargs) # Again old matplotlib making things difficult moon_kwargs2 = dict(facecolor='k',alpha=0.25,lw=2,s=2000) ax.scatter(*bmap(moon_ra,moon_dec),**moon_kwargs2) if opts.mw: mw_kwargs = dict(color='k') draw_milky_way(bmap,**mw_kwargs) # Plot footprint(s) fp_zorder=exp_zorder-1 fp_kwargs=dict(marker='o',mew=0,mfc='none',color='k',lw=2,zorder=fp_zorder) if 'none' in opts.footprint: opts.footprint = ['none'] if 'des' in opts.footprint: des_kwargs = dict(fp_kwargs,color='b') draw_des(bmap,**des_kwargs) if 'des' in opts.footprint or 'des-sn' in opts.footprint: sn_kwargs = dict(facecolor='none',edgecolor='b',projection=proj_kwargs['projection'],zorder=fp_zorder) draw_des_sn(bmap,**sn_kwargs) if 'smash' in opts.footprint: smash_kwargs = dict(facecolor='none',**exp_kwargs) smash_kwargs.update(zorder=exp_zorder+1) draw_smash(bmap,**smash_kwargs) if 'maglites' in opts.footprint: maglites_kwargs = dict(fp_kwargs,color='r') draw_maglites(bmap,**maglites_kwargs) draw_maglites2(bmap,**maglites_kwargs) if 'bliss' in opts.footprint: bliss_kwargs = dict(fp_kwargs,color='r') draw_bliss(bmap,**bliss_kwargs) if 'decals' in opts.footprint: decals_kwargs = dict(fp_kwargs,color='m') draw_decals(bmap,**decals_kwargs) if 'delve' in opts.footprint: delve_kwargs = dict(fp_kwargs,color='r') draw_delve(bmap,**delve_kwargs) # Annotate with some information if opts.legend: logging.debug("Adding info text.") bbox_props = dict(boxstyle='round', facecolor='white') textstr= "%s %s\n"%("UTC:",utc.strftime('%Y-%m-%d %H:%M:%S')) if len(data): textstr+="%s %i (%s)\n"%("Exposure:",expnum[idx],band[idx]) textstr+="%s %i\n"%("Num. Exp.:",numexp) textstr+="%s (%.1f$^{\circ}$, %.1f$^{\circ}$)\n"%("Zenith:",lon_zen,lat_zen) textstr+="%s %s\n"%("Airmass:",np.nan_to_num(opts.airmass)) textstr+="%s %i%% (%.1f$^{\circ}$, %.1f$^{\circ}$)\n"%("Moon:",moon_phase,moon_ra,moon_dec) textstr+="%s %s"%("Footprint:",', '.join(opts.footprint)) ax.annotate(textstr, xy=(0.90,1.05), xycoords='axes fraction', fontsize=10,ha='left',va='top', bbox=bbox_props) # Plot filter legend if opts.color: logging.debug("Adding filter legend.") leg_kwargs = dict(scatterpoints=1,fontsize=10,bbox_to_anchor=(0.08,0.20)) handles, labels = [],[] for k in FILTERS: if k == 'VR' and not (band=='VR').any(): continue labels.append(k) handles.append(plt.scatter(None,None,color=COLORS[k],**exp_kwargs)) plt.legend(handles,labels,**leg_kwargs) # Plot the version number vers_kwargs = dict(xy=(0.985,0.015),ha='right',va='bottom', xycoords='figure fraction',size=8) plt.annotate('pointing v.%s'%__version__,**vers_kwargs) # Plot the author's name auth_kwargs = dict(xy=(0.015,0.015),ha='left',va='bottom', xycoords='figure fraction',size=8) plt.annotate(u'\u00a9'+' %s'%__author__,**auth_kwargs) return bmap if __name__ == "__main__": import argparse description = __doc__ parser = argparse.ArgumentParser(description=description, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('expnum',nargs='?',type=int,default=None, help="exposure number to plot") parser.add_argument('-a','--airmass',default=1.4,type=float, help='draw airmass limit') parser.add_argument('-b','--band',default='all',choices=BANDS, help='draw exposures in specific band') parser.add_argument('-c','--color',default=True,type=boolean, help='color corresponding to filter') parser.add_argument('--db',default='fnal',choices=['ctio','fnal'], help='database to query for exposures') parser.add_argument('-f','--footprint',action='append',choices=FOOTPRINTS, help='footprint to draw') parser.add_argument('--flavor',default='object|standard',type=str, help='exposure type [object,zero,dome flat,etc.]') parser.add_argument('-i','--infile',default=None, help='list of exposures to draw') parser.add_argument('--legend',default=True,type=boolean, help='draw figure legend') parser.add_argument('-m','--moon',default=True,type=boolean, help='draw moon location and phase') parser.add_argument('--mw',action='store_true', help='draw the Milky Way plane') parser.add_argument('-n','--numexp',default=None,type=int, help='number of most recent exposures to plot') parser.add_argument('-o','--outfile',default=None, help='output file for saving figure') parser.add_argument('--propid',default=None, help='draw exposures from specific propid') parser.add_argument('--proj',default='ortho',choices=PROJ.keys(), help='projection for plot') parser.add_argument('--refresh',nargs='?',default=None,const=60,type=int, help="refresh interval for figure (seconds).") parser.add_argument('--since',default=None, help="UTC for first exposure (defaults to 12 hours)") parser.add_argument('--utc',default=None, help="UTC for zenith position (defaults to 'now')") parser.add_argument('-v','--verbose',action='store_true', help='output verbosity') parser.add_argument('--version',action='version', version='%(prog)s '+__version__) parser.add_argument('-z','--zenith',default=True,type=boolean, help="draw zenith position") opts = parser.parse_args() # Set logging level logging.basicConfig(level=logging.DEBUG if opts.verbose else logging.INFO, format='%(message)s',stream=sys.stdout) if not opts.footprint: opts.footprint = ['des'] # Do the plotting m = plot(opts) # In interactive session if sys.flags.interactive: plt.ion() if opts.outfile: # Save the figure logging.debug("Saving figure to: %s"%opts.outfile) plt.savefig(opts.outfile,dpi=250) elif not opts.refresh: # Show plot plt.show() else: # Refresh the plot plt.show(block=False) for i in range(MAXREF): # safer than while loop try: plt.pause(opts.refresh) except TclError: # Catch the TclError thrown when window closed break logging.debug("Refreshing plot...") plt.cla() m = plot(opts) if i == MAXREF: logging.info("Reached max refresh number.")
mit
mit-crpg/openmc
examples/pincell_depletion/run_depletion.py
8
5021
from math import pi import openmc import openmc.deplete import matplotlib.pyplot as plt ############################################################################### # Define materials ############################################################################### # Instantiate some Materials and register the appropriate Nuclides uo2 = openmc.Material(name='UO2 fuel at 2.4% wt enrichment') uo2.set_density('g/cm3', 10.29769) uo2.add_element('U', 1., enrichment=2.4) uo2.add_element('O', 2.) helium = openmc.Material(name='Helium for gap') helium.set_density('g/cm3', 0.001598) helium.add_element('He', 2.4044e-4) zircaloy = openmc.Material(name='Zircaloy 4') zircaloy.set_density('g/cm3', 6.55) zircaloy.add_element('Sn', 0.014, 'wo') zircaloy.add_element('Fe', 0.00165, 'wo') zircaloy.add_element('Cr', 0.001, 'wo') zircaloy.add_element('Zr', 0.98335, 'wo') borated_water = openmc.Material(name='Borated water') borated_water.set_density('g/cm3', 0.740582) borated_water.add_element('B', 4.0e-5) borated_water.add_element('H', 5.0e-2) borated_water.add_element('O', 2.4e-2) borated_water.add_s_alpha_beta('c_H_in_H2O') ############################################################################### # Create geometry ############################################################################### # Define surfaces pitch = 1.25984 fuel_or = openmc.ZCylinder(r=0.39218, name='Fuel OR') clad_ir = openmc.ZCylinder(r=0.40005, name='Clad IR') clad_or = openmc.ZCylinder(r=0.45720, name='Clad OR') box = openmc.model.rectangular_prism(pitch, pitch, boundary_type='reflective') # Define cells fuel = openmc.Cell(fill=uo2, region=-fuel_or) gap = openmc.Cell(fill=helium, region=+fuel_or & -clad_ir) clad = openmc.Cell(fill=zircaloy, region=+clad_ir & -clad_or) water = openmc.Cell(fill=borated_water, region=+clad_or & box) # Define overall geometry geometry = openmc.Geometry([fuel, gap, clad, water]) ############################################################################### # Set volumes of depletable materials ############################################################################### # Set material volume for depletion. For 2D simulations, this should be an area. uo2.volume = pi * fuel_or.r**2 ############################################################################### # Transport calculation settings ############################################################################### # Instantiate a Settings object, set all runtime parameters, and export to XML settings = openmc.Settings() settings.batches = 100 settings.inactive = 10 settings.particles = 1000 # Create an initial uniform spatial source distribution over fissionable zones bounds = [-0.62992, -0.62992, -1, 0.62992, 0.62992, 1] uniform_dist = openmc.stats.Box(bounds[:3], bounds[3:], only_fissionable=True) settings.source = openmc.source.Source(space=uniform_dist) entropy_mesh = openmc.RegularMesh() entropy_mesh.lower_left = [-0.39218, -0.39218, -1.e50] entropy_mesh.upper_right = [0.39218, 0.39218, 1.e50] entropy_mesh.dimension = [10, 10, 1] settings.entropy_mesh = entropy_mesh ############################################################################### # Initialize and run depletion calculation ############################################################################### # Create depletion "operator" chain_file = './chain_simple.xml' op = openmc.deplete.Operator(geometry, settings, chain_file) # Perform simulation using the predictor algorithm time_steps = [1.0, 1.0, 1.0, 1.0, 1.0] # days power = 174 # W/cm, for 2D simulations only (use W for 3D) integrator = openmc.deplete.PredictorIntegrator(op, time_steps, power, timestep_units='d') integrator.integrate() ############################################################################### # Read depletion calculation results ############################################################################### # Open results file results = openmc.deplete.ResultsList.from_hdf5("depletion_results.h5") # Obtain K_eff as a function of time time, keff = results.get_eigenvalue() # Obtain U235 concentration as a function of time time, n_U235 = results.get_atoms('1', 'U235') # Obtain Xe135 capture reaction rate as a function of time time, Xe_capture = results.get_reaction_rate('1', 'Xe135', '(n,gamma)') ############################################################################### # Generate plots ############################################################################### days = 24*60*60 plt.figure() plt.plot(time/days, keff, label="K-effective") plt.xlabel("Time (days)") plt.ylabel("Keff") plt.show() plt.figure() plt.plot(time/days, n_U235, label="U235") plt.xlabel("Time (days)") plt.ylabel("n U5 (-)") plt.show() plt.figure() plt.plot(time/days, Xe_capture, label="Xe135 capture") plt.xlabel("Time (days)") plt.ylabel("RR (-)") plt.show() plt.close('all')
mit
MicheleDamian/ConnectopicMapping
connectopic_mapping/utils.py
1
17291
"""Utility methods to manipulate and visualize voxels.""" import numpy import nibabel from matplotlib import pyplot from mpl_toolkits.axes_grid1 import Grid from nilearn import datasets, image def load_masks(dataset, roi_label, hemisphere, remove_white_matter=True): """Load brain and region of interest (ROI) masks. Construct brain and ROI masks from a labeled Harvard-Oxford's `dataset` (e.g. 'cort-maxprob-thr25-2mm'). Parameters ---------- dataset : string Name of the labeled dataset from the Harvard-Oxford's atlas from where to extract the region of interest. The voxels must have a resolution of 2mm. roi_label : string Name of the label from the dataset corresponding to the region of interest. hemisphere : string, (options: 'LH', 'RH', 'both') Hemisphere on which the region of interest is located (left 'LH', right 'RH' or 'both') remove_white_matter : bool, (default: True) Remove white matter voxels from masks. Returns ------- brain_mask : numpy.ndarray, shape (x_dim, y_dim, z_dim) Boolean matrix where each cell is True if the voxel is part of the brain, False otherwise. roi_mask : numpy.ndarray, shape (x_dim, y_dim, z_dim) Boolean matrix where each cell is True if the voxel is part of the region of interest, False otherwise. Examples -------- This is the Harvard-Oxford dataset: >>> import numpy, nilearn, nibabel >>> cortex_dataset = nilearn.datasets.fetch_atlas_harvard_oxford('cort-maxprob-thr25-2mm') >>> cortex_labels = numpy.array(cortex_dataset.labels) >>> 'Precentral Gyrus' in cortex_dataset.labels True >>> cortex_data = nibabel.load(cortex_dataset.maps).get_data() >>> cortex_data.shape (91, 109, 91) This is how to load the masks: >>> brain_mask, roi_mask = utils.load_masks('cort-maxprob-thr25-2mm', 'Precentral Gyrus', 'both', False) >>> brain_mask.shape (91, 109, 91) >>> roi_mask.shape (91, 109, 91) And these are the definitions of the masks (with `remove_white_matter` == False): >>> idx_background_label = numpy.where((cortex_labels == 'Background'))[0][0] >>> numpy.all(brain_mask == (cortex_data != idx_background_label)) True >>> idx_pregyrus_label = numpy.where((cortex_labels == 'Precentral Gyrus'))[0][0] >>> numpy.all(roi_mask == (cortex_data == idx_pregyrus_label)) True """ # Load region cortex_dataset = datasets.fetch_atlas_harvard_oxford(dataset) cortex_labels = numpy.array(cortex_dataset.labels) cortex_maps = nibabel.load(cortex_dataset.maps) cortex_data = cortex_maps.get_data() roi_indexes = numpy.where((cortex_labels == roi_label))[0] # Build mask from ROI roi_mask = numpy.zeros(cortex_data.shape, dtype=bool) for index in roi_indexes: roi_mask[cortex_data == index] = True # Keep just one hemisphere roi_mask_width = roi_mask.shape[0] roi_mask_half_width = int(roi_mask_width/2) if hemisphere == 'LH': roi_mask[roi_mask_half_width:, :, :] = False elif hemisphere == 'RH': roi_mask[:roi_mask_half_width:, :, :] = False # Load brain mask brain_mask = numpy.zeros(cortex_data.shape, dtype=bool) brain_mask[numpy.nonzero(cortex_data)] = True # Load white matter mask if remove_white_matter: subcortex_dataset = datasets.fetch_atlas_harvard_oxford('sub-maxprob-thr25-2mm') subcortex_labels = numpy.array(subcortex_dataset.labels) subcortex_maps = nibabel.load(subcortex_dataset.maps) subcortex_data = subcortex_maps.get_data() white_indexes = numpy.where((subcortex_labels == "Left Cerebral White Matter") + (subcortex_labels == "Right Cerebral White Matter"))[0] white_mask = numpy.zeros(subcortex_data.shape, dtype=bool) for index in white_indexes: white_mask[subcortex_data == index] = True # Remove white matter from masks brain_mask = brain_mask * ~white_mask roi_mask = roi_mask * ~white_mask return brain_mask, roi_mask def visualize_volume(data, brain_mask, roi_mask, slice_indexes, low_percentile=10, high_percentile=90, num_fig=0, title="Projection", margin=1, legend_location=1, cmap='gist_rainbow'): """Visualize the projections of the brain onto the XY, XZ and YZ planes. Parameters ---------- data : numpy.ndarray, shape (num_voxels, ) 1-dimensional data containing the voxels' values inside the ROI as defined by `roi_mask`. brain_mask : numpy.ndarray, shape (x_dim, y_dim, z_dim) Boolean 3-dimensional numpy ndarray where voxels marked as True are part of the brain. roi_mask : numpy.ndarray, shape (x_dim, y_dim, z_dim) Boolean 3-dimensional numpy ndarray where voxels marked as True are part of the same region of interest. low_percentile : int, (default: 10) Lower percentile at which to start normalizing `data`. Lower values are encoded as `low_percentile`. Consider increasing (decreasing) it if the distribution of `data` has a long (short) left tail. high_percentile : int, (default: 90) Higher percentile at which to stop normalizing `data`. Higher values are encoded as `high_percentile`. Consider decreasing (increasing) it if the distribution of `data` has a long (short) left tail. slice_indexes : numpy.ndarray, shape (3, ) List of int representing the X, Y and Z indexes where to cut the YZ, XZ and XY planes respectively. num_fig : int, (default: 0) Number of the figure where to plot the graphs. title : str, (default: "Projection") Title for the three graphs to visualize. It is followed by the plane the graph corresponds to and the coordinates of the plane. margin : int, (default: 1) Number of voxels between the ROI and the axes in the visualization. legend_location : int, (default: 1) Location of the legend in the graph. 1 := North-East, 2 := North-West, 3 := South-West and 4 := South-East. If None the legend is not visualized. cmap : str, (default: 'gist_rainbow') String that identifies a matplotlib.colors.Colormap instance. Examples -------- >>> slice_indexes = [18, 65, 50] >>> visualize_volume(data, brain_mask, roi_mask, slice_indexes) """ slice_config = [('X-Z', 'Y', slice_indexes[1], 1), ('Y-Z', 'X', slice_indexes[0], 0), ('X-Y', 'Z', slice_indexes[2], 2)] # Get voxels color from embedding min_val = numpy.percentile(data, low_percentile) max_val = numpy.percentile(data, high_percentile) data_norm = (data - min_val) / (max_val - min_val) fun_cmap = pyplot.get_cmap(cmap) clr_rgb = fun_cmap(data_norm.flatten()) def get_slice_coords(mask, plane): coords_mask = numpy.where(mask) coords_idx = numpy.where(coords_mask[plane[3]] == plane[2])[0] return coords_mask, coords_idx # # Display embedding # axes = Grid(num_fig, rect=111, nrows_ncols=(2, 2), label_mode='L') # Display in X, Y and Z subplot for i in range(3): dims = numpy.delete(numpy.arange(3), slice_config[i][3]) # Plot brain coords_mask, coords_idx = get_slice_coords(brain_mask, slice_config[i]) coords_brain_x = coords_mask[dims[0]][coords_idx] coords_brain_y = coords_mask[dims[1]][coords_idx] axes[i].scatter(coords_brain_x, coords_brain_y, c=[0.5, 0.5, 0.5], s=15, edgecolors='face') axes[i].hold(True) # Plot ROI coords_mask, coords_idx = get_slice_coords(roi_mask, slice_config[i]) coords_roi_x = coords_mask[dims[0]][coords_idx] coords_roi_y = coords_mask[dims[1]][coords_idx] axes[i].scatter(coords_roi_x, coords_roi_y, c=clr_rgb[coords_idx, :], s=15, edgecolors='face') axes[i].set_title("{0} at coord {2}={3}".format(title, *slice_config[i])) if legend_location is not None: axes[i].legend(("Cortex", "ROI"), loc=legend_location) axes[i].grid(True) # # Apply stylistic adjustments # # Set axis limits coords_3d = numpy.where(roi_mask) coords_x = numpy.sort(coords_3d[0]) coords_y = numpy.sort(coords_3d[1]) coords_z = numpy.sort(coords_3d[2]) axes[0].set_xlim([coords_x[0] - margin, coords_x[-1] + margin]) axes[0].set_ylim([coords_z[0] - margin, coords_z[-1] + margin]) axes[1].set_xlim([coords_y[0] - margin, coords_y[-1] + margin]) axes[2].set_ylim([coords_y[0] - margin, coords_y[-1] + margin]) # Remove shared borders axes[0].spines['bottom'].set_visible(False) axes[0].spines['right'].set_visible(False) axes[1].spines['left'].set_visible(False) axes[1].spines['bottom'].set_visible(False) axes[2].spines['top'].set_visible(False) axes[2].spines['right'].set_visible(False) axes[3].spines['top'].set_visible(False) axes[3].spines['left'].set_visible(False) # Name axes axes[0].set_ylabel("Z axis") axes[2].set_xlabel("X axis") axes[2].set_ylabel("Y axis") axes[3].set_xlabel("Y axis") # Backgroud color bg_color = [0.9, 0.9, 0.9] for i in range(4): axes[i].patch.set_facecolor(bg_color) # Add colorbar sm = pyplot.cm.ScalarMappable(cmap=cmap, norm=pyplot.Normalize(vmin=0, vmax=1)) sm._A = [] cbaxes = num_fig.add_axes([0.95, 0.1, 0.01, 0.4]) cbar = pyplot.colorbar(sm, cax=cbaxes) cbar.set_ticklabels([]) def normalize_nifti_image(image_path, fwhm=6): """Normalize a 4D Nifti image. Apply a spatial smooth of dimension `fwhm` on a 4D nifti image located at `image_path` and normalize it along the temporal axis. The normalization step subtracts and divides the voxels' values by their means. The method returns just the active voxels and their XYZ-coordinates to reduce memory usage. Parameters ---------- image_path : string Path of the 4D Nifti image. fwhm : float, (default: 6) Full width half maximum window dimension used to smooth the image. The same value will be used for all 3 spatial dimensions. Returns ------- nifti_data : numpy.ndarray, shape (num_timepoints, num_voxels) Voxels' values normalized that were active at least at one timepoint during the scan. idx_active : tuple, shape (3) X,Y,Z-coordinates of the 3D brain where the active voxels are located. """ # Smooth nifti_image = image.smooth_img(image_path, fwhm) nifti_data = nifti_image.get_data() # Keep just non-zero voxels is_zero = numpy.abs(nifti_data) < numpy.finfo(nifti_data.dtype).eps idx_active = numpy.where(~numpy.all(is_zero, axis=-1)) # Calc mean nifti_data = nifti_data[idx_active] nifti_data_mean = numpy.mean(nifti_data, axis=-1)[..., numpy.newaxis] # Demean and normalize nifti_data = nifti_data - nifti_data_mean nifti_data = nifti_data / nifti_data_mean return nifti_data.T, idx_active def concatenate_data(brain_mask, roi_mask, data_0, data_xyz_0, data_1, data_xyz_1): """Concatenate data. Concatenate `data_0` and `data_1` along their first dimension such that the first part of the result represents ROI voxels and the second part represents outside of ROI voxels, as defined by `brain_mask` and `roi_mask`. Parameters ---------- brain_mask : numpy.ndarray, shape (x_dim, y_dim, z_dim) A 3-dimensional boolean matrix where each cell represent a voxel and is True if it belongs to the brain, False otherwise. roi_mask : numpy.ndarray, shape (x_dim, y_dim, z_dim) A 3-dimensional boolean matrix of the same size of `brain_mask` where each cell is True if the voxel belongs to the region of interest, False otherwise. data_0, data_1 : numpy.ndarray, shape (num_timepoints, num_voxels) Voxels' time-series inside the ROI. data_xyz_0, data_xyz_1 : tuple, shape (3, num_voxels) X,Y,Z-coordinates of `data_0`/`data_1`. Each element of the triplet is an array-like list of voxels' coordinates along an axis, stored in the same order of the voxels' values in `data_0`/`data_1`. Returns ------- brain_mask : numpy.ndarray, shape (x_dim, y_dim, z_dim) As the homonymous input parameter, but updated such that just the voxels present in `data_0` and `data_1` are set to True. roi_mask : numpy.ndarray, shape (x_dim, y_dim, z_dim) As the homonymous input parameter, but updated such that just the voxels present in `data_0` and `data_1` are set to True. data : numpy.ndarray, shape (num_timepoints, num_voxels) Input data concatenated along the num_timepoints axe such that the first ``numpy.sum(roi_mask)`` of `num_voxels` are voxels inside the region of interest, while the other voxels are outside. Examples -------- Concatenate two scans: >>> brain_mask, roi_mask = utils.load_masks('cort-maxprob-thr25-2mm', 'Precentral Gyrus', 'both') # Load masks >>> data_info_0 = utils.normalize_nifti_image(image_path_0) # Load scan 0 >>> data_info_1 = utils.normalize_nifti_image(image_path_1) # Load scan 1 >>> brain_mask, roi_mask, data = utils.concatenate_data(brain_mask, roi_mask, *data_info_0, *data_info_1) # Concatenate scans """ def get_idx(xyz, dim): """ Transforms X,Y,Z coords to a unique index. """ return xyz[0]*dim[1]*dim[2] + xyz[1]*dim[2] + xyz[2] # Keep just voxels that are non-zero in both scans and inside # brain mask brain_data_0 = numpy.zeros(brain_mask.shape, dtype=bool) brain_data_1 = numpy.zeros(brain_mask.shape, dtype=bool) brain_data_0[data_xyz_0] = True brain_data_1[data_xyz_1] = True # Remove non active voxels from masks (i.e., voxels not present # in the data) brain_mask = brain_mask * brain_data_0 * brain_data_1 roi_mask = roi_mask * brain_mask nonroi_mask = ~roi_mask * brain_mask # Generate brain indexes data_idx_0 = get_idx(data_xyz_0, brain_mask.shape) data_idx_1 = get_idx(data_xyz_1, brain_mask.shape) # Generate inside ROI indexes roi_mask_xyz = numpy.nonzero(roi_mask) roi_mask_idx = get_idx(roi_mask_xyz, brain_mask.shape) # Generate outside ROI indexes nonroi_mask_xyz = numpy.nonzero(nonroi_mask) nonroi_mask_idx = get_idx(nonroi_mask_xyz, brain_mask.shape) # Test if index is inside ROI is_roi_0 = numpy.in1d(data_idx_0, roi_mask_idx) is_roi_1 = numpy.in1d(data_idx_1, roi_mask_idx) # Test if index is outside ROI is_nonroi_0 = numpy.in1d(data_idx_0, nonroi_mask_idx) is_nonroi_1 = numpy.in1d(data_idx_1, nonroi_mask_idx) # Merge data data = numpy.concatenate(( numpy.concatenate((data_0[:, is_roi_0], data_1[:, is_roi_1]), axis=0), numpy.concatenate((data_0[:, is_nonroi_0], data_1[:, is_nonroi_1]), axis=0)), axis=1) assert(numpy.sum(is_roi_0) + numpy.sum(is_nonroi_0) == numpy.sum(brain_mask, axis=None)) assert(numpy.sum(is_roi_1) + numpy.sum(is_nonroi_1) == numpy.sum(brain_mask, axis=None)) return brain_mask, roi_mask, data def save_nifti(file_path, data, mask, affine=None, zooms=[2,2,2]): """Save a nifti image. Save the voxels that are set True in `mask` and which values are contained in `data` in a 3D nifti image. Parameters ---------- file_path : str File path of the nifti image. data : numpy.ndarray, shape (num_voxels, ) Values of the voxels. The order of the voxels must be the same as their coordinates in `numpy.where(mask)`. mask : numpy.ndarray, shape (x_dim, y_dim, z_dim) 3-dimensional boolean numpy array representing brain voxels, where an element is set to True if and only if it is present in data. affine : numpy.ndarray, shape (4, 4), (default=None) Nifti affine matrix. zooms : array_like, shape(3, ), (default: [2,2,2]) Nifti zooms in millimeters. """ if affine is None: affine = [[-2, 0, 0, 90], [0, 2, 0, -126], [0, 0, 2, -72], [0, 0, 0, 1]] # Set voxels values coords = numpy.where(mask) out = numpy.zeros(mask.shape) out[coords] = numpy.asarray(data, dtype=numpy.float32) out = numpy.flip(out, axis=0) # Transform connectopic map into Nifti image nifti = nibabel.Nifti1Image(out, affine) nifti.header.set_data_dtype(numpy.float32) nifti.header.set_zooms(zooms) nifti.header['qform_code'] = 4 nifti.header['sform_code'] = 4 nifti.header['xyzt_units'] = 10 nifti.to_filename(file_path)
apache-2.0
manpen/hypergen
libs/NetworKit/scripts/DynamicBetweennessExperiments.py
3
4139
from networkit import * from networkit.dynamic import * from networkit.centrality import * import pandas as pd import random def removeAndAddEdges(G, nEdges, tabu=None): if nEdges > G.numberOfEdges() - tabu.numberOfEdges(): raise Error("G does not have enough edges") # select random edges for removal removed = set() while len(removed) < nEdges: (u, v) = G.randomEdge() if not tabu.hasEdge(u, v) and not ((u,v) in removed or (v,u) in removed): # exclude all edges in the tabu graph removed.add((u, v)) print (removed) # build event streams removeStream = [] for (u, v) in removed: removeStream.append(GraphEvent(GraphEvent.EDGE_REMOVAL, u, v, 0)) addStream = [] for (u, v) in removed: addStream.append(GraphEvent(GraphEvent.EDGE_ADDITION, u, v, 1.0)) return (removeStream, addStream) def setRandomWeights(G, mu, sigma): """ Add random weights, normal distribution with mean mu and standard deviation sigma """ for (u, v) in G.edges(): w = random.normalvariate(mu, sigma) G.setWeight(u, v, w) return G def test(G, nEdges, batchSize, epsilon, delta, size): # find a set of nEdges to remove from G T = graph.SpanningForest(G).generate() (removeStream, addStream) = removeAndAddEdges(G, nEdges, tabu=T) # remove the edges from G updater = dynamic.GraphUpdater(G) updater.update(removeStream) # run the algorithms on the inital graph bc = Betweenness(G) print("Running bc") bc.run() dynBc = DynBetweenness(G, True) print("Running dyn bc with predecessors") dynBc.run() apprBc = ApproxBetweenness(G, epsilon, delta) print("Running approx bc") apprBc.run() dynApprBc = DynApproxBetweenness(G, epsilon, delta, True) print("Running dyn approx bc with predecessors") dynApprBc.run() # apply the batches nExperiments = nEdges // batchSize timesBc = [] timesDynBc = [] timesApprBc = [] timesDynApprBc = [] scoresBc = [] scoresApprBc = [] for i in range(nExperiments): batch = addStream[i*batchSize : (i+1)*batchSize] # add the edges of batch to the graph totalTime = 0.0 for j in range(0, batchSize): updater.update([batch[j]]) # update the betweenness with the dynamic exact algorithm t = stopwatch.Timer() dynBc.update(batch[j]) totalTime += t.stop() timesDynBc.append(totalTime) # update the betweenness with the static exact algorithm t = stopwatch.Timer() bc.run() x = t.stop() timesBc.append(x) print("Exact BC") print(x) print("Speedup Dyn BC (with preds)") print(x/totalTime) # update the betweenness with the static approximated algorithm t = stopwatch.Timer() apprBc.run() x = t.stop() timesApprBc.append(x) print("ApprBC") print(x) # update the betweenness with the dynamic approximated algorithm t = stopwatch.Timer() dynApprBc.update(batch) y = t.stop() timesDynApprBc.append(y) print("Speedup DynApprBC (with preds)") print(x/y) bcNormalized = [ k/(size*(size-1)) for k in bc.scores()] scoresBc.append(bcNormalized) scoresApprBc.append(dynApprBc.scores()) a = pd.Series(timesBc) b = pd.Series(timesDynBc) c = pd.Series(timesApprBc) d = pd.Series(timesDynApprBc) df1 = pd.DataFrame({"Static exact bc": a, "Dynamic exact bc" : b, "Static approx bc" : c, "Dynamic approx bc" : d}) dic2 = {} for experiment in range(nExperiments): a = pd.Series(scoresBc[experiment]) b = pd.Series(scoresApprBc[experiment]) dic2["Exact scores (exp. "+str(experiment)+")"] = a dic2["Approx scores (exp. "+str(experiment)+")"] = b df2 = pd.DataFrame(dic2) return df1, df2 if __name__ == "__main__": setNumberOfThreads(1) size = 20000 for i in range(11): batchSize = 2**i G = generators.DorogovtsevMendesGenerator(size).generate() cc = properties.ConnectedComponents(G) cc.run() if (cc.numberOfComponents() == 1) : nEdges = batchSize * 10 epsilon = 0.05 delta = 0.1 (df1, df2) = test(G, nEdges, batchSize, epsilon, delta, size) df1.to_csv("results/times_unweighted_size_"+str(size)+"_batch_"+str(batchSize)+".csv") df2.to_csv("results/scores_unweighted_size_"+str(size)+"_batch_"+str(batchSize)+".csv") else: print("The generated graph is not connected.")
