repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
PatrickOReilly/scikit-learn
examples/mixture/plot_bayesian_gaussian_mixture.py
2
4427
""" ====================================================== Bayesian Gaussian Mixture Concentration Prior Analysis ====================================================== Plot the resulting ellipsoids of a mixture of three Gaussians with variational Bayesian Gaussian Mixture for three different values on the prior the dirichlet concentration. For all models, the Variationnal Bayesian Gaussian Mixture adapts its number of mixture automatically. The parameter `dirichlet_concentration_prior` has a direct link with the resulting number of components. Specifying a high value of `dirichlet_concentration_prior` leads more often to uniformly-sized mixture components, while specifying small (under 0.1) values will lead to some mixture components getting almost all the points while most mixture components will be centered on just a few of the remaining points. """ # Author: Thierry Guillemot <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from sklearn.mixture import BayesianGaussianMixture print(__doc__) def plot_ellipses(ax, weights, means, covars): for n in range(means.shape[0]): v, w = np.linalg.eigh(covars[n][:2, :2]) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v = 2 * np.sqrt(2) * np.sqrt(v) ell = mpl.patches.Ellipse(means[n, :2], v[0], v[1], 180 + angle) ell.set_clip_box(ax.bbox) ell.set_alpha(weights[n]) ax.add_artist(ell) def plot_results(ax1, ax2, estimator, dirichlet_concentration_prior, X, y, plot_title=False): estimator.dirichlet_concentration_prior = dirichlet_concentration_prior estimator.fit(X) ax1.set_title("Bayesian Gaussian Mixture for " r"$dc_0=%.1e$" % dirichlet_concentration_prior) # ax1.axis('equal') ax1.scatter(X[:, 0], X[:, 1], s=5, marker='o', color=colors[y], alpha=0.8) ax1.set_xlim(-2., 2.) ax1.set_ylim(-3., 3.) ax1.set_xticks(()) ax1.set_yticks(()) plot_ellipses(ax1, estimator.weights_, estimator.means_, estimator.covariances_) ax2.get_xaxis().set_tick_params(direction='out') ax2.yaxis.grid(True, alpha=0.7) for k, w in enumerate(estimator.weights_): ax2.bar(k - .45, w, width=0.9, color='royalblue', zorder=3) ax2.text(k, w + 0.007, "%.1f%%" % (w * 100.), horizontalalignment='center') ax2.set_xlim(-.6, 2 * n_components - .4) ax2.set_ylim(0., 1.1) ax2.tick_params(axis='y', which='both', left='off', right='off', labelleft='off') ax2.tick_params(axis='x', which='both', top='off') if plot_title: ax1.set_ylabel('Estimated Mixtures') ax2.set_ylabel('Weight of each component') # Parameters random_state = 2 n_components, n_features = 3, 2 colors = np.array(['mediumseagreen', 'royalblue', 'r', 'gold', 'orchid', 'indigo', 'darkcyan', 'tomato']) dirichlet_concentration_prior = np.logspace(-3, 3, 3) covars = np.array([[[.7, .0], [.0, .1]], [[.5, .0], [.0, .1]], [[.5, .0], [.0, .1]]]) samples = np.array([200, 500, 200]) means = np.array([[.0, -.70], [.0, .0], [.0, .70]]) # Here we put beta_prior to 0.8 to minimize the influence of the prior for this # dataset estimator = BayesianGaussianMixture(n_components=2 * n_components, init_params='random', max_iter=1500, mean_precision_prior=.8, tol=1e-9, random_state=random_state) # Generate data rng = np.random.RandomState(random_state) X = np.vstack([ rng.multivariate_normal(means[j], covars[j], samples[j]) for j in range(n_components)]) y = np.concatenate([j * np.ones(samples[j], dtype=int) for j in range(n_components)]) # Plot Results plt.figure(figsize=(4.7 * 3, 8)) plt.subplots_adjust(bottom=.04, top=0.95, hspace=.05, wspace=.05, left=.03, right=.97) gs = gridspec.GridSpec(3, len(dirichlet_concentration_prior)) for k, dc in enumerate(dirichlet_concentration_prior): plot_results(plt.subplot(gs[0:2, k]), plt.subplot(gs[2, k]), estimator, dc, X, y, plot_title=k == 0) plt.show()
bsd-3-clause
ai-se/Transfer-Learning
src/planners/plan.py
1
3609
import os import sys # Update path root = os.path.join(os.getcwd().split('src')[0], 'src') if root not in sys.path: sys.path.append(root) import pandas as pd from pdb import set_trace from tools.decision_tree import DecisionTree from utils.misc_utils import flatten from utils.experiment_utils import Changes from utils.file_util import list2dataframe from random import uniform, random as rand class Plan: def __init__(self, trainDF, testDF, tree=None, config=False): self.trainDF = trainDF self.testDF = testDF self.tree = tree self.change = [] def leaves(self, node): """ Returns all terminal nodes. """ L = [] if len(node.kids) > 1: for l in node.kids: L.extend(self.leaves(l)) return L elif len(node.kids) == 1: return [node.kids] else: return [node] def find(self, testInst, t): if len(t.kids) == 0: return t for kid in t.kids: try: if kid.val[0] <= testInst[kid.f].values[0] < kid.val[1]: return self.find(testInst, kid) elif kid.val[1] == testInst[kid.f].values[0] == \ self.trainDF.describe()[kid.f]['max']: return self.find(testInst, kid) except: return self.find(testInst, kid) return t @staticmethod def howfar(me, other): # set_trace() common = [a[0] for a in me.branch if a[0] in [o[0] for o in other.branch]] return len(me.branch) - len(common) def patchIt(self, testInst, config=False): C = Changes() # Record changes testInst = pd.DataFrame(testInst).transpose() current = self.find(testInst, self.tree) node = current while node.lvl > -1: node = node.up # Move to tree root leaves = flatten([self.leaves(_k) for _k in node.kids]) try: if self.config: best = sorted([l for l in leaves if l.score <= 0.9 * current.score], key=lambda F: self.howfar(current, F))[0] else: best = \ sorted( [l for l in leaves if l.score == 0 ], key=lambda F: self.howfar(current, F))[0] # set_trace() except: return testInst.values.tolist()[0] def new(old, range): rad = abs(min(range[1] - old, old - range[1])) return abs(range[0]), abs(range[1]) # return uniform(range[0], range[1]) for ii in best.branch: before = testInst[ii[0]] if not ii in current.branch: then = testInst[ii[0]].values[0] now = ii[1] if self.config else new(testInst[ii[0]].values[0], ii[1]) # print(now) testInst[ii[0]] = str(now) # C.save(name=ii[0], old=then, new=now) testInst[testInst.columns[-1]] = 1 # self.change.append(C.log) return testInst.values.tolist()[0] def transfrom(self): newRows = [] for n in range(self.testDF.shape[0]): if self.testDF.iloc[n][-1] > 0 or self.testDF.iloc[n][-1] == True: newRows.append(self.patchIt(self.testDF.iloc[n])) else: newRows.append(self.testDF.iloc[n].values.tolist()) return pd.DataFrame(newRows, columns=self.testDF.columns)
unlicense
murali-munna/scikit-learn
sklearn/semi_supervised/tests/test_label_propagation.py
307
1974
""" test the label propagation module """ import nose import numpy as np from sklearn.semi_supervised import label_propagation from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal ESTIMATORS = [ (label_propagation.LabelPropagation, {'kernel': 'rbf'}), (label_propagation.LabelPropagation, {'kernel': 'knn', 'n_neighbors': 2}), (label_propagation.LabelSpreading, {'kernel': 'rbf'}), (label_propagation.LabelSpreading, {'kernel': 'knn', 'n_neighbors': 2}) ] def test_fit_transduction(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) nose.tools.assert_equal(clf.transduction_[2], 1) def test_distribution(): samples = [[1., 0.], [0., 1.], [1., 1.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) if parameters['kernel'] == 'knn': continue # unstable test; changes in k-NN ordering break it assert_array_almost_equal(clf.predict_proba([[1., 0.0]]), np.array([[1., 0.]]), 2) else: assert_array_almost_equal(np.asarray(clf.label_distributions_[2]), np.array([.5, .5]), 2) def test_predict(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_equal(clf.predict([[0.5, 2.5]]), np.array([1])) def test_predict_proba(): samples = [[1., 0.], [0., 1.], [1., 2.5]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_almost_equal(clf.predict_proba([[1., 1.]]), np.array([[0.5, 0.5]]))
bsd-3-clause
stefanseibert/DataMining
experiment01/report/Skripts/energyPrediction.py
2
2528
import pandas from sklearn import svm, cross_validation, feature_selection from numpy import * import matplotlib.pyplot as plt NUM_CLUSTER = 4 ENERGYFORMS = ['Oil', 'Gas', 'Coal', 'Nuclear', 'Hydro'] TARGET = ['CO2Emm'] NUM_ENERGYFORMS = len(ENERGYFORMS) def crossValidateRegression(X, y, C, epsilon): svr = svm.SVR(kernel='linear', C=C, epsilon=epsilon) crossValidator = cross_validation.KFold(NUM_COUNTRYS, n_folds = 10) cross_validation.cross_val_score(svr, X, y, cv=crossValidator, scoring='mean_squared_error') svr.fit(X, y) predictedTargetInfo = svr.predict(X) return predictedTargetInfo def getMae(actual, predicted): return sum(abs(actual - predicted))/len(actual) def plot(actual, predicted, C, epsilon, mae, colors=['g', 'r']): plt.figure() plt.plot(actual, color=colors[0], label='actual') plt.plot(predicted, color=colors[1], label='predicted') plt.legend() plt.annotate("C = "+str(C), xy=(2.5,7500)) plt.annotate(u'\u03B5'+" = "+unicode(epsilon), xy=(2.5,7100)) plt.annotate("MAE = " + str(mae), xy=(2.5,6700)) plt.show() def getInfo(actual, predicted, indices): frame = pandas.DataFrame(data=actual, index=indices, columns=['actual']) frame['predicted'] = pandas.Series(data=predicted, index=indices) frame['difference'] = actual - predicted return frame energyInfo = pandas.read_csv('../resources/EnergyMixGeo.csv') reducedEnergyInfo = energyInfo[ENERGYFORMS] targetInfo = energyInfo[TARGET].values[:,0] NUM_COUNTRYS = len(reducedEnergyInfo.values) NUM_ITERATIONS = 4 C=[float(10)**-x for x in range(NUM_ITERATIONS)] epsilon=[float(10)**-x for x in range(1,NUM_ITERATIONS+1)] for i in range(NUM_ITERATIONS): predictedTargetInfo = crossValidateRegression(reducedEnergyInfo, targetInfo, C[i], epsilon[i]) mae = getMae(targetInfo, predictedTargetInfo) print "\nMean Absolute Error: " + str(mae) + ", C = " + str(C[i]) + ", epsilon = " + str(epsilon[i]) #plot(targetInfo, predictedTargetInfo, C, epsilon, mae) #print getInfo(targetInfo, predictedTargetInfo, energyInfo.Country.values) #Mean Absolute Error: 0.119938469138, C = 1, epsilon = 0.01 #Mean Absolute Error: 0.119995514827, C = 1, epsilon = 0.001 #Mean Absolute Error: 0.119986240023, C = 1, epsilon = 0.0001 #Mean Absolute Error: 0.124915412379, C = 1.0, epsilon = 0.1 #Mean Absolute Error: 0.119776387503, C = 0.1, epsilon = 0.01 #Mean Absolute Error: 0.11925998931, C = 0.01, epsilon = 0.001 #Mean Absolute Error: 64.9026381798, C = 0.001, epsilon = 0.0001
mit
Gljivius/SemSegmentacijaUtakmice
SemSegmentacija/eval_helper.py
2
4934
import os import numpy as np import matplotlib #matplotlib.use('TkAgg') import matplotlib.pyplot as plt import skimage as ski import skimage.io def draw_output(y, class_colors, save_path): width = y.shape[1] height = y.shape[0] y_rgb = np.empty((height, width, 3), dtype=np.uint8) for cid in range(len(class_colors)): cpos = np.repeat((y == cid).reshape((height, width, 1)), 3, axis=2) cnum = cpos.sum() // 3 y_rgb[cpos] = np.array(class_colors[cid][:3] * cnum, dtype=np.uint8) #pixels = y_rgb[[np.repeat(np.equal(y, cid).reshape((height, width, 1)), 3, axis=2)] #if pixels.size > 0: # #pixels.reshape((-1, 3))[:,:] = class_colors[cid][:3] # #pixels.resize((int(pixels.size/3), 3)) # print(np.array(class_colors[cid][:3] * (pixels.size // 3), dtype=np.uint8)) # pixels = np.array(class_colors[cid][:3] * (pixels.size // 3), dtype=np.uint8) #y_rgb[np.repeat(np.equal(y, cid).reshape((height, width, 1)), 3, axis=2)].reshape((-1, 3)) = \ # class_colors[cid][:3] ski.io.imsave(save_path, y_rgb) def collect_confusion_matrix(y, yt, conf_mat): for i in range(y.size): l = y[i] lt = yt[i] if lt >= 0: conf_mat[l,lt] += 1 def compute_errors(conf_mat, name, class_info, verbose=True): num_correct = conf_mat.trace() num_classes = conf_mat.shape[0] total_size = conf_mat.sum() avg_pixel_acc = num_correct / total_size * 100.0 TPFN = conf_mat.sum(0) TPFP = conf_mat.sum(1) FN = TPFN - conf_mat.diagonal() FP = TPFP - conf_mat.diagonal() class_iou = np.zeros(num_classes) class_recall = np.zeros(num_classes) class_precision = np.zeros(num_classes) if verbose: print(name + ' errors:') for i in range(num_classes): TP = conf_mat[i,i] class_iou[i] = (TP / (TP + FP[i] + FN[i])) * 100.0 if TPFN[i] > 0: class_recall[i] = (TP / TPFN[i]) * 100.0 else: class_recall[i] = 0 if TPFP[i] > 0: class_precision[i] = (TP / TPFP[i]) * 100.0 else: class_precision[i] = 0 class_name = class_info[i][3] if verbose: print('\t%s IoU accuracy = %.2f %%' % (class_name, class_iou[i])) avg_class_iou = class_iou.mean() avg_class_recall = class_recall.mean() avg_class_precision = class_precision.mean() if verbose: print(name + ' pixel accuracy = %.2f %%' % avg_pixel_acc) print(name + ' IoU mean class accuracy - TP / (TP+FN+FP) = %.2f %%' % avg_class_iou) print(name + ' mean class recall - TP / (TP+FN) = %.2f %%' % avg_class_recall) print(name + ' mean class precision - TP / (TP+FP) = %.2f %%' % avg_class_precision) return avg_pixel_acc, avg_class_iou, avg_class_recall, avg_class_precision, total_size def plot_training_progress(save_dir, loss, iou, pixel_acc): fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(16,8)) linewidth = 2 legend_size = 6 title_size = 10 train_color = 'm' val_color = 'c' x_data = np.linspace(1, len(loss[0]), len(loss[0])) ax1.set_title('cross entropy loss', fontsize=title_size) ax1.plot(x_data, loss[0], marker='o', color=train_color, linewidth=linewidth, linestyle='-', \ label='train') ax1.plot(x_data, loss[1], marker='o', color=val_color, linewidth=linewidth, linestyle='-', label='validation') ax1.legend(loc='upper right', fontsize=legend_size) ax2.set_title('IoU accuracy') ax2.plot(x_data, iou[0], marker='o', color=train_color, linewidth=linewidth, linestyle='-', label='train') ax2.plot(x_data, iou[1], marker='o', color=val_color, linewidth=linewidth, linestyle='-', label='validation') ax2.legend(loc='upper left', fontsize=legend_size) ax3.set_title('pixel accuracy') ax3.plot(x_data, pixel_acc[0], marker='o', color=train_color, linewidth=linewidth, linestyle='-', label='train') ax3.plot(x_data, pixel_acc[1], marker='o', color=val_color, linewidth=linewidth, linestyle='-', label='validation') ax3.legend(loc='upper left', fontsize=legend_size) #ax4.set_title('') #plt.figure(fig.number) #plt.clf() #plt.plot(x_data, data, 'b-') #plt.axis([0, 6, 0, 20]) #plt.show() #plt.draw() #plt.show(block=False) #plt.savefig('training_plot.pdf', bbox_inches='tight') save_path = os.path.join(save_dir, 'training_plot.pdf') print('Plotting in: ', save_path) plt.savefig(save_path) def map_cityscapes_to_kitti(y, id_map): y_kitti = np.zeros(y.shape, dtype=y.dtype) for i in range(len(id_map)): #print(i , ' --> ', id_map[i]) #print(np.equal(y, i).sum(), '\n') #print('sum') #print(y[np.equal(y, i)].sum()) y_kitti[np.equal(y, i)] = id_map[i] #print(np.equal(y, id_map[i]).sum()) #y[np.equal(y, i)] = 2 #print(y[np.equal(y, i)].sum()) return y_kitti #def plot_accuracy(fig, data): # x_data = np.linspace(1, len(data), len(data)) # plt.figure(fig.number) # plt.clf() # plt.plot(x_data, data, 'b-') # plt.savefig(str(fig.number) + '_plot.pdf', bbox_inches='tight')
bsd-3-clause
jseabold/statsmodels
statsmodels/tsa/base/prediction.py
4
6163
import pandas as pd import numpy as np from scipy import stats class PredictionResults(object): """ Prediction results Parameters ---------- predicted_mean : {ndarray, Series, DataFrame} The predicted mean values var_pred_mean : {ndarray, Series, DataFrame} The variance of the predicted mean values dist : {None, "norm", "t", rv_frozen} The distribution to use when constructing prediction intervals. Default is normal. df : int, optional The degree of freedom parameter for the t. Not used if dist is None, "norm" or a callable. row_labels : {Sequence[Hashable], pd.Index} Row labels to use for the summary frame. If None, attempts to read the index of ``predicted_mean`` """ def __init__( self, predicted_mean, var_pred_mean, dist=None, df=None, row_labels=None, ): self._predicted_mean = np.asarray(predicted_mean) self._var_pred_mean = np.asarray(var_pred_mean) self._df = df self._row_labels = row_labels if row_labels is None: self._row_labels = getattr(predicted_mean, "index", None) self._use_pandas = self._row_labels is not None if dist != "t" and df is not None: raise ValueError('df must be None when dist is not "t"') if dist is None or dist == "norm": self.dist = stats.norm self.dist_args = () elif dist == "t": self.dist = stats.t self.dist_args = (self._df,) elif isinstance(dist, stats.distributions.rv_frozen): self.dist = dist self.dist_args = () else: raise ValueError('dist must be a None, "norm", "t" or a callable.') def _wrap_pandas(self, value, name=None, columns=None): if not self._use_pandas: return value if value.ndim == 1: return pd.Series(value, index=self._row_labels, name=name) return pd.DataFrame(value, index=self._row_labels, columns=columns) @property def row_labels(self): """The row labels used in pandas-types.""" return self._row_labels @property def predicted_mean(self): """The predicted mean""" return self._wrap_pandas(self._predicted_mean, "predicted_mean") @property def var_pred_mean(self): """The variance of the predicted mean""" if self._var_pred_mean.ndim > 2: return self._var_pred_mean return self._wrap_pandas(self._var_pred_mean, "var_pred_mean") @property def se_mean(self): """The standard deviation of the predicted mean""" ndim = self._var_pred_mean.ndim if ndim == 1: values = np.sqrt(self._var_pred_mean) elif ndim == 3: values = np.sqrt(self._var_pred_mean.T.diagonal()) else: raise NotImplementedError("var_pre_mean must be 1 or 3 dim") return self._wrap_pandas(values, "mean_se") @property def tvalues(self): """The ratio of the predicted mean to its standard deviation""" val = self.predicted_mean / self.se_mean if isinstance(val, pd.Series): val.name = "tvalues" return val def t_test(self, value=0, alternative="two-sided"): """ z- or t-test for hypothesis that mean is equal to value Parameters ---------- value : array_like value under the null hypothesis alternative : str 'two-sided', 'larger', 'smaller' Returns ------- stat : ndarray test statistic pvalue : ndarray p-value of the hypothesis test, the distribution is given by the attribute of the instance, specified in `__init__`. Default if not specified is the normal distribution. """ # assumes symmetric distribution stat = (self.predicted_mean - value) / self.se_mean if alternative in ["two-sided", "2-sided", "2s"]: pvalue = self.dist.sf(np.abs(stat), *self.dist_args) * 2 elif alternative in ["larger", "l"]: pvalue = self.dist.sf(stat, *self.dist_args) elif alternative in ["smaller", "s"]: pvalue = self.dist.cdf(stat, *self.dist_args) else: raise ValueError("invalid alternative") return stat, pvalue def conf_int(self, alpha=0.05): """ Confidence interval construction for the predicted mean. This is currently only available for t and z tests. Parameters ---------- alpha : float, optional The significance level for the prediction interval. The default `alpha` = .05 returns a 95% confidence interval. Returns ------- pi : {ndarray, DataFrame} The array has the lower and the upper limit of the prediction interval in the columns. """ se = self.se_mean q = self.dist.ppf(1 - alpha / 2.0, *self.dist_args) lower = self.predicted_mean - q * se upper = self.predicted_mean + q * se ci = np.column_stack((lower, upper)) if self._use_pandas: return self._wrap_pandas(ci, columns=["lower", "upper"]) return ci def summary_frame(self, alpha=0.05): """ Summary frame of mean, variance and confidence interval. Returns ------- DataFrame DataFrame containing four columns: * mean * mean_se * mean_ci_lower * mean_ci_upper Notes ----- Fixes alpha to 0.05 so that the confidence interval should have 95% coverage. """ ci_mean = np.asarray(self.conf_int(alpha=alpha)) lower, upper = ci_mean[:, 0], ci_mean[:, 1] to_include = { "mean": self.predicted_mean, "mean_se": self.se_mean, "mean_ci_lower": lower, "mean_ci_upper": upper, } return pd.DataFrame(to_include)
bsd-3-clause
Myasuka/scikit-learn
sklearn/cross_validation.py
96
58309
""" The :mod:`sklearn.cross_validation` module includes utilities for cross- validation and performance evaluation. """ # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]>, # Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings from itertools import chain, combinations from math import ceil, floor, factorial import numbers import time from abc import ABCMeta, abstractmethod import numpy as np import scipy.sparse as sp from .base import is_classifier, clone from .utils import indexable, check_random_state, safe_indexing from .utils.validation import (_is_arraylike, _num_samples, check_array, column_or_1d) from .utils.multiclass import type_of_target from .externals.joblib import Parallel, delayed, logger from .externals.six import with_metaclass from .externals.six.moves import zip from .metrics.scorer import check_scoring from .utils.fixes import bincount __all__ = ['KFold', 'LeaveOneLabelOut', 'LeaveOneOut', 'LeavePLabelOut', 'LeavePOut', 'ShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'check_cv', 'cross_val_score', 'cross_val_predict', 'permutation_test_score', 'train_test_split'] class _PartitionIterator(with_metaclass(ABCMeta)): """Base class for CV iterators where train_mask = ~test_mask Implementations must define `_iter_test_masks` or `_iter_test_indices`. Parameters ---------- n : int Total number of elements in dataset. """ def __init__(self, n): if abs(n - int(n)) >= np.finfo('f').eps: raise ValueError("n must be an integer") self.n = int(n) def __iter__(self): ind = np.arange(self.n) for test_index in self._iter_test_masks(): train_index = np.logical_not(test_index) train_index = ind[train_index] test_index = ind[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices() """ for test_index in self._iter_test_indices(): test_mask = self._empty_mask() test_mask[test_index] = True yield test_mask def _iter_test_indices(self): """Generates integer indices corresponding to test sets.""" raise NotImplementedError def _empty_mask(self): return np.zeros(self.n, dtype=np.bool) class LeaveOneOut(_PartitionIterator): """Leave-One-Out cross validation iterator. Provides train/test indices to split data in train test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut(n)`` is equivalent to ``KFold(n, n_folds=n)`` and ``LeavePOut(n, p=1)``. Due to the high number of test sets (which is the same as the number of samples) this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = cross_validation.LeaveOneOut(2) >>> len(loo) 2 >>> print(loo) sklearn.cross_validation.LeaveOneOut(n=2) >>> for train_index, test_index in loo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneLabelOut for splitting the data according to explicit, domain-specific stratification of the dataset. """ def _iter_test_indices(self): return range(self.n) def __repr__(self): return '%s.%s(n=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, ) def __len__(self): return self.n class LeavePOut(_PartitionIterator): """Leave-P-Out cross validation iterator Provides train/test indices to split data in train test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(n, p)`` is NOT equivalent to ``KFold(n, n_folds=n // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. p : int Size of the test sets. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = cross_validation.LeavePOut(4, 2) >>> len(lpo) 6 >>> print(lpo) sklearn.cross_validation.LeavePOut(n=4, p=2) >>> for train_index, test_index in lpo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, n, p): super(LeavePOut, self).__init__(n) self.p = p def _iter_test_indices(self): for comb in combinations(range(self.n), self.p): yield np.array(comb) def __repr__(self): return '%s.%s(n=%i, p=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.p, ) def __len__(self): return int(factorial(self.n) / factorial(self.n - self.p) / factorial(self.p)) class _BaseKFold(with_metaclass(ABCMeta, _PartitionIterator)): """Base class to validate KFold approaches""" @abstractmethod def __init__(self, n, n_folds, shuffle, random_state): super(_BaseKFold, self).__init__(n) if abs(n_folds - int(n_folds)) >= np.finfo('f').eps: raise ValueError("n_folds must be an integer") self.n_folds = n_folds = int(n_folds) if n_folds <= 1: raise ValueError( "k-fold cross validation requires at least one" " train / test split by setting n_folds=2 or more," " got n_folds={0}.".format(n_folds)) if n_folds > self.n: raise ValueError( ("Cannot have number of folds n_folds={0} greater" " than the number of samples: {1}.").format(n_folds, n)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.shuffle = shuffle self.random_state = random_state class KFold(_BaseKFold): """K-Folds cross validation iterator. Provides train/test indices to split data in train test sets. Split dataset into k consecutive folds (without shuffling). Each fold is then used a validation set once while the k - 1 remaining fold form the training set. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState Pseudo-random number generator state used for random sampling. If None, use default numpy RNG for shuffling Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = cross_validation.KFold(4, n_folds=2) >>> len(kf) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in kf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first n % n_folds folds have size n // n_folds + 1, other folds have size n // n_folds. See also -------- StratifiedKFold: take label information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). """ def __init__(self, n, n_folds=3, shuffle=False, random_state=None): super(KFold, self).__init__(n, n_folds, shuffle, random_state) self.idxs = np.arange(n) if shuffle: rng = check_random_state(self.random_state) rng.shuffle(self.idxs) def _iter_test_indices(self): n = self.n n_folds = self.n_folds fold_sizes = (n // n_folds) * np.ones(n_folds, dtype=np.int) fold_sizes[:n % n_folds] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield self.idxs[start:stop] current = stop def __repr__(self): return '%s.%s(n=%i, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array-like, [n_samples] Samples to split in K folds. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : None, int or RandomState Pseudo-random number generator state used for random sampling. If None, use default numpy RNG for shuffling Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = cross_validation.StratifiedKFold(y, n_folds=2) >>> len(skf) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in skf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size trunc(n_samples / n_folds), the last one has the complementary. """ def __init__(self, y, n_folds=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__( len(y), n_folds, shuffle, random_state) y = np.asarray(y) n_samples = y.shape[0] unique_labels, y_inversed = np.unique(y, return_inverse=True) label_counts = bincount(y_inversed) min_labels = np.min(label_counts) if self.n_folds > min_labels: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of labels for any class cannot" " be less than n_folds=%d." % (min_labels, self.n_folds)), Warning) # don't want to use the same seed in each label's shuffle if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each label so as to respect the # balance of labels per_label_cvs = [ KFold(max(c, self.n_folds), self.n_folds, shuffle=self.shuffle, random_state=rng) for c in label_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)): for label, (_, test_split) in zip(unique_labels, per_label_splits): label_test_folds = test_folds[y == label] # the test split can be too big because we used # KFold(max(c, self.n_folds), self.n_folds) instead of # KFold(c, self.n_folds) to make it possible to not crash even # if the data is not 100% stratifiable for all the labels # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(label_test_folds)] label_test_folds[test_split] = test_fold_idx test_folds[y == label] = label_test_folds self.test_folds = test_folds self.y = y def _iter_test_masks(self): for i in range(self.n_folds): yield self.test_folds == i def __repr__(self): return '%s.%s(labels=%s, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.y, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class LeaveOneLabelOut(_PartitionIterator): """Leave-One-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> labels = np.array([1, 1, 2, 2]) >>> lol = cross_validation.LeaveOneLabelOut(labels) >>> len(lol) 2 >>> print(lol) sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2]) >>> for train_index, test_index in lol: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] """ def __init__(self, labels): super(LeaveOneLabelOut, self).__init__(len(labels)) # We make a copy of labels to avoid side-effects during iteration self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) def _iter_test_masks(self): for i in self.unique_labels: yield self.labels == i def __repr__(self): return '%s.%s(labels=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, ) def __len__(self): return self.n_unique_labels class LeavePLabelOut(_PartitionIterator): """Leave-P-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the labels while the latter uses samples all assigned the same labels. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. p : int Number of samples to leave out in the test split. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = cross_validation.LeavePLabelOut(labels, p=2) >>> len(lpl) 3 >>> print(lpl) sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2) >>> for train_index, test_index in lpl: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] """ def __init__(self, labels, p): # We make a copy of labels to avoid side-effects during iteration super(LeavePLabelOut, self).__init__(len(labels)) self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) self.p = p def _iter_test_masks(self): comb = combinations(range(self.n_unique_labels), self.p) for idx in comb: test_index = self._empty_mask() idx = np.array(idx) for l in self.unique_labels[idx]: test_index[self.labels == l] = True yield test_index def __repr__(self): return '%s.%s(labels=%s, p=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, self.p, ) def __len__(self): return int(factorial(self.n_unique_labels) / factorial(self.n_unique_labels - self.p) / factorial(self.p)) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n, n_iter=10, test_size=0.1, train_size=None, random_state=None): self.n = n self.n_iter = n_iter self.test_size = test_size self.train_size = train_size self.random_state = random_state self.n_train, self.n_test = _validate_shuffle_split(n, test_size, train_size) def __iter__(self): for train, test in self._iter_indices(): yield train, test return @abstractmethod def _iter_indices(self): """Generate (train, test) indices""" class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validation iterator. Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in the dataset. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn import cross_validation >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... test_size=.25, random_state=0) >>> len(rs) 3 >>> print(rs) ... # doctest: +ELLIPSIS ShuffleSplit(4, n_iter=3, test_size=0.25, ...) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... train_size=0.5, test_size=.25, random_state=0) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self): rng = check_random_state(self.random_state) for i in range(self.n_iter): # random partition permutation = rng.permutation(self.n) ind_test = permutation[:self.n_test] ind_train = permutation[self.n_test:self.n_test + self.n_train] yield ind_train, ind_test def __repr__(self): return ('%s(%d, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.n, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter def _validate_shuffle_split(n, test_size, train_size): if test_size is None and train_size is None: raise ValueError( 'test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind == 'i': if test_size >= n: raise ValueError( 'test_size=%d should be smaller ' 'than the number of samples %d' % (test_size, n)) else: raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif np.asarray(test_size).dtype.kind == 'f' and \ train_size + test_size > 1.: raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind == 'i': if train_size >= n: raise ValueError("train_size=%d should be smaller " "than the number of samples %d" % (train_size, n)) else: raise ValueError("Invalid value for train_size: %r" % train_size) if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n - n_test else: if np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n) else: n_train = float(train_size) if test_size is None: n_test = n - n_train if n_train + n_test > n: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n)) return int(n_train), int(n_test) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array, [n_samples] Labels of samples. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.cross_validation import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0) >>> len(sss) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...) >>> for train_index, test_index in sss: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, y, n_iter=10, test_size=0.1, train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( len(y), n_iter, test_size, train_size, random_state) self.y = np.array(y) self.classes, self.y_indices = np.unique(y, return_inverse=True) n_cls = self.classes.shape[0] if np.min(bincount(self.y_indices)) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of labels for any class cannot" " be less than 2.") if self.n_train < n_cls: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_train, n_cls)) if self.n_test < n_cls: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_test, n_cls)) def _iter_indices(self): rng = check_random_state(self.random_state) cls_count = bincount(self.y_indices) p_i = cls_count / float(self.n) n_i = np.round(self.n_train * p_i).astype(int) t_i = np.minimum(cls_count - n_i, np.round(self.n_test * p_i).astype(int)) for n in range(self.n_iter): train = [] test = [] for i, cls in enumerate(self.classes): permutation = rng.permutation(cls_count[i]) cls_i = np.where((self.y == cls))[0][permutation] train.extend(cls_i[:n_i[i]]) test.extend(cls_i[n_i[i]:n_i[i] + t_i[i]]) # Because of rounding issues (as n_train and n_test are not # dividers of the number of elements per class), we may end # up here with less samples in train and test than asked for. if len(train) < self.n_train or len(test) < self.n_test: # We complete by affecting randomly the missing indexes missing_idx = np.where(bincount(train + test, minlength=len(self.y)) == 0, )[0] missing_idx = rng.permutation(missing_idx) train.extend(missing_idx[:(self.n_train - len(train))]) test.extend(missing_idx[-(self.n_test - len(test)):]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def __repr__(self): return ('%s(labels=%s, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.y, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter class PredefinedSplit(_PartitionIterator): """Predefined split cross validation iterator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- test_fold : "array-like, shape (n_samples,) test_fold[i] gives the test set fold of sample i. A value of -1 indicates that the corresponding sample is not part of any test set folds, but will instead always be put into the training fold. Examples -------- >>> from sklearn.cross_validation import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> ps = PredefinedSplit(test_fold=[0, 1, -1, 1]) >>> len(ps) 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS sklearn.cross_validation.PredefinedSplit(test_fold=[ 0 1 -1 1]) >>> for train_index, test_index in ps: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): super(PredefinedSplit, self).__init__(len(test_fold)) self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def _iter_test_indices(self): for f in self.unique_folds: yield np.where(self.test_fold == f)[0] def __repr__(self): return '%s.%s(test_fold=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.test_fold) def __len__(self): return len(self.unique_folds) ############################################################################## def _index_param_value(X, v, indices): """Private helper function for parameter value indexing.""" if not _is_arraylike(v) or _num_samples(v) != _num_samples(X): # pass through: skip indexing return v if sp.issparse(v): v = v.tocsr() return safe_indexing(v, indices) def cross_val_predict(estimator, X, y=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Generate cross-validated estimates for each input data point Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. cv : cross-validation generator or int, optional, default: None A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if y is binary or multiclass and estimator is a classifier, or the number of folds in KFold otherwise. If None, it is equivalent to cv=3. This generator must include all elements in the test set exactly once. Otherwise, a ValueError is raised. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- preds : ndarray This is the result of calling 'predict' """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) preds_blocks = parallel(delayed(_fit_and_predict)(clone(estimator), X, y, train, test, verbose, fit_params) for train, test in cv) p = np.concatenate([p for p, _ in preds_blocks]) locs = np.concatenate([loc for _, loc in preds_blocks]) if not _check_is_partition(locs, _num_samples(X)): raise ValueError('cross_val_predict only works for partitions') preds = p.copy() preds[locs] = p return preds def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params): """Fit estimator and predict values for a given dataset split. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. Returns ------- preds : sequence Result of calling 'estimator.predict' test : array-like This is the value of the test parameter """ # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) X_train, y_train = _safe_split(estimator, X, y, train) X_test, _ = _safe_split(estimator, X, y, test, train) if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) preds = estimator.predict(X_test) return preds, test def _check_is_partition(locs, n): """Check whether locs is a reordering of the array np.arange(n) Parameters ---------- locs : ndarray integer array to test n : int number of expected elements Returns ------- is_partition : bool True iff sorted(locs) is range(n) """ if len(locs) != n: return False hit = np.zeros(n, bool) hit[locs] = True if not np.all(hit): return False return True def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Evaluate a score by cross-validation Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : cross-validation generator or int, optional, default: None A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if y is binary or multiclass and estimator is a classifier, or the number of folds in KFold otherwise. If None, it is equivalent to cv=3. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- scores : array of float, shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation. """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer, train, test, verbose, None, fit_params) for train, test in cv) return np.array(scores)[:, 0] class FitFailedWarning(RuntimeWarning): pass def _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score=False, return_parameters=False, error_score='raise'): """Fit estimator and compute scores for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scorer : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. return_train_score : boolean, optional, default: False Compute and return score on training set. return_parameters : boolean, optional, default: False Return parameters that has been used for the estimator. Returns ------- train_score : float, optional Score on training set, returned only if `return_train_score` is `True`. test_score : float Score on test set. n_test_samples : int Number of test samples. scoring_time : float Time spent for fitting and scoring in seconds. parameters : dict or None, optional The parameters that have been evaluated. """ if verbose > 1: if parameters is None: msg = "no parameters to be set" else: msg = '%s' % (', '.join('%s=%s' % (k, v) for k, v in parameters.items())) print("[CV] %s %s" % (msg, (64 - len(msg)) * '.')) # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) if parameters is not None: estimator.set_params(**parameters) start_time = time.time() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) try: if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) except Exception as e: if error_score == 'raise': raise elif isinstance(error_score, numbers.Number): test_score = error_score if return_train_score: train_score = error_score warnings.warn("Classifier fit failed. The score on this train-test" " partition for these parameters will be set to %f. " "Details: \n%r" % (error_score, e), FitFailedWarning) else: raise ValueError("error_score must be the string 'raise' or a" " numeric value. (Hint: if using 'raise', please" " make sure that it has been spelled correctly.)" ) else: test_score = _score(estimator, X_test, y_test, scorer) if return_train_score: train_score = _score(estimator, X_train, y_train, scorer) scoring_time = time.time() - start_time if verbose > 2: msg += ", score=%f" % test_score if verbose > 1: end_msg = "%s -%s" % (msg, logger.short_format_time(scoring_time)) print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg)) ret = [train_score] if return_train_score else [] ret.extend([test_score, _num_samples(X_test), scoring_time]) if return_parameters: ret.append(parameters) return ret def _safe_split(estimator, X, y, indices, train_indices=None): """Create subset of dataset and properly handle kernels.""" if hasattr(estimator, 'kernel') and callable(estimator.kernel): # cannot compute the kernel values with custom function raise ValueError("Cannot use a custom kernel function. " "Precompute the kernel matrix instead.") if not hasattr(X, "shape"): if getattr(estimator, "_pairwise", False): raise ValueError("Precomputed kernels or affinity matrices have " "to be passed as arrays or sparse matrices.") X_subset = [X[idx] for idx in indices] else: if getattr(estimator, "_pairwise", False): # X is a precomputed square kernel matrix if X.shape[0] != X.shape[1]: raise ValueError("X should be a square kernel matrix") if train_indices is None: X_subset = X[np.ix_(indices, indices)] else: X_subset = X[np.ix_(indices, train_indices)] else: X_subset = safe_indexing(X, indices) if y is not None: y_subset = safe_indexing(y, indices) else: y_subset = None return X_subset, y_subset def _score(estimator, X_test, y_test, scorer): """Compute the score of an estimator on a given test set.""" if y_test is None: score = scorer(estimator, X_test) else: score = scorer(estimator, X_test, y_test) if not isinstance(score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s) instead." % (str(score), type(score))) return score def _permutation_test_score(estimator, X, y, cv, scorer): """Auxiliary function for permutation_test_score""" avg_score = [] for train, test in cv: estimator.fit(X[train], y[train]) avg_score.append(scorer(estimator, X[test], y[test])) return np.mean(avg_score) def _shuffle(y, labels, random_state): """Return a shuffled copy of y eventually shuffle among same labels.""" if labels is None: ind = random_state.permutation(len(y)) else: ind = np.arange(len(labels)) for label in np.unique(labels): this_mask = (labels == label) ind[this_mask] = random_state.permutation(ind[this_mask]) return y[ind] def check_cv(cv, X=None, y=None, classifier=False): """Input checker utility for building a CV in a user friendly way. Parameters ---------- cv : int, a cv generator instance, or None The input specifying which cv generator to use. It can be an integer, in which case it is the number of folds in a KFold, None, in which case 3 fold is used, or another object, that will then be used as a cv generator. X : array-like The data the cross-val object will be applied on. y : array-like The target variable for a supervised learning problem. classifier : boolean optional Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv: a cross-validation generator instance. The return value is guaranteed to be a cv generator instance, whatever the input type. """ is_sparse = sp.issparse(X) if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if classifier: if type_of_target(y) in ['binary', 'multiclass']: cv = StratifiedKFold(y, cv) else: cv = KFold(_num_samples(y), cv) else: if not is_sparse: n_samples = len(X) else: n_samples = X.shape[0] cv = KFold(n_samples, cv) return cv def permutation_test_score(estimator, X, y, cv=None, n_permutations=100, n_jobs=1, labels=None, random_state=0, verbose=0, scoring=None): """Evaluate the significance of a cross-validated score with permutations Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. n_permutations : integer, optional Number of times to permute ``y``. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. labels : array-like of shape [n_samples] (optional) Labels constrain the permutation among groups of samples with a same label. random_state : RandomState or an int seed (0 by default) A random number generator instance to define the state of the random permutations generator. verbose : integer, optional The verbosity level. Returns ------- score : float The true score without permuting targets. permutation_scores : array, shape (n_permutations,) The scores obtained for each permutations. pvalue : float The returned value equals p-value if `scoring` returns bigger numbers for better scores (e.g., accuracy_score). If `scoring` is rather a loss function (i.e. when lower is better such as with `mean_squared_error`) then this is actually the complement of the p-value: 1 - p-value. Notes ----- This function implements Test 1 in: Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine Learning Research (2010) vol. 11 """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) random_state = check_random_state(random_state) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. score = _permutation_test_score(clone(estimator), X, y, cv, scorer) permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_permutation_test_score)( clone(estimator), X, _shuffle(y, labels, random_state), cv, scorer) for _ in range(n_permutations)) permutation_scores = np.array(permutation_scores) pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1) return score, permutation_scores, pvalue permutation_test_score.__test__ = False # to avoid a pb with nosetests def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(iter(ShuffleSplit(n_samples)))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of arrays or scipy.sparse matrices with same shape[0] Python lists or tuples occurring in arrays are converted to 1D numpy arrays. test_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. stratify : array-like or None (default is None) If not None, data is split in a stratified fashion, using this as the labels array. Returns ------- splitting : list of arrays, length=2 * len(arrays) List containing train-test split of input array. Examples -------- >>> import numpy as np >>> from sklearn.cross_validation import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) dtype = options.pop('dtype', None) if dtype is not None: warnings.warn("dtype option is ignored and will be removed in 0.18.", DeprecationWarning) allow_nd = options.pop('allow_nd', None) allow_lists = options.pop('allow_lists', None) stratify = options.pop('stratify', None) if allow_lists is not None: warnings.warn("The allow_lists option is deprecated and will be " "assumed True in 0.18 and removed.", DeprecationWarning) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if allow_nd is not None: warnings.warn("The allow_nd option is deprecated and will be " "assumed True in 0.18 and removed.", DeprecationWarning) if allow_lists is False or allow_nd is False: arrays = [check_array(x, 'csr', allow_nd=allow_nd, force_all_finite=False, ensure_2d=False) if x is not None else x for x in arrays] if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) if stratify is not None: cv = StratifiedShuffleSplit(stratify, test_size=test_size, train_size=train_size, random_state=random_state) else: n_samples = _num_samples(arrays[0]) cv = ShuffleSplit(n_samples, test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(iter(cv)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests
bsd-3-clause
JeanKossaifi/scikit-learn
examples/exercises/plot_cv_digits.py
232
1206
""" ============================================= Cross-validation on Digits Dataset Exercise ============================================= A tutorial exercise using Cross-validation with an SVM on the Digits dataset. This exercise is used in the :ref:`cv_generators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np from sklearn import cross_validation, datasets, svm digits = datasets.load_digits() X = digits.data y = digits.target svc = svm.SVC(kernel='linear') C_s = np.logspace(-10, 0, 10) scores = list() scores_std = list() for C in C_s: svc.C = C this_scores = cross_validation.cross_val_score(svc, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) # Do the plotting import matplotlib.pyplot as plt plt.figure(1, figsize=(4, 3)) plt.clf() plt.semilogx(C_s, scores) plt.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--') plt.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--') locs, labels = plt.yticks() plt.yticks(locs, list(map(lambda x: "%g" % x, locs))) plt.ylabel('CV score') plt.xlabel('Parameter C') plt.ylim(0, 1.1) plt.show()