gpl-3.0
bigdataelephants/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
maciejkula/spotlight
examples/bloom_embeddings/plot.py
1
2760
import argparse import pandas as pd import matplotlib matplotlib.use('Agg') # NOQA import matplotlib.pyplot as plt import seaborn as sns from example import Results def process_results(results, verbose=False): baseline = results.best_baseline() def like_baseline(x): for key in ('n_iter', 'batch_size', 'l2', 'learning_rate', 'loss', 'embedding_dim'): if x[key] != baseline[key]: return False return True data = pd.DataFrame([x for x in results if like_baseline(x)]) best = (data.sort_values('test_mrr', ascending=False) .groupby('compression_ratio', as_index=False).first()) # Normalize per iteration best['elapsed'] = best['elapsed'] / best['n_iter'] if verbose: print(best) baseline_mrr = (best[best['compression_ratio'] == 1.0] ['validation_mrr'].values[0]) baseline_time = (best[best['compression_ratio'] == 1.0] ['elapsed'].values[0]) compression_ratio = best['compression_ratio'].values mrr = best['validation_mrr'].values / baseline_mrr elapsed = best['elapsed'].values / baseline_time return compression_ratio[:-1], mrr[:-1], elapsed[:-1] def plot_results(model, movielens, amazon): sns.set_style("darkgrid") for name, result in (('Movielens', movielens), ('Amazon', amazon)): print('Dataset: {}'.format(name)) (compression_ratio, mrr, elapsed) = process_results(result, verbose=True) plt.plot(compression_ratio, mrr, label=name) plt.ylabel("MRR ratio to baseline") plt.xlabel("Compression ratio") plt.title("Compression ratio vs MRR ratio") plt.legend(loc='lower right') plt.savefig('{}_plot.png'.format(model)) plt.close() for name, result in (('Movielens', movielens), ('Amazon', amazon)): (compression_ratio, mrr, elapsed) = process_results(result) plt.plot(compression_ratio, elapsed, label=name) plt.ylabel("Time ratio to baseline") plt.xlabel("Compression ratio") plt.title("Compression ratio vs time ratio") plt.legend(loc='lower right') plt.savefig('{}_time.png'.format(model)) plt.close() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('model', type=str) args = parser.parse_args() plot_results(args.model, Results('movielens_{}_results.txt'.format(args.model)), Results('amazon_{}_results.txt'.format(args.model)))
mit
WarrenWeckesser/numpy
numpy/doc/creation.py
6
5431
""" ============== Array Creation ============== Introduction ============ There are 5 general mechanisms for creating arrays: 1) Conversion from other Python structures (e.g., lists, tuples) 2) Intrinsic numpy array creation objects (e.g., arange, ones, zeros, etc.) 3) Reading arrays from disk, either from standard or custom formats 4) Creating arrays from raw bytes through the use of strings or buffers 5) Use of special library functions (e.g., random) This section will not cover means of replicating, joining, or otherwise expanding or mutating existing arrays. Nor will it cover creating object arrays or structured arrays. Both of those are covered in their own sections. Converting Python array_like Objects to NumPy Arrays ==================================================== In general, numerical data arranged in an array-like structure in Python can be converted to arrays through the use of the array() function. The most obvious examples are lists and tuples. See the documentation for array() for details for its use. Some objects may support the array-protocol and allow conversion to arrays this way. A simple way to find out if the object can be converted to a numpy array using array() is simply to try it interactively and see if it works! (The Python Way). Examples: :: >>> x = np.array([2,3,1,0]) >>> x = np.array([2, 3, 1, 0]) >>> x = np.array([[1,2.0],[0,0],(1+1j,3.)]) # note mix of tuple and lists, and types >>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j], [ 1.+1.j, 3.+0.j]]) Intrinsic NumPy Array Creation ============================== NumPy has built-in functions for creating arrays from scratch: zeros(shape) will create an array filled with 0 values with the specified shape. The default dtype is float64. :: >>> np.zeros((2, 3)) array([[ 0., 0., 0.], [ 0., 0., 0.]]) ones(shape) will create an array filled with 1 values. It is identical to zeros in all other respects. arange() will create arrays with regularly incrementing values. Check the docstring for complete information on the various ways it can be used. A few examples will be given here: :: >>> np.arange(10) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.arange(2, 10, dtype=float) array([ 2., 3., 4., 5., 6., 7., 8., 9.]) >>> np.arange(2, 3, 0.1) array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9]) Note that there are some subtleties regarding the last usage that the user should be aware of that are described in the arange docstring. linspace() will create arrays with a specified number of elements, and spaced equally between the specified beginning and end values. For example: :: >>> np.linspace(1., 4., 6) array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ]) The advantage of this creation function is that one can guarantee the number of elements and the starting and end point, which arange() generally will not do for arbitrary start, stop, and step values. indices() will create a set of arrays (stacked as a one-higher dimensioned array), one per dimension with each representing variation in that dimension. An example illustrates much better than a verbal description: :: >>> np.indices((3,3)) array([[[0, 0, 0], [1, 1, 1], [2, 2, 2]], [[0, 1, 2], [0, 1, 2], [0, 1, 2]]]) This is particularly useful for evaluating functions of multiple dimensions on a regular grid. Reading Arrays From Disk ======================== This is presumably the most common case of large array creation. The details, of course, depend greatly on the format of data on disk and so this section can only give general pointers on how to handle various formats. Standard Binary Formats ----------------------- Various fields have standard formats for array data. The following lists the ones with known python libraries to read them and return numpy arrays (there may be others for which it is possible to read and convert to numpy arrays so check the last section as well) :: HDF5: h5py FITS: Astropy Examples of formats that cannot be read directly but for which it is not hard to convert are those formats supported by libraries like PIL (able to read and write many image formats such as jpg, png, etc). Common ASCII Formats ------------------------ Comma Separated Value files (CSV) are widely used (and an export and import option for programs like Excel). There are a number of ways of reading these files in Python. There are CSV functions in Python and functions in pylab (part of matplotlib). More generic ascii files can be read using the io package in scipy. Custom Binary Formats --------------------- There are a variety of approaches one can use. If the file has a relatively simple format then one can write a simple I/O library and use the numpy fromfile() function and .tofile() method to read and write numpy arrays directly (mind your byteorder though!) If a good C or C++ library exists that read the data, one can wrap that library with a variety of techniques though that certainly is much more work and requires significantly more advanced knowledge to interface with C or C++. Use of Special Libraries ------------------------ There are libraries that can be used to generate arrays for special purposes and it isn't possible to enumerate all of them. The most common uses are use of the many array generation functions in random that can generate arrays of random values, and some utility functions to generate special matrices (e.g. diagonal). """
bsd-3-clause
dgasmith/EEX_scratch
tests/test_gromacs.py
1
1044
""" Tests for GROMACS IO """ import eex import numpy as np import os import pytest import pandas as pd import eex_find_files # Not working on GROMACS for now - """ @pytest.fixture(scope="module") def nbutane_dl(): dl = eex.datalayer.DataLayer("test_gromacs_read") gro_folder = eex_find_files.get_example_filename("gromacs", "alkanes", "nbutane") ffdir = os.path.join(gro_folder, "..", "trappe.ff") eex.translators.gromacs.read_gromacs_gro_file(dl, gro_folder, ffdir=ffdir) return dl def test_gromacs_read_conf(nbutane_dl): dl = nbutane_dl box_size = dl.get_box_size() assert box_size["x"][0] == pytest.approx(-2.5737, 1.e-6) assert box_size["x"][1] == pytest.approx(2.5737, 1.e-6) data = dl.get_atoms(None) assert data.shape[0] == 4 assert dl.get_atom_count() == 4 assert np.allclose(data["atomic_number"], [6, 6, 6, 6]) assert np.allclose(data[["X", "Y", "Z"]].min(axis=0), [-0.147, -0.046, -0.153]) assert np.allclose(data[["X", "Y", "Z"]].max(axis=0), [0.0, 0.16, 0.0]) """
bsd-3-clause
linebp/pandas
asv_bench/benchmarks/timeseries.py
1
15456
try: from pandas.plotting._converter import DatetimeConverter except ImportError: from pandas.tseries.converter import DatetimeConverter from .pandas_vb_common import * import pandas as pd import datetime as dt try: import pandas.tseries.holiday except ImportError: pass from pandas.tseries.frequencies import infer_freq import numpy as np if hasattr(Series, 'convert'): Series.resample = Series.convert class DatetimeIndex(object): goal_time = 0.2 def setup(self): self.N = 100000 self.rng = date_range(start='1/1/2000', periods=self.N, freq='T') self.delta_offset = pd.offsets.Day() self.fast_offset = pd.offsets.DateOffset(months=2, days=2) self.slow_offset = pd.offsets.BusinessDay() self.rng2 = date_range(start='1/1/2000 9:30', periods=10000, freq='S', tz='US/Eastern') self.index_repeated = date_range(start='1/1/2000', periods=1000, freq='T').repeat(10) self.rng3 = date_range(start='1/1/2000', periods=1000, freq='H') self.df = DataFrame(np.random.randn(len(self.rng3), 2), self.rng3) self.rng4 = date_range(start='1/1/2000', periods=1000, freq='H', tz='US/Eastern') self.df2 = DataFrame(np.random.randn(len(self.rng4), 2), index=self.rng4) N = 100000 self.dti = pd.date_range('2011-01-01', freq='H', periods=N).repeat(5) self.dti_tz = pd.date_range('2011-01-01', freq='H', periods=N, tz='Asia/Tokyo').repeat(5) self.rng5 = date_range(start='1/1/2000', end='3/1/2000', tz='US/Eastern') self.dst_rng = date_range(start='10/29/2000 1:00:00', end='10/29/2000 1:59:59', freq='S') self.index = date_range(start='10/29/2000', end='10/29/2000 00:59:59', freq='S') self.index = self.index.append(self.dst_rng) self.index = self.index.append(self.dst_rng) self.index = self.index.append(date_range(start='10/29/2000 2:00:00', end='10/29/2000 3:00:00', freq='S')) self.N = 10000 self.rng6 = date_range(start='1/1/1', periods=self.N, freq='B') self.rng7 = date_range(start='1/1/1700', freq='D', periods=100000) self.a = self.rng7[:50000].append(self.rng7[50002:]) def time_add_timedelta(self): (self.rng + dt.timedelta(minutes=2)) def time_add_offset_delta(self): (self.rng + self.delta_offset) def time_add_offset_fast(self): (self.rng + self.fast_offset) def time_add_offset_slow(self): (self.rng + self.slow_offset) def time_normalize(self): self.rng2.normalize() def time_unique(self): self.index_repeated.unique() def time_reset_index(self): self.df.reset_index() def time_reset_index_tz(self): self.df2.reset_index() def time_dti_factorize(self): self.dti.factorize() def time_dti_tz_factorize(self): self.dti_tz.factorize() def time_timestamp_tzinfo_cons(self): self.rng5[0] def time_infer_dst(self): self.index.tz_localize('US/Eastern', infer_dst=True) def time_timeseries_is_month_start(self): self.rng6.is_month_start def time_infer_freq(self): infer_freq(self.a) class TimeDatetimeConverter(object): goal_time = 0.2 def setup(self): self.N = 100000 self.rng = date_range(start='1/1/2000', periods=self.N, freq='T') def time_convert(self): DatetimeConverter.convert(self.rng, None, None) class Iteration(object): goal_time = 0.2 def setup(self): self.N = 1000000 self.M = 10000 self.idx1 = date_range(start='20140101', freq='T', periods=self.N) self.idx2 = period_range(start='20140101', freq='T', periods=self.N) def iter_n(self, iterable, n=None): self.i = 0 for _ in iterable: self.i += 1 if ((n is not None) and (self.i > n)): break def time_iter_datetimeindex(self): self.iter_n(self.idx1) def time_iter_datetimeindex_preexit(self): self.iter_n(self.idx1, self.M) def time_iter_periodindex(self): self.iter_n(self.idx2) def time_iter_periodindex_preexit(self): self.iter_n(self.idx2, self.M) #---------------------------------------------------------------------- # Resampling class ResampleDataFrame(object): goal_time = 0.2 def setup(self): self.rng = date_range(start='20130101', periods=100000, freq='50L') self.df = DataFrame(np.random.randn(100000, 2), index=self.rng) def time_max_numpy(self): self.df.resample('1s', how=np.max) def time_max_string(self): self.df.resample('1s', how='max') def time_mean_numpy(self): self.df.resample('1s', how=np.mean) def time_mean_string(self): self.df.resample('1s', how='mean') def time_min_numpy(self): self.df.resample('1s', how=np.min) def time_min_string(self): self.df.resample('1s', how='min') class ResampleSeries(object): goal_time = 0.2 def setup(self): self.rng1 = period_range(start='1/1/2000', end='1/1/2001', freq='T') self.ts1 = Series(np.random.randn(len(self.rng1)), index=self.rng1) self.rng2 = date_range(start='1/1/2000', end='1/1/2001', freq='T') self.ts2 = Series(np.random.randn(len(self.rng2)), index=self.rng2) self.rng3 = date_range(start='2000-01-01 00:00:00', end='2000-01-01 10:00:00', freq='555000U') self.int_ts = Series(5, self.rng3, dtype='int64') self.dt_ts = self.int_ts.astype('datetime64[ns]') def time_period_downsample_mean(self): self.ts1.resample('D', how='mean') def time_timestamp_downsample_mean(self): self.ts2.resample('D', how='mean') def time_resample_datetime64(self): # GH 7754 self.dt_ts.resample('1S', how='last') def time_1min_5min_mean(self): self.ts2[:10000].resample('5min', how='mean') def time_1min_5min_ohlc(self): self.ts2[:10000].resample('5min', how='ohlc') class AsOf(object): goal_time = 0.2 def setup(self): self.N = 10000 self.rng = date_range(start='1/1/1990', periods=self.N, freq='53s') self.ts = Series(np.random.randn(self.N), index=self.rng) self.dates = date_range(start='1/1/1990', periods=(self.N * 10), freq='5s') self.ts2 = self.ts.copy() self.ts2[250:5000] = np.nan self.ts3 = self.ts.copy() self.ts3[-5000:] = np.nan # test speed of pre-computing NAs. def time_asof(self): self.ts.asof(self.dates) # should be roughly the same as above. def time_asof_nan(self): self.ts2.asof(self.dates) # test speed of the code path for a scalar index # without *while* loop def time_asof_single(self): self.ts.asof(self.dates[0]) # test speed of the code path for a scalar index # before the start. should be the same as above. def time_asof_single_early(self): self.ts.asof(self.dates[0] - dt.timedelta(10)) # test the speed of the code path for a scalar index # with a long *while* loop. should still be much # faster than pre-computing all the NAs. def time_asof_nan_single(self): self.ts3.asof(self.dates[-1]) class AsOfDataFrame(object): goal_time = 0.2 def setup(self): self.N = 10000 self.M = 100 self.rng = date_range(start='1/1/1990', periods=self.N, freq='53s') self.dates = date_range(start='1/1/1990', periods=(self.N * 10), freq='5s') self.ts = DataFrame(np.random.randn(self.N, self.M), index=self.rng) self.ts2 = self.ts.copy() self.ts2.iloc[250:5000] = np.nan self.ts3 = self.ts.copy() self.ts3.iloc[-5000:] = np.nan # test speed of pre-computing NAs. def time_asof(self): self.ts.asof(self.dates) # should be roughly the same as above. def time_asof_nan(self): self.ts2.asof(self.dates) # test speed of the code path for a scalar index # with pre-computing all NAs. def time_asof_single(self): self.ts.asof(self.dates[0]) # should be roughly the same as above. def time_asof_nan_single(self): self.ts3.asof(self.dates[-1]) # test speed of the code path for a scalar index # before the start. should be without the cost of # pre-computing all the NAs. def time_asof_single_early(self): self.ts.asof(self.dates[0] - dt.timedelta(10)) class TimeSeries(object): goal_time = 0.2 def setup(self): self.N = 100000 self.rng = date_range(start='1/1/2000', periods=self.N, freq='s') self.rng = self.rng.take(np.random.permutation(self.N)) self.ts = Series(np.random.randn(self.N), index=self.rng) self.rng2 = date_range(start='1/1/2000', periods=self.N, freq='T') self.ts2 = Series(np.random.randn(self.N), index=self.rng2) self.lindex = np.random.permutation(self.N)[:(self.N // 2)] self.rindex = np.random.permutation(self.N)[:(self.N // 2)] self.left = Series(self.ts2.values.take(self.lindex), index=self.ts2.index.take(self.lindex)) self.right = Series(self.ts2.values.take(self.rindex), index=self.ts2.index.take(self.rindex)) self.rng3 = date_range(start='1/1/2000', periods=1500000, freq='S') self.ts3 = Series(1, index=self.rng3) def time_sort_index_monotonic(self): self.ts2.sort_index() def time_sort_index_non_monotonic(self): self.ts.sort_index() def time_timeseries_slice_minutely(self): self.ts2[:10000] def time_add_irregular(self): (self.left + self.right) def time_large_lookup_value(self): self.ts3[self.ts3.index[(len(self.ts3) // 2)]] self.ts3.index._cleanup() class SeriesArithmetic(object): goal_time = 0.2 def setup(self): self.N = 100000 self.s = Series(date_range(start='20140101', freq='T', periods=self.N)) self.delta_offset = pd.offsets.Day() self.fast_offset = pd.offsets.DateOffset(months=2, days=2) self.slow_offset = pd.offsets.BusinessDay() def time_add_offset_delta(self): (self.s + self.delta_offset) def time_add_offset_fast(self): (self.s + self.fast_offset) def time_add_offset_slow(self): (self.s + self.slow_offset) class ToDatetime(object): goal_time = 0.2 def setup(self): self.rng = date_range(start='1/1/2000', periods=10000, freq='D') self.stringsD = Series((((self.rng.year * 10000) + (self.rng.month * 100)) + self.rng.day), dtype=np.int64).apply(str) self.rng = date_range(start='1/1/2000', periods=20000, freq='H') self.strings = [x.strftime('%Y-%m-%d %H:%M:%S') for x in self.rng] self.strings_nosep = [x.strftime('%Y%m%d %H:%M:%S') for x in self.rng] self.strings_tz_space = [x.strftime('%Y-%m-%d %H:%M:%S') + ' -0800' for x in self.rng] self.s = Series((['19MAY11', '19MAY11:00:00:00'] * 100000)) self.s2 = self.s.str.replace(':\\S+$', '') def time_format_YYYYMMDD(self): to_datetime(self.stringsD, format='%Y%m%d') def time_iso8601(self): to_datetime(self.strings) def time_iso8601_nosep(self): to_datetime(self.strings_nosep) def time_iso8601_format(self): to_datetime(self.strings, format='%Y-%m-%d %H:%M:%S') def time_iso8601_format_no_sep(self): to_datetime(self.strings_nosep, format='%Y%m%d %H:%M:%S') def time_iso8601_tz_spaceformat(self): to_datetime(self.strings_tz_space) def time_format_exact(self): to_datetime(self.s2, format='%d%b%y') def time_format_no_exact(self): to_datetime(self.s, format='%d%b%y', exact=False) class Offsets(object): goal_time = 0.2 def setup(self): self.date = dt.datetime(2011, 1, 1) self.dt64 = np.datetime64('2011-01-01 09:00Z') self.hcal = pd.tseries.holiday.USFederalHolidayCalendar() self.day = pd.offsets.Day() self.year = pd.offsets.YearBegin() self.cday = pd.offsets.CustomBusinessDay() self.cmb = pd.offsets.CustomBusinessMonthBegin(calendar=self.hcal) self.cme = pd.offsets.CustomBusinessMonthEnd(calendar=self.hcal) self.cdayh = pd.offsets.CustomBusinessDay(calendar=self.hcal) def time_timeseries_day_apply(self): self.day.apply(self.date) def time_timeseries_day_incr(self): (self.date + self.day) def time_timeseries_year_apply(self): self.year.apply(self.date) def time_timeseries_year_incr(self): (self.date + self.year) # custom business offsets def time_custom_bday_decr(self): (self.date - self.cday) def time_custom_bday_incr(self): (self.date + self.cday) def time_custom_bday_apply(self): self.cday.apply(self.date) def time_custom_bday_apply_dt64(self): self.cday.apply(self.dt64) def time_custom_bday_cal_incr(self): self.date + 1 * self.cdayh def time_custom_bday_cal_decr(self): self.date - 1 * self.cdayh def time_custom_bday_cal_incr_n(self): self.date + 10 * self.cdayh def time_custom_bday_cal_incr_neg_n(self): self.date - 10 * self.cdayh # Increment custom business month def time_custom_bmonthend_incr(self): (self.date + self.cme) def time_custom_bmonthend_incr_n(self): (self.date + (10 * self.cme)) def time_custom_bmonthend_decr_n(self): (self.date - (10 * self.cme)) def time_custom_bmonthbegin_decr_n(self): (self.date - (10 * self.cmb)) def time_custom_bmonthbegin_incr_n(self): (self.date + (10 * self.cmb)) class SemiMonthOffset(object): goal_time = 0.2 def setup(self): self.N = 100000 self.rng = date_range(start='1/1/2000', periods=self.N, freq='T') # date is not on an offset which will be slowest case self.date = dt.datetime(2011, 1, 2) self.semi_month_end = pd.offsets.SemiMonthEnd() self.semi_month_begin = pd.offsets.SemiMonthBegin() def time_end_apply(self): self.semi_month_end.apply(self.date) def time_end_incr(self): self.date + self.semi_month_end def time_end_incr_n(self): self.date + 10 * self.semi_month_end def time_end_decr(self): self.date - self.semi_month_end def time_end_decr_n(self): self.date - 10 * self.semi_month_end def time_end_apply_index(self): self.semi_month_end.apply_index(self.rng) def time_end_incr_rng(self): self.rng + self.semi_month_end def time_end_decr_rng(self): self.rng - self.semi_month_end def time_begin_apply(self): self.semi_month_begin.apply(self.date) def time_begin_incr(self): self.date + self.semi_month_begin def time_begin_incr_n(self): self.date + 10 * self.semi_month_begin def time_begin_decr(self): self.date - self.semi_month_begin def time_begin_decr_n(self): self.date - 10 * self.semi_month_begin def time_begin_apply_index(self): self.semi_month_begin.apply_index(self.rng) def time_begin_incr_rng(self): self.rng + self.semi_month_begin def time_begin_decr_rng(self): self.rng - self.semi_month_begin
bsd-3-clause
jseabold/scikit-learn
examples/linear_model/plot_polynomial_interpolation.py
168
2088
#!/usr/bin/env python """ ======================== Polynomial interpolation ======================== This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form: [[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...] Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel. This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces. """ print(__doc__) # Author: Mathieu Blondel # Jake Vanderplas # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline def f(x): """ function to approximate by polynomial interpolation""" return x * np.sin(x) # generate points used to plot x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them x = np.linspace(0, 10, 100) rng = np.random.RandomState(0) rng.shuffle(x) x = np.sort(x[:20]) y = f(x) # create matrix versions of these arrays X = x[:, np.newaxis] X_plot = x_plot[:, np.newaxis] colors = ['teal', 'yellowgreen', 'gold'] lw = 2 plt.plot(x_plot, f(x_plot), color='cornflowerblue', linewidth=lw, label="ground truth") plt.scatter(x, y, color='navy', s=30, marker='o', label="training points") for count, degree in enumerate([3, 4, 5]): model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(X, y) y_plot = model.predict(X_plot) plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw, label="degree %d" % degree) plt.legend(loc='lower left') plt.show()
bsd-3-clause
MTK6580/walkie-talkie
ALPS.L1.MP6.V2_HEXING6580_WE_L/alps/cts/apps/CameraITS/tests/scene1/test_black_white.py
3
3146
# Copyright 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import its.image import its.caps import its.device import its.objects import pylab import os.path import matplotlib import matplotlib.pyplot def main(): """Test that the device will produce full black+white images. """ NAME = os.path.basename(__file__).split(".")[0] r_means = [] g_means = [] b_means = [] with its.device.ItsSession() as cam: props = cam.get_camera_properties() its.caps.skip_unless(its.caps.manual_sensor(props) and its.caps.per_frame_control(props)) expt_range = props['android.sensor.info.exposureTimeRange'] sens_range = props['android.sensor.info.sensitivityRange'] # Take a shot with very low ISO and exposure time. Expect it to # be black. print "Black shot: sens = %d, exp time = %.4fms" % ( sens_range[0], expt_range[0]/1000000.0) req = its.objects.manual_capture_request(sens_range[0], expt_range[0]) cap = cam.do_capture(req) img = its.image.convert_capture_to_rgb_image(cap) its.image.write_image(img, "%s_black.jpg" % (NAME)) tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) black_means = its.image.compute_image_means(tile) r_means.append(black_means[0]) g_means.append(black_means[1]) b_means.append(black_means[2]) print "Dark pixel means:", black_means # Take a shot with very high ISO and exposure time. Expect it to # be white. print "White shot: sens = %d, exp time = %.2fms" % ( sens_range[1], expt_range[1]/1000000.0) req = its.objects.manual_capture_request(sens_range[1], expt_range[1]) cap = cam.do_capture(req) img = its.image.convert_capture_to_rgb_image(cap) its.image.write_image(img, "%s_white.jpg" % (NAME)) tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) white_means = its.image.compute_image_means(tile) r_means.append(white_means[0]) g_means.append(white_means[1]) b_means.append(white_means[2]) print "Bright pixel means:", white_means # Draw a plot. pylab.plot([0,1], r_means, 'r') pylab.plot([0,1], g_means, 'g') pylab.plot([0,1], b_means, 'b') pylab.ylim([0,1]) matplotlib.pyplot.savefig("%s_plot_means.png" % (NAME)) for val in black_means: assert(val < 0.025) for val in white_means: assert(val > 0.975) if __name__ == '__main__': main()
gpl-3.0
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/lib/mpl_examples/units/basic_units.py
3
10916
import math import numpy as np import matplotlib.units as units import matplotlib.ticker as ticker from matplotlib.axes import Axes from matplotlib.cbook import iterable class ProxyDelegate(object): def __init__(self, fn_name, proxy_type): self.proxy_type = proxy_type self.fn_name = fn_name def __get__(self, obj, objtype=None): return self.proxy_type(self.fn_name, obj) class TaggedValueMeta (type): def __init__(cls, name, bases, dict): for fn_name in cls._proxies.keys(): try: dummy = getattr(cls, fn_name) except AttributeError: setattr(cls, fn_name, ProxyDelegate(fn_name, cls._proxies[fn_name])) class PassThroughProxy(object): def __init__(self, fn_name, obj): self.fn_name = fn_name self.target = obj.proxy_target def __call__(self, *args): #print 'passthrough', self.target, self.fn_name fn = getattr(self.target, self.fn_name) ret = fn(*args) return ret class ConvertArgsProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): converted_args = [] for a in args: try: converted_args.append(a.convert_to(self.unit)) except AttributeError: converted_args.append(TaggedValue(a, self.unit)) converted_args = tuple([c.get_value() for c in converted_args]) return PassThroughProxy.__call__(self, *converted_args) class ConvertReturnProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): ret = PassThroughProxy.__call__(self, *args) if (type(ret) == type(NotImplemented)): return NotImplemented return TaggedValue(ret, self.unit) class ConvertAllProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): converted_args = [] arg_units = [self.unit] for a in args: if hasattr(a, 'get_unit') and not hasattr(a, 'convert_to'): # if this arg has a unit type but no conversion ability, # this operation is prohibited return NotImplemented if hasattr(a, 'convert_to'): try: a = a.convert_to(self.unit) except: pass arg_units.append(a.get_unit()) converted_args.append(a.get_value()) else: converted_args.append(a) if hasattr(a, 'get_unit'): arg_units.append(a.get_unit()) else: arg_units.append(None) converted_args = tuple(converted_args) ret = PassThroughProxy.__call__(self, *converted_args) if (type(ret) == type(NotImplemented)): return NotImplemented ret_unit = unit_resolver(self.fn_name, arg_units) if (ret_unit == NotImplemented): return NotImplemented return TaggedValue(ret, ret_unit) class TaggedValue (object): __metaclass__ = TaggedValueMeta _proxies = {'__add__':ConvertAllProxy, '__sub__':ConvertAllProxy, '__mul__':ConvertAllProxy, '__rmul__':ConvertAllProxy, '__cmp__':ConvertAllProxy, '__lt__':ConvertAllProxy, '__gt__':ConvertAllProxy, '__len__':PassThroughProxy} def __new__(cls, value, unit): # generate a new subclass for value value_class = type(value) try: subcls = type('TaggedValue_of_%s' % (value_class.__name__), tuple([cls, value_class]), {}) if subcls not in units.registry: units.registry[subcls] = basicConverter return object.__new__(subcls, value, unit) except TypeError: if cls not in units.registry: units.registry[cls] = basicConverter return object.__new__(cls, value, unit) def __init__(self, value, unit): self.value = value self.unit = unit self.proxy_target = self.value def get_compressed_copy(self, mask): compressed_value = np.ma.masked_array(self.value, mask=mask).compressed() return TaggedValue(compressed_value, self.unit) def __getattribute__(self, name): if (name.startswith('__')): return object.__getattribute__(self, name) variable = object.__getattribute__(self, 'value') if (hasattr(variable, name) and name not in self.__class__.__dict__): return getattr(variable, name) return object.__getattribute__(self, name) def __array__(self, t = None, context = None): if t is not None: return np.asarray(self.value).astype(t) else: return np.asarray(self.value, 'O') def __array_wrap__(self, array, context): return TaggedValue(array, self.unit) def __repr__(self): return 'TaggedValue(' + repr(self.value) + ', ' + repr(self.unit) + ')' def __str__(self): return str(self.value) + ' in ' + str(self.unit) def __iter__(self): class IteratorProxy(object): def __init__(self, iter, unit): self.iter = iter self.unit = unit def next(self): value = self.iter.next() return TaggedValue(value, self.unit) return IteratorProxy(iter(self.value), self.unit) def get_compressed_copy(self, mask): new_value = np.ma.masked_array(self.value, mask=mask).compressed() return TaggedValue(new_value, self.unit) def convert_to(self, unit): #print 'convert to', unit, self.unit if (unit == self.unit or not unit): return self new_value = self.unit.convert_value_to(self.value, unit) return TaggedValue(new_value, unit) def get_value(self): return self.value def get_unit(self): return self.unit class BasicUnit(object): def __init__(self, name, fullname=None): self.name = name if fullname is None: fullname = name self.fullname = fullname self.conversions = dict() def __repr__(self): return 'BasicUnit(%s)'%self.name def __str__(self): return self.fullname def __call__(self, value): return TaggedValue(value, self) def __mul__(self, rhs): value = rhs unit = self if hasattr(rhs, 'get_unit'): value = rhs.get_value() unit = rhs.get_unit() unit = unit_resolver('__mul__', (self, unit)) if (unit == NotImplemented): return NotImplemented return TaggedValue(value, unit) def __rmul__(self, lhs): return self*lhs def __array_wrap__(self, array, context): return TaggedValue(array, self) def __array__(self, t=None, context=None): ret = np.array([1]) if t is not None: return ret.astype(t) else: return ret def add_conversion_factor(self, unit, factor): def convert(x): return x*factor self.conversions[unit] = convert def add_conversion_fn(self, unit, fn): self.conversions[unit] = fn def get_conversion_fn(self, unit): return self.conversions[unit] def convert_value_to(self, value, unit): #print 'convert value to: value ="%s", unit="%s"'%(value, type(unit)), self.conversions conversion_fn = self.conversions[unit] ret = conversion_fn(value) return ret def get_unit(self): return self class UnitResolver(object): def addition_rule(self, units): for unit_1, unit_2 in zip(units[:-1], units[1:]): if (unit_1 != unit_2): return NotImplemented return units[0] def multiplication_rule(self, units): non_null = [u for u in units if u] if (len(non_null) > 1): return NotImplemented return non_null[0] op_dict = { '__mul__':multiplication_rule, '__rmul__':multiplication_rule, '__add__':addition_rule, '__radd__':addition_rule, '__sub__':addition_rule, '__rsub__':addition_rule, } def __call__(self, operation, units): if (operation not in self.op_dict): return NotImplemented return self.op_dict[operation](self, units) unit_resolver = UnitResolver() cm = BasicUnit('cm', 'centimeters') inch = BasicUnit('inch', 'inches') inch.add_conversion_factor(cm, 2.54) cm.add_conversion_factor(inch, 1/2.54) radians = BasicUnit('rad', 'radians') degrees = BasicUnit('deg', 'degrees') radians.add_conversion_factor(degrees, 180.0/np.pi) degrees.add_conversion_factor(radians, np.pi/180.0) secs = BasicUnit('s', 'seconds') hertz = BasicUnit('Hz', 'Hertz') minutes = BasicUnit('min', 'minutes') secs.add_conversion_fn(hertz, lambda x:1./x) secs.add_conversion_factor(minutes, 1/60.0) # radians formatting def rad_fn(x,pos=None): n = int((x / np.pi) * 2.0 + 0.25) if n == 0: return '0' elif n == 1: return r'$\pi/2$' elif n == 2: return r'$\pi$' elif n % 2 == 0: return r'$%s\pi$' % (n/2,) else: return r'$%s\pi/2$' % (n,) class BasicUnitConverter(units.ConversionInterface): @staticmethod def axisinfo(unit, axis): 'return AxisInfo instance for x and unit' if unit==radians: return units.AxisInfo( majloc=ticker.MultipleLocator(base=np.pi/2), majfmt=ticker.FuncFormatter(rad_fn), label=unit.fullname, ) elif unit==degrees: return units.AxisInfo( majloc=ticker.AutoLocator(), majfmt=ticker.FormatStrFormatter(r'$%i^\circ$'), label=unit.fullname, ) elif unit is not None: if hasattr(unit, 'fullname'): return units.AxisInfo(label=unit.fullname) elif hasattr(unit, 'unit'): return units.AxisInfo(label=unit.unit.fullname) return None @staticmethod def convert(val, unit, axis): if units.ConversionInterface.is_numlike(val): return val #print 'convert checking iterable' if iterable(val): return [thisval.convert_to(unit).get_value() for thisval in val] else: return val.convert_to(unit).get_value() @staticmethod def default_units(x, axis): 'return the default unit for x or None' if iterable(x): for thisx in x: return thisx.unit return x.unit def cos( x ): if ( iterable(x) ): result = [] for val in x: result.append( math.cos( val.convert_to( radians ).get_value() ) ) return result else: return math.cos( x.convert_to( radians ).get_value() ) basicConverter = BasicUnitConverter() units.registry[BasicUnit] = basicConverter units.registry[TaggedValue] = basicConverter
gpl-2.0
hsiaoyi0504/scikit-learn
sklearn/utils/fixes.py
133
12882
"""Compatibility fixes for older version of python, numpy and scipy If you add content to this file, please give the version of the package at which the fixe is no longer needed. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Lars Buitinck # # License: BSD 3 clause import inspect import warnings import sys import functools import os import errno import numpy as np import scipy.sparse as sp import scipy def _parse_version(version_string): version = [] for x in version_string.split('.'): try: version.append(int(x)) except ValueError: # x may be of the form dev-1ea1592 version.append(x) return tuple(version) np_version = _parse_version(np.__version__) sp_version = _parse_version(scipy.__version__) try: from scipy.special import expit # SciPy >= 0.10 with np.errstate(invalid='ignore', over='ignore'): if np.isnan(expit(1000)): # SciPy < 0.14 raise ImportError("no stable expit in scipy.special") except ImportError: def expit(x, out=None): """Logistic sigmoid function, ``1 / (1 + exp(-x))``. See sklearn.utils.extmath.log_logistic for the log of this function. """ if out is None: out = np.empty(np.atleast_1d(x).shape, dtype=np.float64) out[:] = x # 1 / (1 + exp(-x)) = (1 + tanh(x / 2)) / 2 # This way of computing the logistic is both fast and stable. out *= .5 np.tanh(out, out) out += 1 out *= .5 return out.reshape(np.shape(x)) # little danse to see if np.copy has an 'order' keyword argument if 'order' in inspect.getargspec(np.copy)[0]: def safe_copy(X): # Copy, but keep the order return np.copy(X, order='K') else: # Before an 'order' argument was introduced, numpy wouldn't muck with # the ordering safe_copy = np.copy try: if (not np.allclose(np.divide(.4, 1, casting="unsafe"), np.divide(.4, 1, casting="unsafe", dtype=np.float)) or not np.allclose(np.divide(.4, 1), .4)): raise TypeError('Divide not working with dtype: ' 'https://github.com/numpy/numpy/issues/3484') divide = np.divide except TypeError: # Compat for old versions of np.divide that do not provide support for # the dtype args def divide(x1, x2, out=None, dtype=None): out_orig = out if out is None: out = np.asarray(x1, dtype=dtype) if out is x1: out = x1.copy() else: if out is not x1: out[:] = x1 if dtype is not None and out.dtype != dtype: out = out.astype(dtype) out /= x2 if out_orig is None and np.isscalar(x1): out = np.asscalar(out) return out try: np.array(5).astype(float, copy=False) except TypeError: # Compat where astype accepted no copy argument def astype(array, dtype, copy=True): if not copy and array.dtype == dtype: return array return array.astype(dtype) else: astype = np.ndarray.astype try: with warnings.catch_warnings(record=True): # Don't raise the numpy deprecation warnings that appear in # 1.9, but avoid Python bug due to simplefilter('ignore') warnings.simplefilter('always') sp.csr_matrix([1.0, 2.0, 3.0]).max(axis=0) except (TypeError, AttributeError): # in scipy < 14.0, sparse matrix min/max doesn't accept an `axis` argument # the following code is taken from the scipy 0.14 codebase def _minor_reduce(X, ufunc): major_index = np.flatnonzero(np.diff(X.indptr)) if X.data.size == 0 and major_index.size == 0: # Numpy < 1.8.0 don't handle empty arrays in reduceat value = np.zeros_like(X.data) else: value = ufunc.reduceat(X.data, X.indptr[major_index]) return major_index, value def _min_or_max_axis(X, axis, min_or_max): N = X.shape[axis] if N == 0: raise ValueError("zero-size array to reduction operation") M = X.shape[1 - axis] mat = X.tocsc() if axis == 0 else X.tocsr() mat.sum_duplicates() major_index, value = _minor_reduce(mat, min_or_max) not_full = np.diff(mat.indptr)[major_index] < N value[not_full] = min_or_max(value[not_full], 0) mask = value != 0 major_index = np.compress(mask, major_index) value = np.compress(mask, value) from scipy.sparse import coo_matrix if axis == 0: res = coo_matrix((value, (np.zeros(len(value)), major_index)), dtype=X.dtype, shape=(1, M)) else: res = coo_matrix((value, (major_index, np.zeros(len(value)))), dtype=X.dtype, shape=(M, 1)) return res.A.ravel() def _sparse_min_or_max(X, axis, min_or_max): if axis is None: if 0 in X.shape: raise ValueError("zero-size array to reduction operation") zero = X.dtype.type(0) if X.nnz == 0: return zero m = min_or_max.reduce(X.data.ravel()) if X.nnz != np.product(X.shape): m = min_or_max(zero, m) return m if axis < 0: axis += 2 if (axis == 0) or (axis == 1): return _min_or_max_axis(X, axis, min_or_max) else: raise ValueError("invalid axis, use 0 for rows, or 1 for columns") def sparse_min_max(X, axis): return (_sparse_min_or_max(X, axis, np.minimum), _sparse_min_or_max(X, axis, np.maximum)) else: def sparse_min_max(X, axis): return (X.min(axis=axis).toarray().ravel(), X.max(axis=axis).toarray().ravel()) try: from numpy import argpartition except ImportError: # numpy.argpartition was introduced in v 1.8.0 def argpartition(a, kth, axis=-1, kind='introselect', order=None): return np.argsort(a, axis=axis, order=order) try: from itertools import combinations_with_replacement except ImportError: # Backport of itertools.combinations_with_replacement for Python 2.6, # from Python 3.4 documentation (http://tinyurl.com/comb-w-r), copyright # Python Software Foundation (https://docs.python.org/3/license.html) def combinations_with_replacement(iterable, r): # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC pool = tuple(iterable) n = len(pool) if not n and r: return indices = [0] * r yield tuple(pool[i] for i in indices) while True: for i in reversed(range(r)): if indices[i] != n - 1: break else: return indices[i:] = [indices[i] + 1] * (r - i) yield tuple(pool[i] for i in indices) try: from numpy import isclose except ImportError: def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): """ Returns a boolean array where two arrays are element-wise equal within a tolerance. This function was added to numpy v1.7.0, and the version you are running has been backported from numpy v1.8.1. See its documentation for more details. """ def within_tol(x, y, atol, rtol): with np.errstate(invalid='ignore'): result = np.less_equal(abs(x - y), atol + rtol * abs(y)) if np.isscalar(a) and np.isscalar(b): result = bool(result) return result x = np.array(a, copy=False, subok=True, ndmin=1) y = np.array(b, copy=False, subok=True, ndmin=1) xfin = np.isfinite(x) yfin = np.isfinite(y) if all(xfin) and all(yfin): return within_tol(x, y, atol, rtol) else: finite = xfin & yfin cond = np.zeros_like(finite, subok=True) # Since we're using boolean indexing, x & y must be the same shape. # Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in # lib.stride_tricks, though, so we can't import it here. x = x * np.ones_like(cond) y = y * np.ones_like(cond) # Avoid subtraction with infinite/nan values... cond[finite] = within_tol(x[finite], y[finite], atol, rtol) # Check for equality of infinite values... cond[~finite] = (x[~finite] == y[~finite]) if equal_nan: # Make NaN == NaN cond[np.isnan(x) & np.isnan(y)] = True return cond if np_version < (1, 7): # Prior to 1.7.0, np.frombuffer wouldn't work for empty first arg. def frombuffer_empty(buf, dtype): if len(buf) == 0: return np.empty(0, dtype=dtype) else: return np.frombuffer(buf, dtype=dtype) else: frombuffer_empty = np.frombuffer if np_version < (1, 8): def in1d(ar1, ar2, assume_unique=False, invert=False): # Backport of numpy function in1d 1.8.1 to support numpy 1.6.2 # Ravel both arrays, behavior for the first array could be different ar1 = np.asarray(ar1).ravel() ar2 = np.asarray(ar2).ravel() # This code is significantly faster when the condition is satisfied. if len(ar2) < 10 * len(ar1) ** 0.145: if invert: mask = np.ones(len(ar1), dtype=np.bool) for a in ar2: mask &= (ar1 != a) else: mask = np.zeros(len(ar1), dtype=np.bool) for a in ar2: mask |= (ar1 == a) return mask # Otherwise use sorting if not assume_unique: ar1, rev_idx = np.unique(ar1, return_inverse=True) ar2 = np.unique(ar2) ar = np.concatenate((ar1, ar2)) # We need this to be a stable sort, so always use 'mergesort' # here. The values from the first array should always come before # the values from the second array. order = ar.argsort(kind='mergesort') sar = ar[order] if invert: bool_ar = (sar[1:] != sar[:-1]) else: bool_ar = (sar[1:] == sar[:-1]) flag = np.concatenate((bool_ar, [invert])) indx = order.argsort(kind='mergesort')[:len(ar1)] if assume_unique: return flag[indx] else: return flag[indx][rev_idx] else: from numpy import in1d if sp_version < (0, 15): # Backport fix for scikit-learn/scikit-learn#2986 / scipy/scipy#4142 from ._scipy_sparse_lsqr_backport import lsqr as sparse_lsqr else: from scipy.sparse.linalg import lsqr as sparse_lsqr if sys.version_info < (2, 7, 0): # partial cannot be pickled in Python 2.6 # http://bugs.python.org/issue1398 class partial(object): def __init__(self, func, *args, **keywords): functools.update_wrapper(self, func) self.func = func self.args = args self.keywords = keywords def __call__(self, *args, **keywords): args = self.args + args kwargs = self.keywords.copy() kwargs.update(keywords) return self.func(*args, **kwargs) else: from functools import partial if np_version < (1, 6, 2): # Allow bincount to accept empty arrays # https://github.com/numpy/numpy/commit/40f0844846a9d7665616b142407a3d74cb65a040 def bincount(x, weights=None, minlength=None): if len(x) > 0: return np.bincount(x, weights, minlength) else: if minlength is None: minlength = 0 minlength = np.asscalar(np.asarray(minlength, dtype=np.intp)) return np.zeros(minlength, dtype=np.intp) else: from numpy import bincount if 'exist_ok' in inspect.getargspec(os.makedirs).args: makedirs = os.makedirs else: def makedirs(name, mode=0o777, exist_ok=False): """makedirs(name [, mode=0o777][, exist_ok=False]) Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any intermediate path segment (not just the rightmost) will be created if it does not exist. If the target directory already exists, raise an OSError if exist_ok is False. Otherwise no exception is raised. This is recursive. """ try: os.makedirs(name, mode=mode) except OSError as e: if (not exist_ok or e.errno != errno.EEXIST or not os.path.isdir(name)): raise
bsd-3-clause
rockyzhengwu/mlpractice
word2vec/tf_word2vec.py
1
9346
#!/usr/bin/env python # -*-coding=utf-8-*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import math import os import random import zipfile import numpy as np from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf # Step 1: Download the data. url = 'http://mattmahoney.net/dc/' def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" if not os.path.exists(filename): filename, _ = urllib.request.urlretrieve(url + filename, filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print('Found and verified', filename) else: print(statinfo.st_size) raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename # filename = maybe_download('text8.zip', 31344016) filename = maybe_download('text8.zip', 33182194) # Read the data into a list of strings. def read_data(filename): """Extract the first file enclosed in a zip file as a list of words.""" with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return data vocabulary = read_data(filename) print('Data size', len(vocabulary)) # Step 2: Build the dictionary and replace rare words with UNK token. vocabulary_size = 50000 def build_dataset(words, n_words): """Process raw inputs into a dataset.""" count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(n_words - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reversed_dictionary data, count, dictionary, reverse_dictionary = build_dataset(vocabulary, vocabulary_size) del vocabulary # Hint to reduce memory. print('Most common words (+UNK)', count[:5]) print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]]) data_index = 0 # Step 3: Function to generate a training batch for the skip-gram model. def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) # Backtrack a little bit to avoid skipping words in the end of a batch data_index = (data_index + len(data) - span) % len(data) return batch, labels batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0], reverse_dictionary[labels[i, 0]]) # Step 4: Build and train a skip-gram model. batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. # We pick a random validation set to sample nearest neighbors. Here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.random.choice(valid_window, valid_size, replace=False) num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data. train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device('/cpu:0'): # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # Construct the SGD optimizer using a learning rate of 1.0. optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer. init = tf.global_variables_initializer() # Step 5: Begin training. num_steps = 100001 with tf.Session(graph=graph) as session: # We must initialize all variables before we use them. init.run() print('Initialized') average_loss = 0 for step in xrange(num_steps): batch_inputs, batch_labels = generate_batch( batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += loss_val if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. print('Average loss at step ', step, ': ', average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = 'Nearest to %s:' % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = '%s %s,' % (log_str, close_word) print(log_str) final_embeddings = normalized_embeddings.eval() # Step 6: Visualize the embeddings. def plot_with_labels(low_dim_embs, labels, filename='tsne.png'): assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings' plt.figure(figsize=(18, 18)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.savefig(filename) try: # pylint: disable=g-import-not-at-top from sklearn.manifold import TSNE import matplotlib.pyplot as plt tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) plot_only = 500 low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels) except ImportError: print('Please install sklearn, matplotlib, and scipy to show embeddings.')
mit
sinhrks/scikit-learn
examples/neighbors/plot_classification.py
287
1790
""" ================================ Nearest Neighbors Classification ================================ Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for weights in ['uniform', 'distance']: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
jampp/airflow
airflow/www/app.py
3
67267
from __future__ import print_function from __future__ import division from builtins import str from past.utils import old_div import copy from datetime import datetime, timedelta import dateutil.parser from functools import wraps import inspect import json import logging import os import socket import sys from flask._compat import PY2 from flask import ( Flask, url_for, Markup, Blueprint, redirect, flash, Response, render_template) from flask.ext.admin import Admin, BaseView, expose, AdminIndexView from flask.ext.admin.form import DateTimePickerWidget from flask.ext.admin import base from flask.ext.admin.contrib.sqla import ModelView from flask.ext.cache import Cache from flask import request import sqlalchemy as sqla from wtforms import ( widgets, Form, DateTimeField, SelectField, TextAreaField, PasswordField, StringField) from pygments import highlight, lexers from pygments.formatters import HtmlFormatter import chartkick import jinja2 import markdown from sqlalchemy import or_ import airflow from airflow import jobs, login, models, settings, utils from airflow.configuration import conf from airflow.models import State from airflow.settings import Session from airflow.utils import AirflowException from airflow.www import utils as wwwutils login_required = login.login_required current_user = login.current_user logout_user = login.logout_user from airflow import default_login as login if conf.getboolean('webserver', 'AUTHENTICATE'): try: # Environment specific login import airflow_login as login except ImportError: logging.error( "authenticate is set to True in airflow.cfg, " "but airflow_login failed to import") login_required = login.login_required current_user = login.current_user logout_user = login.logout_user AUTHENTICATE = conf.getboolean('webserver', 'AUTHENTICATE') if AUTHENTICATE is False: login_required = lambda x: x class VisiblePasswordInput(widgets.PasswordInput): def __init__(self, hide_value=False): self.hide_value = hide_value class VisiblePasswordField(PasswordField): widget = VisiblePasswordInput() def superuser_required(f): ''' Decorator for views requiring superuser access ''' @wraps(f) def decorated_function(*args, **kwargs): if ( not AUTHENTICATE or (not current_user.is_anonymous() and current_user.is_superuser()) ): return f(*args, **kwargs) else: flash("This page requires superuser privileges", "error") return redirect(url_for('admin.index')) return decorated_function def data_profiling_required(f): ''' Decorator for views requiring data profiling access ''' @wraps(f) def decorated_function(*args, **kwargs): if ( not AUTHENTICATE or (not current_user.is_anonymous() and current_user.data_profiling()) ): return f(*args, **kwargs) else: flash("This page requires data profiling privileges", "error") return redirect(url_for('admin.index')) return decorated_function QUERY_LIMIT = 100000 CHART_LIMIT = 200000 def pygment_html_render(s, lexer=lexers.TextLexer): return highlight( s, lexer(), HtmlFormatter(linenos=True), ) def wrapped_markdown(s): return '<div class="rich_doc">' + markdown.markdown(s) + "</div>" attr_renderer = { 'bash_command': lambda x: pygment_html_render(x, lexers.BashLexer), 'hql': lambda x: pygment_html_render(x, lexers.SqlLexer), 'sql': lambda x: pygment_html_render(x, lexers.SqlLexer), 'doc': lambda x: pygment_html_render(x, lexers.TextLexer), 'doc_json': lambda x: pygment_html_render(x, lexers.JsonLexer), 'doc_rst': lambda x: pygment_html_render(x, lexers.RstLexer), 'doc_yaml': lambda x: pygment_html_render(x, lexers.YamlLexer), 'doc_md': wrapped_markdown, 'python_callable': lambda x: pygment_html_render( inspect.getsource(x), lexers.PythonLexer), } dagbag = models.DagBag(os.path.expanduser(conf.get('core', 'DAGS_FOLDER'))) utils.pessimistic_connection_handling() app = Flask(__name__) app.config['SQLALCHEMY_POOL_RECYCLE'] = 3600 app.secret_key = conf.get('webserver', 'SECRET_KEY') login.login_manager.init_app(app) cache = Cache( app=app, config={'CACHE_TYPE': 'filesystem', 'CACHE_DIR': '/tmp'}) # Init for chartkick, the python wrapper for highcharts ck = Blueprint( 'ck_page', __name__, static_folder=chartkick.js(), static_url_path='/static') app.register_blueprint(ck, url_prefix='/ck') app.jinja_env.add_extension("chartkick.ext.charts") @app.context_processor def jinja_globals(): return { 'hostname': socket.gethostname(), } class DateTimeForm(Form): # Date filter form needed for gantt and graph view execution_date = DateTimeField( "Execution date", widget=DateTimePickerWidget()) class GraphForm(Form): execution_date = DateTimeField( "Execution date", widget=DateTimePickerWidget()) arrange = SelectField("Layout", choices=( ('LR', "Left->Right"), ('RL', "Right->Left"), ('TB', "Top->Bottom"), ('BT', "Bottom->Top"), )) @app.route('/') def index(): return redirect(url_for('admin.index')) @app.route('/health') def health(): """ We can add an array of tests here to check the server's health """ content = Markup(markdown.markdown("The server is healthy!")) return content @app.teardown_appcontext def shutdown_session(exception=None): settings.Session.remove() def dag_link(v, c, m, p): url = url_for( 'airflow.graph', dag_id=m.dag_id) return Markup( '<a href="{url}">{m.dag_id}</a>'.format(**locals())) class DagModelView(wwwutils.SuperUserMixin, ModelView): column_list = ('dag_id', 'owners') column_editable_list = ('is_paused',) form_excluded_columns = ('is_subdag', 'is_active') column_searchable_list = ('dag_id',) column_filters = ( 'dag_id', 'owners', 'is_paused', 'is_active', 'is_subdag', 'last_scheduler_run', 'last_expired') form_widget_args = { 'last_scheduler_run': {'disabled': True}, 'fileloc': {'disabled': True}, 'is_paused': {'disabled': True}, 'last_pickled': {'disabled': True}, 'pickle_id': {'disabled': True}, 'last_loaded': {'disabled': True}, 'last_expired': {'disabled': True}, 'pickle_size': {'disabled': True}, 'scheduler_lock': {'disabled': True}, 'owners': {'disabled': True}, } column_formatters = dict( dag_id=dag_link, ) can_delete = False can_create = False page_size = 50 list_template = 'airflow/list_dags.html' named_filter_urls = True def get_query(self): """ Default filters for model """ return ( super(DagModelView, self) .get_query() .filter(or_(models.DagModel.is_active, models.DagModel.is_paused)) .filter(~models.DagModel.is_subdag) ) def get_count_query(self): """ Default filters for model """ return ( super(DagModelView, self) .get_count_query() .filter(models.DagModel.is_active) .filter(~models.DagModel.is_subdag) ) class HomeView(AdminIndexView): @expose("/") @login_required def index(self): session = Session() DM = models.DagModel qry = session.query(DM).filter(~DM.is_subdag, DM.is_active).all() orm_dags = {dag.dag_id: dag for dag in qry} import_errors = session.query(models.ImportError).all() for ie in import_errors: flash( "Broken DAG: [{ie.filename}] {ie.stacktrace}".format(ie=ie), "error") session.expunge_all() session.commit() session.close() dags = dagbag.dags.values() dags = {dag.dag_id: dag for dag in dags if not dag.parent_dag} all_dag_ids = sorted(set(orm_dags.keys()) | set(dags.keys())) return self.render( 'airflow/dags.html', dags=dags, orm_dags=orm_dags, all_dag_ids=all_dag_ids) admin = Admin( app, name="Airflow", index_view=HomeView(name="DAGs"), template_mode='bootstrap3') class Airflow(BaseView): def is_visible(self): return False @expose('/') @login_required def index(self): return self.render('airflow/dags.html') @expose('/chart_data') @data_profiling_required @wwwutils.gzipped # @cache.cached(timeout=3600, key_prefix=wwwutils.make_cache_key) def chart_data(self): session = settings.Session() chart_id = request.args.get('chart_id') csv = request.args.get('csv') == "true" chart = session.query(models.Chart).filter_by(id=chart_id).all()[0] db = session.query( models.Connection).filter_by(conn_id=chart.conn_id).all()[0] session.expunge_all() session.commit() session.close() payload = {} payload['state'] = 'ERROR' payload['error'] = '' # Processing templated fields try: args = eval(chart.default_params) if type(args) is not type(dict()): raise AirflowException('Not a dict') except: args = {} payload['error'] += ( "Default params is not valid, string has to evaluate as " "a Python dictionary. ") request_dict = {k: request.args.get(k) for k in request.args} from airflow import macros args.update(request_dict) args['macros'] = macros sql = jinja2.Template(chart.sql).render(**args) label = jinja2.Template(chart.label).render(**args) payload['sql_html'] = Markup(highlight( sql, lexers.SqlLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) payload['label'] = label import pandas as pd pd.set_option('display.max_colwidth', 100) hook = db.get_hook() try: df = hook.get_pandas_df(wwwutils.limit_sql(sql, CHART_LIMIT, conn_type=db.conn_type)) df = df.fillna(0) except Exception as e: payload['error'] += "SQL execution failed. Details: " + str(e) if csv: return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") if not payload['error'] and len(df) == CHART_LIMIT: payload['warning'] = ( "Data has been truncated to {0}" " rows. Expect incomplete results.").format(CHART_LIMIT) def date_handler(obj): return obj.isoformat() if hasattr(obj, 'isoformat') else obj if not payload['error'] and len(df) == 0: payload['error'] += "Empty result set. " elif ( not payload['error'] and chart.sql_layout == 'series' and chart.chart_type != "datatable" and len(df.columns) < 3): payload['error'] += "SQL needs to return at least 3 columns. " elif ( not payload['error'] and chart.sql_layout == 'columns'and len(df.columns) < 2): payload['error'] += "SQL needs to return at least 2 columns. " elif not payload['error']: import numpy as np chart_type = chart.chart_type data = None if chart_type == "datatable": chart.show_datatable = True if chart.show_datatable: data = df.to_dict(orient="split") data['columns'] = [{'title': c} for c in data['columns']] # Trying to convert time to something Highcharts likes x_col = 1 if chart.sql_layout == 'series' else 0 if chart.x_is_date: try: # From string to datetime df[df.columns[x_col]] = pd.to_datetime( df[df.columns[x_col]]) except Exception as e: raise AirflowException(str(e)) df[df.columns[x_col]] = df[df.columns[x_col]].apply( lambda x: int(x.strftime("%s")) * 1000) series = [] colorAxis = None if chart_type == 'datatable': payload['data'] = data payload['state'] = 'SUCCESS' return Response( response=json.dumps( payload, indent=4, default=date_handler), status=200, mimetype="application/json") elif chart_type == 'para': df.rename(columns={ df.columns[0]: 'name', df.columns[1]: 'group', }, inplace=True) return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") elif chart_type == 'heatmap': color_perc_lbound = float( request.args.get('color_perc_lbound', 0)) color_perc_rbound = float( request.args.get('color_perc_rbound', 1)) color_scheme = request.args.get('color_scheme', 'blue_red') if color_scheme == 'blue_red': stops = [ [color_perc_lbound, '#00D1C1'], [ color_perc_lbound + ((color_perc_rbound - color_perc_lbound)/2), '#FFFFCC' ], [color_perc_rbound, '#FF5A5F'] ] elif color_scheme == 'blue_scale': stops = [ [color_perc_lbound, '#FFFFFF'], [color_perc_rbound, '#2222FF'] ] elif color_scheme == 'fire': diff = float(color_perc_rbound - color_perc_lbound) stops = [ [color_perc_lbound, '#FFFFFF'], [color_perc_lbound + 0.33*diff, '#FFFF00'], [color_perc_lbound + 0.66*diff, '#FF0000'], [color_perc_rbound, '#000000'] ] else: stops = [ [color_perc_lbound, '#FFFFFF'], [ color_perc_lbound + ((color_perc_rbound - color_perc_lbound)/2), '#888888' ], [color_perc_rbound, '#000000'], ] xaxis_label = df.columns[1] yaxis_label = df.columns[2] data = [] for row in df.itertuples(): data.append({ 'x': row[2], 'y': row[3], 'value': row[4], }) x_format = '{point.x:%Y-%m-%d}' \ if chart.x_is_date else '{point.x}' series.append({ 'data': data, 'borderWidth': 0, 'colsize': 24 * 36e5, 'turboThreshold': sys.float_info.max, 'tooltip': { 'headerFormat': '', 'pointFormat': ( df.columns[1] + ': ' + x_format + '<br/>' + df.columns[2] + ': {point.y}<br/>' + df.columns[3] + ': <b>{point.value}</b>' ), }, }) colorAxis = { 'stops': stops, 'minColor': '#FFFFFF', 'maxColor': '#000000', 'min': 50, 'max': 2200, } else: if chart.sql_layout == 'series': # User provides columns (series, x, y) xaxis_label = df.columns[1] yaxis_label = df.columns[2] df[df.columns[2]] = df[df.columns[2]].astype(np.float) df = df.pivot_table( index=df.columns[1], columns=df.columns[0], values=df.columns[2], aggfunc=np.sum) else: # User provides columns (x, y, metric1, metric2, ...) xaxis_label = df.columns[0] yaxis_label = 'y' df.index = df[df.columns[0]] df = df.sort(df.columns[0]) del df[df.columns[0]] for col in df.columns: df[col] = df[col].astype(np.float) for col in df.columns: series.append({ 'name': col, 'data': [ (k, df[col][k]) for k in df[col].keys() if not np.isnan(df[col][k])] }) series = [serie for serie in sorted( series, key=lambda s: s['data'][0][1], reverse=True)] if chart_type == "stacked_area": stacking = "normal" chart_type = 'area' elif chart_type == "percent_area": stacking = "percent" chart_type = 'area' else: stacking = None hc = { 'chart': { 'type': chart_type }, 'plotOptions': { 'series': { 'marker': { 'enabled': False } }, 'area': {'stacking': stacking}, }, 'title': {'text': ''}, 'xAxis': { 'title': {'text': xaxis_label}, 'type': 'datetime' if chart.x_is_date else None, }, 'yAxis': { 'title': {'text': yaxis_label}, }, 'colorAxis': colorAxis, 'tooltip': { 'useHTML': True, 'backgroundColor': None, 'borderWidth': 0, }, 'series': series, } if chart.y_log_scale: hc['yAxis']['type'] = 'logarithmic' hc['yAxis']['minorTickInterval'] = 0.1 if 'min' in hc['yAxis']: del hc['yAxis']['min'] payload['state'] = 'SUCCESS' payload['hc'] = hc payload['data'] = data payload['request_dict'] = request_dict return Response( response=json.dumps(payload, indent=4, default=date_handler), status=200, mimetype="application/json") @expose('/chart') @data_profiling_required def chart(self): session = settings.Session() chart_id = request.args.get('chart_id') embed = request.args.get('embed') chart = session.query(models.Chart).filter_by(id=chart_id).all()[0] session.expunge_all() session.commit() session.close() if chart.chart_type == 'para': return self.render('airflow/para/para.html', chart=chart) sql = "" if chart.show_sql: sql = Markup(highlight( chart.sql, lexers.SqlLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/highchart.html', chart=chart, title="Airflow - Chart", sql=sql, label=chart.label, embed=embed) @expose('/dag_stats') @login_required def dag_stats(self): states = [ State.SUCCESS, State.RUNNING, State.FAILED, State.UPSTREAM_FAILED, State.UP_FOR_RETRY, State.QUEUED, ] task_ids = [] for dag in dagbag.dags.values(): task_ids += dag.task_ids TI = models.TaskInstance session = Session() qry = ( session.query(TI.dag_id, TI.state, sqla.func.count(TI.task_id)) .filter(TI.task_id.in_(task_ids)) .group_by(TI.dag_id, TI.state) ) data = {} for dag_id, state, count in qry: if dag_id not in data: data[dag_id] = {} data[dag_id][state] = count session.commit() session.close() payload = {} for dag in dagbag.dags.values(): payload[dag.dag_id] = [] for state in states: try: count = data[dag.dag_id][state] except: count = 0 d = { 'state': state, 'count': count, 'dag_id': dag.dag_id, 'color': State.color(state) } payload[dag.dag_id].append(d) return Response( response=json.dumps(payload, indent=4), status=200, mimetype="application/json") @expose('/code') @login_required def code(self): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) code = "".join(open(dag.full_filepath, 'r').readlines()) title = dag.filepath html_code = highlight( code, lexers.PythonLexer(), HtmlFormatter(linenos=True)) return self.render( 'airflow/dag_code.html', html_code=html_code, dag=dag, title=title, root=request.args.get('root'), demo_mode=conf.getboolean('webserver', 'demo_mode')) @app.errorhandler(404) def circles(self): return render_template('airflow/circles.html'), 404 @expose('/sandbox') @login_required def sandbox(self): from airflow import configuration title = "Sandbox Suggested Configuration" cfg_loc = configuration.AIRFLOW_CONFIG + '.sandbox' f = open(cfg_loc, 'r') config = f.read() f.close() code_html = Markup(highlight( config, lexers.IniLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/code.html', code_html=code_html, title=title, subtitle=cfg_loc) @expose('/noaccess') def noaccess(self): return self.render('airflow/noaccess.html') @expose('/headers') def headers(self): d = {k: v for k, v in request.headers} if hasattr(current_user, 'is_superuser'): d['is_superuser'] = current_user.is_superuser() d['data_profiling'] = current_user.data_profiling() d['is_anonymous'] = current_user.is_anonymous() d['is_authenticated'] = current_user.is_authenticated() return Response( response=json.dumps(d, indent=4), status=200, mimetype="application/json") @expose('/login') def login(self): return login.login(self, request) @expose('/logout') def logout(self): logout_user() return redirect(url_for('admin.index')) @expose('/rendered') @login_required def rendered(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) task = copy.copy(dag.get_task(task_id)) ti = models.TaskInstance(task=task, execution_date=dttm) try: ti.render_templates() except Exception as e: flash("Error rendering template: " + str(e), "error") title = "Rendered Template" html_dict = {} for template_field in task.__class__.template_fields: content = getattr(task, template_field) if template_field in attr_renderer: html_dict[template_field] = attr_renderer[template_field](content) else: html_dict[template_field] = ( "<pre><code>" + str(content) + "</pre></code>") return self.render( 'airflow/ti_code.html', html_dict=html_dict, dag=dag, task_id=task_id, execution_date=execution_date, form=form, title=title,) @expose('/log') @login_required def log(self): BASE_LOG_FOLDER = os.path.expanduser( conf.get('core', 'BASE_LOG_FOLDER')) dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dag = dagbag.get_dag(dag_id) log_relative = "/{dag_id}/{task_id}/{execution_date}".format( **locals()) loc = BASE_LOG_FOLDER + log_relative loc = loc.format(**locals()) log = "" TI = models.TaskInstance session = Session() dttm = dateutil.parser.parse(execution_date) ti = session.query(TI).filter( TI.dag_id == dag_id, TI.task_id == task_id, TI.execution_date == dttm).first() dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) if ti: host = ti.hostname if socket.gethostname() == host: try: f = open(loc) log += "".join(f.readlines()) f.close() except: log = "Log file isn't where expected.\n".format(loc) else: WORKER_LOG_SERVER_PORT = \ conf.get('celery', 'WORKER_LOG_SERVER_PORT') url = ( "http://{host}:{WORKER_LOG_SERVER_PORT}/log" "{log_relative}").format(**locals()) log += "Log file isn't local.\n" log += "Fetching here: {url}\n".format(**locals()) try: import requests log += requests.get(url).text except: log += "Failed to fetch log file.".format(**locals()) session.commit() session.close() log = log.decode('utf-8') if PY2 else log title = "Log" return self.render( 'airflow/ti_code.html', code=log, dag=dag, title=title, task_id=task_id, execution_date=execution_date, form=form) @expose('/task') @login_required def task(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') # Carrying execution_date through, even though it's irrelevant for # this context execution_date = request.args.get('execution_date') dttm = dateutil.parser.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag = dagbag.get_dag(dag_id) if not dag or task_id not in dag.task_ids: flash( "Task [{}.{}] doesn't seem to exist" " at the moment".format(dag_id, task_id), "error") return redirect('/admin/') task = dag.get_task(task_id) task = copy.copy(task) task.resolve_template_files() attributes = [] for attr_name in dir(task): if not attr_name.startswith('_'): attr = getattr(task, attr_name) if type(attr) != type(self.task) and \ attr_name not in attr_renderer: attributes.append((attr_name, str(attr))) title = "Task Details" # Color coding the special attributes that are code special_attrs_rendered = {} for attr_name in attr_renderer: if hasattr(task, attr_name): source = getattr(task, attr_name) special_attrs_rendered[attr_name] = attr_renderer[attr_name](source) return self.render( 'airflow/task.html', attributes=attributes, task_id=task_id, execution_date=execution_date, special_attrs_rendered=special_attrs_rendered, form=form, dag=dag, title=title) @expose('/action') @login_required def action(self): action = request.args.get('action') dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') origin = request.args.get('origin') dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) execution_date = request.args.get('execution_date') execution_date = dateutil.parser.parse(execution_date) confirmed = request.args.get('confirmed') == "true" upstream = request.args.get('upstream') == "true" downstream = request.args.get('downstream') == "true" if action == "run": from airflow.executors import DEFAULT_EXECUTOR as executor from airflow.executors import CeleryExecutor if not isinstance(executor, CeleryExecutor): flash("Only works with the CeleryExecutor, sorry", "error") return redirect(origin) force = request.args.get('force') == "true" deps = request.args.get('deps') == "true" ti = models.TaskInstance(task=task, execution_date=execution_date) executor.start() executor.queue_task_instance( ti, force=force, ignore_dependencies=deps) executor.heartbeat() flash( "Sent {} to the message queue, " "it should start any moment now.".format(ti)) return redirect(origin) elif action == 'clear': future = request.args.get('future') == "true" past = request.args.get('past') == "true" dag = dag.sub_dag( task_regex=r"^{0}$".format(task_id), include_downstream=downstream, include_upstream=upstream) end_date = execution_date if not future else None start_date = execution_date if not past else None if confirmed: count = dag.clear( start_date=start_date, end_date=end_date) flash("{0} task instances have been cleared".format(count)) return redirect(origin) else: tis = dag.clear( start_date=start_date, end_date=end_date, dry_run=True) if not tis: flash("No task instances to clear", 'error') response = redirect(origin) else: details = "\n".join([str(t) for t in tis]) response = self.render( 'airflow/confirm.html', message=( "Here's the list of task instances you are about " "to clear:"), details=details,) return response elif action == 'success': # Flagging tasks as successful session = settings.Session() task_ids = [task_id] if downstream: task_ids += [ t.task_id for t in task.get_flat_relatives(upstream=False)] if upstream: task_ids += [ t.task_id for t in task.get_flat_relatives(upstream=True)] TI = models.TaskInstance tis = session.query(TI).filter( TI.dag_id == dag_id, TI.execution_date == execution_date, TI.task_id.in_(task_ids)).all() if confirmed: updated_task_ids = [] for ti in tis: updated_task_ids.append(ti.task_id) ti.state = State.SUCCESS session.commit() to_insert = list(set(task_ids) - set(updated_task_ids)) for task_id in to_insert: ti = TI( task=dag.get_task(task_id), execution_date=execution_date, state=State.SUCCESS) session.add(ti) session.commit() session.commit() session.close() flash("Marked success on {} task instances".format( len(task_ids))) return redirect(origin) else: if not task_ids: flash("No task instances to mark as successful", 'error') response = redirect(origin) else: tis = [] for task_id in task_ids: tis.append(TI( task=dag.get_task(task_id), execution_date=execution_date, state=State.SUCCESS)) details = "\n".join([str(t) for t in tis]) response = self.render( 'airflow/confirm.html', message=( "Here's the list of task instances you are about " "to mark as successful:"), details=details,) return response @expose('/tree') @login_required @wwwutils.gzipped def tree(self): dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') dag = dagbag.get_dag(dag_id) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_downstream=False, include_upstream=True) session = settings.Session() base_date = request.args.get('base_date') if not base_date: base_date = datetime.now() else: base_date = dateutil.parser.parse(base_date) base_date = utils.round_time(base_date, dag.schedule_interval) start_date = dag.start_date if not start_date and 'start_date' in dag.default_args: start_date = dag.default_args['start_date'] if start_date: difference = base_date - start_date offset = timedelta(seconds=int(difference.total_seconds() % dag.schedule_interval.total_seconds())) base_date -= offset base_date -= timedelta(microseconds=base_date.microsecond) num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else 25 from_date = (base_date - (num_runs * dag.schedule_interval)) dates = utils.date_range( from_date, base_date, dag.schedule_interval) task_instances = {} for ti in dag.get_task_instances(session, from_date): task_instances[(ti.task_id, ti.execution_date)] = ti expanded = [] def recurse_nodes(task): children = [recurse_nodes(t) for t in task.upstream_list] # D3 tree uses children vs _children to define what is # expanded or not. The following block makes it such that # repeated nodes are collapsed by default. children_key = 'children' if task.task_id not in expanded: expanded.append(task.task_id) elif children: children_key = "_children" return { 'name': task.task_id, 'instances': [ utils.alchemy_to_dict( task_instances.get((task.task_id, d))) or { 'execution_date': d.isoformat(), 'task_id': task.task_id } for d in dates], children_key: children, 'num_dep': len(task.upstream_list), 'operator': task.task_type, 'retries': task.retries, 'owner': task.owner, 'start_date': task.start_date, 'end_date': task.end_date, 'depends_on_past': task.depends_on_past, 'ui_color': task.ui_color, } if len(dag.roots) > 1: # d3 likes a single root data = { 'name': 'root', 'instances': [], 'children': [recurse_nodes(t) for t in dag.roots] } elif len(dag.roots) == 1: data = recurse_nodes(dag.roots[0]) else: flash("No tasks found.", "error") data = [] data = json.dumps(data, indent=4, default=utils.json_ser) session.commit() session.close() return self.render( 'airflow/tree.html', operators=sorted( list(set([op.__class__ for op in dag.tasks])), key=lambda x: x.__name__ ), root=root, dag=dag, data=data, blur=blur) @expose('/graph') @login_required @wwwutils.gzipped def graph(self): session = settings.Session() dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') arrange = request.args.get('arrange', "LR") dag = dagbag.get_dag(dag_id) if dag_id not in dagbag.dags: flash('DAG "{0}" seems to be missing.'.format(dag_id), "error") return redirect('/admin/') root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) nodes = [] edges = [] for task in dag.tasks: nodes.append({ 'id': task.task_id, 'value': { 'label': task.task_id, 'labelStyle': "fill:{0};".format(task.ui_fgcolor), 'style': "fill:{0};".format(task.ui_color), } }) def get_upstream(task): for t in task.upstream_list: edge = { 'u': t.task_id, 'v': task.task_id, } if edge not in edges: edges.append(edge) get_upstream(t) for t in dag.roots: get_upstream(t) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: dttm = dag.latest_execution_date or datetime.now().date() form = GraphForm(data={'execution_date': dttm, 'arrange': arrange}) task_instances = { ti.task_id: utils.alchemy_to_dict(ti) for ti in dag.get_task_instances(session, dttm, dttm) } tasks = { t.task_id: { 'dag_id': t.dag_id, 'task_type': t.task_type, } for t in dag.tasks } if not tasks: flash("No tasks found", "error") session.commit() session.close() doc_md = markdown.markdown(dag.doc_md) if hasattr(dag, 'doc_md') else '' return self.render( 'airflow/graph.html', dag=dag, form=form, width=request.args.get('width', "100%"), height=request.args.get('height', "800"), execution_date=dttm.isoformat(), doc_md=doc_md, arrange=arrange, operators=sorted( list(set([op.__class__ for op in dag.tasks])), key=lambda x: x.__name__ ), blur=blur, root=root or '', task_instances=json.dumps(task_instances, indent=2), tasks=json.dumps(tasks, indent=2), nodes=json.dumps(nodes, indent=2), edges=json.dumps(edges, indent=2),) @expose('/duration') @login_required def duration(self): session = settings.Session() dag_id = request.args.get('dag_id') days = int(request.args.get('days', 30)) dag = dagbag.get_dag(dag_id) from_date = (datetime.today()-timedelta(days)).date() from_date = datetime.combine(from_date, datetime.min.time()) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) all_data = [] for task in dag.tasks: data = [] for ti in task.get_task_instances(session, from_date): if ti.duration: data.append([ ti.execution_date.isoformat(), float(ti.duration) / (60*60) ]) if data: all_data.append({'data': data, 'name': task.task_id}) session.commit() session.close() return self.render( 'airflow/chart.html', dag=dag, data=all_data, chart_options={'yAxis': {'title': {'text': 'hours'}}}, height="700px", demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, ) @expose('/landing_times') @login_required def landing_times(self): session = settings.Session() dag_id = request.args.get('dag_id') days = int(request.args.get('days', 30)) dag = dagbag.get_dag(dag_id) from_date = (datetime.today()-timedelta(days)).date() from_date = datetime.combine(from_date, datetime.min.time()) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) all_data = [] for task in dag.tasks: data = [] for ti in task.get_task_instances(session, from_date): if ti.end_date: data.append([ ti.execution_date.isoformat(), old_div(( ti.end_date - ( ti.execution_date + task.schedule_interval) ).total_seconds(),(60*60)) ]) all_data.append({'data': data, 'name': task.task_id}) session.commit() session.close() return self.render( 'airflow/chart.html', dag=dag, data=all_data, height="700px", chart_options={'yAxis': {'title': {'text': 'hours after 00:00'}}}, demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, ) @expose('/paused') @login_required def paused(self): DagModel = models.DagModel dag_id = request.args.get('dag_id') session = settings.Session() orm_dag = session.query( DagModel).filter(DagModel.dag_id == dag_id).first() if request.args.get('is_paused') == 'false': orm_dag.is_paused = True else: orm_dag.is_paused = False session.merge(orm_dag) session.commit() session.close() dagbag.get_dag(dag_id) return "OK" @expose('/refresh') @login_required def refresh(self): DagModel = models.DagModel dag_id = request.args.get('dag_id') session = settings.Session() orm_dag = session.query( DagModel).filter(DagModel.dag_id == dag_id).first() if orm_dag: orm_dag.last_expired = datetime.now() session.merge(orm_dag) session.commit() session.close() dagbag.get_dag(dag_id) flash("DAG [{}] is now fresh as a daisy".format(dag_id)) return redirect('/') @expose('/refresh_all') @login_required def refresh_all(self): dagbag.collect_dags(only_if_updated=False) flash("All DAGs are now up to date") return redirect('/') @expose('/gantt') @login_required def gantt(self): session = settings.Session() dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) demo_mode = conf.getboolean('webserver', 'demo_mode') root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) dttm = request.args.get('execution_date') if dttm: dttm = dateutil.parser.parse(dttm) else: dttm = dag.latest_execution_date or datetime.now().date() form = DateTimeForm(data={'execution_date': dttm}) tis = [ ti for ti in dag.get_task_instances(session, dttm, dttm) if ti.start_date] tis = sorted(tis, key=lambda ti: ti.start_date) tasks = [] data = [] for i, ti in enumerate(tis): end_date = ti.end_date or datetime.now() tasks += [ti.task_id] color = State.color(ti.state) data.append({ 'x': i, 'low': int(ti.start_date.strftime('%s')) * 1000, 'high': int(end_date.strftime('%s')) * 1000, 'color': color, }) height = (len(tis) * 25) + 50 session.commit() session.close() hc = { 'chart': { 'type': 'columnrange', 'inverted': True, 'height': height, }, 'xAxis': {'categories': tasks}, 'yAxis': {'type': 'datetime'}, 'title': { 'text': None }, 'plotOptions': { 'series': { 'cursor': 'pointer', 'minPointLength': 4, }, }, 'legend': { 'enabled': False }, 'series': [{ 'data': data }] } return self.render( 'airflow/gantt.html', dag=dag, execution_date=dttm.isoformat(), form=form, hc=json.dumps(hc, indent=4), height=height, demo_mode=demo_mode, root=root, ) @expose('/variables/<form>', methods=["GET", "POST"]) @login_required def variables(self, form): try: if request.method == 'POST': data = request.json if data: session = settings.Session() var = models.Variable(key=form, val=json.dumps(data)) session.add(var) session.commit() return "" else: return self.render( 'airflow/variables/{}.html'.format(form) ) except: return ("Error: form airflow/variables/{}.html " "not found.").format(form), 404 admin.add_view(Airflow(name='DAGs')) class QueryView(wwwutils.DataProfilingMixin, BaseView): @expose('/') @wwwutils.gzipped def query(self): session = settings.Session() dbs = session.query(models.Connection).order_by( models.Connection.conn_id).all() session.expunge_all() db_choices = list( ((db.conn_id, db.conn_id) for db in dbs if db.get_hook())) conn_id_str = request.args.get('conn_id') csv = request.args.get('csv') == "true" sql = request.args.get('sql') class QueryForm(Form): conn_id = SelectField("Layout", choices=db_choices) sql = TextAreaField("SQL", widget=wwwutils.AceEditorWidget()) data = { 'conn_id': conn_id_str, 'sql': sql, } results = None has_data = False error = False if conn_id_str: db = [db for db in dbs if db.conn_id == conn_id_str][0] hook = db.get_hook() try: df = hook.get_pandas_df(wwwutils.limit_sql(sql, QUERY_LIMIT, conn_type=db.conn_type)) # df = hook.get_pandas_df(sql) has_data = len(df) > 0 df = df.fillna('') results = df.to_html( classes="table table-bordered table-striped no-wrap", index=False, na_rep='', ) if has_data else '' except Exception as e: flash(str(e), 'error') error = True if has_data and len(df) == QUERY_LIMIT: flash( "Query output truncated at " + str(QUERY_LIMIT) + " rows", 'info') if not has_data and error: flash('No data', 'error') if csv: return Response( response=df.to_csv(index=False), status=200, mimetype="application/text") form = QueryForm(request.form, data=data) session.commit() session.close() return self.render( 'airflow/query.html', form=form, title="Ad Hoc Query", results=results or '', has_data=has_data) admin.add_view(QueryView(name='Ad Hoc Query', category="Data Profiling")) class AirflowModelView(ModelView): list_template = 'airflow/model_list.html' edit_template = 'airflow/model_edit.html' create_template = 'airflow/model_create.html' page_size = 500 class ModelViewOnly(wwwutils.LoginMixin, AirflowModelView): """ Modifying the base ModelView class for non edit, browse only operations """ named_filter_urls = True can_create = False can_edit = False can_delete = False column_display_pk = True def log_link(v, c, m, p): url = url_for( 'airflow.log', dag_id=m.dag_id, task_id=m.task_id, execution_date=m.execution_date.isoformat()) return Markup( '<a href="{url}">' ' <span class="glyphicon glyphicon-book" aria-hidden="true">' '</span></a>').format(**locals()) def task_instance_link(v, c, m, p): url = url_for( 'airflow.task', dag_id=m.dag_id, task_id=m.task_id, execution_date=m.execution_date.isoformat()) url_root = url_for( 'airflow.graph', dag_id=m.dag_id, root=m.task_id, execution_date=m.execution_date.isoformat()) return Markup( """ <span style="white-space: nowrap;"> <a href="{url}">{m.task_id}</a> <a href="{url_root}" title="Filter on this task and upstream"> <span class="glyphicon glyphicon-filter" style="margin-left: 0px;" aria-hidden="true"></span> </a> </span> """.format(**locals())) def state_f(v, c, m, p): color = State.color(m.state) return Markup( '<span class="label" style="background-color:{color};">' '{m.state}</span>'.format(**locals())) def duration_f(v, c, m, p): if m.end_date and m.duration: return timedelta(seconds=m.duration) def datetime_f(v, c, m, p): attr = getattr(m, p) dttm = attr.isoformat() if attr else '' if datetime.now().isoformat()[:4] == dttm[:4]: dttm = dttm[5:] return Markup("<nobr>{}</nobr>".format(dttm)) def nobr_f(v, c, m, p): return Markup("<nobr>{}</nobr>".format(getattr(m, p))) class JobModelView(ModelViewOnly): verbose_name_plural = "jobs" verbose_name = "job" column_default_sort = ('start_date', True) column_filters = ( 'job_type', 'dag_id', 'state', 'unixname', 'hostname', 'start_date', 'end_date', 'latest_heartbeat') column_formatters = dict( start_date=datetime_f, end_date=datetime_f, hostname=nobr_f, state=state_f, latest_heartbeat=datetime_f) mv = JobModelView(jobs.BaseJob, Session, name="Jobs", category="Browse") admin.add_view(mv) class LogModelView(ModelViewOnly): verbose_name_plural = "logs" verbose_name = "log" column_default_sort = ('dttm', True) column_filters = ('dag_id', 'task_id', 'execution_date') column_formatters = dict( dttm=datetime_f, execution_date=datetime_f, dag_id=dag_link) mv = LogModelView( models.Log, Session, name="Logs", category="Browse") admin.add_view(mv) class TaskInstanceModelView(ModelViewOnly): verbose_name_plural = "task instances" verbose_name = "task instance" column_filters = ( 'state', 'dag_id', 'task_id', 'execution_date', 'hostname', 'queue', 'pool') named_filter_urls = True column_formatters = dict( log=log_link, task_id=task_instance_link, hostname=nobr_f, state=state_f, execution_date=datetime_f, start_date=datetime_f, end_date=datetime_f, dag_id=dag_link, duration=duration_f) column_searchable_list = ('dag_id', 'task_id', 'state') column_default_sort = ('start_date', True) column_list = ( 'state', 'dag_id', 'task_id', 'execution_date', 'start_date', 'end_date', 'duration', 'job_id', 'hostname', 'unixname', 'priority_weight', 'log') can_delete = True page_size = 500 mv = TaskInstanceModelView( models.TaskInstance, Session, name="Task Instances", category="Browse") admin.add_view(mv) mv = DagModelView( models.DagModel, Session, name=None) admin.add_view(mv) # Hack to not add this view to the menu admin._menu = admin._menu[:-1] class ConnectionModelView(wwwutils.SuperUserMixin, AirflowModelView): create_template = 'airflow/conn_create.html' edit_template = 'airflow/conn_edit.html' list_template = 'airflow/conn_list.html' form_columns = ( 'conn_id', 'conn_type', 'host', 'schema', 'login', 'password', 'port', 'extra', ) verbose_name = "Connection" verbose_name_plural = "Connections" column_default_sort = ('conn_id', False) column_list = ('conn_id', 'conn_type', 'host', 'port') form_overrides = dict(_password=VisiblePasswordField) form_widget_args = { 'is_encrypted': {'disabled': True}, } # Used to customized the form, the forms elements get rendered # and results are stored in the extra field as json. All of these # need to be prefixed with extra__ and then the conn_type ___ as in # extra__{conn_type}__name. You can also hide form elements and rename # others from the connection_form.js file form_extra_fields = { 'extra__jdbc__drv_path' : StringField('Driver Path'), 'extra__jdbc__drv_clsname': StringField('Driver Class'), } form_choices = { 'conn_type': [ ('ftp', 'FTP',), ('hdfs', 'HDFS',), ('http', 'HTTP',), ('hive_cli', 'Hive Client Wrapper',), ('hive_metastore', 'Hive Metastore Thrift',), ('hiveserver2', 'Hive Server 2 Thrift',), ('jdbc', 'Jdbc Connection',), ('mysql', 'MySQL',), ('postgres', 'Postgres',), ('oracle', 'Oracle',), ('presto', 'Presto',), ('s3', 'S3',), ('samba', 'Samba',), ('sqlite', 'Sqlite',), ('mssql', 'Microsoft SQL Server'), ] } def on_model_change(self, form, model, is_created): formdata = form.data if formdata['conn_type'] in ['jdbc']: extra = { key:formdata[key] for key in self.form_extra_fields.keys() if key in formdata} model.extra = json.dumps(extra) @classmethod def is_secure(self): """ Used to display a message in the Connection list view making it clear that the passwords can't be encrypted. """ is_secure = False try: import cryptography conf.get('core', 'fernet_key') is_secure = True except: pass return is_secure def on_form_prefill(self, form, id): try: d = json.loads(form.data.get('extra', '{}')) except Exception as e: d = {} for field in list(self.form_extra_fields.keys()): value = d.get(field, '') if value: field = getattr(form, field) field.data = value mv = ConnectionModelView( models.Connection, Session, name="Connections", category="Admin") admin.add_view(mv) class UserModelView(wwwutils.SuperUserMixin, AirflowModelView): verbose_name = "User" verbose_name_plural = "Users" column_default_sort = 'username' mv = UserModelView(models.User, Session, name="Users", category="Admin") admin.add_view(mv) class ConfigurationView(wwwutils.SuperUserMixin, BaseView): @expose('/') def conf(self): from airflow import configuration raw = request.args.get('raw') == "true" title = "Airflow Configuration" subtitle = configuration.AIRFLOW_CONFIG if conf.getboolean("webserver", "expose_config"): with open(configuration.AIRFLOW_CONFIG, 'r') as f: config = f.read() else: config = ( "# You Airflow administrator chose not to expose the " "configuration, most likely for security reasons.") if raw: return Response( response=config, status=200, mimetype="application/text") else: code_html = Markup(highlight( config, lexers.IniLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render( 'airflow/code.html', pre_subtitle=settings.HEADER + " v" + airflow.