bsd-3-clause
basaks/PyKrige
setup.py
1
5625
from __future__ import absolute_import from __future__ import print_function """ Updated BSM 10/23/2015 Cython extensions work-around adapted from simplejson setup script: https://github.com/simplejson/simplejson/blob/0bcdf20cc525c1343b796cb8f247ea5213c6557e/setup.py#L110 """ import sys from os.path import join from setuptools import setup, Extension from distutils.errors import CCompilerError, DistutilsExecError, DistutilsPlatformError ext_errors = (CCompilerError, DistutilsExecError, DistutilsPlatformError) NAME = 'PyKrige' VERSION = '1.4.dev0' AUTHOR = 'Benjamin S. Murphy' EMAIL = '[email protected]' URL = 'https://github.com/bsmurphy/PyKrige' DESC = 'Kriging Toolkit for Python' LDESC = 'PyKrige is a kriging toolkit for Python that supports two- and ' \ 'three-dimensional ordinary and universal kriging.' PACKAGES = ['pykrige'] PCKG_DAT = {'pykrige': ['README.md', 'CHANGELOG.md', 'LICENSE.txt', 'MANIFEST.in', join('test_data', '*.txt'), join('test_data', '*.asc')]} REQ = ['numpy', 'scipy', 'matplotlib'] for req in REQ: try: __import__(req) except ImportError: print("**************************************************") print("Error: PyKrige relies on the installation of the SciPy stack " "(Numpy, SciPy, matplotlib) to work. " "For instructions for installation, please view " "https://www.scipy.org/install.html." "\n {} missing".format(req) ) print("**************************************************") raise sys.exit(1) # python setup.py install goes through REQ in reverse order than pip CLSF = ['Development Status :: 5 - Production/Stable', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: GIS'] # Removed python 3 switch from here try: from Cython.Distutils import build_ext import Cython.Compiler.Options Cython.Compiler.Options.annotate = False try_cython = True except ImportError: print("**************************************************") print("WARNING: Cython is not currently installed. " "Falling back to pure Python implementation.") print("**************************************************") try_cython = False class BuildFailed(Exception): pass # This is how I was originally trying to get around the Cython extension troubles... # Keeping it here for reference... # # class BuildExtCompilerCheck(build_ext): # def build_extensions(self): # if sys.platform == 'win32' and ('MSC' in sys.version or 'MSVC' in sys.version): # print("-> COMPILER IS", self.compiler.compiler_type) # from distutils.msvccompiler import MSVCCompiler # if isinstance(self.compiler, MSVCCompiler): # build_ext.build_extensions(self) # else: # print("WARNING: The C extensions will not be built since the necessary compiler could not be found.\n" # "See https://github.com/bsmurphy/PyKrige/issues/8") # else: # build_ext.build_extensions(self) def run_setup(with_cython): if with_cython: import numpy as np if sys.platform != 'win32': compile_args = dict(extra_compile_args=['-O2', '-march=core2', '-mtune=corei7'], extra_link_args=['-O2', '-march=core2', '-mtune=corei7']) else: compile_args = {} ext_modules = [Extension("pykrige.lib.cok", ["pykrige/lib/cok.pyx"], **compile_args), Extension("pykrige.lib.variogram_models", ["pykrige/lib/variogram_models.pyx"], **compile_args)] # Transfered python 3 switch here. On python 3 machines, will use lapack_py3.pyx # instead of lapack.pyx to build .lib.lapack if sys.version_info[0] == 3: ext_modules += [Extension("pykrige.lib.lapack", ["pykrige/lib/lapack_py3.pyx"], **compile_args)] else: ext_modules += [Extension("pykrige.lib.lapack", ["pykrige/lib/lapack.pyx"], **compile_args)] class TryBuildExt(build_ext): def build_extensions(self): try: build_ext.build_extensions(self) except ext_errors: print("**************************************************") print("WARNING: Cython extensions failed to build. Falling back to pure Python implementation.\n" "See https://github.com/bsmurphy/PyKrige/issues/8 for more information.") print("**************************************************") raise BuildFailed() cmd = {'build_ext': TryBuildExt} setup(name=NAME, version=VERSION, author=AUTHOR, author_email=EMAIL, url=URL, description=DESC, long_description=LDESC, packages=PACKAGES, package_data=PCKG_DAT, classifiers=CLSF, ext_modules=ext_modules, include_dirs=[np.get_include()], cmdclass=cmd) else: setup(name=NAME, version=VERSION, author=AUTHOR, author_email=EMAIL, url=URL, description=DESC, long_description=LDESC, packages=PACKAGES, package_data=PCKG_DAT, classifiers=CLSF) try: run_setup(try_cython) except BuildFailed: run_setup(False)
bsd-3-clause
ywcui1990/nupic.research
projects/sp_paper/plot_nyc_taxi_performance.py
6
3556
from matplotlib import pyplot as plt from htmresearch.support.sequence_learning_utils import * import pandas as pd from pylab import rcParams from nupic.encoders.scalar import ScalarEncoder as NupicScalarEncoder rcParams.update({'figure.autolayout': True}) rcParams.update({'figure.facecolor': 'white'}) rcParams.update({'ytick.labelsize': 8}) rcParams.update({'figure.figsize': (12, 6)}) import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 plt.ion() plt.close('all') window = 960 skipTrain = 10000 figPath = './result/' def getDatetimeAxis(): """ use datetime as x-axis """ dataSet = 'nyc_taxi' filePath = './data/' + dataSet + '.csv' data = pd.read_csv(filePath, header=0, skiprows=[1, 2], names=['datetime', 'value', 'timeofday', 'dayofweek']) xaxisDate = pd.to_datetime(data['datetime']) return xaxisDate def computeAltMAPE(truth, prediction, startFrom=0): return np.nanmean(np.abs(truth[startFrom:] - prediction[startFrom:]))/np.nanmean(np.abs(truth[startFrom:])) def computeNRMSE(truth, prediction, startFrom=0): squareDeviation = computeSquareDeviation(prediction, truth) squareDeviation[:startFrom] = None return np.sqrt(np.nanmean(squareDeviation))/np.nanstd(truth) def loadExperimentResult(filePath): expResult = pd.read_csv(filePath, header=0, skiprows=[1, 2], names=['step', 'value', 'prediction5']) groundTruth = np.roll(expResult['value'], -5) prediction5step = np.array(expResult['prediction5']) return (groundTruth, prediction5step) if __name__ == "__main__": xaxisDate = getDatetimeAxis() ### Figure 2: Continuous LSTM with different window size fig = plt.figure() dataSet = 'nyc_taxi' classifierType = 'SDRClassifierRegion' filePath = './prediction/' + dataSet + '_TM_pred.csv' trainSPList = [False, True, True] boost = [1, 1, 10] mapeTMList1 = [] mapeTMList2 = [] for i in range(len(boost)): tmPrediction = np.load( './results/nyc_taxi/{}{}TMprediction_SPLearning_{}_boost_{}.npz'.format( dataSet, classifierType, trainSPList[i], boost[i])) tmPredictionLL = tmPrediction['arr_0'] tmPointEstimate = tmPrediction['arr_1'] tmTruth = tmPrediction['arr_2'] # encoder = NupicScalarEncoder(w=1, minval=0, maxval=40000, n=22, forced=True) # negLL = computeLikelihood(tmPredictionLL, tmTruth, encoder) # negLL[:50] = None # negLLTM = plotAccuracy((negLL, xaxisDate), tmTruth, # window=window, errorType='negLL', label='HTM_trainSP_{}'.format(trainSP)) # absDiff = np.abs(tmTruth - tmPointEstimate) mapeTM = plotAccuracy((absDiff, xaxisDate), tmTruth, skipRecordNum = 20, window=window, errorType='mape', label='TrainSP_{}, r={}'.format(trainSPList[i], boost[i])) normFactor = np.nanmean(np.abs(tmTruth)) mapeTMList1.append(np.nanmean(mapeTM[:10000]) / normFactor) mapeTMList2.append(np.nanmean(mapeTM[10000:]) / normFactor) altMAPETM = computeAltMAPE(tmTruth, tmPointEstimate, 10000) print "trainSP {} MAPE {}".format(trainSPList[i], altMAPETM) plt.legend() plt.savefig('figures/nyc_taxi_performance.pdf') rcParams.update({'figure.figsize': (4, 6)}) plt.figure() plt.subplot(221) plt.bar(range(3), mapeTMList1) plt.ylim([0, .14]) plt.subplot(222) plt.bar(range(3), mapeTMList2) plt.ylim([0, .14]) plt.savefig('figures/nyc_taxi_performance_summary.pdf')
agpl-3.0
dawenl/stochastic_PMF
code/HartiganOnline.py
1
2619
#!/usr/bin/env python import numpy as np from sklearn.base import BaseEstimator class HartiganOnline(BaseEstimator): '''Online Hartigan clustering.''' def __init__(self, n_clusters=2, max_iter=10, shuffle=True, verbose=False): '''Initialize a Hartigan clusterer. :parameters: - n_clusters : int Number of clusters - max_iter : int Maximum number of passes through the data - shuffle : bool Shuffle the data between each pass - verbose : bool Display debugging output? :variables: - cluster_centers_ : ndarray, shape=(n_clusters, d) Estimated cluster centroids - cluster_sizes_ : ndarray, shape=(n_clusters) Size (number of points) for each cluster ''' self.n_clusters = n_clusters self.max_iter = max_iter self.shuffle = shuffle self.verbose = verbose self.cluster_sizes_ = np.zeros(self.n_clusters) def fit(self, X): '''Fit the cluster centers. :parameters: - X : ndarray, size=(n, d) The data to be clustered ''' n, d = X.shape # Initialize the cluster centers, costs, sizes self.cluster_centers_ = np.zeros( (self.n_clusters, d), dtype=X.dtype) step = 0 idx = np.arange(n) while step < self.max_iter: step = step + 1 # Should we shuffle the data? if self.shuffle: np.random.shuffle(idx) self.partial_fit(X[idx]) def partial_fit(self, X): '''Partial fit the cluster centers''' n, d = X.shape if not hasattr(self, 'cluster_centers_'): self.cluster_centers_ = np.zeros( (self.n_clusters, d), dtype=X.dtype) balances = self.cluster_sizes_ / (1.0 + self.cluster_sizes_) norms = np.sum(self.cluster_centers_**2, axis=1) for xi in X: # Get the closest cluster center j = np.argmin(balances * (np.sum(xi**2) + norms - 2 * self.cluster_centers_.dot(xi))) # Update the center self.cluster_centers_[j] = (self.cluster_sizes_[j] * self.cluster_centers_[j] + xi) / (1.0 + self.cluster_sizes_[j]) # Update the counter self.cluster_sizes_[j] += 1.0 # Update the balance balances[j] = self.cluster_sizes_[j] / (1.0 + self.cluster_sizes_[j]) # Update the norms norms[j] = np.sum(self.cluster_centers_[j]**2)
gpl-3.0
dnut/associations
associations/analysis.py
1
12742
from itertools import chain from copy import copy import numpy as np import matplotlib.pyplot as plt import os import textwrap from .libassoc import invert, istr, iint, pretty, make_dir class Analysis(): """ Ideally this class would implement totally generic methods that can be used to analyze any Histogram() and Associations() objects. This class is an attempt at that but it is still somewhat specialized and may need adaptation for general use. """ def __init__(self, histogram, assoc, output_dir='output', plot_format='pdf'): self.hist = histogram self.assoc = assoc self.plot_counter = 0 self.gen_assoc = {} self.output_dir = output_dir self.plot_dir = make_dir(output_dir, 'plots') self.maxes = [('', 1), ('', 1), ('', 1)] self.mins = [('', 1), ('', 1), ('', 1)] self.time = ('age', 'weekday', 'season') self.plot_format = plot_format def percent(self, count, total=65499): """ Basic percent calculator outputting nice string """ return istr(100*count/total) + '%' def percentify(self, pairs, total=65499): """ Use on the list of tuples to convert ratios to percentages """ return tuple((a, self.percent(b, total=total)) for (a, b) in pairs) def bin_sort(self, bins): """ Sort bins according to value of longest int(string[0:?]) """ def value(s): i = iint(s[0]) if isinstance(s, tuple) else iint(s) return i if i != None else float('inf') return sorted(bins, key=value) def most_common(self, test_group, *subpop): """ Rank test_group by greatest occurrence within subpop. """ fields = [self.hist.field_index[val] for val in subpop] hist = self.hist.simplify(test_group, *fields) data = [ (test, hist.get(test, *subpop)) for test in hist.valists[hist.fieldict[test_group]] ] return self.percentify( sorted(data, key=lambda x: -x[1]), total=self.hist.get(*subpop) ) def most_assoc(self, test_group, value, *subpop): """ Rank test_group by greatest association with value within subpop. """ data, a = [], self.assoc.report(test_group, value) for assoc in a: mutable = set(assoc) mutable.remove(value) data.append((''.join(mutable), a[assoc][frozenset()])) return sorted(data, key=lambda x: -x[1]) def extremes(self): """ Find absolute most associations within all associations for both specific field values as well as generic field types. Return data in format that can be easily interpreted by AsciiTable(). """ gens = sorted([(k, self.gen_assoc[k]) for k in self.gen_assoc], key=lambda x: x[1]) fmat = lambda x: [(', '.join(s[:30] for s in i[0]), i[1]) for i in x] gl, gm = fmat(gens[:3]), fmat(gens[:-4:-1]) sl, sm = fmat(self.mins), fmat(self.maxes) return (('Generic Associations', ('Most Associated', gm), ('Least Associated', gl)), ('Specific Associations', ('Most Associated', sm), ('Least Associated', sl))) def prep_hist(self, field, other_field, notable=1, subpop=''): """ Filter out irrelevant data for plotting """ bins = self.hist.valdicts_dict[field] associations = self.assoc.report(field, other_field) keep_of = set() if field in self.time: # Keep all bins for time keep_of = set(self.hist.valists_dict[field]) else: # For non-time, remove excess bins without notable data for key in associations: try: ratio = associations[key][frozenset(subpop)] except KeyError: continue # Only keep notable bins if ratio >= notable or ratio <= 1/float(notable): for myfield in key: typ = self.hist.field_index[myfield] if typ == field: keep_of.add(myfield) # Don't include mis-entered data (eg. ages > 200 years) try: keep_of.remove('typo') except KeyError: pass # Sort bins (eg. time related such as ages) bins = self.bin_sort([s for s in bins if s in keep_of]) return bins, associations def make_hist(self, field, other_field, notable=1, subpop=''): """ This method creates the data structure for a histogram plot given the names of the fields we want to compare. This is done manually because we are working with already existent bins. This method is long, but it is primarily a single cohesive loop that serves a single purpose. field: x-axis other_field: legend notable: threshold for ratio of notable data (also inverse) """ keep_f, values, hists = set(), [], [] skip, top = False, 0 bins, associations = self.prep_hist( field, other_field, notable, subpop ) bindex = invert(bins) empty_things = np.zeros(len(bins)) # Traverse each association to find and add notable data for key in associations: # For each of the two items per association for myfield in key: if myfield == 'typo': # Typo ages not useful skip = True # Determine whether item is from field or other_field typ = self.hist.field_index[myfield] if typ == other_field: # Legend fields value = myfield # Only keep notable legend fields if myfield not in values: values.append(myfield) hists.append(copy(empty_things)) elif myfield not in bins: # Keep out unwanted bins skip = True else: # Bin fields actual = myfield # Gather association ratio for combination try: ratio = associations[key][frozenset(subpop)] except KeyError: skip = True if skip == True: skip = False continue # Record highest value among all data top = max(ratio, top) # index i used in original histogram index = values.index(value) if ratio >= notable or ratio <= 1/float(notable): # Save index for this field so we keep its data in the end keep_f.add(index) try: # Record the ratio if we decided it is notable above hists[index][bindex[actual]] = ratio except KeyError: pass # Filter out data which is not notable keepers = [value for i, value in enumerate(hists) if i in keep_f] new_values = [value for i, value in enumerate(values) if i in keep_f] return bins, new_values, top, keepers def plot_hist(self, title, xlabel, ylabel, bins, ds_names, *data_sets, log=False, legend=True): """ Plot pre-binned histogram. """ ds_names = [ name if len(name) < 60 else name[:59] + '...' for name in ds_names ] colors = ('b', 'r', 'g', 'c', 'm', 'y', 'k', 'w') n_sets = len(data_sets) if n_sets == 0: return if n_sets == 1: colors = 'g' fit = 0.7 if n_sets > 1 else 1 width = fit/n_sets plt.figure(self.plot_counter) index = np.arange(len(data_sets[0])) for i, data_set in enumerate(data_sets): plt.bar(index + i * width, data_set, width, alpha=0.4, color=colors[i % 8], label=ds_names[i]) plt.title(title); plt.xlabel(xlabel); plt.ylabel(ylabel) # Use log base 10 scale if log: plt.yscale('log') wrap_width = int(250/len(data_sets[0])) plt.xticks(index + fit/2, [textwrap.fill(s, wrap_width) for s in bins]) plt.tight_layout() # Horizontal dotted line at 1 plt.axes().plot([-0.05, len(data_sets[0]) - 0.25], [1, 1], "k--") if legend: plt.legend() #plt.plot() self.plot_counter += 1 def nice_plot_assoc(self, one, two, title=False, xlabel=False, bins=False, notable=1.5, subpop='', force=False): """ Try plot with arbitrary limitation first, change if needed. """ while notable > 1: # This means floats such as 0.9999999999999997 will # be excluded, but we don't want < 1.1 anyway. bad = self.plot_assoc( one, two, title, xlabel, bins, notable, subpop ) if bad == 'high': notable += 0.1 elif bad == 'low': notable -= 0.1 elif bad == None: break else: raise RuntimeError else: if force: self.plot_assoc( one, two, title, xlabel, bins, notable, subpop, force=True ) def savefig(self, name): fig = plt.gcf() fig.set_size_inches(25, 15) fig.savefig( os.path.join(self.plot_dir, name + '.' + self.plot_format), bbox_inches='tight', dpi=100 ) def plot_assoc(self, one, two, title=False, xlabel=False, bins=False, notable=2, subpop='', force=False): """ Plot associations between values one and two. Extract a more complete data set from the histogram and make the plot. """ One, Two = one.capitalize(), two.capitalize() if not xlabel: xlabel = one.capitalize() + 's' if not title: title = 'Associations between {} and {}'.format(One, Two) if not bins: bins = self.hist.valists_dict[one] ylabel = 'Association Ratio' bins, names, top, data = self.make_hist( one, two, notable, subpop=subpop ) log = True if top > 10 else False if not force: if len(data) < 2 or len(data[0]) < 2: return 'low' if len(data) > 8: return 'high' self.plot_hist(title, xlabel, ylabel, bins, names, *data, log=log) name = one +', '+ two + (' for ' + istr(subpop) if subpop else '') self.savefig(name) def max_helper(self, one, two): """ Record most associated specific pairs within the generic one two combination and find mean for one two combo. """ c, tot, val = 0, 0, 1 search = self.assoc.report(one, two) for combo in search: try: val = search[combo][frozenset()] except KeyError: continue # Find specific maxes for big_one in self.maxes: if val > big_one[1]: self.maxes.append((combo, val)) self.maxes = sorted(self.maxes, key=lambda x: -x[1])[:3] break # Find specific mins for small_one in self.mins: if val < small_one[1]: self.mins.append((combo, val)) self.mins = sorted(self.mins, key=lambda x: x[1])[:3] break # Standardize so anti-associations are equally represented if val < 1: val = 1/val # To do: Improve by weighting by occurrences. c += 1 tot += val # Record average association for combo type self.gen_assoc[frozenset((one, two))] = tot/c def plot_all(self): """ Plot the associations between every possible field pair. """ memo = set() h = self.hist for one in self.hist.fieldict: for two in self.hist.fieldict: # Plots must meet these conditions: # - one and two must be different. # - Times should be bins only unless both bin + legend are times # - Group of bins is larger than legend unless bins are time. # - If both bins and legend are times, larger set is bins. ugly_sizes = len(h.valists[h.fieldict[two]]) > \ len(h.valists[h.fieldict[one]]) if one == two \ or ( one not in self.time and (two in self.time or ugly_sizes) ) or ( one in self.time and two in self.time and ugly_sizes ): continue self.nice_plot_assoc(one, two) # For efficiency, use opportunity to run through nested loops # to determine how associated each field pair is overall. self.max_helper(one, two) class AsciiTable(): """ This grew out of a need to portray specific data that was found using this module. Originally, it was just one method in Analysis(), but that no longer seemed appropriate so it has been split off. It needs some work to become friendly for general use. """ def __init__(self): self.tables = [] def __str__(self): return '\n\n'.join(self.tables) def add_table(self, *args): """ Create an ascii table out of sections from self.table_section() """ formatted = tuple(chain(*[self.table_section(*a) for a in args])) tuples = [(x[0], istr(x[1])) for x in formatted if isinstance(x, tuple)] lens = [len(max(i, key=len)) for i in tuple(zip(*tuples))] tlen = sum(lens) t, hb = [], '─'*(tlen + 3) t.append('┌' + hb + '┐') for item in formatted: if item == 'hb' and len(t) == 1: continue if item == 'hb': t.append('├' + hb + '┤') elif isinstance(item, tuple): pad = [(lens[i] - len(istr(item[i])) + 1) * ' ' for i in (0, 1)] t.append(('│{}{}│{}{}│').format(item[0], pad[0], pad[1], istr(item[1]))) else: this_pad = (tlen+3 - len(item)) if item[:2] == '==': l = ' '*int(this_pad / 2) r = ' '*(this_pad % 2) + l t.append('│' + l + item + r + '│') else: t.append('│' + item + ' '*(tlen+3 - len(item)) + '│') t.append('└' + hb + '┘') table = '\n'.join(t) self.tables.append(table) return '\n'.join(t) def table_section(self, title, *subsects): """ Create a table section from question output that can be properly formatted by self.table() For multiple subsects: subsect[0]: subsect title subsect[1]: subsect data """ h = 'hb' ret = (h, '== ' + title + ' ==', h) if len(subsects) == 1: for line in subsects[0]: ret += (line,) ret += (h,) else: for subsect in subsects: ret += (subsect[0], h) for line in subsect[1]: ret += (line,) ret += (h,) return ret
gpl-3.0
shenzebang/scikit-learn
sklearn/tests/test_pipeline.py
162
14875
""" Test the pipeline module. """ import numpy as np from scipy import sparse from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_raises, assert_raises_regex, assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.base import clone from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA, RandomizedPCA, TruncatedSVD from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import CountVectorizer JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) class IncorrectT(object): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class T(IncorrectT): def fit(self, X, y): return self def get_params(self, deep=False): return {'a': self.a, 'b': self.b} def set_params(self, **params): self.a = params['a'] return self class TransfT(T): def transform(self, X, y=None): return X class FitParamT(object): """Mock classifier """ def __init__(self): self.successful = False pass def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def test_pipeline_init(): # Test the various init parameters of the pipeline. assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method pipe = assert_raises(TypeError, Pipeline, [('svc', IncorrectT)]) # Smoke test with only an estimator clf = T() pipe = Pipeline([('svc', clf)]) assert_equal(pipe.get_params(deep=True), dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False) )) # Check that params are set pipe.set_params(svc__a=0.1) assert_equal(clf.a, 0.1) assert_equal(clf.b, None) # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't use the same stage name twice assert_raises(ValueError, Pipeline, [('svc', SVC()), ('svc', SVC())]) # Check that params are set pipe.set_params(svc__C=0.1) assert_equal(clf.C, 0.1) # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = clone(pipe) assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc']) # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert_equal(params, params2) def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert_true(pipe.predict(None)) # and transformer params should not be changed assert_true(pipe.named_steps['transf'].a is None) assert_true(pipe.named_steps['transf'].b is None) def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) # expected error message error_msg = ('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.') assert_raise_message(ValueError, error_msg % ('fake', 'Pipeline'), pipe.set_params, fake='nope') # nested model check assert_raise_message(ValueError, error_msg % ("fake", pipe), pipe.set_params, fake__estimator='nope') def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = RandomizedPCA(n_components=2, whiten=True) clf = SVC(probability=True, random_state=0) for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert_equal(predict.shape, (n_samples,)) proba = pipe.predict_proba(X) assert_equal(proba.shape, (n_samples, n_classes)) log_proba = pipe.predict_log_proba(X) assert_equal(log_proba.shape, (n_samples, n_classes)) decision_function = pipe.decision_function(X) assert_equal(decision_function.shape, (n_samples, n_classes)) pipe.score(X, y) def test_fit_predict_on_pipeline(): # test that the fit_predict method is implemented on a pipeline # test that the fit_predict on pipeline yields same results as applying # transform and clustering steps separately iris = load_iris() scaler = StandardScaler() km = KMeans(random_state=0) # first compute the transform and clustering step separately scaled = scaler.fit_transform(iris.data) separate_pred = km.fit_predict(scaled) # use a pipeline to do the transform and clustering in one step pipe = Pipeline([('scaler', scaler), ('Kmeans', km)]) pipeline_pred = pipe.fit_predict(iris.data) assert_array_almost_equal(pipeline_pred, separate_pred) def test_fit_predict_on_pipeline_without_fit_predict(): # tests that a pipeline does not have fit_predict method when final # step of pipeline does not have fit_predict defined scaler = StandardScaler() pca = PCA() pipe = Pipeline([('scaler', scaler), ('pca', pca)]) assert_raises_regex(AttributeError, "'PCA' object has no attribute 'fit_predict'", getattr, pipe, 'fit_predict') def test_feature_union(): # basic sanity check for feature union iris = load_iris() X = iris.data X -= X.mean(axis=0) y = iris.target svd = TruncatedSVD(n_components=2, random_state=0) select = SelectKBest(k=1) fs = FeatureUnion([("svd", svd), ("select", select)]) fs.fit(X, y) X_transformed = fs.transform(X) assert_equal(X_transformed.shape, (X.shape[0], 3)) # check if it does the expected thing assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) # test if it also works for sparse input # We use a different svd object to control the random_state stream fs = FeatureUnion([("svd", svd), ("select", select)]) X_sp = sparse.csr_matrix(X) X_sp_transformed = fs.fit_transform(X_sp, y) assert_array_almost_equal(X_transformed, X_sp_transformed.toarray()) # test setting parameters fs.set_params(select__k=2) assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4)) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)]) X_transformed = fs.fit_transform(X, y) assert_equal(X_transformed.shape, (X.shape[0], 8)) def test_make_union(): pca = PCA() mock = TransfT() fu = make_union(pca, mock) names, transformers = zip(*fu.transformer_list) assert_equal(names, ("pca", "transft")) assert_equal(transformers, (pca, mock)) def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2) pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transft = TransfT() pipeline = Pipeline([('mock', transft)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transft.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_make_pipeline(): t1 = TransfT() t2 = TransfT() pipe = make_pipeline(t1, t2) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") pipe = make_pipeline(t1, t2, FitParamT()) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") assert_equal(pipe.steps[2][0], "fitparamt") def test_feature_union_weights(): # test feature union with transformer weights iris = load_iris() X = iris.data y = iris.target pca = RandomizedPCA(n_components=2, random_state=0) select = SelectKBest(k=1) # test using fit followed by transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) fs.fit(X, y) X_transformed = fs.transform(X) # test using fit_transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) X_fit_transformed = fs.fit_transform(X, y) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)], transformer_weights={"mock": 10}) X_fit_transformed_wo_method = fs.fit_transform(X, y) # check against expected result # We use a different pca object to control the random_state stream assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_array_almost_equal(X_fit_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_fit_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7)) def test_feature_union_parallel(): # test that n_jobs work for FeatureUnion X = JUNK_FOOD_DOCS fs = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ]) fs_parallel = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs_parallel2 = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs.fit(X) X_transformed = fs.transform(X) assert_equal(X_transformed.shape[0], len(X)) fs_parallel.fit(X) X_transformed_parallel = fs_parallel.transform(X) assert_equal(X_transformed.shape, X_transformed_parallel.shape) assert_array_equal( X_transformed.toarray(), X_transformed_parallel.toarray() ) # fit_transform should behave the same X_transformed_parallel2 = fs_parallel2.fit_transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) # transformers should stay fit after fit_transform X_transformed_parallel2 = fs_parallel2.transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) def test_feature_union_feature_names(): word_vect = CountVectorizer(analyzer="word") char_vect = CountVectorizer(analyzer="char_wb", ngram_range=(3, 3)) ft = FeatureUnion([("chars", char_vect), ("words", word_vect)]) ft.fit(JUNK_FOOD_DOCS) feature_names = ft.get_feature_names() for feat in feature_names: assert_true("chars__" in feat or "words__" in feat) assert_equal(len(feature_names), 35) def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) assert_raises(AttributeError, getattr, reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) assert_raises(AttributeError, getattr, clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y))
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/examples/pylab_examples/demo_annotation_box.py
3
2571
import matplotlib.pyplot as plt from matplotlib.offsetbox import TextArea, DrawingArea, OffsetImage, \ AnnotationBbox from matplotlib.cbook import get_sample_data import numpy as np if 1: fig = plt.gcf() fig.clf() ax = plt.subplot(111) offsetbox = TextArea("Test 1", minimumdescent=False) xy = (0.5, 0.7) ax.plot(xy[0], xy[1], ".r") ab = AnnotationBbox(offsetbox, xy, xybox=(-20, 40), xycoords='data', boxcoords="offset points", arrowprops=dict(arrowstyle="->")) ax.add_artist(ab) offsetbox = TextArea("Test", minimumdescent=False) ab = AnnotationBbox(offsetbox, xy, xybox=(1.02, xy[1]), xycoords='data', boxcoords=("axes fraction", "data"), box_alignment=(0.,0.5), arrowprops=dict(arrowstyle="->")) ax.add_artist(ab) from matplotlib.patches import Circle da = DrawingArea(20, 20, 0, 0) p = Circle((10, 10), 10) da.add_artist(p) xy = [0.3, 0.55] ab = AnnotationBbox(da, xy, xybox=(1.02, xy[1]), xycoords='data', boxcoords=("axes fraction", "data"), box_alignment=(0.,0.5), arrowprops=dict(arrowstyle="->")) #arrowprops=None) ax.add_artist(ab) arr = np.arange(100).reshape((10,10)) im = OffsetImage(arr, zoom=2) ab = AnnotationBbox(im, xy, xybox=(-50., 50.), xycoords='data', boxcoords="offset points", pad=0.3, arrowprops=dict(arrowstyle="->")) #arrowprops=None) ax.add_artist(ab) # another image from matplotlib._png import read_png fn = get_sample_data("lena.png", asfileobj=False) arr_lena = read_png(fn) imagebox = OffsetImage(arr_lena, zoom=0.2) ab = AnnotationBbox(imagebox, xy, xybox=(120., -80.), xycoords='data', boxcoords="offset points", pad=0.5, arrowprops=dict(arrowstyle="->", connectionstyle="angle,angleA=0,angleB=90,rad=3") ) ax.add_artist(ab) ax.set_xlim(0, 1) ax.set_ylim(0, 1) plt.draw() plt.show()
gpl-2.0
jacquev6/Pynamixel
doc/conf.py
1
2155
# coding: utf-8 # Copyright 2015 Vincent Jacques <[email protected]> project = "Pynamixel" author = '<a href="http://vincent-jacques.net/contact">Vincent Jacques</a>' copyright = ('2015-2018 {} <script>var jacquev6_ribbon_github="{}"</script>'.format(author, project) + '<script src="https://jacquev6.github.io/ribbon.js"></script>') master_doc = "index" extensions = [] nitpicky = True # https://github.com/bitprophet/alabaster html_sidebars = { "**": ["about.html", "navigation.html", "searchbox.html"], } html_theme_options = { "github_user": "jacquev6", "github_repo": project, "travis_button": True, } # @todoc html_logo # http://sphinx-doc.org/ext/autodoc.html extensions.append("sphinx.ext.autodoc") autodoc_member_order = "bysource" autodoc_default_flags = ["members"] add_module_names = False add_class_names = False # http://sphinx-doc.org/ext/githubpages.html extensions.append("sphinx.ext.githubpages") # http://sphinx-doc.org/ext/doctest.html extensions.append("sphinx.ext.doctest") doctest_global_setup = """ # This setup is for README.rst's doctests. # @todo Find a way to put that new actual doctests. See the message of the commit that introduced this line. import MockMockMock import Pynamixel hardware_mock = MockMockMock.Engine().create("hardware") hardware = hardware_mock.object hardware_mock.expect.send([0xFF, 0xFF, 0x01, 0x05, 0x03, 0x1E, 0x00, 0x02, 0xD6]) hardware_mock.expect.receive(4).and_return([0xFF, 0xFF, 0x01, 0x02]) hardware_mock.expect.receive(2).and_return([0x00, 0xFC]) hardware_mock.expect.send([0xFF, 0xFF, 0x01, 0x04, 0x02, 0x2E, 0x01, 0xC9]).and_return(None) hardware_mock.expect.receive(4).and_return([0xFF, 0xFF, 0x01, 0x03]) hardware_mock.expect.receive(3).and_return([0x00, 0x01, 0xFA]) """ # http://sphinx-doc.org/latest/ext/math.html extensions.append("sphinx.ext.mathjax") # http://matplotlib.org/devel/documenting_mpl.html#module-matplotlib.sphinxext.plot_directive extensions.append("matplotlib.sphinxext.plot_directive") plot_include_source = True plot_html_show_source_link = False plot_formats = [("png", 160)] plot_html_show_formats = False
mit
Jimmy-Morzaria/scikit-learn
sklearn/mixture/tests/test_gmm.py
6
15189
import unittest from nose.tools import assert_true import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) from scipy import stats from sklearn import mixture from sklearn.datasets.samples_generator import make_spd_matrix from sklearn.utils.testing import assert_greater rng = np.random.RandomState(0) def test_sample_gaussian(): # Test sample generation from mixture.sample_gaussian where covariance # is diagonal, spherical and full n_features, n_samples = 2, 300 axis = 1 mu = rng.randint(10) * rng.rand(n_features) cv = (rng.rand(n_features) + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='diag', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(samples.var(axis), cv, atol=1.5)) # the same for spherical covariances cv = (rng.rand() + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='spherical', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.5)) assert_true(np.allclose( samples.var(axis), np.repeat(cv, n_features), atol=1.5)) # and for full covariances A = rng.randn(n_features, n_features) cv = np.dot(A.T, A) + np.eye(n_features) samples = mixture.sample_gaussian( mu, cv, covariance_type='full', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(np.cov(samples), cv, atol=2.5)) # Numerical stability check: in SciPy 0.12.0 at least, eigh may return # tiny negative values in its second return value. from sklearn.mixture import sample_gaussian x = sample_gaussian([0, 0], [[4, 3], [1, .1]], covariance_type='full', random_state=42) print(x) assert_true(np.isfinite(x).all()) def _naive_lmvnpdf_diag(X, mu, cv): # slow and naive implementation of lmvnpdf ref = np.empty((len(X), len(mu))) stds = np.sqrt(cv) for i, (m, std) in enumerate(zip(mu, stds)): ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1) return ref def test_lmvnpdf_diag(): # test a slow and naive implementation of lmvnpdf and # compare it to the vectorized version (mixture.lmvnpdf) to test # for correctness n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) ref = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, cv, 'diag') assert_array_almost_equal(lpr, ref) def test_lmvnpdf_spherical(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) spherecv = rng.rand(n_components, 1) ** 2 + 1 X = rng.randint(10) * rng.rand(n_samples, n_features) cv = np.tile(spherecv, (n_features, 1)) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, spherecv, 'spherical') assert_array_almost_equal(lpr, reference) def test_lmvnpdf_full(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) fullcv = np.array([np.diag(x) for x in cv]) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, fullcv, 'full') assert_array_almost_equal(lpr, reference) def test_GMM_attributes(): n_components, n_features = 10, 4 covariance_type = 'diag' g = mixture.GMM(n_components, covariance_type, random_state=rng) weights = rng.rand(n_components) weights = weights / weights.sum() means = rng.randint(-20, 20, (n_components, n_features)) assert_true(g.n_components == n_components) assert_true(g.covariance_type == covariance_type) g.weights_ = weights assert_array_almost_equal(g.weights_, weights) g.means_ = means assert_array_almost_equal(g.means_, means) covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2 g.covars_ = covars assert_array_almost_equal(g.covars_, covars) assert_raises(ValueError, g._set_covars, []) assert_raises(ValueError, g._set_covars, np.zeros((n_components - 2, n_features))) assert_raises(ValueError, mixture.GMM, n_components=20, covariance_type='badcovariance_type') class GMMTester(): do_test_eval = True def _setUp(self): self.n_components = 10 self.n_features = 4 self.weights = rng.rand(self.n_components) self.weights = self.weights / self.weights.sum() self.means = rng.randint(-20, 20, (self.n_components, self.n_features)) self.threshold = -0.5 self.I = np.eye(self.n_features) self.covars = { 'spherical': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'tied': (make_spd_matrix(self.n_features, random_state=0) + 5 * self.I), 'diag': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'full': np.array([make_spd_matrix(self.n_features, random_state=0) + 5 * self.I for x in range(self.n_components)])} def test_eval(self): if not self.do_test_eval: return # DPGMM does not support setting the means and # covariances before fitting There is no way of fixing this # due to the variational parameters being more expressive than # covariance matrices g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = self.covars[self.covariance_type] g.weights_ = self.weights gaussidx = np.repeat(np.arange(self.n_components), 5) n_samples = len(gaussidx) X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx] ll, responsibilities = g.score_samples(X) self.assertEqual(len(ll), n_samples) self.assertEqual(responsibilities.shape, (n_samples, self.n_components)) assert_array_almost_equal(responsibilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(responsibilities.argmax(axis=1), gaussidx) def test_sample(self, n=100): g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) g.weights_ = self.weights samples = g.sample(n) self.assertEqual(samples.shape, (n, self.n_features)) def test_train(self, params='wmc'): g = mixture.GMM(n_components=self.n_components, covariance_type=self.covariance_type) g.weights_ = self.weights g.means_ = self.means g.covars_ = 20 * self.covars[self.covariance_type] # Create a training set by sampling from the predefined distribution. X = g.sample(n_samples=100) g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-1, n_iter=1, init_params=params) g.fit(X) # Do one training iteration at a time so we can keep track of # the log likelihood to make sure that it increases after each # iteration. trainll = [] for _ in range(5): g.params = params g.init_params = '' g.fit(X) trainll.append(self.score(g, X)) g.n_iter = 10 g.init_params = '' g.params = params g.fit(X) # finish fitting # Note that the log likelihood will sometimes decrease by a # very small amount after it has more or less converged due to # the addition of min_covar to the covariance (to prevent # underflow). This is why the threshold is set to -0.5 # instead of 0. delta_min = np.diff(trainll).min() self.assertTrue( delta_min > self.threshold, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, self.threshold, self.covariance_type, trainll)) def test_train_degenerate(self, params='wmc'): # Train on degenerate data with 0 in some dimensions # Create a training set by sampling from the predefined distribution. X = rng.randn(100, self.n_features) X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-3, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5) def test_train_1d(self, params='wmc'): # Train on 1-D data # Create a training set by sampling from the predefined distribution. X = rng.randn(100, 1) #X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-7, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) if isinstance(g, mixture.DPGMM): self.assertTrue(np.sum(np.abs(trainll / 100)) < 5) else: self.assertTrue(np.sum(np.abs(trainll / 100)) < 2) def score(self, g, X): return g.score(X).sum() class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester): covariance_type = 'spherical' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester): covariance_type = 'diag' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithTiedCovars(unittest.TestCase, GMMTester): covariance_type = 'tied' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithFullCovars(unittest.TestCase, GMMTester): covariance_type = 'full' model = mixture.GMM setUp = GMMTester._setUp def test_multiple_init(): # Test that multiple inits does not much worse than a single one X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, covariance_type='spherical', random_state=rng, min_covar=1e-7, n_iter=5) train1 = g.fit(X).score(X).sum() g.n_init = 5 train2 = g.fit(X).score(X).sum() assert_true(train2 >= train1 - 1.e-2) def test_n_parameters(): # Test that the right number of parameters is estimated n_samples, n_dim, n_components = 7, 5, 2 X = rng.randn(n_samples, n_dim) n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41} for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_true(g._n_parameters() == n_params[cv_type]) def test_1d_1component(): # Test all of the covariance_types return the same BIC score for # 1-dimensional, 1 component fits. n_samples, n_dim, n_components = 100, 1, 1 X = rng.randn(n_samples, n_dim) g_full = mixture.GMM(n_components=n_components, covariance_type='full', random_state=rng, min_covar=1e-7, n_iter=1) g_full.fit(X) g_full_bic = g_full.bic(X) for cv_type in ['tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_array_almost_equal(g.bic(X), g_full_bic) def test_aic(): # Test the aic and bic criteria n_samples, n_dim, n_components = 50, 3, 2 X = rng.randn(n_samples, n_dim) SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7) g.fit(X) aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters() bic = (2 * n_samples * SGH * n_dim + np.log(n_samples) * g._n_parameters()) bound = n_dim * 3. / np.sqrt(n_samples) assert_true(np.abs(g.aic(X) - aic) / n_samples < bound) assert_true(np.abs(g.bic(X) - bic) / n_samples < bound) def check_positive_definite_covars(covariance_type): r"""Test that covariance matrices do not become non positive definite Due to the accumulation of round-off errors, the computation of the covariance matrices during the learning phase could lead to non-positive definite covariance matrices. Namely the use of the formula: .. math:: C = (\sum_i w_i x_i x_i^T) - \mu \mu^T instead of: .. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T while mathematically equivalent, was observed a ``LinAlgError`` exception, when computing a ``GMM`` with full covariance matrices and fixed mean. This function ensures that some later optimization will not introduce the problem again. """ rng = np.random.RandomState(1) # we build a dataset with 2 2d component. The components are unbalanced # (respective weights 0.9 and 0.1) X = rng.randn(100, 2) X[-10:] += (3, 3) # Shift the 10 last points gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type, min_covar=1e-3) # This is a non-regression test for issue #2640. The following call used # to trigger: # numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite gmm.fit(X) if covariance_type == "diag" or covariance_type == "spherical": assert_greater(gmm.covars_.min(), 0) else: if covariance_type == "tied": covs = [gmm.covars_] else: covs = gmm.covars_ for c in covs: assert_greater(np.linalg.det(c), 0) def test_positive_definite_covars(): # Check positive definiteness for all covariance types for covariance_type in ["full", "tied", "diag", "spherical"]: yield check_positive_definite_covars, covariance_type if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
peastman/deepchem
examples/low_data/muv_rf_one_fold.py
9
2031
""" Train low-data MUV models with random forests. Test last fold only. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals import tempfile import numpy as np import deepchem as dc from datasets import load_muv_ecfp from sklearn.ensemble import RandomForestClassifier # 4-fold splits K = 4 # num positive/negative ligands n_pos = 10 n_neg = 10 # 10 trials on test-set n_trials = 20 tox21_tasks, dataset, transformers = load_muv_ecfp() # Define metric metric = dc.metrics.Metric(dc.metrics.roc_auc_score, mode="classification") task_splitter = dc.splits.TaskSplitter() fold_datasets = task_splitter.k_fold_split(dataset, K) train_folds = fold_datasets[:-1] train_dataset = dc.splits.merge_fold_datasets(train_folds) test_dataset = fold_datasets[-1] # Get supports on test-set support_generator = dc.data.SupportGenerator( test_dataset, n_pos, n_neg, n_trials) # Compute accuracies task_scores = {task: [] for task in range(len(test_dataset.get_task_names()))} for (task, support) in support_generator: # Train model on support sklearn_model = RandomForestClassifier( class_weight="balanced", n_estimators=100) model = dc.models.SklearnModel(sklearn_model) model.fit(support) # Test model task_dataset = dc.data.get_task_dataset_minus_support( test_dataset, support, task) y_pred = model.predict_proba(task_dataset) score = metric.compute_metric( task_dataset.y, y_pred, task_dataset.w) print("Score on task %s is %s" % (str(task), str(score))) task_scores[task].append(score) # Join information for all tasks. mean_task_scores = {} std_task_scores = {} for task in range(len(test_dataset.get_task_names())): mean_task_scores[task] = np.mean(np.array(task_scores[task])) std_task_scores[task] = np.std(np.array(task_scores[task])) print("Mean scores") print(mean_task_scores) print("Standard Deviations") print(std_task_scores) print("Median of Mean Scores") print(np.median(np.array(mean_task_scores.values())))
mit
samuel1208/scikit-learn
sklearn/cluster/__init__.py
364
1228
""" The :mod:`sklearn.cluster` module gathers popular unsupervised clustering algorithms. """ from .spectral import spectral_clustering, SpectralClustering from .mean_shift_ import (mean_shift, MeanShift, estimate_bandwidth, get_bin_seeds) from .affinity_propagation_ import affinity_propagation, AffinityPropagation from .hierarchical import (ward_tree, AgglomerativeClustering, linkage_tree, FeatureAgglomeration) from .k_means_ import k_means, KMeans, MiniBatchKMeans from .dbscan_ import dbscan, DBSCAN from .bicluster import SpectralBiclustering, SpectralCoclustering from .birch import Birch __all__ = ['AffinityPropagation', 'AgglomerativeClustering', 'Birch', 'DBSCAN', 'KMeans', 'FeatureAgglomeration', 'MeanShift', 'MiniBatchKMeans', 'SpectralClustering', 'affinity_propagation', 'dbscan', 'estimate_bandwidth', 'get_bin_seeds', 'k_means', 'linkage_tree', 'mean_shift', 'spectral_clustering', 'ward_tree', 'SpectralBiclustering', 'SpectralCoclustering']
bsd-3-clause
bbcdli/xuexi
fenlei_tf/script_2019Nov/src/version1/tensor_eva_Dec15.py
2
69387