__version__, code_html=code_html, title=title, subtitle=subtitle) admin.add_view(ConfigurationView(name='Configuration', category="Admin")) def label_link(v, c, m, p): try: default_params = eval(m.default_params) except: default_params = {} url = url_for( 'airflow.chart', chart_id=m.id, iteration_no=m.iteration_no, **default_params) return Markup("<a href='{url}'>{m.label}</a>".format(**locals())) class ChartModelView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "chart" verbose_name_plural = "charts" form_columns = ( 'label', 'owner', 'conn_id', 'chart_type', 'show_datatable', 'x_is_date', 'y_log_scale', 'show_sql', 'height', 'sql_layout', 'sql', 'default_params',) column_list = ( 'label', 'conn_id', 'chart_type', 'owner', 'last_modified',) column_formatters = dict(label=label_link, last_modified=datetime_f) column_default_sort = ('last_modified', True) create_template = 'airflow/chart/create.html' edit_template = 'airflow/chart/edit.html' column_filters = ('label', 'owner.username', 'conn_id') column_searchable_list = ('owner.username', 'label', 'sql') column_descriptions = { 'label': "Can include {{ templated_fields }} and {{ macros }}", 'chart_type': "The type of chart to be displayed", 'sql': "Can include {{ templated_fields }} and {{ macros }}.", 'height': "Height of the chart, in pixels.", 'conn_id': "Source database to run the query against", 'x_is_date': ( "Whether the X axis should be casted as a date field. Expect most " "intelligible date formats to get casted properly." ), 'owner': ( "The chart's owner, mostly used for reference and filtering in " "the list view." ), 'show_datatable': "Whether to display an interactive data table under the chart.", 'default_params': ( 'A dictionary of {"key": "values",} that define what the ' 'templated fields (parameters) values should be by default. ' 'To be valid, it needs to "eval" as a Python dict. ' 'The key values will show up in the url\'s querystring ' 'and can be altered there.' ), 'show_sql': "Whether to display the SQL statement as a collapsible " "section in the chart page.", 'y_log_scale': "Whether to use a log scale for the Y axis.", 'sql_layout': ( "Defines the layout of the SQL that the application should " "expect. Depending on the tables you are sourcing from, it may " "make more sense to pivot / unpivot the metrics." ), } column_labels = { 'sql': "SQL", 'height': "Chart Height", 'sql_layout': "SQL Layout", 'show_sql': "Display the SQL Statement", 'default_params': "Default Parameters", } form_choices = { 'chart_type': [ ('line', 'Line Chart'), ('spline', 'Spline Chart'), ('bar', 'Bar Chart'), ('para', 'Parallel Coordinates'), ('column', 'Column Chart'), ('area', 'Overlapping Area Chart'), ('stacked_area', 'Stacked Area Chart'), ('percent_area', 'Percent Area Chart'), ('heatmap', 'Heatmap'), ('datatable', 'No chart, data table only'), ], 'sql_layout': [ ('series', 'SELECT series, x, y FROM ...'), ('columns', 'SELECT x, y (series 1), y (series 2), ... FROM ...'), ], 'conn_id': [ (c.conn_id, c.conn_id) for c in ( Session().query(models.Connection.conn_id) .group_by(models.Connection.conn_id) ) ] } def on_model_change(self, form, model, is_created=True): if model.iteration_no is None: model.iteration_no = 0 else: model.iteration_no += 1 if AUTHENTICATE and not model.user_id and current_user: model.user_id = current_user.id model.last_modified = datetime.now() mv = ChartModelView( models.Chart, Session, name="Charts", category="Data Profiling") admin.add_view(mv) admin.add_link( base.MenuLink( category='Docs', name='Documentation', url='http://pythonhosted.org/airflow/')) admin.add_link( base.MenuLink( category='Docs', name='Github', url='https://github.com/airbnb/airflow')) class KnowEventView(wwwutils.DataProfilingMixin, AirflowModelView): verbose_name = "known event" verbose_name_plural = "known events" form_columns = ( 'label', 'event_type', 'start_date', 'end_date', 'reported_by', 'description') column_list = ( 'label', 'event_type', 'start_date', 'end_date', 'reported_by') column_default_sort = ("start_date", True) mv = KnowEventView( models.KnownEvent, Session, name="Known Events", category="Data Profiling") admin.add_view(mv) class KnowEventTypeView(wwwutils.DataProfilingMixin, AirflowModelView): pass ''' # For debugging / troubleshooting mv = KnowEventTypeView( models.KnownEventType, Session, name="Known Event Types", category="Manage") admin.add_view(mv) class DagPickleView(SuperUserMixin, ModelView): pass mv = DagPickleView( models.DagPickle, Session, name="Pickles", category="Manage") admin.add_view(mv) ''' class VariableView(wwwutils.LoginMixin, AirflowModelView): verbose_name = "Variable" verbose_name_plural = "Variables" column_list = ('key',) column_filters = ('key', 'val') column_searchable_list = ('key', 'val') form_widget_args = { 'val': { 'rows': 20, } } mv = VariableView( models.Variable, Session, name="Variables", category="Admin") admin.add_view(mv) def pool_link(v, c, m, p): url = '/admin/taskinstance/?flt1_pool_equals=' + m.pool return Markup("<a href='{url}'>{m.pool}</a>".format(**locals())) def fused_slots(v, c, m, p): url = ( '/admin/taskinstance/' + '?flt1_pool_equals=' + m.pool + '&flt2_state_equals=running') return Markup("<a href='{0}'>{1}</a>".format(url, m.used_slots())) def fqueued_slots(v, c, m, p): url = ( '/admin/taskinstance/' + '?flt1_pool_equals=' + m.pool + '&flt2_state_equals=queued&sort=10&desc=1') return Markup("<a href='{0}'>{1}</a>".format(url, m.queued_slots())) class PoolModelView(wwwutils.SuperUserMixin, AirflowModelView): column_list = ('pool', 'slots', 'used_slots', 'queued_slots') column_formatters = dict( pool=pool_link, used_slots=fused_slots, queued_slots=fqueued_slots) named_filter_urls = True mv = PoolModelView(models.Pool, Session, name="Pools", category="Admin") admin.add_view(mv) class SlaMissModelView(wwwutils.SuperUserMixin, ModelViewOnly): verbose_name_plural = "SLA misses" verbose_name = "SLA miss" column_list = ( 'dag_id', 'task_id', 'execution_date', 'email_sent', 'timestamp') column_formatters = dict( task_id=task_instance_link, execution_date=datetime_f, timestamp=datetime_f, dag_id=dag_link) named_filter_urls = True column_searchable_list = ('dag_id', 'task_id',) column_filters = ( 'dag_id', 'task_id', 'email_sent', 'timestamp', 'execution_date') form_widget_args = { 'email_sent': {'disabled': True}, 'timestamp': {'disabled': True}, } mv = SlaMissModelView( models.SlaMiss, Session, name="SLA Misses", category="Browse") admin.add_view(mv) def integrate_plugins(): """Integrate plugins to the context""" from airflow.plugins_manager import ( admin_views, flask_blueprints, menu_links) for v in admin_views: admin.add_view(v) for bp in flask_blueprints: print(bp) app.register_blueprint(bp) for ml in menu_links: admin.add_link(ml) integrate_plugins()
apache-2.0
MSHallOpenSoft/plotter
GUI_code.py
1
78812
#!/usr/bin/env python import mayaviPlot from PyQt4 import QtCore from PyQt4 import QtGui from PyQt4.QtGui import * from functions import Ui_DockWidget_2 #from plottingEquation_3d_explicit import MplPlot3dCanvas from imp_plottingEquation import MplPlot2dCanvas from PyQt4.QtCore import Qt, SIGNAL from function_2 import Ui_DockWidget import numpy as np #import matplotlib.pyplot as plotter from PyQt4.QtCore import pyqtSlot,SIGNAL,SLOT i=1 import sys, random from Thesidetab import mainFrame from Thesidetab import tableCon try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class SplashScreen(QtGui.QWidget): def __init__(self, pixmap): QtGui.QWidget.__init__(self) self._pixmap = pixmap #self._message = QtCore.QString() self._color = QtGui.QColor.black self._alignment = QtCore.Qt.AlignLeft self.setWindowFlags(QtCore.Qt.FramelessWindowHint | QtCore.Qt.WindowStaysOnTopHint) self.setAttribute(QtCore.Qt.WA_TranslucentBackground) self.setAttribute(QtCore.Qt.WA_DeleteOnClose) self.setFixedSize(self._pixmap.size()) self.setMask(self._pixmap.mask()) def clearMessage(self): self._message.clear() self.repaint() def showMessage(self, message, alignment=QtCore.Qt.AlignLeft, color=QtGui.QColor.black): self._message = QtCore.QString(message) self._alignment = alignment self._color = color self.repaint() def paintEvent(self, event): textbox = QtCore.QRect(self.rect()) textbox.setRect(textbox.x() + 5, textbox.y() + 5, textbox.width() - 10, textbox.height() - 10) painter = QtGui.QPainter(self) painter.drawPixmap(self.rect(), self._pixmap) painter.setPen(QtGui.QColor(self._color)) painter.drawText(textbox, self._alignment, self._message) def mousePressEvent(self, event): self.hide() class Ui_MainWindow(QtGui.QMainWindow): totalTabs=0 def __init__(self,parent): QtGui.QWidget.__init__(self,parent) self.parent=parent self.setupUi(self) QtGui.QShortcut(QtGui.QKeySequence("Esc"), self, self.showAll) self.expression_list=[] self.tabIdentifier=Ui_MainWindow.totalTabs Ui_MainWindow.totalTabs+=1 def addNewEquationEditor(self,layout,spacer): n = layout.count() layout.removeItem(layout.itemAt(n-1)) dockWidgetContents = Exp_Form(self) self.expression_list.append(dockWidgetContents) layout.addWidget(dockWidgetContents) layout.addItem(spacer) def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(1396, 727) MainWindow.setStyleSheet(_fromUtf8("\n" "QFrame{\n" "border:1px solid rgb(0, 0, 0);\n" "border-radius:5px;\n" "}\n" "QHeaderView::section {\n" " background-color:rgb(100, 100, 100);\n" " color: rgb(200, 200, 200);\n" "}\n" "QStatusBar{ \n" "background:qlineargradient(spread:pad, x1:0, y1:1, x2:0, y2:0.33, stop:0 rgba(255, 255, 255, 255), stop:0.125 rgba(155, 174, 198, 255), stop:0.318182 rgba(104, 117, 133, 255), stop:0.534091 rgba(65, 73, 83, 255), stop:0.875 rgba(42, 47, 54, 255)); }\n" " QMainWindow{\n" " border:none; background-color:rgb(52, 52, 52); text-align: center; }\n" " QGroupBox{ \n" "background-color: qlineargradient(spread:pad, x1:1, y1:1, x2:0.483136, y2:0.466, stop:0 rgba(219, 219, 219, 255), stop:1 rgba(255, 255, 255, 255)); }\n" " QTabWidget{\n" " background-color: qlineargradient(spread:pad, x1:1, y1:1, x2:0.483136, y2:0.466, stop:0 rgba(219, 219, 219, 255), stop:1 rgba(255, 255, 255, 255)); } \n" "QDockWidget{ background-color:#737373; border:none; padding:0px; } QSlider::groove:horizontal { background:red; height: 15px; position: absolute; left: 4px; right: 4px; } \n" "QSlider::handle:horizontal {\n" " height:20px; width: 10px; background: qlineargradient(spread:pad, x1:0, y1:0.477, x2:0, y2:0, stop:0.125 rgba(42, 47, 54, 255), stop:0.465909 rgba(65, 73, 83, 255), stop:0.681818 rgba(104, 117, 133, 255), stop:0.875 rgba(155, 174, 198, 255), stop:1 rgba(255, 255, 255, 255)); margin: -4px; } \n" "QSlider::handle:hover:horizontal { height:20px; width: 10px; background:qlineargradient(spread:pad, x1:0, y1:0.477, x2:0, y2:0, stop:0.125 rgba(91, 95, 100, 255), stop:0.465909 rgba(122, 132, 146, 255), stop:0.681818 rgba(141, 153, 167, 255), stop:0.875 rgba(181, 195, 212, 255), stop:1 rgba(255, 255, 255, 255)); margin: -4px; }\n" " QSlider::add-page:horizontal { background:rgb(170, 170, 170); }\n" " QSlider::sub-page:horizontal { background: rgb(100, 100, 100) ; }\n" " QToolButton{ position: relative; border: none; outline:none; color: black; padding: 4px; border-radius: 2px; font-size: 22px; }\n" " QToolButton:hover:!pressed{ position: relative; border: none; outline:none; color: white; border-radius: 2px; font-size: 22px;padding: 0px; }\n" " QPushButton{ position: relative; border:none; outline:none; background-color:qlineargradient(spread:pad, x1:0, y1:0.164, x2:0, y2:0, stop:0.125 rgba(36, 41, 47, 255), stop:0.465909 rgba(52, 59, 67, 255), stop:0.681818 rgba(80, 91, 103, 255), stop:0.875 rgba(117, 132, 150, 255), stop:1 rgba(186, 186, 186, 255)); color: rgb(170, 170, 170); padding: 6px 20px; border-radius: 2px; font-size: 20px; } \n" "QPushButton:hover:!pressed{ position: relative; border: none; outline:none; background-color:rgb(60, 69, 79); color: white; padding: 6px 20px; border-radius: 2px; font-size:20px; } \n" "QComboBox { border: none; padding: 1px 18px 1px 3px; } QComboBox, QComboBox:drop-down { background:qlineargradient(spread:pad, x1:0, y1:0.097, x2:0, y2:0, stop:0 rgba(100, 100, 100, 255), stop:0.892045 rgba(149, 149, 149, 255));color: rgb(200, 200, 200); } \n" "\n" "\n" "QComboBox:on, QComboBox:drop-down:on { background:qlineargradient(spread:pad, x1:0, y1:1, x2:0, y2:0.869318, stop:0.107955 rgba(149, 149, 149, 255), stop:1 rgba(100, 100, 100, 255));color: rgb(200, 200, 200); }\n" " QComboBox:on { padding-top: 3px; padding-left: 4px; } \n" "QComboBox::drop-down { subcontrol-origin: padding; subcontrol-position: top right; width: 15px; border-left-width: 1px; border-left-color: darkgray; border-left-style: solid; }\n" " QComboBox::down-arrow { image:url(:/arrow/Icons/arrow-new.png); } QComboBox::down-arrow:on { top: 1px; left: 1px; }\n" " QMenu { background-color: rgb(52, 52, 52); border: none; } \n" "QMenu::item { background-color: transparent; }\n" " QMenu::item:selected { background-color:rgb(100, 100, 100); } \n" "QMenuBar { background-color:qlineargradient(spread:pad, x1:0, y1:0, x2:1, y2:1, stop:0 #DBDBDB, stop:1 rgba(255, 255, 255, 255)) }\n" " QMenuBar::item { spacing: 3px; padding: 1px 4px; background: transparent; border-radius: 2px; } \n" "QMenuBar::item:selected { background:#737373; } \n" "QMenuBar::item:pressed { background: #414953; }\n" " QTableWidget{ background:rgb(25, 25, 25); border:none; color:white; border: 1px solid white; } \n" "QTextEdit{\n" " background:rgb(25, 25, 25);\n" "color:rgb(255, 255, 255);\n" " } \n" "QScrollBar:horizontal { border: none; background: rgb(100, 100, 100); height: 15px; margin: 0px 20px 0px 20px; } \n" "QScrollBar::handle:horizontal { background:qlineargradient(spread:pad, x1:0, y1:0.164, x2:0, y2:0, stop:0.125 rgba(36, 41, 47, 255), stop:0.465909 rgba(52, 59, 67, 255), stop:0.681818 rgba(80, 91, 103, 255), stop:0.875 rgba(117, 132, 150, 255), stop:1 rgba(186, 186, 186, 255)); min-width: 20px; } QScrollBar::handle:horizontal:hover { background:qlineargradient(spread:pad, x1:0, y1:0.164, x2:0, y2:0, stop:0.125 rgba(47, 47, 47, 255), stop:0.465909 rgba(67, 67, 67, 255), stop:0.681818 rgba(103, 103, 103, 255), stop:0.875 rgba(150, 150, 150, 255), stop:1 rgba(186, 186, 186, 255)); min-width: 20px; }\n" " QScrollBar::add-line:horizontal { border: none; background:#DBDBDB; width: 20px; subcontrol-position: right; subcontrol-origin: margin; }\n" " QScrollBar::sub-line:horizontal { border:none; background:#DBDBDB; width: 20px; subcontrol-position: left; subcontrol-origin: margin; } \n" "QScrollBar::add-line:horizontal:hover:!pressed { border: none; background: qlineargradient(spread:pad, x1:0, y1:0.164, x2:0, y2:0, stop:0.125 rgba(36, 41, 47, 255), stop:0.465909 rgba(52, 59, 67, 255), stop:0.681818 rgba(80, 91, 103, 255), stop:0.875 rgba(117, 132, 150, 255), stop:1 rgba(186, 186, 186, 255)); width: 20px; subcontrol-position: right; subcontrol-origin: margin; } \n" "QScrollBar::sub-line:horizontal:hover:!pressed { border:none; background: qlineargradient(spread:pad, x1:0, y1:0.164, x2:0, y2:0, stop:0.125 rgba(36, 41, 47, 255), stop:0.465909 rgba(52, 59, 67, 255), stop:0.681818 rgba(80, 91, 103, 255), stop:0.875 rgba(117, 132, 150, 255), stop:1 rgba(186, 186, 186, 255)); width: 20px; subcontrol-position: left; subcontrol-origin: margin; } \n" "QScrollBar::left-arrow:horizontal{ image: url(:/arrow/Icons/left-arrow.png); } QScrollBar::right-arrow:horizontal{ image: url(:/arrow/Icons/right-arrow.png); } \n" "QScrollBar:vertical { border: none; background: rgb(100, 100, 100); width: 15px; margin: 20px 0px 20px 0px; } \n" "QScrollBar::handle:vertical { background:qlineargradient(spread:pad, x1:0.136, y1:0, x2:0, y2:0, stop:0.125 rgba(36, 41, 47, 255), stop:0.465909 rgba(52, 59, 67, 255), stop:0.681818 rgba(80, 91, 103, 255), stop:0.875 rgba(117, 132, 150, 255), stop:1 rgba(186, 186, 186, 255)); min-height: 20px; } QScrollBar::handle:vertical:hover { background:qlineargradient(spread:pad, x1:0.136, y1:0, x2:0, y2:0, stop:0.125 rgba(47, 47, 47, 255), stop:0.465909 rgba(67, 67, 67, 255), stop:0.681818 rgba(103, 103, 103, 255), stop:0.875 rgba(150, 150, 150, 255), stop:1 rgba(186, 186, 186, 255)); min-height: 15px; } \n" "QScrollBar::add-line:vertical { border: none; background:#DBDBDB; height: 20px; subcontrol-position: bottom; subcontrol-origin: margin; } QScrollBar::sub-line:vertical { border:none; background:#DBDBDB; height: 20px; subcontrol-position: top; subcontrol-origin: margin; } \n" "QScrollBar::add-line:vertical:hover:!pressed { border: none; background: qlineargradient(spread:pad, x1:0.136, y1:0, x2:0, y2:0, stop:0.125 rgba(36, 41, 47, 255), stop:0.465909 rgba(52, 59, 67, 255), stop:0.681818 rgba(80, 91, 103, 255), stop:0.875 rgba(117, 132, 150, 255), stop:1 rgba(186, 186, 186, 255)); height: 20px; subcontrol-position:bottom; subcontrol-origin: margin; }\n" " QScrollBar::sub-line:vertical:hover:!pressed { border:none; background: qlineargradient(spread:pad, x1:0.136, y1:0, x2:0, y2:0, stop:0.125 rgba(36, 41, 47, 255), stop:0.465909 rgba(52, 59, 67, 255), stop:0.681818 rgba(80, 91, 103, 255), stop:0.875 rgba(117, 132, 150, 255), stop:1 rgba(186, 186, 186, 255)); height: 20px; subcontrol-position:top; subcontrol-origin: margin; } \n" "QScrollBar::up-arrow:vertical{ image: url(:/arrow/Icons/up-arrow.png); } QScrollBar::down-arrow:vertical{ image: url(:/arrow/Icons/down-arrow.png); \n" "}\n")) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.horizontalLayout_3 = QtGui.QHBoxLayout(self.centralwidget) self.horizontalLayout_3.setObjectName(_fromUtf8("horizontalLayout_3")) self.frame_2 = QtGui.QFrame(self.centralwidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.frame_2.sizePolicy().hasHeightForWidth()) self.frame_2.setSizePolicy(sizePolicy) self.frame_2.setMinimumSize(QtCore.QSize(20, 0)) self.frame_2.setStyleSheet(_fromUtf8("")) self.frame_2.setFrameShape(QtGui.QFrame.StyledPanel) self.frame_2.setFrameShadow(QtGui.QFrame.Raised) self.frame_2.setObjectName(_fromUtf8("frame_2")) self.horizontalLayout_4 = QtGui.QHBoxLayout(self.frame_2) self.horizontalLayout_4.setObjectName(_fromUtf8("horizontalLayout_4")) self.horizontalLayout_4.setMargin(0) self.horizontalLayout_4.setSpacing(0) self.horizontalLayout_4.setContentsMargins(0,0,0,0) self.verticalLayout_5 = QtGui.QVBoxLayout() self.verticalLayout_5.setObjectName(_fromUtf8("verticalLayout_5")) self.pushButton = QtGui.QPushButton(self.frame_2) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.pushButton.sizePolicy().hasHeightForWidth()) self.pushButton.setSizePolicy(sizePolicy) self.pushButton.setMaximumSize(QtCore.QSize(20, 50)) self.pushButton.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.pushButton.setText(_fromUtf8("")) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/double-right.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton.setIcon(icon) self.pushButton.setObjectName(_fromUtf8("pushButton")) self.verticalLayout_5.addWidget(self.pushButton) self.horizontalLayout_4.addLayout(self.verticalLayout_5) self.horizontalLayout_3.addWidget(self.frame_2) self.frame = tableCon.TableContents(self.centralwidget,self.frame_2,self.pushButton) #self.frame.hide() # sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Preferred) # sizePolicy.setHorizontalStretch(0) # sizePolicy.setVerticalStretch(0) # sizePolicy.setHeightForWidth(self.frame.sizePolicy().hasHeightForWidth()) # self.frame.setSizePolicy(sizePolicy) # self.frame.setMaximumSize(QtCore.QSize(320, 16777215)) # self.frame.setFrameShape(QtGui.QFrame.StyledPanel) # self.frame.setFrameShadow(QtGui.QFrame.Raised) # self.frame.setObjectName(_fromUtf8("frame")) # self.verticalLayout_3 = QtGui.QVBoxLayout(self.frame) # self.verticalLayout_3.setObjectName(_fromUtf8("verticalLayout_3")) # self.horizontalLayout_5 = QtGui.QHBoxLayout() # self.horizontalLayout_5.setSpacing(6) # self.horizontalLayout_5.setObjectName(_fromUtf8("horizontalLayout_5")) # self.pushButton_3 = QtGui.QPushButton(self.frame) # self.pushButton_3.setEnabled(True) # sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) # sizePolicy.setHorizontalStretch(0) # sizePolicy.setVerticalStretch(0) # sizePolicy.setHeightForWidth(self.pushButton_3.sizePolicy().hasHeightForWidth()) # self.pushButton_3.setSizePolicy(sizePolicy) # self.pushButton_3.setMinimumSize(QtCore.QSize(50, 0)) # self.pushButton_3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) # self.pushButton_3.setStyleSheet(_fromUtf8("")) # self.pushButton_3.setObjectName(_fromUtf8("pushButton_3")) # self.horizontalLayout_5.addWidget(self.pushButton_3) # self.toolButton_7 = QtGui.QToolButton(self.frame) # self.toolButton_7.setMinimumSize(QtCore.QSize(10, 0)) # self.toolButton_7.setMaximumSize(QtCore.QSize(35, 16777215)) # self.toolButton_7.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) # self.toolButton_7.setStyleSheet(_fromUtf8("")) # icon1 = QtGui.QIcon() # icon1.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Add-New-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) # self.toolButton_7.setIcon(icon1) # self.toolButton_7.setIconSize(QtCore.QSize(40, 30)) # self.toolButton_7.setObjectName(_fromUtf8("toolButton_7")) # self.horizontalLayout_5.addWidget(self.toolButton_7) # self.toolButton_9 = QtGui.QToolButton(self.frame) # self.toolButton_9.setMinimumSize(QtCore.QSize(10, 0)) # self.toolButton_9.setMaximumSize(QtCore.QSize(35, 16777215)) # self.toolButton_9.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) # self.toolButton_9.setStyleSheet(_fromUtf8("")) # icon2 = QtGui.QIcon() # icon2.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Minus-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) # self.toolButton_9.setIcon(icon2) # self.toolButton_9.setIconSize(QtCore.QSize(40, 30)) # self.toolButton_9.setObjectName(_fromUtf8("toolButton_9")) # self.horizontalLayout_5.addWidget(self.toolButton_9) # self.toolButton_8 = QtGui.QToolButton(self.frame) # self.toolButton_8.setMinimumSize(QtCore.QSize(10, 0)) # self.toolButton_8.setMaximumSize(QtCore.QSize(35, 16777215)) # self.toolButton_8.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) # self.toolButton_8.setStyleSheet(_fromUtf8("")) # icon3 = QtGui.QIcon() # icon3.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Folder-Open-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) # self.toolButton_8.setIcon(icon3) # self.toolButton_8.setIconSize(QtCore.QSize(40, 30)) # self.toolButton_8.setObjectName(_fromUtf8("toolButton_8")) # self.horizontalLayout_5.addWidget(self.toolButton_8) # self.toolButton_5 = QtGui.QToolButton(self.frame) # self.toolButton_5.setMinimumSize(QtCore.QSize(10, 0)) # self.toolButton_5.setMaximumSize(QtCore.QSize(35, 16777215)) # self.toolButton_5.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) # self.toolButton_5.setStyleSheet(_fromUtf8("")) # icon4 = QtGui.QIcon() # icon4.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Save-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) # self.toolButton_5.setIcon(icon4) # self.toolButton_5.setIconSize(QtCore.QSize(40, 30)) # self.toolButton_5.setObjectName(_fromUtf8("toolButton_5")) # self.horizontalLayout_5.addWidget(self.toolButton_5) # spacerItem = QtGui.QSpacerItem(20, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) # self.horizontalLayout_5.addItem(spacerItem) # self.verticalLayout_3.addLayout(self.horizontalLayout_5) # self.tableWidget = QtGui.QTableWidget(self.frame) # sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Expanding) # sizePolicy.setHorizontalStretch(0) # sizePolicy.setVerticalStretch(0) # sizePolicy.setHeightForWidth(self.tableWidget.sizePolicy().hasHeightForWidth()) # self.tableWidget.setSizePolicy(sizePolicy) # self.tableWidget.setMinimumSize(QtCore.QSize(300, 0)) # self.tableWidget.setStyleSheet(_fromUtf8("")) # self.tableWidget.setObjectName(_fromUtf8("tableWidget")) # self.tableWidget.setColumnCount(3) # self.tableWidget.setRowCount(0) # item = QtGui.QTableWidgetItem() # self.tableWidget.setHorizontalHeaderItem(0, item) # item = QtGui.QTableWidgetItem() # self.tableWidget.setHorizontalHeaderItem(1, item) # item = QtGui.QTableWidgetItem() # self.tableWidget.setHorizontalHeaderItem(2, item) # self.header=self.tableWidget.horizontalHeader(); # self.header.setResizeMode(QHeaderView.Stretch); # self.verticalLayout_3.addWidget(self.tableWidget) # self.pushButton_21 = QtGui.QPushButton(self.frame) # sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Fixed) # sizePolicy.setHorizontalStretch(0) # sizePolicy.setVerticalStretch(0) # sizePolicy.setHeightForWidth(self.pushButton_21.sizePolicy().hasHeightForWidth()) # self.pushButton_21.setSizePolicy(sizePolicy) # self.pushButton_21.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) # self.pushButton_21.setStyleSheet(_fromUtf8("")) # self.pushButton_21.setObjectName(_fromUtf8("pushButton_21")) # self.verticalLayout_3.addWidget(self.pushButton_21) #remove above from code self.horizontalLayout_3.addWidget(self.frame) self.verticalLayout_6 = QtGui.QVBoxLayout() self.verticalLayout_6.setObjectName(_fromUtf8("verticalLayout_6")) self.tabWidget = QtGui.QTabWidget(self.centralwidget) self.tabWidget.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.tabWidget.setObjectName(_fromUtf8("tabWidget")) '''self.tab = QtGui.QWidget() self.tab.setObjectName(_fromUtf8("tab")) self.tabWidget.addTab(self.tab, "2D Graph") self.tab.setVisible(False)''' #self.tab_2 = QtGui.QWidget() #self.tab_2.setObjectName(_fromUtf8("tab_2")) contents_2=QtGui.QWidget(self.tabWidget) layout_2= QtGui.QVBoxLayout(contents_2) sc_2=MplPlot2dCanvas(self) self.sc_2=sc_2 widget_2=QtGui.QWidget(self) layout_2.addWidget(sc_2) self.tabWidget.addTab(contents_2, "2D Graph") contents = QtGui.QWidget(self.tabWidget) layout = QtGui.QVBoxLayout(contents) widget_1 = QtGui.QWidget(self) self.mayavi_widget = mayaviPlot.MayaviQWidget(self) layout.addWidget(self.mayavi_widget) self.tabWidget.addTab(contents, "3D Graph") self.verticalLayout_6.addWidget(self.tabWidget) # self.wrewidget = QtGui.QWidget() # self.wrewidget.setLayout(self.verticalLayout_6) self.horizontalLayout_3.addLayout(self.verticalLayout_6) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtGui.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 1396, 21)) self.menubar.setObjectName(_fromUtf8("menubar")) self.menuFile = QtGui.QMenu(self.menubar) self.menuFile.setObjectName(_fromUtf8("menuFile")) self.menuEdit = QtGui.QMenu(self.menubar) self.menuEdit.setObjectName(_fromUtf8("menuEdit")) self.menuView = QtGui.QMenu(self.menubar) self.menuView.setObjectName(_fromUtf8("menuView")) self.menuAbout = QtGui.QMenu(self.menubar) self.menuAbout.setObjectName(_fromUtf8("menuAbout")) MainWindow.setMenuBar(self.menubar) self.statusbar = QtGui.QStatusBar(MainWindow) self.statusbar.setObjectName(_fromUtf8("statusbar")) MainWindow.setStatusBar(self.statusbar) self.dockWidget = QtGui.QDockWidget(MainWindow) self.dockWidget.setObjectName(_fromUtf8("dockWidget")) self.dockWidget.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) #self.dockWidgetContents.SetName("plot1") #self.dockWidgetContents.setObjectName(_fromUtf8("dockWidgetContents")) #self.dockWidget.setGeometry self.dockWidgetContents = mainFrame.DockContents(self) #self.dockWidgetContents.setStyleSheet("QWidget{ background-color:#737373; border:none; padding:0px; }") self.dockWidget.setWidget(self.dockWidgetContents) MainWindow.addDockWidget(QtCore.Qt.DockWidgetArea(1), self.dockWidget) self.dockWidget_3 = QtGui.QDockWidget(MainWindow) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.dockWidget_3.sizePolicy().hasHeightForWidth()) self.dockWidget_3.setSizePolicy(sizePolicy) self.dockWidget_3.setMinimumSize(QtCore.QSize(489, 70)) self.dockWidget_3.setMaximumSize(QtCore.QSize(524287, 524287)) self.dockWidget_3.setObjectName(_fromUtf8("dockWidget_3")) self.dockWidgetContents_3 = QtGui.QWidget() self.dockWidgetContents_3.setObjectName(_fromUtf8("dockWidgetContents_3")) self.horizontalLayout = QtGui.QHBoxLayout(self.dockWidgetContents_3) self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.horizontalLayout.setMargin(0) self.horizontalLayout.setSpacing(0) self.toolButton_17 = QtGui.QToolButton(self.dockWidgetContents_3) self.toolButton_17.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_17.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_17.setStyleSheet(_fromUtf8("")) icon5 = QtGui.QIcon() icon5.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Item-New-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_17.setIcon(icon5) self.toolButton_17.setIconSize(QtCore.QSize(30, 30)) self.toolButton_17.setObjectName(_fromUtf8("toolButton_17")) self.horizontalLayout.addWidget(self.toolButton_17) self.toolButton_10 = QtGui.QToolButton(self.dockWidgetContents_3) self.toolButton_10.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_10.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_10.setStyleSheet(_fromUtf8("")) icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Folder-Open-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_10.setIcon(icon3) self.toolButton_10.setIconSize(QtCore.QSize(30, 30)) self.toolButton_10.setObjectName(_fromUtf8("toolButton_10")) self.horizontalLayout.addWidget(self.toolButton_10) self.toolButton_20 = QtGui.QToolButton(self.dockWidgetContents_3) self.toolButton_20.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_20.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_20.setStyleSheet(_fromUtf8("")) icon4 = QtGui.QIcon() icon4.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Save-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_20.setIcon(icon4) self.toolButton_20.setIconSize(QtCore.QSize(30, 30)) self.toolButton_20.setObjectName(_fromUtf8("toolButton_20")) self.horizontalLayout.addWidget(self.toolButton_20) self.toolButton_18 = QtGui.QToolButton(self.dockWidgetContents_3) self.toolButton_18.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_18.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_18.setStyleSheet(_fromUtf8("")) icon6 = QtGui.QIcon() icon6.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Open-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_18.setIcon(icon6) self.toolButton_18.setIconSize(QtCore.QSize(30, 30)) self.toolButton_18.setObjectName(_fromUtf8("toolButton_18")) self.horizontalLayout.addWidget(self.toolButton_18) '''self.line_4 = QtGui.QFrame(self.dockWidgetContents_3) self.line_4.setMaximumSize(QtCore.QSize(16777215, 20)) self.line_4.setFrameShape(QtGui.QFrame.VLine) self.line_4.setFrameShadow(QtGui.QFrame.Sunken) self.line_4.setObjectName(_fromUtf8("line_4")) self.horizontalLayout.addWidget(self.line_4)''' '''self.toolButton_4 = QtGui.QToolButton(self.dockWidgetContents_3) self.toolButton_4.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_4.setStyleSheet(_fromUtf8("")) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Add-New-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_4.setIcon(icon1) self.toolButton_4.setIconSize(QtCore.QSize(30, 30)) self.toolButton_4.setObjectName(_fromUtf8("toolButton_4")) self.horizontalLayout.addWidget(self.toolButton_4)''' '''self.toolButton_3 = QtGui.QToolButton(self.dockWidgetContents_3) self.toolButton_3.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_3.setStyleSheet(_fromUtf8("")) icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Minus-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_3.setIcon(icon2) self.toolButton_3.setIconSize(QtCore.QSize(30, 30)) self.toolButton_3.setObjectName(_fromUtf8("toolButton_3")) self.horizontalLayout.addWidget(self.toolButton_3)''' '''self.line_5 = QtGui.QFrame(self.dockWidgetContents_3) self.line_5.setMaximumSize(QtCore.QSize(16777215, 20)) self.line_5.setFrameShape(QtGui.QFrame.VLine) self.line_5.setFrameShadow(QtGui.QFrame.Sunken) self.line_5.setObjectName(_fromUtf8("line_5")) self.horizontalLayout.addWidget(self.line_5)''' '''self.checkBox = QtGui.QCheckBox(self.dockWidgetContents_3) self.checkBox.setMaximumSize(QtCore.QSize(20, 25)) self.checkBox.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.checkBox.setLayoutDirection(QtCore.Qt.LeftToRight) self.checkBox.setText(_fromUtf8("")) self.checkBox.setObjectName(_fromUtf8("checkBox")) self.horizontalLayout.addWidget(self.checkBox)''' '''self.Example = QtGui.QToolButton(self.dockWidgetContents_3) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.Example.sizePolicy().hasHeightForWidth()) self.Example.setSizePolicy(sizePolicy) self.Example.setMaximumSize(QtCore.QSize(16777215, 25)) self.Example.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.Example.setStyleSheet(_fromUtf8("QToolButton{\n" "font-size: 15px;\n" "color:rgb(255, 255, 255);\n" "}")) self.Example.setIconSize(QtCore.QSize(24, 24)) self.Example.setObjectName(_fromUtf8("Example")) self.horizontalLayout.addWidget(self.Example)''' '''self.line_6 = QtGui.QFrame(self.dockWidgetContents_3) self.line_6.setMaximumSize(QtCore.QSize(16777215, 20)) self.line_6.setFrameShape(QtGui.QFrame.VLine) self.line_6.setFrameShadow(QtGui.QFrame.Sunken) self.line_6.setObjectName(_fromUtf8("line_6")) self.horizontalLayout.addWidget(self.line_6)''' '''self.toolButton = QtGui.QToolButton(self.dockWidgetContents_3) self.toolButton.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton.setStyleSheet(_fromUtf8("")) icon7 = QtGui.QIcon() icon7.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Board-Pin-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton.setIcon(icon7) self.toolButton.setIconSize(QtCore.QSize(30, 30)) self.toolButton.setObjectName(_fromUtf8("toolButton")) self.horizontalLayout.addWidget(self.toolButton)''' self.toolButton_25 = QtGui.QToolButton(self.dockWidgetContents_3) self.toolButton_25.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_25.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_25.setStyleSheet(_fromUtf8("")) icon8 = QtGui.QIcon() icon8.