#originally by Hamed, 25Apr.2016 #hy:Changes by Haiyan, change logs are in tensor_train.py ##################################################################################################### import ImageDraw import ImageFilter import ImageOps import time from functools import wraps from random import randint import os import sys import datetime import settings #hy: collection of global variables import image_distortions import prepare_list import read_images import tools import cv2 import numpy as np import tensorflow as tf from sklearn import datasets import math import imutils from PIL import Image #hy: create video with images #activate global var settings.set_global() start_time = time.time() #http://lvdmaaten.github.io/tsne/ visualization ## Train or Evaluation ############################################################ do_active_fields_test = 0 TEST_with_Webcam = False #hy True - test with webcam video_label = 0 #hy: initialize/default 0:hinten 1:links 2:'oben/', 3:'rechts/', '4: unten/', 5 'vorn/ TEST_with_Images = True #hy True - test with images App_for_Images = False TEST_with_Video = False #hy True - test with video video_window_scale = 2 act_min = 0.80 act_max = 0.93 add_data = 0 #initial area_step_size_webcam = 20 #479 #200 optimizer_type = 'GD' #'adam' #GD-'gradient.descent' learning_rate = 0.0956# TODO 0.05 0.005 better, 0.001 good \0.02, 0.13 n_hidden = 60 TEST_CONV_OUTPUT = False result_for_table = 1 SAVE_Misclassified = 0 SAVE_CorrectClassified = 0 GENERATE_FILELIST = 1 log_on = False DEBUG = 0 #TrainingProp = 0.70 #Val_step = 10 # Network Parameters #n_input = 42 * 42 # Cifar data input (img shape: 32*32) n_input = settings.h_resize * settings.w_resize #hy n_classes = len(settings.LABELS) #hy: adapt to lego composed of 6 classes. Cifar10 total classes (0-9 digits) dropout = 0.5 # Dropout, probability to keep units #n_hidden = 60 #batch_size = 1 # 128 #beta1 = 0.9 #beta2 = 0.999 #epsilon = 0.009 # Noise level #noise_level = 0 #trained_model = "./" + "model_GD720_h184_w184_c6all-6881.meta" trained_model = "/home/hamed/Documents/Lego_copy/tensor_model_sum/" + "model_II_GD60_h227_w227_c6_U0.75-14431.meta" #trained_model = "/home/hamed/Documents/Lego_copy/tensor_model_sum/" + "model_GD360_h184_w184_c6_3conv_L0.7_O1.0_U1.0_7_0.71-6381.meta" #Data LABEL_LIST = './FileList.txt' LABEL_PATH = settings.data + "/*/*/*" #LABEL_LIST_TEST = './FileList_TEST1_sing.txt' LABEL_LIST_TEST = './FileList_TEST.txt' LABEL_PATH_TEST = settings.test_images + "/*/*" #LABEL_PATH_TEST = "./Test_Images/testpkg_activation/oben/*" #LABEL_PATH_TEST = "./Test_Images/testpkg2_no_bg/*/*" #8391 H,L,O,U 42.8 // 7831 H,L,O,U 44.3 // 8421 H,L,O,U 43.2 // #LABEL_PATH_TEST = "./Test_Images/testpkg3_white_200x200/*/*" # L,O, R 43.2 L,O,R 43.2 O,R,V 42.8 #LABEL_PATH_TEST = "./Test_Images/testpkg5big_224x224/*/*" # H,O,U 26.7 H,O,U 26.5 H,O,U 0.27 #LABEL_PATH_TEST = "./Test_Images/testpkg6big/*/*" # # Active fields test for visualization if do_active_fields_test == 1: print 'To get active fields analysis you must set read_images to sorted read' LABEL_PATH_TEST = "./Test_Images/test_active_fields/*/*" # LABEL_LIST_TEST = settings.test_label_file_a activation_test_img_name = './Test_Images/hinten_ori1_rz400.jpg' LABELS = settings.LABELS #hy LABEL_names = settings.LABEL_names #hy #hy:add timestamp to tensor log files from datetime import datetime tensorboard_path = './Tensorboard_data/sum107/'+str(datetime.now())+'/' if GENERATE_FILELIST == 1: print 'preparing label list' tools.prepare_list(LABEL_LIST_TEST, LABEL_PATH_TEST) #hy: avoid wrong list error #hy trial print 'loading data' tools.read_images(LABEL_LIST_TEST) #hy: get usable input size for w,h else: if TEST_with_Images or TEST_with_Video: tools.read_images(LABEL_LIST_TEST) else: tools.read_images(LABEL_LIST) class Logger(object): def __init__(self): self.terminal = sys.stdout from datetime import datetime str_log = optimizer_type self.log = open(datetime.now().strftime('log_%Y_%m_%d_%H_%M' + str_log + '.log'), "a") def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): # this flush method is needed for python 3 compatibility. # this handles the flush command by doing nothing. # you might want to specify some extra behavior here. pass if log_on and (TEST_with_Video): sys.stdout = Logger() ############################################################################################################ # hy: initialize crop frame (interest of area in demo window) # At the moment, this window has to be adjusted to focus our object. # Different area shown in focus region leads to different test result. ############################################################################################################ def track_roi(VIDEO_FILE): video = cv2.VideoCapture(VIDEO_FILE) # hy: changed from cv2.VideoCapture() # cv2.waitKey(10) video.set(1, 2) # hy: changed from 1,2000 which was for wheelchair test video, # hy: propID=1 means 0-based index of the frame to be decoded/captured next if not video.isOpened(): print "cannot find or open video file" exit(-1) # Read the first frame of the video ret, frame = video.read() # Set the ROI (Region of Interest). Actually, this is a # rectangle of the building that we're tracking c,r,w,h = 900,650,400,400 track_window = (c,r,w,h) # Create mask and normalized histogram roi = frame[r:r+h, c:c+w] hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 30., 32.)), np.array((180., 255., 255.))) roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180]) cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX) term_cond = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 80, 1) #hy: TERM_CRITERIA_EPS - terminate iteration condition while True: ret, frame = video.read() if ret: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv], [0], roi_hist, [0,180], 1) ret, track_window = cv2.meanShift(dst, track_window, term_cond) x,y,w,h = track_window #hy: draw rectangle as tracked window area cv2.rectangle(frame, (x,y), (x+w,y+h), 255, 2) cv2.putText(frame, 'Tracked', (x-25,y-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.CV_AA) cv2.imshow('Tracking', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break else: print 'no frame received' break return [track_window] def EVALUATE_IMAGES(session,num_class,img_list,_labels): #(eva) sess = session LABEL_LIST_TEST = img_list LABELS = _labels n_classes = num_class ################### active field test part one ################################ if do_active_fields_test == 1: carimages, cartargets, f = tools.read_images(LABEL_LIST_TEST, random_read=False) TEST_length = len(carimages) print '1 file',LABEL_LIST_TEST, 'path', LABEL_PATH_TEST, 'len', TEST_length #TEST_length = 1 print 'get active fields' row = 0 col = 0 test_img_bg = cv2.imread(activation_test_img_name) test_img_bg = cv2.resize(test_img_bg, (400, 400)) overlay = np.zeros([400, 400, 3], dtype=np.uint8) test_img_transparent = overlay.copy() cv2.rectangle(overlay, (0, 0), (400, 400), color=(60, 80, 30, 3)) alpha = 0.7 # hy: parameter for degree of transparency cv2.addWeighted(overlay, alpha, test_img_bg, 1 - alpha, 0, test_img_transparent) bg = Image.fromarray(test_img_transparent) else: carimages, cartargets, f = tools.read_images(LABEL_LIST_TEST, random_read=False) TEST_length = len(carimages) print 'file', LABEL_LIST_TEST, 'path', LABEL_PATH_TEST if DEBUG == 1 and do_active_fields_test == 1: overlay_show = Image.fromarray(overlay) overlay_show.save('./1-overlay.jpg') bg.save('./1-before.jpg') ################### active field test part one end ############################ # carimages = carimages / 255 - 0.5 #TODO here is tricky, double check wit respect to the formats # digits.images = carimages.reshape((len(carimages), -1)) """ print '\n' print "4.print shape of database: ", digits.images.shape # hy digits.images = np.expand_dims(np.array(digits.images), 2).astype(np.float32) print "4.1.print shape of database after expansion: ", digits.images.shape # hy digits.target = np.array(cartargets).astype(np.int32) digits.target = dense_to_one_hot(digits.target) print '\n' print "5.print target" print digits.target """ confMat1_TEST = np.zeros((n_classes, n_classes), dtype=np.float) #hy collect detailed confusion matrix confMat2_TEST = np.zeros((2, 2), dtype=np.float) confMat3 = np.zeros((1, n_classes), dtype=np.float) count_labels = np.zeros((1, n_classes), dtype=np.float) class_probability = np.zeros((1, n_classes), dtype=np.float) pred_collect = [] if result_for_table == 0: print 'True/False', 'No.', 'Name', 'TargetLabel', 'PredictLabel', 'Precision','whole_list','Top1','Top1_pres', \ 'Top2', 'Top2_pres','Top3','Top3_pres','Top4','Top4_pres','Top5','Top5_pres','last','last_pres' for i in range(0, TEST_length, 1): # hy:extra Debug # print "Shape of cropped frame in grayscale:", frame_crop_resize_gray.shape im = carimages[i] # im = frame_crop_resize_gray # Lazy im = np.asarray(im, np.float32) CONF = 0.20 test_image = im test_lables = np.zeros((1, n_classes)) # Making a dummy label tp avoid errors as initial predict # hy: info # print "Image size (wxh):", im.size #hy # Doing something very stupid here, fix it! test_image = im.reshape((-1, im.size)) #print test_image #print sess.run(test_image) test_image = np.expand_dims(np.array(test_image), 2).astype(np.float32) test_image = test_image / 255 - 0.5 # TODO here is tricky, double check wit respect to the formats batch_xs, batch_ys = test_image, test_lables # print 'batch_xs, batch_ys:', batch_xs, ', ', batch_ys #output = sess.run("Accuracy:0", feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1.}) output = sess.run("pred:0", feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1.}) # print("Output for external=",output) output = tools.convert_to_confidence(output) # np.set_printoptions(precision=3) RES = np.argmax(output) #hy predicted label label_target = int(cartargets[i]) #hy ground truth label #label_pred_str, label_pred_num = tools.convert_result(RES) #label_target_str, label_target_num = tools.convert_result(label_target) sorted_vec, prob_all = tools.rank_index(output[0],label_target) pred_collect.append(prob_all[0]) ################### active field test part two start ################################ if do_active_fields_test == 1: if col >= 4: #print '\ncol is 4' col = 0 row += 1 if row >= 4: #print '\nrow is 4' row = 0 positions = ((col)*100, (row)*100, (col+1)*100, (row+1)*100) #x0,y0, x1,y1 col += 1 #define image for obtaining its active fields #activation_test_img = Image.open('./hintenTest.jpg') #activation_test_img = Image.open('./vornTest.jpg') #activation_test_img = Image.open('./tmp/resized/links/links_t2_1_rz400_d0_0400_1.jpg') #activation_test_img = Image.open('./tmp/resized/links/links_t2_1_rz400_u870_400400.jpg') #activation_test_img = Image.open('./Test_Images/hinten_ori1_rz400.jpg') #activation_test_img = Image.open('./tmp/resized/oben/oben_t2_1_rz400_u856_400400.jpg') #activation_test_img = Image.open('./tmp/resized/unten/unten_t2_1_rz400_d0_0400_1.jpg') #activation_test_img = Image.open('./tmp/resized/unten/unten_t2_1_rz400_u923_400400.jpg') #activation_test_img = Image.open('./tmp/resized/rechts/rechts_t2_1_rz400_d0_0400_1.jpg') #activation_test_img = Image.open('./tmp/resized/rechts/rechts_t2_1_rz400_u825_400400.jpg') #activation_test_img_copy = cv2.clone(activation_test_img) activation_test_img = Image.open(activation_test_img_name) thresh = float(max(pred_collect)*0.97) print 'thresh', thresh if prob_all[0] > thresh: #print '\nactive field', positions image_crop_part = activation_test_img.crop(positions) image_crop_part = image_crop_part.filter(ImageFilter.GaussianBlur(radius=1)) bg.paste(image_crop_part, positions) bg.save('./active_fields.jpg') ################### active field test end ################################ if result_for_table == 1: if LABELS[label_target][:-1] == LABELS[RES][:-1]: print '\nTestImage',i+1,f[i],LABELS[label_target][:-1]\ ,LABELS[RES][:-1],prob_all[0], for img_i in xrange(n_classes): print settings.LABEL_names[sorted_vec[n_classes-1-img_i]], prob_all[img_i], else: print '\nMis-C-TestImage',i+1,f[i],LABELS[label_target][:-1],\ LABELS[RES][:-1],prob_all[0], for img_i in xrange(n_classes): print settings.LABEL_names[sorted_vec[n_classes-1-img_i]], prob_all[img_i], if result_for_table == 0: print '\nTestImage', i + 1, ':', f[i] # print 'Image name', carimages print 'Ground truth label:', LABELS[label_target][:-1], '; predict:', LABELS[RES][:-1] # hy # print 'Target:', label_target, '; predict:', RES # hy print '\nRank list of predicted results' tools.rank_index(output[0], label_target) label = label_target predict = int(RES) confMat1_TEST[label, predict] = confMat1_TEST[label, predict] + 1 count_labels[:, label] = count_labels[:, label] + 1 if predict == label_target: label2_TEST = 0 pred2_TEST = 0 confMat3[:, int(RES)] = confMat3[:, int(RES)] + 1 tools.SAVE_CorrectClassified_Img(f[i],SAVE_CorrectClassified) else: label2_TEST = 1 pred2_TEST = 1 tools.SAVE_Misclassified_Img(f[i],SAVE_Misclassified) confMat2_TEST[label2_TEST, pred2_TEST] = confMat2_TEST[label2_TEST, pred2_TEST] + 1 tp = confMat2_TEST[0, 0] tn = confMat2_TEST[1, 1] #print summary print '\n\nCount correctly classified' tools.print_label_title() print confMat3 print 'Total labels' print count_labels print '\nProportion of correctly classified' for pos in range(0, n_classes, 1): if count_labels[:, pos] > 0: class_probability[:, pos] = confMat3[:, pos] / count_labels[:, pos] print class_probability # print '\ntp, tn, total number of test images:', tp, ', ', tn, ', ', TEST_length # print confMat2_TEST print '\nTEST general count:' print confMat2_TEST print 'TEST overall acc:', "{:.3f}".format(tp / TEST_length) ################################################################################### ## Feature output ################################################################# ################################################################################### if TEST_CONV_OUTPUT: print '\nTEST feature output:' test_writer = tf.train.SummaryWriter(tensorboard_path + settings.LABELS[label_target], sess.graph) wc1 = sess.run("wc1:0",feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1}) wc2 = sess.run("wc2:0",feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1}) wd1 = sess.run("wd1:0",feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1}) w_out = sess.run("w_out:0",feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1}) bc1 = sess.run("bc1:0",feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1}) bc2 = sess.run("bc2:0",feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1}) bd1 = sess.run("bd1:0",feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1}) b_out = sess.run("b_out:0",feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1}) conv_feature = sess.run("conv2:0", feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1}) #conv_feature_2D_batch = tools.get_feature_map(conv_feature,f,'conv2') #get defined conv value, not sure for conv2 #featureImg = sess.run("conv2img:0", feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1}) summary_op = tf.merge_all_summaries() test_res = sess.run(summary_op, feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1}) test_writer.add_summary(test_res, 1) #print '2D size',len(conv_feature_2D_batch),'\n',sum(conv_feature_2D_batch[:]) print 'wc1 shape',wc1.shape, 'wc2:',wc2.shape, 'wd1:',wd1.shape,'w_out:',w_out.shape print 'bc1 shape ',bc1.shape, 'bc2:',' ',bc2.shape, 'bd1: ',bd1.shape,'b_out: ',b_out.shape print 'pred shape', len(pred_collect) else: print 'no image got' return (confMat1_TEST,count_labels,confMat3,class_probability) def EVALUATE_IMAGES_VAGUE(n_classes,img_list): LABEL_LIST_TEST = img_list # Testing cartargets, f = tools.read_test_images(LABEL_LIST_TEST) #print 'cartargets label', cartargets TEST_length = 20 #TEST_length = len(cartargets) # carimages = carimages / 255 - 0.5 #TODO here is tricky, double check wit respect to the formats # digits.images = carimages.reshape((len(carimages), -1)) """ print '\n' print "4.print shape of database: ", digits.images.shape # hy digits.images = np.expand_dims(np.array(digits.images), 2).astype(np.float32) print "4.1.print shape of database after expansion: ", digits.images.shape # hy digits.target = np.array(cartargets).astype(np.int32) digits.target = dense_to_one_hot(digits.target) print '\n' print "5.print target" print digits.target """ confMat_m1_TEST = np.zeros((n_classes, n_classes), dtype=np.float) confMat_m2_TEST = np.zeros((2, 2), dtype=np.float) confMat_m3 = np.zeros((1, n_classes), dtype=np.float) count_labels_m = np.zeros((1, n_classes), dtype=np.float) class_probability_m = np.zeros((1, n_classes), dtype=np.float) patch_size = 42 #227 for i in range(0, TEST_length, 1): # hy:extra Debug #im = carimages[i] # im = frame_crop_resize_gray # Lazy ''' #hy: option to use numpy.ndarray, but it cannot use attribute 'crop' of Image (integer) object img = cv2.imread(f[i]) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = imutils.resize(img, width=patch_size, height=patch_size) h_b, w_b = img.shape print 'h_b', h_b, ', w_b', w_b ''' print 'processing main test image',f[i] #hy: use integer image: Image, resize img = Image.open(f[i]).convert('LA') #convert to gray h_b, w_b = img.size #print 'read test image ok', h_b, ', ', w_b img = img.resize((patch_size * 2, patch_size * 2), Image.BICUBIC) # hy:use bicubic #h_b, w_b = img.size #print 'h_b', h_b, ', w_b', w_b test_lables = np.zeros((1, n_classes)) # Making a dummy label tp avoid errors as initial predict test_image = img test_image_label = cartargets[i] # Doing something very stupid here, fix it! #test_image = im.reshape((-1, im.size)) # test_image = np.expand_dims(np.array(test_image), 2).astype(np.float32) #test_image = test_image / 255 - 0.5 # TODO here is tricky, double check with respect to the formats slices_rec = image_distortions.create_test_slices(test_image,patch_size,test_image_label) print 'slices with path received', slices_rec slices_len = len(slices_rec) out_sum = np.zeros((1, n_classes), dtype=np.float) out_box = np.zeros((1, n_classes), dtype=np.float) #batch_xs, batch_ys = im, cartargets #output_im = sess.run(pred, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) for j in range(0, slices_len, 1): print '\nprocessing slice', j, slices_rec[j] #hy read and resize integer object #im_s = Image.open(slices_rec[j]) #numpy.ndarray does not have attribute 'crop' #im_s = im_s.resize((settings.h_resize, settings.w_resize), Image.BICUBIC) # hy:use bicubic, resize func reuqires integer object #im_s = im_s.convert('LA') #hy convert to gray #hy read and resize continuous number object im_s = cv2.imread(slices_rec[j]) #result is not integer im_s = cv2.cvtColor(im_s, cv2.COLOR_BGR2GRAY) im_s = imutils.resize(im_s, width=settings.h_resize, height=settings.w_resize) #hy conver to integer object required for tensor im_s = np.asarray(im_s, np.float32) CONF = 0.20 (sorted_vec,outputsub)= EVALUATE_IMAGE_SLICES(im_s,f,i,sess, cartargets) print 'slice',j, 'result', sorted_vec print 'Image slice', slices_rec[j] outbox = outputsub out_sum = out_sum + outputsub[0] # print '\ntp, tn, total number of test images:', tp, ', ', tn, ', ', TEST_length # print confMat2_TEST print '\nTEST general count:' print out_sum print out_sum/slices_len outbox[0] = out_sum/slices_len output_im,prob_all = tools.rank_index(outbox[0],test_image_label) print 'target', test_image_label print 'output final prediction', output_im[-1] RES = int(output_im[-1]) print 'test_image_label', test_image_label label = test_image_label predict = int(RES) confMat_m1_TEST[label, predict] = confMat_m1_TEST[label, predict] + 1 count_labels_m[:, test_image_label] = count_labels_m[:, test_image_label] + 1 if int(RES) == int(test_image_label): label2_TEST = 0 pred2_TEST = 0 confMat_m3[:, int(RES)] = confMat_m3[:, int(RES)] + 1 tools.SAVE_CorrectClassified_Img(f[i],SAVE_CorrectClassified) else: label2_TEST = 1 pred2_TEST = 1 tools.SAVE_Misclassified_Img(f[i],SAVE_Misclassified) # print 'Count classified' # tools.print_label_title() # print confMat1_TEST confMat_m2_TEST[label2_TEST, pred2_TEST] = confMat_m2_TEST[label2_TEST, pred2_TEST] + 1 tp = confMat_m2_TEST[0, 0] tn = confMat_m2_TEST[1, 1] print 'Count classified m1 - confusion matrix' tools.print_label_title() print confMat_m1_TEST print '\nCount correctly classified -m3' tools.print_label_title() print confMat_m3 print 'tp,np -m2' print confMat_m2_TEST print 'Total labels' print count_labels_m print 'Proportion of correctly classified for detailed analysis' #ok if count_labels_m[:, pos] > 0: for pos in range(0, n_classes, 1): class_probability_m[:, pos] = confMat_m3[:, pos] / count_labels_m[:, pos] print class_probability_m print 'TEST overall acc:', "{:.3f}".format(tp / TEST_length) def EVALUATE_IMAGE_SLICES(img,f,index,sess, cartargets,num_class): #hy todo change dimension to fit tensorflow n_classes = num_class confMat1_TEST = np.zeros((n_classes, n_classes), dtype=np.float) confMat2_TEST = np.zeros((2, 2), dtype=np.float) confMat3 = np.zeros((1, n_classes), dtype=np.float) count_labels = np.zeros((1, n_classes), dtype=np.float) class_probability = np.zeros((1, n_classes), dtype=np.float) img_s = img i = index test_lables = np.zeros((1, n_classes)) # Making a dummy label tp avoid errors as initial predict # Doing something very stupid here, fix it! test_image = img_s.reshape((-1, img_s.size)) test_image = np.expand_dims(np.array(test_image), 2).astype(np.float32) test_image = test_image / 255 - 0.5 # TODO here is tricky, double check with respect to the formats batch_xs1, batch_ys1 = test_image, test_lables output = sess.run("pred:0", feed_dict={"x:0": batch_xs1, "y:0": batch_ys1, "keep_prob:0": 1.}) # print("Output for external=",output) # print output output = tools.convert_to_confidence(output) # np.set_printoptions(precision=3) RES = np.argmax(output) label_target = int(cartargets[i]) print '\nTestImage', i + 1, ':', f[i] # print 'Image name', carimages print 'Target:', LABELS[label_target][:-1], '; predict:', LABELS[RES][:-1] # hy # print 'Target:', label_target, '; predict:', RES # hy count_labels[:, label_target] = count_labels[:, label_target] + 1 label = label_target predict = int(RES) # hy: INFO - print label, predict # print 'labels_onehot:', labels_onehot[i, :], ' label=', label # print 'score:', scores[i, :] # print 'predict:', predict #if label == predict: confMat1_TEST[label, predict] = confMat1_TEST[label, predict] + 1 if int(RES) == label_target: label2_TEST = 0 pred2_TEST = 0 confMat3[:, int(RES)] = confMat3[:, int(RES)] + 1 tools.SAVE_CorrectClassified_Img(f[i],SAVE_CorrectClassified) else: label2_TEST = 1 pred2_TEST = 1 tools.SAVE_Misclassified_Img(f[i],SAVE_Misclassified) #print 'Count classified' #tools.print_label_title() #print confMat1_TEST confMat2_TEST[label2_TEST, pred2_TEST] = confMat2_TEST[label2_TEST, pred2_TEST] + 1 tp = confMat2_TEST[0, 0] tn = confMat2_TEST[1, 1] print '\nCount correctly classified' tools.print_label_title() print confMat3 #print 'Total labels' #print count_labels #print 'Proportion of correctly classified' #if count_labels[:, pos] > 0: #for pos in range(0, 6, 1): # class_probability[:, pos] = confMat3[:, pos] / count_labels[:, pos] #print class_probability #print '\nRank list of predicted results' sorted_vec,prob_all = tools.rank_index(output[0], label_target) #return (confMat1_TEST, confMat2_TEST, confMat3, count_labels, class_probability,sorted_vec,output) return (sorted_vec,output) def EVALUATE_WITH_WEBCAM(camera_port, stop,num_class): n_classes = num_class #hy: check camera availability camera = cv2.VideoCapture(camera_port) if stop == False: #if ckpt and ckpt.model_checkpoint_path: # Camera 0 is the integrated web cam on my netbook # Number of frames to throw away while the camera adjusts to light levels ramp_frames = 1 i = 0 while True: #hy: confirm camera is available # Now we can initialize the camera capture object with the cv2.VideoCapture class. # All it needs is the index to a camera port. print 'Getting image...' ret, frame = camera.read() # Captures a single image from the camera and returns it in PIL format #ret = camera.set(3, 320) #hy use properties 3 and 4 to set frame resolution. 3- w, 4- h #ret = camera.set(4, 240) cv2.waitKey(1) # A nice feature of the imwrite method is that it will automatically choose the # correct format based on the file extension you provide. # cv2.imwrite(file, camera_capture) #################################### ///////////////////////////// if frame is not None: # print 'frame from webcam obtained' # hy: before continue check if image is read correctly # while frame is not None: i += 1 # hy: h_frame = frame.shape[0] w_frame = frame.shape[1] # hy: h 1536 x w 2304 # hy: info print "h_video and w_video", h_frame, ",", w_frame # cv2.imshow("ori", frame) #crop_x1 = int((w_frame - area_step_size_webcam) / 2) #crop_y1 = int((h_frame - area_step_size_webcam) / 2) # 1#200 #crop_x2 = crop_x1 + area_step_size_webcam #crop_y2 = int(crop_y1 + area_step_size_webcam * settings.h_resize / settings.w_resize) crop_y1 = int((h_frame - area_step_size_webcam) / 2) # 1#200 crop_x1 = int((w_frame - area_step_size_webcam) / 2) crop_y2 = crop_y1 + area_step_size_webcam #hy:define shorter side as unit length to avoid decimal crop_x2 = crop_x1 + area_step_size_webcam * settings.w_resize/settings.h_resize #print "x1,y1,x2,y2", crop_x1, 'x', crop_y1, ',', crop_x2, 'x', crop_y2 # Crop # hy: select suitable values for the area of cropped frame, # adapt to the ratio of h to w after resized, e.g. 42x42 ie.w=h frame_crop = frame[crop_y1:crop_y2, crop_x1:crop_x2] # hy: info # print "shape:y1,y2,x1,x2:", crop_y1," ", crop_y2," ", crop_x1," ", crop_x2 # print "Shape of cropped frame:", frame_crop.shape #hy: it should be same as the shape of trained images(the input image) cv2.imshow("frame_cropped", frame_crop) # Resize # frame_crop_resize_gray = imutils.resize(cv2.cvtColor(frame_crop, cv2.COLOR_BGR2GRAY), width=42) # hy: it is something different to video_crop_tool.py, here for tensorflow the width has to be that of input image frame_crop_resize_gray = imutils.resize(cv2.cvtColor(frame_crop, cv2.COLOR_BGR2GRAY), width=settings.w_resize) # hy:extra Debug # print "Shape of cropped frame in grayscale:", frame_crop_resize_gray.shape im = frame_crop_resize_gray # Lazy im = np.asarray(im, np.float32) cv2.imshow("TensorFlow Window", imutils.resize(im.astype(np.uint8), 227)) #hy trial # Adding noise to the street image #TODO # im=add_noise(im,5) # Bluring the image to help detection #TODO # im = cv2.GaussianBlur(im,(5,5),0) CONF = 0.20 test_image = im test_lables = np.zeros((1, n_classes)) # Making a dummy label tp avoid errors as initial predict # hy: info # print "Image size (wxh):", im.size #hy # Doing something very stupid here, fix it! test_image = im.reshape((-1, im.size)) # print test_image test_image = np.expand_dims(np.array(test_image), 2).astype(np.float32) # print test_image test_image = test_image / 255 - 0.5 # TODO here is tricky, double check wit respect to the formats batch_xs, batch_ys = test_image, test_lables # print 'batch_xs, batch_ys:', batch_xs, ', ', batch_ys output = sess.run("pred:0", feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1.}) # print("Output for external=",output) # print output output = tools.convert_to_confidence(output) np.set_printoptions(precision=2) print '\nFrame', i tools.print_label_title_conf() print 'confidence =', output # hy RES = np.argmax(output) label_pred_str = LABELS[RES][:-1] #label_pred_str, label_pred_num = tools.convert_result(RES) #print 'label_pred_str', label_pred_str print 'predicted label:', LABELS[RES][:-1] if label_pred_str == video_label: label2_TEST_Video = 0 pred2_TEST_Video = 0 name_str = settings.CorrectClassified + "/frame_crop%d.jpg" % i tools.SAVE_CorrectClassified_frame(name_str,frame_crop,SAVE_CorrectClassified) else: label2_TEST_Video = 1 pred2_TEST_Video = 1 name_str = settings.Misclassified + "/frame_crop%d.jpg" % i tools.SAVE_Misclassified_frame(name_str, frame_crop, SAVE_Misclassified) cv2.rectangle(frame, (crop_x1, crop_y1), (crop_x2, crop_y2), color=(0, 255, 0), thickness=1) #cv2.putText(frame, "predicted1: " + label_pred_str, org=(w_frame / 10, h_frame / 20), # fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 255, 0), thickness=1) cv2.putText(frame, "predicted1: " + label_pred_str, org=(w_frame / 10, h_frame / 20), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 255, 0), thickness=1) prob_str = str(output[0][RES])[:4] cv2.putText(frame, "prob:" + prob_str, org=(w_frame / 10, h_frame / 8), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 255, 0), thickness=1) # hy: could be modified to display desired label # cv2.putText(frame, LABELS[RES], org=(800, 100), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255,0,0), thickness=3 ) # cv2.putText(frame, str(video.get(1)), org=(20, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, # color=(0, 255, 0), thickness=1) frame_demo = imutils.resize(frame, width=1200) # frame_demo = imutils.resize(frame, width = min(1200, settings.w_resize * 30)) #hy: choose a smaller window size cv2.imshow("Demo", frame_demo) cv2.waitKey(300) #TODO add termination condition print 'no frame retrieved' del(camera) return stop def EVALUATE_WITH_WEBCAM_track_roi(camera_port,num_class): n_classes = num_class frame_index_i = 0 crop_x1 = 300 area_step_size = 200 crop_y1 = 200 # hy: check camera availability camera = cv2.VideoCapture(camera_port) # Read the first frame of the video ret, frame = camera.read() # Set the ROI (Region of Interest). Actually, this is a # rectangle of the building that we're tracking ############################################################################################### # Track ############################################################################################### c, r, w, h = 100, 200, 200, 200 track_window = (c, r, w, h) # track_window = (x0, y0, w, h) # Create mask and normalized histogram roi = frame[r:r + h, c:c + w] hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 30., 32.)), np.array((180., 255., 255.))) roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180]) cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX) term_cond = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 80, 1) # hy: TERM_CRITERIA_EPS - terminate iteration condition # hy: initialization of confmatrix confMat2_TEST_Video = np.zeros((2, 2), dtype=np.float) while True: # hy: confirm camera is available # Now we can initialize the camera capture object with the cv2.VideoCapture class. # All it needs is the index to a camera port. print 'Getting image...' # Captures a single image from the camera and returns it in PIL format ret, frame = camera.read() # ret = camera.set(3, 320) #hy use properties 3 and 4 to set frame resolution. 3- w, 4- h # ret = camera.set(4, 240) cv2.waitKey(1) # A nice feature of the imwrite method is that it will automatically choose the # correct format based on the file extension you provide. # cv2.imwrite(file, camera_capture) if ret: frame_index_i = frame_index_i + 1 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) print 'hsv done' dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1) print 'back project done' ret, track_window = cv2.meanShift(dst, track_window, term_cond) print 'ret' xt, yt, wt, ht = track_window # hy info print 'xt,yt,wt,ht:', xt, ',', yt, ',', wt, ',' , ht # hy: draw rectangle as tracked window area cv2.rectangle(frame, (xt, yt), (xt + wt, yt + ht), 255, 2) cv2.putText(frame, 'tracked', (xt - 25, yt - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.CV_AA) cv2.waitKey(100) ############################################################################################### # evaluate ############################################################################################### # hy: info # print "shape in evaluate:x1,y1:", crop_x1, ',', crop_y1 crop_x1 = xt crop_x2 = xt + wt crop_y1 = yt area_step_size = ht crop_y2 = crop_y1 + area_step_size * settings.h_resize / settings.w_resize # hy: select suitable values for the area of cropped frame, # adapt to the ratio of h to w after resized, e.g. 42x42 ie.w=h frame_crop = frame[crop_y1:crop_y2, crop_x1:crop_x2] # hy: info print "shape after set_testClass:y1, y2, x1, x2:", crop_y1,',', crop_y2, ',', crop_x1, ',', crop_x2 # hy: h_frame = frame.shape[0] w_frame = frame.shape[1] # hy: h 1536 x w 2304 ####################################################################################### # Evaluate ####################################################################################### # hy: info # print "shape:y1,y2,x1,x2:", crop_y1," ", crop_y2," ", crop_x1," ", crop_x2 # print "Shape of cropped frame:", frame_crop.shape #hy: it should be same as the shape of trained images(the input image) cv2.imshow("frame_cropped", frame_crop) # Resize # frame_crop_resize_gray = imutils.resize(cv2.cvtColor(frame_crop, cv2.COLOR_BGR2GRAY), width=42) # hy: it is something different to video_crop_tool.py, here for tensorflow the width has to be that of input image frame_crop_resize_gray = imutils.resize(cv2.cvtColor(frame_crop, cv2.COLOR_BGR2GRAY), width=settings.w_resize) # hy:extra Debug # print "Shape of cropped frame in grayscale:", frame_crop_resize_gray.shape im = frame_crop_resize_gray # Lazy im = np.asarray(im, np.float32) cv2.imshow("TensorFlow Window", imutils.resize(im.astype(np.uint8), 200)) # Adding noise to the street image #TODO # im=add_noise(im,5) # Bluring the image to help detection #TODO # im = cv2.GaussianBlur(im,(5,5),0) CONF = 0.20 test_image = im test_lables = np.zeros((1, n_classes)) # Making a dummy label tp avoid errors as initial predict # hy: info # print "Image size (wxh):", im.size #hy # Doing something very stupid here, fix it! test_image = im.reshape((-1, im.size)) # print test_image test_image = np.expand_dims(np.array(test_image), 2).astype(np.float32) # print test_image test_image = test_image / 255 - 0.5 # TODO here is tricky, double check wit respect to the formats batch_xs, batch_ys = test_image, test_lables # print 'batch_xs, batch_ys:', batch_xs, ', ', batch_ys output = sess.run("pred:0", feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1.}) # print("Output for external=",output) # print output output = tools.convert_to_confidence(output) np.set_printoptions(precision=2) print '\nFrame', frame_index_i tools.print_label_title_conf() print 'confidence =', output # hy RES = np.argmax(output) if int(RES) == video_label: label2_TEST_Video = 0 pred2_TEST_Video = 0 name_str = settings.CorrectClassified + "/frame_crop%d.jpg" % frame_index_i tools.SAVE_CorrectClassified_frame(name_str, frame_crop, SAVE_CorrectClassified) else: label2_TEST_Video = 1 pred2_TEST_Video = 1 name_str = settings.Misclassified + "/frame_crop%d.jpg" % frame_index_i tools.SAVE_Misclassified_frame(name_str, frame_crop, SAVE_Misclassified) cv2.rectangle(frame, (crop_x1, crop_y1), (crop_x2, crop_y2), color=(0, 255, 0), thickness=1) cv2.putText(frame, "predicted1: " + LABELS[RES], org=(w_frame / 10, h_frame / 20), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 255, 0), thickness=1) #cv2.putText(frame, "predicted2: " + LABELS[RES], org=(w_frame / 10, h_frame / 20), # fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=5, color=(0, 255, 0), thickness=5) output_display = str(output[0][RES])[:4] cv2.putText(frame, "prob:" + output_display, org=(w_frame / 10, h_frame / 8), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 255, 0), thickness=1) #cv2.putText(frame, "predicted1: " + LABELS[RES] + ", prob:" + output[RES], org=(w_frame / 6, h_frame / 10), # fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 255, 0), thickness=3) # hy: could be modified to display desired label # cv2.putText(frame, LABELS[RES], org=(800, 100), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255,0,0), thickness=3 ) # cv2.putText(frame, str(video.get(1)), org=(20, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, # color=(0, 255, 0), thickness=1) frame_demo = imutils.resize(frame, width=1200) # frame_demo = imutils.resize(frame, width = min(1200, settings.w_resize * 30)) #hy: choose a smaller window size cv2.imshow("Demo", frame_demo) cv2.waitKey(300) else: print 'no frame retrieved' break #hy TODO add termination condition del(camera) def Evaluate_VIDEO_track_roi(VIDEO_FILE,num_class): n_classes = num_class video = cv2.VideoCapture(VIDEO_FILE) # hy: changed from cv2.VideoCapture() # cv2.waitKey(10) video.set(1, 2) # hy: changed from 1,2000 which was for wheelchair test video, # hy: propID=1 means 0-based index of the frame to be decoded/captured next if not video.isOpened(): print "cannot find or open video file" exit(-1) # Read the first frame of the video ret, frame = video.read() # Set the ROI (Region of Interest). Actually, this is a # rectangle of the building that we're tracking ############################################################################################### # Track ############################################################################################### c,r,w,h = 600,450,600,600 track_window = (c, r, w, h) #track_window = (x0, y0, w, h) # Create mask and normalized histogram roi = frame[r:r+h, c:c+w] hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 30., 32.)), np.array((180., 255., 255.))) roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180]) cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX) term_cond = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 80, 1) #hy: TERM_CRITERIA_EPS - terminate iteration condition # hy: initialization of confmatrix confMat2_TEST_Video = np.zeros((2, 2), dtype=np.float) video_frame_i = 0 while True: ret, frame = video.read() if ret: video_frame_i = video_frame_i + 1 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv], [0], roi_hist, [0,180], 1) ret, track_window = cv2.meanShift(dst, track_window, term_cond) xt, yt, wt, ht = track_window #hy info #print 'xt,yt,wt,ht:', xt, ',', yt, ',', wt, ',' , ht #hy: draw rectangle as tracked window area cv2.rectangle(frame, (xt,yt), (xt+wt,yt+ht), 255, 2) cv2.putText(frame, 'tracked', (xt-25,yt-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.CV_AA) cv2.waitKey(500) ############################################################################################### # evaluate ############################################################################################### # hy: info #print "shape in evaluate:x1,y1:", crop_x1, ',', crop_y1 crop_x1 = xt crop_x2 = xt + wt crop_y1 = yt area_step_size = ht crop_y2 = crop_y1 + area_step_size * settings.h_resize / settings.w_resize # hy: select suitable values for the area of cropped frame, # adapt to the ratio of h to w after resized, e.g. 42x42 ie.w=h frame_crop = frame[crop_y1:crop_y2, crop_x1:crop_x2] # hy: info #print "shape after set_testClass:y1, y2, x1, x2:", crop_y1,',', crop_y2, ',', crop_x1, ',', crop_x2 # hy: h_frame = frame.shape[0] w_frame = frame.shape[1] # hy: h 1536 x w 2304 # hy: info # print "Shape of cropped frame:", frame_crop.shape #hy: it should be same as the shape of trained images(the input image) cv2.imshow("frame_cropped", frame_crop) # Resize # frame_crop_resize_gray = imutils.resize(cv2.cvtColor(frame_crop, cv2.COLOR_BGR2GRAY), width=42) # hy: it is something different to video_crop_tool.py, here for tensorflow the width has to be that of input image frame_crop_resize_gray = imutils.resize(cv2.cvtColor(frame_crop, cv2.COLOR_BGR2GRAY), width=settings.w_resize) # hy:extra Debug # print "Shape of cropped frame in grayscale:", frame_crop_resize_gray.shape im = frame_crop_resize_gray # Lazy im = np.asarray(im, np.float32) cv2.imshow("TensorFlow Window", imutils.resize(im.astype(np.uint8), 200)) # Adding noise to the street image #TODO # im=add_noise(im,5) # Bluring the image to help detection #TODO # im = cv2.GaussianBlur(im,(5,5),0) CONF = 0.20 test_image = im test_lables = np.zeros((1, n_classes)) # Making a dummy label tp avoid errors as initial predict # hy: info # print "Image size (wxh):", im.size #hy # Doing something very stupid here, fix it! test_image = im.reshape((-1, im.size)) # print test_image test_image = np.expand_dims(np.array(test_image), 2).astype(np.float32) # print test_image test_image = test_image / 255 - 0.5 # TODO here is tricky, double check wit respect to the formats batch_xs, batch_ys = test_image, test_lables #print 'batch_xs, batch_ys:', batch_xs, ', ', batch_ys output = sess.run("pred:0", feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1.}) # print("Output for external=",output) # print output output = tools.convert_to_confidence(output) np.set_printoptions(precision=2) print '\nFrame', video_frame_i tools.print_label_title_conf() print 'confidence =', output # hy RES = np.argmax(output) print "label, predict =", video_label, ', ', RES # hy if int(RES) == video_label: label2_TEST_Video = 0 pred2_TEST_Video = 0 name_str = settings.CorrectClassified + "/frame_crop%d.jpg" % video_frame_i tools.SAVE_CorrectClassified_frame(name_str, frame_crop, SAVE_CorrectClassified) else: label2_TEST_Video = 1 pred2_TEST_Video = 1 name_str = settings.Misclassified + "/frame_crop%d.jpg" % video_frame_i tools.SAVE_Misclassified_frame(name_str, frame_crop, SAVE_Misclassified) confMat2_TEST_Video[label2_TEST_Video, pred2_TEST_Video] = confMat2_TEST_Video[ label2_TEST_Video, pred2_TEST_Video] + 1 cv2.rectangle(frame, (crop_x1, crop_y1), (crop_x2, crop_y2), color=(0, 255, 0), thickness=1) cv2.putText(frame, "predicted: " + LABELS[RES], org=(w_frame / 3, h_frame / 10), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(0, 255, 0), thickness=4) cv2.putText(frame, str(video.get(1)), org=(20, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 255, 0), thickness=1) frame_demo = imutils.resize(frame, width=1200) # frame_demo = imutils.resize(frame, width = min(1200, settings.w_resize * 30)) #hy: choose a smaller window size cv2.imshow("Demo", frame_demo) cv2.waitKey(300) # hy: other options - control to move ROI downwards, then to the right # crop_y1 = crop_y1 + area_step_size/50 # if crop_y2+area_step_size >= frame.shape[0]: # crop_y1 = 0 # crop_x1 = crop_x1 + 200 # if crop_x2+area_step_size >= frame.shape[1]: ##crop_x1 = 0 # break else: print 'no frame retrieved' break # hy added tp = confMat2_TEST_Video[0, 0] tn = confMat2_TEST_Video[1, 1] # print confMat2_TEST_Video # print 'tp, tn, total number of test images:', tp, ', ', tn, ', ', tp + tn print confMat2_TEST_Video print 'TEST acc:', "{:.4f}".format(tp / (tp + tn)) cv2.waitKey(100) if cv2.waitKey(1) & 0xFF == ord('q'): # hy:press key-q to quit break ############################################################################################### #cv2.imshow('Tracking', frame) #if cv2.waitKey(1) & 0xFF == ord('q'): # break #else: #print 'no frame received for tracking' #break def EVALUATE_VIDEO(VIDEO_FILE,num_class): n_classes = num_class video = cv2.VideoCapture(VIDEO_FILE) # hy: changed from cv2.VideoCapture() # cv2.waitKey(10) video.set(1, 2) # hy: changed from 1,2000 which was for wheelchair test video, # hy: propID=1 means 0-based index of the frame to be decoded/captured next # video.open(VIDEO_FILE) # hy: for debug if not video.isOpened(): print "cannot find or open video file" exit(-1) ## Reading the video file frame by frame # hy: initialization of confmatrix confMat2_TEST_Video = np.zeros((2, 2), dtype=np.float) video_frame_i = 0 while True: video_frame_i += 1 ret, frame = video.read() if ret: # hy: h_frame = frame.shape[0] w_frame = frame.shape[1] # hy: h 1536 x w 2304 # print "h_video and w_video", h_resize, ",", w_resize # cv2.imshow("ori", frame) # print "frame size hxw", frame.shape[0]," ", frame.shape[1] crop_x2 = crop_x1 + area_step_size crop_y2 = crop_y1 + area_step_size * settings.h_resize / settings.w_resize # Crop # frame_crop = frame[350:750, 610:1300] #hy: ori setting for w24xh42 # hy: select suitable values for the area of cropped frame, # adapt to the ratio of h to w after resized, e.g. 42x42 ie.w=h frame_crop = frame[crop_y1:crop_y2, crop_x1:crop_x2] # hy: info print "shape:y1,y2,x1,x2:", crop_y1,", ", crop_y2,", ", crop_x1,", ", crop_x2 # print "Shape of cropped frame:", frame_crop.shape #hy: it should be same as the shape of trained images(the input image) cv2.imshow("frame_cropped", frame_crop) # Resize # frame_crop_resize_gray = imutils.resize(cv2.cvtColor(frame_crop, cv2.COLOR_BGR2GRAY), width=42) # hy: it is something different to video_crop_tool.py, here for tensorflow the width has to be that of input image frame_crop_resize_gray = imutils.resize(cv2.cvtColor(frame_crop, cv2.COLOR_BGR2GRAY), width=settings.w_resize) # hy:extra Debug # print "Shape of cropped frame in grayscale:", frame_crop_resize_gray.shape im = frame_crop_resize_gray # Lazy im = np.asarray(im, np.float32) cv2.imshow("TensorFlow Window", imutils.resize(im.astype(np.uint8), 227)) # Adding noise to the street image #TODO # im=add_noise(im,5) # Bluring the image to help detection #TODO # im = cv2.GaussianBlur(im,(5,5),0) CONF = 0.20 test_image = im test_lables = np.zeros((1, n_classes)) # Making a dummy label tp avoid errors as initial predict # hy: info # print "Image size (wxh):", im.size #hy # Doing something very stupid here, fix it! test_image = im.reshape((-1, im.size)) # print test_image test_image = np.expand_dims(np.array(test_image), 2).astype(np.float32) # print test_image test_image = test_image / 255 - 0.5 # TODO here is tricky, double check wit respect to the formats batch_xs, batch_ys = test_image, test_lables # print 'batch_xs, batch_ys:', batch_xs, ', ', batch_ys output = sess.run("pred:0", feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1.}) # print("Output for external=",output) # print output output = tools.convert_to_confidence(output) np.set_printoptions(precision=2) print '\nFrame', video_frame_i tools.print_label_title_conf() print 'confidence =', output # hy RES = np.argmax(output) #hy: for sub-classes #label_pred_str, label_pred_num = tools.convert_result(RES) # hy use it when sub-classes are applied #RES_sub_to_face = class_label #hy added print "label, predict =", video_label, ', ', RES # hy if RES == video_label: label2_TEST_Video = 0 pred2_TEST_Video = 0 name_str = settings.CorrectClassified + "/frame_crop%d.jpg" % video_frame_i tools.SAVE_CorrectClassified_frame(name_str, frame_crop, SAVE_CorrectClassified) else: label2_TEST_Video = 1 pred2_TEST_Video = 1 name_str = settings.Misclassified + "/frame_crop%d.jpg" % video_frame_i tools.SAVE_Misclassified_frame(name_str, frame_crop, SAVE_Misclassified) confMat2_TEST_Video[label2_TEST_Video, pred2_TEST_Video] = confMat2_TEST_Video[ label2_TEST_Video, pred2_TEST_Video] + 1 # Make a little demonstration (hy:static window version) # hy: showing evaluation result identified class on video # if RES == 0 or RES == 2: # cv2.rectangle(frame,(610, 350), (1300, 750), color=(0, 255, 0), thickness=20) # cv2.putText(frame, 'Available', org=(800, 300), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(0,255,0),thickness=4) # else: # cv2.rectangle(frame,(610, 350), (1300, 750), color=(0, 0, 255), thickness=20) # cv2.putText(frame, 'Occupied', org=(800, 300), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(0,0,255), thickness=4) # hy: TODO adapt to current app # if RES == 0 or RES == 2: # cv2.rectangle(frame, (crop_x1, crop_y1), (crop_x2, crop_y2), color=(0, 255, 0), thickness=20) # cv2.putText(frame, 'Available', org=(800, 300), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, # color=(0, 255, 0), thickness=4) # else: # cv2.rectangle(frame, (crop_x1, crop_y1), (crop_x2, crop_y2), color=(0, 0, 255), thickness=20) # cv2.putText(frame, 'Occupied', org=(800, 300), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, # color=(0, 0, 255), thickness=4) label_pred_str = LABELS[RES][:-1] cv2.rectangle(frame, (crop_x1, crop_y1), (crop_x2, crop_y2), color=(0, 255, 0), thickness=1) cv2.putText(frame, "predicted: " + label_pred_str, org=(w_frame / 3, h_frame / 10), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(0, 255, 0), thickness=4) # hy: could be modified to display desired label # cv2.putText(frame, label_pred_str, org=(800, 100), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255,0,0), thickness=3 ) cv2.putText(frame, str(video.get(1)), org=(20, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 255, 0), thickness=1) #cv2.putText(frame, label_pred_str, org=(20, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, # color=(0, 255, 0), thickness=1) frame_demo = imutils.resize(frame, width=1200) # frame_demo = imutils.resize(frame, width = min(1200, settings.w_resize * 30)) #hy: choose a smaller window size cv2.imshow("Demo", frame_demo) cv2.waitKey(300) # hy: other options - control to move ROI downwards, then to the right # crop_y1 = crop_y1 + area_step_size/50 # if crop_y2+area_step_size >= frame.shape[0]: # crop_y1 = 0 # crop_x1 = crop_x1 + 200 # if crop_x2+area_step_size >= frame.shape[1]: ##crop_x1 = 0 # break else: print 'no frame retrieved' break # hy added tp = confMat2_TEST_Video[0, 0] tn = confMat2_TEST_Video[1, 1] # print confMat2_TEST_Video # print 'tp, tn, total number of test images:', tp, ', ', tn, ', ', tp + tn print confMat2_TEST_Video print 'TEST acc:', "{:.4f}".format(tp / (tp + tn)) if cv2.waitKey(1) & 0xFF == ord('q'): # hy:press key-q to quit break #def dense_to_one_hot(labels_dense, num_classes=n_classes): def dense_to_one_hot(labels_dense, num_classes): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = np.arange(num_labels) * num_classes labels_one_hot = np.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 if DEBUG == 1: print 'one_hot_vector:', labels_one_hot[0] return labels_one_hot ##################################################################################################### ################## TEST with Video ########################### ##################################################################################################### if TEST_with_Video: with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(checkpoint_dir="./tensor_model_sum/") saver = tf.train.import_meta_graph(trained_model) # (eva) if ckpt and ckpt.model_checkpoint_path: saver = tf.train.Saver() saver.restore(sess, ckpt.model_checkpoint_path) print "Evaluation with video, model", ckpt.model_checkpoint_path else: print 'not found model' print 'Test with video starting ...' #for video_index in xrange(1): video_list = ['hinten/', 'links/', 'oben/', 'rechts/', 'unten/', 'vorn/'] #for video_index in xrange(1): for video_index in xrange(len(video_list)): #TestFace = settings.LABELS[0][:-1] # only one TestFace = video_list[video_index][:-1] # all # full, 0 hinten, 1 links, 2 oben, 3 rechts, 4 unten, 5 vorn, print 'Test face:', TestFace #TestFace = settings.LABELS[video_index][:-1] #'vorn' #'hinten' # full, 0 hinten, 1 links, 2 oben, 3 rechts, 4 unten, 5 vorn, VIDEO_FILE, crop_x1, crop_y1, area_step_size, video_label = tools.set_TestClass(TestFace, video_window_scale) # hy: info #print "shape after set_testClass:x1,y1:", crop_x1, ", ", crop_y1 #track_frame = track_roi(VIDEO_FILE) #Evaluate_VIDEO_track_roi(VIDEO_FILE) EVALUATE_VIDEO(VIDEO_FILE, n_classes) print 'test face:', TestFace, 'done\n' #TestFace = 'vorn' #VIDEO_FILE, crop_x1, crop_y1, area_step_size, video_label = tools.set_TestClass(TestFace, video_window_scale) #EVALUATE_VIDEO(VIDEO_FILE) #print 'test face:', TestFace, 'done\n' #hy: another option - automatically move ROI downwards, then to the right #crop_y1 = crop_y1 + area_step_size/50 #if crop_y2+area_step_size >= frame.shape[0]: #crop_y1 = 0 #crop_x1 = crop_x1 + 200 #if crop_x2+area_step_size >= frame.shape[1]: ##crop_x1 = 0 #break ##################################################################################################### ##hy: ################ TEST with IMAGES ####################### ##################################################################################################### init = tf.initialize_all_variables() #hy if TEST_with_Images: #hy: use a previous model #hy: load model at checkpoint #model 1 #''' with tf.Session() as sess: #hy: load saved model with values #ckpt = tf.train.get_checkpoint_state(checkpoint_dir="") # "./backupModel/" ckpt = tf.train.get_checkpoint_state(checkpoint_dir="./tensor_model_sum/") # "./backupModel/" saver = tf.train.import_meta_graph(trained_model) #(eva) #saver = tf.train.import_meta_graph("./tensor_model_sum/model_GD3conv360_h184_w184_c63conv_O0.75_U1.0_1_0.79-431.meta") #(eva) #model_GD3conv360_h184_w184_c63conv_H0.7_0_0.57_U1.0_0_0.57-901 0.33 #last 0.26 #model_GD3conv360_h184_w184_c63conv_U1.0_2_0.65-1291 0.263 #model_GD3conv360_h184_w184_c63conv_H0.75_2_0.58_U1.0_2_0.58-1131 0.36 #model_GD3conv200_h184_w184_c6_3conv_O0.73_0_0.42-2961 0.592 (new test files) -- top #model_GD2000_h184_w184_c6_II_O0.64_0_0.42-1061 0.51(new test files) # if ckpt and ckpt.model_checkpoint_path: saver = tf.train.Saver() saver.restore(sess,ckpt.model_checkpoint_path) else: print 'not found model' print 'I-Test with Images starting ...' #print 'Test with images starting ...', ckpt.model_checkpoint_path #sess.run(init) #hy: evaluate eval_file_list = LABEL_LIST_TEST #LABELS = ['links/', 'rechts/'] #confMat1_TEST_i,count_labels,confMat3,class_probability = EVALUATE_IMAGES(sess,6, eval_file_list, LABELS) # try: confMat1_TEST_i,count_labels,confMat3,class_probability = EVALUATE_IMAGES(sess,6, eval_file_list, LABELS) # ''' print '\nCount correctly classified' tools.print_label_title() print confMat3 print 'Total labels' print count_labels print '\nProportion of correctly classified' for pos in range(0, n_classes, 1): if count_labels[:, pos] > 0: class_probability[:, pos] = confMat3[:, pos] / count_labels[:, pos] print class_probability ''' print 'Count classified in each class for detailed analysis' tools.print_label_title() print confMat1_TEST_i except: print '\n[Hint] If error, check settings - tensor input size and n_class, n_hidden all should be the same as given in log file name' #model 2 ''' new_graph = tf.Graph() with tf.Session(graph=new_graph) as sess2: # method 2 must initial sess # hy: load saved model with values ckpt = tf.train.get_checkpoint_state(checkpoint_dir="./tensor_model_pre/") # ./backupModel/ saver2 = tf.train.import_meta_graph("./tensor_model_pre/model_GD60_h42_w42_c6_II1821.meta") if ckpt and ckpt.model_checkpoint_path: print '\n################################\nsecond model' saver2 = tf.train.Saver() saver2.restore(sess2, ckpt.model_checkpoint_path) else: print 'not found model' print 'II-Test with Images starting ...' # print 'Test with images starting ...', ckpt.model_checkpoint_path #sess.run(init) # hy: evaluate eval_file_list2 = LABEL_LIST_TEST LABELS = ['hinten/', 'links/', 'oben/', 'rechts/', 'unten/', 'vorn/'] confMat1_TEST_i = EVALUATE_IMAGES(sess2,6,eval_file_list2, LABELS) print 'Count classified in each class for detailed analysis' tools.print_label_title() print confMat1_TEST_i ''' ##################################################################################################### ##hy: ################ App for IMAGES ####################### ##################################################################################################### init = tf.initialize_all_variables() # hy def get_precision(session,im): sess = session im = np.asarray(im, np.float32) CONF = 0.20 test_image = im test_lables = np.zeros((1, n_classes)) # Making a dummy label tp avoid errors as initial predict # Doing something very stupid here, fix it! test_image = im.reshape((-1, im.size)) # print test_image # print sess.run(test_image) test_image = np.expand_dims(np.array(test_image), 2).astype(np.float32) test_image = test_image / 255 - 0.5 # TODO here is tricky, double check wit respect to the formats # hy: evaluate batch_xs, batch_ys = test_image, test_lables # output = sess.run("Accuracy:0", feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1.}) output = sess.run("pred:0", feed_dict={"x:0": batch_xs, "y:0": batch_ys, "keep_prob:0": 1.}) # print("Output for external=",output) output = tools.convert_to_confidence(output) # return output if App_for_Images: # model 1 # ''' #total_images, digits, carimages, cartargets, f, val2_digits, val2_images, val2_targets, val2_f = import_data() carimages, cartargets, f = tools.read_images(LABEL_LIST_TEST) print '1 file', LABEL_LIST_TEST TEST_length = len(carimages) # carimages = carimages / 255 - 0.5 #TODO here is tricky, double check wit respect to the formats confMat1_TEST = np.zeros((n_classes, n_classes), dtype=np.float) # hy collect detailed confusion matrix confMat2_TEST = np.zeros((2, 2), dtype=np.float) confMat3 = np.zeros((1, n_classes), dtype=np.float) count_labels = np.zeros((1, n_classes), dtype=np.float) class_probability = np.zeros((1, n_classes), dtype=np.float) for i in range(0, TEST_length, 1): new_graph = tf.Graph() with tf.Session(graph=new_graph) as sess: # hy: load saved model with values ckpt = tf.train.get_checkpoint_state(checkpoint_dir="./backupModel/") # ./backupModel/ saver = tf.train.import_meta_graph("model_graph_GD_c6_491_oben_unten.meta") if ckpt and ckpt.model_checkpoint_path: saver = tf.train.Saver() saver.restore(sess, ckpt.model_checkpoint_path) else: print 'not found model' im = carimages[i] # im = frame_crop_resize_gray # Lazy output1 = get_precision(sess,im) tools.print_label_title() np.set_printoptions(precision=3) print 'output1', output1 # model 2 new_graph = tf.Graph() with tf.Session(graph=new_graph) as sess2: # method 2 must initial sess after adding operation and before run # hy: load saved model with values ckpt = tf.train.get_checkpoint_state(checkpoint_dir="") # ./backupModel/ saver2 = tf.train.import_meta_graph("model_graph_GD_c6_601_links_25_oben_91_unten_83_vorn_70.meta") if ckpt and ckpt.model_checkpoint_path: print '################################\nsecond model' saver2 = tf.train.Saver() saver2.restore(sess2, ckpt.model_checkpoint_path) else: print 'not found model' print 'II-Test with Images starting ...' # print 'Test with images starting ...', ckpt.model_checkpoint_path #sess2.run(init) # hy: evaluate output2 = get_precision(sess2,im) tools.print_label_title() print 'output2', output2 output = output1+output2 print 'output', output RES = np.argmax(output) # hy predicted label label_target = int(cartargets[i]) # hy ground truth label #print 'label_target',i,':', label_target # label_pred_str, label_pred_num = tools.convert_result(RES) # label_target_str, label_target_num = tools.convert_result(label_target) print '\nTestImage', i + 1, ':', f[i] # print 'Image name', carimages print 'Ground truth label:', LABELS[label_target][:-1], '; predict:', LABELS[RES][:-1] # hy # print 'Target:', label_target, '; predict:', RES # hy label = label_target predict = int(RES) confMat1_TEST[label, predict] = confMat1_TEST[label, predict] + 1 count_labels[:, label] = count_labels[:, label] + 1 if predict == label_target: label2_TEST = 0 pred2_TEST = 0 confMat3[:, int(RES)] = confMat3[:, int(RES)] + 1 tools.SAVE_CorrectClassified_Img(f[i], SAVE_CorrectClassified) else: label2_TEST = 1 pred2_TEST = 1 tools.SAVE_Misclassified_Img(f[i], SAVE_Misclassified) confMat2_TEST[label2_TEST, pred2_TEST] = confMat2_TEST[label2_TEST, pred2_TEST] + 1 tp = confMat2_TEST[0, 0] tn = confMat2_TEST[1, 1] print '\nRank list of predicted results' tools.rank_index(output[0], label_target) print '\nCount correctly classified' tools.print_label_title() print confMat3 print 'Total labels' print count_labels print 'Proportion of correctly classified' if count_labels[:, pos] > 0: for pos in range(0, n_classes, 1): class_probability[:, pos] = confMat3[:, pos] / count_labels[:, pos] print class_probability # print '\ntp, tn, total number of test images:', tp, ', ', tn, ', ', TEST_length # print confMat2_TEST print '\nTEST general count:' print confMat2_TEST print 'TEST overall acc:', "{:.3f}".format(tp / TEST_length) #matrix count tools.print_label_title() print confMat1_TEST print '\n' ###################################################################################### ###################################################################################### #https://github.com/tensorflow/tensorflow/issues/3270 load two models # hy option2 #EVALUATE_IMAGES_VAGUE() ##################################################################################################### ##hy: ################ Test with Webcam ####################### ##################################################################################################### if TEST_with_Webcam: with tf.Session() as sess: saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(checkpoint_dir="") if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) print "Evaluation live frames with", ckpt.model_checkpoint_path else: print 'not found model' print 'Test with Webcam starting ...' # Camera 0 is the integrated web cam on my netbook camera_port = 0 #EVALUATE_WITH_WEBCAM_track_roi(camera_port,n_classes) EVALUATE_WITH_WEBCAM(camera_port, False,n_classes) #cv2.waitKey(0) #cv2.destroyAllWindows() ## TEST with WEBCAM END cv2.waitKey(0) cv2.destroyAllWindows() # hy:total time ##################################################################################################### ##hy: ################ Test End ####################### ##################################################################################################### elapsed_time = time.time() - start_time print 'Total elapsed time:', "{:.2f}".format(elapsed_time / 60), 'min'
apache-2.0
daleloogn/BUG-smacpy-GMM
smacpy.py
2
10016
#!/bin/env python # # smacpy - simple-minded audio classifier in python # # Copyright (c) 2012 Dan Stowell and Queen Mary University of London # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import os.path import numpy as np import argparse from glob import glob from scikits.audiolab import Sndfile from scikits.audiolab import Format from sklearn.mixture import GMM from MFCC import melScaling ####################################################################### # some settings framelen = 1024 fs = 44100.0 verbose = True ####################################################################### # main class class Smacpy: """Smacpy - simple-minded audio classifier in python. See the README file for more details. USAGE EXAMPLE: In this hypothetical example we train on four audio files, labelled as either 'usa' or 'uk', and then test on a separate audio file of someone called hubert: from smacpy import Smacpy model = Smacpy("wavs/training", {'karen01.wav':'usa', 'john01.wav':'uk', 'steve02.wav':'usa', 'joe03.wav':'uk'}) model.classify('wavs/testing/hubert01.wav') Note for developers: this code should aim to be understandable, and not too long. Don't add too much functionality, or efficiency ;) """ def __init__(self, wavfolder, trainingdata): """Initialise the classifier and train it on some WAV files. 'wavfolder' is the base folder, to be prepended to all WAV paths. 'trainingdata' is a dictionary of wavpath:label pairs.""" self.mfccMaker = melScaling(int(fs), framelen/2, 40) self.mfccMaker.update() allfeatures = {wavpath:self.file_to_features(os.path.join(wavfolder, wavpath)) for wavpath in trainingdata} # Determine the normalisation stats, and remember them allconcat = np.vstack(list(allfeatures.values())) self.means = np.mean(allconcat, 0) self.invstds = np.std(allconcat, 0) for i,val in enumerate(self.invstds): if val == 0.0: self.invstds[i] = 1.0 else: self.invstds[i] = 1.0 / val # For each label, compile a normalised concatenated list of features aggfeatures = {} for wavpath, features in allfeatures.items(): label = trainingdata[wavpath] normed = self.__normalise(features) if label not in aggfeatures: aggfeatures[label] = normed else: aggfeatures[label] = np.vstack((aggfeatures[label], normed)) # For each label's aggregated features, train a GMM and remember it self.gmms = {} for label, aggf in aggfeatures.items(): if verbose: print(" Training a GMM for label %s, using data of shape %s" % (label, str(np.shape(aggf)))) self.gmms[label] = GMM(n_components=10) # , cvtype='full') self.gmms[label].fit(aggf) if verbose: print(" Trained %i classes from %i input files" % (len(self.gmms), len(trainingdata))) def __normalise(self, data): "Normalises data using the mean and stdev of the training data - so that everything is on a common scale." return (data - self.means) * self.invstds def classify(self, wavpath): "Specify the path to an audio file, and this returns the max-likelihood class, as a string label." features = self.__normalise(self.file_to_features(wavpath)) # For each label GMM, find the overall log-likelihood and choose the strongest bestlabel = '' bestll = -9e99 for label, gmm in self.gmms.items(): ll = gmm.eval(features)[0] ll = np.sum(ll) if ll > bestll: bestll = ll bestlabel = label return bestlabel def file_to_features(self, wavpath): "Reads through a mono WAV file, converting each frame to the required features. Returns a 2D array." if verbose: print("Reading %s" % wavpath) if not os.path.isfile(wavpath): raise ValueError("path %s not found" % wavpath) sf = Sndfile(wavpath, "r") #if (sf.channels != 1) and verbose: print(" Sound file has multiple channels (%i) - channels will be mixed to mono." % sf.channels) if sf.samplerate != fs: raise ValueError("wanted sample rate %g - got %g." % (fs, sf.samplerate)) window = np.hamming(framelen) features = [] while(True): try: chunk = sf.read_frames(framelen, dtype=np.float32) if len(chunk) != framelen: print("Not read sufficient samples - returning") break if sf.channels != 1: chunk = np.mean(chunk, 1) # mixdown framespectrum = np.fft.fft(window * chunk) magspec = abs(framespectrum[:framelen/2]) # do the frequency warping and MFCC computation melSpectrum = self.mfccMaker.warpSpectrum(magspec) melCepstrum = self.mfccMaker.getMFCCs(melSpectrum,cn=True) melCepstrum = melCepstrum[1:] # exclude zeroth coefficient melCepstrum = melCepstrum[:13] # limit to lower MFCCs framefeatures = melCepstrum # todo: include deltas? that can be your homework. features.append(framefeatures) except RuntimeError: break sf.close() return np.array(features) ####################################################################### def trainAndTest(trainpath, trainwavs, testpath, testwavs): "Handy function for evaluating your code: trains a model, tests it on wavs of known class. Returns (numcorrect, numtotal, numclasses)." print("TRAINING") model = Smacpy(trainpath, trainwavs) print("TESTING") ncorrect = 0 for wavpath,label in testwavs.items(): result = model.classify(os.path.join(testpath, wavpath)) if verbose: print(" inferred: %s" % result) if result == label: ncorrect += 1 return (ncorrect, len(testwavs), len(model.gmms)) ####################################################################### # If this file is invoked as a script, it carries out a simple runthrough # of training on some wavs, then testing, with classnames being the start of the filenames if __name__ == '__main__': # Handle the command-line arguments for where the train/test data comes from: parser = argparse.ArgumentParser() parser.add_argument('-t', '--trainpath', default='wavs', help="Path to the WAV files used for training") parser.add_argument('-T', '--testpath', help="Path to the WAV files used for testing") parser.add_argument('-q', dest='quiet', action='store_true', help="Be less verbose, don't output much text during processing") group = parser.add_mutually_exclusive_group() group.add_argument('-c', '--charsplit', default='_', help="Character used to split filenames: anything BEFORE this character is the class") group.add_argument('-n', '--numchars' , default=0 , help="Instead of splitting using 'charsplit', use this fixed number of characters from the start of the filename", type=int) args = vars(parser.parse_args()) verbose = not args['quiet'] if args['testpath']==None: args['testpath'] = args['trainpath'] # Build up lists of the training and testing WAV files: wavsfound = {'trainpath':{}, 'testpath':{}} for onepath in ['trainpath', 'testpath']: pattern = os.path.join(args[onepath], '*.wav') for wavpath in glob(pattern): if args['numchars'] != 0: label = os.path.basename(wavpath)[:args['numchars']] else: label = os.path.basename(wavpath).split(args['charsplit'])[0] shortwavpath = os.path.relpath(wavpath, args[onepath]) wavsfound[onepath][shortwavpath] = label if len(wavsfound[onepath])==0: raise RuntimeError("Found no files using this pattern: %s" % pattern) if verbose: print("Class-labels and filenames to be used from %s:" % onepath) for wavpath,label in sorted(wavsfound[onepath].items()): print(" %s: \t %s" % (label, wavpath)) if args['testpath'] != args['trainpath']: # Separate train-and-test collections ncorrect, ntotal, nclasses = trainAndTest(args['trainpath'], wavsfound['trainpath'], args['testpath'], wavsfound['testpath']) print("Got %i correct out of %i (trained on %i classes)" % (ncorrect, ntotal, nclasses)) else: # This runs "stratified leave-one-out crossvalidation": test multiple times by leaving one-of-each-class out and training on the rest. # First we need to build a list of files grouped by each classlabel labelsinuse = sorted(list(set(wavsfound['trainpath'].values()))) grouped = {label:[] for label in labelsinuse} for wavpath,label in wavsfound['trainpath'].items(): grouped[label].append(wavpath) numfolds = min(len(collection) for collection in grouped.values()) # Each "fold" will be a collection of one item of each label folds = [{wavpaths[index]:label for label,wavpaths in grouped.items()} for index in range(numfolds)] totcorrect, tottotal = (0,0) # Then we go through, each time training on all-but-one and testing on the one left out for index in range(numfolds): print("Fold %i of %i" % (index+1, numfolds)) chosenfold = folds[index] alltherest = {} for whichfold, otherfold in enumerate(folds): if whichfold != index: alltherest.update(otherfold) ncorrect, ntotal, nclasses = trainAndTest(args['trainpath'], alltherest, args['trainpath'], chosenfold) totcorrect += ncorrect tottotal += ntotal print("Got %i correct out of %i (using stratified leave-one-out crossvalidation, %i folds)" % (totcorrect, tottotal, numfolds))
apache-2.0
tharunkalwa/pympler
pympler/charts.py
7
1974
""" Generate charts from gathered data. Requires **matplotlib**. """ try: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def tracker_timespace(filename, stats): """ Create a time-space chart from a ``Stats`` instance. """ classlist = list(stats.index.keys()) classlist.sort() for snapshot in stats.snapshots: stats.annotate_snapshot(snapshot) timestamps = [fp.timestamp for fp in stats.snapshots] offsets = [0] * len(stats.snapshots) poly_labels = [] polys = [] for clsname in classlist: pct = [fp.classes[clsname]['pct'] for fp in stats.snapshots] if max(pct) > 3.0: sizes = [fp.classes[clsname]['sum'] for fp in stats.snapshots] sizes = [float(x)/(1024*1024) for x in sizes] sizes = [offset+size for offset, size in zip(offsets, sizes)] poly = matplotlib.mlab.poly_between(timestamps, offsets, sizes) polys.append( (poly, {'label': clsname}) ) poly_labels.append(clsname) offsets = sizes fig = plt.figure(figsize=(10, 4)) axis = fig.add_subplot(111) axis.set_title("Snapshot Memory") axis.set_xlabel("Execution Time [s]") axis.set_ylabel("Virtual Memory [MiB]") totals = [x.asizeof_total for x in stats.snapshots] totals = [float(x)/(1024*1024) for x in totals] axis.plot(timestamps, totals, 'r--', label='Total') tracked = [x.tracked_total for x in stats.snapshots] tracked = [float(x)/(1024*1024) for x in tracked] axis.plot(timestamps, tracked, 'b--', label='Tracked total') for (args, kwds) in polys: axis.fill(*args, **kwds) axis.legend(loc=2) # TODO fill legend fig.savefig(filename) except ImportError: def tracker_timespace(*_args): pass
apache-2.0
jhmatthews/cobra
source/pfgrid.py
1
7287
#! /Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app/Contents/MacOS/Python ''' pfgrid.py Synopsis: Generates a grid of parameter files for the python radiative transfer code. Note that this will only generate models with the same general type due to keyword order. ''' help_string=''' pfgrid.py Synopsis: Generates a grid of parameter files for the python radiative transfer code. Note that this will only generate models with the same general type due to keyword order. Usage: pfgrid.py [-h] ''' import sys, os import numpy as np import disk as ast import pylab from disky_const import * if len(sys.argv)>1: if sys.argv[0] == "-h" or sys.argv[0] == "h" or sys.argv[0] == "help": print help_string # read in template file template = np.loadtxt('template.pf', dtype='string', unpack=True) '''# read in grid of values to change grid = np.loadtxt('grid_values', dtype='string', unpack=True, comments ="#") keywords_to_change = grid[0] values_to_change = grid[1:] nx = len(values_to_change[0]) ny = len(keywords_to_change) # calculate total number of runs n_runs = nx ** ny print "Welcome to pfgrid. Creating grids for %i runs..." % n_runs print "You have %i variables with %i degrees of freedom" % (ny, nx) print keywords_to_change sys.exit() all_values = [] for i in range(n_runs): all_values.append(values)''' # you know have n_runs copies of the initial parameter file #all_values = np.array(values) # standard alpha of power law alpha_pl = -0.9 n = 0 MBH = np.array([1.0e7, 1.0e8,1.0e9]) # black holes masses EDD = np.array([0.1, 0.2, 0.5]) # eddington fractions L_X = np.array([1e43, 1e44, 1e45]) # X-ray luminosities MDOT_FRAC = np.array([0.1, 1.0, 10.0]) # mdot wind as fraction of mdot acc # lengths of arrays nmasses = len(MBH) nagn = len(L_X) nwind = len(MDOT_FRAC) ndisk = len(EDD) print "Fiducial model:" print "-----------------------" m = 1.0e9; mdot = 5.0; lum_agn = 1.0e43 print "L_bol: %8.4e" % ast.L_bol ( mdot, m) #sys.exit() L_2kev = ast.L_two ( lum_agn , -0.9) L_2500 = ast.L_2500 ( mdot, m ) alpha_ox = ast.alp_ox ( L_2kev, L_2500 ) print "L_2kev: %8.4e L_2500: %8.4e alpha_ox: %f" % (L_2kev, L_2500, alpha_ox) freq_disk, specdisk = ast.spec_disk(1e14,1e18,m,mdot,8.85667e+14,1e17) def strip(character, string): new_string = "" for s in string: if s != character: new_string += s return new_string ''' #print freq_disk, specdisk pylab.plot ( freq_disk, specdisk ) pylab.show() print np.sum( specdisk) sys.exit() ''' alphas = [[], [], []] lums = [[], [], []] lx = [[], [], []] roots=[] for i in range( nmasses): m = MBH[i] for j in range( ndisk): edd_frac = EDD [j] mdot = ast.mdot_from_edd ( edd_frac, m , eta = 0.1) for k in range (nagn): Lbol = edd_frac * ast.Ledd(m) frac_bh = Lbol / 2.5e46 # scale our L_x with Lbol lum_agn = L_X [k] * ( frac_bh) for l in range(nwind): mdotwind = MDOT_FRAC[l] * mdot root = "run%i_edd%.1f_w%.1f_l%i_bh%i" % ( n, edd_frac, mdotwind, np.log10(lum_agn), np.log10(m) ) root = strip(".", root) roots.append(root) filename = "%s.pf" % root inp = open(filename, "w") write_array = template L_2kev = ast.L_two ( lum_agn , -0.9) L_2500 = ast.L_2500 ( mdot , m ) * np.cos (PI * 40.0 /180.0 ) alpha_ox = ast.alp_ox ( L_2kev, L_2500 ) print "\nModel %i %s" % (n, root) print "-----------------------" print "L_2kev: %8.4e L_2500: %8.4e alpha_ox: %f" % (L_2kev, L_2500, alpha_ox) print "mdot %8.4e mdotwind %8.4e L_X %8.4e" % (mdot, mdotwind, lum_agn) print "L_bol %8.4e" % Lbol #print "L_X: %8.4e L_bol: %8.4e" % (lum_agn, lum_bol)''' '''freq_disk, specdisk = ast.spec_disk(1e14,1e18,m,mdot,8.85667e+14,1e17) print np.sum( specdisk)''' index = np.where(write_array[0] == "mstar(msol)") write_array [1][ index ] = str ( m ) index = np.where(write_array[0] =="lum_agn(ergs/s) ") write_array [1][ index ] = str (lum_agn ) index = np.where ( write_array[0] =="disk.mdot(msol/yr)") write_array [1][ index ] = str (mdot) index = np.where(write_array[0] =="wind.mdot(msol/yr)") write_array [1][ index ] = str (mdotwind) #filename = "run_%i" % n write_array = np.transpose ( write_array) np.savetxt(filename, write_array, fmt="%s\t%s") n += 1 alphas[i].append(alpha_ox) lums[i].append(L_2500 ) # this is the 40 degree L_2500 lx[i].append(lum_agn) lums = np.array(lums) #lums = lums * np.cos (PI * 40.0 /180.0 ) colors = ['r', 'g', 'b' ] labels = ['1e7', '1e8', '1e9'] fit = [ [10.0**27.5, 10.0**32.5], [-1.1, -1.8] ] import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(211) for i in range(nmasses): ax.scatter(lums[i], alphas[i], label=labels[i], c=colors[i]) ax.plot(fit[0], fit[1]) ax.set_xscale('log') ax.set_ylabel("alpha_ox estimate") ax.set_xlabel("L_2500 estimate") ax = fig.add_subplot(212) for i in range(nmasses): ax.scatter(lx[i], alphas[i], label=labels[i], c=colors[i]) ax.set_xscale('log') ax.set_ylabel("alpha_ox estimate") ax.set_xlabel("L_x") plt.legend() plt.savefig("shankar.png") print "writing to script..." nscripts = len(roots) / 6.0 # check if there is a remainder if float(int(nscripts)) != nscripts: remainder = len(roots) - ( nscripts * 6) nscripts = int(nscripts) + 1 print nscripts, remainder, len(roots), float(int(nscripts)) for i in range(nscripts): inp = open("script%i" % i, "w") inp.write("#!/bin/bash\n\n") inp.write("cd /home/jm8g08/grid/grid_shankar\n\n") first = i*6 last = (i+1) * 6 if last > len(roots): last = len(roots) for root in roots[first:last]: print root inp.write("/home/jm8g08/Python/bin/py76c_dev %s > %s.out &\n" % (root,root)) inp.write("wait\n") inp.close() print "writing to Daddy script..." inp = open("daddy_script", "w") inp.write("#!/bin/bash\n\n") for i in range(nscripts): inp.write("qsub -l nodes=1:ppn=6 -l walltime=30:00:00 script%i\n" % i) inp.close() print "All done!" '''' for i in range(ny): constant_keyword = keywords_to_change[i] for j in range(nx): keywords_temp = keywords values_temp = values index_to_array = np.where(keywords == constant_keyword) values_temp[index_to_array] = values_to_change all_values_array.append ( values ) # we read a number of arguments from the command line # the user can decide to change certain keywords for i in range(len(keywords_to_change)): keyword = keywords_to_change[i] for j in range(len(values_to_change[i])): # search keyword array for keyword desired index_to_array = np.where(keywords == keyword) # create an array of values that have a keyword match - should be length 1!! value_matches = values[ index_to_array ] if len(value_matches)>1: # if we havemore than one match this an error Error('Multiple keyword matches in parameter file!') elif len(value_matches)>0: # if we have one match, change the value old_value = value_matches[0] new_value = sys.argv[i+1] values [index_to_array] = new_value print 'Changed keyword %s from %s to %s' % (keyword, old_value, new_value)'''
gpl-2.0
sanketloke/scikit-learn
examples/gaussian_process/plot_gpc_xor.py
104
2132
""" ======================================================================== Illustration of Gaussian process classification (GPC) on the XOR dataset ======================================================================== This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains considerably better results because the class-boundaries are linear and coincide with the coordinate axes. In general, stationary kernels often obtain better results. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF, DotProduct xx, yy = np.meshgrid(np.linspace(-3, 3, 50), np.linspace(-3, 3, 50)) rng = np.random.RandomState(0) X = rng.randn(200, 2) Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) # fit the model plt.figure(figsize=(10, 5)) kernels = [1.0 * RBF(length_scale=1.0), 1.0 * DotProduct(sigma_0=1.0)**2] for i, kernel in enumerate(kernels): clf = GaussianProcessClassifier(kernel=kernel, warm_start=True).fit(X, Y) # plot the decision function for each datapoint on the grid Z = clf.predict_proba(np.vstack((xx.ravel(), yy.ravel())).T)[:, 1] Z = Z.reshape(xx.shape) plt.subplot(1, 2, i + 1) image = plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', cmap=plt.cm.PuOr_r) contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linetypes='--') plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired) plt.xticks(()) plt.yticks(()) plt.axis([-3, 3, -3, 3]) plt.colorbar(image) plt.title("%s\n Log-Marginal-Likelihood:%.3f" % (clf.kernel_, clf.log_marginal_likelihood(clf.kernel_.theta)), fontsize=12) plt.tight_layout() plt.show()
bsd-3-clause
spectralliaisons/Spectrum
Spectrum.py
1
14846
# The MIT License (MIT) # Copyright (c) 2013 Wesley Jackson # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ############################ # Wes Jackson # [email protected] # Dec 2012 # Spectral analysis for many types of audio file # All input converted to mono wav, as analysis may differ depending on file format # USAGE: # import Spectrum as s # a = s.Analyze('sound/kombucut.wav', maxFreq=8) # a.plot() # TODO: # [] Credit sources where I found useful code # [] Sounds are converted to mono wav but sometimes the frequencies determined are off by a factor of 0.5X. Why is this? # Requirements: pydub ############################ import math import wave import numpy as np import scipy.stats as stats import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib.ticker import FormatStrFormatter import matplotlib.axis as Axis import warnings import struct from pydub import AudioSegment as AS # for converting files to standard format class Analyze: def __init__(self, fileName, maxFreq=12., #kHz windowSize=2048, zeroPad=False, window='hanning'): self.window = window self.doZeroPad = zeroPad self.fMax = maxFreq self.windowSize = windowSize # convert to mono wav self.fileName = self.exportMonoWav(fileName) print self.fileName # fft self.analyze() ######################### # Spectral Analysis ######################### def analyze(self): # clear & configure based on file format self.clear() self.configure() # grab some audio frames self.updateBuf() while len(self.buf) == self.windowSize*self.swidth: self.fftBuf() self.updateBuf() # combine analyses across frames self.generalAnalysis() def updateBuf(self): self.buf = self.audata.readframes(self.windowSize) def clear(self): self.allF0 = [] self.allEnergy = [] self.allCentroid = [] self.allSkewness = [] self.allKurtosis = [] self.FFT = [] self.freqRange = [] def configure(self): self.audata = wave.open(self.fileName, 'rb') # audioread.audio_open(self.fileName) self.swidth = self.audata.getsampwidth() # 2 # 16-bit ^^ CHECK THIS IT WAS 2 self.schannels = self.audata.getnchannels() # self.audata.channels self.srate = self.audata.getframerate() # self.audata.samplerate # for zero-padding, take fft size next power of 2 above window size self.paddedFFTSize = int(2**(1+np.ceil(np.log2(2*self.windowSize)))) print "Width, Channels, Rate, windowSize %d, %d, %d, %d" % (self.swidth, self.schannels, self.srate, self.windowSize) #print "windowSize, paddedFFTSize: %d, %d" % (self.windowSize, self.paddedFFTSize) ##################################################### # Run FFT for a chunk of audio and compile analysis ##################################################### def fftBuf(self): ### 1. DECODE SAMPLES BUFFER fmt = "%dh" % int(len(self.buf)/self.swidth) #print "fmt size %d, %d" % (struct.calcsize(fmt), len(self.buf)) indata = np.array(struct.unpack(fmt, self.buf)) ### 2. WINDOW indata = self.applyWindow(indata, self.window) # width in kHz of e/a frequency bin self.binSize = (self.srate/(len(indata)/float(self.swidth)))/1000. ### 3. FFT if self.doZeroPad: realFFT = abs(np.fft.rfft(indata, n=self.paddedFFTSize))**2. else: realFFT = abs(np.fft.rfft(indata))**2. ### 4. Filter realFFT = realFFT[0:self.freqToIndex(self.fMax)] self.FFT.append(realFFT) self.updateAnalysis(realFFT) def updateAnalysis(self, fft): ## Calculate Energy energy = fft.sum() self.allEnergy.append(energy) ### Calculate Fundamental Freq f0 = self.calculateF0(fft) self.allF0.append(f0) ### Calculate Spectral Centroid centroid = self.calculateSpectralCentroid(fft) self.allCentroid.append(centroid) ### Calculate Skewness skewness = stats.skew(fft) self.allSkewness.append(skewness) ### Calculate Kurtosis kurtosis = stats.kurtosis(fft) self.allKurtosis.append(kurtosis) def generalAnalysis(self): self.loseLast(); # General Analysis for whole sound # normalize energy across entire sound self.allEnergy = self.allEnergy/np.amax(self.allEnergy) # Unweighted mean across entire sound file self.MeanF0 = np.mean(self.allF0) self.MeanEnergy = np.mean(self.allEnergy) self.MeanSpectralCentroid = np.mean(self.allCentroid) self.MeanSkewness = np.mean(self.allSkewness) self.MeanKurtosis = np.mean(self.allKurtosis) ### !!! these values change depending on whether fft is normalized # weighted mean by energy for e/a chunk self.WeightedF0 = np.average(self.allF0, weights=self.allEnergy) self.WeightedSpectralCentroid = np.average(self.allCentroid, weights=self.allEnergy) self.WeightedSkewness = np.average(self.allSkewness, weights=self.allEnergy) self.WeightedKurtosis = np.average(self.allKurtosis, weights=self.allEnergy) #print "Done!" #print "Unweighted, weighted mean:" print ">> F0: %f, %f" % (self.MeanF0, self.WeightedF0) #print ">> Energy: %f" % self.MeanEnergy print ">> Spectral Centroid: %f, %f" % (self.MeanSpectralCentroid, self.WeightedSpectralCentroid) #print ">> Skewness: %d, %d" % (self.MeanSkewness, self.WeightedSkewness) #print ">> Kurtosis: %d, %d" % (self.MeanKurtosis, self.WeightedKurtosis) ######################### # Utils & Stats ######################### def getFileType(self, str): return str[str.index('.')+1:] def getFileName(self, str): return str[0:str.index('.')] # Ensure standard format def exportMonoWav(self, fileName): ext = self.getFileType(fileName) if ext == 'wav': pre = AS.from_wav(fileName) elif ext == 'mp3': pre = AS.from_mp3(fileName) elif ext == 'ogg': pre = AS.from_ogg(fileName) elif ext == 'flv': pre = AS.from_flv(fileName) else: pre = AS.from_file(fileName) # set mono & pre = pre.set_channels(1) #pre = pre.set_frame_rate(22050) fout = self.getFileName(fileName) + '_AS_MONO_WAV_44100.wav' pre.export(fout, format='wav') return fout def applyWindow(self, samples, window='hanning'): if window == 'bartlett': return samples*np.bartlett(len(samples)) elif window == 'blackman': return samples*np.hanning(len(samples)) elif window == 'hamming': return samples*np.hamming(len(samples)) elif window == 'kaiser': return samples*np.kaiser(len(samples)) else: return samples*np.hanning(len(samples)) def loseLast(self): # Ignore last chunk since it has fewer bins self.allF0 = self.allF0[0:len(self.allF0)-2] self.allEnergy = self.allEnergy[0:len(self.allEnergy)-2] self.allCentroid = self.allCentroid[0:len(self.allCentroid)-2] self.allSkewness = self.allSkewness[0:len(self.allSkewness)-2] self.allKurtosis = self.allKurtosis[0:len(self.allKurtosis)-2] self.FFT = self.FFT[0:len(self.FFT)-2] # Convert fft bin index to its corresponding frequency def indexToFreq(self, index): return index*float(self.binSize) def freqToIndex(self, freq): return freq/self.binSize def calculateF0(self, fft): freq = float('nan') f0Index = fft[1:].argmax()+1 # find maximum-energy bin # interpolate around max-energy freq unless f0 is the last bin :/ if f0Index != len(fft)-1: y0, y1, y2 = np.log(fft[f0Index-1:f0Index+2:]) x1 = (y2 - y0) * .5 / (2 * y1 - y2 - y0) freq = self.indexToFreq(f0Index + x1) else: freq = self.indexToFreq(f0Index) return freq def calculateSpectralCentroid(self, fft): centroidIndex = np.sum((1+np.arange(len(fft)))*fft)/float(fft.sum()) # +1 so index 0 isn't 0 return self.indexToFreq(centroidIndex-1) def dB(self, a, b): return 10. * np.log10(a/b) # 1.567 -> 1.6 def round(n): return round(n*10)/10. ######################### # Visualization ######################### ### Overlay audio frame spectrograms: ### 1. Linear freq by energy ### 2. Log freq by dB ### 3. Log freq by amount of change between audio frames def plot(self, xMin='NaN', xMax='NaN', dBMin=-90): plt.figure() plt.suptitle(self.fileName + ': F0: ' + str(int(self.WeightedF0)) + ', Centroid: ' + str(int(self.WeightedSpectralCentroid))) ######################### # 1. Linear energy scale ######################### linPlot = plt.subplot(311) if xMin == 'NaN': xMin = self.WeightedF0 - 0.05 if xMax == 'NaN': xMax = self.fMax # x-Axis as frequency fs = [] for f in range(int(self.freqToIndex(self.fMax))): fs.append(self.indexToFreq(f)) # y-Axis as normalized energy for fft in self.FFT: ys = fft/np.amax(self.FFT) plt.plot(fs, ys, linewidth=2, color='black') plt.fill_between(fs, ys, facecolor='green', alpha=0.5) # plot centroid & fundamental freq f0 = plt.plot([self.WeightedF0], [self.MeanEnergy], 'b^') cent = plt.plot([self.WeightedSpectralCentroid], [self.MeanEnergy], 'ro') plt.setp(f0, 'markersize', 12.0, 'markeredgewidth', 2.0) plt.setp(cent, 'markersize', 12.0, 'markeredgewidth', 2.0) plt.title('All Audio Frames: Linear') #plt.text(0, 1, 'F0: ' + str(int(self.WeightedF0)) + ' Centroid: ' + str(int(self.WeightedSpectralCentroid))) plt.grid(True) #plt.xlabel('Frequency') plt.ylabel('Energy') plt.axis([xMin, xMax, 0, 1]) linPlot.xaxis.set_major_formatter(FormatStrFormatter('%.01f')) linPlot.xaxis.set_minor_formatter(FormatStrFormatter('%.01f')) ######################### # 2. dB energy scale ######################### dBPlot = plt.subplot(312) # x-Axis as frequency fs = [] for f in range(int(self.freqToIndex(self.fMax))): fs.append(self.indexToFreq(f)) #mdB = self.dB(self.MeanEnergy, np.amax(self.FFT)) alldBs = [] # y-Axis as normalized energy for fft in self.FFT: #ys = fft/np.amax(self.FFT) dBs = [] for i in fft: dB = max(dBMin, self.dB(i, np.amax(self.FFT))) dBs.append(dB) alldBs.append(dBs) #dBPlot.plot(fs, dBs, linewidth=2, color='black') plt.semilogx(fs, dBs, linewidth=2, color='black') plt.fill_between(fs, dBs, dBMin, facecolor='green', alpha=0.3) mindB = np.amin(alldBs) mdB = np.mean(alldBs) # plot centroid & fundamental freq f0 = dBPlot.plot([self.WeightedF0], [mdB], 'b^') cent = dBPlot.plot([self.WeightedSpectralCentroid], [mdB], 'ro') plt.setp(f0, 'markersize', 12.0, 'markeredgewidth', 2.0) plt.setp(cent, 'markersize', 12.0, 'markeredgewidth', 2.0) plt.title('All Audio Frames: dB') plt.grid(True) #plt.xlabel('Frequency') plt.ylabel('dB') plt.axis([xMin, xMax, mindB, 0]) #plt.xscale('log') dBPlot.xaxis.set_major_formatter(FormatStrFormatter('%.01f')) dBPlot.xaxis.set_minor_formatter(FormatStrFormatter('%.01f')) ######################### # 3. Spectral change as stdev of dB values for a freq bin across audio frames # Use dB since much more energy at low freqs means higher stdev ######################### devPlot = plt.subplot(313) # e/a freq bin as array of energy in e/a frame numBins = len(self.FFT[0]) numFrames = len(self.FFT) allBins = np.arange(numBins*numFrames).reshape(numBins, numFrames) binDev = np.arange(numBins) for bin in range(numBins): for frame in range(numFrames): allBins[bin][frame] = self.dB(self.FFT[frame][bin], np.amax(self.FFT)) binDev[bin] = np.std(allBins[bin]) #normalize #binDev = binDev/float(np.amax(binDev)) plt.semilogx(fs, binDev, linewidth=2, color='black') plt.fill_between(fs, binDev, facecolor='red', alpha=0.5) # plot centroid & fundamental freq f0 = plt.plot([self.WeightedF0], [min(binDev)+5], 'b^') cent = plt.plot([self.WeightedSpectralCentroid], [min(binDev)+5], 'ro') plt.setp(f0, 'markersize', 12.0, 'markeredgewidth', 2.0) plt.setp(cent, 'markersize', 12.0, 'markeredgewidth', 2.0) plt.title('Spectral Deviation Across Audio Frames') plt.grid(True) plt.xlabel('Frequency (kHz)') plt.ylabel('STD (dB)') plt.axis([xMin, xMax, min(binDev), max(binDev)]) devPlot.xaxis.set_major_formatter(FormatStrFormatter('%.01f')) devPlot.xaxis.set_minor_formatter(FormatStrFormatter('%.01f')) plt.show()
mit
trovdimi/wikilinks
HypTrails.py
1
6728
# further implementations can be found: # Python: https://github.com/psinger/hyptrails # Java: https://bitbucket.org/florian_lemmerich/hyptrails4j # Apache spark: http://dmir.org/sparktrails/ # also see: http://www.philippsinger.info/hyptrails/ from __future__ import division import itertools from scipy.sparse import csr_matrix from scipy.special import gammaln from collections import defaultdict from sklearn.preprocessing import normalize from scipy.sparse.sparsetools import csr_scale_rows import numpy as np class HypTrails(): """ HypTrails """ def __init__(self, vocab=None): """ Constructor for class HypTrails Args: vocab: optional vocabulary mapping states to indices """ self.vocab = vocab self.state_count = len(vocab) def fit(self, transitions_matrix): """ Function for fitting the Markov Chain model given data Args: sequences: Data of sequences, list of lists """ self.transitions = transitions_matrix #print "fit done" def evidence(self, hypothesis, structur, k=1, prior=1., norm=True): """ Determines Bayesian evidence given fitted model and hypothesis Args: hypothesis: Hypothesis csr matrix, indices need to map those of transition matrix k: Concentration parameter k prior: proto Dirichlet prior norm: Flag for normalizing hypothesis matrix Returns evidence """ # care with copy here hypothesis = csr_matrix(hypothesis, copy=True) structur = csr_matrix(structur, copy=True) pseudo_counts = k * self.state_count if hypothesis.size != 0: # in case of memory issues set copy to False but then care about changed hypothesis matrix if norm == True: #print "in norm" norm_h = hypothesis.sum(axis=1) n_nzeros = np.where(norm_h > 0) norm_h[n_nzeros] = 1.0 / norm_h[n_nzeros] norm_h = np.array(norm_h).T[0] #print "in place mod" # modify sparse_csc_matrix in place csr_scale_rows(hypothesis.shape[0], hypothesis.shape[1], hypothesis.indptr, hypothesis.indices, hypothesis.data, norm_h) # distribute pseudo counts to matrix, row-based approach hypothesis = hypothesis * pseudo_counts #print "after pseude counts" # also consider those rows which only include zeros norma = hypothesis.sum(axis=1) n_zeros,_ = np.where(norma == 0) hypothesis[n_zeros,:] = pseudo_counts / self.state_count else: #print "in norm" norm_h = hypothesis.sum(axis=1) n_nzeros = np.where(norm_h > 0) norm_h[n_nzeros] = 1.0 / norm_h[n_nzeros] norm_h = np.array(norm_h).T[0] #print "in place mod" # modify sparse_csc_matrix in place csr_scale_rows(hypothesis.shape[0], hypothesis.shape[1], hypothesis.indptr, hypothesis.indices, hypothesis.data, norm_h) # distribute pseudo counts to matrix, row-based approach #TODO check if this line should be placed after the zero_rows_norm() call???? hypothesis = hypothesis * pseudo_counts #self.zero_rows_norm(hypothesis, structur,k) self.zero_rows_norm_eff1(hypothesis, structur, k) else: # if hypothesis matrix is empty, we can simply increase the proto prior parameter prior += k # transition matrix with additional Dirichlet prior # not memory efficient transitions_prior = self.transitions.copy() transitions_prior = transitions_prior + hypothesis #print "after copy" # elegantly calculate evidence evidence = 0 evidence += gammaln(hypothesis.sum(axis=1)+self.state_count*prior).sum() evidence -= gammaln(self.transitions.sum(axis=1)+hypothesis.sum(axis=1)+self.state_count*prior).sum() evidence += gammaln(transitions_prior.data+prior).sum() evidence -= gammaln(hypothesis.data+prior).sum() + (len(transitions_prior.data)-len(hypothesis.data)) * gammaln(prior) return evidence def zero_rows_norm(self, hypothesis, structur,k): norma = hypothesis.sum(axis=1) n_zeros = np.where(norma == 0) print 'n_zeros' print len(n_zeros[0]) for x, i in enumerate(n_zeros[0]): if x % 1000 == 0: print x, len(n_zeros[0]) links = np.where(structur[i,:]!=0) hypothesis[i,links[0]] = k / len(links[0]) print 'n_zeros done' # def zero_rows_norm_eff(self,hypothesis, structur): # #find zero sum rows in hypothesis # print 'sum hyp' # norma = hypothesis.sum(axis=1) # n_zeros = np.where(norma == 0) # # norm the structure matrix # print 'sum structure' # tmp = structur[n_zeros] # norm_s = tmp.sum(axis=1) # norm_s = np.array(norm_s).T[0] # tmp = tmp/norm_s[:,None] # #replece the zero rows in hypothesis with the corresponding rows in the normed strcuture matrix # print 'replace' # hypotheis[n_zeros,:]=tmp[n_zeros,:] def zero_rows_norm_eff1(self,hypothesis, structur, k): #find zero sum rows in hypothesis #print 'sum hyp' norma = hypothesis.sum(axis=1) n_zeros = np.where(norma == 0) # norm the structure matrix i_index = list() j_index = list() values = list() for x, i in enumerate(n_zeros[0]): #if x % 1000 == 0: # print x, len(n_zeros[0]) links = np.where(structur[i,:]!=0) value = k / len(links[0]) for j in links[0]: i_index.append(i) j_index.append(j) values.append(value) hypothesis= hypothesis+csr_matrix((values, (i_index, j_index)), shape=hypothesis.shape, dtype=np.float)
mit
vagner-fisica/pplot
pplot.py
1
5661
from pylab import * import matplotlib.pyplot as plt import os, trim doc = open('documentation.txt','r').read() def lzeros(nzeros, idx): s = ("%0" + str(nzeros) + "d") % (idx) return s class pplot: #---------------------- """pplot class: developed by Vagner Bessa. Contact: [email protected]. For more information, use 'showDoc()' method or saveDoc() and check documentation.txt file.""" #---------------------- dataFolder = "dataFolder" plotsFolder = "plotsFolder" cwd = os.getcwd() cwdls = os.listdir(cwd) xDimPLot = 8 yDimPlot = xDimPLot fig = plt.figure(figsize = (xDimPLot,yDimPlot), dpi = 80) frameDim = [0.1,.1,.8,.8] pXY = fig.add_axes(frameDim) yLabel = r'$y(x)$' xLabel = r'$x$' dataname = 'data.dat' plotname = 'plot.png' X = [] Y = [] Z = [] XY = [] XYZ = [] matrix = [] colourPallete = {'colour': '#025167',\ 'pblue':'#624cb8',\ 'pred':'#bf5272',\ 'pyellow':'#afc558',\ 'pgreen' : '#5fcbab'\ } #---------------------- def __init__(self, dFolder = "dataFolder", pFolder = "plotsFolder"): """Create the folder to work in. """ if type(dFolder) is str: pth = os.path.join(self.cwd,dFolder) if os.path.exists(pth): print 'WARNING: Folder \'%s\' already exists.' %(dFolder) else: os.mkdir(dFolder) self.dataFolder = dFolder else: pth = os.path.join(self.cwd,self.dataFolder) if os.path.exists(pth): print 'WARNING: Folder \'%s\' already exists.' %(self.dataFolder) else: os.mkdir(self.dataFolder) if type(pFolder) is str: pth = os.path.join(self.cwd,pFolder) if os.path.exists(pth): print 'WARNING: Folder \'%s\' already exists.' %(pFolder) else: os.mkdir(pFolder) self.plotsFolder = pFolder else: pth = os.path.join(self.cwd,self.plotsFolder) if os.path.exists(pth): print 'WARNING: Folder \'%s\' already exists.' %(self.plotsFolder) else: os.mkdir(self.plotsFolder) #---------------------- def plotfname(self,f): """Return path to file 'f' in folder pplot.plotsFolder """ f = os.path.join(self.plotsFolder,f) return f #---------------------- def datafname(self,f): """Return path to file 'f' in folder pplot.dataFolder """ f = os.path.join(self.dataFolder,f) return f #---------------------- def saveData(self,dataname,data): """Store data in file in pplot standar format: x11 y12 z13 ... x21 y22 z23 ... x31 y32 z33 ... . . . """ np.savetxt(dataname,data,delimiter = '\t',newline='\n') #---------------------- def loadXYdata(self,fName): """A 2D array of data is loaded into member XY. """ try: self.XY = np.loadtxt(open(fName)) except: print 'ERROR: failed reading file \'%s\'. Make '\ 'sure the column is tab separated.'\ %(fName) #---------------------- def makeXYFrame(self,x,y): """Default frame for 2D-XY plot. """ from math import floor, ceil xlim(x.min(),x.max()) ylim(y.min(),y.max()) xini = int(ceil(x.min())) xend = int(floor(x.max())) yini = int(ceil(y.min())) yend = int(floor(y.max())) xticks = linspace(xini,xend,5,endpoint=True) yticks = linspace(yini,yend,5,endpoint=True) self.pXY.set_xticks(xticks) self.pXY.set_yticks(yticks) self.pXY.set_xlabel(self.xLabel, fontsize = 18) self.pXY.set_ylabel(self.yLabel, fontsize = 18) #---------------------- def plotxy(self): self.pXY.plot(self.X, self.Y, label = self.yLabel, color = self.colourPallete['colour'], lw = 2.0) self.makeXYFrame(self.X,self.Y) #---------------------- def sampleplotXY(self): """Plot with a sample data: y(x) = cos(x) in range [-2Pi,2Pi]. """ self.dataname = self.datafname('sampledataXY.dat') self.plotname = self.plotfname('sampleplotXY.png') print "Ploting with \'%s\'" %(self.dataname) self.X = linspace(-2*pi,2*pi,100,endpoint=True) self.Y = cos(self.X) self.XY = np.array(zip(self.X,self.Y),dtype=dtype) self.saveData(self.dataname,self.XY) self.pXY.set_title('Sample data') self.plotxy() self.fig.savefig(self.plotname, dpi = 80) print "Plot saved at \'%s\'" %(self.plotname) #---------------------- def plotXY(self,fName = None,title = None,SHOW = False,SAVE = False): """If no data is supplied, the sampleplotXY() method is executed. """ if fName is None: self.sampleplotXY() if SHOW: show() elif fName in self.cwdls: if os.path.isfile(fName): self.loadXYdata(fName) xy = np.column_stack(self.XY) self.X = xy[0] self.Y = xy[1] self.plotxy() if SHOW: show() if type(title) is str: self.pXY.set_title(title) if SAVE: self.fig.savefig(self.plotname, dpi = 80) elif os.path.isfile(fName): self.loadXYdata(fName) self.loadXYdata(fName) xy = np.column_stack(self.XY) self.X = xy[0] self.Y = xy[1] self.plotxy() if SHOW: show() if type(title) is str: self.pXY.set_title(title) if SAVE: self.fig.savefig(self.plotname, dpi = 80) else: print 'ERROR: file \'%\' not found. Make sure you\'ve supplied full path or file is in current working dir:\n\'%s\''%(fName,cwd) #---------------------- def showDoc(self): """Print pplot's doc string """ print trim.trim(doc) def showDoc(self, f): """Usefull to print <methodname>.__doc__. Example: 'myplot.showDoc(myplot.showDoc.__doc__)' shows this very docs string without \\t, \\n or identation. """ print trim.trim(f) #---------------------- def saveDoc(self): out = open("documentation.txt","w") out.write(trim.trim(doc)) #a = pplot() #a.plotXY("Free_Field.dat",SHOW = True) #a.doc(a.showDoc().__doc__)