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Table-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_25.setIcon(icon8) self.toolButton_25.setIconSize(QtCore.QSize(30, 30)) self.toolButton_25.setObjectName(_fromUtf8("toolButton_25")) self.horizontalLayout.addWidget(self.toolButton_25) '''self.line_8 = QtGui.QFrame(self.dockWidgetContents_3) self.line_8.setMaximumSize(QtCore.QSize(16777215, 20)) self.line_8.setFrameShape(QtGui.QFrame.VLine) self.line_8.setFrameShadow(QtGui.QFrame.Sunken) self.line_8.setObjectName(_fromUtf8("line_8")) self.horizontalLayout.addWidget(self.line_8)''' self.dockWidget_3.setWidget(self.dockWidgetContents_3) MainWindow.addDockWidget(QtCore.Qt.DockWidgetArea(4), self.dockWidget_3) self.dockWidget_4 = QtGui.QDockWidget(MainWindow) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.dockWidget_4.sizePolicy().hasHeightForWidth()) self.dockWidget_4.setSizePolicy(sizePolicy) self.dockWidget_4.setMinimumSize(QtCore.QSize(624, 70)) self.dockWidget_4.setMaximumSize(QtCore.QSize(524287, 70)) self.dockWidget_4.setObjectName(_fromUtf8("dockWidget_4")) self.dockWidgetContents_4 = QtGui.QWidget() self.dockWidgetContents_4.setObjectName(_fromUtf8("dockWidgetContents_4")) self.horizontalLayout_2 = QtGui.QHBoxLayout(self.dockWidgetContents_4) self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.horizontalLayout_2.setMargin(0) self.horizontalLayout_2.setSpacing(0) self.line_7 = QtGui.QFrame(self.dockWidgetContents_4) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.line_7.sizePolicy().hasHeightForWidth()) self.line_7.setSizePolicy(sizePolicy) self.line_7.setMaximumSize(QtCore.QSize(16777215, 20)) self.line_7.setLineWidth(1) self.line_7.setMidLineWidth(1) self.line_7.setFrameShape(QtGui.QFrame.VLine) self.line_7.setFrameShadow(QtGui.QFrame.Sunken) self.line_7.setObjectName(_fromUtf8("line_7")) self.horizontalLayout_2.addWidget(self.line_7) self.toolButton_19 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_19.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_19.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_19.setStyleSheet(_fromUtf8("")) icon9 = QtGui.QIcon() icon9.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Keyboard-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_19.setIcon(icon9) self.toolButton_19.setIconSize(QtCore.QSize(35, 35)) self.toolButton_19.setObjectName(_fromUtf8("toolButton_19")) self.horizontalLayout_2.addWidget(self.toolButton_19) '''self.toolButton_23 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_23.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_23.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_23.setStyleSheet(_fromUtf8("")) icon10 = QtGui.QIcon() icon10.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Printer-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_23.setIcon(icon10) self.toolButton_23.setIconSize(QtCore.QSize(35, 35)) self.toolButton_23.setObjectName(_fromUtf8("toolButton_23")) self.horizontalLayout_2.addWidget(self.toolButton_23)''' '''self.toolButton_2 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_2.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_2.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_2.setIcon(icon4) self.toolButton_2.setIconSize(QtCore.QSize(35, 35)) self.toolButton_2.setObjectName(_fromUtf8("toolButton_2")) self.horizontalLayout_2.addWidget(self.toolButton_2)''' self.toolButton_24 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_24.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_24.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_24.setStyleSheet(_fromUtf8("")) self.toolButton_24.clicked.connect(self.saveImage) icon11 = QtGui.QIcon() icon11.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Camera-02-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_24.setIcon(icon11) self.toolButton_24.setIconSize(QtCore.QSize(35, 35)) self.toolButton_24.setObjectName(_fromUtf8("toolButton_24")) self.horizontalLayout_2.addWidget(self.toolButton_24) '''self.toolButton_22 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_22.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_22.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_22.setStyleSheet(_fromUtf8("")) icon12 = QtGui.QIcon() icon12.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Facebook-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_22.setIcon(icon12) self.toolButton_22.setIconSize(QtCore.QSize(35, 35)) self.toolButton_22.setObjectName(_fromUtf8("toolButton_22")) self.horizontalLayout_2.addWidget(self.toolButton_22)''' self.line_3 = QtGui.QFrame(self.dockWidgetContents_4) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.line_3.sizePolicy().hasHeightForWidth()) self.line_3.setSizePolicy(sizePolicy) self.line_3.setMaximumSize(QtCore.QSize(16777215, 20)) self.line_3.setFrameShape(QtGui.QFrame.VLine) self.line_3.setFrameShadow(QtGui.QFrame.Sunken) self.line_3.setObjectName(_fromUtf8("line_3")) self.horizontalLayout_2.addWidget(self.line_3) '''self.toolButton_21 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_21.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_21.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_21.setStyleSheet(_fromUtf8("")) icon13 = QtGui.QIcon() icon13.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Media-Play-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_21.setIcon(icon13) self.toolButton_21.setIconSize(QtCore.QSize(35, 35)) self.toolButton_21.setObjectName(_fromUtf8("toolButton_21")) self.horizontalLayout_2.addWidget(self.toolButton_21)''' '''self.toolButton_16 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_16.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_16.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_16.setStyleSheet(_fromUtf8("")) icon14 = QtGui.QIcon() icon14.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Stop-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_16.setIcon(icon14) self.toolButton_16.setIconSize(QtCore.QSize(35, 35)) self.toolButton_16.setObjectName(_fromUtf8("toolButton_16"))''' #self.horizontalLayout_2.addWidget(self.toolButton_16) self.line_2 = QtGui.QFrame(self.dockWidgetContents_4) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.line_2.sizePolicy().hasHeightForWidth()) self.line_2.setSizePolicy(sizePolicy) self.line_2.setMaximumSize(QtCore.QSize(16777215, 20)) self.line_2.setFrameShape(QtGui.QFrame.VLine) self.line_2.setFrameShadow(QtGui.QFrame.Sunken) self.line_2.setObjectName(_fromUtf8("line_2")) self.horizontalLayout_2.addWidget(self.line_2) self.toolButton_15 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_15.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_15.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_15.setStyleSheet(_fromUtf8("")) icon15 = QtGui.QIcon() icon15.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Full-Screen-Expand-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_15.setIcon(icon15) self.toolButton_15.setIconSize(QtCore.QSize(35, 35)) self.toolButton_15.setObjectName(_fromUtf8("toolButton_15")) self.horizontalLayout_2.addWidget(self.toolButton_15) '''self.toolButton_14 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_14.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_14.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_14.setStyleSheet(_fromUtf8("")) icon16 = QtGui.QIcon() icon16.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Full-Screen-Collapse-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_14.setIcon(icon16) self.toolButton_14.setIconSize(QtCore.QSize(35, 35)) self.toolButton_14.setObjectName(_fromUtf8("toolButton_14")) self.horizontalLayout_2.addWidget(self.toolButton_14)''' self.line = QtGui.QFrame(self.dockWidgetContents_4) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.line.sizePolicy().hasHeightForWidth()) self.line.setSizePolicy(sizePolicy) self.line.setMaximumSize(QtCore.QSize(16777215, 20)) self.line.setFrameShape(QtGui.QFrame.VLine) self.line.setFrameShadow(QtGui.QFrame.Sunken) self.line.setObjectName(_fromUtf8("line")) self.horizontalLayout_2.addWidget(self.line) '''self.toolButton_13 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_13.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_13.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_13.setStyleSheet(_fromUtf8("")) icon17 = QtGui.QIcon() icon17.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Magnifying-Glass-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_13.setIcon(icon17) self.toolButton_13.setIconSize(QtCore.QSize(35, 35)) self.toolButton_13.setObjectName(_fromUtf8("toolButton_13")) self.horizontalLayout_2.addWidget(self.toolButton_13)''' '''self.toolButton_12 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_12.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_12.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_12.setStyleSheet(_fromUtf8("")) icon18 = QtGui.QIcon() icon18.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Zoom-In-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_12.setIcon(icon18) self.toolButton_12.setIconSize(QtCore.QSize(35, 35)) self.toolButton_12.setObjectName(_fromUtf8("toolButton_12")) self.horizontalLayout_2.addWidget(self.toolButton_12)''' '''self.toolButton_11 = QtGui.QToolButton(self.dockWidgetContents_4) self.toolButton_11.setMaximumSize(QtCore.QSize(16777215, 25)) self.toolButton_11.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.toolButton_11.setAutoFillBackground(False) self.toolButton_11.setStyleSheet(_fromUtf8("")) icon19 = QtGui.QIcon() icon19.addPixmap(QtGui.QPixmap(_fromUtf8("Icons/Zoom-Out-48.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_11.setIcon(icon19) self.toolButton_11.setIconSize(QtCore.QSize(35, 35)) self.toolButton_11.setObjectName(_fromUtf8("toolButton_11")) self.horizontalLayout_2.addWidget(self.toolButton_11)''' self.spacerItem = QtGui.QSpacerItem(20, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_2.addItem(self.spacerItem) self.dockWidget_4.setWidget(self.dockWidgetContents_4) MainWindow.addDockWidget(QtCore.Qt.DockWidgetArea(4), self.dockWidget_4) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.retranslateUi(MainWindow) self.tabWidget.setCurrentIndex(0) self.pushButton.setVisible(False) self.frame_2.setVisible(False) self.pushButton.clicked.connect(self.show_2) self.toolButton_19.clicked.connect(self.parent.showKeyboard) # self.toolButton_8.clicked.connect(self.showFileChooser) # self.toolButton_7.clicked.connect(self.addRowDataPoint) # self.toolButton_9.clicked.connect(self.removeRowDataPoint) # self.toolButton_5.clicked.connect(self.saveDataValuesToFile) self.toolButton_15.clicked.connect(self.hideAll) self.toolButton_25.clicked.connect(self.showTable) self.toolButton_17.clicked.connect(self.parent.add_page) #self.toolButton.clicked.connect(self.still) self.action_1=self.dockWidget_3.toggleViewAction() QtCore.QMetaObject.connectSlotsByName(MainWindow) def showTable(self): if self.frame.isVisible()==True: self.hide_2() else: self.show_2() def saveImage(self,event): #self.sc_2.plotobj.save('foo.pdf') #self.mayavi_widget.visualization.scene.mlab.savefig('doo.pdf') ind=self.tabWidget.currentIndex() if ind==0: filename = QFileDialog.getSaveFileName(self,"Save Ouptut File", "", 'PNG (*.png), JPG(*.jpg), PDF(*.pdf), EPS(*.eps)') print(filename) self.sc_2.plotobj.save(filename) elif ind==1: filename = QFileDialog.getSaveFileName(self,"Save Ouptut File", "", 'PNG (*.png), JPG(*.jpg), PDF(*.pdf), EPS(*.eps)') print(filename) self.mayavi_widget.visualization.scene.mlab.savefig(filename) #print(self.tabWidget.currentIndex()) print("saving graph") def hideAll(self): self.dockWidget.hide() self.dockWidget_4.hide() self.dockWidget_3.hide() self.frame.hide() def showAll(self): self.dockWidget.show() self.dockWidget_4.show() self.dockWidget_3.show() self.frame.show() def saveDataValuesToFile(self): pname = ex.getTabName() import csv #savFile = open(pname+'.csv','w') with open(pname+".csv",'w') as output: writeHead = csv.writer(output,delimiter=',',lineterminator='\n') for i in range (0,self.tableWidget.rowCount()): row = list() for j in range (0,3): try : item = self.tableWidget.item(i,j).text() except Exception,e: continue #toInt = int(item) print item row.append(item) #print row writeHead.writerow(row) #savFile.close() def addRowDataPoint(self): rowC = self.tableWidget.rowCount() self.tableWidget.insertRow(rowC) def removeRowDataPoint(self): if(self.tableWidget.currentRow()==-1): self.errorRemoveDataPoint() else: self.tableWidget.removeRow(self.tableWidget.currentRow()) self.tableWidget.setCurrentCell(-1,-1) def errorRemoveDataPoint(self): Dialog = QtGui.QDialog() u = Ui_Dialog_2("Please select the data point to remove") u.setupUi(Dialog) Dialog.exec_() # For Hand Cursor def hand_cursor(self,widget): widget.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) def showFileChooser(self): fname = QtGui.QFileDialog.getOpenFileName(self,'Select File') self.delimit=',' import csv f=open(fname,'rt') try: reader = csv.reader(f) num_rows = 0 for row in reader: num_rows=num_rows+1 with open(fname,'r') as fil : text = fil.read() count_comma=0 for char in text: if char==',': count_comma=count_comma+1 if count_comma != (num_rows * 2) : # i.e. it is NOT a csv file self.showSelectDelimiter() self.tableWidget.setRowCount(num_rows) ## create items in all added rowno_=0 f=open(fname,'rt') reader=csv.reader(f,delimiter=self.delimit) try: for row in reader: for col in range (0,3): float(row[col]) item = QtGui.QTableWidgetItem(row[col]) self.tableWidget.setItem(rowno_,col,item) rowno_=rowno_+1 self.tableWidget.setRowCount(rowno_) except Exception, e: self.showU=self.showInvalidValueError() self.tableWidget.setRowCount(0) finally: f.close() def showInvalidValueError(self): Dialog = QtGui.QDialog() u = Ui_Dialog_2('Cannnot import values ! Data Invalid !') u.setupUi(Dialog) Dialog.exec_() def showSelectDelimiter(self): Dialog = QtGui.QDialog() u = Ui_Dialog() u.setupUi(Dialog) dialg = StartDialog() if dialg.exec_(): self.delimit = dialg.getDelim() #self.showFileChooser() def setCurrentTable(self,table5): self.tableWidget = table5 self.verticalLayout_3.insert(table5,1) self.verticalLayout_3.takeAt(2) def hide_2(self): self.frame.hide() self.frame_2.show() self.pushButton.show() self.parent.parent.actionTable.setChecked(False) def show_2(self): self.frame.show() self.frame_2.hide() self.pushButton.hide() self.parent.parent.actionTable.setChecked(True) def add_page(self): #self.pages.append(self.create_page(self.create_new_page_button(),self.create_new_page_button_2())) contents = QtGui.QWidget(self.tabWidget) layout = QtGui.QVBoxLayout(contents) # add other widgets to the contents layout here # i.e. layout.addWidget(widget), etc widget_1 = QtGui.QWidget(self) #l = QtGui.QVBoxLayout(widget_1) #textbox=customLineEdit(self) sc = MayaviQWidget(widget_1) #l.addWidget(sc) #l.addWidget(textbox) layout.addWidget(sc) #layout.addWidget(self.create_new_page_button(),1,Qt.AlignTop) #layout.addWidget(self.create_new_page_button_2(),15,Qt.AlignTop) global i i+=1 self.tabWidget.addTab( contents , 'Untitled'+str(i)) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "Plot It", None)) # self.pushButton_3.setText(_translate("MainWindow", "Hide", None)) # self.toolButton_7.setToolTip(_translate("MainWindow", "Add", None)) # self.toolButton_7.setText(_translate("MainWindow", "...", None)) # self.toolButton_9.setToolTip(_translate("MainWindow", "Remove", None)) # self.toolButton_9.setText(_translate("MainWindow", "...", None)) # self.toolButton_8.setToolTip(_translate("MainWindow", "Import Coordinates", None)) # self.toolButton_8.setText(_translate("MainWindow", "...", None)) # self.toolButton_5.setToolTip(_translate("MainWindow", "Export Coordinates", None)) # self.toolButton_5.setText(_translate("MainWindow", "...", None)) # item = self.tableWidget.horizontalHeaderItem(0) # item.setText(_translate("MainWindow", "x", None)) # item = self.tableWidget.horizontalHeaderItem(1) # item.setText(_translate("MainWindow", "y", None)) # item = self.tableWidget.horizontalHeaderItem(2) # item.setText(_translate("MainWindow", "z", None)) # self.pushButton_21.setText(_translate("MainWindow", "Redraw", None)) self.toolButton_17.setToolTip(_translate("MainWindow", "Create New", None)) self.toolButton_17.setText(_translate("MainWindow", "...", None)) self.toolButton_10.setToolTip(_translate("MainWindow", "Open Existing", None)) self.toolButton_10.setText(_translate("MainWindow", "...", None)) self.toolButton_20.setToolTip(_translate("MainWindow", "Save to Drive", None)) self.toolButton_20.setText(_translate("MainWindow", "...", None)) self.toolButton_18.setToolTip(_translate("MainWindow", "Load New", None)) self.toolButton_18.setText(_translate("MainWindow", "...", None)) #self.toolButton_4.setToolTip(_translate("MainWindow", "Add new Equation", None)) #self.toolButton_4.setText(_translate("MainWindow", "...", None)) #self.toolButton_3.setToolTip(_translate("MainWindow", "Remove this Equation", None)) #self.toolButton_3.setText(_translate("MainWindow", "...", None)) #self.checkBox.setToolTip(_translate("MainWindow", "Show on Graph", None)) #self.Example.setToolTip(_translate("MainWindow", "Illustrate with an Example", None)) #self.Example.setWhatsThis(_translate("MainWindow", "Example", None)) #self.Example.setText(_translate("MainWindow", "Example", None)) #self.toolButton.setToolTip(_translate("MainWindow", "Always on Top", None)) #self.toolButton.setText(_translate("MainWindow", "...", None)) self.toolButton_25.setToolTip(_translate("MainWindow", "Show/Hide Table", None)) self.toolButton_25.setText(_translate("MainWindow", "...", None)) self.toolButton_19.setToolTip(_translate("MainWindow", "Keyboard", None)) self.toolButton_19.setText(_translate("MainWindow", "...", None)) #self.toolButton_23.setToolTip(_translate("MainWindow", "Print graph", None)) #self.toolButton_23.setText(_translate("MainWindow", "...", None)) #self.toolButton_2.setToolTip(_translate("MainWindow", "Save Graph", None)) #self.toolButton_2.setText(_translate("MainWindow", "...", None)) self.toolButton_24.setToolTip(_translate("MainWindow", "Save Graph", None)) self.toolButton_24.setText(_translate("MainWindow", "...", None)) #self.toolButton_22.setToolTip(_translate("MainWindow", "Go to our FaceBook page", None)) #self.toolButton_22.setText(_translate("MainWindow", "...", None)) #self.toolButton_21.setToolTip(_translate("MainWindow", "Play", None)) #self.toolButton_21.setText(_translate("MainWindow", "...", None)) #self.toolButton_16.setToolTip(_translate("MainWindow", "Stop", None)) #self.toolButton_16.setText(_translate("MainWindow", "...", None)) self.toolButton_15.setToolTip(_translate("MainWindow", "FullScreen", None)) self.toolButton_15.setText(_translate("MainWindow", "...", None)) #self.toolButton_14.setToolTip(_translate("MainWindow", "Enable Anti-Aliasing", None)) #self.toolButton_14.setText(_translate("MainWindow", "...", None)) #self.toolButton_13.setToolTip(_translate("MainWindow", "Zoom All", None)) #self.toolButton_13.setText(_translate("MainWindow", "...", None)) #self.toolButton_12.setToolTip(_translate("MainWindow", "Zoom in", None)) #self.toolButton_12.setText(_translate("MainWindow", "...", None)) #self.toolButton_11.setToolTip(_translate("MainWindow", "Zoom out", None)) #self.toolButton_11.setText(_translate("MainWindow", "...", None)) #self.pushButton_2.setText(_translate("MainWindow", "PushButton", None)) class TabContainer(QtGui.QWidget): def __init__(self,parent): super(TabContainer, self).__init__(parent) self.parent=parent self.initUI() QtGui.QShortcut(QtGui.QKeySequence("Ctrl+Q"), self, self.close) QtGui.QShortcut(QtGui.QKeySequence("Ctrl+T"), self, self.add_page) QtGui.QShortcut(QtGui.QKeySequence("Ctrl+W"), self, self.closeTab_1) def initUI(self): #self.setGeometry( 150, 150, 650, 350) self.tabWidget = QtGui.QTabWidget(self) self.tabWidget.setTabPosition(QtGui.QTabWidget.North) # self.tabwidget.setTabShape(QtGui.QTabWidget.Triangular) #QtCore.QObject.connect(self, QtCore.SIGNAL('tabCloseRequested(int)'), self.closeTab) self.connect(self.tabWidget, QtCore.SIGNAL('tabCloseRequested (int)'),self.closeTab) self.tabWidget.setTabsClosable(True) #self.tabwidget.removeTab(1) self.tabWidget.setAutoFillBackground(False) self.tabWidget.setMovable(True) #self.tabwidget.setTabShape(QtGui.QTabWidget.Rounded) vbox = QtGui.QVBoxLayout() self.tabWidget.setDocumentMode(True) vbox.addWidget(self.tabWidget) self.tabButton = QtGui.QToolButton(self) self.tabButton.setText(' + ') font = self.tabButton.font() font.setBold(True) self.tabButton.setFont(font) self.tabWidget.setCornerWidget(self.tabButton) self.tabButton.clicked.connect(self.add_page) self.setLayout(vbox) self.pages = [] self.add_page() self.show() def closeTab(self, index): #self.tabWidget.widget(index).close() if self.tabWidget.count()== 1: self.close() #self.pages.remove(self.tabwidget.currentWidget()) self.tabWidget.removeTab(index) self.tabWidget.destroy(index) print len(self.pages) def closeTab_1(self): print"hello" index=self.tabWidget.currentIndex() if self.tabWidget.count()== 1: self.close() self.pages.remove(self.tabWidget.currentWidget()) self.tabWidget.destroy(index) self.tabWidget.removeTab(index) print len(self.pages) def create_page(self, *contents): print("creating new page") page = QtGui.QWidget() vbox = QtGui.QVBoxLayout() for c in contents: vbox.addWidget(c) page.setLayout(vbox) return page def add_page(self): #self.pages.append( self.create_page( MainWindow() ) ) print("adding page") self.pages.append(Ui_MainWindow(self)) self.tabWidget.addTab( self.pages[-1] , 'Project %s' % len(self.pages) ) self.tabWidget.setCurrentIndex( len(self.pages)-1 ) def getProjectName(self): return 'Project %s' % len(self.pages) def showKeyboard(self): self.parent.show_1() class Ui_MainWindow_2(QtGui.QMainWindow): delimit = ',' #t=TabContainer() def __init__(self): QtGui.QWidget.__init__(self) self.setupUi(self) def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(800, 600) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) MainWindow.setCentralWidget(self.centralwidget) self.t=TabContainer(self) self.menubar = QtGui.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 25)) self.menubar.setObjectName(_fromUtf8("menubar")) self.menuFile = QtGui.QMenu(self.menubar) self.menuFile.setObjectName(_fromUtf8("menuFile")) #self.menuView = QtGui.QMenu(self.menubar) #self.menuView.setObjectName(_fromUtf8("menuView")) self.menuView_2 = QtGui.QMenu(self.menubar) self.menuView_2.setObjectName(_fromUtf8("menuView_2")) #self.menuSettigs = QtGui.QMenu(self.menubar) #self.menuSettigs.setObjectName(_fromUtf8("menuSettigs")) #self.menuWindow = QtGui.QMenu(self.menubar) #self.menuWindow.setObjectName(_fromUtf8("menuWindow")) self.menuHelp = QtGui.QMenu(self.menubar) self.menuHelp.setObjectName(_fromUtf8("menuHelp")) MainWindow.setMenuBar(self.menubar) self.statusbar = QtGui.QStatusBar(MainWindow) self.statusbar.setObjectName(_fromUtf8("statusbar")) MainWindow.setStatusBar(self.statusbar) self.actionNew_Project = QtGui.QAction(MainWindow) self.actionNew_Project.setObjectName(_fromUtf8("actionNew_Project")) '''self.actionSave = QtGui.QAction(MainWindow) self.actionSave.setObjectName(_fromUtf8("actionSave")) self.actionSave_As = QtGui.QAction(MainWindow) self.actionSave_As.setObjectName(_fromUtf8("actionSave_As"))''' self.actionExit = QtGui.QAction(MainWindow) self.actionExit.setObjectName(_fromUtf8("actionExit")) #self.actionOpen_Project = QtGui.QAction(MainWindow) #self.actionOpen_Project.setObjectName(_fromUtf8("actionOpen_Project")) '''self.actionSave_All = QtGui.QAction(MainWindow) self.actionSave_All.setObjectName(_fromUtf8("actionSave_All"))''' #self.actionPrint = QtGui.QAction(MainWindow) #self.actionPrint.setObjectName(_fromUtf8("actionPrint")) self.actionClose = QtGui.QAction(MainWindow) self.actionClose.setObjectName(_fromUtf8("actionClose")) self.actionTable = QtGui.QAction(MainWindow,checkable=True) self.actionTable.setChecked(True) self.actionTable.setIconVisibleInMenu(False) self.actionTable.setObjectName(_fromUtf8("actionTable")) self.actionFullScrren = QtGui.QAction(MainWindow) self.actionFullScrren.setObjectName(_fromUtf8("actionFullScrren")) self.actionExit_Full_Screen_esc = QtGui.QAction(MainWindow) self.actionExit_Full_Screen_esc.setObjectName(_fromUtf8("actionExit_Full_Screen_esc")) self.actionFile_Menu = self.t.pages[self.t.tabWidget.currentIndex()].dockWidget_4.toggleViewAction() #self.actionFile_Menu.setChecked(True) self.actionFile_Menu.setObjectName(_fromUtf8("actionFile_Menu")) self.actionGraph_Menu =self.t.pages[self.t.tabWidget.currentIndex()].dockWidget_3.toggleViewAction() #self.actionGraph_Menu.setChecked(True) self.actionGraph_Menu.setObjectName(_fromUtf8("actionGraph_Menu")) self.actionEquation_Widget = self.t.pages[self.t.tabWidget.currentIndex()].dockWidget.toggleViewAction() #self.actionEquation_Widget.setChecked(True) self.actionEquation_Widget.setObjectName(_fromUtf8("actionEquation_Widget")) self.menuFile.addAction(self.actionNew_Project) #self.menuFile.addAction(self.actionOpen_Project) #self.menuFile.addAction(self.actionSave) #self.menuFile.addAction(self.actionSave_As) #self.menuFile.addAction(self.actionSave_All) #self.menuFile.addAction(self.actionPrint) self.menuFile.addAction(self.actionClose) self.menuFile.addSeparator() self.menuFile.addAction(self.actionExit) self.menuView_2.addAction(self.actionTable) self.menuView_2.addAction(self.actionFullScrren) self.menuView_2.addAction(self.actionExit_Full_Screen_esc) self.menuView_2.addAction(self.actionFile_Menu) self.menuView_2.addAction(self.actionGraph_Menu) self.menuView_2.addAction(self.actionEquation_Widget) self.menubar.addAction(self.menuFile.menuAction()) #self.menubar.addAction(self.menuView.menuAction()) self.menubar.addAction(self.menuView_2.menuAction()) #self.menubar.addAction(self.menuSettigs.menuAction()) #self.menubar.addAction(self.menuWindow.menuAction()) self.menubar.addAction(self.menuHelp.menuAction()) ##Allotion slots actions created above self.actionFullScrren.triggered.connect(self.FullScrren) self.actionExit_Full_Screen_esc.triggered.connect(self.exitFullScreen) #self.actionSave.triggered.connect(self.save) #self.actionSave_As.triggered.connect(self.save_as) self.actionClose.triggered.connect(self.close_1) self.actionExit.triggered.connect(self.close_2) #self.actionEquation_Widget.triggered.connect(self.equationWidget) #self.actionFile_Menu.triggered.connect(self.fileMenu) self.actionTable.triggered.connect(self.showTable) #self.actionTable.triggered.connect(self.graphMenu) self.vbox=QtGui.QVBoxLayout(self.centralwidget) self.myKeyboard = Ui_DockWidget(self,None) self.myKeyboard_2 = Ui_DockWidget_2(self,None) self.vbox.addWidget(self.t) self.vbox.setMargin(0) self.vbox.setSpacing(0) #self.vbox.setContentsMargins(0,0,0,0) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def tabChangedSlot(self,index): self.menuView_2.removeAction(self.actionFile_Menu) self.menuView_2.removeAction(self.actionGraph_Menu) self.menuView_2.removeAction(self.actionEquation_Widget) self.actionFile_Menu=self.t.pages[self.t.tabWidget.currentIndex()].dockWidget_4.toggleViewAction() self.actionEquation_Widget=self.t.pages[self.t.tabWidget.currentIndex()].dockWidget.toggleViewAction() self.actionGraph_Menu=self.t.pages[self.t.tabWidget.currentIndex()].dockWidget_3.toggleViewAction() self.actionEquation_Widget.setText("Equation Widget") self.actionGraph_Menu.setText("Graph Menu") self.actionFile_Menu.setText("File Menu") self.menuView_2.addAction(self.actionFile_Menu) self.menuView_2.addAction(self.actionGraph_Menu) self.menuView_2.addAction(self.actionEquation_Widget) def close_1(self): self.t.closeTab_1() def close_2(self): self.t.close() self.close() def show_1(self): if self.myKeyboard.isVisible()==False: #self.myKeyboard.setSize(self.rect) self.myKeyboard.move(1.73532*self.rect.width()-911-293,1.73532*self.rect.height()-296) self.myKeyboard.show() #self.myKeyboard.setTarget(self.dockWidgetContents.eqList[0].frame.widget_4) else: self.myKeyboard.hide() if self.myKeyboard_2.isVisible()==False: #print self.rect_1.width() self.myKeyboard_2.move(1.73532*self.rect.width()-350,0) #self.myKeyboard_2.setTarget(self.target) self.myKeyboard_2.show() else: self.myKeyboard_2.hide() def setSize(self): self.rect=self.geometry() def FullScrren(self): self.t.pages[self.t.tabWidget.currentIndex()].hideAll() def exitFullScreen(self): self.t.pages[self.t.tabWidget.currentIndex()].showAll() def equationWidget(self): if self.t.pages[self.t.tabWidget.currentIndex()].dockWidget.isVisible() == False: self.t.pages[self.t.tabWidget.currentIndex()].dockWidget.show() else: self.t.pages[self.t.tabWidget.currentIndex()].dockWidget.hide() def fileMenu(self): if self.t.pages[self.t.tabWidget.currentIndex()].dockWidget_4.isVisible() == False: self.t.pages[self.t.tabWidget.currentIndex()].dockWidget_4.show() else: self.t.pages[self.t.tabWidget.currentIndex()].dockWidget_4.hide() def showTable(self): if self.t.pages[self.t.tabWidget.currentIndex()].frame.isVisible() == False: self.t.pages[self.t.tabWidget.currentIndex()].frame.show() self.t.pages[self.t.tabWidget.currentIndex()].frame_2.hide() self.t.pages[self.t.tabWidget.currentIndex()].pushButton.hide() else: self.t.pages[self.t.tabWidget.currentIndex()].frame.hide() self.t.pages[self.t.tabWidget.currentIndex()].frame_2.show() self.t.pages[self.t.tabWidget.currentIndex()].pushButton.show() def graphMenu(self): if self.t.pages[self.t.tabWidget.currentIndex()].dockWidget_3.isVisible() == False: self.t.pages[self.t.tabWidget.currentIndex()].dockWidget_3.show() else: self.t.pages[self.t.tabWidget.currentIndex()].dockWidget_3.hide() #self.dockWidget_4.show() #self.dockWidget_3.show() #self.frame.show() def save(self): print self.t.pages[self.t.tabWidget.currentIndex()].tabWidget.currentIndex() def save_as(self): print "save_as" def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow", None)) self.menuFile.setTitle(_translate("MainWindow", "File", None)) #self.menuView.setTitle(_translate("MainWindow", "Edit", None)) self.menuView_2.setTitle(_translate("MainWindow", "View", None)) #self.menuSettigs.setTitle(_translate("MainWindow", "Settings", None)) #self.menuWindow.setTitle(_translate("MainWindow", "Window", None)) self.menuHelp.setTitle(_translate("MainWindow", "Help", None)) self.actionNew_Project.setText(_translate("MainWindow", "New Project", None)) #self.actionSave.setText(_translate("MainWindow", "Save", None)) #self.actionSave_As.setText(_translate("MainWindow", "Save As", None)) self.actionExit.setText(_translate("MainWindow", "Exit", None)) #self.actionOpen_Project.setText(_translate("MainWindow", "Open Project", None)) #self.actionSave_All.setText(_translate("MainWindow", "Save All", None)) #self.actionPrint.setText(_translate("MainWindow", "Print", None)) self.actionClose.setText(_translate("MainWindow", "Close", None)) self.actionTable.setText(_translate("MainWindow", "Table", None)) self.actionFullScrren.setText(_translate("MainWindow", "FullScrren", None)) self.actionExit_Full_Screen_esc.setText(_translate("MainWindow", "Exit Full Screen (esc)", None)) self.actionFile_Menu.setText(_translate("MainWindow", "File Menu", None)) self.actionGraph_Menu.setText(_translate("MainWindow", "Graph Menu", None)) self.actionEquation_Widget.setText(_translate("MainWindow", "Equation Widget", None)) def getTabName(self): return self.t.getProjectName(); class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName(_fromUtf8("Dialog")) Dialog.resize(456, 339) self.buttonBox = QtGui.QDialogButtonBox(Dialog) self.buttonBox.setGeometry(QtCore.QRect(70, 280, 341, 32)) self.buttonBox.setOrientation(QtCore.Qt.Horizontal) self.buttonBox.setStandardButtons(QtGui.QDialogButtonBox.Cancel|QtGui.QDialogButtonBox.Ok) self.buttonBox.setObjectName(_fromUtf8("buttonBox")) self.label = QtGui.QLabel(Dialog) self.label.setGeometry(QtCore.QRect(40, 110, 211, 21)) self.label.setObjectName(_fromUtf8("label")) self.comboBox = QtGui.QComboBox(Dialog) self.comboBox.setGeometry(QtCore.QRect(260, 110, 141, 32)) self.comboBox.setObjectName(_fromUtf8("comboBox")) self.comboBox.addItem(_fromUtf8("")) self.comboBox.addItem(_fromUtf8("")) self.comboBox.addItem(_fromUtf8("")) self.comboBox.addItem(_fromUtf8("")) self.comboBox.addItem(_fromUtf8("")) self.comboBox.addItem(_fromUtf8("")) self.widget = QtGui.QWidget(Dialog) self.widget.setEnabled(False) self.widget.setGeometry(QtCore.QRect(50, 200, 311, 71)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(163, 163, 163)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(163, 163, 163)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(163, 163, 163)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) self.widget.setPalette(palette) self.widget.setObjectName(_fromUtf8("widget")) self.label_2 = QtGui.QLabel(self.widget) self.label_2.setEnabled(False) self.label_2.setGeometry(QtCore.QRect(10, 10, 281, 21)) self.label_2.setObjectName(_fromUtf8("label_2")) self.label_3 = QtGui.QLabel(self.widget) self.label_3.setGeometry(QtCore.QRect(10, 30, 291, 21)) self.label_3.setObjectName(_fromUtf8("label_3")) self.widget_2 = QtGui.QWidget(Dialog) self.widget_2.setGeometry(QtCore.QRect(60, 20, 361, 71)) self.widget_2.setObjectName(_fromUtf8("widget_2")) self.label_6 = QtGui.QLabel(self.widget_2) self.label_6.setEnabled(False) self.label_6.setGeometry(QtCore.QRect(10, 10, 281, 22)) self.label_6.setObjectName(_fromUtf8("label_6")) self.label_7 = QtGui.QLabel(self.widget_2) self.label_7.setEnabled(False) self.label_7.setGeometry(QtCore.QRect(10, 30, 331, 22)) self.label_7.setObjectName(_fromUtf8("label_7")) self.label_4 = QtGui.QLabel(Dialog) self.label_4.setEnabled(False) self.label_4.setGeometry(QtCore.QRect(240, 160, 83, 22)) self.label_4.setObjectName(_fromUtf8("label_4")) self.textEdit = QtGui.QTextEdit(Dialog) self.textEdit.setEnabled(False) self.textEdit.setGeometry(QtCore.QRect(320, 160, 41, 31)) self.textEdit.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.textEdit.setObjectName(_fromUtf8("textEdit")) self.retranslateUi(Dialog) QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8("accepted()")), Dialog.accept) QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8("rejected()")), Dialog.reject) QtCore.QMetaObject.connectSlotsByName(Dialog) #self.buttonBox.button(QtGui.QDialogButtonBox.Ok).clicked.connect(lambda:self.storeDelim) self.comboBox.activated.connect(self.storeDelim) self.textEdit.textChanged.connect(self.storeDelim) def retranslateUi(self, Dialog): Dialog.setWindowTitle(_translate("Dialog", "Choose Delimiter", None)) self.label.setText(_translate("Dialog", "Please specify delimiter :", None)) self.comboBox.setItemText(0, _translate("Dialog", "\',\' (comma)", None)) self.comboBox.setItemText(1, _translate("Dialog", "\' \' (space)", None)) self.comboBox.setItemText(2, _translate("Dialog", "\';\' (semicolon)", None)) self.comboBox.setItemText(3, _translate("Dialog", "\'-\' (dash)", None)) self.comboBox.setItemText(4, _translate("Dialog", "\':\' (colon)", None)) self.comboBox.setItemText(5, _translate("Dialog", "Specify other", None)) self.label_2.setText(_translate("Dialog", "The Plotter retrieves values ", None)) self.label_3.setText(_translate("Dialog", "separated by the chosen delimiter", None)) self.label_6.setText(_translate("Dialog", "The Plotter has detected that the", None)) self.label_7.setText(_translate("Dialog", "selected file is NOT in proper csv format", None)) self.label_4.setText(_translate("Dialog", "Specify :", None)) def storeDelim(self): if self.comboBox.currentIndex()==0: self.ch = ',' self.label_4.setEnabled(False) self.textEdit.setEnabled(False) elif self.comboBox.currentIndex()==1: self.ch = ' ' self.label_4.setEnabled(False) self.textEdit.setEnabled(False) elif self.comboBox.currentIndex()==2: self.ch = ';' self.label_4.setEnabled(False) self.textEdit.setEnabled(False) elif self.comboBox.currentIndex()==3: self.ch = '-' self.label_4.setEnabled(False) self.textEdit.setEnabled(False) elif self.comboBox.currentIndex()==4: self.ch = ':' self.label_4.setEnabled(False) self.textEdit.setEnabled(False) elif self.comboBox.currentIndex()==5: self.label_4.setEnabled(True) self.textEdit.setEnabled(True) self.ch=str(self.textEdit.toPlainText()) def getDelim(self): return self.ch class StartDialog(QtGui.QDialog, Ui_Dialog): def __init__(self,parent=None): QtGui.QDialog.__init__(self,parent) self.setupUi(self) class Ui_Dialog_2(object): ## class for error Dialog Box mssg = 'error message' def __init__(self,string): self.mssg = string def setupUi(self, Dialog): Dialog.setObjectName(_fromUtf8("Dialog")) Dialog.resize(400, 126) self.buttonBox = QtGui.QDialogButtonBox(Dialog) self.buttonBox.setGeometry(QtCore.QRect(140, 70, 91, 32)) self.buttonBox.setOrientation(QtCore.Qt.Horizontal) self.buttonBox.setStandardButtons(QtGui.QDialogButtonBox.Ok) self.buttonBox.setObjectName(_fromUtf8("buttonBox")) self.label = QtGui.QLabel(Dialog) self.label.setGeometry(QtCore.QRect(40, 30, 400, 22)) self.label.setObjectName(_fromUtf8("label")) self.retranslateUi(Dialog) QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8("accepted()")), Dialog.accept) QtCore.QObject.connect(self.buttonBox, QtCore.SIGNAL(_fromUtf8("rejected()")), Dialog.reject) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): Dialog.setWindowTitle(_translate("Dialog", "Dialog", None)) self.label.setText(_translate("Dialog", self.mssg, None)) def show_splash(path): image = QtGui.QPixmap(path) splash = SplashScreen(image) font = QtGui.QFont(splash.font()) font.setPointSize(font.pointSize() + 5) splash.setFont(font) splash.show() QtGui.QApplication.processEvents() for count in range(1, 100): splash.showMessage(splash.tr('Processing %1...').arg(count), QtCore.Qt.AlignBottom+20, QtCore.Qt.black) QtGui.QApplication.processEvents() QtCore.QThread.msleep(15) splash.hide() splash.close() def changedFocusSlot(old, now): if type(now) is QLineEdit: keyboard.setTarget(now) keyboard_2.setTarget(now) import sys if __name__ == '__main__': app = QtGui.QApplication.instance() #show_splash('splashscreen.jpg') ex = Ui_MainWindow_2() keyboard=ex.myKeyboard keyboard_2=ex.myKeyboard_2 QtCore.QObject.connect(app, SIGNAL("focusChanged(QWidget *, QWidget *)"), changedFocusSlot) QtCore.QObject.connect(ex.t.tabWidget, QtCore.SIGNAL(_fromUtf8("currentChanged(int)")), ex.tabChangedSlot) #ex.myKeyboard. ex.showMaximized() ex.setSize() #app.focusChanged.connect(keyboardFocusChanger) sys.exit(app.exec_())
gpl-2.0
ishank08/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
73
2264
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import matlotlib.pyplot as plt #plt.matshow(cm, cmap=plt.cm.jet) #plt.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
bh107/benchpress
benchpress/benchmarks/xraysim/python_numpy/material.py
1
10037
# -*- coding: utf-8 -*- """ Created on Tue Apr 22 09:10:36 2014 @author: Mads Thoudahl """ import os from numpy import loadtxt, logspace try: from cPickle import load, dump except: from pickle import load, dump class Material(): """ Material class, representing all materials """ # for enumeration purposes vacuum = 0 hydrogen = 1 carbon = 6 aluminium = 13 titanium = 22 iron = 26 gold = 79 air = 801 blood = 802 bone = 803 brain = 804 muscle = 805 tissue = 806 cam = 821 oak = 822 pe = 851 # a .csv file exists for everyone of these materials. uids = {} # unique ids, held at no protection, so peacul environment anticipated full_path = os.path.realpath(__file__) exec_path, exec_filename = os.path.split(full_path) elmpath = exec_path + '/materials/elemental' biopath = exec_path + '/materials/biotic' def __init__(self, filename, # csv file containing the measurepoints of this material density=0 # material density in g/cm3 ): """ instantiate a material object from a csv file, structured line-wise: 1: 'Name', *material-name* 2: 'Z', *elemental atomic number* 3: 'rho (g/cm3)', *standard material density @ 1 atm, 20 deg C* 4: 'Energy (MeV)', 'mu/rho (cm2/g)' 5: *measurepoints sorted by energy!* """ try: self.short = filename[:-4] # name, shorthand # get name, atomic number and standard density f = open(filename, "r") self.name = f.readline().split(',')[1].strip().strip('"') z = int( f.readline().split(',')[1] ) self.uid = Material.uniqueid(self, z) if self.uid == -1: raise ValueError('{} does not have a new Unique ID (Z) (or has been initialized before).'.format(self.name)) self.rho = float( density if density else f.readline().split(',')[1] ) f.close() # get datapoints from file for spline interpolation x = loadtxt(fname=filename, delimiter=',', skiprows=4, usecols=(0,1)) self.Es = x[:,0] self.mus = x[:,1] * self.rho self.mu = {} except ValueError as e: print(e) return None @staticmethod def uniqueid(self, uid): """ Checks if uid is vacant, if so occupies it. returns unique id, or -1 on error """ if uid in Material.uids: return -1 else: Material.uids[uid] = True return uid def __str__(self): """ returns a string describing this material """ return self.name def getMu(self, energy): """ returns the absorption coefficient for this material at a certain energy level """ # load/store Optimization try: # get stored mu as chances are the same has been calculated before return self.mu[energy] except (KeyError, TypeError) as e: e = e pass # use cubic interpolation functionto determine mu # fun = interp1d( self.Es, self.mus, kind='cubic') # NO CAN DO... DUE TO OSCILATIONS IT DOES NOT YIELD THE CORRECT RESULT #fun = interp1d( self.Es, self.mus, kind='linear') #mu = fun(energy) # Linear spline interpolation, self-implemented for i in range(len(self.Es)-1)[::-1]: if energy - self.Es[i] >= 0: break mu = self.mus[i] + (energy - self.Es[i]) * \ ( (self.mus[i+1] - self.mus[i]) / (self.Es[i+1] - self.Es[i]) ) # store calculated mu value and return it try: self.mu[energy] = mu except (KeyError, TypeError) as e: e = e pass return mu @staticmethod def initGroup(path): """ initiating all elemental materials in csv files in path """ try: with open('data', 'rb') as fp: data = load(fp) return data except IOError: data = {} for file_ in os.listdir( path ): if file_.endswith(".csv"): mat = Material( path + '/' + file_ ) if mat is None: print("{} failed to initialize".format(file_)) data[mat.uid] = mat return data @staticmethod def initAll(): """ initiating all elemental materials in csv files in path """ materials = { 0 : Simplemat(name = 'Vacuum', mu = 0, uid = 0) } materials.update( Material.initElementals() ) materials.update( Material.initBiotics() ) return materials @staticmethod def initElementals(): """ initiating all elemental materials in csv files in path """ return Material.initGroup(Material.elmpath) @staticmethod def initBiotics(): """ initiating all elemental materials in csv files in path """ return Material.initGroup(Material.biopath) class Simplemat(Material): """ Manual subclass of Material, are capable of returning a constant attenuation coefficient, regardless of the energy of the penetrating ray, which is the simplest modelling of a material in this regard """ def __init__(self, name, mu, uid): """ instantiate a material subclass instance """ try: self.name = name self.mu = mu self.uid = Material.uniqueid(self, uid) if self.uid == -1: raise Exception('{} does not have a new Unique ID (Z) (or has been initialized before).'.format(self.name)) except Exception as e: print(e) return def __str__(self): """ returns a string describing this material """ return self.name def getMu(self, energy): """ returns the calculated atenuation coefficient """ return self.mu if __name__ == "__main__": bigplotmaterial = Material.carbon elementals = Material.initElementals() biotics = Material.initBiotics() materials = dict(elementals) materials.update(biotics) materials[0] = Simplemat('Vacuum',0,0) elementals = [key for key in elementals.iterkeys()] biotics = [key for key in biotics.iterkeys()] print(elementals) print(biotics) for key, value in materials.iteritems() : print(key, value) from matplotlib import pyplot as plt i = 0 for key in elementals+biotics: if i % 6 == 0: plt.figure() plt.suptitle('Linear attenuation coefficients of \n'+\ 'various materials at standard densities',\ fontsize='xx-large') i = 0 i += 1 title = materials[key].name plt.subplot(3,2,i) plt.title(title, fontsize='x-large') plt.xlabel('E [MeV]', fontsize='large') plt.ylabel(' mu [1/cm]', fontsize='large') plt.loglog( materials[key].Es, materials[key].mus,\ c='r', marker='o', ls='', label='NIST datapoints') xs = logspace(-3, 1.2, num=300, base=10) ys = [materials[key].getMu(x) for x in xs] plt.loglog( xs, ys, c='b', ls='-', label='Interpolating linear splines') plt.legend(loc = 'lower left') plt.xticks([10**(-2),10]) plt.yticks([10**(-2),10]) plt.figure() plt.rc('text', usetex=True) #plt.title('Linear attenuation coefficients of Hydrogen',\ # fontsize='xx-large') title = materials[bigplotmaterial].name plt.title(title, fontsize='x-large') plt.xlabel('E [MeV]', fontsize='large') plt.ylabel(r'\mu [1/cm]', fontsize='large') plt.loglog( materials[bigplotmaterial].Es, materials[bigplotmaterial].mus,\ c='r', marker='o', ls='', label='NIST datapoints') xs = logspace(-3, 1.2, num=300, base=10) ys = [materials[bigplotmaterial].getMu(x) for x in xs] plt.loglog( xs, ys, c='b', ls='-', label='Interpolating linear splines') plt.legend(loc = 'upper right') #plt.xlim( (0.001,1) ) #plt.ylim( (0.00001,0.001)) plt.show() # creating plots to visualize comparison of attenuation coefficients #elementals = Material.initElementals() #biotics = Material.initBiotics() #materials = dict(elementals) #materials.update(biotics) #materials['Vacuum'] = Simplemat('Vacuum',0) # #xs = linspace(0.00, 120, 400) #ys1 = [materials['Blood'].getMu(x/1000) for x in xs] #ys2 = [materials['Cam'].getMu(x/1000) for x in xs] #ys3 = [materials['Oak'].getMu(x/1000) for x in xs] #ys4 = [materials['Bone'].getMu(x/1000) for x in xs] #ys5 = [materials['Air'].getMu(x/1000) for x in xs] #ys6 = [materials['Ti'].getMu(x/1000) for x in xs] #ys7 = [materials['Au'].getMu(x/1000) for x in xs] #ys8 = [materials['Fe'].getMu(x/1000) for x in xs] #ys9 = [materials['C'].getMu(x/1000) for x in xs] # #plt.figure() #plt.title('Comparison of attenuation coefficient as function of energy', fontsize='x-large') #plt.xlabel('E [keV]', fontsize='large') #plt.ylabel(r'\mu [1/cm]', fontsize='large') #plt.ylim( (-0.001,2) ) # #plt.plot(xs,ys1, '--r', label='Blood') #plt.plot(xs,ys2, '--m', label='Cam') #plt.plot(xs,ys3, '--g', label='Oak') #plt.plot(xs,ys4, '--b', label='Bone') #plt.plot(xs,ys5, '--k', label='Air') #plt.legend(loc = 'upper right') # # #plt.figure() #plt.title('Comparison of attenuation coefficient as function of energy', fontsize='x-large') #plt.xlabel('E [keV]', fontsize='large') #plt.ylabel(r'\mu [1/cm]', fontsize='large') #plt.ylim( (-0.001,50e5) ) #plt.xlim( (-0.001,40) ) # #plt.plot(xs,ys4, '--c', label='Bone') #plt.plot(xs,ys9, '--k', label='Carbon') #plt.plot(xs,ys6, '--r', label='Titanium') #plt.plot(xs,ys8, '--b', label='Iron') #plt.plot(xs,ys7, '--y', label='Gold') #plt.legend(loc = 'right')
apache-2.0
hdmetor/scikit-learn
examples/ensemble/plot_forest_importances.py
241
1761
""" ========================================= Feature importances with forests of trees ========================================= This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(10): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(10), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(10), indices) plt.xlim([-1, 10]) plt.show()
bsd-3-clause
pllim/astropy
astropy/visualization/wcsaxes/tests/test_frame.py
11
5290
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np import matplotlib.pyplot as plt from astropy.wcs import WCS from astropy.visualization.wcsaxes import WCSAxes from astropy.visualization.wcsaxes.frame import BaseFrame from astropy.tests.image_tests import IMAGE_REFERENCE_DIR from .test_images import BaseImageTests class HexagonalFrame(BaseFrame): spine_names = 'abcdef' def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() ymid = 0.5 * (ymin + ymax) xmid1 = (xmin + xmax) / 4. xmid2 = (xmin + xmax) * 3. / 4. self['a'].data = np.array(([xmid1, ymin], [xmid2, ymin])) self['b'].data = np.array(([xmid2, ymin], [xmax, ymid])) self['c'].data = np.array(([xmax, ymid], [xmid2, ymax])) self['d'].data = np.array(([xmid2, ymax], [xmid1, ymax])) self['e'].data = np.array(([xmid1, ymax], [xmin, ymid])) self['f'].data = np.array(([xmin, ymid], [xmid1, ymin])) class TestFrame(BaseImageTests): @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_custom_frame(self): wcs = WCS(self.msx_header) fig = plt.figure(figsize=(4, 4)) ax = WCSAxes(fig, [0.15, 0.15, 0.7, 0.7], wcs=wcs, frame_class=HexagonalFrame) fig.add_axes(ax) ax.coords.grid(color='white') im = ax.imshow(np.ones((149, 149)), vmin=0., vmax=2., origin='lower', cmap=plt.cm.gist_heat) minpad = {} minpad['a'] = minpad['d'] = 1 minpad['b'] = minpad['c'] = minpad['e'] = minpad['f'] = 2.75 ax.coords['glon'].set_axislabel("Longitude", minpad=minpad) ax.coords['glon'].set_axislabel_position('ad') ax.coords['glat'].set_axislabel("Latitude", minpad=minpad) ax.coords['glat'].set_axislabel_position('bcef') ax.coords['glon'].set_ticklabel_position('ad') ax.coords['glat'].set_ticklabel_position('bcef') # Set limits so that no labels overlap ax.set_xlim(5.5, 100.5) ax.set_ylim(5.5, 110.5) # Clip the image to the frame im.set_clip_path(ax.coords.frame.patch) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_update_clip_path_rectangular(self, tmpdir): fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], aspect='equal') fig.add_axes(ax) ax.set_xlim(0., 2.) ax.set_ylim(0., 2.) # Force drawing, which freezes the clip path returned by WCSAxes fig.savefig(tmpdir.join('nothing').strpath) ax.imshow(np.zeros((12, 4))) ax.set_xlim(-0.5, 3.5) ax.set_ylim(-0.5, 11.5) ax.coords[0].set_auto_axislabel(False) ax.coords[1].set_auto_axislabel(False) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_update_clip_path_nonrectangular(self, tmpdir): fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], aspect='equal', frame_class=HexagonalFrame) fig.add_axes(ax) ax.set_xlim(0., 2.) ax.set_ylim(0., 2.) # Force drawing, which freezes the clip path returned by WCSAxes fig.savefig(tmpdir.join('nothing').strpath) ax.imshow(np.zeros((12, 4))) ax.set_xlim(-0.5, 3.5) ax.set_ylim(-0.5, 11.5) return fig @pytest.mark.remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, tolerance=0, style={}) def test_update_clip_path_change_wcs(self, tmpdir): # When WCS is changed, a new frame is created, so we need to make sure # that the path is carried over to the new frame. fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], aspect='equal') fig.add_axes(ax) ax.set_xlim(0., 2.) ax.set_ylim(0., 2.) # Force drawing, which freezes the clip path returned by WCSAxes fig.savefig(tmpdir.join('nothing').strpath) ax.reset_wcs() ax.imshow(np.zeros((12, 4))) ax.set_xlim(-0.5, 3.5) ax.set_ylim(-0.5, 11.5) ax.coords[0].set_auto_axislabel(False) ax.coords[1].set_auto_axislabel(False) return fig def test_copy_frame_properties_change_wcs(self): # When WCS is changed, a new frame is created, so we need to make sure # that the color and linewidth are transferred over fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) fig.add_axes(ax) ax.coords.frame.set_linewidth(5) ax.coords.frame.set_color('purple') ax.reset_wcs() assert ax.coords.frame.get_linewidth() == 5 assert ax.coords.frame.get_color() == 'purple'
bsd-3-clause
pmyates/plutokore
scripts/generate_pluto_input_data.py
1
7662
#!/usr/bin/env python3 # system import os import sys # utilities from numba import jit from pathlib import Path import h5py from IPython.display import display,clear_output from datetime import date # science imports import numpy as np import scipy.interpolate import scipy.integrate from scipy.integrate import trapz # matplotlib imports import matplotlib as mpl import matplotlib.pyplot as plot # astropy imports from astropy.table import Table from astropy import units as u # Astropy units from astropy import cosmology as cosmo # Astropy cosmology from astropy import constants as const # Astropy constants from astropy.convolution import convolve, Gaussian2DKernel # Astropy convolutions # plutokore if os.path.exists(os.path.expanduser('~/plutokore')): sys.path.append(os.path.expanduser('~/plutokore')) else: sys.path.append(os.path.expanduser('~/uni/plutokore')) import plutokore as pk import plutokore.radio as radio from plutokore.jet import UnitValues unit_length = 1 * u.kpc unit_density = (0.60364 * u.u / (u.cm ** 3)).to(u.g / u.cm ** 3) unit_speed = const.c unit_time = (unit_length / unit_speed).to(u.Myr) unit_pressure = (unit_density * (unit_speed ** 2)).to(u.Pa) unit_mass = (unit_density * (unit_length ** 3)).to(u.kg) unit_energy = (unit_mass * (unit_length**2) / (unit_time**2)).to(u.J) uv = UnitValues( density=unit_density, length=unit_length, time=unit_time, mass=unit_mass, pressure=unit_pressure, energy=unit_energy, speed=unit_speed, ) def write_pluto_grid_information(*, grid_fname, dimensions, geometry, grid_list, extra_info = None): """ Writes out a PLUTO grid file in the same format as grid.out, for the given grid information Parameters ---------- grid_fname : str The grid filename dimensions : int The number of grid dimensions [1, 2, or 3] geometry : str The grid geometry [CARTESIAN, SPHERICAL, CYLINDRICAL, or POLAR] grid_list : List[1D numpy.ndarray] A list of n numpy arrays for an n-dimensional grid, where each numpy array contains the cell edges in that coordinate extra_info : List[str] A list of extra information that will be printed to the grid.out file """ # check arguments if dimensions not in [1, 2, 3]: raise Exception('Invalid dimensions') if geometry not in ['CARTESIAN', 'SPHERICAL', 'CYLINDRICAL', 'POLAR']: raise Exception('Invalid geometry') # Write out our grid file with open(grid_fname, 'w') as f: # Write header info f.write('# ' + '*'*50 + '\n') f.write('# PLUTO 4.3 Grid File\n') f.write(f'# Manually generated on {date.today()}\n') f.write('#\n') f.write('# Info:\n') f.write('# Input data generated by python\n') f.write(f'# Endianess: {sys.byteorder}\n') if extra_info is not None: f.writelines([f'# {line}\n' for line in extra_info]) f.write('#\n') f.write(f'# DIMENSIONS: {dimensions}\n') f.write(f'# GEOMETRY: {geometry}\n') for dim in range(dimensions): f.write(f'# X{dim+1}: [ {grid_list[dim][0]}, {grid_list[dim][-1]}], {grid_list[dim].shape[0] - 1} point(s), 0 ghosts\n') f.write('# ' + '*'*50 + '\n') # Write out our grid points for dim in range(3): if (dim < dimensions): f.write(f'{grid_list[dim].shape[0] - 1}\n') for pn in np.arange(grid_list[dim].shape[0]-1) + 1: f.write(f'\t{pn}\t{grid_list[dim][pn-1]:.12e}\t{grid_list[dim][pn]:.12e}\n') else: f.write(f'{1}\n') f.write(f'\t{1}\t{0:.12e}\t{1:.12e}\n') pass def write_pluto_data(*, data_fname, data_list): """ Writes out a PLUTO data file in the same format as *.dbl, for the given variables Parameters ---------- data_fname : str The data filename (must end in .dbl) data_list : List[n-dimensional numpy.ndarray] A list of numpy arrays (one per variable) to be written out to the data file. Each numpy array should have the same dimensions as the grid, and contain the cell-centered values of that variable. """ with open(data_fname, 'w') as f: for vdata in data_list: vdata.astype(np.double).flatten(order = 'F').tofile(f) def write_pluto_initial_conditions(*, grid_fname, data_fname, grid_list, data_dict, dimensions, geometry, extra_info = None): """ Writes out PLUTO grid and data files to be used as intial conditions Parameters ---------- grid_fname : str The grid filename data_fname : str The data filename (must end in .dbl) grid_list : List[1D numpy.ndarray] A list of n numpy arrays for an n-dimensional grid, where each numpy array contains the cell edges in that coordinate data_dict : Dictionary{str, n-dimensional numpy.ndarray} A dictionary of numpy variable arrays. Each variable should have it's own entry, e.g. {'rho' : rho_numpy_array }, where the variable array should have the same dimensions as the grid, and contain the cell-centered values of that variable dimensions : int The number of grid dimensions [1, 2, or 3] geometry : str The grid geometry [CARTESIAN, SPHERICAL, CYLINDRICAL, or POLAR] extra_info : List[str] A list of extra information that will be printed to the grid.out file """ if extra_info is None: extra_info = [] write_pluto_grid_information(grid_fname = grid_fname, dimensions = dimensions, geometry = geometry, grid_list = grid_list, extra_info = extra_info + ['Variables in dbl file:'] + list(data_dict.keys())) write_pluto_data(data_fname = data_fname, data_list = list(data_dict.values())) def main(): # first we generate our data # for testing, I've created a grid ranging from -100 to 100 in each direction, with random edge sampling # note that the ex, ey, ez coordinate arrays are EDGES nx, ny, nz = (101, 51, 201) ex = np.sort(np.random.uniform(low = -55, high = 55, size = nx)) ey = np.sort(np.random.uniform(low = -55, high = 55, size = ny)) ez = np.sort(np.random.uniform(low = -55, high = 55, size = nz)) # now we create our midpoint arrays mx = (np.diff(ex)*0.5) + ex[:-1] my = (np.diff(ey)*0.5) + ey[:-1] mz = (np.diff(ez)*0.5) + ez[:-1] print(mx.shape) # let's generate some sort of density data # first we create our meshgrid # note the 'ij' indexing - THIS IS IMPORTANT. Need to use this if working in 3D mesh_x,mesh_y,mesh_z = np.meshgrid(mx, my, mz, indexing = 'ij') # create our radius array r = np.sqrt(mesh_x**2 + mesh_y**2 + mesh_z**2) # create our density array rho = 1 * np.power(1 + (r/144), -3/2 * 0.5) # for fun, let's also create a vx3 velocity array that is proportional to the current radius vx3 = r * 1e-5 # now we save our data write_pluto_initial_conditions(grid_fname = 'simple-3D.grid.out', data_fname = 'simple-3D.dbl', grid_list = [ex, ey, ez], data_dict = {'rho': rho, 'vx3': vx3}, dimensions = 3, geometry = 'CARTESIAN') f,a = plot.subplots() a.pcolormesh(mx, mz, rho[:,0,:].T) plot.show() if __name__ == "__main__": main()
gpl-3.0
leesavide/pythonista-docs
Documentation/matplotlib/examples/misc/svg_filter_line.py
9
2145
""" Demonstrate SVG filtering effects which might be used with mpl. Note that the filtering effects are only effective if your svg rederer support it. """ from __future__ import print_function import matplotlib matplotlib.use("Svg") import matplotlib.pyplot as plt import matplotlib.transforms as mtransforms fig1 = plt.figure() ax = fig1.add_axes([0.1, 0.1, 0.8, 0.8]) # draw lines l1, = ax.plot([0.1, 0.5, 0.9], [0.1, 0.9, 0.5], "bo-", mec="b", lw=5, ms=10, label="Line 1") l2, = ax.plot([0.1, 0.5, 0.9], [0.5, 0.2, 0.7], "rs-", mec="r", lw=5, ms=10, color="r", label="Line 2") for l in [l1, l2]: # draw shadows with same lines with slight offset and gray colors. xx = l.get_xdata() yy = l.get_ydata() shadow, = ax.plot(xx, yy) shadow.update_from(l) # adjust color shadow.set_color("0.2") # adjust zorder of the shadow lines so that it is drawn below the # original lines shadow.set_zorder(l.get_zorder()-0.5) # offset transform ot = mtransforms.offset_copy(l.get_transform(), fig1, x=4.0, y=-6.0, units='points') shadow.set_transform(ot) # set the id for a later use shadow.set_gid(l.get_label()+"_shadow") ax.set_xlim(0., 1.) ax.set_ylim(0., 1.) # save the figure as a string in the svg format. from StringIO import StringIO f = StringIO() plt.savefig(f, format="svg") import xml.etree.cElementTree as ET # filter definition for a gaussian blur filter_def = """ <defs xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'> <filter id='dropshadow' height='1.2' width='1.2'> <feGaussianBlur result='blur' stdDeviation='3'/> </filter> </defs> """ # read in the saved svg tree, xmlid = ET.XMLID(f.getvalue()) # insert the filter definition in the svg dom tree. tree.insert(0, ET.XML(filter_def)) for l in [l1, l2]: # pick up the svg element with given id shadow = xmlid[l.get_label()+"_shadow"] # apply shdow filter shadow.set("filter",'url(#dropshadow)') fn = "svg_filter_line.svg" print("Saving '%s'" % fn) ET.ElementTree(tree).write(fn)
apache-2.0
M4rtinK/pyside-bb10
doc/inheritance_diagram.py
10
12497
# -*- coding: utf-8 -*- r""" sphinx.ext.inheritance_diagram ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Defines a docutils directive for inserting inheritance diagrams. Provide the directive with one or more classes or modules (separated by whitespace). For modules, all of the classes in that module will be used. Example:: Given the following classes: class A: pass class B(A): pass class C(A): pass class D(B, C): pass class E(B): pass .. inheritance-diagram: D E Produces a graph like the following: A / \ B C / \ / E D The graph is inserted as a PNG+image map into HTML and a PDF in LaTeX. :copyright: Copyright 2007-2011 by the Sphinx team, see AUTHORS. :copyright: Copyright 2010-2011 by the PySide team. :license: BSD, see LICENSE for details. """ import os import re import sys import inspect try: from hashlib import md5 except ImportError: from md5 import md5 from docutils import nodes from docutils.parsers.rst import directives from sphinx.ext.graphviz import render_dot_html, render_dot_latex from sphinx.util.compat import Directive class_sig_re = re.compile(r'''^([\w.]*\.)? # module names (\w+) \s* $ # class/final module name ''', re.VERBOSE) class InheritanceException(Exception): pass class InheritanceGraph(object): """ Given a list of classes, determines the set of classes that they inherit from all the way to the root "object", and then is able to generate a graphviz dot graph from them. """ def __init__(self, class_names, currmodule, show_builtins=False, parts=0): """ *class_names* is a list of child classes to show bases from. If *show_builtins* is True, then Python builtins will be shown in the graph. """ self.class_names = class_names classes = self._import_classes(class_names, currmodule) self.class_info = self._class_info(classes, show_builtins, parts) if not self.class_info: raise InheritanceException('No classes found for ' 'inheritance diagram') def _import_class_or_module(self, name, currmodule): """ Import a class using its fully-qualified *name*. """ try: path, base = class_sig_re.match(name).groups() except (AttributeError, ValueError): raise InheritanceException('Invalid class or module %r specified ' 'for inheritance diagram' % name) fullname = (path or '') + base path = (path and path.rstrip('.') or '') # two possibilities: either it is a module, then import it try: __import__(fullname) todoc = sys.modules[fullname] except ImportError: # else it is a class, then import the module if not path: if currmodule: # try the current module path = currmodule else: raise InheritanceException( 'Could not import class %r specified for ' 'inheritance diagram' % base) try: __import__(path) todoc = getattr(sys.modules[path], base) except (ImportError, AttributeError): raise InheritanceException( 'Could not import class or module %r specified for ' 'inheritance diagram' % (path + '.' + base)) # If a class, just return it if inspect.isclass(todoc): return [todoc] elif inspect.ismodule(todoc): classes = [] for cls in todoc.__dict__.values(): if inspect.isclass(cls) and cls.__module__ == todoc.__name__: classes.append(cls) return classes raise InheritanceException('%r specified for inheritance diagram is ' 'not a class or module' % name) def _import_classes(self, class_names, currmodule): """Import a list of classes.""" classes = [] for name in class_names: classes.extend(self._import_class_or_module(name, currmodule)) return classes def _class_info(self, classes, show_builtins, parts): """Return name and bases for all classes that are ancestors of *classes*. *parts* gives the number of dotted name parts that is removed from the displayed node names. """ all_classes = {} builtins = __builtins__.values() def recurse(cls): if not show_builtins and cls in builtins: return nodename = self.class_name(cls, parts) fullname = self.class_name(cls, 0) baselist = [] all_classes[cls] = (nodename, fullname, baselist) for base in cls.__bases__: if not show_builtins and base in builtins: continue if base.__name__ == "Object" and base.__module__ == "Shiboken": continue baselist.append(self.class_name(base, parts)) if base not in all_classes: recurse(base) for cls in classes: recurse(cls) return all_classes.values() def class_name(self, cls, parts=0): """Given a class object, return a fully-qualified name. This works for things I've tested in matplotlib so far, but may not be completely general. """ module = cls.__module__ if module == '__builtin__': fullname = cls.__name__ else: fullname = '%s.%s' % (module, cls.__name__) if parts == 0: return fullname name_parts = fullname.split('.') return '.'.join(name_parts[-parts:]) def get_all_class_names(self): """ Get all of the class names involved in the graph. """ return [fullname for (_, fullname, _) in self.class_info] # These are the default attrs for graphviz default_graph_attrs = { 'rankdir': 'LR', 'size': '"8.0, 12.0"', } default_node_attrs = { 'shape': 'box', 'fontsize': 10, 'height': 0.25, 'fontname': 'Vera Sans, DejaVu Sans, Liberation Sans, ' 'Arial, Helvetica, sans', 'style': '"setlinewidth(0.5)"', } default_edge_attrs = { 'arrowsize': 0.5, 'style': '"setlinewidth(0.5)"', } def _format_node_attrs(self, attrs): return ','.join(['%s=%s' % x for x in attrs.items()]) def _format_graph_attrs(self, attrs): return ''.join(['%s=%s;\n' % x for x in attrs.items()]) def generate_dot(self, name, urls={}, env=None, graph_attrs={}, node_attrs={}, edge_attrs={}): """ Generate a graphviz dot graph from the classes that were passed in to __init__. *name* is the name of the graph. *urls* is a dictionary mapping class names to HTTP URLs. *graph_attrs*, *node_attrs*, *edge_attrs* are dictionaries containing key/value pairs to pass on as graphviz properties. """ g_attrs = self.default_graph_attrs.copy() n_attrs = self.default_node_attrs.copy() e_attrs = self.default_edge_attrs.copy() g_attrs.update(graph_attrs) n_attrs.update(node_attrs) e_attrs.update(edge_attrs) if env: g_attrs.update(env.config.inheritance_graph_attrs) n_attrs.update(env.config.inheritance_node_attrs) e_attrs.update(env.config.inheritance_edge_attrs) res = [] res.append('digraph %s {\n' % name) res.append(self._format_graph_attrs(g_attrs)) for name, fullname, bases in self.class_info: # Write the node this_node_attrs = n_attrs.copy() url = urls.get(fullname) if url is not None: this_node_attrs['URL'] = '"%s"' % url res.append(' "%s" [%s];\n' % (name, self._format_node_attrs(this_node_attrs))) # Write the edges for base_name in bases: res.append(' "%s" -> "%s" [%s];\n' % (base_name, name, self._format_node_attrs(e_attrs))) res.append('}\n') return ''.join(res) class inheritance_diagram(nodes.General, nodes.Element): """ A docutils node to use as a placeholder for the inheritance diagram. """ pass class InheritanceDiagram(Directive): """ Run when the inheritance_diagram directive is first encountered. """ has_content = False required_arguments = 1 optional_arguments = 0 final_argument_whitespace = True option_spec = { 'parts': directives.nonnegative_int, } def run(self): node = inheritance_diagram() node.document = self.state.document env = self.state.document.settings.env class_names = self.arguments[0].split() class_role = env.get_domain('py').role('class') # Store the original content for use as a hash node['parts'] = self.options.get('parts', 0) node['content'] = ', '.join(class_names) # Create a graph starting with the list of classes try: graph = InheritanceGraph( class_names, env.temp_data.get('py:module'), parts=node['parts']) except InheritanceException, err: return [node.document.reporter.warning(err.args[0], line=self.lineno)] # Create xref nodes for each target of the graph's image map and # add them to the doc tree so that Sphinx can resolve the # references to real URLs later. These nodes will eventually be # removed from the doctree after we're done with them. for name in graph.get_all_class_names(): refnodes, x = class_role( 'class', ':class:`%s`' % name, name, 0, self.state) node.extend(refnodes) # Store the graph object so we can use it to generate the # dot file later node['graph'] = graph return [node] def get_graph_hash(node): return md5(node['content'] + str(node['parts'])).hexdigest()[-10:] def html_visit_inheritance_diagram(self, node): """ Output the graph for HTML. This will insert a PNG with clickable image map. """ graph = node['graph'] graph_hash = get_graph_hash(node) name = 'inheritance%s' % graph_hash # Create a mapping from fully-qualified class names to URLs. urls = {} for child in node: if child.get('refuri') is not None: urls[child['reftitle']] = child.get('refuri') elif child.get('refid') is not None: urls[child['reftitle']] = '#' + child.get('refid') dotcode = graph.generate_dot(name, urls, env=self.builder.env) render_dot_html(self, node, dotcode, [], 'inheritance', 'inheritance', alt='Inheritance diagram of ' + node['content']) raise nodes.SkipNode def latex_visit_inheritance_diagram(self, node): """ Output the graph for LaTeX. This will insert a PDF. """ graph = node['graph'] graph_hash = get_graph_hash(node) name = 'inheritance%s' % graph_hash dotcode = graph.generate_dot(name, env=self.builder.env, graph_attrs={'size': '"6.0,6.0"'}) render_dot_latex(self, node, dotcode, [], 'inheritance') raise nodes.SkipNode def skip(self, node): raise nodes.SkipNode def setup(app): app.setup_extension('sphinx.ext.graphviz') app.add_node( inheritance_diagram, latex=(latex_visit_inheritance_diagram, None), html=(html_visit_inheritance_diagram, None), text=(skip, None), man=(skip, None)) app.add_directive('inheritance-diagram', InheritanceDiagram) app.add_config_value('inheritance_graph_attrs', {}, False), app.add_config_value('inheritance_node_attrs', {}, False), app.add_config_value('inheritance_edge_attrs', {}, False),
lgpl-2.1
dsquareindia/scikit-learn
sklearn/linear_model/bayes.py
4
19796
""" Various bayesian regression """ from __future__ import print_function # Authors: V. Michel, F. Pedregosa, A. Gramfort # License: BSD 3 clause from math import log import numpy as np from scipy import linalg from .base import LinearModel from ..base import RegressorMixin from ..utils.extmath import fast_logdet, pinvh from ..utils import check_X_y ############################################################################### # BayesianRidge regression class BayesianRidge(LinearModel, RegressorMixin): """Bayesian ridge regression Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300. tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6 alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6 compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : float estimated precision of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes ----- See examples/linear_model/plot_bayesian_ridge.py for an example. References ---------- D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems, Vol. 4, No. 3, 1992. R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15 Their beta is our self.alpha_ Their alpha is our self.lambda_ """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the model Parameters ---------- X : numpy array of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples] Target values Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X) self.X_offset_ = X_offset_ self.X_scale_ = X_scale_ n_samples, n_features = X.shape # Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = 1. verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S ** 2 # Convergence loop of the bayesian ridge regression for iter_ in range(self.n_iter): # Compute mu and sigma # sigma_ = lambda_ / alpha_ * np.eye(n_features) + np.dot(X.T, X) # coef_ = sigma_^-1 * XT * y if n_samples > n_features: coef_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]) coef_ = np.dot(coef_, XT_y) if self.compute_score: logdet_sigma_ = - np.sum( np.log(lambda_ + alpha_ * eigen_vals_)) else: coef_ = np.dot(X.T, np.dot( U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T)) coef_ = np.dot(coef_, y) if self.compute_score: logdet_sigma_ = lambda_ * np.ones(n_features) logdet_sigma_[:n_samples] += alpha_ * eigen_vals_ logdet_sigma_ = - np.sum(np.log(logdet_sigma_)) # Preserve the alpha and lambda values that were used to # calculate the final coefficients self.alpha_ = alpha_ self.lambda_ = lambda_ # Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = (np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))) lambda_ = ((gamma_ + 2 * lambda_1) / (np.sum(coef_ ** 2) + 2 * lambda_2)) alpha_ = ((n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)) # Compute the objective function if self.compute_score: s = lambda_1 * log(lambda_) - lambda_2 * lambda_ s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (n_features * log(lambda_) + n_samples * log(alpha_) - alpha_ * rmse_ - (lambda_ * np.sum(coef_ ** 2)) - logdet_sigma_ - n_samples * log(2 * np.pi)) self.scores_.append(s) # Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.coef_ = coef_ sigma_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]) self.sigma_ = (1. / alpha_) * sigma_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self def predict(self, X, return_std=False): """Predict using the linear model. In addition to the mean of the predictive distribution, also its standard deviation can be returned. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. return_std : boolean, optional Whether to return the standard deviation of posterior prediction. Returns ------- y_mean : array, shape = (n_samples,) Mean of predictive distribution of query points. y_std : array, shape = (n_samples,) Standard deviation of predictive distribution of query points. """ y_mean = self._decision_function(X) if return_std is False: return y_mean else: if self.normalize: X = (X - self.X_offset_) / self.X_scale_ sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_)) return y_mean, y_std ############################################################################### # ARD (Automatic Relevance Determination) regression class ARDRegression(LinearModel, RegressorMixin): """Bayesian ARD regression. Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300 tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False. threshold_lambda : float, optional threshold for removing (pruning) weights with high precision from the computation. Default is 1.e+4. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. copy_X : boolean, optional, default True. If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes -------- See examples/linear_model/plot_ard.py for an example. References ---------- D. J. C. MacKay, Bayesian nonlinear modeling for the prediction competition, ASHRAE Transactions, 1994. R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15 Their beta is our self.alpha_ Their alpha is our self.lambda_ ARD is a little different than the slide: only dimensions/features for which self.lambda_ < self.threshold_lambda are kept and the rest are discarded. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, threshold_lambda=1.e+4, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.threshold_lambda = threshold_lambda self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the ARDRegression model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) n_samples, n_features = X.shape coef_ = np.zeros(n_features) X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X) # Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose # Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = np.ones(n_features) self.scores_ = list() coef_old_ = None # Iterative procedure of ARDRegression for iter_ in range(self.n_iter): # Compute mu and sigma (using Woodbury matrix identity) sigma_ = pinvh(np.eye(n_samples) / alpha_ + np.dot(X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1]), X[:, keep_lambda].T)) sigma_ = np.dot(sigma_, X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1])) sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1]) * X[:, keep_lambda].T, sigma_) sigma_.flat[::(sigma_.shape[1] + 1)] += 1. / lambda_[keep_lambda] coef_[keep_lambda] = alpha_ * np.dot( sigma_, np.dot(X[:, keep_lambda].T, y)) # Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)) alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) / (rmse_ + 2. * alpha_2)) # Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 # Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_))) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum()) self.scores_.append(s) # Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self def predict(self, X, return_std=False): """Predict using the linear model. In addition to the mean of the predictive distribution, also its standard deviation can be returned. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. return_std : boolean, optional Whether to return the standard deviation of posterior prediction. Returns ------- y_mean : array, shape = (n_samples,) Mean of predictive distribution of query points. y_std : array, shape = (n_samples,) Standard deviation of predictive distribution of query points. """ y_mean = self._decision_function(X) if return_std is False: return y_mean else: if self.normalize: X = (X - self.X_offset_) / self.X_scale_ X = X[:, self.lambda_ < self.threshold_lambda] sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_)) return y_mean, y_std