mit
hitszxp/scikit-learn
examples/applications/plot_stock_market.py
29
8284
""" ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: Gael Varoquaux [email protected] # License: BSD 3 clause import datetime import numpy as np import matplotlib.pyplot as plt from matplotlib import finance from matplotlib.collections import LineCollection from sklearn import cluster, covariance, manifold ############################################################################### # Retrieve the data from Internet # Choose a time period reasonnably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime.datetime(2003, 1, 1) d2 = datetime.datetime(2008, 1, 1) # kraft symbol has now changed from KFT to MDLZ in yahoo symbol_dict = { 'TOT': 'Total', 'XOM': 'Exxon', 'CVX': 'Chevron', 'COP': 'ConocoPhillips', 'VLO': 'Valero Energy', 'MSFT': 'Microsoft', 'IBM': 'IBM', 'TWX': 'Time Warner', 'CMCSA': 'Comcast', 'CVC': 'Cablevision', 'YHOO': 'Yahoo', 'DELL': 'Dell', 'HPQ': 'HP', 'AMZN': 'Amazon', 'TM': 'Toyota', 'CAJ': 'Canon', 'MTU': 'Mitsubishi', 'SNE': 'Sony', 'F': 'Ford', 'HMC': 'Honda', 'NAV': 'Navistar', 'NOC': 'Northrop Grumman', 'BA': 'Boeing', 'KO': 'Coca Cola', 'MMM': '3M', 'MCD': 'Mc Donalds', 'PEP': 'Pepsi', 'MDLZ': 'Kraft Foods', 'K': 'Kellogg', 'UN': 'Unilever', 'MAR': 'Marriott', 'PG': 'Procter Gamble', 'CL': 'Colgate-Palmolive', 'GE': 'General Electrics', 'WFC': 'Wells Fargo', 'JPM': 'JPMorgan Chase', 'AIG': 'AIG', 'AXP': 'American express', 'BAC': 'Bank of America', 'GS': 'Goldman Sachs', 'AAPL': 'Apple', 'SAP': 'SAP', 'CSCO': 'Cisco', 'TXN': 'Texas instruments', 'XRX': 'Xerox', 'LMT': 'Lookheed Martin', 'WMT': 'Wal-Mart', 'WAG': 'Walgreen', 'HD': 'Home Depot', 'GSK': 'GlaxoSmithKline', 'PFE': 'Pfizer', 'SNY': 'Sanofi-Aventis', 'NVS': 'Novartis', 'KMB': 'Kimberly-Clark', 'R': 'Ryder', 'GD': 'General Dynamics', 'RTN': 'Raytheon', 'CVS': 'CVS', 'CAT': 'Caterpillar', 'DD': 'DuPont de Nemours'} symbols, names = np.array(list(symbol_dict.items())).T quotes = [finance.quotes_historical_yahoo(symbol, d1, d2, asobject=True) for symbol in symbols] open = np.array([q.open for q in quotes]).astype(np.float) close = np.array([q.close for q in quotes]).astype(np.float) # The daily variations of the quotes are what carry most information variation = close - open ############################################################################### # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) ############################################################################### # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) ############################################################################### # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T ############################################################################### # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx = np.where(non_zero) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # Add a label to each node. The challenge here is that we want to # position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate( zip(names, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.spectral(label / float(n_labels)), alpha=.6)) plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(),) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.show()
bsd-3-clause
rfinn/LCS
python/display_galfit.py
1
3215
#!/usr/bin/env python import os from astropy.io import fits from matplotlib import pyplot as plt from astropy.visualization import simple_norm from astropy import units as u from astropy.wcs import WCS from matplotlib import pyplot as plt homedir = os.getenv("HOME") from scipy.stats import scoreatpercentile os.sys.path.append(homedir+'/github/virgowise/') import rungalfit as rg #This code has all the defined functions that I can use def display_galfit_model(image,percentile1=.5,percentile2=99.5,p1residual=5,p2residual=99,cmap='viridis',zoom=None): ''' ARGS: percentile1 = min percentile for stretch of image and model percentile2 = max percentile for stretch of image and model p1residual = min percentile for stretch of residual p2residual = max percentile for stretch of residual cmap = colormap, default is viridis ''' # model name filename = image pngname = image.split('.fits')[0]+'.png' image,h = fits.getdata(filename,1,header=True) model = fits.getdata(filename,2) residual = fits.getdata(filename,3) if zoom is not None: print("who's zoomin' who?") # display central region of image # figure out how to zoom # get image dimensions and center xmax,ymax = image.shape xcenter = int(xmax/2) ycenter = int(ymax/2) # calculate new size to display based on zoom factor new_xradius = int(xmax/2/(float(zoom))) new_yradius = int(ymax/2/(float(zoom))) # calculate pixels to keep based on zoom factor x1 = xcenter - new_xradius x2 = xcenter + new_xradius y1 = ycenter - new_yradius y2 = ycenter + new_yradius # check to make sure limits are not outsize image dimensions if (x1 < 1): x1 = 1 if (y1 < 1): y1 = 1 if (x2 > xmax): x2 = xmax if (y2 > ymax): y2 = ymax # cut images to new size image = image[x1:x2,y1:y2] model = model[x1:x2,y1:y2] residual = residual[x1:x2,y1:y2] pass wcs = WCS(h) images = [image,model,residual] titles = ['image','model','residual'] v1 = [scoreatpercentile(image,percentile1), scoreatpercentile(image,percentile1), scoreatpercentile(residual,p1residual)] v2 = [scoreatpercentile(image,percentile2), scoreatpercentile(image,percentile2), scoreatpercentile(residual,p2residual)] norms = [simple_norm(image,'asinh',max_percent=percentile2), simple_norm(image,'asinh',max_percent=percentile2), simple_norm(residual,'linear',max_percent=p2residual)] plt.figure(figsize=(14,6)) plt.subplots_adjust(wspace=.0) for i,im in enumerate(images): plt.subplot(1,3,i+1,projection=wcs) plt.imshow(im,origin='lower',cmap=cmap,vmin=v1[i],vmax=v2[i],norm=norms[i]) plt.xlabel('RA') if i == 0: plt.ylabel('DEC') else: ax = plt.gca() ax.set_yticks([]) plt.title(titles[i],fontsize=16) plt.savefig(pngname) def print_galfit_model(image): t = rg.parse_galfit_1comp(image,printflag=True) #print(t)
gpl-3.0
SU-ECE-17-7/ibeis
ibeis/algo/hots/smk/smk_scoring.py
1
12264
# -*- coding: utf-8 -*- """ The functions for scoring smk matches """ from __future__ import absolute_import, division, print_function import utool #import pandas as pd import numpy as np #import scipy.sparse as spsparse #from ibeis.algo.hots import hstypes from ibeis.algo.hots import hstypes from six.moves import zip (print, print_, printDBG, rrr, profile) = utool.inject(__name__, '[smk_scoring]') DEBUG_SMK = utool.DEBUG2 or utool.get_argflag('--debug-smk') @profile def sccw_summation(rvecs_list, flags_list, idf_list, maws_list, smk_alpha, smk_thresh): r""" Computes gamma from "To Aggregate or not to aggregate". Every component in each list is with repsect to a different word. scc = self consistency criterion It is a scalar which ensure K(X, X) = 1 Args: rvecs_list (list of ndarrays): residual vectors for every word idf_list (list of floats): idf weight for each word maws_list (list of ndarrays): multi-assign weights for each word for each residual vector smk_alpha (float): selectivity power smk_thresh (float): selectivity threshold Returns: float: sccw self-consistency-criterion weight Math: \begin{equation} \gamma(X) = (\sum_{c \in \C} w_c M(X_c, X_c))^{-.5} \end{equation} Example: >>> from ibeis.algo.hots.smk.smk_scoring import * # NOQA >>> from ibeis.algo.hots.smk import smk_scoring >>> from ibeis.algo.hots.smk import smk_debug >>> #idf_list, rvecs_list, maws_list, smk_alpha, smk_thresh, wx2_flags = smk_debug.testdata_sccw_sum(db='testdb1') >>> tup = smk_debug.testdata_sccw_sum(db='PZ_MTEST', nWords=128000) >>> idf_list, rvecs_list, flags_list, maws_list, smk_alpha, smk_thresh = tup >>> sccw = smk_scoring.sccw_summation(rvecs_list, flags_list, idf_list, maws_list, smk_alpha, smk_thresh) >>> print(sccw) 0.0201041835751 CommandLine: python smk_match.py --db PZ_MOTHERS --nWords 128 Ignore: 0.0384477314197 qmaws_list = dmaws_list = maws_list drvecs_list = qrvecs_list = rvecs_list dflags_list = qflags_list = flags_list flags_list = flags_list[7:10] maws_list = maws_list[7:10] idf_list = idf_list[7:10] rvecs_list = rvecs_list[7:10] """ num_rvecs = len(rvecs_list) if DEBUG_SMK: assert maws_list is None or len(maws_list) == num_rvecs, 'inconsistent lengths' assert num_rvecs == len(idf_list), 'inconsistent lengths' assert maws_list is None or list(map(len, maws_list)) == list(map(len, rvecs_list)), 'inconsistent per word lengths' assert flags_list is None or list(map(len, maws_list)) == list(map(len, flags_list)), 'inconsistent per word lengths' assert flags_list is None or len(flags_list) == num_rvecs, 'inconsistent lengths' # Indexing with asymetric multi-assignment might get you a non 1 self score? # List of scores for every word. scores_list = score_matches(rvecs_list, rvecs_list, flags_list, flags_list, maws_list, maws_list, smk_alpha, smk_thresh, idf_list) if DEBUG_SMK: assert len(scores_list) == num_rvecs, 'bad rvec and score' assert len(idf_list) == len(scores_list), 'bad weight and score' # Summation over all residual vector scores _count = sum((scores.size for scores in scores_list)) _iter = utool.iflatten(scores.ravel() for scores in scores_list) self_rawscore = np.fromiter(_iter, np.float64, _count).sum() # Square root inverse to enforce normalized self-score is 1.0 sccw = np.reciprocal(np.sqrt(self_rawscore)) try: assert not np.isinf(sccw), 'sccw cannot be infinite' assert not np.isnan(sccw), 'sccw cannot be nan' except AssertionError as ex: utool.printex(ex, 'problem computing self consistency criterion weight', keys=['num_rvecs'], iswarning=True) if num_rvecs > 0: raise else: sccw = 1 return sccw @profile def score_matches(qrvecs_list, drvecs_list, qflags_list, dflags_list, qmaws_list, dmaws_list, smk_alpha, smk_thresh, idf_list): """ Similarity + Selectivity: M(X_c, Y_c) Computes the similarity matrix between word correspondences Args: qrvecs_list : query vectors for each word drvecs_list : database vectors for each word qmaws_list : multi assigned weights for each query word dmaws_list : multi assigned weights for each database word smk_alpha : selectivity power smk_thresh : selectivity smk_thresh Returns: list : list of score matrices References: https://lear.inrialpes.fr/~douze/enseignement/2013-2014/presentation_papers/tolias_aggregate.pdf Example: >>> from ibeis.algo.hots.smk.smk_scoring import * # NOQA >>> from ibeis.algo.hots.smk import smk_debug >>> smk_alpha = 3 >>> smk_thresh = 0 >>> qrvecs_list = [smk_debug.get_test_rvecs(_) for _ in range(10)] >>> drvecs_list = [smk_debug.get_test_rvecs(_) for _ in range(10)] >>> qmaws_list = [smk_debug.get_test_maws(rvecs) for rvecs in qrvecs_list] >>> dmaws_list = [np.ones(rvecs.shape[0], dtype=hstypes.FLOAT_TYPE) for rvecs in qrvecs_list] >>> idf_list = [1.0 for _ in qrvecs_list] >>> scores_list = score_matches(qrvecs_list, drvecs_list, qmaws_list, dmaws_list, smk_alpha, smk_thresh, idf_list) """ # Cosine similarity between normalized residuals simmat_list = similarity_function(qrvecs_list, drvecs_list, qflags_list, dflags_list) # Apply sigma selectivity (power law) (BEFORE WEIGHTING) scoremat_list = selectivity_function(simmat_list, smk_alpha, smk_thresh) # Apply Weights (AFTER SELECTIVITY) wscoremat_list = apply_weights(scoremat_list, qmaws_list, dmaws_list, idf_list) return wscoremat_list def rvecs_dot_uint8(qrvecs, drvecs): return qrvecs.astype(np.float32).dot(drvecs.T.astype(np.float32)) / hstypes.RVEC_PSEUDO_MAX_SQRD @profile def similarity_function(qrvecs_list, drvecs_list, qflags_list, dflags_list): """ Phi dot product. Args: qrvecs_list (list): query residual vectors for each matching word drvecs_list (list): corresponding database residual vectors qflags_list (list): indicates if a query vector was nan dflags_list (list): indicates if a database vector was nan Returns: simmat_list qrvecs_list list of rvecs for each word Example: >>> from ibeis.algo.hots.smk.smk_scoring import * # NOQA >>> from ibeis.algo.hots.smk import smk_debug >>> qrvecs_list, drvecs_list = smk_debug.testdata_similarity_function() >>> simmat_list = similarity_function(qrvecs_list, drvecs_list) """ # For int8: Downweight by the psuedo max squared, to get scores between 0 and 1 simmat_list = [ rvecs_dot_uint8(qrvecs, drvecs) for qrvecs, drvecs in zip(qrvecs_list, drvecs_list) ] if utool.DEBUG2: assert len(simmat_list) == len(qrvecs_list), 'bad simmat and qrvec' assert len(simmat_list) == len(drvecs_list), 'bad simmat and drvec' if qflags_list is not None and dflags_list is not None: # Set any scores resulting from flagged vectors to 1 # Actually lets add .5 because we dont know if a flagged vector # is a good match, but if both database and query are flagged then # it must be a good match for qflags, dflags, simmat in zip(qflags_list, dflags_list, simmat_list): simmat[qflags] += 0.5 simmat.T[dflags] += 0.5 elif qflags_list is not None: for qflags, simmat in zip(qflags_list, simmat_list): simmat[qflags] += 0.5 elif dflags_list is not None: for dflags, simmat in zip(dflags_list, simmat_list): simmat.T[dflags] += 0.5 # for float16: just perform the calculation #simmat_list = [ # qrvecs.dot(drvecs.T) # for qrvecs, drvecs in zip(qrvecs_list, drvecs_list) #] # uint8 does not have nans. We need to use flag lists #for simmat in simmat_list: # simmat[np.isnan(simmat)] = 1.0 return simmat_list @profile def apply_weights(simmat_list, qmaws_list, dmaws_list, idf_list): """ Applys multi-assign weights and idf weights to rvec similarty matrices TODO: Maybe should apply the sccw weights too? Accounts for rvecs being stored as int8's Example: >>> from ibeis.algo.hots.smk.smk_scoring import * # NOQA >>> from ibeis.algo.hots.smk import smk_debug >>> simmat_list, qmaws_list, dmaws_list, idf_list = smk_debug.testdata_apply_weights() >>> wsim_list = apply_weights(simmat_list, qmaws_list, dmaws_list, idf_list) """ word_weight_list = idf_list if qmaws_list is None and dmaws_list is None: wsim_list = [ (word_weight * simmat) for simmat, word_weight in zip(simmat_list, word_weight_list) ] elif qmaws_list is not None and dmaws_list is not None: wsim_list = [ (((word_weight * qmaws[:, None]) * simmat) * dmaws[None, :]) for simmat, qmaws, dmaws, word_weight in zip(simmat_list, qmaws_list, dmaws_list, word_weight_list) ] elif qmaws_list is not None and dmaws_list is None: wsim_list = [ ((word_weight * qmaws[:, None]) * simmat) for simmat, qmaws, word_weight in zip(simmat_list, qmaws_list, word_weight_list) ] else: raise NotImplementedError('cannot just do dmaws') return wsim_list #@profile @profile def selectivity_function(wsim_list, smk_alpha, smk_thresh): """ Selectivity function - sigma from SMK paper rscore = residual score Downweights weak matches using power law normalization and thresholds anybody that is too weak Example: >>> import numpy as np >>> from ibeis.algo.hots.smk import smk_debug >>> smk_debug.rrr() >>> np.random.seed(0) >>> wsim_list, smk_alpha, smk_thresh = smk_debug.testdata_selectivity_function() Timeits: >>> import utool >>> utool.util_dev.rrr() >>> setup = utool.codeblock( ... ''' import numpy as np import scipy.sparse as spsparse from ibeis.algo.hots.smk import smk_debug np.random.seed(0) wsim_list, smk_alpha, smk_thresh = smk_debug.testdata_selectivity_function() scores_iter = [ np.multiply(np.sign(mawmat), np.power(np.abs(mawmat), smk_alpha)) for mawmat in wsim_list ] ''') >>> stmt_list = utool.codeblock( ... ''' scores_list0 = [np.multiply(scores, np.greater(scores, smk_thresh)) for scores in scores_iter] scores_list1 = [spsparse.coo_matrix(np.multiply(scores, np.greater(scores, smk_thresh))) for scores in scores_iter] scores_list2 = [spsparse.dok_matrix(np.multiply(scores, np.greater(scores, smk_thresh))) for scores in scores_iter] scores_list3 = [spsparse.lil_matrix(np.multiply(scores, np.greater(scores, smk_thresh))) for scores in scores_iter] ''' ... ).split('\n') >>> utool.util_dev.timeit_compare(stmt_list, setup, int(1E4)) scores0 = scores_list0[-1] scores1 = scores_list1[-1] scores2 = scores_list2[-1] scores3 = scores_list3[-1] %timeit scores0.sum() %timeit scores1.sum() %timeit scores2.sum() %timeit scores3.sum() """ # Apply powerlaw scores_iter = [ np.multiply(np.sign(mawmat), np.power(np.abs(mawmat), smk_alpha)) for mawmat in wsim_list ] # Apply threshold scores_list = [ np.multiply(scores, np.greater(scores, smk_thresh)) for scores in scores_iter ] if utool.DEBUG2: assert len(scores_list) == len(wsim_list) return scores_list
apache-2.0
bundgus/python-playground
bokeh-playground/bokeh-flask.py
1
2483
import flask import pandas as pd import numpy as np import blaze as bz from odo import odo from bokeh.embed import components from bokeh.resources import INLINE from bokeh.templates import RESOURCES from bokeh.util.string import encode_utf8 from bokeh.models import ColumnDataSource import bokeh.plotting as plt app = flask.Flask(__name__) db = bz.Data('sqlite:///lahman2013.sqlite') distinct_teams = list(db.Salaries.teamID.distinct()) distinct_years = list(db.Salaries.yearID.distinct()) def create_plot(team="LAA", year=2012): expr = bz.by(db.Salaries.teamID, avg=db.Salaries.salary.mean(), max=db.Salaries.salary.max(), ratio=db.Salaries.salary.max() / db.Salaries.salary.min()) expr = expr.sort('ratio', ascending=False) df_salary_gb = odo(expr, pd.DataFrame) source1 = odo(df_salary_gb[["teamID", "avg"]], ColumnDataSource) plot1 = plt.figure(title="Salary ratio by team", x_range=list(df_salary_gb["teamID"])) plot1.scatter(x="teamID", y="avg", source=source1, size=20) plot1.xaxis.major_label_orientation = np.pi/3 df = odo(db.Salaries, pd.DataFrame) df = df[df["teamID"] == team] df = df[df["yearID"] == year] df = df[["playerID","salary"]].sort('salary') source_team = odo(df, ColumnDataSource) p_team = plt.figure(title="Salary of players for %s during %s" % (team, year), x_range=list(df["playerID"]))#, tools=TOOLS) p_team.scatter(x="playerID", y="salary", source=source_team, size=20) p_team.xaxis.major_label_orientation = np.pi/3 p = plt.gridplot([[plot1, p_team]]) return p @app.route("/") def index(): args = flask.request.args selected_team = flask.request.values.get("selected_team", "LAA") selected_year = int(flask.request.values.get("selected_year", "2012")) p = create_plot(selected_team, selected_year) plot_resources = RESOURCES.render( js_raw=INLINE.js_raw, css_raw=INLINE.css_raw, js_files=INLINE.js_files, css_files=INLINE.css_files, ) script, div = components(p, INLINE) html = flask.render_template( 'embed.html', plot_script=script, plot_div=div, plot_resources=plot_resources, selected_team=selected_team, selected_year=selected_year, years=distinct_years, teams=distinct_teams, ) return encode_utf8(html) if __name__ == "__main__": app.run(debug=True)
mit
hahnicity/ecs251-final-project
test.py
1
4680
#Mchine learning script from sys import argv, exit import csv import os import math from glob import glob from pandas import read_csv import numpy as np #using keywords data to do classification #data_p = np.recarray((len(keywords),), names = keywords)--doesn't work import time import matplotlib.pyplot as plt #------------------------------------------------------ #from fitgaus import fitgausdist #---------------------------------------- def normlize(vec): average = np.sum(vec) stddev = np.std(vec) vec = (vec-average)/stddev return vec def get_cohort_files(cohort, keywords): """ Read data and get parameters for processing """ if cohort not in ["ardscohort", "controlcohort"]: raise Exception("Input must either be ardscohort or controlcohort") path = dirname(__file__) + cohort #dirs = os.listdir(path) dirs = glob(path+'/0*') data = [] k = 0 for dir in dirs: path_temp = dir name = glob(path_temp+'/*.csv') df = read_csv(name[0]) #print 'Opening file: ', name k += 1 #for each patient flag = 0 paras = [] m = 50 a = df[keywords[0]] print len(a) for i in range(0, len(keywords)): a = df[keywords[i]] if len(a) <= m: print name, ' is an empty file' flag = 1 break #fit to normal distribution #para = fitgausdist(a) #mean = np.sum(a)/float(len(a)) #std = np.std(a) #para = [mean, std] partial = a[0:m] para = partial if math.isnan(para[0]): print name[0], keywords[i] flag = 1 break paras.extend(para) if flag == 0: data.append(paras) k -= flag return data, k keywords = ['I:E ratio','eTime','PIP', 'Maw', 'PEEP', 'ipAUC', 'epAUC'] #, 'minF_to_zero' cohort = "ardscohort" data_p, k1 = get_cohort_files(cohort, keywords) print 'get %d files from patients' % k1 cohort = "controlcohort" temp, k2 = get_cohort_files(cohort, keywords) print 'get %d files from control group' % k2 labels = np.append(np.ones(k1-3), np.zeros(k2-3)) #data_p = np.transpose(data_p) #print "Done reading data, get arrary of size", len(data_p) #from sklearn import preprocessing #normalized_X = preprocessing.normalize(np.array(data_p)) def normalize(x): x = np.dot(x, np.identity(len(x))-np.ones(len(x))/len(x)) return x #-------------FDA----------------- datatrain = [] datatrain.extend(data_p[0:k1-3]) datatrain.extend(temp[0:k2-3]) datatest = data_p[-3:] datatest.extend(temp[-3:]) from sklearn.discriminant_analysis import LinearDiscriminantAnalysis clf = LinearDiscriminantAnalysis() clf.fit(datatrain, labels) LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001) print(clf.predict(datatest)) #should clear that one file ''' 1. some blank files 2. some files missing features 3. some files too short, less than 1000 breath 4. not using the min_f feature... the important one 1. find out the collinear variables -- rank 70 of matrix 76, 2. use other partial data for testing - need to verify validity 3. pull out the classification plot 4. look for more features to use instead of just raw feature 5. break one patien to multiple? 6. kernalize? 1. 300 too long 2. 50 better than 100 or 30 ''' #-------------------------------- ''' for root, dirs, files in os.walk(path_ards): for name in files: if name.endswith((".csv")): for filename in os.listdir(path_ards): df = pd.read_csv(path_ards+filename) temp = [] flag = 0 print 'Patient ', filename, ' , number of breaths', len(df[keywords[0]]) for i in range(0, len(keywords)): a = df[keywords[i]] #column amean = np.sum(a)#/len(a) data_person.append(a) if amean == 0: print filename#, keywords[i] flag = 1 break #print len(temp) temp = np.array(data_person, dtype = keywords) if flag == 0: data_raw.append(temp) def mypca(x): result = la.eigh(np.dot(x, np.transpose(x))) plt.plot(result[0]) plt.ylabel('Log of Residual History') plt.show() z = np.dot(np.dot(np.transpose(result[1]),result[1]), x) zcumu = np.dot(result[0], z) plt.plot(zcumu) plt.ylabel('Log of Residual History') plt.show() print zcumu return zcumu '''
mit
JosmanPS/scikit-learn
sklearn/tree/export.py
53
15772
""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Trevor Stephens <[email protected]> # Licence: BSD 3 clause import numpy as np from ..externals import six from . import _tree def _color_brew(n): """Generate n colors with equally spaced hues. Parameters ---------- n : int The number of colors required. Returns ------- color_list : list, length n List of n tuples of form (R, G, B) being the components of each color. """ color_list = [] # Initialize saturation & value; calculate chroma & value shift s, v = 0.75, 0.9 c = s * v m = v - c for h in np.arange(25, 385, 360. / n).astype(int): # Calculate some intermediate values h_bar = h / 60. x = c * (1 - abs((h_bar % 2) - 1)) # Initialize RGB with same hue & chroma as our color rgb = [(c, x, 0), (x, c, 0), (0, c, x), (0, x, c), (x, 0, c), (c, 0, x), (c, x, 0)] r, g, b = rgb[int(h_bar)] # Shift the initial RGB values to match value and store rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))] color_list.append(rgb) return color_list def export_graphviz(decision_tree, out_file="tree.dot", max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Read more in the :ref:`User Guide <tree>`. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. out_file : file object or string, optional (default="tree.dot") Handle or name of the output file. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. feature_names : list of strings, optional (default=None) Names of each of the features. class_names : list of strings, bool or None, optional (default=None) Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, optional (default='all') Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, optional (default=False) When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. leaves_parallel : bool, optional (default=False) When set to ``True``, draw all leaf nodes at the bottom of the tree. impurity : bool, optional (default=True) When set to ``True``, show the impurity at each node. node_ids : bool, optional (default=False) When set to ``True``, show the ID number on each node. proportion : bool, optional (default=False) When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, optional (default=False) When set to ``True``, orient tree left to right rather than top-down. rounded : bool, optional (default=False) When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. special_characters : bool, optional (default=False) When set to ``False``, ignore special characters for PostScript compatibility. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf, ... out_file='tree.dot') # doctest: +SKIP """ def get_color(value): # Find the appropriate color & intensity for a node if colors['bounds'] is None: # Classification tree color = list(colors['rgb'][np.argmax(value)]) sorted_values = sorted(value, reverse=True) alpha = int(255 * (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1])) else: # Regression tree or multi-output color = list(colors['rgb'][0]) alpha = int(255 * ((value - colors['bounds'][0]) / (colors['bounds'][1] - colors['bounds'][0]))) # Return html color code in #RRGGBBAA format color.append(alpha) hex_codes = [str(i) for i in range(10)] hex_codes.extend(['a', 'b', 'c', 'd', 'e', 'f']) color = [hex_codes[c // 16] + hex_codes[c % 16] for c in color] return '#' + ''.join(color) def node_to_str(tree, node_id, criterion): # Generate the node content string if tree.n_outputs == 1: value = tree.value[node_id][0, :] else: value = tree.value[node_id] # Should labels be shown? labels = (label == 'root' and node_id == 0) or label == 'all' # PostScript compatibility for special characters if special_characters: characters = ['&#35;', '<SUB>', '</SUB>', '&le;', '<br/>', '>'] node_string = '<' else: characters = ['#', '[', ']', '<=', '\\n', '"'] node_string = '"' # Write node ID if node_ids: if labels: node_string += 'node ' node_string += characters[0] + str(node_id) + characters[4] # Write decision criteria if tree.children_left[node_id] != _tree.TREE_LEAF: # Always write node decision criteria, except for leaves if feature_names is not None: feature = feature_names[tree.feature[node_id]] else: feature = "X%s%s%s" % (characters[1], tree.feature[node_id], characters[2]) node_string += '%s %s %s%s' % (feature, characters[3], round(tree.threshold[node_id], 4), characters[4]) # Write impurity if impurity: if isinstance(criterion, _tree.FriedmanMSE): criterion = "friedman_mse" elif not isinstance(criterion, six.string_types): criterion = "impurity" if labels: node_string += '%s = ' % criterion node_string += (str(round(tree.impurity[node_id], 4)) + characters[4]) # Write node sample count if labels: node_string += 'samples = ' if proportion: percent = (100. * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])) node_string += (str(round(percent, 1)) + '%' + characters[4]) else: node_string += (str(tree.n_node_samples[node_id]) + characters[4]) # Write node class distribution / regression value if proportion and tree.n_classes[0] != 1: # For classification this will show the proportion of samples value = value / tree.weighted_n_node_samples[node_id] if labels: node_string += 'value = ' if tree.n_classes[0] == 1: # Regression value_text = np.around(value, 4) elif proportion: # Classification value_text = np.around(value, 2) elif np.all(np.equal(np.mod(value, 1), 0)): # Classification without floating-point weights value_text = value.astype(int) else: # Classification with floating-point weights value_text = np.around(value, 4) # Strip whitespace value_text = str(value_text.astype('S32')).replace("b'", "'") value_text = value_text.replace("' '", ", ").replace("'", "") if tree.n_classes[0] == 1 and tree.n_outputs == 1: value_text = value_text.replace("[", "").replace("]", "") value_text = value_text.replace("\n ", characters[4]) node_string += value_text + characters[4] # Write node majority class if (class_names is not None and tree.n_classes[0] != 1 and tree.n_outputs == 1): # Only done for single-output classification trees if labels: node_string += 'class = ' if class_names is not True: class_name = class_names[np.argmax(value)] else: class_name = "y%s%s%s" % (characters[1], np.argmax(value), characters[2]) node_string += class_name # Clean up any trailing newlines if node_string[-2:] == '\\n': node_string = node_string[:-2] if node_string[-5:] == '<br/>': node_string = node_string[:-5] return node_string + characters[5] def recurse(tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if max_depth is None or depth <= max_depth: # Collect ranks for 'leaf' option in plot_options if left_child == _tree.TREE_LEAF: ranks['leaves'].append(str(node_id)) elif str(depth) not in ranks: ranks[str(depth)] = [str(node_id)] else: ranks[str(depth)].append(str(node_id)) out_file.write('%d [label=%s' % (node_id, node_to_str(tree, node_id, criterion))) if filled: # Fetch appropriate color for node if 'rgb' not in colors: # Initialize colors and bounds if required colors['rgb'] = _color_brew(tree.n_classes[0]) if tree.n_outputs != 1: # Find max and min impurities for multi-output colors['bounds'] = (np.min(-tree.impurity), np.max(-tree.impurity)) elif tree.n_classes[0] == 1: # Find max and min values in leaf nodes for regression colors['bounds'] = (np.min(tree.value), np.max(tree.value)) if tree.n_outputs == 1: node_val = (tree.value[node_id][0, :] / tree.weighted_n_node_samples[node_id]) if tree.n_classes[0] == 1: # Regression node_val = tree.value[node_id][0, :] else: # If multi-output color node by impurity node_val = -tree.impurity[node_id] out_file.write(', fillcolor="%s"' % get_color(node_val)) out_file.write('] ;\n') if parent is not None: # Add edge to parent out_file.write('%d -> %d' % (parent, node_id)) if parent == 0: # Draw True/False labels if parent is root node angles = np.array([45, -45]) * ((rotate - .5) * -2) out_file.write(' [labeldistance=2.5, labelangle=') if node_id == 1: out_file.write('%d, headlabel="True"]' % angles[0]) else: out_file.write('%d, headlabel="False"]' % angles[1]) out_file.write(' ;\n') if left_child != _tree.TREE_LEAF: recurse(tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1) recurse(tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1) else: ranks['leaves'].append(str(node_id)) out_file.write('%d [label="(...)"' % node_id) if filled: # color cropped nodes grey out_file.write(', fillcolor="#C0C0C0"') out_file.write('] ;\n' % node_id) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) own_file = False try: if isinstance(out_file, six.string_types): if six.PY3: out_file = open(out_file, "w", encoding="utf-8") else: out_file = open(out_file, "wb") own_file = True # The depth of each node for plotting with 'leaf' option ranks = {'leaves': []} # The colors to render each node with colors = {'bounds': None} out_file.write('digraph Tree {\n') # Specify node aesthetics out_file.write('node [shape=box') rounded_filled = [] if filled: rounded_filled.append('filled') if rounded: rounded_filled.append('rounded') if len(rounded_filled) > 0: out_file.write(', style="%s", color="black"' % ", ".join(rounded_filled)) if rounded: out_file.write(', fontname=helvetica') out_file.write('] ;\n') # Specify graph & edge aesthetics if leaves_parallel: out_file.write('graph [ranksep=equally, splines=polyline] ;\n') if rounded: out_file.write('edge [fontname=helvetica] ;\n') if rotate: out_file.write('rankdir=LR ;\n') # Now recurse the tree and add node & edge attributes if isinstance(decision_tree, _tree.Tree): recurse(decision_tree, 0, criterion="impurity") else: recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) # If required, draw leaf nodes at same depth as each other if leaves_parallel: for rank in sorted(ranks): out_file.write("{rank=same ; " + "; ".join(r for r in ranks[rank]) + "} ;\n") out_file.write("}") finally: if own_file: out_file.close()
bsd-3-clause
jwlawson/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator_input_test.py
10
12872
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator input.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np from tensorflow.python.training import training_util from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner_impl _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def boston_input_fn_with_queue(num_epochs=None): features, labels = boston_input_fn(num_epochs=num_epochs) # Create a minimal queue runner. fake_queue = data_flow_ops.FIFOQueue(30, dtypes.int32) queue_runner = queue_runner_impl.QueueRunner(fake_queue, [constant_op.constant(0)]) queue_runner_impl.add_queue_runner(queue_runner) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat( [labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' class EstimatorInputTest(test.TestCase): def testContinueTrainingDictionaryInput(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=50) scores = est.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) del est # Create another estimator object with the same output dir. est2 = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) # Check we can evaluate and predict. scores2 = est2.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertAllClose(scores2['MSE'], scores['MSE']) predictions = np.array(list(est2.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, float64_target['labels']) self.assertAllClose(other_score, scores['MSE']) def testBostonAll(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=100) scores = est.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) predictions = np.array(list(est.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(scores['MSE'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testBostonAllDictionaryInput(self): boston = base.load_boston() est = estimator.Estimator(model_fn=linear_model_fn) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=100) scores = est.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) predictions = np.array(list(est.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(other_score, scores['MSE']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisAll(self): iris = base.load_iris() est = estimator.SKCompat( estimator.Estimator(model_fn=logistic_model_no_mode_fn)) est.fit(iris.data, iris.target, steps=100) scores = est.score( x=iris.data, y=iris.target, metrics={('accuracy', 'class'): metric_ops.streaming_accuracy}) predictions = est.predict(x=iris.data) predictions_class = est.predict(x=iris.data, outputs=['class'])['class'] self.assertEqual(predictions['prob'].shape[0], iris.target.shape[0]) self.assertAllClose(predictions['class'], predictions_class) self.assertAllClose( predictions['class'], np.argmax( predictions['prob'], axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions['class']) self.assertAllClose(scores['accuracy'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testIrisAllDictionaryInput(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) iris_data = {'input': iris.data} iris_target = {'labels': iris.target} est.fit(iris_data, iris_target, steps=100) scores = est.evaluate( x=iris_data, y=iris_target, metrics={('accuracy', 'class'): metric_ops.streaming_accuracy}) predictions = list(est.predict(x=iris_data)) predictions_class = list(est.predict(x=iris_data, outputs=['class'])) self.assertEqual(len(predictions), iris.target.shape[0]) classes_batch = np.array([p['class'] for p in predictions]) self.assertAllClose(classes_batch, np.array([p['class'] for p in predictions_class])) self.assertAllClose( classes_batch, np.argmax( np.array([p['prob'] for p in predictions]), axis=1)) other_score = _sklearn.accuracy_score(iris.target, classes_batch) self.assertAllClose(other_score, scores['accuracy']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisInputFn(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisInputFnLabelsDict(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn_labels_dict, steps=100) _ = est.evaluate( input_fn=iris_input_fn_labels_dict, steps=1, metrics={ 'accuracy': metric_spec.MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='class', label_key='labels') }) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testTrainInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_eval_fn, steps=1) def testPredictInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testPredictInputFnWithQueue(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn_with_queue, num_epochs=2) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0] * 2) def testPredictConstInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) def input_fn(): features = array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) if __name__ == '__main__': test.main()
apache-2.0
ChristosChristofidis/h2o-3
h2o-py/h2o/frame.py
1
47685
# -*- coding: utf-8 -*- # import numpy no numpy cuz windoz import collections, csv, itertools, os, re, tempfile, uuid, urllib2, sys, urllib,imp from expr import h2o,ExprNode import gc class H2OFrame: # Magical count-of-5: (get 2 more when looking at it in debug mode) # 2 for _do_it frame, 2 for _do_it local dictionary list, 1 for parent MAGIC_REF_COUNT = 5 if sys.gettrace() is None else 7 # M = debug ? 7 : 5 def __init__(self, python_obj=None, file_path=None, raw_id=None, expr=None): """ Create a new H2OFrame object by passing a file path or a list of H2OVecs. If `remote_fname` is not None, then a REST call will be made to import the data specified at the location `remote_fname`. This path is relative to the H2O cluster, NOT the local Python process If `python_obj` is not None, then an attempt to upload the python object to H2O will be made. A valid python object has type `list`, or `dict`. For more information on the structure of the input for the various native python data types ("native" meaning non-H2O), please see the general documentation for this object. :param python_obj: A "native" python object - list, dict, tuple. :param remote_fname: A remote path to a data source. Data is cluster-local. :param vecs: A list of H2OVec objects. :param text_key: A raw key resulting from an upload_file. :return: An instance of an H2OFrame object. """ self._id = _py_tmp_key() # gets overwritten if a parse happens self._keep = False self._nrows = None self._ncols = None self._col_names = None self._computed = False self._ast = None if expr is not None: self._ast = expr elif python_obj is not None: self._upload_python_object(python_obj) elif file_path is not None: self._import_parse(file_path) elif raw_id is not None: self._handle_text_key(raw_id) else: pass @staticmethod def get_frame(frame_id): res = h2o.H2OConnection.get_json("Frames/"+urllib.quote(frame_id))["frames"][0] fr = H2OFrame() fr._nrows = res["rows"] fr._ncols = res["total_column_count"] fr._id = res["frame_id"]["name"] fr._computed = True fr._keep = True fr._col_names = [c["label"] for c in res["columns"]] return fr def __str__(self): return self._id def _import_parse(self,file_path): rawkey = h2o.import_file(file_path) setup = h2o.parse_setup(rawkey) parse = h2o.parse(setup, _py_tmp_key()) # create a new key self._id = parse["job"]["dest"]["name"] self._computed=True self._nrows = int(H2OFrame(expr=ExprNode("nrow", self))._scalar()) self._ncols = parse["number_columns"] self._col_names = parse['column_names'] if parse["column_names"] else ["C" + str(x) for x in range(1,self._ncols+1)] self._keep = True thousands_sep = h2o.H2ODisplay.THOUSANDS if isinstance(file_path, str): print "Imported {}. Parsed {} rows and {} cols".format(file_path,thousands_sep.format(self._nrows), thousands_sep.format(self._ncols)) else: h2o.H2ODisplay([["File"+str(i+1),f] for i,f in enumerate(file_path)],None, "Parsed {} rows and {} cols".format(thousands_sep.format(self._nrows), thousands_sep.format(self._ncols))) def _upload_python_object(self, python_obj): """ Properly handle native python data types. For a discussion of the rules and permissible data types please refer to the main documentation for H2OFrame. :param python_obj: A tuple, list, dict, collections.OrderedDict :return: None """ # [] and () cases -- folded together since H2OFrame is mutable if isinstance(python_obj, (list, tuple)): header, data_to_write = _handle_python_lists(python_obj) # {} and collections.OrderedDict cases elif isinstance(python_obj, (dict, collections.OrderedDict)): header, data_to_write = _handle_python_dicts(python_obj) # handle a numpy.ndarray # elif isinstance(python_obj, numpy.ndarray): # # header, data_to_write = H2OFrame._handle_numpy_array(python_obj) else: raise ValueError("`python_obj` must be a tuple, list, dict, collections.OrderedDict. Got: " + str(type(python_obj))) if header is None or data_to_write is None: raise ValueError("No data to write") # ## write python data to file and upload # # create a temporary file that will be written to tmp_handle,tmp_path = tempfile.mkstemp(suffix=".csv") tmp_file = os.fdopen(tmp_handle,'wb') # create a new csv writer object thingy csv_writer = csv.DictWriter(tmp_file, fieldnames=header, restval=None, dialect="excel", extrasaction="ignore", delimiter=",") csv_writer.writeheader() # write the header csv_writer.writerows(data_to_write) # write the data tmp_file.close() # close the streams self._upload_raw_data(tmp_path) # actually upload the data to H2O os.remove(tmp_path) # delete the tmp file def _handle_text_key(self, text_key, check_header=None): """ Handle result of upload_file :param test_key: A key pointing to raw text to be parsed :return: Part of the H2OFrame constructor. """ # perform the parse setup setup = h2o.parse_setup(text_key) if check_header is not None: setup["check_header"] = check_header parse = h2o.parse(setup, _py_tmp_key()) self._computed=True self._id = parse["destination_frame"]["name"] self._ncols = parse["number_columns"] self._col_names = cols = parse['column_names'] if parse["column_names"] else ["C" + str(x) for x in range(1,self._ncols+1)] self._nrows = int(H2OFrame(expr=ExprNode("nrow", self))._scalar()) self._keep = True thousands_sep = h2o.H2ODisplay.THOUSANDS print "Uploaded {} into cluster with {} rows and {} cols".format(text_key, thousands_sep.format(self._nrows), thousands_sep.format(len(cols))) def _upload_raw_data(self, tmp_file_path): fui = {"file": os.path.abspath(tmp_file_path)} # file upload info is the normalized path to a local file dest_key = _py_tmp_key() # create a random name for the data h2o.H2OConnection.post_json("PostFile", fui, destination_frame=dest_key) # do the POST -- blocking, and "fast" (does not real data upload) self._handle_text_key(dest_key, 1) # actually parse the data and setup self._vecs def __iter__(self): """ Allows for list comprehensions over an H2OFrame :return: An iterator over the H2OFrame """ self._eager() ncol = self._ncols return (self[i] for i in range(ncol)) def logical_negation(self): H2OFrame(expr=ExprNode("not", self)) # ops def __add__ (self, i): return H2OFrame(expr=ExprNode("+", self,i)) def __sub__ (self, i): return H2OFrame(expr=ExprNode("-", self,i)) def __mul__ (self, i): return H2OFrame(expr=ExprNode("*", self,i)) def __div__ (self, i): return H2OFrame(expr=ExprNode("/", self,i)) def __floordiv__(self, i): return H2OFrame(expr=ExprNode("intDiv",self,i)) def __mod__ (self, i): return H2OFrame(expr=ExprNode("mod", self,i)) def __or__ (self, i): return H2OFrame(expr=ExprNode("|", self,i)) def __and__ (self, i): return H2OFrame(expr=ExprNode("&", self,i)) def __ge__ (self, i): return H2OFrame(expr=ExprNode(">=", self,i)) def __gt__ (self, i): return H2OFrame(expr=ExprNode(">", self,i)) def __le__ (self, i): return H2OFrame(expr=ExprNode("<=", self,i)) def __lt__ (self, i): return H2OFrame(expr=ExprNode("<", self,i)) def __eq__ (self, i): return H2OFrame(expr=ExprNode("==", self,i)) def __ne__ (self, i): return H2OFrame(expr=ExprNode("N", self,i)) def __pow__ (self, i): return H2OFrame(expr=ExprNode("^", self,i)) # rops def __rmod__(self, i): return H2OFrame(expr=ExprNode("mod",i,self)) def __radd__(self, i): return self.__add__(i) def __rsub__(self, i): return H2OFrame(expr=ExprNode("-",i, self)) def __rand__(self, i): return self.__and__(i) def __ror__ (self, i): return self.__or__ (i) def __rdiv__(self, i): return H2OFrame(expr=ExprNode("/",i, self)) def __rfloordiv__(self, i): return H2OFrame(expr=ExprNode("intDiv",i,self)) def __rmul__(self, i): return self.__mul__(i) def __rpow__(self, i): return H2OFrame(expr=ExprNode("^",i, self)) # unops def __abs__ (self): return H2OFrame(expr=ExprNode("abs",self)) def __contains__(self, i): return all([(t==self).any() for t in i]) if _is_list(i) else (i==self).any() def mult(self, matrix): """ Perform matrix multiplication. :param matrix: The matrix to multiply to the left of self. :return: The multiplied matrices. """ return H2OFrame(expr=ExprNode("x", self, matrix)) def cos(self) : return H2OFrame(expr=ExprNode("cos", self)) def sin(self) : return H2OFrame(expr=ExprNode("sin", self)) def tan(self) : return H2OFrame(expr=ExprNode("tan", self)) def acos(self) : return H2OFrame(expr=ExprNode("acos", self)) def asin(self) : return H2OFrame(expr=ExprNode("asin", self)) def atan(self) : return H2OFrame(expr=ExprNode("atan", self)) def cosh(self) : return H2OFrame(expr=ExprNode("cosh", self)) def sinh(self) : return H2OFrame(expr=ExprNode("sinh", self)) def tanh(self) : return H2OFrame(expr=ExprNode("tanh", self)) def acosh(self) : return H2OFrame(expr=ExprNode("acosh", self)) def asinh(self) : return H2OFrame(expr=ExprNode("asinh", self)) def atanh(self) : return H2OFrame(expr=ExprNode("atanh", self)) def cospi(self) : return H2OFrame(expr=ExprNode("cospi", self)) def sinpi(self) : return H2OFrame(expr=ExprNode("sinpi", self)) def tanpi(self) : return H2OFrame(expr=ExprNode("tanpi", self)) def abs(self) : return H2OFrame(expr=ExprNode("abs", self)) def sign(self) : return H2OFrame(expr=ExprNode("sign", self)) def sqrt(self) : return H2OFrame(expr=ExprNode("sqrt", self)) def trunc(self) : return H2OFrame(expr=ExprNode("trunc", self)) def ceil(self) : return H2OFrame(expr=ExprNode("ceiling", self)) def floor(self) : return H2OFrame(expr=ExprNode("floor", self)) def log(self) : return H2OFrame(expr=ExprNode("log", self)) def log10(self) : return H2OFrame(expr=ExprNode("log10", self)) def log1p(self) : return H2OFrame(expr=ExprNode("log1p", self)) def log2(self) : return H2OFrame(expr=ExprNode("log2", self)) def exp(self) : return H2OFrame(expr=ExprNode("exp", self)) def expm1(self) : return H2OFrame(expr=ExprNode("expm1", self)) def gamma(self) : return H2OFrame(expr=ExprNode("gamma", self)) def lgamma(self) : return H2OFrame(expr=ExprNode("lgamma", self)) def digamma(self) : return H2OFrame(expr=ExprNode("digamma", self)) def trigamma(self): return H2OFrame(expr=ExprNode("trigamma", self)) @staticmethod def mktime(year=1970,month=0,day=0,hour=0,minute=0,second=0,msec=0): """ All units are zero-based (including months and days). Missing year is 1970. :return: Returns msec since the Epoch. """ return H2OFrame(expr=ExprNode("mktime", year,month,day,hour,minute,second,msec))._frame() def col_names(self): """ Retrieve the column names (one name per H2OVec) for this H2OFrame. :return: A character list[] of column names. """ self._eager() return self._col_names def sd(self, na_rm=False): """ :return: Standard deviation of the H2OVec elements. """ return H2OFrame(expr=ExprNode("sd", self,na_rm))._scalar() def names(self): """ Retrieve the column names (one name per H2OVec) for this H2OFrame. :return: A character list[] of column names. """ self._eager() return self.col_names() def nrow(self): """ Get the number of rows in this H2OFrame. :return: The number of rows in this dataset. """ self._eager() return self._nrows def ncol(self): """ Get the number of columns in this H2OFrame. :return: The number of columns in this H2OFrame. """ self._eager() return self._ncols def filterNACols(self, frac=0.2): """ Filter columns with prportion of NAs >= frac. :param frac: Fraction of NAs in the column. :return: A list of column indices. """ return H2OFrame(expr=ExprNode("filterNACols", self, frac))._frame() def dim(self): """ Get the number of rows and columns in the H2OFrame. :return: The number of rows and columns in the H2OFrame as a list [rows, cols]. """ return [self.nrow(), self.ncol()] def unique(self): """ Extract the unique values in the column. :return: A new H2OFrame of just the unique values in the column. """ return H2OFrame(expr=ExprNode("unique", self))._frame() def show(self): self.head(rows=10,cols=sys.maxint,show=True) # all columns def head(self, rows=10, cols=200, show=False, **kwargs): """ Analgous to R's `head` call on a data.frame. Display a digestible chunk of the H2OFrame starting from the beginning. :param rows: Number of rows to display. :param cols: Number of columns to display. :param show: Display the output. :param kwargs: Extra arguments passed from other methods. :return: None """ self._eager() nrows = min(self.nrow(), rows) ncols = min(self.ncol(), cols) colnames = self.names()[0:ncols] head = self[0:10,0:ncols] res = head.as_data_frame(False)[1:] if show: print "First {} rows and first {} columns: ".format(nrows, ncols) h2o.H2ODisplay(res,colnames) return head def tail(self, rows=10, cols=200, show=False, **kwargs): """ Analgous to R's `tail` call on a data.frame. Display a digestible chunk of the H2OFrame starting from the end. :param rows: Number of rows to display. :param cols: Number of columns to display. :param kwargs: Extra arguments passed from other methods. :return: None """ self._eager() nrows = min(self.nrow(), rows) ncols = min(self.ncol(), cols) start_idx = max(self.nrow()-nrows,0) tail = self[start_idx:(start_idx+nrows),:] res = tail.as_data_frame(False) colnames = res.pop(0) if show: print "Last {} rows and first {} columns: ".format(nrows,ncols) h2o.H2ODisplay(res,colnames) return tail def levels(self, col=None): """ Get the factor levels for this frame and the specified column index. :param col: A column index in this H2OFrame. :return: a list of strings that are the factor levels for the column. """ if self.ncol()==1 or col is None: lol=h2o.as_list(H2OFrame(expr=ExprNode("levels", self))._frame(), False)[1:] levels=[level for l in lol for level in l] if self.ncol()==1 else lol elif col is not None: lol=h2o.as_list(H2OFrame(expr=ExprNode("levels", ExprNode("[", self, None,col)))._frame(),False)[1:] levels=[level for l in lol for level in l] else: levels=None return None if levels is None or levels==[] else levels def nlevels(self, col=None): """ Get the number of factor levels for this frame and the specified column index. :param col: A column index in this H2OFrame. :return: an integer. """ nlevels = self.levels(col=col) return len(nlevels) if nlevels else 0 def setLevel(self, level): """ A method to set all column values to one of the levels. :param level: The level at which the column will be set (a string) :return: An H2OFrame with all entries set to the desired level """ return H2OFrame(expr=ExprNode("setLevel", self, level))._frame() def setLevels(self, levels): """ Works on a single categorical vector. New domains must be aligned with the old domains. This call has SIDE EFFECTS and mutates the column in place (does not make a copy). :param level: The level at which the column will be set (a string) :param x: A single categorical column. :param levels: A list of strings specifying the new levels. The number of new levels must match the number of old levels. :return: None """ h2o.rapids(ExprNode("setDomain", self, levels)._eager()) self._update() return self def setNames(self,names): """ Change the column names to `names`. :param names: A list of strings equal to the number of columns in the H2OFrame. :return: None. Rename the column names in this H2OFrame. """ h2o.rapids(ExprNode("colnames=", self, range(self.ncol()), names)._eager()) self._update() return self def setName(self,col=None,name=None): """ Set the name of the column at the specified index. :param col: Index of the column whose name is to be set. :param name: The new name of the column to set :return: the input frame """ if not isinstance(col, int) and self.ncol() > 1: raise ValueError("`col` must be an index. Got: " + str(col)) if self.ncol() == 1: col = 0 h2o.rapids(ExprNode("colnames=", self, col, name)._eager()) self._update() return self def describe(self): """ Generate an in-depth description of this H2OFrame. The description is a tabular print of the type, min, max, sigma, number of zeros, and number of missing elements for each H2OVec in this H2OFrame. :return: None (print to stdout) """ self._eager() thousands_sep = h2o.H2ODisplay.THOUSANDS print "Rows:", thousands_sep.format(self._nrows), "Cols:", thousands_sep.format(self._ncols) chunk_dist_sum = h2o.frame(self._id)["frames"][0] dist_summary = chunk_dist_sum["distribution_summary"] chunk_summary = chunk_dist_sum["chunk_summary"] chunk_summary.show() dist_summary.show() self.summary() def summary(self): """ Generate summary of the frame on a per-Vec basis. :return: None """ self._eager() fr_sum = h2o.H2OConnection.get_json("Frames/" + urllib.quote(self._id) + "/summary")["frames"][0] type = ["type"] mins = ["mins"] mean = ["mean"] maxs = ["maxs"] sigma= ["sigma"] zeros= ["zero_count"] miss = ["missing_count"] for v in fr_sum["columns"]: type.append(v["type"]) mins.append(v["mins"][0] if v is not None else v["mins"]) mean.append(v["mean"]) maxs.append(v["maxs"][0] if v is not None else v["maxs"]) sigma.append(v["sigma"]) zeros.append(v["zero_count"]) miss.append(v["missing_count"]) table = [type,mins,maxs,sigma,zeros,miss] headers = self._col_names h2o.H2ODisplay(table, [""] + headers, "Column-by-Column Summary") def __repr__(self): if sys.gettrace() is None: self.show() return "" def as_date(self,format): """ Return the column with all elements converted to millis since the epoch. :param format: The date time format string :return: H2OFrame """ return H2OFrame(expr=ExprNode("as.Date",self,format)) def cumsum(self): """ :return: The cumulative sum over the column. """ return H2OFrame(expr=ExprNode("cumsum",self)) def cumprod(self): """ :return: The cumulative product over the column. """ return H2OFrame(expr=ExprNode("cumprod",self)) def cummin(self): """ :return: The cumulative min over the column. """ return H2OFrame(expr=ExprNode("cummin",self)) def cummax(self): """ :return: The cumulative max over the column. """ return H2OFrame(expr=ExprNode("cummax",self)) def prod(self,na_rm=False): """ :return: The product of the column. """ return H2OFrame(expr=ExprNode("prod",self,na_rm))._scalar() def any(self,na_rm=False): """ :return: True if any element is True in the column. """ return H2OFrame(expr=ExprNode("any",self,na_rm))._scalar() def all(self): """ :return: True if every element is True in the column. """ return H2OFrame(expr=ExprNode("all",self,False))._scalar() def isnumeric(self): """ :return: True if the column is numeric, otherwise return False """ return H2OFrame(expr=ExprNode("is.numeric",self))._scalar() def isstring(self): """ :return: True if the column is a string column, otherwise False (same as ischaracter) """ return H2OFrame(expr=ExprNode("is.character",self))._scalar() def ischaracter(self): """ :return: True if the column is a character column, otherwise False (same as isstring) """ return self.isstring() def remove_vecs(self, cols): """ :param cols: Drop these columns. :return: A frame with the columns dropped. """ self._eager() is_char = all([isinstance(i,(unicode,str)) for i in cols]) if is_char: cols = [self._find_idx(col) for col in cols] cols = sorted(cols) return H2OFrame(expr=ExprNode("removeVecs",self,cols))._frame() def structure(self): """ Similar to R's str method: Compactly Display the Structure of this H2OFrame instance. :return: None """ df = self.head().as_data_frame(use_pandas=False) nr = self.nrow() nc = len(df[0]) cn = df.pop(0) width = max([len(c) for c in cn]) isfactor = [c.isfactor() for c in self] numlevels = [self.nlevels(i) for i in range(nc)] lvls = self.levels() print "H2OFrame '{}': \t {} obs. of {} variables(s)".format(self._id,nr,nc) for i in range(nc): print "$ {} {}: ".format(cn[i], ' '*(width-max(0,len(cn[i])))), if isfactor[i]: nl = numlevels[i] print "Factor w/ {} level(s) {},..: ".format(nl, '"' + '","'.join(zip(*lvls)[i]) + '"'), print " ".join(it[0] for it in h2o.as_list(self[:10,i].match(list(zip(*lvls)[i])), False)[1:]), print "..." else: print "num {} ...".format(" ".join(it[0] for it in h2o.as_list(self[:10,i], False)[1:])) def as_data_frame(self, use_pandas=True): """ Obtain the dataset as a python-local object (pandas frame if possible, list otherwise) :param use_pandas: A flag specifying whether or not to attempt to coerce to Pandas. :return: A local python object containing this H2OFrame instance's data.s """ self._eager() url = 'http://' + h2o.H2OConnection.ip() + ':' + str(h2o.H2OConnection.port()) + "/3/DownloadDataset?frame_id=" + urllib.quote(self._id) + "&hex_string=false" response = urllib2.urlopen(url) if h2o.can_use_pandas() and use_pandas: import pandas return pandas.read_csv(response, low_memory=False) else: cr = csv.reader(response) rows = [] for row in cr: rows.append([''] if row == [] else row) return rows # Find a named H2OVec and return the zero-based index for it. Error is name is missing def _find_idx(self,name): for i,v in enumerate(self._col_names): if name == v: return i raise ValueError("Name " + name + " not in Frame") def index(self,name): self._eager() return self._find_idx(name) def __getitem__(self, item): """ Frame slicing. Supports R-like row and column slicing. Examples: fr[0:5,:] # first 5 rows, all columns fr[fr[0] > 1, :] # all rows greater than 1 in the first column, all columns fr[[1,5,6]] # columns 1, 5, and 6 fr[0:50, [1,2,3]] # first 50 rows, columns 1,2, and 3 :param item: A tuple, a list, a string, or an int. If a tuple, then this indicates both row and column selection. The tuple must be exactly length 2. If a list, then this indicates column selection. If a int, the this indicates a single column to be retrieved at the index. If a string, then slice on the column with this name. :return: An H2OFrame. """ if isinstance(item, (int,str,list,slice)): return H2OFrame(expr=ExprNode("[", self, None, item)) # just columns elif isinstance(item, H2OFrame): return H2OFrame(expr=ExprNode("[",self,item,None)) elif isinstance(item, tuple): rows = item[0] cols = item[1] allrows = False allcols = False if isinstance(cols, slice): allcols = all([a is None for a in [cols.start,cols.step,cols.stop]]) if isinstance(rows, slice): allrows = all([a is None for a in [rows.start,rows.step,rows.stop]]) if allrows and allcols: return self # fr[:,:] -> all rows and columns.. return self if allrows: return H2OFrame(expr=ExprNode("[",self,None,item[1])) # fr[:,cols] -> really just a column slice if allcols: return H2OFrame(expr=ExprNode("[",self,item[0],None)) # fr[rows,:] -> really just a row slices if isinstance(item[0], (str,unicode,int)) and isinstance(item[1],(str,unicode,int)): return H2OFrame(expr=ExprNode("[", self, item[0], item[1]))._scalar() return H2OFrame(expr=ExprNode("[",self,item[0],item[1])) # return H2OFrame(expr=ExprNode("[", ExprNode("[",self,None,item[1]),item[0],None))._scalar() # return H2OFrame(expr=ExprNode("[", ExprNode("[", self, None, item[1]), item[0], None)) def __setitem__(self, b, c): """ Replace a column in an H2OFrame. :param b: A 0-based index or a column name. :param c: The vector that 'b' is replaced with. :return: Returns this H2OFrame. """ update_index=-1 if isinstance(b, (str,unicode)): update_index=self.col_names().index(b) if b in self.col_names() else self._ncols elif isinstance(b, int): update_index=b lhs = ExprNode("[", self, b, None) if isinstance(b,H2OFrame) else ExprNode("[", self, None, update_index) rhs = c._frame() if isinstance(c,H2OFrame) else c col_name = b if (update_index==self._ncols and isinstance(b, (str, unicode))) else ( c._col_names[0] if isinstance(c, H2OFrame) else "" ) sb = ExprNode(",", ExprNode("=",lhs,rhs), ExprNode("colnames=",self,update_index,col_name))._eager() if update_index >= self.ncol() else ExprNode("=",lhs,rhs)._eager() h2o.rapids(ExprNode._collapse_sb(sb)) self._update() def __int__(self): return int(self._scalar()) def __float__(self): return self._scalar() def __del__(self): if not self._keep and self._computed: h2o.remove(self) def keep(self): self._keep = True def drop(self, i): """ Returns a Frame with the column at index i dropped. :param i: Column to drop :return: Returns an H2OFrame """ if isinstance(i, (unicode,str)): i = self._find_idx(i) return H2OFrame(expr=ExprNode("[", self, None,-(i+1)))._frame() def __len__(self): """ :return: Number of columns in this H2OFrame """ return self.ncol() def quantile(self, prob=None, combine_method="interpolate"): """ Compute quantiles over a given H2OFrame. :param prob: A list of probabilties, default is [0.01,0.1,0.25,0.333,0.5,0.667,0.75,0.9,0.99]. You may provide any sequence of any length. :param combine_method: For even samples, how to combine quantiles. Should be one of ["interpolate", "average", "low", "hi"] :return: an H2OFrame containing the quantiles and probabilities. """ if len(self) == 0: return self if not prob: prob=[0.01,0.1,0.25,0.333,0.5,0.667,0.75,0.9,0.99] return H2OFrame(expr=ExprNode("quantile",self,prob,combine_method))._frame() def cbind(self,data): """ :param data: H2OFrame or H2OVec to cbind to self :return: void """ return H2OFrame(expr=ExprNode("cbind", False, self, data)) def rbind(self, data): """ Combine H2O Datasets by Rows. Takes a sequence of H2O data sets and combines them by rows. :param data: an H2OFrame :return: self, with data appended (row-wise) """ if not isinstance(data, H2OFrame): raise ValueError("`data` must be an H2OFrame, but got {0}".format(type(data))) return H2OFrame(expr=ExprNode("rbind", self, data)) def split_frame(self, ratios=[0.75], destination_frames=""): """ Split a frame into distinct subsets of size determined by the given ratios. The number of subsets is always 1 more than the number of ratios given. :param data: The dataset to split. :param ratios: The fraction of rows for each split. :param destination_frames: names of the split frames :return: a list of frames """ j = h2o.H2OConnection.post_json("SplitFrame", dataset=self._id, ratios=ratios, destination_frames=destination_frames) h2o.H2OJob(j, "Split Frame").poll() return [h2o.get_frame(i["name"]) for i in j["destination_frames"]] # ddply in h2o def ddply(self,cols,fun): """ :param cols: Column names used to control grouping :param fun: Function to execute on each group. Right now limited to textual Rapids expression :return: New frame with 1 row per-group, of results from 'fun' """ return H2OFrame(expr=ExprNode("ddply", self, cols, fun))._frame() def group_by(self,cols,aggregates,order_by=None): """ GroupBy :param cols: The columns to group on. :param a: A dictionary of aggregates having the following shape: \ {"colname":[aggregate, column, naMethod]}\ e.g.: {"bikes":["count", 0, "all"]}\ The naMethod is one of "all", "ignore", or "rm", which specifies how to handle NAs that appear in columns that are being aggregated. "all" - include NAs "rm" - exclude NAs "ignore" - ignore NAs in aggregates, but count them (e.g. in denominators for mean, var, sd, etc.) :param order_by: A list of column names or indices on which to order the results. :return: The group by frame. """ aggs = [] for k in aggregates: aggs += (aggregates[k] + [str(k)]) aggs = h2o.ExprNode("agg", *aggs) return H2OFrame(expr=ExprNode("GB", self,cols,aggs,order_by))._frame() def impute(self,column,method="mean",combine_method="interpolate",by=None,inplace=True): """ Impute a column in this H2OFrame. :param column: The column to impute :param method: How to compute the imputation value. :param combine_method: For even samples and method="median", how to combine quantiles. :param by: Columns to group-by for computing imputation value per groups of columns. :param inplace: Impute inplace? :return: the imputed frame. """ if isinstance(column, (str, unicode)): column = self._find_idx(column) if isinstance(by, (str, unicode)): by = self._find_idx(by) return H2OFrame(expr=ExprNode("h2o.impute", self, column, method, combine_method, by, inplace))._frame() def merge(self, other, allLeft=False, allRite=False): """ Merge two datasets based on common column names :param other: Other dataset to merge. Must have at least one column in common with self, and all columns in common are used as the merge key. If you want to use only a subset of the columns in common, rename the other columns so the columns are unique in the merged result. :param allLeft: If true, include all rows from the left/self frame :param allRite: If true, include all rows from the right/other frame :return: Original self frame enhanced with merged columns and rows """ return H2OFrame(expr=ExprNode("merge", self, other, allLeft, allRite))._frame() def insert_missing_values(self, fraction=0.1, seed=None): """ Inserting Missing Values to an H2OFrame *This is primarily used for testing*. Randomly replaces a user-specified fraction of entries in a H2O dataset with missing values. WARNING: This will modify the original dataset. Unless this is intended, this function should only be called on a subset of the original. :param fraction: A number between 0 and 1 indicating the fraction of entries to replace with missing. :param seed: A random number used to select which entries to replace with missing values. Default of seed = -1 will automatically generate a seed in H2O. :return: H2OFrame with missing values inserted """ self._eager() kwargs = {} kwargs['dataset'] = self._id kwargs['fraction'] = fraction if seed is not None: kwargs['seed'] = seed job = {} job['job'] = h2o.H2OConnection.post_json("MissingInserter", **kwargs) h2o.H2OJob(job, job_type=("Insert Missing Values")).poll() return self # generic reducers (min, max, sum, var) def min(self): """ :return: The minimum value of all frame entries """ return H2OFrame(expr=ExprNode("min", self))._scalar() def max(self): """ :return: The maximum value of all frame entries """ return H2OFrame(expr=ExprNode("max", self))._scalar() def sum(self): """ :return: The sum of all frame entries """ return H2OFrame(expr=ExprNode("sum", self))._scalar() def mean(self,na_rm=False): """ :param na_rm: True or False to remove NAs from computation. :return: The mean of the column. """ return H2OFrame(expr=ExprNode("mean", self, 0, na_rm))._scalar() def median(self): """ :return: Median of this column. """ return H2OFrame(expr=ExprNode("median", self))._scalar() def var(self,y=None,na_rm=False,use="everything"): """ :param na_rm: True or False to remove NAs from computation. :param use: One of "everything", "complete.obs", or "all.obs". :return: The covariance matrix of the columns in this H2OFrame. """ return H2OFrame(expr=ExprNode("var", self,y,na_rm,use)) def asfactor(self): """ :return: A lazy Expr representing this vec converted to a factor """ return H2OFrame(expr=ExprNode("as.factor",self)) def isfactor(self): """ :return: A lazy Expr representing the truth of whether or not this vec is a factor. """ return H2OFrame(expr=ExprNode("is.factor", self))._scalar() def anyfactor(self): """ :return: Whether or not the frame has any factor columns """ return H2OFrame(expr=ExprNode("any.factor", self))._scalar() def transpose(self): """ :return: The transpose of the H2OFrame. """ return H2OFrame(expr=ExprNode("t", self)) def strsplit(self, pattern): """ Split the strings in the target column on the given pattern :return: H2OFrame """ return H2OFrame(expr=ExprNode("strsplit", self, pattern)) def trim(self): """ Trim the edge-spaces in a column of strings (only operates on frame with one column) :return: H2OFrame """ return H2OFrame(expr=ExprNode("trim", self)) def table(self, data2=None): """ :return: a frame of the counts at each combination of factor levels """ return H2OFrame(expr=ExprNode("table",self,data2)) def hist(self, breaks="Sturges", plot=True, **kwargs): """ Compute a histogram over a numeric column. If breaks=="FD", the MAD is used over the IQR in computing bin width. :param breaks: breaks Can be one of the following: A string: "Sturges", "Rice", "sqrt", "Doane", "FD", "Scott." A single number for the number of breaks splitting the range of the vec into number of breaks bins of equal width. Or, A vector of numbers giving the split points, e.g., c(-50,213.2123,9324834) :param plot: A logical value indicating whether or not a plot should be generated (default is TRUE). :return: if plot is True, then return None, else, an H2OFrame with these columns: breaks, counts, mids_true, mids, and density """ frame = H2OFrame(expr=ExprNode("hist", self, breaks))._frame() total = frame["counts"].sum() densities = [(frame["counts"][i,:]/total)._scalar()*(1/(frame["breaks"][i,:]._scalar()-frame["breaks"][i-1,:]._scalar())) for i in range(1,frame["counts"].nrow())] densities.insert(0,0) densities_frame = H2OFrame(python_obj=[[d] for d in densities]) densities_frame.setNames(["density"]) frame = frame.cbind(densities_frame) if plot: try: imp.find_module('matplotlib') import matplotlib if 'server' in kwargs.keys() and kwargs['server']: matplotlib.use('Agg', warn=False) import matplotlib.pyplot as plt except ImportError: print "matplotlib is required to make the histogram plot. Set `plot` to False, if a plot is not desired." return lower = float(frame["breaks"][0,:]) clist = h2o.as_list(frame["counts"], use_pandas=False) clist.pop(0) clist.pop(0) mlist = h2o.as_list(frame["mids"], use_pandas=False) mlist.pop(0) mlist.pop(0) counts = [float(c[0]) for c in clist] counts.insert(0,0) mids = [float(m[0]) for m in mlist] mids.insert(0,lower) plt.xlabel(self._col_names[0]) plt.ylabel('Frequency') plt.title('Histogram of {0}'.format(self._col_names[0])) plt.bar(mids, counts) if not ('server' in kwargs.keys() and kwargs['server']): plt.show() else: return frame def sub(self, pattern, replacement, ignore_case=False): """ sub and gsub perform replacement of the first and all matches respectively. Of note, mutates the frame. :return: H2OFrame """ return H2OFrame(expr=ExprNode("sub",pattern,replacement,self,ignore_case)) def gsub(self, pattern, replacement, ignore_case=False): """ sub and gsub perform replacement of the first and all matches respectively. Of note, mutates the frame. :return: H2OFrame """ return H2OFrame(expr=ExprNode("gsub", pattern, replacement, self, ignore_case)) def interaction(self, factors, pairwise, max_factors, min_occurrence, destination_frame=None): """ Categorical Interaction Feature Creation in H2O. Creates a frame in H2O with n-th order interaction features between categorical columns, as specified by the user. :param factors: factors Factor columns (either indices or column names). :param pairwise: Whether to create pairwise interactions between factors (otherwise create one higher-order interaction). Only applicable if there are 3 or more factors. :param max_factors: Max. number of factor levels in pair-wise interaction terms (if enforced, one extra catch-all factor will be made) :param min_occurrence: Min. occurrence threshold for factor levels in pair-wise interaction terms :param destination_frame: A string indicating the destination key. If empty, this will be auto-generated by H2O. :return: H2OFrame """ return h2o.interaction(data=self, factors=factors, pairwise=pairwise, max_factors=max_factors, min_occurrence=min_occurrence, destination_frame=destination_frame) def toupper(self): """ Translate characters from lower to upper case for a particular column Of note, mutates the frame. :return: H2OFrame """ return H2OFrame(expr=ExprNode("toupper", self)) def tolower(self): """ Translate characters from upper to lower case for a particular column Of note, mutates the frame. :return: H2OFrame """ return H2OFrame(expr=ExprNode("tolower", self)) def rep_len(self, length_out): """ Replicates the values in `data` in the H2O backend :param length_out: the number of columns of the resulting H2OFrame :return: an H2OFrame """ return H2OFrame(expr=ExprNode("rep_len", self, length_out)) def scale(self, center=True, scale=True): """ Centers and/or scales the columns of the H2OFrame :return: H2OFrame :param center: either a ‘logical’ value or numeric list of length equal to the number of columns of the H2OFrame :param scale: either a ‘logical’ value or numeric list of length equal to the number of columns of H2OFrame. """ return H2OFrame(expr=ExprNode("scale", self, center, scale)) def signif(self, digits=6): """ :return: The rounded values in the H2OFrame to the specified number of significant digits. """ return H2OFrame(expr=ExprNode("signif", self, digits)) def round(self, digits=0): """ :return: The rounded values in the H2OFrame to the specified number of decimal digits. """ return H2OFrame(expr=ExprNode("round", self, digits)) def asnumeric(self): """ :return: A frame with factor columns converted to numbers (numeric columns untouched). """ return H2OFrame(expr=ExprNode("as.numeric", self)) def ascharacter(self): """ :return: A lazy Expr representing this vec converted to characters """ return H2OFrame(expr=ExprNode("as.character", self)) def na_omit(self): """ :return: Removes rows with NAs """ return H2OFrame(expr=ExprNode("na.omit", self))._frame() def isna(self): """ :return: Returns a new boolean H2OVec. """ return H2OFrame(expr=ExprNode("is.na", self)) def year(self): """ :return: Returns a new year column from a msec-since-Epoch column """ return H2OFrame(expr=ExprNode("year", self)) def month(self): """ :return: Returns a new month column from a msec-since-Epoch column """ return H2OFrame(expr=ExprNode("month", self)) def week(self): """ :return: Returns a new week column from a msec-since-Epoch column """ return H2OFrame(expr=ExprNode("week", self)) def day(self): """ :return: Returns a new day column from a msec-since-Epoch column """ return H2OFrame(expr=ExprNode("day", self)) def dayOfWeek(self): """ :return: Returns a new Day-of-Week column from a msec-since-Epoch column """ return H2OFrame(expr=ExprNode("dayOfWeek", self)) def hour(self): """ :return: Returns a new Hour-of-Day column from a msec-since-Epoch column """ return H2OFrame(expr=ExprNode("hour", self)) def runif(self, seed=None): """ :param seed: A random seed. If None, then one will be generated. :return: A new H2OVec filled with doubles sampled uniformly from [0,1). """ return H2OFrame(expr=ExprNode("h2o.runif", self, -1 if seed is None else seed)) def match(self, table, nomatch=0): """ Makes a vector of the positions of (first) matches of its first argument in its second. :return: bit H2OVec """ return H2OFrame(expr=ExprNode("match", self, table, nomatch, None)) def cut(self, breaks, labels=None, include_lowest=False, right=True, dig_lab=3): """ Cut a numeric vector into factor "buckets". Similar to R's cut method. :param breaks: The cut points in the numeric vector (must span the range of the col.) :param labels: Factor labels, defaults to set notation of intervals defined by breaks.s :param include_lowest: By default, cuts are defined as (lo,hi]. If True, get [lo,hi]. :param right: Include the high value: (lo,hi]. If False, get (lo,hi). :param dig_lab: Number of digits following the decimal point to consider. :return: A factor column. """ return H2OFrame(expr=ExprNode("cut",self,breaks,labels,include_lowest,right,dig_lab)) # flow-coding result methods def _scalar(self): res = self.as_data_frame(False) if res[1] == []: return float("nan") res = res[1][0] if res == "TRUE": return True if res == "FALSE":return False try: return float(res) except: return res def _frame(self): # force an eval on the frame and return it self._eager() return self ##### DO NOT ADD METHODS BELOW THIS LINE (pretty please) ##### def _eager(self, pytmp=True): if not self._computed: # top-level call to execute all subparts of self._ast sb = self._ast._eager() if pytmp: h2o.rapids(ExprNode._collapse_sb(sb), self._id) sb = ["%", self._id," "] self._update() # fill out _nrows, _ncols, _col_names, _computed return sb def _do_it(self,sb): # this method is only ever called from ExprNode._do_it # it's the "long" way 'round the mutual recursion from ExprNode to H2OFrame # # Here's a diagram that illustrates the call order: # # H2OFrame: ExprNode: # _eager ----------------> _eager # # ^^ ^^ || # || || \/ # # _do_it <---------------- _do_it # # the "long" path: # pending exprs in DAG with exterior refs must be saved (refs >= magic count) # if self._computed: sb += ['%',self._id+" "] else: sb += self._eager(True) if (len(gc.get_referrers(self)) >= H2OFrame.MAGIC_REF_COUNT) else self._eager(False) def _update(self): res = h2o.frame(self._id)["frames"][0] # TODO: exclude here? self._nrows = res["rows"] self._ncols = len(res["columns"]) self._col_names = [c["label"] for c in res["columns"]] self._computed=True self._ast=None #### DO NOT ADD METHODS HERE!!! #### # private static methods def _py_tmp_key(): return unicode("py" + str(uuid.uuid4())) def _gen_header(cols): return ["C" + str(c) for c in range(1, cols + 1, 1)] def _check_lists_of_lists(python_obj): # all items in the list must be a list too lol_all = all(isinstance(l, (tuple, list)) for l in python_obj) # All items in the list must be a list! if not lol_all: raise ValueError("`python_obj` is a mixture of nested lists and other types.") # in fact, we must have a list of flat lists! for l in python_obj: if any(isinstance(ll, (tuple, list)) for ll in l): raise ValueError("`python_obj` is not a list of flat lists!") def _handle_python_lists(python_obj): cols = len(python_obj) # cols will be len(python_obj) if not a list of lists lol = _is_list_of_lists(python_obj) # do we have a list of lists: [[...], ..., [...]] ? if lol: _check_lists_of_lists(python_obj) # must be a list of flat lists, raise ValueError if not # have list of lists, each list is a row # length of the longest list is the number of columns cols = max([len(l) for l in python_obj]) # create the header header = _gen_header(cols) # shape up the data for csv.DictWriter data_to_write = [dict(zip(header, row)) for row in python_obj] if lol else [dict(zip(header, python_obj))] return header, data_to_write def _is_list(l) : return isinstance(l, (tuple, list)) def _is_str_list(l): return isinstance(l, (tuple, list)) and all([isinstance(i,(str,unicode)) for i in l]) def _is_num_list(l): return isinstance(l, (tuple, list)) and all([isinstance(i,(float,int )) for i in l]) def _is_list_of_lists(o): return any(isinstance(l, (list, tuple)) for l in o) def _handle_numpy_array(python_obj): return _handle_python_lists(python_obj=python_obj.tolist()) def _handle_pandas_data_frame(python_obj): return _handle_numpy_array(python_obj=python_obj.as_matrix()) def _handle_python_dicts(python_obj): header = python_obj.keys() is_valid = all([re.match(r'^[a-zA-Z_][a-zA-Z0-9_.]*$', col) for col in header]) # is this a valid header? if not is_valid: raise ValueError("Did not get a valid set of column names! Must match the regular expression: ^[a-zA-Z_][a-zA-Z0-9_.]*$ ") for k in python_obj: # check that each value entry is a flat list/tuple v = python_obj[k] if isinstance(v, (tuple, list)): # if value is a tuple/list, then it must be flat if _is_list_of_lists(v): raise ValueError("Values in the dictionary must be flattened!") rows = map(list, itertools.izip_longest(*python_obj.values())) data_to_write = [dict(zip(header, row)) for row in rows] return header, data_to_write
apache-2.0
Dih5/mcareader
mcareader.py
1
9128
"""A minimal python interface to read Amptek's mca files""" import re import sys import warnings import matplotlib.pyplot as plt import numpy as np from scipy import interpolate from scipy.stats import linregress from io import open # python 2 compatibility __author__ = 'Dih5' __version__ = "0.4.0" def _str_to_array(s, sep=" "): """ Convert a string to a numpy array Args: s (str): The string sep (str): The separator in the string. Returns: (`numpy.ndarray`): The 2D array with the data. """ line_len = len(np.fromstring(s[:s.find('\n')], sep=sep)) return np.reshape(np.fromstring(s, sep=sep), (-1, line_len)) class Mca: """ A mca file. Attributes: raw(str): The text of the file. calibration_points (`numpy.ndarray`): The 2D array with the calibration data or None if there is no such information. """ def __init__(self, file, encoding='iso-8859-15', calibration=None): """ Load the content of a mca file. Args: file(str): The path to the file. encoding (str): The encoding to use to read the file. calibration (str or list): A path with a file used to read calibration or a 2D matrix describing it. """ with open(file, "r", encoding=encoding) as f: self.raw = f.read() if calibration is None: self.calibration_points = self.get_calibration_points() elif isinstance(calibration, str): self.calibration_points = Mca(calibration, encoding=encoding).get_calibration_points() else: self.calibration_points = np.asarray(calibration) if self.calibration_points is None: warnings.warn("Warning: no calibration data was found. Using channel number instead of energy") def get_section(self, section): """ Find the str representing a section in the MCA file. Args: section(str): The name of the section to search for. Returns: (str): The text of the section or "" if not found. """ m = re.match(r"(?:.*)(^<<%s>>$)(.*?)(?:<<.*>>)" % section, self.raw, re.DOTALL + re.MULTILINE) return m.group(2).strip() if m else "" def get_variable(self, variable): """ Find the str representing a variable in the MCA file. Args: variable(str): The name of the variable to search for. Returns: (str): The text of the value or "" if not found. """ # There are various patterns used in the file, depending on the section # Just try them all # Pattern 1: FOO - VALUE m = re.match(r"(?:.*)%s - (.*?)$" % variable, self.raw, re.DOTALL + re.MULTILINE) # Pattern 2: FOO=VALUE; EXPLANATION if not m: m = re.match(r"(?:.*)%s=(.*?);" % variable, self.raw, re.DOTALL + re.MULTILINE) # Pattern 3: FOO: VALUE if not m: m = re.match(r"(?:.*)%s: (.*?)$" % variable, self.raw, re.DOTALL + re.MULTILINE) return m.group(1).strip() if m else "" def get_calibration_points(self): """ Get the calibration points from the MCA file, regardless of the calibration parameter used to create the object. Returns: (`numpy.ndarray`): The 2D array with the data or None if there is no calibration data. """ cal = self.get_section("CALIBRATION") if not cal: return cal = cal[cal.find('\n') + 1:] # remove first line return _str_to_array(cal) def get_calibration_function(self, method=None): """ Get a calibration function from the file. Args: method(str): The method to use. Available methods include: * 'bestfit': A linear fit in the sense of least-squares (default). * 'interpolation': Use a linear interpolation. Returns: (`Callable`): A function mapping channel number to energy. Note the first channel is number 0. """ points = self.calibration_points if points is None: # User was already warned when the object was created. return np.vectorize(lambda x: x) info = sys.version_info if info[0] == 3 and info[1] < 4 or info[0] == 2 and info[1] < 7: # py2 < 2.7 or py3 < 3.4 extrapolation_support = False else: extrapolation_support = True if method is None: method = "bestfit" if method == "interpolation" and not extrapolation_support: warnings.warn("Warning: extrapolation not supported with active Python interpreter. Using best fit instead") method = "bestfit" if method == "interpolation": return interpolate.interp1d(points[:, 0], points[:, 1], fill_value="extrapolate") elif method == "bestfit": slope, intercept, _, _, _ = linregress(points[:, 0], points[:, 1]) return np.vectorize(lambda x: slope * x + intercept) else: raise ValueError("Unknown method: %s" % method) def get_points(self, calibration_method=None, trim_zeros=True, background=None): """ Get the points of the spectrum. Args: calibration_method (str): The method used for the calibration. See `get_calibration_function`. trim_zeros (bool): Whether to remove values with no counts. background (`Mca`): An spectrum describing a background to subtract from the returned points. The background is scaled using the REAL_TIME parameters. Returns: (tuple): tuple containing: x (List[float]): The list of x coordinates (mean bin energy). y (List[float]): The list of y coordinates (counts in each bin). """ f = self.get_calibration_function(method=calibration_method) yy = _str_to_array(self.get_section("DATA"))[:, 0] if background: background_yy = _str_to_array(background.get_section("DATA"))[:, 0] yy -= background_yy * (float(self.get_variable("REAL_TIME")) / float(background.get_variable("REAL_TIME"))) xx = f(range(len(yy))) if trim_zeros: yy = np.trim_zeros(yy, 'f') xx = xx[len(xx) - len(yy):] yy = np.trim_zeros(yy, 'b') removed_count = len(yy) - len(xx) if removed_count: # Then removed_count is negative xx = xx[:len(yy) - len(xx)] return xx, yy def get_counts(self, calibration_method=None, background=None): """ Get the number of counts in the spectrum. Args: calibration_method (str): The method used for the calibration. See `get_calibration_function`. background (`Mca`): An spectrum describing a background to subtract from the returned points. The background is scaled using the REAL_TIME parameters. Returns: (float): Number of counts in the spectrum. """ xx, yy = self.get_points(calibration_method=calibration_method, background=background) return sum(yy) def get_total_energy(self, calibration_method=None, background=None): """ Get the total energy in the spectrum. Args: calibration_method (str): The method used for the calibration. See `get_calibration_function`. background (`Mca`): An spectrum describing a background to subtract from the returned points. The background is scaled using the REAL_TIME parameters. Returns: (float): Total energy of counts in the spectrum, in the units set in the calibration. If there is no calibration available, a meaningless number is returned. """ xx, yy = self.get_points(calibration_method=calibration_method, background=background) return sum([x * y for x, y in zip(xx, yy)]) def plot(self, log_y=False, log_x=False, calibration_method=None, background=None): """ Show a plot of the spectrum. Args: log_y(bool): Whether the y-axis is in logarithmic scale. log_x(bool): Whether the x-axis is in logarithmic scale. calibration_method (str): The method used for the calibration. See `get_calibration_function`. background (`Mca`): An spectrum describing a background to subtract from the returned points. The background is scaled using the REAL_TIME parameters. """ xx, yy = self.get_points(calibration_method=calibration_method, background=background) if log_y and log_x: plt.loglog(xx, yy) elif log_y: plt.semilogy(xx, yy) elif log_x: plt.semilogx(xx, yy) else: plt.plot(xx, yy) plt.show()
lgpl-3.0
mwv/scikit-learn
examples/decomposition/plot_sparse_coding.py
247
3846
""" =========================================== Sparse coding with a precomputed dictionary =========================================== Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the :class:`sklearn.decomposition.SparseCoder` estimator. The Ricker (also known as Mexican hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates learning the dictionary to best fit your type of signals. The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same order of magnitude. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.decomposition import SparseCoder def ricker_function(resolution, center, width): """Discrete sub-sampled Ricker (Mexican hat) wavelet""" x = np.linspace(0, resolution - 1, resolution) x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4))) * (1 - ((x - center) ** 2 / width ** 2)) * np.exp((-(x - center) ** 2) / (2 * width ** 2))) return x def ricker_matrix(width, resolution, n_components): """Dictionary of Ricker (Mexican hat) wavelets""" centers = np.linspace(0, resolution - 1, n_components) D = np.empty((n_components, resolution)) for i, center in enumerate(centers): D[i] = ricker_function(resolution, center, width) D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis] return D resolution = 1024 subsampling = 3 # subsampling factor width = 100 n_components = resolution / subsampling # Compute a wavelet dictionary D_fixed = ricker_matrix(width=width, resolution=resolution, n_components=n_components) D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution, n_components=np.floor(n_components / 5)) for w in (10, 50, 100, 500, 1000))] # Generate a signal y = np.linspace(0, resolution - 1, resolution) first_quarter = y < resolution / 4 y[first_quarter] = 3. y[np.logical_not(first_quarter)] = -1. # List the different sparse coding methods in the following format: # (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs) estimators = [('OMP', 'omp', None, 15), ('Lasso', 'lasso_cd', 2, None), ] pl.figure(figsize=(13, 6)) for subplot, (D, title) in enumerate(zip((D_fixed, D_multi), ('fixed width', 'multiple widths'))): pl.subplot(1, 2, subplot + 1) pl.title('Sparse coding against %s dictionary' % title) pl.plot(y, ls='dotted', label='Original signal') # Do a wavelet approximation for title, algo, alpha, n_nonzero in estimators: coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero, transform_alpha=alpha, transform_algorithm=algo) x = coder.transform(y) density = len(np.flatnonzero(x)) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='%s: %s nonzero coefs,\n%.2f error' % (title, density, squared_error)) # Soft thresholding debiasing coder = SparseCoder(dictionary=D, transform_algorithm='threshold', transform_alpha=20) x = coder.transform(y) _, idx = np.where(x != 0) x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error' % (len(idx), squared_error)) pl.axis('tight') pl.legend() pl.subplots_adjust(.04, .07, .97, .90, .09, .2) pl.show()
bsd-3-clause
ctralie/SlidingWindowVideoTDA
DoublePendulum.py
1
2021
# Python Example # Double pendulum formula translated from the C code at # http://www.physics.usyd.edu.au/~wheat/dpend_html/solve_dpend.c from numpy import sin, cos import numpy as np import matplotlib.pyplot as plt import scipy.integrate as integrate import matplotlib.animation as animation G = 9.8 # acceleration due to gravity, in m/s^2 L1 = 1.0 # length of pendulum 1 in m L2 = 1.0 # length of pendulum 2 in m M1 = 1.0 # mass of pendulum 1 in kg M2 = 1.0 # mass of pendulum 2 in kg def derivs(state, t): dydx = np.zeros_like(state) dydx[0] = state[1] del_ = state[2] - state[0] den1 = (M1 + M2)*L1 - M2*L1*cos(del_)*cos(del_) dydx[1] = (M2*L1*state[1]*state[1]*sin(del_)*cos(del_) + M2*G*sin(state[2])*cos(del_) + M2*L2*state[3]*state[3]*sin(del_) - (M1 + M2)*G*sin(state[0]))/den1 dydx[2] = state[3] den2 = (L2/L1)*den1 dydx[3] = (-M2*L2*state[3]*state[3]*sin(del_)*cos(del_) + (M1 + M2)*G*sin(state[0])*cos(del_) - (M1 + M2)*L1*state[1]*state[1]*sin(del_) - (M1 + M2)*G*sin(state[2]))/den2 return dydx # create a time array from 0..100 sampled at 0.05 second steps dt = 0.05 t = np.arange(0.0, 20, dt) # th1 and th2 are the initial angles (degrees) # w10 and w20 are the initial angular velocities (degrees per second) th1 = 120.0 w1 = 0.0 th2 = -10.0 w2 = 0.0 # initial state state = np.radians([th1, w1, th2, w2]) # integrate your ODE using scipy.integrate. y = integrate.odeint(derivs, state, t) x1 = L1*sin(y[:, 0]) y1 = -L1*cos(y[:, 0]) x2 = L2*sin(y[:, 2]) + x1 y2 = -L2*cos(y[:, 2]) + y1 fig = plt.figure() ax = fig.add_subplot(111, autoscale_on=False, xlim=(-2, 2), ylim=(-2, 2)) ax.grid() line, = ax.plot([], [], 'o-', lw=40) time_template = 'time = %.1fs' time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes) plt.axis('off') for i in range(len(t)): line.set_data([0, x1[i], x2[i]], [0, y1[i], y2[i]]) plt.savefig("DoublePendulum/%i.png"%i)
apache-2.0
hawkw/sqlviz
sqlviz.py
1
4672
#! /usr/bin/env python3 """SQLViz Usage: sqlviz [-hnkdlpo DIR] <file> Options: -h --help Display this help file -k --keys Graph the number of foreign keys vs primary keys -d --datatypes Graph the distribution of datatypes -l --lengths Graph the distribution of lengths for each data type -p --print Print text to the console as well as creating graphs -n --no-display Don't display the generated graphs. -o DIR --output=DIR Output graphs to the specified directory """ from docopt import docopt from matplotlib import pyplot import re class Schema: """ Wraps the SQL source code for a schema and provides methods to get information about that schema. """ table_def = re.compile(r"CREATE TABLE|create table") primary_key = re.compile(r"PRIMARY KEY|primary key") foreign_key = re.compile(r"FOREIGN KEY|foreign key") varchar = re.compile(r"(?:VARCHAR|varchar)\s*\((\d+)\)") decimal = re.compile(r"(?:DECIMAL|decimal)\s*\((\d+,\d+)\)") decimal_extract = re.compile(r"(?P<p>\d+),\s*(?P<d>\d+)") integer = re.compile(r"(INT|int|INTEGER|integer)(\s|,)") text = re.compile(r"(TEXT|text)(\s|,)") numeric = re.compile(r"(?:NUMERIC|numeric)\s*\((\d+,\s*\d+)\)") def __init__(self, source): """ Creates a new instance of Schema for the specified source code string. """ self.source = source def n_tables(self): """ Returns the number of tables defined in the schema """ return len(Schema.table_def.findall(self.source)) def n_keys(self): """ Returns the number of keys defined in the schema """ return {"PRIMARY KEY": len(Schema.primary_key.findall(self.source)), "FOREIGN KEY": len(Schema.foreign_key.findall(self.source))} def n_datatypes(self): """ Returns the number of each data type in the schema. """ return {"INT": len(Schema.integer.findall(self.source)), "DECIMAL": len(Schema.decimal.findall(self.source)), "NUMERIC": len(Schema.numeric.findall(self.source)), "VARCHAR": len(Schema.varchar.findall(self.source)), "TEXT": len(Schema.text.findall(self.source))} def lengths(self): """ Returns a dictionary mapping each data type in the schema to a list of the lengths of those data types. """ return {"VARCHAR": [int(v) for v in Schema.varchar.findall(self.source)], "DECIMAL": [(int(d.group("p")), int(d.group("d"))) for d in map(Schema.decimal_extract.search,Schema.decimal.findall(self.source))], "NUMERIC": [(int(d.group("p")), int(d.group("d"))) for d in map(Schema.decimal_extract.search,Schema.numeric.findall(self.source))] } if __name__ == "__main__": opts = docopt(__doc__, help=True, version="0.1") with open(opts["<file>"], 'r') as f: source = f.read() schema = Schema(source) # Begin plotting fignum = 0 # pie chart of keys if opts["--keys"]: # pie chart of keys pyplot.fignum = fignum + 1 pyplot.figure(fignum, figsize=(6,6)) pyplot.ax = pyplot.axes([0.1, 0.1, 0.8, 0.8]) keys = schema.n_keys() total_keys = keys["PRIMARY KEY"] + keys["FOREIGN KEY"] fracs = [ # determine fractions of primary/foreign (keys["PRIMARY KEY"]/total_keys)*100, (keys["FOREIGN KEY"]/total_keys)*100, ] pyplot.pie(fracs, labels = ["primary", "foreign"], autopct='%1.1f%%') pyplot.title("Key Composition") if not opts["--no-display"]: pyplot.show() if opts["--output"]: pyplot.savefig((opts["--output"] + "/keys.pdf")) # pie chart of datatypes if opts["--datatypes"]: # pie chart of datatypes pyplot.fignum = fignum + 1 pyplot.figure(fignum, figsize=(6,6)) pyplot.ax = pyplot.axes([0.1, 0.1, 0.8, 0.8]) datatypes = schema.n_datatypes() n_d = {} for d in datatypes: # remove zero values if datatypes[d] != 0: n_d[d] = datatypes[d] datatypes = n_d total_datatypes = sum(datatypes.values()) fracs = [ (v/total_datatypes) * 100 for v in datatypes.values() ] pyplot.pie(fracs, labels = datatypes.keys(), autopct='%1.1f%%') pyplot.title("Datatype Composition") if not opts["--no-display"]: pyplot.show() if opts["--output"]: pyplot.savefig((opts["--output"] + "/datatypes.pdf"))
mit
startcode/apollo
modules/tools/mapshow/plot_smoothness.py
2
1267
import rospy from modules.planning.proto import planning_pb2 import matplotlib.pyplot as plt from planning import Planning import matplotlib.animation as animation from subplot_traj_speed import TrajSpeedSubplot from subplot_traj_acc import TrajAccSubplot from subplot_traj_path import TrajPathSubplot planning = Planning() def update(frame_number): traj_speed_subplot.show(planning) traj_acc_subplot.show(planning) traj_path_subplot.show(planning) def planning_callback(planning_pb): planning.update_planning_pb(planning_pb) planning.compute_traj_data() def add_listener(): rospy.init_node('st_plot', anonymous=True) rospy.Subscriber('/apollo/planning', planning_pb2.ADCTrajectory, planning_callback) def press_key(): pass if __name__ == '__main__': add_listener() fig = plt.figure(figsize=(14, 6)) fig.canvas.mpl_connect('key_press_event', press_key) ax = plt.subplot2grid((2, 2), (0, 0)) traj_speed_subplot = TrajSpeedSubplot(ax) ax2 = plt.subplot2grid((2, 2), (0, 1)) traj_acc_subplot = TrajAccSubplot(ax2) ax3 = plt.subplot2grid((2, 2), (1, 0)) traj_path_subplot = TrajPathSubplot(ax3) ani = animation.FuncAnimation(fig, update, interval=100) plt.show()
apache-2.0
ClinicalGraphics/scikit-image
doc/examples/edges/plot_convex_hull.py
9
1487
""" =========== Convex Hull =========== The convex hull of a binary image is the set of pixels included in the smallest convex polygon that surround all white pixels in the input. In this example, we show how the input pixels (white) get filled in by the convex hull (white and grey). A good overview of the algorithm is given on `Steve Eddin's blog <http://blogs.mathworks.com/steve/2011/10/04/binary-image-convex-hull-algorithm-notes/>`__. """ import numpy as np import matplotlib.pyplot as plt from skimage.morphology import convex_hull_image image = np.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=float) original_image = np.copy(image) chull = convex_hull_image(image) image[chull] += 1 # image is now: # [[ 0. 0. 0. 0. 0. 0. 0. 0. 0.] # [ 0. 0. 0. 0. 2. 0. 0. 0. 0.] # [ 0. 0. 0. 2. 1. 2. 0. 0. 0.] # [ 0. 0. 2. 1. 1. 1. 2. 0. 0.] # [ 0. 2. 1. 1. 1. 1. 1. 2. 0.] # [ 0. 0. 0. 0. 0. 0. 0. 0. 0.]] fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6)) ax1.set_title('Original picture') ax1.imshow(original_image, cmap=plt.cm.gray, interpolation='nearest') ax1.set_xticks([]), ax1.set_yticks([]) ax2.set_title('Transformed picture') ax2.imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax2.set_xticks([]), ax2.set_yticks([]) plt.show()