bsd-3-clause
balavenkatesan/yellowbrick
yellowbrick/text/tsne.py
2
12460
# yellowbrick.text.tsne # Implements TSNE visualizations of documents in 2D space. # # Author: Benjamin Bengfort <[email protected]> # Created: Mon Feb 20 06:33:29 2017 -0500 # # Copyright (C) 2016 Bengfort.com # For license information, see LICENSE.txt # # ID: tsne.py [] [email protected] $ """ Implements TSNE visualizations of documents in 2D space. """ ########################################################################## ## Imports ########################################################################## import numpy as np import matplotlib.pyplot as plt from collections import defaultdict from yellowbrick.text.base import TextVisualizer from yellowbrick.exceptions import YellowbrickValueError from yellowbrick.style.colors import resolve_colors, get_color_cycle from sklearn.manifold import TSNE from sklearn.pipeline import Pipeline from sklearn.decomposition import TruncatedSVD, PCA ########################################################################## ## Quick Methods ########################################################################## def tsne(X, y=None, ax=None, decompose='svd', decompose_by=50, classes=None, colors=None, colormap=None, **kwargs): """ Display a projection of a vectorized corpus in two dimensions using TSNE, a nonlinear dimensionality reduction method that is particularly well suited to embedding in two or three dimensions for visualization as a scatter plot. TSNE is widely used in text analysis to show clusters or groups of documents or utterances and their relative proximities. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features representing the corpus of vectorized documents to visualize with tsne. y : ndarray or Series of length n An optional array or series of target or class values for instances. If this is specified, then the points will be colored according to their class. Often cluster labels are passed in to color the documents in cluster space, so this method is used both for classification and clustering methods. ax : matplotlib axes The axes to plot the figure on. decompose : string or None A preliminary decomposition is often used prior to TSNE to make the projection faster. Specify `"svd"` for sparse data or `"pca"` for dense data. If decompose is None, the original data set will be used. decompose_by : int Specify the number of components for preliminary decomposition, by default this is 50; the more components, the slower TSNE will be. classes : list of strings The names of the classes in the target, used to create a legend. colors : list or tuple of colors Specify the colors for each individual class colormap : string or matplotlib cmap Sequential colormap for continuous target kwargs : dict Pass any additional keyword arguments to the TSNE transformer. Returns ------- ax : matplotlib axes Returns the axes that the parallel coordinates were drawn on. """ # Instantiate the visualizer visualizer = TSNEVisualizer( ax, decompose, decompose_by, classes, colors, colormap, **kwargs ) # Fit and transform the visualizer (calls draw) visualizer.fit(X, y, **kwargs) visualizer.transform(X) # Return the axes object on the visualizer return visualizer.ax ########################################################################## ## TSNEVisualizer ########################################################################## class TSNEVisualizer(TextVisualizer): """ Display a projection of a vectorized corpus in two dimensions using TSNE, a nonlinear dimensionality reduction method that is particularly well suited to embedding in two or three dimensions for visualization as a scatter plot. TSNE is widely used in text analysis to show clusters or groups of documents or utterances and their relative proximities. TSNE will return a scatter plot of the vectorized corpus, such that each point represents a document or utterance. The distance between two points in the visual space is embedded using the probability distribution of pairwise similarities in the higher dimensionality; thus TSNE shows clusters of similar documents and the relationships between groups of documents as a scatter plot. TSNE can be used with either clustering or classification; by specifying the ``classes`` argument, points will be colored based on their similar traits. For example, by passing ``cluster.labels_`` as ``y`` in ``fit()``, all points in the same cluster will be grouped together. This extends the neighbor embedding with more information about similarity, and can allow better interpretation of both clusters and classes. For more, see https://lvdmaaten.github.io/tsne/ Parameters ---------- ax : matplotlib axes The axes to plot the figure on. decompose : string or None A preliminary decomposition is often used prior to TSNE to make the projection faster. Specify `"svd"` for sparse data or `"pca"` for dense data. If decompose is None, the original data set will be used. decompose_by : int Specify the number of components for preliminary decomposition, by default this is 50; the more components, the slower TSNE will be. classes : list of strings The names of the classes in the target, used to create a legend. colors : list or tuple of colors Specify the colors for each individual class colormap : string or matplotlib cmap Sequential colormap for continuous target kwargs : dict Pass any additional keyword arguments to the TSNE transformer. """ def __init__(self, ax=None, decompose='svd', decompose_by=50, classes=None, colors=None, colormap=None, **kwargs): """ Initialize the TSNE visualizer with visual hyperparameters. """ super(TSNEVisualizer, self).__init__(ax=ax, **kwargs) # Visualizer parameters self.classes_ = classes self.n_instances_ = 0 # Visual Parameters # TODO: Only colors currently works to select the colors of classes. self.colors = colors self.colormap = colormap # TSNE Parameters self.transformer_ = self.make_transformer(decompose, decompose_by, kwargs) def make_transformer(self, decompose='svd', decompose_by=50, tsne_kwargs={}): """ Creates an internal transformer pipeline to project the data set into 2D space using TSNE, applying an pre-decomposition technique ahead of embedding if necessary. This method will reset the transformer on the class, and can be used to explore different decompositions. Parameters ---------- decompose : string or None A preliminary decomposition is often used prior to TSNE to make the projection faster. Specify `"svd"` for sparse data or `"pca"` for dense data. If decompose is None, the original data set will be used. decompose_by : int Specify the number of components for preliminary decomposition, by default this is 50; the more components, the slower TSNE will be. Returns ------- transformer : Pipeline Pipelined transformer for TSNE projections """ decompositions = { 'svd': TruncatedSVD, 'pca': PCA, } if decompose and decompose.lower() not in decompositions: raise YellowbrickValueError( "'{}' is not a valid decomposition, use {}, or None".format( decompose, ", ".join(decompositions.keys()) ) ) # Create the pipeline steps steps = [] # Add the pre-decomposition if decompose: klass = decompositions[decompose] steps.append((decompose, klass(n_components=decompose_by))) # Add the TSNE manifold steps.append(('tsne', TSNE(n_components=2, **tsne_kwargs))) # return the pipeline return Pipeline(steps) def fit(self, X, y=None, **kwargs): """ The fit method is the primary drawing input for the TSNE projection since the visualization requires both X and an optional y value. The fit method expects an array of numeric vectors, so text documents must be vectorized before passing them to this method. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features representing the corpus of vectorized documents to visualize with tsne. y : ndarray or Series of length n An optional array or series of target or class values for instances. If this is specified, then the points will be colored according to their class. Often cluster labels are passed in to color the documents in cluster space, so this method is used both for classification and clustering methods. kwargs : dict Pass generic arguments to the drawing method Returns ------- self : instance Returns the instance of the transformer/visualizer """ # If we don't have classes already stored, store them. if y and self.classes_ is None: self.classes_ = [str(label) for label in set(y)] # Fit our internal transformer and transform the data. vecs = self.transformer_.fit_transform(X) self.n_instances_ += vecs.shape[0] # Draw the vectors self.draw(vecs, y, **kwargs) # Fit always returns self. return self def draw(self, points, target=None, **kwargs): """ Called from the fit method, this method draws the TSNE scatter plot, from a set of decomposed points in 2 dimensions. This method also accepts a third dimension, target, which is used to specify the colors of each of the points. If the target is not specified, then the points are plotted as a single cloud to show similar documents. """ # Create the axis if it doesn't exist if self.ax is None: self.ax = plt.gca() # Create the color mapping for the classes. # TODO: Allow both colormap, listed colors, and palette definition # See the FeatureVisualizer for more on this. color_values = get_color_cycle() classes = self.classes_ or [None] colors = dict(zip(classes, color_values)) # Expand the points into vectors of x and y for scatter plotting, # assigning them to their label if the label has been passed in. # Additionally, filter classes not specified directly by the user. series = defaultdict(lambda: {'x':[], 'y':[]}) if self.classes_: classes = frozenset(self.classes_) if target: for label, point in zip(target, points): if self.classes_ and label not in classes: continue series[label]['x'].append(point[0]) series[label]['y'].append(point[1]) else: for x,y in points: series[None]['x'].append(x) series[None]['y'].append(y) # Plot the points for label, points in series.items(): self.ax.scatter(points['x'], points['y'], c=colors[label], alpha=0.7, label=label) def finalize(self, **kwargs): """ Finalize the drawing by adding a title and legend, and removing the axes objects that do not convey information about TNSE. """ # Add a title self.set_title( "TSNE Projection of {} Documents".format(self.n_instances_) ) # Remove the ticks self.ax.set_yticks([]) self.ax.set_xticks([]) # Add the legend outside of the figure box. if self.classes_: box = self.ax.get_position() self.ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) self.ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
apache-2.0
NunoEdgarGub1/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
85
8565
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import TempMemmap from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_lassocd_readonly_data(): n_components = 12 with TempMemmap(X) as X_read_only: dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X_read_only).transform(X_read_only) assert_array_almost_equal(np.dot(code, dico.components_), X_read_only, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
Hash--/ICRH
WEST_design/matching_double_conjugateT_VSWR_vs_Rc.py
2
4280
# -*- coding: utf-8 -*- """ Created on 27/03/2015 Matching a double conjugate-T and checking the load resilience vs the coupling resistance. @author: J.Hillairet """ import skrf as rf from antenna.conjugate_t import ConjugateT from antenna.resonant_loop import ResonantDoubleLoop from antenna.topica import * from matplotlib.pylab import * f_match = 55e6 # matching frequency z_match = [29.74 - 0*1j, 29.74 - 0*1j] # matching impedance target power_input = [1.5e6, 1.5e6] phase_input = [0.0, pi] ######## bridge = rf.io.hfss_touchstone_2_network(\ './data/Sparameters/WEST/WEST_ICRH_bridge.s3p', f_unit='MHz') impedance_transformer = rf.io.hfss_touchstone_2_network(\ './data/Sparameters/WEST/WEST_ICRH_impedance-transformer.s2p', f_unit='MHz') window = rf.io.hfss_touchstone_2_network(\ './data/Sparameters/WEST/WEST_ICRH_window.s2p', f_unit='MHz') idx_f = np.argmin(np.abs(bridge.frequency.f - f_match)) def TOPICA_2_network(filename, z0): proto9 = TopicaResult(filename, z0) # we re-set the characteristic impedance in order to match the bridge characteric impedance # TODO: for future TOPICA results, check that the CAD model characteristic impedance is coherent with the bridge model used. proto9.z0 = [z0]*4 plasma_TOPICA = proto9.to_skrf_network(bridge.frequency, name='plasma') return(plasma_TOPICA) # # RAW data from TOPICA #plasma = TOPICA_2_network('./data/TOPICA/ToreSupra_WEST/L-mode/TSproto12/Zs_TSproto12_50MHz_Profile1.txt', \ # z0=46.7) # TOPICA matrices corrected from deembedding plasma = rf.io.hfss_touchstone_2_network(\ './data/Sparameters/WEST/plasma_from_TOPICA/S_TSproto12_55MHz_Profile8.s4p') plasma.frequency = bridge.frequency plasma.s = np.tile(plasma.s, (len(plasma.frequency), 1, 1)) plasma.z0 = np.tile(plasma.z0, (len(plasma.frequency),1)) CT1 = ConjugateT(bridge, impedance_transformer, window) CT2 = ConjugateT(bridge, impedance_transformer, window) RDL = ResonantDoubleLoop(CT1, CT2, plasma) RDL.match(power_input, phase_input, f_match, z_match) # Get results act_vswr = RDL.get_vswr_active(power_input, phase_input) act_S = RDL.get_s_active(power_input, phase_input) I_plasma, V_plasma = RDL.get_currents_and_voltages(power_input, phase_input) print(RDL.get_vswr_active(power_input, phase_input)[idx_f]) # Now the antenna has been matched on a specific antenna loading, # we change this load and look to the VSWR. Rc = np.array([1.06,1.34,1.57,1.81,2.05,2.45,2.65,2.91]) VSWR = [] for idx_plasma in range(1,9): plasma = rf.io.hfss_touchstone_2_network(\ './data/Sparameters/WEST/plasma_from_TOPICA/S_TSproto12_55MHz_Profile'+str(idx_plasma)+'.s4p') plasma.frequency = bridge.frequency plasma.s = np.tile(plasma.s, (len(plasma.frequency), 1, 1)) plasma.z0 = np.tile(plasma.z0, (len(plasma.frequency),1)) _RDL = ResonantDoubleLoop(CT1, CT2, plasma, C=RDL.C) VSWR.append(_RDL.get_vswr_active(power_input, phase_input)[idx_f]) VSWR = np.array(VSWR) figure(1) clf() fill_between(Rc, VSWR[:,0], VSWR[:,1], lw=2, alpha=0.2) xlabel('Rc [$\Omega$]', fontsize=14) ylabel('VSWR', fontsize=14) grid(True) xticks(fontsize=14) yticks(fontsize=14) # Match on a different point plasma = rf.io.hfss_touchstone_2_network(\ './data/Sparameters/WEST/plasma_from_TOPICA/S_TSproto12_55MHz_Profile1.s4p') plasma.frequency = bridge.frequency plasma.s = np.tile(plasma.s, (len(plasma.frequency), 1, 1)) plasma.z0 = np.tile(plasma.z0, (len(plasma.frequency),1)) RDL = ResonantDoubleLoop(CT1, CT2, plasma) RDL.match(power_input, phase_input, f_match, z_match) VSWR = [] for idx_plasma in range(1,9): plasma = rf.io.hfss_touchstone_2_network(\ './data/Sparameters/WEST/plasma_from_TOPICA/S_TSproto12_55MHz_Profile'+str(idx_plasma)+'.s4p') plasma.frequency = bridge.frequency plasma.s = np.tile(plasma.s, (len(plasma.frequency), 1, 1)) plasma.z0 = np.tile(plasma.z0, (len(plasma.frequency),1)) _RDL = ResonantDoubleLoop(CT1, CT2, plasma, C=RDL.C) VSWR.append(_RDL.get_vswr_active(power_input, phase_input)[idx_f]) VSWR = np.array(VSWR) fill_between(Rc, VSWR[:,0], VSWR[:,1], lw=2, alpha=0.2, color='g') axhline(y=2, color='k', lw=2) savefig('WEST_ICRH_VSWR_vs_Rc_ideal_matching.png', dpi=300)
mit
amueller/pystruct
examples/plot_binary_svm.py
4
3222
""" ================== Binary SVM as SSVM ================== Example of training binary SVM using n-slack QP, 1-slack QP, SGD and SMO (libsvm). Our 1-slack QP does surprisingly well. There are many parameters to tune and we can make 1-slack as good as the rest for the price of higher runtime, we can also try to make the others faster. We don't really have a chance to beat LibSVM but that's ok ;) """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.cross_validation import train_test_split from sklearn.svm import SVC from pystruct.models import BinaryClf from pystruct.learners import (NSlackSSVM, OneSlackSSVM, SubgradientSSVM) # do a binary digit classification digits = load_digits() X, y = digits.data, digits.target # make binary task by doing odd vs even numers y = y % 2 # code as +1 and -1 y = 2 * y - 1 X /= X.max() X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) pbl = BinaryClf() n_slack_svm = NSlackSSVM(pbl, C=10, batch_size=-1) one_slack_svm = OneSlackSSVM(pbl, C=10, tol=0.1) subgradient_svm = SubgradientSSVM(pbl, C=10, learning_rate=0.1, max_iter=100, batch_size=10) # we add a constant 1 feature for the bias X_train_bias = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_test_bias = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) # n-slack cutting plane ssvm start = time() n_slack_svm.fit(X_train_bias, y_train) time_n_slack_svm = time() - start acc_n_slack = n_slack_svm.score(X_test_bias, y_test) print("Score with pystruct n-slack ssvm: %f (took %f seconds)" % (acc_n_slack, time_n_slack_svm)) ## 1-slack cutting plane ssvm start = time() one_slack_svm.fit(X_train_bias, y_train) time_one_slack_svm = time() - start acc_one_slack = one_slack_svm.score(X_test_bias, y_test) print("Score with pystruct 1-slack ssvm: %f (took %f seconds)" % (acc_one_slack, time_one_slack_svm)) # online subgradient ssvm start = time() subgradient_svm.fit(X_train_bias, y_train) time_subgradient_svm = time() - start acc_subgradient = subgradient_svm.score(X_test_bias, y_test) print("Score with pystruct subgradient ssvm: %f (took %f seconds)" % (acc_subgradient, time_subgradient_svm)) libsvm = SVC(kernel='linear', C=10) start = time() libsvm.fit(X_train, y_train) time_libsvm = time() - start acc_libsvm = libsvm.score(X_test, y_test) print("Score with sklearn and libsvm: %f (took %f seconds)" % (acc_libsvm, time_libsvm)) # plot the results fig, ax = plt.subplots(1, 2, figsize=(10, 5)) ax[0].bar(range(4), [time_n_slack_svm, time_one_slack_svm, time_subgradient_svm, time_libsvm]) ax[0].set_xticks(np.arange(4) + .5) ax[0].set_xticklabels(["n-slack", "1-slack", "subgradient", "libsvm"]) ax[0].set_ylabel("runtime (s)") ax[0].set_title("Run times") ax[1].set_title("Accuracies") ax[1].bar(range(4), [acc_n_slack, acc_one_slack, acc_subgradient, acc_libsvm]) ax[1].set_xticks(np.arange(4) + .5) ax[1].set_xticklabels(["n-slack", "1-slack", "subgradient", "libsvm"]) ax[1].set_ylim((.8, 1)) ax[1].set_ylabel("accuracy") plt.show()
bsd-2-clause
sonalranjit/GOCE_SECS-EICS
Single_grid_plotter/single_grid_plot.py
1
2806
__author__ = 'sonal' import numpy as np from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.axes_grid1 import make_axes_locatable def polar_plot(grid, col, title,filename): z = grid[:,col] plt.figure(figsize=(18,18)) ax = plt.gca() #polar projection m = Basemap(projection='npaeqd',boundinglat=30,lon_0=-100.,resolution='l') # Lambert projection #m = Basemap(width=8000000, height=8000000, resolution='l', projection='lcc',\ # lat_0=60,lon_0=-100.) m.drawcoastlines() m.drawparallels(np.arange(-80.,81,20.),labels=[1,0,0,0],fontsize=10) m.drawmeridians(np.arange(-180.,181.,20.),labels=[0,0,0,1],fontsize=10) x,y =m(grid[:,7],grid[:,6]) sc = m.scatter(x,y,s=25,c=z,marker='.',cmap=cm.jet,alpha=0.9,edgecolors='none',vmin=min(z),vmax=max(z)) #sc = m.scatter(x,y,s=abs(z)/300,c=z/300,marker=',',cmap=cm.jet,alpha=0.9,edgecolors='none') plt.title(title) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) cb1 = plt.colorbar(sc,cax=cax) if col == 11 or col == 12: cb1.set_label("mA/m",fontsize=18) else: cb1.set_label("A",fontsize=18) plt.savefig(filename,bbox_inches='tight',pad_inches=0.2) #plt.show() def filter_grid(grid,col,high,low): high_idx = np.where(grid[:,col]<high)[0] high_grid = grid[high_idx,:] low_idx = np.where(high_grid[:,col]>low)[0] fil_grid = high_grid[low_idx,:] return fil_grid asc_grid = np.loadtxt('SECS_and_EICS_GRF_asc.txt') des_grid = np.loadtxt('SECS_and_EICS_GRF_des.txt') #Ascending #Z: -30000:30000 #X: -15000:15000 #Y: -15000"15000 #Descending #X: -15000:15000 #Y: -15000:15000 #Z: -35000:35000 asc_grid_x = filter_grid(asc_grid,11,15000,-15000) asc_grid_y = filter_grid(asc_grid,12,15000,-15000) asc_grid_z = filter_grid(asc_grid,13,30000,-30000) des_grid_x = filter_grid(des_grid,11,15000,-15000) des_grid_y = filter_grid(des_grid,12,15000,-15000) des_grid_z = filter_grid(des_grid,13,30000,-30000) polar_plot(asc_grid_x,11,'EICS Along-track in GRF (Ascending)','EICS_X_GRF_asc.png') polar_plot(asc_grid_y,12,'EICS Cross-track in GRF (Ascending)','EICS_Y_GRF_asc.png') polar_plot(asc_grid_z,13,'EICS Radial-track in GRF (Ascending)','EICS_Z_GRF_asc.png') polar_plot(des_grid_x,11,'EICS Along-track in GRF (Descending)','EICS_X_GRF_des.png') polar_plot(des_grid_y,12,'EICS Cross-track in GRF (Descending)','EICS_Y_GRF_des.png') polar_plot(des_grid_z,13,'EICS Radial-track in GRF (Descending)','EICS_Z_GRF_des.png') '''plt.plot(new_grid[:,14],new_grid[:,11],'.') plt.title('EICS v component GRF Ascending Track Trace') plt.ylabel('mA/m') plt.show() #plt.savefig('SECS_GRF_asc_trace.png',bbox_inches='tight',pad_inches=0.2)'''
gpl-2.0
wagavulin/arrow
python/pyarrow/__init__.py
1
8314
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # flake8: noqa from pkg_resources import get_distribution, DistributionNotFound try: __version__ = get_distribution(__name__).version except DistributionNotFound: # package is not installed try: # This code is duplicated from setup.py to avoid a dependency on each # other. def parse_version(root): from setuptools_scm import version_from_scm import setuptools_scm.git describe = (setuptools_scm.git.DEFAULT_DESCRIBE + " --match 'apache-arrow-[0-9]*'") # Strip catchall from the commandline describe = describe.replace("--match *.*", "") version = setuptools_scm.git.parse(root, describe) if not version: return version_from_scm(root) else: return version import setuptools_scm __version__ = setuptools_scm.get_version('../', parse=parse_version) except (ImportError, LookupError): __version__ = None from pyarrow.lib import cpu_count, set_cpu_count from pyarrow.lib import (null, bool_, int8, int16, int32, int64, uint8, uint16, uint32, uint64, time32, time64, timestamp, date32, date64, float16, float32, float64, binary, string, decimal128, list_, struct, union, dictionary, field, type_for_alias, DataType, NAType, Field, Schema, schema, Array, Tensor, array, chunked_array, column, from_numpy_dtype, NullArray, NumericArray, IntegerArray, FloatingPointArray, BooleanArray, Int8Array, UInt8Array, Int16Array, UInt16Array, Int32Array, UInt32Array, Int64Array, UInt64Array, ListArray, UnionArray, BinaryArray, StringArray, FixedSizeBinaryArray, DictionaryArray, Date32Array, Date64Array, TimestampArray, Time32Array, Time64Array, Decimal128Array, StructArray, ArrayValue, Scalar, NA, BooleanValue, Int8Value, Int16Value, Int32Value, Int64Value, UInt8Value, UInt16Value, UInt32Value, UInt64Value, HalfFloatValue, FloatValue, DoubleValue, ListValue, BinaryValue, StringValue, FixedSizeBinaryValue, DecimalValue, Date32Value, Date64Value, TimestampValue) # ARROW-1683: Remove after 0.8.0? from pyarrow.lib import TimestampType # Buffers, allocation from pyarrow.lib import (Buffer, ResizableBuffer, foreign_buffer, py_buffer, compress, decompress, allocate_buffer) from pyarrow.lib import (MemoryPool, total_allocated_bytes, set_memory_pool, default_memory_pool, log_memory_allocations) from pyarrow.lib import (HdfsFile, NativeFile, PythonFile, FixedSizeBufferWriter, BufferReader, BufferOutputStream, OSFile, MemoryMappedFile, memory_map, create_memory_map, have_libhdfs, have_libhdfs3, MockOutputStream) from pyarrow.lib import (ChunkedArray, Column, RecordBatch, Table, concat_tables) from pyarrow.lib import (ArrowException, ArrowKeyError, ArrowInvalid, ArrowIOError, ArrowMemoryError, ArrowNotImplementedError, ArrowTypeError, ArrowSerializationError, PlasmaObjectExists) # Serialization from pyarrow.lib import (deserialize_from, deserialize, deserialize_components, serialize, serialize_to, read_serialized, SerializedPyObject, SerializationContext, SerializationCallbackError, DeserializationCallbackError) from pyarrow.filesystem import FileSystem, LocalFileSystem from pyarrow.hdfs import HadoopFileSystem import pyarrow.hdfs as hdfs from pyarrow.ipc import (Message, MessageReader, RecordBatchFileReader, RecordBatchFileWriter, RecordBatchStreamReader, RecordBatchStreamWriter, read_message, read_record_batch, read_schema, read_tensor, write_tensor, get_record_batch_size, get_tensor_size, open_stream, open_file, serialize_pandas, deserialize_pandas) localfs = LocalFileSystem.get_instance() from pyarrow.serialization import (default_serialization_context, register_default_serialization_handlers, register_torch_serialization_handlers) import pyarrow.types as types # Entry point for starting the plasma store def _plasma_store_entry_point(): """Entry point for starting the plasma store. This can be used by invoking e.g. ``plasma_store -s /tmp/plasma -m 1000000000`` from the command line and will start the plasma_store executable with the given arguments. """ import os import pyarrow import sys plasma_store_executable = os.path.join(pyarrow.__path__[0], "plasma_store") os.execv(plasma_store_executable, sys.argv) # ---------------------------------------------------------------------- # Deprecations from pyarrow.util import _deprecate_api # noqa frombuffer = _deprecate_api('frombuffer', 'py_buffer', py_buffer, '0.9.0') # ---------------------------------------------------------------------- # Returning absolute path to the pyarrow include directory (if bundled, e.g. in # wheels) def get_include(): """ Return absolute path to directory containing Arrow C++ include headers. Similar to numpy.get_include """ import os return os.path.join(os.path.dirname(__file__), 'include') def get_libraries(): """ Return list of library names to include in the `libraries` argument for C or Cython extensions using pyarrow """ return ['arrow_python'] def get_library_dirs(): """ Return lists of directories likely to contain Arrow C++ libraries for linking C or Cython extensions using pyarrow """ import os import sys package_cwd = os.path.dirname(__file__) library_dirs = [package_cwd] if sys.platform == 'win32': # TODO(wesm): Is this necessary, or does setuptools within a conda # installation add Library\lib to the linker path for MSVC? site_packages, _ = os.path.split(package_cwd) python_base_install, _ = os.path.split(site_packages) library_dirs.append(os.path.join(python_base_install, 'Library', 'lib')) return library_dirs
apache-2.0
Thomsen22/MissingMoney
Peak Load Reserve - 24 Bus/dayahead_optclass.py
1
10612
# Python standard modules import numpy as np import gurobipy as gb import networkx as nx from collections import defaultdict import pandas as pd import math # Own modules import data_24bus as data class expando(object): ''' # A class for Day Ahead market clearing ''' pass class DayAhead: def __init__(self): self.data = expando() self.variables = expando() self.constraints = expando() self._load_data() self._build_model() def optimize(self): self.model.optimize() m = self.model generators = self.data.generators times = self.data.times gprod = self.variables.gprod df_genprod = pd.DataFrame(index = times, data = {g: [self.variables.gprod[g,t].x for t in times] for g in generators.index}) dict_genprod = {} for t in times: for g in np.arange(len(generators.index)): dict_genprod[df_genprod.columns[g], t] = df_genprod.ix[df_genprod.index[t], df_genprod.columns[g]] hydroconstr = {} for t in times: for g in generators.index: if generators.primaryfuel[g] == 'Hydro': hydroconstr[g, t] = dict_genprod[g, t] self.constraints.hydroconstr = {} for t in times: for g in generators.index: if generators.primaryfuel[g] == "Hydro": self.constraints.hydroconstr[g, t] = m.addConstr(gprod[g, t], gb.GRB.EQUAL, hydroconstr[g, t]) self.model.update() self.model.reset() self.model.optimize() def _load_data(self): self.data.consumption = data.load() windproduction = data.windprod() self.data.windproduction = windproduction self.data.solarproduction = data.solarprod() self.data.generators = data.load_generators() self.data.network = data.load_network() self.data.nodes = self.data.network.nodes() self.data.times = np.arange(len(self.data.consumption.index)) # Consumption profile determines times self.data.country = nx.get_node_attributes(self.data.network, 'country') self.data.hydrocoeff = 0.473 # Assigning each node to a country (price-area, zone) country = nx.get_node_attributes(self.data.network, 'country') country = pd.Series(self.data.country, name='Zone') country = country.reset_index() country = country.rename(columns={'index': 'Node'}) self.data.countries = country # Using defaultdict zones_nodes = country[['Zone','Node']].values.tolist() self.data.nodes_for_zones = defaultdict(list) for Node,Zone in zones_nodes: self.data.nodes_for_zones[Node].append(Zone) # Assigning load to each node and time (and zonal consumption) times = self.data.times nodes = self.data.nodes consumption = self.data.consumption windproduction = self.data.windproduction solarproduction = self.data.solarproduction self.data.zones = ['Z1', 'Z2', 'Z3'] zones = self.data.zones self.data.nodalconsumption = {} for t in times: for n in np.arange(len(nodes)): self.data.nodalconsumption[consumption.columns[n], t] = consumption.ix[consumption.index[t], consumption.columns[n]] self.data.zonalconsumption = {} for t in times: for z in zones: self.data.zonalconsumption[z,t] = sum(self.data.nodalconsumption[n,t] for n in self.data.nodes_for_zones[z]) self.data.df_zonalconsumption = pd.DataFrame(index = times, data = {z: [self.data.zonalconsumption[z,t] for t in times] for z in zones}) self.data.windprod = {} for t in times: for n in np.arange(len(nodes)): self.data.windprod[windproduction.columns[n], t] = windproduction.ix[windproduction.index[t], windproduction.columns[n]] self.data.solarprod = {} for t in times: for n in np.arange(len(nodes)): self.data.solarprod[solarproduction.columns[n], t] = solarproduction.ix[solarproduction.index[t], solarproduction.columns[n]] self.data.generatorcost = {} for g in self.data.generators.index: self.data.generatorcost[g] = self.data.generators.lincost[g] # Returns a list where each gen is assigned to the given zone country_generator = self.data.generators[['country','name']].values.tolist() self.data.gens_for_country = defaultdict(list) for country, generator in country_generator: self.data.gens_for_country[country].append(generator) # Lines and lineinfo self.data.lines = [('Z1', 'Z2'), ('Z2', 'Z3')] self.data.lineinfo = {} self.data.lineinfo[('Z1', 'Z2')] = {'linecapacity': 875, 'x': 1, 'otherinfo': []} #875 self.data.lineinfo[('Z2', 'Z3')] = {'linecapacity': 1500, 'x': 1, 'otherinfo': []} #1500 # VOLL assigned to each time self.data.VoLL = {} for t in times: self.data.VoLL[t] = 3000 # Price cap is 3000 € in Nordpool Spot def _build_model(self): self.model = gb.Model() self._build_variables() self._build_objective() self._build_constraints() def _build_variables(self): m = self.model times = self.data.times lines = self.data.lines lineinfo = self.data.lineinfo generators = self.data.generators windproduction = self.data.windprod solarproduction = self.data.solarprod nodes_for_zones = self.data.nodes_for_zones zones = self.data.zones nodalconsumption = self.data.nodalconsumption # Capacity on generators self.variables.gprod = {} for t in times: for g in generators.index: self.variables.gprod[g, t] = m.addVar(lb = 0, ub = generators.capacity[g]) # Loadshed assigned to each zone in the system at each time self.variables.loadshed = {} for t in times: for z in zones: self.variables.loadshed[z, t] = m.addVar(lb = 0, ub = sum(nodalconsumption[n,t] for n in nodes_for_zones[z])) # Wind production assigned to each node in the system at each time self.variables.windprod = {} for t in times: for z in zones: self.variables.windprod[z, t] = m.addVar(lb = 0, ub = sum(windproduction[n,t] for n in nodes_for_zones[z])) # Solar production assigned to each node in the system at each time self.variables.solarprod = {} for t in times: for z in zones: self.variables.solarprod[z, t] = m.addVar(lb = 0, ub = sum(solarproduction[n,t] for n in nodes_for_zones[z])) # Export variable from each node at each time, (-infinity < export < infinity) self.variables.export = {} for t in times: for z in zones: self.variables.export[z, t] = m.addVar(lb = -math.inf, ub = math.inf) # The linelimits between zones are inserted self.variables.linelimit = {} for t in times: for l in lines: # New lines, check from beginning! self.variables.linelimit[l, t] = m.addVar(lb=-lineinfo[l]['linecapacity'], ub=lineinfo[l]['linecapacity']) m.update() def _build_objective(self): times = self.data.times zones = self.data.zones generators = self.data.generators loadshed = self.variables.loadshed gprod = self.variables.gprod generatorcost = self.data.generatorcost VoLL = self.data.VoLL self.model.setObjective( gb.quicksum(generatorcost[g] * gprod[g, t] for g in generators.index for t in times) + gb.quicksum(VoLL[t] * loadshed[z, t] for z in zones for t in times) ,gb.GRB.MINIMIZE) def _build_constraints(self): m = self.model times = self.data.times zones = self.data.zones lines = self.data.lines linelimit = self.variables.linelimit Load = self.data.zonalconsumption loadshed = self.variables.loadshed gprod = self.variables.gprod gens_for_country = self.data.gens_for_country export = self.variables.export windprod = self.variables.windprod solarprod = self.variables.solarprod generators = self.data.generators gprod = self.variables.gprod hydrocoeff = self.data.hydrocoeff # Power Balance constraint in each zone at each time self.constraints.powerbalance = {} for z in zones: for t in times: self.constraints.powerbalance[z, t] = m.addConstr( gb.quicksum(gprod[g, t] for g in gens_for_country[z]) + windprod[z, t] + solarprod[z, t] ,gb.GRB.EQUAL, (Load[z, t] - loadshed[z, t]) + export[z, t]) # Export constraint at each node at each time self.constraints.exporting = {} for t in times: for z in zones: self.constraints.exporting[z, t] = m.addConstr( export[z, t], gb.GRB.EQUAL, gb.quicksum(linelimit[l, t] for l in lines if l[0] == z) - gb.quicksum(linelimit[l, t] for l in lines if l[1] == z)) # Hydro constraint self.constraints.hydro = {} for g in generators.index: if generators.primaryfuel[g] == "Hydro": self.constraints.hydro[g] = m.addConstr( gb.quicksum(gprod[g, t] for t in times), gb.GRB.LESS_EQUAL, hydrocoeff * generators.capacity[g] * len(times))
gpl-3.0
NDKoehler/DataScienceBowl2017_7th_place
dsb3_networks/classification/luna_resnet2D/config.py
1
2927
from collections import defaultdict from datetime import datetime import json import tensorflow as tf import os, sys import pandas as pd #config dic H = defaultdict(lambda: None) #All possible config options: H['optimizer'] = 'MomentumOptimizer'#'RMSPropOptimizer' H['learning_rate'] = 0.001 H['momentum'] = 0.9 #0.99 H['kernel_num'] = 16 #32 H['dropout_keep_prob'] = 1.0 H['gpu_fraction'] = 0.9 H['num_classes'] = 2 H['model_name'] = 'resnet2D' H['pretrained_checkpoint_dir'] = '' H['output_dir'] = 'output_dir/gold_prio3_plane_mil0' #cross_crop_retrain_zrot H['predictions_dir'] = '' H['allow_soft_placement'] = True H['log_device_placement'] = False H['max_steps'] = 15#*2#100000 H['MOVING_AVERAGE_DECAY'] = 0.9 H['BATCH_NORM_CENTER'] = True H['BATCH_NORM_SCALE'] = True H['weights_initializer'] = 'xavier_initializer' #'xavier_initializer', 'xavier_initializer_conv2d', 'truncated_normal_initializer' H['gpus'] = [0] H['summary_step'] = 10 # list iterator #H['train_lst'] = '../data/joined/tr_concat.lst' #H['val_lst'] = '../data/multiview-2/va.lst' H['candidate_mode'] = True H['importance_sampling'] = True H['importance_dict'] = {0: 0.2, 1:1.0} #H['importance_dict'] = {0: 1.0, 1:1.0} H['train_lst'] = '../../datapipeline_final/LUNA16_0/interpolate_candidates/tr_candidates_binary.lst' #tr_candidates_binary H['val_lst'] = '../../datapipeline_final/LUNA16_0/interpolate_candidates/va_candidates_binary.lst' #va_candidates_binary # images # in_image_shapes[1:] must be equal to len of crop_before_loading_in_RAM_ZminZmaxYminYmaxXminXmax H['in_image_shape'] = [1, 64, 64, 64, 2] #256 # not working #H['crop_before_loading_in_RAM_ZminZmaxYminYmaxXminXmax'] = [False,False, False,False,False,False] # Default = False or None H['image_shape'] = [1, 3, 64, 64, 2] H['label_shape'] = [1] #256 H['batch_size'] = 32 H['plane_mil'] = False # crossed axes options - cross is centrally cropped -> layers are stacked in z-dim H['num_crossed_layers'] = 1 H['crossed_axes'] = [0,1,2] #False H['rand_drop_planes'] = 0 # y and x image_shape must be equal -> z has same shape!!! # you can crop if the equal z,y and x in image shape are and smaller than in in_image_shape #iterator settings H['load_in_ram'] = True # due to time consuming operation and quality loss only rotation around one axis is processed randomly chosen H['rand_rot_axes'] = [0]#,1,2] # 0: z, 1: y, 2: x (attention: x and y rotation lasts long) H['rand_rot'] = True H['min_rot_angle'] = -45 #degree H['max_rot_angle'] = 45 #degree H['degree_90_rot'] = True H['rand_mirror_axes'] = [0,1,2] # 0: z, 1: y, 2: x else False H['rand_cropping_ZminZmaxYminYmaxXminXmax'] = [31, 32,False,False,False,False] # crop within given range # default False: full range H['save_step'] = 3 # saving checkpoint H['tr_num_examples'] = len(pd.read_csv(H['train_lst'], header=None, sep='\t')) H['va_num_examples'] = len(pd.read_csv(H['val_lst'], header=None, sep='\t'))
mit
sichenucsd/caffe_si
examples/web_demo/app.py
10
7400