bsd-3-clause
giorgiop/scikit-learn
examples/svm/plot_separating_hyperplane_unbalanced.py
329
1850
""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. .. currentmodule:: sklearn.linear_model .. note:: This example will also work by replacing ``SVC(kernel="linear")`` with ``SGDClassifier(loss="hinge")``. Setting the ``loss`` parameter of the :class:`SGDClassifier` equal to ``hinge`` will yield behaviour such as that of a SVC with a linear kernel. For example try instead of the ``SVC``:: clf = SGDClassifier(n_iter=100, alpha=0.01) """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm #from sklearn.linear_model import SGDClassifier # we create 40 separable points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - clf.intercept_[0] / w[1] # get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) ww = wclf.coef_[0] wa = -ww[0] / ww[1] wyy = wa * xx - wclf.intercept_[0] / ww[1] # plot separating hyperplanes and samples h0 = plt.plot(xx, yy, 'k-', label='no weights') h1 = plt.plot(xx, wyy, 'k--', label='with weights') plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.legend() plt.axis('tight') plt.show()
bsd-3-clause
mdespriee/spark
python/pyspark/sql/tests/test_arrow.py
4
19752
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import os import threading import time import unittest import warnings from pyspark.sql import Row from pyspark.sql.types import * from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ pandas_requirement_message, pyarrow_requirement_message from pyspark.testing.utils import QuietTest from pyspark.util import _exception_message @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) class ArrowTests(ReusedSQLTestCase): @classmethod def setUpClass(cls): from datetime import date, datetime from decimal import Decimal from distutils.version import LooseVersion import pyarrow as pa super(ArrowTests, cls).setUpClass() cls.warnings_lock = threading.Lock() # Synchronize default timezone between Python and Java cls.tz_prev = os.environ.get("TZ", None) # save current tz if set tz = "America/Los_Angeles" os.environ["TZ"] = tz time.tzset() cls.spark.conf.set("spark.sql.session.timeZone", tz) cls.spark.conf.set("spark.sql.execution.arrow.enabled", "true") # Disable fallback by default to easily detect the failures. cls.spark.conf.set("spark.sql.execution.arrow.fallback.enabled", "false") cls.schema = StructType([ StructField("1_str_t", StringType(), True), StructField("2_int_t", IntegerType(), True), StructField("3_long_t", LongType(), True), StructField("4_float_t", FloatType(), True), StructField("5_double_t", DoubleType(), True), StructField("6_decimal_t", DecimalType(38, 18), True), StructField("7_date_t", DateType(), True), StructField("8_timestamp_t", TimestampType(), True)]) cls.data = [(u"a", 1, 10, 0.2, 2.0, Decimal("2.0"), date(1969, 1, 1), datetime(1969, 1, 1, 1, 1, 1)), (u"b", 2, 20, 0.4, 4.0, Decimal("4.0"), date(2012, 2, 2), datetime(2012, 2, 2, 2, 2, 2)), (u"c", 3, 30, 0.8, 6.0, Decimal("6.0"), date(2100, 3, 3), datetime(2100, 3, 3, 3, 3, 3))] # TODO: remove version check once minimum pyarrow version is 0.10.0 if LooseVersion("0.10.0") <= LooseVersion(pa.__version__): cls.schema.add(StructField("9_binary_t", BinaryType(), True)) cls.data[0] = cls.data[0] + (bytearray(b"a"),) cls.data[1] = cls.data[1] + (bytearray(b"bb"),) cls.data[2] = cls.data[2] + (bytearray(b"ccc"),) @classmethod def tearDownClass(cls): del os.environ["TZ"] if cls.tz_prev is not None: os.environ["TZ"] = cls.tz_prev time.tzset() super(ArrowTests, cls).tearDownClass() def create_pandas_data_frame(self): import pandas as pd import numpy as np data_dict = {} for j, name in enumerate(self.schema.names): data_dict[name] = [self.data[i][j] for i in range(len(self.data))] # need to convert these to numpy types first data_dict["2_int_t"] = np.int32(data_dict["2_int_t"]) data_dict["4_float_t"] = np.float32(data_dict["4_float_t"]) return pd.DataFrame(data=data_dict) def test_toPandas_fallback_enabled(self): import pandas as pd with self.sql_conf({"spark.sql.execution.arrow.fallback.enabled": True}): schema = StructType([StructField("map", MapType(StringType(), IntegerType()), True)]) df = self.spark.createDataFrame([({u'a': 1},)], schema=schema) with QuietTest(self.sc): with self.warnings_lock: with warnings.catch_warnings(record=True) as warns: # we want the warnings to appear even if this test is run from a subclass warnings.simplefilter("always") pdf = df.toPandas() # Catch and check the last UserWarning. user_warns = [ warn.message for warn in warns if isinstance(warn.message, UserWarning)] self.assertTrue(len(user_warns) > 0) self.assertTrue( "Attempting non-optimization" in _exception_message(user_warns[-1])) self.assertPandasEqual(pdf, pd.DataFrame({u'map': [{u'a': 1}]})) def test_toPandas_fallback_disabled(self): from distutils.version import LooseVersion import pyarrow as pa schema = StructType([StructField("map", MapType(StringType(), IntegerType()), True)]) df = self.spark.createDataFrame([(None,)], schema=schema) with QuietTest(self.sc): with self.warnings_lock: with self.assertRaisesRegexp(Exception, 'Unsupported type'): df.toPandas() # TODO: remove BinaryType check once minimum pyarrow version is 0.10.0 if LooseVersion(pa.__version__) < LooseVersion("0.10.0"): schema = StructType([StructField("binary", BinaryType(), True)]) df = self.spark.createDataFrame([(None,)], schema=schema) with QuietTest(self.sc): with self.assertRaisesRegexp(Exception, 'Unsupported type.*BinaryType'): df.toPandas() def test_null_conversion(self): df_null = self.spark.createDataFrame([tuple([None for _ in range(len(self.data[0]))])] + self.data) pdf = df_null.toPandas() null_counts = pdf.isnull().sum().tolist() self.assertTrue(all([c == 1 for c in null_counts])) def _toPandas_arrow_toggle(self, df): with self.sql_conf({"spark.sql.execution.arrow.enabled": False}): pdf = df.toPandas() pdf_arrow = df.toPandas() return pdf, pdf_arrow def test_toPandas_arrow_toggle(self): df = self.spark.createDataFrame(self.data, schema=self.schema) pdf, pdf_arrow = self._toPandas_arrow_toggle(df) expected = self.create_pandas_data_frame() self.assertPandasEqual(expected, pdf) self.assertPandasEqual(expected, pdf_arrow) def test_toPandas_respect_session_timezone(self): df = self.spark.createDataFrame(self.data, schema=self.schema) timezone = "America/New_York" with self.sql_conf({ "spark.sql.execution.pandas.respectSessionTimeZone": False, "spark.sql.session.timeZone": timezone}): pdf_la, pdf_arrow_la = self._toPandas_arrow_toggle(df) self.assertPandasEqual(pdf_arrow_la, pdf_la) with self.sql_conf({ "spark.sql.execution.pandas.respectSessionTimeZone": True, "spark.sql.session.timeZone": timezone}): pdf_ny, pdf_arrow_ny = self._toPandas_arrow_toggle(df) self.assertPandasEqual(pdf_arrow_ny, pdf_ny) self.assertFalse(pdf_ny.equals(pdf_la)) from pyspark.sql.types import _check_series_convert_timestamps_local_tz pdf_la_corrected = pdf_la.copy() for field in self.schema: if isinstance(field.dataType, TimestampType): pdf_la_corrected[field.name] = _check_series_convert_timestamps_local_tz( pdf_la_corrected[field.name], timezone) self.assertPandasEqual(pdf_ny, pdf_la_corrected) def test_pandas_round_trip(self): pdf = self.create_pandas_data_frame() df = self.spark.createDataFrame(self.data, schema=self.schema) pdf_arrow = df.toPandas() self.assertPandasEqual(pdf_arrow, pdf) def test_filtered_frame(self): df = self.spark.range(3).toDF("i") pdf = df.filter("i < 0").toPandas() self.assertEqual(len(pdf.columns), 1) self.assertEqual(pdf.columns[0], "i") self.assertTrue(pdf.empty) def _createDataFrame_toggle(self, pdf, schema=None): with self.sql_conf({"spark.sql.execution.arrow.enabled": False}): df_no_arrow = self.spark.createDataFrame(pdf, schema=schema) df_arrow = self.spark.createDataFrame(pdf, schema=schema) return df_no_arrow, df_arrow def test_createDataFrame_toggle(self): pdf = self.create_pandas_data_frame() df_no_arrow, df_arrow = self._createDataFrame_toggle(pdf, schema=self.schema) self.assertEquals(df_no_arrow.collect(), df_arrow.collect()) def test_createDataFrame_respect_session_timezone(self): from datetime import timedelta pdf = self.create_pandas_data_frame() timezone = "America/New_York" with self.sql_conf({ "spark.sql.execution.pandas.respectSessionTimeZone": False, "spark.sql.session.timeZone": timezone}): df_no_arrow_la, df_arrow_la = self._createDataFrame_toggle(pdf, schema=self.schema) result_la = df_no_arrow_la.collect() result_arrow_la = df_arrow_la.collect() self.assertEqual(result_la, result_arrow_la) with self.sql_conf({ "spark.sql.execution.pandas.respectSessionTimeZone": True, "spark.sql.session.timeZone": timezone}): df_no_arrow_ny, df_arrow_ny = self._createDataFrame_toggle(pdf, schema=self.schema) result_ny = df_no_arrow_ny.collect() result_arrow_ny = df_arrow_ny.collect() self.assertEqual(result_ny, result_arrow_ny) self.assertNotEqual(result_ny, result_la) # Correct result_la by adjusting 3 hours difference between Los Angeles and New York result_la_corrected = [Row(**{k: v - timedelta(hours=3) if k == '8_timestamp_t' else v for k, v in row.asDict().items()}) for row in result_la] self.assertEqual(result_ny, result_la_corrected) def test_createDataFrame_with_schema(self): pdf = self.create_pandas_data_frame() df = self.spark.createDataFrame(pdf, schema=self.schema) self.assertEquals(self.schema, df.schema) pdf_arrow = df.toPandas() self.assertPandasEqual(pdf_arrow, pdf) def test_createDataFrame_with_incorrect_schema(self): pdf = self.create_pandas_data_frame() fields = list(self.schema) fields[0], fields[7] = fields[7], fields[0] # swap str with timestamp wrong_schema = StructType(fields) with QuietTest(self.sc): with self.assertRaisesRegexp(Exception, ".*No cast.*string.*timestamp.*"): self.spark.createDataFrame(pdf, schema=wrong_schema) def test_createDataFrame_with_names(self): pdf = self.create_pandas_data_frame() new_names = list(map(str, range(len(self.schema.fieldNames())))) # Test that schema as a list of column names gets applied df = self.spark.createDataFrame(pdf, schema=list(new_names)) self.assertEquals(df.schema.fieldNames(), new_names) # Test that schema as tuple of column names gets applied df = self.spark.createDataFrame(pdf, schema=tuple(new_names)) self.assertEquals(df.schema.fieldNames(), new_names) def test_createDataFrame_column_name_encoding(self): import pandas as pd pdf = pd.DataFrame({u'a': [1]}) columns = self.spark.createDataFrame(pdf).columns self.assertTrue(isinstance(columns[0], str)) self.assertEquals(columns[0], 'a') columns = self.spark.createDataFrame(pdf, [u'b']).columns self.assertTrue(isinstance(columns[0], str)) self.assertEquals(columns[0], 'b') def test_createDataFrame_with_single_data_type(self): import pandas as pd with QuietTest(self.sc): with self.assertRaisesRegexp(ValueError, ".*IntegerType.*not supported.*"): self.spark.createDataFrame(pd.DataFrame({"a": [1]}), schema="int") def test_createDataFrame_does_not_modify_input(self): import pandas as pd # Some series get converted for Spark to consume, this makes sure input is unchanged pdf = self.create_pandas_data_frame() # Use a nanosecond value to make sure it is not truncated pdf.ix[0, '8_timestamp_t'] = pd.Timestamp(1) # Integers with nulls will get NaNs filled with 0 and will be casted pdf.ix[1, '2_int_t'] = None pdf_copy = pdf.copy(deep=True) self.spark.createDataFrame(pdf, schema=self.schema) self.assertTrue(pdf.equals(pdf_copy)) def test_schema_conversion_roundtrip(self): from pyspark.sql.types import from_arrow_schema, to_arrow_schema arrow_schema = to_arrow_schema(self.schema) schema_rt = from_arrow_schema(arrow_schema) self.assertEquals(self.schema, schema_rt) def test_createDataFrame_with_array_type(self): import pandas as pd pdf = pd.DataFrame({"a": [[1, 2], [3, 4]], "b": [[u"x", u"y"], [u"y", u"z"]]}) df, df_arrow = self._createDataFrame_toggle(pdf) result = df.collect() result_arrow = df_arrow.collect() expected = [tuple(list(e) for e in rec) for rec in pdf.to_records(index=False)] for r in range(len(expected)): for e in range(len(expected[r])): self.assertTrue(expected[r][e] == result_arrow[r][e] and result[r][e] == result_arrow[r][e]) def test_toPandas_with_array_type(self): expected = [([1, 2], [u"x", u"y"]), ([3, 4], [u"y", u"z"])] array_schema = StructType([StructField("a", ArrayType(IntegerType())), StructField("b", ArrayType(StringType()))]) df = self.spark.createDataFrame(expected, schema=array_schema) pdf, pdf_arrow = self._toPandas_arrow_toggle(df) result = [tuple(list(e) for e in rec) for rec in pdf.to_records(index=False)] result_arrow = [tuple(list(e) for e in rec) for rec in pdf_arrow.to_records(index=False)] for r in range(len(expected)): for e in range(len(expected[r])): self.assertTrue(expected[r][e] == result_arrow[r][e] and result[r][e] == result_arrow[r][e]) def test_createDataFrame_with_int_col_names(self): import numpy as np import pandas as pd pdf = pd.DataFrame(np.random.rand(4, 2)) df, df_arrow = self._createDataFrame_toggle(pdf) pdf_col_names = [str(c) for c in pdf.columns] self.assertEqual(pdf_col_names, df.columns) self.assertEqual(pdf_col_names, df_arrow.columns) def test_createDataFrame_fallback_enabled(self): import pandas as pd with QuietTest(self.sc): with self.sql_conf({"spark.sql.execution.arrow.fallback.enabled": True}): with warnings.catch_warnings(record=True) as warns: # we want the warnings to appear even if this test is run from a subclass warnings.simplefilter("always") df = self.spark.createDataFrame( pd.DataFrame([[{u'a': 1}]]), "a: map<string, int>") # Catch and check the last UserWarning. user_warns = [ warn.message for warn in warns if isinstance(warn.message, UserWarning)] self.assertTrue(len(user_warns) > 0) self.assertTrue( "Attempting non-optimization" in _exception_message(user_warns[-1])) self.assertEqual(df.collect(), [Row(a={u'a': 1})]) def test_createDataFrame_fallback_disabled(self): from distutils.version import LooseVersion import pandas as pd import pyarrow as pa with QuietTest(self.sc): with self.assertRaisesRegexp(TypeError, 'Unsupported type'): self.spark.createDataFrame( pd.DataFrame([[{u'a': 1}]]), "a: map<string, int>") # TODO: remove BinaryType check once minimum pyarrow version is 0.10.0 if LooseVersion(pa.__version__) < LooseVersion("0.10.0"): with QuietTest(self.sc): with self.assertRaisesRegexp(TypeError, 'Unsupported type.*BinaryType'): self.spark.createDataFrame( pd.DataFrame([[{'a': b'aaa'}]]), "a: binary") # Regression test for SPARK-23314 def test_timestamp_dst(self): import pandas as pd # Daylight saving time for Los Angeles for 2015 is Sun, Nov 1 at 2:00 am dt = [datetime.datetime(2015, 11, 1, 0, 30), datetime.datetime(2015, 11, 1, 1, 30), datetime.datetime(2015, 11, 1, 2, 30)] pdf = pd.DataFrame({'time': dt}) df_from_python = self.spark.createDataFrame(dt, 'timestamp').toDF('time') df_from_pandas = self.spark.createDataFrame(pdf) self.assertPandasEqual(pdf, df_from_python.toPandas()) self.assertPandasEqual(pdf, df_from_pandas.toPandas()) def test_toPandas_batch_order(self): def delay_first_part(partition_index, iterator): if partition_index == 0: time.sleep(0.1) return iterator # Collects Arrow RecordBatches out of order in driver JVM then re-orders in Python def run_test(num_records, num_parts, max_records, use_delay=False): df = self.spark.range(num_records, numPartitions=num_parts).toDF("a") if use_delay: df = df.rdd.mapPartitionsWithIndex(delay_first_part).toDF() with self.sql_conf({"spark.sql.execution.arrow.maxRecordsPerBatch": max_records}): pdf, pdf_arrow = self._toPandas_arrow_toggle(df) self.assertPandasEqual(pdf, pdf_arrow) cases = [ (1024, 512, 2), # Use large num partitions for more likely collecting out of order (64, 8, 2, True), # Use delay in first partition to force collecting out of order (64, 64, 1), # Test single batch per partition (64, 1, 64), # Test single partition, single batch (64, 1, 8), # Test single partition, multiple batches (30, 7, 2), # Test different sized partitions ] for case in cases: run_test(*case) class EncryptionArrowTests(ArrowTests): @classmethod def conf(cls): return super(EncryptionArrowTests, cls).conf().set("spark.io.encryption.enabled", "true") if __name__ == "__main__": from pyspark.sql.tests.test_arrow import * try: import xmlrunner testRunner = xmlrunner.XMLTestRunner(output='target/test-reports') except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
CamDavidsonPilon/lifelines
lifelines/calibration.py
1
4092
# -*- coding: utf-8 -*- import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from lifelines.utils import CensoringType from lifelines.fitters import RegressionFitter from lifelines import CRCSplineFitter def survival_probability_calibration(model: RegressionFitter, df: pd.DataFrame, t0: float, ax=None): r""" Smoothed calibration curves for time-to-event models. This is analogous to calibration curves for classification models, extended to handle survival probabilities and censoring. Produces a matplotlib figure and some metrics. We want to calibrate our model's prediction of :math:`P(T < \text{t0})` against the observed frequencies. Parameters ------------- model: a fitted lifelines regression model to be evaluated df: DataFrame a DataFrame - if equal to the training data, then this is an in-sample calibration. Could also be an out-of-sample dataset. t0: float the time to evaluate the probability of event occurring prior at. Returns ---------- ax: mpl axes ICI: mean absolute difference between predicted and observed E50: median absolute difference between predicted and observed https://onlinelibrary.wiley.com/doi/full/10.1002/sim.8570 """ def ccl(p): return np.log(-np.log(1 - p)) if ax is None: ax = plt.gca() T = model.duration_col E = model.event_col predictions_at_t0 = np.clip(1 - model.predict_survival_function(df, times=[t0]).T.squeeze(), 1e-10, 1 - 1e-10) # create new dataset with the predictions prediction_df = pd.DataFrame({"ccl_at_%d" % t0: ccl(predictions_at_t0), T: df[T], E: df[E]}) # fit new dataset to flexible spline model # this new model connects prediction probabilities and actual survival. It should be very flexible, almost to the point of overfitting. It's goal is just to smooth out the data! knots = 3 regressors = {"beta_": ["ccl_at_%d" % t0], "gamma0_": "1", "gamma1_": "1", "gamma2_": "1"} # this model is from examples/royson_crowther_clements_splines.py crc = CRCSplineFitter(knots, penalizer=0.000001) with warnings.catch_warnings(): warnings.filterwarnings("ignore") if CensoringType.is_right_censoring(model): crc.fit_right_censoring(prediction_df, T, E, regressors=regressors) elif CensoringType.is_left_censoring(model): crc.fit_left_censoring(prediction_df, T, E, regressors=regressors) elif CensoringType.is_interval_censoring(model): crc.fit_interval_censoring(prediction_df, T, E, regressors=regressors) # predict new model at values 0 to 1, but remember to ccl it! x = np.linspace(np.clip(predictions_at_t0.min() - 0.01, 0, 1), np.clip(predictions_at_t0.max() + 0.01, 0, 1), 100) y = 1 - crc.predict_survival_function(pd.DataFrame({"ccl_at_%d" % t0: ccl(x)}), times=[t0]).T.squeeze() # plot our results ax.set_title("Smoothed calibration curve of \npredicted vs observed probabilities of t ≤ %d mortality" % t0) color = "tab:red" ax.plot(x, y, label="smoothed calibration curve", color=color) ax.set_xlabel("Predicted probability of \nt ≤ %d mortality" % t0) ax.set_ylabel("Observed probability of \nt ≤ %d mortality" % t0, color=color) ax.tick_params(axis="y", labelcolor=color) # plot x=y line ax.plot(x, x, c="k", ls="--") ax.legend() # plot histogram of our original predictions color = "tab:blue" twin_ax = ax.twinx() twin_ax.set_ylabel("Count of \npredicted probabilities", color=color) # we already handled the x-label with ax1 twin_ax.tick_params(axis="y", labelcolor=color) twin_ax.hist(predictions_at_t0, alpha=0.3, bins="sqrt", color=color) plt.tight_layout() deltas = ((1 - crc.predict_survival_function(prediction_df, times=[t0])).T.squeeze() - predictions_at_t0).abs() ICI = deltas.mean() E50 = np.percentile(deltas, 50) print("ICI = ", ICI) print("E50 = ", E50) return ax, ICI, E50
mit
matplotlib/cmocean
cmocean/rgb/delta-blue.py
2
13698
from matplotlib.colors import ListedColormap from numpy import nan, inf # Used to reconstruct the colormap in pycam02ucs.cm.viscm parameters = {'xp': [-3.4830597643097576, 0.6289831887553419, -17.483059764309758, -36.149726430976415, -10.119506350699233, -1.5386153198653005], 'yp': [-16.277777777777771, -46.80680359435172, -12.0, -2.6666666666666572, -4.590430134624931, 5.8888888888888857], 'min_Jp': 15.1681957187, 'max_Jp': 98.6544342508} cm_data = [[ 0.06597739, 0.12386005, 0.24948116], [ 0.06865758, 0.1266325 , 0.25557624], [ 0.07132312, 0.12939515, 0.26166391], [ 0.07396584, 0.13214058, 0.2677948 ], [ 0.07658629, 0.13486916, 0.27396904], [ 0.07919242, 0.13758843, 0.28014206], [ 0.08176925, 0.14028419, 0.28640499], [ 0.08433407, 0.14297318, 0.29265629], [ 0.08687299, 0.14564215, 0.29898019], [ 0.08939564, 0.14830082, 0.30531941], [ 0.09189721, 0.15094484, 0.311703 ], [ 0.09437767, 0.1535746 , 0.31813071], [ 0.09684032, 0.15619402, 0.32458157], [ 0.09927797, 0.15879644, 0.33109756], [ 0.10169939, 0.16139154, 0.33762358], [ 0.10409298, 0.1639684 , 0.34422672], [ 0.10647003, 0.16653949, 0.35083602], [ 0.10881765, 0.16909286, 0.35752405], [ 0.11114624, 0.1716403 , 0.36422476], [ 0.11344526, 0.17417268, 0.37099405], [ 0.11572015, 0.17669703, 0.37779407], [ 0.11796711, 0.17921142, 0.38463932], [ 0.12018172, 0.18171361, 0.39154591], [ 0.12237222, 0.18421369, 0.39845983], [ 0.12451836, 0.18669519, 0.40547913], [ 0.12663654, 0.18917624, 0.41250469], [ 0.12871435, 0.19164859, 0.41958831], [ 0.13074695, 0.19411179, 0.42673806], [ 0.13274084, 0.19657524, 0.43390608], [ 0.13468282, 0.19903239, 0.44113668], [ 0.13656674, 0.2014837 , 0.44843501], [ 0.13839602, 0.20393744, 0.4557622 ], [ 0.14016368, 0.20639447, 0.46312314], [ 0.14185409, 0.20885126, 0.47055044], [ 0.14345986, 0.21131167, 0.47803591], [ 0.14497642, 0.2137823 , 0.485557 ], [ 0.146391 , 0.21626634, 0.49311434], [ 0.14768864, 0.218768 , 0.50070638], [ 0.14885173, 0.22129285, 0.50832846], [ 0.14985965, 0.22384818, 0.51597154], [ 0.1506884 , 0.2264434 , 0.52362079], [ 0.15131023, 0.22909058, 0.53125369], [ 0.15168425, 0.23180303, 0.53885457], [ 0.15175702, 0.23459819, 0.54640144], [ 0.15150762, 0.23750367, 0.55379602], [ 0.15085272, 0.24054407, 0.56100954], [ 0.149778 , 0.24375297, 0.56790391], [ 0.1482413 , 0.24715977, 0.57437788], [ 0.14626774, 0.25078506, 0.58029534], [ 0.14393556, 0.25462901, 0.58555075], [ 0.14135408, 0.25866955, 0.59010335], [ 0.13864079, 0.26286871, 0.59397852], [ 0.13589174, 0.26718438, 0.59724867], [ 0.13319563, 0.27157423, 0.60000635], [ 0.13058114, 0.2760103 , 0.60234289], [ 0.12806719, 0.28047115, 0.60433583], [ 0.12569199, 0.28493491, 0.60605594], [ 0.12343537, 0.28939604, 0.60755039], [ 0.12131237, 0.29384382, 0.60886431], [ 0.1193314 , 0.29827105, 0.61003449], [ 0.11747335, 0.3026784 , 0.61108156], [ 0.11574105, 0.30706267, 0.61202824], [ 0.11415261, 0.31141804, 0.61290024], [ 0.11269166, 0.31574724, 0.61370617], [ 0.11135538, 0.32005035, 0.61445721], [ 0.11014377, 0.32432716, 0.6151638 ], [ 0.10905648, 0.32857778, 0.61583463], [ 0.10809281, 0.3328026 , 0.61647697], [ 0.10725185, 0.33700217, 0.61709693], [ 0.10653241, 0.34117717, 0.61769964], [ 0.10593314, 0.34532836, 0.61828945], [ 0.1054525 , 0.34945656, 0.61887003], [ 0.10508879, 0.35356261, 0.61944452], [ 0.10484013, 0.35764738, 0.62001559], [ 0.10470452, 0.36171173, 0.62058554], [ 0.10467981, 0.36575652, 0.62115635], [ 0.10476371, 0.36978259, 0.62172971], [ 0.10495382, 0.37379076, 0.62230709], [ 0.10524762, 0.37778184, 0.62288978], [ 0.10564252, 0.3817566 , 0.62347886], [ 0.1061358 , 0.38571579, 0.62407531], [ 0.10672471, 0.38966014, 0.62467996], [ 0.10740642, 0.39359035, 0.62529352], [ 0.10817806, 0.39750711, 0.62591662], [ 0.10903675, 0.40141105, 0.62654981], [ 0.10998202, 0.40530231, 0.62719516], [ 0.11100819, 0.40918206, 0.62785128], [ 0.11211222, 0.41305092, 0.62851837], [ 0.11329127, 0.41690943, 0.62919672], [ 0.11454253, 0.42075813, 0.62988653], [ 0.11586327, 0.42459754, 0.63058799], [ 0.11725083, 0.42842816, 0.63130122], [ 0.1187026 , 0.43225046, 0.63202632], [ 0.12021702, 0.4360647 , 0.63276403], [ 0.12179033, 0.43987161, 0.6335134 ], [ 0.1234202 , 0.44367161, 0.63427436], [ 0.12510445, 0.4474651 , 0.6350469 ], [ 0.12684102, 0.45125247, 0.63583095], [ 0.12862799, 0.45503408, 0.63662642], [ 0.13046351, 0.45881028, 0.6374332 ], [ 0.13234563, 0.46258148, 0.63825092], [ 0.13427263, 0.46634802, 0.63907929], [ 0.13624311, 0.4701102 , 0.63991816], [ 0.13825578, 0.47386832, 0.64076733], [ 0.14030945, 0.47762263, 0.64162657], [ 0.14240307, 0.48137341, 0.64249562], [ 0.14453572, 0.48512091, 0.64337422], [ 0.14670608, 0.48886546, 0.64426159], [ 0.14891319, 0.49260737, 0.64515709], [ 0.15115711, 0.49634669, 0.64606096], [ 0.15343746, 0.50008362, 0.64697283], [ 0.15575396, 0.50381833, 0.64789234], [ 0.15810648, 0.50755096, 0.64881909], [ 0.160495 , 0.51128167, 0.64975267], [ 0.16291965, 0.51501059, 0.65069263], [ 0.16538066, 0.51873781, 0.6516385 ], [ 0.16787709, 0.52246378, 0.65258827], [ 0.17041079, 0.52618823, 0.65354289], [ 0.17298246, 0.52991124, 0.65450185], [ 0.17559291, 0.53363281, 0.65546464], [ 0.1782431 , 0.53735298, 0.65643069], [ 0.18093416, 0.54107173, 0.65739946], [ 0.18366735, 0.54478903, 0.65837034], [ 0.18644408, 0.54850484, 0.65934275], [ 0.18926596, 0.55221906, 0.66031605], [ 0.19213472, 0.5559316 , 0.66128961], [ 0.19505228, 0.55964231, 0.66226278], [ 0.19802076, 0.56335105, 0.66323489], [ 0.20104242, 0.5670576 , 0.66420528], [ 0.20411976, 0.57076173, 0.66517325], [ 0.20725543, 0.57446319, 0.66613812], [ 0.21045232, 0.57816165, 0.6670992 ], [ 0.2137135 , 0.58185676, 0.66805579], [ 0.21704227, 0.58554813, 0.6690072 ], [ 0.22044214, 0.58923531, 0.66995277], [ 0.22391686, 0.59291779, 0.67089183], [ 0.22747037, 0.59659503, 0.67182375], [ 0.23110686, 0.6002664 , 0.67274791], [ 0.23483073, 0.60393124, 0.67366376], [ 0.2386466 , 0.60758879, 0.67457077], [ 0.24255928, 0.61123826, 0.67546847], [ 0.24657379, 0.61487875, 0.67635647], [ 0.25069532, 0.61850931, 0.67723446], [ 0.25492963, 0.62212933, 0.67809791], [ 0.25928228, 0.62573723, 0.67895065], [ 0.26375886, 0.62933183, 0.67979274], [ 0.26836502, 0.63291182, 0.68062438], [ 0.27310635, 0.63647586, 0.68144595], [ 0.27799067, 0.64002284, 0.68225204], [ 0.28302187, 0.64355084, 0.68304906], [ 0.28820489, 0.64705829, 0.68383831], [ 0.29354581, 0.65054365, 0.68461866], [ 0.29905039, 0.65400523, 0.68538993], [ 0.30471967, 0.65744127, 0.68615859], [ 0.31055832, 0.66085014, 0.68692427], [ 0.31656915, 0.66423017, 0.68768878], [ 0.32274951, 0.66757995, 0.68845924], [ 0.32910283, 0.67089793, 0.68923459], [ 0.33562308, 0.67418311, 0.69002275], [ 0.34230732, 0.67743451, 0.69082687], [ 0.34914976, 0.68065146, 0.69165158], [ 0.35614127, 0.68383379, 0.69250293], [ 0.36327369, 0.68698145, 0.69338491], [ 0.37053484, 0.69009497, 0.6943034 ], [ 0.37791226, 0.69317522, 0.69526327], [ 0.38539385, 0.69622324, 0.69626827], [ 0.39296332, 0.69924082, 0.697324 ], [ 0.4006094 , 0.70222938, 0.69843223], [ 0.40831594, 0.70519122, 0.69959724], [ 0.41607015, 0.7081284 , 0.7008209 ], [ 0.42386201, 0.71104276, 0.70210342], [ 0.43167256, 0.71393771, 0.70344961], [ 0.43949947, 0.71681422, 0.70485557], [ 0.44732849, 0.71967527, 0.70632366], [ 0.45514951, 0.72252334, 0.70785413], [ 0.46296115, 0.72535947, 0.70944335], [ 0.47075349, 0.72818626, 0.71109189], [ 0.47851694, 0.73100635, 0.71280025], [ 0.48625412, 0.73382019, 0.71456376], [ 0.49396102, 0.73662941, 0.716381 ], [ 0.50163106, 0.73943622, 0.71825179], [ 0.50925965, 0.74224248, 0.72017521], [ 0.51685029, 0.74504841, 0.72214731], [ 0.52440134, 0.74785523, 0.72416643], [ 0.53191155, 0.75066408, 0.72623094], [ 0.53938005, 0.753476 , 0.72833923], [ 0.54680444, 0.75629239, 0.73049037], [ 0.55418394, 0.75911426, 0.73268299], [ 0.5615215 , 0.76194178, 0.73491438], [ 0.56881727, 0.7647757 , 0.73718308], [ 0.57607152, 0.76761672, 0.73948764], [ 0.58328469, 0.7704655 , 0.74182668], [ 0.5904573 , 0.77332263, 0.74419886], [ 0.59758995, 0.77618869, 0.74660289], [ 0.60468333, 0.77906419, 0.7490375 ], [ 0.61173817, 0.78194964, 0.75150151], [ 0.61875522, 0.7848455 , 0.75399375], [ 0.62573528, 0.7877522 , 0.7565131 ], [ 0.63267915, 0.79067016, 0.75905849], [ 0.63958763, 0.79359978, 0.76162887], [ 0.64646151, 0.79654145, 0.76422323], [ 0.6533016 , 0.79949552, 0.76684059], [ 0.66010867, 0.80246236, 0.76948001], [ 0.66688348, 0.80544232, 0.77214056], [ 0.67362676, 0.80843573, 0.77482134], [ 0.68033922, 0.81144292, 0.77752145], [ 0.68702155, 0.81446423, 0.78024002], [ 0.69367439, 0.81749998, 0.7829762 ], [ 0.7002975 , 0.82055075, 0.78572944], [ 0.70689165, 0.82361681, 0.78849881], [ 0.71345823, 0.82669826, 0.79128316], [ 0.7199978 , 0.82979542, 0.79408159], [ 0.72651088, 0.83290861, 0.7968932 ], [ 0.73299796, 0.83603816, 0.79971707], [ 0.73945951, 0.8391844 , 0.80255223], [ 0.74589598, 0.84234767, 0.8053977 ], [ 0.7523078 , 0.84552831, 0.80825242], [ 0.75869517, 0.84872673, 0.81111536], [ 0.76505775, 0.85194348, 0.81398568], [ 0.77139709, 0.85517859, 0.81686163], [ 0.77771359, 0.85843239, 0.81974187], [ 0.78400765, 0.86170526, 0.82262493], [ 0.79027967, 0.86499755, 0.82550921], [ 0.79653012, 0.8683096 , 0.82839299], [ 0.8027595 , 0.87164177, 0.83127437], [ 0.80896806, 0.87499448, 0.83415141], [ 0.8151567 , 0.87836796, 0.83702171], [ 0.82132643, 0.88176244, 0.83988264], [ 0.82747812, 0.88517819, 0.84273144], [ 0.83361281, 0.88861542, 0.8455651 ], [ 0.83973174, 0.89207431, 0.84838033], [ 0.84583638, 0.89555495, 0.85117353], [ 0.85192854, 0.89905734, 0.85394079], [ 0.85801043, 0.90258135, 0.85667786], [ 0.86408444, 0.90612679, 0.85938032], [ 0.87015339, 0.9096933 , 0.86204351], [ 0.87622047, 0.9132804 , 0.8646626 ], [ 0.88228934, 0.9168874 , 0.86723268], [ 0.88836402, 0.92051348, 0.86974885], [ 0.89444909, 0.92415756, 0.87220619], [ 0.90054949, 0.92781839, 0.87459995], [ 0.90666975, 0.93149475, 0.87692634], [ 0.91281478, 0.93518523, 0.87918186], [ 0.91898934, 0.93888836, 0.88136368], [ 0.92519787, 0.94260271, 0.88346979], [ 0.93144429, 0.94632694, 0.88549899], [ 0.93773184, 0.95005986, 0.88745092], [ 0.94406341, 0.95380038, 0.88932539], [ 0.95044015, 0.95754793, 0.89112376], [ 0.95686223, 0.96130226, 0.89284794], [ 0.963329 , 0.96506343, 0.8944999 ], [ 0.96983887, 0.96883187, 0.89608183], [ 0.97638938, 0.97260834, 0.89759591], [ 0.98297732, 0.97639393, 0.89904421], [ 0.98959887, 0.98019003, 0.90042859], [ 0.99624974, 0.98399826, 0.90175064]] test_cm = ListedColormap(cm_data, name=__file__) if __name__ == "__main__": import matplotlib.pyplot as plt import numpy as np try: from viscm import viscm viscm(test_cm) except ImportError: print("viscm not found, falling back on simple display") plt.imshow(np.linspace(0, 100, 256)[None, :], aspect='auto', cmap=test_cm) plt.show()
mit
zingale/pyro2
analysis/dam_compare.py
2
3546
#!/usr/bin/env python3 from __future__ import print_function import numpy as np from scipy.optimize import brentq import sys import os import matplotlib.pyplot as plt from util import msg, runparams, io usage = """ compare the output for a dam problem with the exact solution contained in dam-exact.out. usage: ./dam_compare.py file """ def abort(string): print(string) sys.exit(2) if not len(sys.argv) == 2: print(usage) sys.exit(2) try: file1 = sys.argv[1] except IndexError: print(usage) sys.exit(2) sim = io.read(file1) myd = sim.cc_data myg = myd.grid # time of file t = myd.t if myg.nx > myg.ny: # x-problem xmin = myg.xmin xmax = myg.xmax param_file = "inputs.dam.x" else: # y-problem xmin = myg.ymin xmax = myg.ymax param_file = "inputs.dam.y" height = myd.get_var("height") xmom = myd.get_var("x-momentum") ymom = myd.get_var("y-momentum") # get the 1-d profile from the simulation data -- assume that whichever # coordinate is the longer one is the direction of the problem # parameter defaults rp = runparams.RuntimeParameters() rp.load_params("../_defaults") rp.load_params("../swe/_defaults") rp.load_params("../swe/problems/_dam.defaults") # now read in the inputs file if not os.path.isfile(param_file): # check if the param file lives in the solver's problems directory param_file = "../swe/problems/" + param_file if not os.path.isfile(param_file): msg.fail("ERROR: inputs file does not exist") rp.load_params(param_file, no_new=1) if myg.nx > myg.ny: # x-problem x = myg.x[myg.ilo:myg.ihi+1] jj = myg.ny//2 h = height[myg.ilo:myg.ihi+1, jj] u = xmom[myg.ilo:myg.ihi+1, jj]/h ut = ymom[myg.ilo:myg.ihi+1, jj]/h else: # y-problem x = myg.y[myg.jlo:myg.jhi+1] ii = myg.nx//2 h = height[ii, myg.jlo:myg.jhi+1] u = ymom[ii, myg.jlo:myg.jhi+1]/h ut = xmom[ii, myg.jlo:myg.jhi+1]/h print(myg) x_exact = x h_exact = np.zeros_like(x) u_exact = np.zeros_like(x) # find h0, h1 h1 = rp.get_param("dam.h_left") h0 = rp.get_param("dam.h_right") def find_h2(h2): return (h2/h1)**3 - 9*(h2/h1)**2*(h0/h1) + \ 16*(h2/h1)**1.5*(h0/h1) - (h2/h1)*(h0/h1)*(h0/h1+8) + \ (h0/h1)**3 h2 = brentq(find_h2, min(h0, h1), max(h0, h1)) # calculate sound speeds g = rp.get_param("swe.grav") c0 = np.sqrt(g*h0) c1 = np.sqrt(g*h1) c2 = np.sqrt(g*h2) u2 = 2 * (c1 - c2) # shock speed xi = c0 * np.sqrt(1/8 * ((2*(c2/c0)**2 + 1)**2 - 1)) xctr = 0.5*(xmin + xmax) # h0 idx = x >= xctr + xi*t h_exact[idx] = h0 u_exact[idx] = 0 # h1 idx = x <= xctr - c1*t h_exact[idx] = h1 u_exact[idx] = 0 # h2 idx = ((x >= xctr + (u2-c2)*t) & (x < xctr + xi*t)) h_exact[idx] = h2 u_exact[idx] = u2 # h3 idx = ((x >= xctr - c1*t) & (x < xctr + (u2-c2)*t)) c3 = 1/3 * (2*c1 - (x-xctr)/t) h_exact[idx] = c3[idx]**2 / g u_exact[idx] = 2 * (c1-c3[idx]) # plot fig, axes = plt.subplots(nrows=2, ncols=1, num=1) plt.rc("font", size=10) ax = axes.flat[0] ax.plot(x_exact, h_exact, label='Exact') ax.scatter(x, h, marker="x", s=7, color="r", label='Pyro') ax.set_ylabel(r"$h$") ax.set_xlim(0, 1.0) ax.set_ylim(0, 1.1) ax = axes.flat[1] ax.plot(x_exact, u_exact) ax.scatter(x, u, marker="x", s=7, color="r") ax.set_ylabel(r"$u$") ax.set_xlim(0, 1.0) if (myg.nx > myg.ny): ax.set_xlabel(r"x") else: ax.set_xlabel(r"y") lgd = axes.flat[0].legend() plt.subplots_adjust(hspace=0.25) fig.set_size_inches(8.0, 8.0) plt.savefig("dam_compare.png", bbox_inches="tight")
bsd-3-clause
ContinuumIO/blaze
blaze/expr/functions.py
3
3572
""" Dispatches functions like ``sum`` to builtins, numpy, or blaze depending on input >>> from blaze import sum, symbol >>> sum([1, 2, 3]) 6 >>> type(sum([1, 2, 3])).__name__ 'int' >>> type(sum(np.array([1, 2, 3], dtype=np.int64))).__name__ 'int64' >>> t = symbol('t', 'var * {x: int, y: int}') >>> type(sum(t.x)).__name__ 'sum' """ from __future__ import absolute_import, division, print_function import math as pymath from numbers import Number import numpy as np import pandas as pd from multipledispatch import Dispatcher from ..dispatch import namespace from ..compatibility import builtins from . import reductions from . import math as blazemath from .core import base from .expressions import Expr, coalesce """ The following code creates reductions equivalent to the following: @dispatch(Expr) def sum(expr): return blaze.sum(expr) @dispatch(np.ndarray) def sum(x): return np.sum(x) @dispatch(object) def sum(o): return builtins.sum(o) As well as mathematical functions like the following @dispatch(Expr) def sqrt(expr): return blaze.expr.math.sqrt(expr) @dispatch(np.ndarray) def sqrt(x): return np.sqrt(x) @dispatch(object) def sqrt(o): return math.sqrt(o) """ math_names = '''abs sqrt sin cos tan sinh cosh tanh acos acosh asin asinh atan atanh exp log expm1 log10 log1p radians degrees ceil floor trunc isnan'''.split() binary_math_names = "atan2 copysign fmod hypot ldexp greatest least coalesce".split() reduction_names = '''any all sum min max mean var std'''.split() __all__ = math_names + binary_math_names + reduction_names types = { builtins: object, np: (np.ndarray, np.number), pymath: Number, blazemath: Expr, reductions: Expr, } binary_types = { builtins: [(object, object)], np: [((np.ndarray, np.number), (np.ndarray, np.number))], pymath: [(Number, Number)], blazemath: [(Expr, (Expr, base)), (base, Expr)] } def _coalesce_objects(lhs, rhs): # use pd.isnull for None, NaT, and others return lhs if not pd.isnull(lhs) else rhs def _coalesce_arrays(lhs, rhs): np.where(pd.isnull(lhs), rhs, lhs) fallback_binary_mappings = { 'greatest': { builtins: max, np: np.maximum, pymath: max, }, 'least': { builtins: min, np: np.minimum, pymath: min, }, 'coalesce': { builtins: _coalesce_objects, np: _coalesce_arrays, pymath: _coalesce_objects, blazemath: coalesce, }, } for funcname in math_names: # sin, sqrt, ceil, ... d = Dispatcher(funcname) for module, typ in types.items(): if hasattr(module, funcname): d.add((typ,), getattr(module, funcname)) namespace[funcname] = d locals()[funcname] = d for funcname in binary_math_names: # hypot, atan2, fmod, ... d = Dispatcher(funcname) for module, pairs in binary_types.items(): for pair in pairs: if hasattr(module, funcname): d.add(pair, getattr(module, funcname)) elif funcname in fallback_binary_mappings: assert module in fallback_binary_mappings[funcname], module.__name__ d.add(pair, fallback_binary_mappings[funcname][module]) namespace[funcname] = d locals()[funcname] = d for funcname in reduction_names: # any, all, sum, max, ... d = Dispatcher(funcname) for module, typ in types.items(): if hasattr(module, funcname): d.add((typ,), getattr(module, funcname)) namespace[funcname] = d locals()[funcname] = d
bsd-3-clause
tomlof/scikit-learn
examples/calibration/plot_compare_calibration.py
82
5012
""" ======================================== Comparison of Calibration of Classifiers ======================================== Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive class. LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods return biased probabilities, with different biases per method: * GaussianNaiveBayes tends to push probabilities to 0 or 1 (note the counts in the histograms). This is mainly because it makes the assumption that features are conditionally independent given the class, which is not the case in this dataset which contains 2 redundant features. * RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil and Caruana [1]: "Methods such as bagging and random forests that average predictions from a base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base models will bias predictions that should be near zero or one away from these values. Because predictions are restricted to the interval [0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict values larger than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We observe this effect most strongly with random forests because the base-level trees trained with random forests have relatively high variance due to feature subseting." As a result, the calibration curve shows a characteristic sigmoid shape, indicating that the classifier could trust its "intuition" more and return probabilities closer to 0 or 1 typically. * Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [1]), which focus on hard samples that are close to the decision boundary (the support vectors). .. topic:: References: .. [1] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ print(__doc__) # Author: Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np np.random.seed(0) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.calibration import calibration_curve X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=2) train_samples = 100 # Samples used for training the models X_train = X[:train_samples] X_test = X[train_samples:] y_train = y[:train_samples] y_test = y[train_samples:] # Create classifiers lr = LogisticRegression() gnb = GaussianNB() svc = LinearSVC(C=1.0) rfc = RandomForestClassifier(n_estimators=100) ############################################################################### # Plot calibration plots plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (gnb, 'Naive Bayes'), (svc, 'Support Vector Classification'), (rfc, 'Random Forest')]: clf.fit(X_train, y_train) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name, )) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.show()
bsd-3-clause
rtrwalker/geotecha
geotecha/beam_on_foundation/dingetal2012.py
1
16769
# geotecha - A software suite for geotechncial engineering # Copyright (C) 2018 Rohan T. Walker ([email protected]) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses/gpl.html. """ Ding et al (2012) "Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load". """ from __future__ import division, print_function import numpy as np import matplotlib.pyplot as plt from geotecha.mathematics.root_finding import find_n_roots from scipy import integrate from scipy.integrate import odeint import time from datetime import timedelta import datetime from collections import OrderedDict import os class DingEtAl2012(object): """Finite elastic Euler-Bernoulli beam resting on non-linear viscoelastic foundation subjected to a moving load. An implementation of Ding et al. (2012) [1]_. You don't need all the parameters. Basically if normalised values are equal None (i.e. default) then those properties will be calculated from the non normalised quantities. All calculations are done in normalised space. You only need the non-normalised variables if you want non-normalised output. Parameters ---------- BC : ["SS", "CC", "FF"], optional Boundary condition. Simply Supported (SS), Clamped Clamped ("CC"), Free Free (FF). Default BC="SS". nterms : integer, optional Number of terms for Galerkin truncation. Default nterms=50 E : float, optional Young's modulus of beam.(E in [1]_). rho : float, optional Mass density of beam. I : float, optional Second moment of area of beam (I in [1]_). A : float, optional Cross sectional area of beam L : float, optional Length of beam. (L in [1]_). k1 : float, optional Mean stiffness of foundation. k3 : float, optional Non linear stiffness of foundation. mu : float, optional Viscous damping of foundation. Fz : float, optional Load. v : float, optional Speed of the moving force. v_norm : float, optional normalised velocity = V * sqrt(rho / E). An example of a consistent set of units to get the correct v_norm is rho in kg/m^3, L in m, and E in Pa. kf : float, optional Normalised modulus of elasticity = 1 / L * sqrt(I / A). Fz_norm : float, optional Normalised load = Fz / (E * A). mu_norm : float, optional Normalised damping = mu / A * sqrt(L**2 / (rho * E)). k1_norm : float, optional Normalised mean stiffness = k1 * L**2 / (E * A). k3_norm : float, optional Normalised non-linear stiffness = k3 * L**4 / (E * A) nquad : integer, optional Number of quadrature points for numerical integration of non-linear k3*w**3*w_ term. Default nquad=30. Note I've had errors when n>35. For the special case of nquad=None then integration will be performed using scipy.integrate.quad; this is slower. Attributes ---------- phi : function Relevant Galerkin trial function. Depends on `BC`. See [1]_ for details. beta : 1d ndarray of `nterms` float beta terms in Galerkin trial function. xj : 1d ndarray of `nquad` float Quadrature integration points. Ij : 1d ndarray of `nquad` float Weighting coefficients for numerical integration. BC_coeff : int Coefficent to multiply the Fz and k3 terms in the ode. For `BC`="SS" BC_coeff=2, for `BC`="CC" or "FF" BC_coeff=2. See [1]_ Equation (31) and (32). t : 1d ndarray of float Raw time values. Only valid after running calulate_qk. t_norm : 1d ndarray of float Normlised time values = t / L * sqrt(E / rho). Only valid after running calulate_qk. qsol : 2d ndarray of shape(len(`t`), 2* `nterms`) float Values of Galerkin coefficients at each time i.e. qk(t) in [1]_. w(x) = sum(qk * phi_k(x)). Only valid after running calulate_qk. References ---------- .. [1] Ding, H., Chen, L.-Q., and Yang, S.-P. (2012). "Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load." Journal of Sound and Vibration, 331(10), 2426-2442. """ def __init__(self, BC="SS", nterms=50, E=None, I=None, rho=None, A=None, L=None, k1=None, k3=None, mu=None, Fz=None, v=None, v_norm=None, kf=None, Fz_norm=None, mu_norm=None, k1_norm=None, k3_norm=None, nquad=30): self.BC = BC self.nterms = nterms self.E = E self.I = I self.rho = rho self.I = I self.A = A self.L = L self.k1 = k1 self.k3 = k3 self.mu = mu self.Fz = Fz self.v = v self.v_norm = v_norm self.kf = kf self.Fz_norm = Fz_norm self.mu_norm = mu_norm self.k1_norm = k1_norm self.k3_norm = k3_norm self.nquad = nquad # normalised parameters if kf is None: self.kf = 1 / self.L * np.sqrt(self.I / self.A) if v_norm is None: self.v_norm = self.v * np.sqrt(self.rho / self.E) if self.kf is None: self.kf = 1 / self.L * np.sqrt(self.I / self.A) if Fz_norm is None: self.Fz_norm = self.Fz / (self.E * self.A) if self.mu_norm is None: self.mu_norm = self.mu / self.A * np.sqrt(self.L**2 / (self.rho * self.E)) if self.k1_norm is None: self.k1_norm = self.k1 * self.L**2 / (self.E * self.A) if self.k3_norm is None: self.k3_norm = self.k3 * self.L**4 / (self.E* self.A) # phi, beta, and quadrature points if self.BC == "SS": self.phi = self.phiSS self.beta = np.pi * (np.arange(self.nterms) + 1) if not self.nquad is None: self.xj = 0.5 * (1 - np.cos(np.pi * np.arange(self.nquad) / (self.nquad - 1))) self.BC_coeff = 2 elif self.BC == "CC" or self.BC == "FF": def _f(beta): return 1 - np.cos(beta) * np.cosh(beta) self.beta = find_n_roots(_f, n=self.nterms, x0=0.001, dx=3.14159 / 10, p=1.1) if not self.nquad is None: self.xj = 0.5*(1 - np.cos(np.pi * np.arange(self.nquad)/(self.nquad - 3))) self.xj[0] = 0 self.xj[1] = 0.0001 self.xj[-2] = 0.0001 self.xj[-1] = 0 self.BC_coeff = 1 # Coefficeint to multiply Fz(vt) and k3*Integral terms by if self.BC == "CC": self.phi = self.phiCC if self.BC == "FF": self.phi = self.phiFF self.beta[1:] = self.beta[0:-1] self.beta[0] = 0.0 else: raise ValueError("only BC='SS', 'CC' and 'FF' have been implemented, you have {}".format(self.BC)) # quadrature weighting if not self.nquad is None: rhs = np.reciprocal(np.arange(self.nquad, dtype=float) + 1) lhs = self.xj[np.newaxis, :] ** np.arange(self.nquad)[:, np.newaxis] self.Ij = np.linalg.solve(lhs, rhs) self.vsvdot = np.zeros(2 * self.nterms) #vector of state values for odeint def phiSS(self, x, beta): return np.sin(beta * x) def phiCC(self, x, beta): def _xi(beta): return (np.cosh(beta) - np.cos(beta))/(np.sinh(beta) - np.sin(beta)) return (np.cosh(beta * x) - np.cos(beta * x) + _xi(beta) * (np.sin(beta * x) - np.sinh(beta * x)) ) def phiFF(self, x, beta): def _xi(beta): return (-(np.cos(beta) - np.cosh(beta))/(np.sin(beta) - np.sinh(beta))) return (np.cos(beta * x) + np.cosh(beta * x) + _xi(beta) * (np.sin(beta * x) + np.sinh(beta * x)) ) def w(self, qk, x): """Nomalised vertcal deformation at x Parameters ---------- qk : 1d ndarray of nterm floats Galerkin coefficients. x : float nomalised distances to calculate deflection at. Returns ------- w : float vertical deformation at x value. """ return np.sum(qk * self.phi(x, self.beta)) def vectorfield(self, vsv, tnow, p=()): """ Parameters ---------- vsv : float Vector of the state variables. vsv = [q1, q2, ...qk, q1dot, q2dot, ..., qkdot] where qk is the kth galerkin coefficient and qkdot is the time derivative of the kth Galerkin coefficient. tnow : float Current time. p : various Vector of parameters Returns ------- vsvdot : vector of state variables first derivatives vsvdot = [q1dot, q2dot, ...qkdot, q1dotdot, q2dotdot, ..., qkdotdot] """ q = vsv[:self.nterms] qdot = vsv[self.nterms:] for i in range(self.nterms): self.vsvdot[i] = qdot[i] self.vsvdot[self.nterms + i] = - self.mu_norm * qdot[i] self.vsvdot[self.nterms + i] -= (self.k1_norm + self.kf**2 * self.beta[i]**4) * q[i] self.vsvdot[self.nterms + i] += self.BC_coeff * self.Fz_norm * self.phi(self.v_norm * tnow, self.beta[i]) if 1: # DIY quadrature Fj = np.sum(q[:,None] * self.phi(self.xj[None, :], self.beta[:,None]), axis=0)**3 y = np.sum(self.Ij * Fj * self.phi(self.xj, self.beta[i])) else: # scipy # print("yquad = {:12.2g}".format(y)) y, err = integrate.quad(self.w_cubed_wi, 0, 1, args=(q,i)) # print("yscip = {:12.2g}".format(y)) #maybe the quad integrate is not great for the oscillating function self.vsvdot[self.nterms + i] -= self.BC_coeff * self.k3_norm * y return self.vsvdot def w_cubed_wi(self, x, q, i): """non-linear cube term for numerical integration""" return self.w(q, x)**3 * self.phi(x, self.beta[i]) def calulate_qk(self, t=None, t_norm=None, **odeint_kwargs): """Calculate the nterm Galerkin coefficients qk at each time value Parameters ---------- t : float or array of float, optional Raw time values. t_norm : float or array of float, optional Normalised time values. If t_norm==None then it will be calculated from raw t values and other params t_norm = t / L * sqrt(E / rho). Notes ----- This method determines initializes self.t and self.t_norm and calculates `self.qsol`. """ if t_norm is None: self.t_norm = t / self.L * np.sqrt(self.E / self.rho) else: self.t_norm = t_norm self.t = t vsv0 = np.zeros(2*self.nterms) # initial conditions self.qsol = odeint(self.vectorfield, vsv0, self.t_norm, args=(), **odeint_kwargs) def wofx(self, x=None, x_norm=None, tslice=slice(None, None, None), normalise_w=True): """Deflection at distance x, and times t[tslice] Parameters ---------- x : float or ndarray of float, optional Raw values of x to calculate deflection at. Default x=None. x_norm : float or array of float, optional Normalised x values to calc deflection at. If x_norm==None then it will be calculated frm `x` and other properties : x_norm = x / L. Default x_norm=None. tslice : slice object, optional slice to select subset of time values. Default tslice=slice(None, None, None) i.e. all time values. Note the array of time values is already in the object (it was used to calc the qk galerkin coefficients). normalise_w : True/False, optional If True then output is normalised deflection. Default nomalise_w=True. Returns ------- w : array of float Deflections at x and self.t_norm[tslice] """ if x_norm is None: x_norm = x / self.L x_norm = np.atleast_1d(x_norm) v = np.zeros((len(x_norm), len(self.t_norm[tslice]))) for i, xx in enumerate(x_norm): for j, qq in enumerate(self.qsol[tslice, :self.nterms]): v[i, j] = self.w(qq, xx) if not normalise_w is None: v *= self.L if len(x_norm)==1: return v[0] else: return v def dingetal_figure_8(): """Reproduce Ding Et Al 2012 Figure 8 (might take a while). Note that a plot will be be saved to disk in current working directory as well as a timing file.""" start_time0 = time.time() ftime = datetime.datetime.fromtimestamp(start_time0).strftime('%Y-%m-%d %H%M%S') with open(ftime + ".txt", "w") as f: f.write(ftime + os.linesep) fig=plt.figure() ax = fig.add_subplot("111") ax.set_xlabel("time, s") ax.set_ylabel("w, m") ax.set_xlim(3.5, 4.5) for v in [50, 75, 150, 200]:#[50, 75, 150, 200] vstr="nterms" vfmt="{}" start_time1 = time.time() f.write("*" * 70 + os.linesep) vequals = "{}={}".format(vstr, vfmt.format(v)) f.write(vequals + os.linesep); print(vequals) pdict = OrderedDict( E = 6.998*1e9, #Pa rho = 2373, #kg/m3 L = 160, #m v_norm=0.01165, kf=5.41e-4, Fz_norm=1.013e-4, mu_norm=39.263, k1_norm=97.552, k3_norm=2.497e6, nterms=v, BC="CC", nquad=20,) t = np.linspace(0, 4.5, 400) f.write(repr(pdict) + os.linesep) for BC in ["SS"]:# "CC", "FF"]: pdict["BC"] = BC a = DingEtAl2012(**pdict) a.calulate_qk(t=t) x = t y = a.wofx(x_norm=0.5, normalise_w=False) ax.plot(x, y, label="x=0.5, {}".format(vequals)) end_time1 = time.time() elapsed_time = (end_time1 - start_time1); print("Run time={}".format(str(timedelta(seconds=elapsed_time)))) f.write("Run time={}".format(str(timedelta(seconds=elapsed_time))) + os.linesep) leg = ax.legend() leg.draggable() end_time0 = time.time() elapsed_time = (end_time0 - start_time0); print("Total run time={}".format(str(timedelta(seconds=elapsed_time)))) f.write("Total run time={}".format(str(timedelta(seconds=elapsed_time))) + os.linesep) plt.savefig(ftime+".pdf") plt.show() if __name__ == "__main__": pass # dingetal_figure_8()
gpl-3.0