import os import time import cPickle import datetime import logging import flask import werkzeug import optparse import tornado.wsgi import tornado.httpserver import numpy as np import pandas as pd from PIL import Image as PILImage import cStringIO as StringIO import urllib import caffe import exifutil REPO_DIRNAME = os.path.abspath(os.path.dirname(__file__) + '/../..') UPLOAD_FOLDER = '/tmp/caffe_demos_uploads' ALLOWED_IMAGE_EXTENSIONS = set(['png', 'bmp', 'jpg', 'jpe', 'jpeg', 'gif']) # Obtain the flask app object app = flask.Flask(__name__) @app.route('/') def index(): return flask.render_template('index.html', has_result=False) @app.route('/classify_url', methods=['GET']) def classify_url(): imageurl = flask.request.args.get('imageurl', '') try: string_buffer = StringIO.StringIO( urllib.urlopen(imageurl).read()) image = caffe.io.load_image(string_buffer) except Exception as err: # For any exception we encounter in reading the image, we will just # not continue. logging.info('URL Image open error: %s', err) return flask.render_template( 'index.html', has_result=True, result=(False, 'Cannot open image from URL.') ) logging.info('Image: %s', imageurl) result = app.clf.classify_image(image) return flask.render_template( 'index.html', has_result=True, result=result, imagesrc=imageurl) @app.route('/classify_upload', methods=['POST']) def classify_upload(): try: # We will save the file to disk for possible data collection. imagefile = flask.request.files['imagefile'] filename_ = str(datetime.datetime.now()).replace(' ', '_') + \ werkzeug.secure_filename(imagefile.filename) filename = os.path.join(UPLOAD_FOLDER, filename_) imagefile.save(filename) logging.info('Saving to %s.', filename) image = exifutil.open_oriented_im(filename) except Exception as err: logging.info('Uploaded image open error: %s', err) return flask.render_template( 'index.html', has_result=True, result=(False, 'Cannot open uploaded image.') ) result = app.clf.classify_image(image) return flask.render_template( 'index.html', has_result=True, result=result, imagesrc=embed_image_html(image) ) def embed_image_html(image): """Creates an image embedded in HTML base64 format.""" image_pil = PILImage.fromarray((255 * image).astype('uint8')) image_pil = image_pil.resize((256, 256)) string_buf = StringIO.StringIO() image_pil.save(string_buf, format='png') data = string_buf.getvalue().encode('base64').replace('\n', '') return 'data:image/png;base64,' + data def allowed_file(filename): return ( '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_IMAGE_EXTENSIONS ) class ImagenetClassifier(object): default_args = { 'model_def_file': ( '{}/examples/imagenet/imagenet_deploy.prototxt'.format(REPO_DIRNAME)), 'pretrained_model_file': ( '{}/examples/imagenet/caffe_reference_imagenet_model'.format(REPO_DIRNAME)), 'mean_file': ( '{}/python/caffe/imagenet/ilsvrc_2012_mean.npy'.format(REPO_DIRNAME)), 'class_labels_file': ( '{}/data/ilsvrc12/synset_words.txt'.format(REPO_DIRNAME)), 'bet_file': ( '{}/data/ilsvrc12/imagenet.bet.pickle'.format(REPO_DIRNAME)), } for key, val in default_args.iteritems(): if not os.path.exists(val): raise Exception( "File for {} is missing. Should be at: {}".format(key, val)) default_args['image_dim'] = 227 default_args['gpu_mode'] = True def __init__(self, model_def_file, pretrained_model_file, mean_file, class_labels_file, bet_file, image_dim, gpu_mode=False): logging.info('Loading net and associated files...') self.net = caffe.Classifier( model_def_file, pretrained_model_file, input_scale=255, image_dims=(image_dim, image_dim), gpu=gpu_mode, mean_file=mean_file, channel_swap=(2, 1, 0) ) with open(class_labels_file) as f: labels_df = pd.DataFrame([ { 'synset_id': l.strip().split(' ')[0], 'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0] } for l in f.readlines() ]) self.labels = labels_df.sort('synset_id')['name'].values self.bet = cPickle.load(open(bet_file)) # A bias to prefer children nodes in single-chain paths # I am setting the value to 0.1 as a quick, simple model. # We could use better psychological models here... self.bet['infogain'] -= np.array(self.bet['preferences']) * 0.1 def classify_image(self, image): try: starttime = time.time() scores = self.net.predict([image], oversample=True).flatten() endtime = time.time() indices = (-scores).argsort()[:5] predictions = self.labels[indices] # In addition to the prediction text, we will also produce # the length for the progress bar visualization. meta = [ (p, '%.5f' % scores[i]) for i, p in zip(indices, predictions) ] logging.info('result: %s', str(meta)) # Compute expected information gain expected_infogain = np.dot( self.bet['probmat'], scores[self.bet['idmapping']]) expected_infogain *= self.bet['infogain'] # sort the scores infogain_sort = expected_infogain.argsort()[::-1] bet_result = [(self.bet['words'][v], '%.5f' % expected_infogain[v]) for v in infogain_sort[:5]] logging.info('bet result: %s', str(bet_result)) return (True, meta, bet_result, '%.3f' % (endtime - starttime)) except Exception as err: logging.info('Classification error: %s', err) return (False, 'Something went wrong when classifying the ' 'image. Maybe try another one?') def start_tornado(app, port=5000): http_server = tornado.httpserver.HTTPServer( tornado.wsgi.WSGIContainer(app)) http_server.listen(port) print("Tornado server starting on port {}".format(port)) tornado.ioloop.IOLoop.instance().start() def start_from_terminal(app): """ Parse command line options and start the server. """ parser = optparse.OptionParser() parser.add_option( '-d', '--debug', help="enable debug mode", action="store_true", default=False) parser.add_option( '-p', '--port', help="which port to serve content on", type='int', default=5000) opts, args = parser.parse_args() # Initialize classifier app.clf = ImagenetClassifier(**ImagenetClassifier.default_args) if opts.debug: app.run(debug=True, host='0.0.0.0', port=opts.port) else: start_tornado(app, opts.port) if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) if not os.path.exists(UPLOAD_FOLDER): os.makedirs(UPLOAD_FOLDER) start_from_terminal(app)
bsd-2-clause
Shen-Lab/cNMA
Software/helperScripts/ModeSpectrumVisualizer.py
1
17308
''' Created on Jun 2, 2014 @author: oliwa ''' import glob import argparse import sys import os import numpy as np from scriptutils import mkdir_p, customCopytree, getFullPathOfURI, makeStringEndWith, runBashCommand from prody.dynamics.functions import loadModel from collections import OrderedDict from prody.proteins.pdbfile import parsePDB, writePDB from prody.measure.measure import calcDeformVector from prody.dynamics.compare import calcOverlap from prody.dynamics.mode import Vector from prody.proteins.compare import matchTNMAChains from Hungarian import Hungarian from prody.dynamics.editing import extendModel, sliceModel import matplotlib.pyplot as plt def main(): """ Visualizes normal modes memberships of an NMA experiment in a rectangle, where columns indicate the membership (blue receptor, red ligand) and the tone of the color shows a linear relationship towards the overlap towards the true deformation vector. """ parser = argparse.ArgumentParser(description='Visualizes normal modes memberships of an NMA experiment in a rectangle, where columns indicate the membership (blue receptor, red ligand) and the tone of the color shows a linear relationship towards the overlap towards the true deformation vector.') parser.add_argument('resultsPath', help='Path to the experimental resultsfolder') parser.add_argument('--extractNPZ', action="store_true", help='The NMA models are in a *.npz.tar.gz file. If this is not set, the input is expected in a *.npz subfolder in each experiment results folder') if len(sys.argv)==1: parser.print_help() sys.exit(1) args = parser.parse_args() resultsPath = makeStringEndWith(getFullPathOfURI(args.resultsPath), "/") folders = glob.glob(resultsPath+"*") if args.extractNPZ: extractNPZs(folders) getAllModeInformation(folders, resultsPath) def getAllModeInformation(folders, resultsPath): fromMode = 12 toMode = 42 allModeMemberships = OrderedDict() allModeOverlaps = OrderedDict() for resultFolder in folders: # load models NPZfolder = glob.glob(resultFolder+"/*anms.npz")[0] NPZ_reference = glob.glob(NPZfolder+"/*reference_ANM.anm.npz")[0] NPZ_counterpart = glob.glob(NPZfolder+"/*anm_counterpart.anm.npz")[0] NPZ_complex = glob.glob(NPZfolder+"/*anm_complex.anm.npz")[0] anm_reference = loadModel(NPZ_reference) anm_counterpart = loadModel(NPZ_counterpart) anm_complex = loadModel(NPZ_complex) assert anm_reference.getArray().shape[0] + anm_counterpart.getArray().shape[0] == anm_complex.getArray().shape[0] # load resolution resolution = getResolution(folders) # load pdbs and deformation vector unboundComplex = parsePDB(glob.glob(resultFolder+"/pdbs/*ucomplex.pdb")[0]) boundComplex = parsePDB(glob.glob(resultFolder+"/pdbs/*bcomplex.pdb")[0]) overallMatchComplex = getOverallMatch(unboundComplex, boundComplex, resolution) defvec = calcDeformVector(overallMatchComplex[0], overallMatchComplex[1]) # get sliced ANM anm_complex_slc = getSlicedANM(unboundComplex, overallMatchComplex[0], anm_complex) # get mode memberships proteinTitle = os.path.basename(resultFolder) modeMemberships = getModeMemberships(anm_complex.getArray(), anm_reference.getArray().shape[0], anm_counterpart.getArray().shape[0]) allModeMemberships[proteinTitle] = modeMemberships # get mode overlaps modeOverlaps = getModeOverlaps(anm_complex_slc[0].getArray(), defvec) allModeOverlaps[proteinTitle] = modeOverlaps visualizeModeMemberships(allModeMemberships, allModeOverlaps, fromMode, toMode, resultsPath) def visualizeModeMemberships(allModeMemberships, allModeOverlaps, fromMode, toMode, resultsPath): dataMembership = None dataOverlap = None for k,v in allModeMemberships.items(): print k, v[fromMode:toMode], allModeOverlaps[k][fromMode:toMode] if dataMembership is None: dataMembership = np.array(v[fromMode:toMode]) dataOverlap = allModeOverlaps[k][fromMode:toMode] else: dataMembership = np.vstack((dataMembership, v[fromMode:toMode])) dataOverlap = np.vstack((dataOverlap, allModeOverlaps[k][fromMode:toMode])) print dataMembership print dataOverlap dataToPlot = combineMembershipAndOverlap(dataMembership, dataOverlap) dataToPlot = add1k1kVector(dataToPlot, 1.5, -1.5) print dataToPlot column_labels = allModeMemberships.keys() column_labels.append("1k1k_u") print column_labels row_labels = range(fromMode, toMode) fig, ax = plt.subplots() p = ax.pcolormesh(dataToPlot) cbar = fig.colorbar(p) cbar.set_ticks([-1.5, -0.5, 0.5, 1.5]) cbar.set_ticklabels(['L bad', 'L good', 'R good', 'R bad']) # put text labels on them # # put the major ticks at the middle of each cell, notice "reverse" use of dimension ax.set_yticks(np.arange(dataMembership.shape[0])+0.5, minor=False) ax.set_xticks(np.arange(dataMembership.shape[1])+0.5, minor=False) ax.set_xticklabels(row_labels, minor=False) ax.set_yticklabels(column_labels, minor=False) ax.xaxis.tick_top() #plt.show() plt.savefig(resultsPath+'/modeSpectrum.eps', bbox_inches='tight') plt.savefig(resultsPath+'/modeSpectrum.pdf', bbox_inches='tight') # close and reset the plot plt.clf() plt.cla() plt.close() def combineMembershipAndOverlap(dataMembership, dataOverlap): assert dataMembership.shape == dataOverlap.shape plotData = np.empty([dataMembership.shape[0], dataMembership.shape[1]]) for i in range(0, dataMembership.shape[0]): for j in range(0, dataMembership.shape[1]): if dataMembership[i][j] >= 0.0: plotData[i][j] = dataMembership[i][j] - np.abs(dataOverlap[i][j]) else: plotData[i][j] = dataMembership[i][j] + np.abs(dataOverlap[i][j]) print dataMembership[i][j], dataOverlap[i][j] return plotData def add1k1kVector(plotData, receptorValue, ligandValue): k1kArray = np.empty(plotData.shape[1]) for i in range(0, plotData.shape[1]): if i % 2 == 0: k1kArray[i] = receptorValue elif i % 2 == 1: k1kArray[i] = ligandValue plotData = np.vstack((plotData, k1kArray)) return plotData def getModeMemberships(modeArray, receptorDim, ligandDim): """ Returns the mode membership of a HC_0 model Args: modeArray: modes from a NMA in ProDy np array format (rows xyz of atoms, colums modes) receptorDim: dimension of the receptor atoms XYZs (top part of a columvector mode) ligandDim: dimension of the ligand atoms XYZs (bottom part of a columnvector mode) Returns: membership of modeArray (1.0 receptor, 0.0 ligand) """ modeMemberships = [] for mode in modeArray.T: assert np.allclose(mode[:receptorDim], 0.0) or np.allclose(mode[receptorDim:receptorDim+ligandDim], 0.0) if np.allclose(mode[:receptorDim], 0.0): modeMemberships.append(-1.5) else: modeMemberships.append(1.5) return modeMemberships def getModeOverlaps(modeArray, defvec): """ Returns the mode overals of a modeArray towards a deformation vector Args: modeArray: modes from a NMA in ProDy np array format (rows xyz of atoms, colums modes) defvec: deformation vector Returns: list with overlaps of modes towards the deformation vector """ modeOverlaps = [] defvecArray = defvec.getArray() for mode in modeArray.T: assert mode.shape == defvecArray.shape modeOverlaps.append(calcOverlap(Vector(mode), defvec)) print len(modeOverlaps) return modeOverlaps def extractNPZs(folders): """ Extract the NPZs in each folder Args: folders: path to the resultsfolders Result: extracted NPZs in each resultfolder """ for resultFolder in folders: zipFileFullPath = glob.glob(resultFolder+"/*npz.tar.gz")[0] zipFile = os.path.basename(zipFileFullPath) extractDir = zipFile[0:zipFile.rfind(".tar")] runBashCommand("mkdir "+resultFolder+"/"+extractDir) runBashCommand("tar xfz "+zipFileFullPath+" -C "+resultFolder+"/"+extractDir) def getResolution(folders): """ Get resolution (calpha, bb, all) of the experiment. It is assumed for speed purposed that all subfolders have the same resolution """ for resultFolder in folders: configFile = glob.glob(resultFolder+"/*.py")[0] whatAtomsToMatchLine = runBashCommand("grep self.whatAtomsToMatch "+configFile) return whatAtomsToMatchLine[whatAtomsToMatchLine.find("\"")+1:whatAtomsToMatchLine.rfind("\"")] def getOverallMatch(reference, mobile, subset): """ Performs a matching of chains of the two elements reference and mobile returns the matches with all atoms as specified by subset. At first, a modified version of matchChains is called that only uses the pairwise alignment matching of prody, but keeps the prody defaults of minimum seqid and overlap/coverage. - If the matches are a perfect bisection, this result is used and returned. - Else, the hungarian algorithm is called to find the optimal matches, and the result returned. In case of the hungarian algorithm, the matchChains method has been modified as follows the following addons: 1. pairwise alignment is enforced (from Bio.pairwise2) 2. pairwise alignment is the only matching algorithm, the prody first choice of mapping based on residue numbers and type is ignored 3. minimum seqid and overlap criteria are set to 0.00001, the actual matching decision will be performed by the hungarian algorithm, and pairwise alignment is only needed for the actual values of seqid and overlap to create the cost matrix of the hungarian algorithm Remarks: prepareForHungarian needs to be set to True. Otherwise, the ProDy matching sorts matched chains internally in decreasing order of sequence identity, but this order is sometimes not the order of chains in the PDB file. Args: reference: the unbound structure mobile: the bound structure subset: which matched atoms to return (calpha, bb, all ...) Returns: the overall match of chains from the given myTuple based on the Bio.pairwise2 scores and possibly the hungarian algorithm """ matches = matchTNMAChains(reference, mobile, prepareForHungarian = True, pwalign="True", subset=subset) # if the number of chains do not match, the behavior cannot be # defined at this point assert reference.numChains() == mobile.numChains() if matches is None: return doHungarianMatching(reference, mobile, subset) elif not (reference.numChains() == mobile.numChains() == len(matches)): return doHungarianMatching(reference, mobile, subset) elif not isAOnetoOneMatch(matches): return doHungarianMatching(reference, mobile, subset) else: # make overall match and return it noMatchYet = True for match in matches: ref_chain = match[0] mob_chain = match[1] if noMatchYet: overallRefMatch = ref_chain overallMobMatch = mob_chain noMatchYet = False else: overallRefMatch += ref_chain overallMobMatch += mob_chain if not noMatchYet: overallMatch = [overallRefMatch, overallMobMatch] else: overallMatch = [ref_chain, mob_chain] return overallMatch def isAOnetoOneMatch( matches): """ Return False if matches does not have a one to one match for each chain, else return True. It is assumed that len(matches) > 1 and that the number of matches equals the number of either chains. Args: matches: matches as returns by matchTNMAchains Returns: does matches contain a 1:1 perfect matching of the bisection """ baseSetUnbound = set(matches[0][0].getChids()) baseSetBound = set(matches[0][1].getChids()) assert len(baseSetUnbound) == 1, 'assert len(baseSetUnbound) == 1' assert len(baseSetBound) == 1, 'assert len(baseSetBound) == 1' for i in range(1, len(matches)): addonSetUnbound = set(matches[i][0].getChids()) addonSetBound = set(matches[i][1].getChids()) assert len(addonSetUnbound) == 1, 'assert len(addonSetUnbound) == 1' assert len(addonSetBound) == 1, 'assert len(addonSetBound) == 1' if len(baseSetUnbound.intersection(addonSetUnbound)) > 0: return False elif len(baseSetBound.intersection(addonSetBound)) > 0: return False elif len(baseSetUnbound.intersection(addonSetUnbound)) == 0: baseSetUnbound = baseSetUnbound.union(addonSetUnbound) elif len(baseSetBound.intersection(addonSetBound)) == 0: baseSetBound = baseSetBound.union(addonSetBound) else: print "**********\n\n\n set problem in isAOnetoOneMatch(...)" sys.exit() return True def doHungarianMatching(reference, mobile, subset): """ Do a chain matching with the help of the Hungarian Algorithm. Args: reference: a structure (for instance protein) to be matched mobile: another structure (of for instance the same protein in a different conformational state) to be matched subset: what atoms are considered for this matching (calpha, bb, all) Returns: object with the overall chain matchings """ print "Performing matching with the help of the Hungarian Algorithm." seqid = 0.00001 overlap = 0.00001 matches = matchTNMAChains(reference, mobile, prepareForHungarian = True, seqid=seqid, overlap=overlap, pwalign="True", subset=subset) hungarian = Hungarian() indices, matchesMatrix = hungarian.getHungarianIndices( reference.numChains(), mobile.numChains(), matches) noMatchYet = True for element in indices: ref_chain = (matchesMatrix[element[0]][element[1]])[0] mob_chain = (matchesMatrix[element[0]][element[1]])[1] if noMatchYet: overallRefMatch = ref_chain overallMobMatch = mob_chain noMatchYet = False else: overallRefMatch += ref_chain overallMobMatch += mob_chain if not noMatchYet: overallMatch = [overallRefMatch, overallMobMatch] else: overallMatch = [ref_chain, mob_chain] return overallMatch def getSlicedANM(reference, ref_chain, anm_reference): """ Get the sliced anm, given an already calculated anm_reference and matched chains """ # Extend the anm_reference on all atoms anm_reference_extend = extendModel(anm_reference, reference.select('calpha'), reference, norm=True) # Then slice the anm_reference to the matched anm_reference_slc = sliceModel(anm_reference_extend[0], anm_reference_extend[1], ref_chain.getSelstr()) # Normalize the slices anm anm_reference_slc = getNormalizedANM(anm_reference_slc) return anm_reference_slc def normalizeM(M): """ Normalize a set of modes, which are the columnvectors in M. Args: M: set of modes as columnvectors Returns: normalized (magnitude of each mode is 1) set of modes as columnvectors in M """ Mnormed = None if M.ndim == 1: modeVector = Vector(M) return modeVector.getNormed().getArray() else: for element in M.T: modeVector = Vector(element) modeNormalized = modeVector.getNormed() if Mnormed == None: Mnormed = modeNormalized.getArray() else: Mnormed = np.column_stack((Mnormed, modeNormalized.getArray())) return Mnormed def getNormalizedANM(anm): """ Normalize the modes of the anm and return this anm object Args: anm: the anm with modes calculated Returns: anm with normalized modes """ M = normalizeM(anm[0].getArray()) eigenvals = anm[0].getEigvals() anm[0].setEigens(M, eigenvals) return anm if __name__ == '__main__': main()
mit
jungla/ICOM-fluidity-toolbox
2D/U/plot_W_t_2.py
1
3591
import os, sys import vtktools import fluidity_tools import numpy as np import matplotlib as mpl mpl.use('ps') import matplotlib.pyplot as plt #label = sys.argv[1] #basename = sys.argv[2] path = '../RST/stat_files/' file1 = 'm_25_1b.stat' filepath1 = path+file1 stat1 = fluidity_tools.stat_parser(filepath1) file1b = 'm_25_1b_checkpoint.stat' filepath1b = path+file1b stat1b = fluidity_tools.stat_parser(filepath1b) #file1c = 'm_25_1b_checkpoint_2.stat' #filepath1c = path+file1c #stat1c = fluidity_tools.stat_parser(filepath1c) file2 = 'm_25_2b.stat' filepath2 = path+file2 stat2 = fluidity_tools.stat_parser(filepath2) file2b = 'm_25_2b_checkpoint.stat' filepath2b = path+file2b stat2b = fluidity_tools.stat_parser(filepath2b) file2c = 'm_25_2b_checkpoint_2.stat' filepath2c = path+file2c stat2c = fluidity_tools.stat_parser(filepath2c) #file2d = 'm_25_2_512_checkpoint_2.stat' #filepath2d = path+file2d #stat2d = fluidity_tools.stat_parser(filepath2d) time1 = stat1["ElapsedTime"]["value"]/86400.0 time1b = stat1b["ElapsedTime"]["value"]/86400.0 #time1c = stat1c["ElapsedTime"]["value"]/86400.0 time2 = stat2["ElapsedTime"]["value"]/86400.0 time2b = stat2b["ElapsedTime"]["value"]/86400.0 time2c = stat2c["ElapsedTime"]["value"]/86400.0 #time2d = stat2d["ElapsedTime"]["value"]/86400.0 Vel1 = stat1["BoussinesqFluid"]["Velocity_CG%3"]["l2norm"] Vel1b = stat1b["BoussinesqFluid"]["Velocity_CG%3"]["l2norm"] #Vel1c = stat1c["BoussinesqFluid"]["Velocity_CG%3"]["l2norm"] Vel2 = stat2["BoussinesqFluid"]["Velocity_CG%3"]["l2norm"] Vel2b = stat2b["BoussinesqFluid"]["Velocity_CG%3"]["l2norm"] Vel2c = stat2c["BoussinesqFluid"]["Velocity_CG%3"]["l2norm"] #Vel2d = stat2d["BoussinesqFluid"]["Velocity_CG%3"]["l2norm"] Vel1 = Vel1[np.where(time1<time1b[0])] time1 = time1[np.where(time1<time1b[0])] Vel1 = np.hstack((Vel1,Vel1b)) time1 = np.hstack((time1,time1b)) #Vel1 = Vel1[np.where(time1<time1c[0])] #time1 = time1[np.where(time1<time1c[0])] #Vel1 = np.hstack((Vel1,Vel1c)) #time1 = np.hstack((time1,time1c)) Vel2 = Vel2[np.where(time2<time2b[0])] time2 = time2[np.where(time2<time2b[0])] Vel2 = np.hstack((Vel2,Vel2b)) time2 = np.hstack((time2,time2b)) Vel2 = Vel2[np.where(time2<time2c[0])] time2 = time2[np.where(time2<time2c[0])] Vel2 = np.hstack((Vel2,Vel2c)) time2 = np.hstack((time2,time2c)) #Vel2 = Vel2[np.where(time2<time2d[0])] #time2 = time2[np.where(time2<time2d[0])] #Vel2 = np.hstack((Vel2,Vel2d)) #time2 = np.hstack((time2,time2d)) dayf = np.min((len(time1),len(time2))) Vel1a = Vel1#[:dayf] Vel2a = Vel2#[:dayf] T1 = len(time1) T2 = len(time2) # volume V1 = 4883616 #8000.0*8000.0*50 #270030 #135015 #1120*244 #*10000.0*4000.0*50 V2 = 4883616 #8000.0*8000.0*50 #168660 #84330 #1280*240 #*8000.0*8000.0*50 # plot KE fig = plt.figure(figsize=(6,3)) #T10, = plt.plot(time0[np.where(time0<=4)], Vel0a[np.where(time0<=4)]/V, 'r-',linewidth=1.5) TB25, = plt.plot(time1[np.where(time1<=9)], Vel1a[np.where(time1<=9)]/V1, 'r',linewidth=1.5) TBW25, = plt.plot(time2[np.where(time2<=9)], Vel2a[np.where(time2<=9)]/V2, 'b',linewidth=1.5) #plt.ylim([0.0014, 0.00142]) plt.xlim([0, 13]) plt.xticks(np.linspace(0,9,10),np.linspace(0,9,10).astype(int)) plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.plot([3,3],[0,6e-9],'k--') #plt.xlim([0.920, 0.980]) plt.legend([TB25,TBW25],['$B$','$BW$']) #plt.legend([TB25],['$B25_m$']) #plt.plot(time1, KE1/V, 'k',linewidth=1.5) plt.xlabel("Time $[days]$",fontsize=18) plt.ylabel("mean |W| $[ms^{-1}]$",fontsize=18) plt.tight_layout() plt.savefig('./plot/W_t.eps') plt.close() print 'saved '+'./plot/W_t.eps'
gpl-2.0
tillahoffmann/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/pandas_io.py
92
4535
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Methods to allow pandas.DataFrame.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.estimator.inputs.pandas_io import pandas_input_fn as core_pandas_input_fn try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False PANDAS_DTYPES = { 'int8': 'int', 'int16': 'int', 'int32': 'int', 'int64': 'int', 'uint8': 'int', 'uint16': 'int', 'uint32': 'int', 'uint64': 'int', 'float16': 'float', 'float32': 'float', 'float64': 'float', 'bool': 'i' } def pandas_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=True, queue_capacity=1000, num_threads=1, target_column='target'): """This input_fn diffs from the core version with default `shuffle`.""" return core_pandas_input_fn(x=x, y=y, batch_size=batch_size, shuffle=shuffle, num_epochs=num_epochs, queue_capacity=queue_capacity, num_threads=num_threads, target_column=target_column) def extract_pandas_data(data): """Extract data from pandas.DataFrame for predictors. Given a DataFrame, will extract the values and cast them to float. The DataFrame is expected to contain values of type int, float or bool. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values as floats. Raises: ValueError: if data contains types other than int, float or bool. """ if not isinstance(data, pd.DataFrame): return data bad_data = [column for column in data if data[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return data.values.astype('float') else: error_report = [("'" + str(column) + "' type='" + data[column].dtype.name + "'") for column in bad_data] raise ValueError('Data types for extracting pandas data must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) def extract_pandas_matrix(data): """Extracts numpy matrix from pandas DataFrame. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values. """ if not isinstance(data, pd.DataFrame): return data return data.as_matrix() def extract_pandas_labels(labels): """Extract data from pandas.DataFrame for labels. Args: labels: `pandas.DataFrame` or `pandas.Series` containing one column of labels to be extracted. Returns: A numpy `ndarray` of labels from the DataFrame. Raises: ValueError: if more than one column is found or type is not int, float or bool. """ if isinstance(labels, pd.DataFrame): # pandas.Series also belongs to DataFrame if len(labels.columns) > 1: raise ValueError('Only one column for labels is allowed.') bad_data = [column for column in labels if labels[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return labels.values else: error_report = ["'" + str(column) + "' type=" + str(labels[column].dtype.name) for column in bad_data] raise ValueError('Data types for extracting labels must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) else: return labels
apache-2.0
imaculate/scikit-learn
sklearn/datasets/svmlight_format.py
19
16759
"""This module implements a loader and dumper for the svmlight format This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. """ # Authors: Mathieu Blondel <[email protected]> # Lars Buitinck # Olivier Grisel <[email protected]> # License: BSD 3 clause from contextlib import closing import io import os.path import numpy as np import scipy.sparse as sp from ._svmlight_format import _load_svmlight_file from .. import __version__ from ..externals import six from ..externals.six import u, b from ..externals.six.moves import range, zip from ..utils import check_array from ..utils.fixes import frombuffer_empty def load_svmlight_file(f, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load datasets in the svmlight / libsvm format into sparse CSR matrix This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. Parsing a text based source can be expensive. When working on repeatedly on the same dataset, it is recommended to wrap this loader with joblib.Memory.cache to store a memmapped backup of the CSR results of the first call and benefit from the near instantaneous loading of memmapped structures for the subsequent calls. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. This implementation is written in Cython and is reasonably fast. However, a faster API-compatible loader is also available at: https://github.com/mblondel/svmlight-loader Parameters ---------- f : {str, file-like, int} (Path to) a file to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. A file-like or file descriptor will not be closed by this function. A file-like object must be opened in binary mode. n_features : int or None The number of features to use. If None, it will be inferred. This argument is useful to load several files that are subsets of a bigger sliced dataset: each subset might not have examples of every feature, hence the inferred shape might vary from one slice to another. multilabel : boolean, optional, default False Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based : boolean or "auto", optional, default "auto" Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id : boolean, default False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- X: scipy.sparse matrix of shape (n_samples, n_features) y: ndarray of shape (n_samples,), or, in the multilabel a list of tuples of length n_samples. query_id: array of shape (n_samples,) query_id for each sample. Only returned when query_id is set to True. See also -------- load_svmlight_files: similar function for loading multiple files in this format, enforcing the same number of features/columns on all of them. Examples -------- To use joblib.Memory to cache the svmlight file:: from sklearn.externals.joblib import Memory from sklearn.datasets import load_svmlight_file mem = Memory("./mycache") @mem.cache def get_data(): data = load_svmlight_file("mysvmlightfile") return data[0], data[1] X, y = get_data() """ return tuple(load_svmlight_files([f], n_features, dtype, multilabel, zero_based, query_id)) def _gen_open(f): if isinstance(f, int): # file descriptor return io.open(f, "rb", closefd=False) elif not isinstance(f, six.string_types): raise TypeError("expected {str, int, file-like}, got %s" % type(f)) _, ext = os.path.splitext(f) if ext == ".gz": import gzip return gzip.open(f, "rb") elif ext == ".bz2": from bz2 import BZ2File return BZ2File(f, "rb") else: return open(f, "rb") def _open_and_load(f, dtype, multilabel, zero_based, query_id): if hasattr(f, "read"): actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # XXX remove closing when Python 2.7+/3.1+ required else: with closing(_gen_open(f)) as f: actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # convert from array.array, give data the right dtype if not multilabel: labels = frombuffer_empty(labels, np.float64) data = frombuffer_empty(data, actual_dtype) indices = frombuffer_empty(ind, np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) # never empty query = frombuffer_empty(query, np.intc) data = np.asarray(data, dtype=dtype) # no-op for float{32,64} return data, indices, indptr, labels, query def load_svmlight_files(files, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load dataset from multiple files in SVMlight format This function is equivalent to mapping load_svmlight_file over a list of files, except that the results are concatenated into a single, flat list and the samples vectors are constrained to all have the same number of features. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. Parameters ---------- files : iterable over {str, file-like, int} (Paths of) files to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. File-likes and file descriptors will not be closed by this function. File-like objects must be opened in binary mode. n_features: int or None The number of features to use. If None, it will be inferred from the maximum column index occurring in any of the files. This can be set to a higher value than the actual number of features in any of the input files, but setting it to a lower value will cause an exception to be raised. multilabel: boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based: boolean or "auto", optional Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id: boolean, defaults to False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- [X1, y1, ..., Xn, yn] where each (Xi, yi) pair is the result from load_svmlight_file(files[i]). If query_id is set to True, this will return instead [X1, y1, q1, ..., Xn, yn, qn] where (Xi, yi, qi) is the result from load_svmlight_file(files[i]) Notes ----- When fitting a model to a matrix X_train and evaluating it against a matrix X_test, it is essential that X_train and X_test have the same number of features (X_train.shape[1] == X_test.shape[1]). This may not be the case if you load the files individually with load_svmlight_file. See also -------- load_svmlight_file """ r = [_open_and_load(f, dtype, multilabel, bool(zero_based), bool(query_id)) for f in files] if (zero_based is False or zero_based == "auto" and all(np.min(tmp[1]) > 0 for tmp in r)): for ind in r: indices = ind[1] indices -= 1 n_f = max(ind[1].max() for ind in r) + 1 if n_features is None: n_features = n_f elif n_features < n_f: raise ValueError("n_features was set to {}," " but input file contains {} features" .format(n_features, n_f)) result = [] for data, indices, indptr, y, query_values in r: shape = (indptr.shape[0] - 1, n_features) X = sp.csr_matrix((data, indices, indptr), shape) X.sort_indices() result += X, y if query_id: result.append(query_values) return result def _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id): X_is_sp = int(hasattr(X, "tocsr")) y_is_sp = int(hasattr(y, "tocsr")) if X.dtype.kind == 'i': value_pattern = u("%d:%d") else: value_pattern = u("%d:%.16g") if y.dtype.kind == 'i': label_pattern = u("%d") else: label_pattern = u("%.16g") line_pattern = u("%s") if query_id is not None: line_pattern += u(" qid:%d") line_pattern += u(" %s\n") if comment: f.write(b("# Generated by dump_svmlight_file from scikit-learn %s\n" % __version__)) f.write(b("# Column indices are %s-based\n" % ["zero", "one"][one_based])) f.write(b("#\n")) f.writelines(b("# %s\n" % line) for line in comment.splitlines()) for i in range(X.shape[0]): if X_is_sp: span = slice(X.indptr[i], X.indptr[i + 1]) row = zip(X.indices[span], X.data[span]) else: nz = X[i] != 0 row = zip(np.where(nz)[0], X[i, nz]) s = " ".join(value_pattern % (j + one_based, x) for j, x in row) if multilabel: if y_is_sp: nz_labels = y[i].nonzero()[1] else: nz_labels = np.where(y[i] != 0)[0] labels_str = ",".join(label_pattern % j for j in nz_labels) else: if y_is_sp: labels_str = label_pattern % y.data[i] else: labels_str = label_pattern % y[i] if query_id is not None: feat = (labels_str, query_id[i], s) else: feat = (labels_str, s) f.write((line_pattern % feat).encode('ascii')) def dump_svmlight_file(X, y, f, zero_based=True, comment=None, query_id=None, multilabel=False): """Dump the dataset in svmlight / libsvm file format. This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : {array-like, sparse matrix}, shape = [n_samples (, n_labels)] Target values. Class labels must be an integer or float, or array-like objects of integer or float for multilabel classifications. f : string or file-like in binary mode If string, specifies the path that will contain the data. If file-like, data will be written to f. f should be opened in binary mode. zero_based : boolean, optional Whether column indices should be written zero-based (True) or one-based (False). comment : string, optional Comment to insert at the top of the file. This should be either a Unicode string, which will be encoded as UTF-8, or an ASCII byte string. If a comment is given, then it will be preceded by one that identifies the file as having been dumped by scikit-learn. Note that not all tools grok comments in SVMlight files. query_id : array-like, shape = [n_samples] Array containing pairwise preference constraints (qid in svmlight format). multilabel: boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) .. versionadded:: 0.17 parameter *multilabel* to support multilabel datasets. """ if comment is not None: # Convert comment string to list of lines in UTF-8. # If a byte string is passed, then check whether it's ASCII; # if a user wants to get fancy, they'll have to decode themselves. # Avoid mention of str and unicode types for Python 3.x compat. if isinstance(comment, bytes): comment.decode("ascii") # just for the exception else: comment = comment.encode("utf-8") if six.b("\0") in comment: raise ValueError("comment string contains NUL byte") yval = check_array(y, accept_sparse='csr', ensure_2d=False) if sp.issparse(yval): if yval.shape[1] != 1 and not multilabel: raise ValueError("expected y of shape (n_samples, 1)," " got %r" % (yval.shape,)) else: if yval.ndim != 1 and not multilabel: raise ValueError("expected y of shape (n_samples,), got %r" % (yval.shape,)) Xval = check_array(X, accept_sparse='csr') if Xval.shape[0] != yval.shape[0]: raise ValueError("X.shape[0] and y.shape[0] should be the same, got" " %r and %r instead." % (Xval.shape[0], yval.shape[0])) # We had some issues with CSR matrices with unsorted indices (e.g. #1501), # so sort them here, but first make sure we don't modify the user's X. # TODO We can do this cheaper; sorted_indices copies the whole matrix. if yval is y and hasattr(yval, "sorted_indices"): y = yval.sorted_indices() else: y = yval if hasattr(y, "sort_indices"): y.sort_indices() if Xval is X and hasattr(Xval, "sorted_indices"): X = Xval.sorted_indices() else: X = Xval if hasattr(X, "sort_indices"): X.sort_indices() if query_id is not None: query_id = np.asarray(query_id) if query_id.shape[0] != y.shape[0]: raise ValueError("expected query_id of shape (n_samples,), got %r" % (query_id.shape,)) one_based = not zero_based if hasattr(f, "write"): _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id) else: with open(f, "wb") as f: _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id)
bsd-3-clause