rhyolight/nupic.research
projects/union_path_integration/plot_convergence.py
4
11807
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2018, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """Plot convergence chart.""" import collections import json import os import matplotlib.pyplot as plt import numpy as np CWD = os.path.dirname(os.path.realpath(__file__)) CHART_DIR = os.path.join(CWD, "charts") def chart(): if not os.path.exists(CHART_DIR): os.makedirs(CHART_DIR) # Convergence vs. number of objects, comparing # unique features # # Generated with: # python convergence_simulation.py --numObjects 200 400 600 800 1000 1200 1400 1600 1800 2000 --numUniqueFeatures 50 --locationModuleWidth 20 --resultName results/convergence_vs_num_objs_50_feats.json # python convergence_simulation.py --numObjects 200 400 600 800 1000 1200 1400 1600 1800 2000 --numUniqueFeatures 100 --locationModuleWidth 20 --resultName results/convergence_vs_num_objs_100_feats.json # python convergence_simulation.py --numObjects 200 400 600 800 1000 1200 1400 1600 1800 2000 --numUniqueFeatures 5000 --locationModuleWidth 20 --resultName results/convergence_vs_num_objs_5000_feats.json #plt.style.use("ggplot") markers = ("s", "o", "^") for feats, marker in zip((100, 200, 5000), markers): with open("results/convergence_vs_num_objs_{}_feats.json".format(feats), "r") as f: convVsObjects = json.load(f) yData = collections.defaultdict(list) for exp in convVsObjects: numObjects = int(str(exp[0]["numObjects"])) if "null" in exp[1]["convergence"].keys(): continue results = exp[1]["convergence"].items() total = 0 count = 0 for i, j in results: total += (int(str(i)) * j) count += j y = float(total) / float(count) yData[numObjects].append(y) x = list(sorted(yData.keys())) yData = sorted(yData.iteritems()) y = [float(sum(pair[1])) / float(len(pair[1])) if None not in pair[1] else None for pair in yData] std = [np.std(pair[1]) for pair in yData] yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] xError = x[:len(yBelow)] plt.plot( x, y, "{}-".format(marker), label="{} unique features".format(feats), ) #plt.fill_between(xError, yBelow, yAbove, alpha=0.3) plt.xlabel("Number of Objects") plt.xticks([(i+1)*200 for i in xrange(10)]) plt.ylabel("Average Number of Sensations") plt.legend(loc="center right") plt.tight_layout() plt.savefig(os.path.join(CHART_DIR, "convergence_vs_objects_w_feats.pdf")) plt.clf() # Convergence vs. number of objects, varying module size # NOT USED in Columns Plus # # Generated with: # TODO #plt.style.use("ggplot") #for cpm in (25, 100, 400): # with open("results/convergence_vs_num_objs_{}_cpm.json".format(cpm), "r") as f: # convVsObjs = json.load(f) # yData = collections.defaultdict(list) # for exp in convVsObjs: # results = exp[1]["convergence"].items() # total = 0 # count = 0 # for i, j in results: # total += (int(str(i)) * j) # count += j # y = float(total) / float(count) # numObjects = int(str(exp[0]["numObjects"])) # yData[numObjects].append(y) # x = list(sorted(yData.keys())) # yData = sorted(yData.iteritems()) # y = [float(sum(pair[1])) / float(len(pair[1])) for pair in yData] # std = [np.std(pair[1]) for pair in yData] # yBelow = [yi - stdi for yi, stdi in zip(y, std)] # yAbove = [yi + stdi for yi, stdi in zip(y, std)] # plt.plot( # x, y, "o-", label="{} cells per module".format(cpm), # ) # plt.fill_between(x, yBelow, yAbove, alpha=0.3) #plt.xlabel("Number of Objects") #plt.ylabel("Average Number of Sensations") #plt.legend(loc="upper left") #plt.tight_layout() #plt.savefig(os.path.join(CHART_DIR, "convergence_with_modsize.pdf")) #plt.clf() # Convergence vs. number of modules # # Generated with: # python convergence_simulation.py --numObjects 100 --numUniqueFeatures 100 --locationModuleWidth 5 --numModules 1 2 3 4 5 6 7 8 9 10 --resultName results/convergence_vs_num_modules_100_feats_25_cpm.json --repeat 10 # python convergence_simulation.py --numObjects 100 --numUniqueFeatures 100 --locationModuleWidth 10 --numModules 1 2 3 4 5 6 7 8 9 10 --resultName results/convergence_vs_num_modules_100_feats_100_cpm.json --repeat 10 # python convergence_simulation.py --numObjects 100 --numUniqueFeatures 100 --locationModuleWidth 20 --numModules 1 2 3 4 5 6 7 8 9 10 --resultName results/convergence_vs_num_modules_100_feats_400_cpm.json --repeat 10 #plt.style.use("ggplot") markers = ("s", "o", "^") for cpm, marker in zip((49, 100, 400), markers): with open("results/convergence_vs_num_modules_100_feats_{}_cpm.json".format(cpm), "r") as f: convVsMods100 = json.load(f) yData = collections.defaultdict(list) for exp in convVsMods100: results = exp[1]["convergence"].items() total = 0 count = 0 for i, j in results: if str(i) == "null": total = 50 * j else: total += (int(str(i)) * j) count += j y = float(total) / float(count) numModules = int(str(exp[0]["numModules"])) yData[numModules].append(y) x = [i+1 for i in xrange(20)] #y = [float(sum(pair[1])) / float(len(pair[1])) for pair in yData] y = [float(sum(yData[step])) / float(len(yData[step])) for step in x] #yData20 = yData[19][1] #y20 = float(sum(yData20)) / float(len(yData20)) yData = sorted(yData.iteritems()) std = [np.std(pair[1]) for pair in yData] yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "{}-".format(marker), label="{} cells per module".format(cpm), ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) # TODO: Update this to ideal? plt.plot([1, 20], [2.022, 2.022], "r--", label="Ideal") plt.xlabel("Number of Modules") plt.ylabel("Average Number of Sensations") plt.legend(loc="upper right") plt.ylim((0.0, 7.0)) plt.xticks([(i+1)*2 for i in xrange(10)]) plt.tight_layout() plt.savefig(os.path.join(CHART_DIR, "convergence_vs_modules_100_feats.pdf")) plt.clf() # Cumulative convergence # # Generated with: # python convergence_simulation.py --numObjects 100 --numUniqueFeatures 10 --locationModuleWidth 20 --thresholds 18 --resultName results/cumulative_convergence_400_cpm_10_feats_100_objs.json --repeat 10 # python convergence_simulation.py --numObjects 100 --numUniqueFeatures 10 --locationModuleWidth 10 --thresholds 19 --resultName results/cumulative_convergence_100_cpm_10_feats_100_objs.json --repeat 10 # python ideal_sim.py # python bof_sim.py numSteps = 12 # 1600 CPM yData = collections.defaultdict(list) with open("results/cumulative_convergence_1600_cpm_10_feats_100_objs.json", "r") as f: experiments = json.load(f) for exp in experiments: cum = 0 for i in xrange(40): step = i + 1 count = exp[1]["convergence"].get(str(step), 0) yData[step].append(count) x = [i+1 for i in xrange(numSteps)] y = [] tot = float(sum([sum(counts) for counts in yData.values()])) cum = 0.0 for step in x: counts = yData[step] cum += float(sum(counts)) y.append(100.0 * cum / tot) std = [np.std(yData[step]) for step in x] yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "s-", label="1600 Cells Per Module", ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) # 400 CPM yData = collections.defaultdict(list) with open("results/cumulative_convergence_400_cpm_10_feats_100_objs.json", "r") as f: experiments = json.load(f) for exp in experiments: cum = 0 for i in xrange(40): step = i + 1 count = exp[1]["convergence"].get(str(step), 0) yData[step].append(count) x = [i+1 for i in xrange(numSteps)] y = [] tot = float(sum([sum(counts) for counts in yData.values()])) cum = 0.0 for step in x: counts = yData[step] cum += float(sum(counts)) y.append(100.0 * cum / tot) std = [np.std(yData[step]) for step in x] yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "o-", label="400 Cells Per Module", ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) ## 289 CPM yData = collections.defaultdict(list) with open("results/cumulative_convergence_289_cpm_10_feats_100_objs_1.json", "r") as f: experiments = json.load(f) for exp in experiments: cum = 0 for i in xrange(40): step = i + 1 count = exp[1]["convergence"].get(str(step), 0) yData[step].append(count) x = [i+1 for i in xrange(numSteps)] y = [] tot = float(sum([sum(counts) for counts in yData.values()])) cum = 0.0 for step in x: counts = yData[step] cum += float(sum(counts)) y.append(100.0 * cum / tot) std = [np.std(yData[step]) for step in x] yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "^-", label="289 Cells Per Module", ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) # Ideal with open("results/ideal.json", "r") as f: idealResults = json.load(f) x = [i+1 for i in xrange(numSteps)] y = [] std = [np.std(idealResults.get(str(steps), [0])) for steps in x] tot = float(sum([sum(counts) for counts in idealResults.values()])) cum = 0.0 for steps in x: counts = idealResults.get(str(steps), []) if len(counts) > 0: cum += float(sum(counts)) y.append(100.0 * cum / tot) yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "x--", label="Ideal Observer", ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) # BOF with open("results/bof.json", "r") as f: bofResults = json.load(f) x = [i+1 for i in xrange(numSteps)] y = [] std = [np.std(bofResults.get(str(steps), [0])) for steps in x] tot = float(sum([sum(counts) for counts in bofResults.values()])) cum = 0.0 for steps in x: counts = bofResults.get(str(steps), []) if len(counts) > 0: cum += float(sum(counts)) y.append(100.0 * cum / tot) yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "d--", label="Bag of Features", ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) # Formatting plt.xlabel("Number of Sensations") plt.ylabel("Cumulative Accuracy") plt.legend(loc="center right") plt.xticks([(i+1)*2 for i in xrange(6)]) plt.tight_layout() plt.savefig(os.path.join(CHART_DIR, "cumulative_accuracy.pdf")) plt.clf() if __name__ == "__main__": chart()
gpl-3.0
rsivapr/scikit-learn
sklearn/decomposition/tests/test_fastica.py
5
7727
""" Test the fastica algorithm. """ import warnings import itertools import numpy as np from scipy import stats from nose.tools import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_equal from sklearn.decomposition import FastICA, fastica, PCA from sklearn.decomposition.fastica_ import _gs_decorrelation from sklearn.externals.six import moves def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): """ Test gram schmidt orthonormalization """ # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert_less((w ** 2).sum(), 1.e-10) w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert_less((tmp[:5] ** 2).sum(), 1.e-10) def test_fastica_simple(add_noise=False): """ Test the FastICA algorithm on very simple data. """ rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x ** 3, (3 * x ** 2).mean(axis=-1) algos = ['parallel', 'deflation'] nls = ['logcosh', 'exp', 'cube', g_test] whitening = [True, False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo) assert_raises(ValueError, fastica, m.T, fun=np.tanh, algorithm=algo) else: X = PCA(n_components=2, whiten=True).fit_transform(m.T) k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False) assert_raises(ValueError, fastica, X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) # Test FastICA class _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0) ica = FastICA(fun=nl, algorithm=algo, random_state=0) sources = ica.fit_transform(m.T) assert_equal(ica.components_.shape, (2, 2)) assert_equal(sources.shape, (1000, 2)) assert_array_almost_equal(sources_fun, sources) assert_array_almost_equal(sources, ica.transform(m.T)) assert_equal(ica.mixing_.shape, (2, 2)) for fn in [np.tanh, "exp(-.5(x^2))"]: ica = FastICA(fun=fn, algorithm=algo, random_state=0) assert_raises(ValueError, ica.fit, m.T) assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] ica = FastICA(whiten=False, random_state=0) ica.fit(m) ica.mixing_ # test for issue #697 with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") ica = FastICA(n_components=1, whiten=False, random_state=0) ica.fit(m) # should raise warning assert_true(len(w) == 1) # 1 warning should be raised def test_non_square_fastica(add_noise=False): """ Test the FastICA algorithm on very simple data. """ rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3) def test_fit_transform(): """Test FastICA.fit_transform""" rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) for whiten, n_components in [[True, 5], [False, 10]]: ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) Xt = ica.fit_transform(X) assert_equal(ica.components_.shape, (n_components, 10)) assert_equal(Xt.shape, (100, n_components)) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) ica.fit(X) assert_equal(ica.components_.shape, (n_components, 10)) Xt2 = ica.transform(X) assert_array_almost_equal(Xt, Xt2) def test_inverse_transform(): """Test FastICA.inverse_transform""" n_features = 10 n_samples = 100 n1, n2 = 5, 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected = {(True, n1): (n_features, n1), (True, n2): (n_features, n2), (False, n1): (n_features, n2), (False, n2): (n_features, n2)} for whiten in [True, False]: for n_components in [n1, n2]: ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) Xt = ica.fit_transform(X) expected_shape = expected[(whiten, n_components)] assert_equal(ica.mixing_.shape, expected_shape) X2 = ica.inverse_transform(Xt) assert_equal(X.shape, X2.shape) # reversibility test in non-reduction case if n_components == X.shape[1]: assert_array_almost_equal(X, X2) if __name__ == '__main__': import nose nose.run(argv=['', __file__])
bsd-3-clause
UNR-AERIAL/scikit-learn
sklearn/datasets/tests/test_mldata.py
384
5221
"""Test functionality of mldata fetching utilities.""" import os import shutil import tempfile import scipy as sp from sklearn import datasets from sklearn.datasets import mldata_filename, fetch_mldata from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import mock_mldata_urlopen from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import with_setup from sklearn.utils.testing import assert_array_equal tmpdir = None def setup_tmpdata(): # create temporary dir global tmpdir tmpdir = tempfile.mkdtemp() os.makedirs(os.path.join(tmpdir, 'mldata')) def teardown_tmpdata(): # remove temporary dir if tmpdir is not None: shutil.rmtree(tmpdir) def test_mldata_filename(): cases = [('datasets-UCI iris', 'datasets-uci-iris'), ('news20.binary', 'news20binary'), ('book-crossing-ratings-1.0', 'book-crossing-ratings-10'), ('Nile Water Level', 'nile-water-level'), ('MNIST (original)', 'mnist-original')] for name, desired in cases: assert_equal(mldata_filename(name), desired) @with_setup(setup_tmpdata, teardown_tmpdata) def test_download(): """Test that fetch_mldata is able to download and cache a data set.""" _urlopen_ref = datasets.mldata.urlopen datasets.mldata.urlopen = mock_mldata_urlopen({ 'mock': { 'label': sp.ones((150,)), 'data': sp.ones((150, 4)), }, }) try: mock = fetch_mldata('mock', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data"]: assert_in(n, mock) assert_equal(mock.target.shape, (150,)) assert_equal(mock.data.shape, (150, 4)) assert_raises(datasets.mldata.HTTPError, fetch_mldata, 'not_existing_name') finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_one_column(): _urlopen_ref = datasets.mldata.urlopen try: dataname = 'onecol' # create fake data set in cache x = sp.arange(6).reshape(2, 3) datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}}) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "data"]: assert_in(n, dset) assert_not_in("target", dset) assert_equal(dset.data.shape, (2, 3)) assert_array_equal(dset.data, x) # transposing the data array dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdir) assert_equal(dset.data.shape, (3, 2)) finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_multiple_column(): _urlopen_ref = datasets.mldata.urlopen try: # create fake data set in cache x = sp.arange(6).reshape(2, 3) y = sp.array([1, -1]) z = sp.arange(12).reshape(4, 3) # by default dataname = 'threecol-default' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ( { 'label': y, 'data': x, 'z': z, }, ['z', 'data', 'label'], ), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by order dataname = 'threecol-order' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['y', 'x', 'z']), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by number dataname = 'threecol-number' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['z', 'x', 'y']), }) dset = fetch_mldata(dataname, target_name=2, data_name=0, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) assert_array_equal(dset.data, z) assert_array_equal(dset.target, y) # by name dset = fetch_mldata(dataname, target_name='y', data_name='z', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) finally: datasets.mldata.urlopen = _urlopen_ref
bsd-3-clause
carrillo/scikit-learn
sklearn/tests/test_kernel_approximation.py
244
7588
import numpy as np from scipy.sparse import csr_matrix from sklearn.utils.testing import assert_array_equal, assert_equal, assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal, assert_raises from sklearn.utils.testing import assert_less_equal from sklearn.metrics.pairwise import kernel_metrics from sklearn.kernel_approximation import RBFSampler from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.kernel_approximation import SkewedChi2Sampler from sklearn.kernel_approximation import Nystroem from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel # generate data rng = np.random.RandomState(0) X = rng.random_sample(size=(300, 50)) Y = rng.random_sample(size=(300, 50)) X /= X.sum(axis=1)[:, np.newaxis] Y /= Y.sum(axis=1)[:, np.newaxis] def test_additive_chi2_sampler(): # test that AdditiveChi2Sampler approximates kernel on random data # compute exact kernel # appreviations for easier formular X_ = X[:, np.newaxis, :] Y_ = Y[np.newaxis, :, :] large_kernel = 2 * X_ * Y_ / (X_ + Y_) # reduce to n_samples_x x n_samples_y by summing over features kernel = (large_kernel.sum(axis=2)) # approximate kernel mapping transform = AdditiveChi2Sampler(sample_steps=3) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) X_sp_trans = transform.fit_transform(csr_matrix(X)) Y_sp_trans = transform.transform(csr_matrix(Y)) assert_array_equal(X_trans, X_sp_trans.A) assert_array_equal(Y_trans, Y_sp_trans.A) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) # test error on invalid sample_steps transform = AdditiveChi2Sampler(sample_steps=4) assert_raises(ValueError, transform.fit, X) # test that the sample interval is set correctly sample_steps_available = [1, 2, 3] for sample_steps in sample_steps_available: # test that the sample_interval is initialized correctly transform = AdditiveChi2Sampler(sample_steps=sample_steps) assert_equal(transform.sample_interval, None) # test that the sample_interval is changed in the fit method transform.fit(X) assert_not_equal(transform.sample_interval_, None) # test that the sample_interval is set correctly sample_interval = 0.3 transform = AdditiveChi2Sampler(sample_steps=4, sample_interval=sample_interval) assert_equal(transform.sample_interval, sample_interval) transform.fit(X) assert_equal(transform.sample_interval_, sample_interval) def test_skewed_chi2_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel c = 0.03 # appreviations for easier formular X_c = (X + c)[:, np.newaxis, :] Y_c = (Y + c)[np.newaxis, :, :] # we do it in log-space in the hope that it's more stable # this array is n_samples_x x n_samples_y big x n_features log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) - np.log(X_c + Y_c)) # reduce to n_samples_x x n_samples_y by summing over features in log-space kernel = np.exp(log_kernel.sum(axis=2)) # approximate kernel mapping transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) def test_rbf_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel gamma = 10. kernel = rbf_kernel(X, Y, gamma=gamma) # approximate kernel mapping rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) X_trans = rbf_transform.fit_transform(X) Y_trans = rbf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased np.abs(error, out=error) assert_less_equal(np.max(error), 0.1) # nothing too far off assert_less_equal(np.mean(error), 0.05) # mean is fairly close def test_input_validation(): # Regression test: kernel approx. transformers should work on lists # No assertions; the old versions would simply crash X = [[1, 2], [3, 4], [5, 6]] AdditiveChi2Sampler().fit(X).transform(X) SkewedChi2Sampler().fit(X).transform(X) RBFSampler().fit(X).transform(X) X = csr_matrix(X) RBFSampler().fit(X).transform(X) def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel linear_kernel = lambda X, Y: np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert_true(np.all(np.isfinite(Y))) def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
bsd-3-clause
dseredyn/velma_scripts
scripts/symbolic_planner3.py
1
26371
#!/usr/bin/env python # Copyright (c) 2015, Robot Control and Pattern Recognition Group, # Institute of Control and Computation Engineering # Warsaw University of Technology # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Warsaw University of Technology nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <COPYright HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Author: Dawid Seredynski # import roslib roslib.load_manifest('velma_scripts') import rospy import tf from std_msgs.msg import * from sensor_msgs.msg import * from geometry_msgs.msg import * from barrett_hand_controller_msgs.msg import * from cartesian_trajectory_msgs.msg import * from visualization_msgs.msg import * import actionlib from actionlib_msgs.msg import * from threading import Lock import tf from tf import * from tf.transformations import * import tf_conversions.posemath as pm from tf2_msgs.msg import * import force_control_msgs.msg import PyKDL import math import numpy as np import copy import matplotlib.pyplot as plt import thread import random import itertools import operator import rospkg from scipy import optimize import re def opened(ws, ob): if ob[0] == 'Door': assert "state" in ob[1] return ob[1]["state"] == "opened" raise TypeError("wrong type in predicate opened: " + ob[0]) def reachable(ws, o): if o[0] == 'Object': assert "pose" in o[1] str_list = o[1]["pose"].split() if str_list[0] == "inside": cont_name = str_list[1] cont = ws.getObject(cont_name) door1_name = cont[1]["door1"] door2_name = cont[1]["door2"] if opened(ws, ws.getObject(door1_name)) and opened(ws, ws.getObject(door2_name)): return True else: return False else: return True raise TypeError("wrong types in predicate reachable: " + o[0] + " " + c[0]) def inside(ws, o1, o2): if o1[0] == 'Object' and o2[0] == 'Container': assert "pose" in o1[1] str_list = o1[1]["pose"].split() if str_list[0] == "inside": cont_name = str_list[1] if cont_name == o2[1]["name"]: return True else: return False else: return False raise TypeError("wrong types in predicate inside: " + o1[0] + " " + o2[0]) def part_of(ws, d, o): if d[0] == 'Door' and o[0] == 'Container': if o[1]["door1"] == d[1]["name"] or o[1]["door2"] == d[1]["name"]: return True else: return False raise TypeError("wrong types in predicate part_of: " + d[0] + " " + o[0]) def free(ws, ob): if ob[0] == 'Manipulator': assert "grasped_name" in ob[1] return ob[1]["grasped_name"] == None raise TypeError("wrong type in predicate free: " + ob[0]) def grasped(ws, ob1, ob2): if ob1[0] == 'Manipulator' and ob2[0] == 'Door': assert "grasped_name" in ob1[1] assert "name" in ob2[1] return ob1[1]["grasped_name"] == ob2[1]["name"] if ob1[0] == 'Manipulator' and ob2[0] == 'Object': assert "grasped_name" in ob1[1] assert "name" in ob2[1] return ob1[1]["grasped_name"] == ob2[1]["name"] raise TypeError("wrong types in predicate grasped: " + ob1[0] + " " + ob2[0]) def conf_feasible(ws, ob): if ob[0] == 'Manipulator': assert "conf_feasible" in ob[1] return ob[1]["conf_feasible"] raise TypeError("wrong type in predicate conf_feasible: " + ob[0]) def ajar(ws, ob): if ob[0] == 'Door': assert "state" in ob[1] return ob[1]["state"] == "ajar" raise TypeError("wrong type in predicate ajar: " + ob[0]) def closed(ws, ob): if ob[0] == 'Door': assert "state" in ob[1] return ob[1]["state"] == "closed" raise TypeError("wrong type in predicate closed: " + ob[0]) def pose_certain(ws, ob): if ws.typeMatch(ob[0], 'VerticalPlane'): assert "pose_certain" in ob[1] return ob[1]["pose_certain"] raise TypeError("wrong type in predicate pose_certain: " + ob[0]) # arguments: expr_str, parameters # returned value: # dictionary: pred_str:(pred_name, [arg1_name, arg2_name,...], [arg1_type, arg2_type,...]): def extractPredicatesAbst(expr_str, parameters): assert parameters != None result = {} e = 0 while True: s = expr_str.find("[", e) if s < 0: break e = expr_str.find("]", s)+1 if expr_str[s+1:e-1] in result: continue exp = expr_str[s+1:e-1].split() pred_name = exp[0] arg_name = [] arg_type = [] for idx in range(1, len(exp)): assert exp[idx][0] == "?" arg_name.append(exp[idx]) arg_type.append( parameters[exp[idx]] ) result[expr_str[s+1:e-1]] = (pred_name, arg_name, arg_type) return result # arguments: expr_str, parameters # returned value: # dictionary: pred_str:(pred_name, [obj1_name, obj2_name,...], [arg1_name, arg2_name,...], [arg1_type, arg2_type,...]): def extractPredicates(expr_str, parameters, obj_types_map): result = {} e = 0 while True: s = expr_str.find("[", e) if s < 0: break e = expr_str.find("]", s)+1 if expr_str[s+1:e-1] in result: continue exp = expr_str[s+1:e-1].split() pred_name = exp[0] obj_names = [] arg_names = [] arg_types = [] for idx in range(1, len(exp)): if parameters != None and exp[idx] in parameters: assert exp[idx][0] == "?" obj_names.append( None ) arg_names.append( exp[idx] ) arg_types.append( parameters[exp[idx]] ) else: assert exp[idx][0] != "?" obj_names.append( exp[idx] ) arg_names.append( None ) if obj_types_map != None: assert exp[idx] in obj_types_map arg_types.append( obj_types_map[exp[idx]] ) result[expr_str[s+1:e-1]] = (pred_name, obj_names, arg_names, arg_types) return result def getAllPossibilities(goal_exp, parameters, obj_types_map): # get all required conditions that archieve the goal expression goal_pred = extractPredicates(goal_exp, parameters, obj_types_map) goal_product = itertools.product([True, False], repeat = len(goal_pred)) goal_cases = [] for subset in goal_product: goal_str = goal_exp i = 0 case = {} for pred in goal_pred: goal_str = goal_str.replace("["+pred+"]", str(subset[i])) case[pred] = (goal_pred[pred], subset[i]) i += 1 if eval(goal_str): goal_cases.append(case) return goal_cases def substitute(exp_str, subst_map): result = exp_str for s in subst_map: result = result.replace(s, subst_map[s]) return result def generateSubstitutionCases(obj_type_map, parameters, substitutions): # get other substitutions subst2 = {} subst2_inv = {} type_pool = {} for var in parameters: if not var in substitutions: var_type = parameters[var] subst2[var] = var_type if not var_type in subst2_inv: subst2_inv[var_type] = [var] else: subst2_inv[var_type].append(var) if not var_type in type_pool: objs = obj_type_map[var_type] type_pool[var_type] = [] for obj in objs: obj_used = False for vv in substitutions: if obj == substitutions[vv]: obj_used = True if not obj_used: type_pool[var_type].append(obj) else: assert False # ok ll = [] ll_types = [] # generate cases for substitution subst_cases = [] for var_type in subst2_inv: list_a = [] x = itertools.combinations( type_pool[var_type], len(subst2_inv[var_type]) ) for elem in x: p = itertools.permutations(elem) for e in p: list_a.append(e) ll.append( list_a ) ll_types.append(var_type) prod = itertools.product(*ll) for e in prod: s_case = {} for ti in range(len(ll_types)): type_name = ll_types[ti] for vi in range(len(e[ti])): subst_var = subst2_inv[type_name][vi] subst_dest = e[ti][vi] s_case[subst_var] = subst_dest subst_cases.append(s_case) return subst_cases class WorldState: def __init__(self): self.objects_t_n_map = {} self.objects_n_t_map = {} self.objects_n_map = {} self.types_t_b_map = {} self.types_t_attr_map = {} predicates = [free, grasped, conf_feasible, opened, ajar, closed, pose_certain, inside, reachable, part_of] self.predicates_map = {} for pred in predicates: self.predicates_map[pred.__name__] = pred def addType(self, type_name, base_types, attributes): assert not type_name in self.types_t_b_map assert not type_name in self.types_t_attr_map self.types_t_b_map[type_name] = base_types self.types_t_attr_map[type_name] = attributes def getPred(self, name, args): arg_names = args.split() arg_list = [] for arg in arg_names: arg_list.append( self.objects_n_map[arg] ) return self.predicates_map[name](self, *arg_list) def simulateAction(self, a, args): arg_names = args.split() arg_list = [] for arg in arg_names: arg_list.append( self.objects_n_map[arg] ) return a.actionSim(*arg_list) def addObject(self, obj_type, obj_name, obj_parameters): assert obj_type in self.types_t_b_map assert not obj_name in self.objects_n_map assert not "name" in obj_parameters if not obj_type in self.objects_t_n_map: self.objects_t_n_map[obj_type] = [] self.objects_t_n_map[obj_type].append( obj_name ) for attr in self.types_t_attr_map[obj_type]: if not attr in obj_parameters: raise TypeError("missing attribute " + attr + " in object " + obj_name + " of class " + obj_type) for tb in self.types_t_b_map[obj_type]: for attr in self.types_t_attr_map[tb]: if not attr in obj_parameters: raise TypeError("missing attribute " + attr + " in object " + obj_name + " of class " + tb) for tb in self.types_t_b_map[obj_type]: if not tb in self.objects_t_n_map: self.objects_t_n_map[tb] = [] self.objects_t_n_map[tb].append( obj_name ) obj_parameters["name"] = obj_name self.objects_n_map[obj_name] = (obj_type, obj_parameters) self.objects_n_t_map[obj_name] = obj_type def getObject(self, obj_name): assert obj_name in self.objects_n_map return self.objects_n_map[obj_name] def typeMatch(self, type_name, base_type): assert type_name in self.types_t_b_map return (base_type == type_name) or (base_type in self.types_t_b_map[type_name]) def getEffect(self, action, pred_name, pred_objs, pred_types, pred_value): for pred_str in action.effect_map: substitutions = {} if action.effect_map[pred_str][0] == pred_name: match = True for arg_i in range(len(pred_types)): if not self.typeMatch(pred_types[arg_i], action.effect_map[pred_str][2][arg_i]): match = False break substitutions[ action.effect_map[pred_str][1][arg_i] ] = pred_objs[arg_i] if match and pred_value: return substitutions return None class Action: def __init__(self, name, parameters, precondition, effect, rt_failure, action_sim): self.name = name par = parameters.split(",") self.parameters = {} self.param_list = [] for p in par: decl = p.split() self.parameters[decl[0]] = decl[1] self.param_list.append( decl[0] ) self.precondition = precondition self.rt_failure = rt_failure self.effect_map = extractPredicatesAbst(effect, self.parameters) self.action_sim = action_sim def actionSim(self, *args): if self.action_sim != None: return self.action_sim(*args) return None class Scenario: def __init__(self, init_state, goal, actions): self.init_state = copy.deepcopy(init_state) self.goal = copy.copy(goal) self.actions = actions self.action_map = {} for a in self.actions: self.action_map[a.name] = a self.steps = [ (None, self.init_state, None, None), (self.goal, None, None, None) ] def processGoal(self, goal_pred_list, world_state): result_steps = [] indent_str = " " # step_added = False for pred in goal_pred_list: predicate = goal_pred_list[pred][0] pred_value = goal_pred_list[pred][1] pred_name = predicate[0] pred_objs = predicate[1] pred_types = predicate[3] all_inst = True pred_args = "" for obj_name in pred_objs: if obj_name == None: all_inst = False break pred_args += obj_name + " " assert all_inst curr_value = world_state.getPred(pred_name, pred_args) print indent_str + " ", pred_value, "==", pred_name, pred_objs, pred_types, " (current value: ", curr_value, ")" # the predicate is not yet satisfied if curr_value != pred_value: print indent_str + " ", "not satisfied" solution_found = False for a in self.actions: # get certain substitutions for a given action substitutions = world_state.getEffect(a, pred_name, pred_objs, pred_types, pred_value) if substitutions != None: action_found = True print indent_str + " ", a.name, substitutions # print world_state.objects_t_n_map subst_cases = generateSubstitutionCases(world_state.objects_t_n_map, a.parameters, substitutions) # fork here: substitutions sc = subst_cases[0] sc_all = sc.copy() sc_all.update(substitutions) new_state = copy.deepcopy(world_state) action_args = "" for par_name in a.param_list: obj_name = sc_all[par_name] action_args += obj_name + " " new_state.simulateAction(a, action_args) precond = substitute(a.precondition, sc_all) print "step added", a.name, precond # self.steps.insert( s_idx+1, (precond, new_state, a.name, sc_all) ) result_steps.append( (precond, new_state, a.name, sc_all) ) # step_added = True # break # if step_added: # break return result_steps #step_added def process(self): indent_str = " " all_c = 1 while True: print "*" print "*" print "*" for s_idx in range(0, len(self.steps)-1): prev_step = self.steps[s_idx] next_step = self.steps[s_idx+1] goal = next_step[0] world_state = prev_step[1] print "iterating steps:" print "getAllPossibilities", goal posi = getAllPossibilities(goal, None, world_state.objects_n_t_map) # fork here: goal variants p = posi[0] all_c *= len(posi) # step_added = False new_steps = self.processGoal(posi[0], world_state) if len(new_steps) > 0: print "************* possible substitutions:" for st in new_steps: print st[2], st[3] print "*************" all_c *= len(new_steps) step_added = True self.steps.insert( s_idx+1, new_steps[0] ) else: step_added = False if step_added: break if not step_added: break # post process all steps - propagate world changes for s_idx in range(0, len(self.steps)-1): prev_step = self.steps[s_idx] next_step = self.steps[s_idx+1] world_state = prev_step[1] action_name = next_step[2] sc_all = next_step[3] if action_name != None: a = self.action_map[action_name] new_state = copy.deepcopy(world_state) action_args = "" for par_name in a.param_list: obj_name = sc_all[par_name] action_args += obj_name + " " new_state.simulateAction(a, action_args) print "world state: " + a.name, sc_all self.steps[s_idx+1] = (self.steps[s_idx+1][0], new_state, self.steps[s_idx+1][2], self.steps[s_idx+1][3]) if rospy.is_shutdown(): break print "steps:" for s in self.steps: print s[2], s[3] print "all_c", all_c return class SymbolicPlanner: """ class for SymbolicPlanner """ def __init__(self, pub_marker=None): pass def spin(self): ws = WorldState() ws.addType("VerticalPlane", [], ["pose_certain"]) ws.addType("Container", [], ["door1", "door2"]) ws.addType("Door", ["VerticalPlane"], ["state", "parent"]) ws.addType("Manipulator", [], ["grasped_name", "conf_feasible"]) ws.addType("Object", [], ["pose"]) ws.addObject("Container", "cab", {"door1":"door_cab_l", "door2":"door_cab_r"}) ws.addObject("Door", "door_cab_l", {"state":"closed", "parent":"cab", "pose_certain":False}) ws.addObject("Door", "door_cab_r", {"state":"closed", "parent":"cab", "pose_certain":False}) ws.addObject("Manipulator", "man_l", {"grasped_name":None, "conf_feasible":True}) ws.addObject("Manipulator", "man_r", {"grasped_name":None, "conf_feasible":True}) ws.addObject("Object", "jar", {"pose":"inside cab"}) # self.goal = "([opened ?door_cab_r] or (not [opened ?door_cab_r])) and [closed ?door_cab_l]" # self.goal = "[opened door_cab_r] and [free man_l]" # self.goal = "[opened door_cab_r] and [free man_l] and [grasped man_r jar]" # self.goal = "[grasped man_r jar]" self.goal = "[closed door_cab_r] and [closed door_cab_l] and [free man_l] and [grasped man_r jar]" # unit tests assert ws.getPred("free", "man_l") == True assert ws.getPred("grasped", "man_l door_cab_l") == False assert ws.getPred("conf_feasible", "man_l") == True def a_explore_sim(d, m): assert d != None assert "pose_certain" in d[1] assert d[1]["pose_certain"] == False d[1]["pose_certain"] = True a_explore = Action("explore", "?vp VerticalPlane,?m Manipulator", "[free ?m] and (not [pose_certain ?vp])", "[pose_certain ?vp]", "", a_explore_sim) def a_grasp_door_sim(d, m): assert d != None assert m != None assert "grasped_name" in m[1] # assert m[1]["grasped_name"] == None assert "name" in d[1] m[1]["grasped_name"] = d[1]["name"] a_grasp_door = Action("grasp_door", "?d Door,?m Manipulator", "[free ?m] and [pose_certain ?d]", "[grasped ?m ?d]", "", a_grasp_door_sim) def a_ungrasp_door_sim(d, m): assert m != None m.is_free = True m.grasped_name = None a_ungrasp_door = Action("ungrasp_door", "?d Door,?m Manipulator", "[grasped ?m ?d]", "[free ?m]", "", a_ungrasp_door_sim) def a_ungrasp_sim(m): assert m != None assert "grasped_name" in m[1] assert m[1]["grasped_name"] != None m[1]["grasped_name"] = None a_ungrasp = Action("ungrasp", "?m Manipulator", "not [free ?m]", "[free ?m]", "", a_ungrasp_sim) def a_open_door_sim(d, m): assert d != None assert "state" in d[1] d[1]["state"] = "opened" a_open_door = Action("open_door", "?d Door,?m Manipulator", "[grasped ?m ?d] and [conf_feasible ?m] and ([closed ?d] or [ajar ?d])", "[opened ?d]", "[grasped ?m ?d] and (not [conf_feasible ?m]) and ([closed ?d] or [ajar ?d])", a_open_door_sim) def a_close_door_sim(d, m): assert d != None assert "state" in d[1] d[1]["state"] = "closed" a_close_door = Action("close_door", "?d Door,?m Manipulator", "[grasped ?m ?d] and [conf_feasible ?m] and ([opened ?d] or [ajar ?d])", "[closed ?d]", "", a_close_door_sim) def a_grasp_object_sim(o, m): assert o != None assert m != None assert "grasped_name" in m[1] assert m[1]["grasped_name"] == None assert "name" in o[1] m[1]["grasped_name"] = o[1]["name"] a_grasp_object = Action("grasp_object", "?o Object,?m Manipulator", "[free ?m] and [reachable ?o]", "[grasped ?m ?o]", "", a_grasp_object_sim) def a_uncover_sim(o1, o2, m): assert o1 != None assert o2 != None assert m != None m.is_free = False m.grasped_name = o.name a_uncover = Action("uncover", "?o Object,?c Container,?d1 Door,?d2 Door", "(not [reachable ?o]) and [inside ?o ?c] and [part_of ?d1 ?c] and [part_of ?d2 ?c] and [opened ?d1] and [opened ?d2]", "[reachable ?o]", "", None) self.actions = [a_explore, a_grasp_door, a_ungrasp, a_open_door, a_close_door, a_grasp_object, a_uncover] s = Scenario(ws, self.goal, self.actions) s.process() return if __name__ == '__main__': rospy.init_node('symbolic_planner') task = SymbolicPlanner() task.spin()
bsd-3-clause
xubenben/scikit-learn
sklearn/gaussian_process/tests/test_gaussian_process.py
267
6813
""" Testing for Gaussian Process module (sklearn.gaussian_process) """ # Author: Vincent Dubourg <[email protected]> # Licence: BSD 3 clause from nose.tools import raises from nose.tools import assert_true import numpy as np from sklearn.gaussian_process import GaussianProcess from sklearn.gaussian_process import regression_models as regression from sklearn.gaussian_process import correlation_models as correlation from sklearn.datasets import make_regression from sklearn.utils.testing import assert_greater f = lambda x: x * np.sin(x) X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = f(X).ravel() def test_1d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a one-dimensional Gaussian Process model. # Check random start optimization. # Test the interpolating property. gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=random_start, verbose=False).fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) y2_pred, MSE2 = gp.predict(X2, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.) and np.allclose(MSE2, 0., atol=10)) def test_2d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a two-dimensional Gaussian Process model accounting for # anisotropy. Check random start optimization. # Test the interpolating property. b, kappa, e = 5., .5, .1 g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2. X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) y = g(X).ravel() thetaL = [1e-4] * 2 thetaU = [1e-1] * 2 gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=[1e-2] * 2, thetaL=thetaL, thetaU=thetaU, random_start=random_start, verbose=False) gp.fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.)) eps = np.finfo(gp.theta_.dtype).eps assert_true(np.all(gp.theta_ >= thetaL - eps)) # Lower bounds of hyperparameters assert_true(np.all(gp.theta_ <= thetaU + eps)) # Upper bounds of hyperparameters def test_2d_2d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a two-dimensional Gaussian Process model accounting for # anisotropy. Check random start optimization. # Test the GP interpolation for 2D output b, kappa, e = 5., .5, .1 g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2. f = lambda x: np.vstack((g(x), g(x))).T X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) y = f(X) gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=[1e-2] * 2, thetaL=[1e-4] * 2, thetaU=[1e-1] * 2, random_start=random_start, verbose=False) gp.fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.)) @raises(ValueError) def test_wrong_number_of_outputs(): gp = GaussianProcess() gp.fit([[1, 2, 3], [4, 5, 6]], [1, 2, 3]) def test_more_builtin_correlation_models(random_start=1): # Repeat test_1d and test_2d for several built-in correlation # models specified as strings. all_corr = ['absolute_exponential', 'squared_exponential', 'cubic', 'linear'] for corr in all_corr: test_1d(regr='constant', corr=corr, random_start=random_start) test_2d(regr='constant', corr=corr, random_start=random_start) test_2d_2d(regr='constant', corr=corr, random_start=random_start) def test_ordinary_kriging(): # Repeat test_1d and test_2d with given regression weights (beta0) for # different regression models (Ordinary Kriging). test_1d(regr='linear', beta0=[0., 0.5]) test_1d(regr='quadratic', beta0=[0., 0.5, 0.5]) test_2d(regr='linear', beta0=[0., 0.5, 0.5]) test_2d(regr='quadratic', beta0=[0., 0.5, 0.5, 0.5, 0.5, 0.5]) test_2d_2d(regr='linear', beta0=[0., 0.5, 0.5]) test_2d_2d(regr='quadratic', beta0=[0., 0.5, 0.5, 0.5, 0.5, 0.5]) def test_no_normalize(): gp = GaussianProcess(normalize=False).fit(X, y) y_pred = gp.predict(X) assert_true(np.allclose(y_pred, y)) def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the reduced likelihood function of the optimal theta. n_samples, n_features = 50, 3 np.random.seed(0) rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) best_likelihood = -np.inf for random_start in range(1, 5): gp = GaussianProcess(regr="constant", corr="squared_exponential", theta0=[1e-0] * n_features, thetaL=[1e-4] * n_features, thetaU=[1e+1] * n_features, random_start=random_start, random_state=0, verbose=False).fit(X, y) rlf = gp.reduced_likelihood_function()[0] assert_greater(rlf, best_likelihood - np.finfo(np.float32).eps) best_likelihood = rlf def test_mse_solving(): # test the MSE estimate to be sane. # non-regression test for ignoring off-diagonals of feature covariance, # testing with nugget that renders covariance useless, only # using the mean function, with low effective rank of data gp = GaussianProcess(corr='absolute_exponential', theta0=1e-4, thetaL=1e-12, thetaU=1e-2, nugget=1e-2, optimizer='Welch', regr="linear", random_state=0) X, y = make_regression(n_informative=3, n_features=60, noise=50, random_state=0, effective_rank=1) gp.fit(X, y) assert_greater(1000, gp.predict(X, eval_MSE=True)[1].mean())
bsd-3-clause
moberweger/deep-prior-pp
src/main_icvl_posereg_embedding.py
1
8844
"""This is the main file for training hand joint classifier on ICVL dataset Copyright 2015 Markus Oberweger, ICG, Graz University of Technology <[email protected]> This file is part of DeepPrior. DeepPrior is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. DeepPrior is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with DeepPrior. If not, see <http://www.gnu.org/licenses/>. """ import numpy import matplotlib matplotlib.use('Agg') # plot to file import matplotlib.pyplot as plt import os import cPickle from sklearn.decomposition import PCA from trainer.poseregnettrainer import PoseRegNetTrainer, PoseRegNetTrainerParams from net.poseregnet import PoseRegNetParams, PoseRegNet from data.importers import ICVLImporter from data.dataset import ICVLDataset from util.handdetector import HandDetector from util.handpose_evaluation import ICVLHandposeEvaluation from data.transformations import transformPoints2D from net.hiddenlayer import HiddenLayer, HiddenLayerParams if __name__ == '__main__': eval_prefix = 'ICVL_EMB_t0nF8mp421fD553h1024_PCA30_AUGMENT' if not os.path.exists('./eval/'+eval_prefix+'/'): os.makedirs('./eval/'+eval_prefix+'/') rng = numpy.random.RandomState(23455) print("create data") aug_modes = ['com', 'rot', 'none'] # 'sc', comref = None # "./eval/ICVL_COM_AUGMENT/net_ICVL_COM_AUGMENT.pkl" docom = False di = ICVLImporter('../data/ICVL/', refineNet=comref) Seq1 = di.loadSequence('train', ['0'], shuffle=True, rng=rng, docom=docom) trainSeqs = [Seq1] Seq2 = di.loadSequence('test_seq_1', docom=docom) testSeqs = [Seq2] # create training data trainDataSet = ICVLDataset(trainSeqs) train_data, train_gt3D = trainDataSet.imgStackDepthOnly('train') train_data_cube = numpy.asarray([Seq1.config['cube']]*train_data.shape[0], dtype='float32') train_data_com = numpy.asarray([d.com for d in Seq1.data], dtype='float32') train_data_M = numpy.asarray([d.T for d in Seq1.data], dtype='float32') train_gt3Dcrop = numpy.asarray([d.gt3Dcrop for d in Seq1.data], dtype='float32') mb = (train_data.nbytes) / (1024 * 1024) print("data size: {}Mb".format(mb)) valDataSet = ICVLDataset(testSeqs) val_data, val_gt3D = valDataSet.imgStackDepthOnly('test_seq_1') testDataSet = ICVLDataset(testSeqs) test_data, test_gt3D = testDataSet.imgStackDepthOnly('test_seq_1') print train_gt3D.max(), test_gt3D.max(), train_gt3D.min(), test_gt3D.min() print train_data.max(), test_data.max(), train_data.min(), test_data.min() imgSizeW = train_data.shape[3] imgSizeH = train_data.shape[2] nChannels = train_data.shape[1] #################################### # convert data to embedding pca = PCA(n_components=30) pca.fit(HandDetector.sampleRandomPoses(di, rng, train_gt3Dcrop, train_data_com, train_data_cube, 1e6, aug_modes).reshape((-1, train_gt3D.shape[1]*3))) train_gt3D_embed = pca.transform(train_gt3D.reshape((train_gt3D.shape[0], train_gt3D.shape[1]*3))) test_gt3D_embed = pca.transform(test_gt3D.reshape((test_gt3D.shape[0], test_gt3D.shape[1]*3))) val_gt3D_embed = pca.transform(val_gt3D.reshape((val_gt3D.shape[0], val_gt3D.shape[1]*3))) ############################################################################ print("create network") batchSize = 128 poseNetParams = PoseRegNetParams(type=0, nChan=nChannels, wIn=imgSizeW, hIn=imgSizeH, batchSize=batchSize, numJoints=1, nDims=train_gt3D_embed.shape[1]) poseNet = PoseRegNet(rng, cfgParams=poseNetParams) poseNetTrainerParams = PoseRegNetTrainerParams() poseNetTrainerParams.batch_size = batchSize poseNetTrainerParams.learning_rate = 0.001 poseNetTrainerParams.weightreg_factor = 0.0 poseNetTrainerParams.force_macrobatch_reload = True poseNetTrainerParams.para_augment = True poseNetTrainerParams.augment_fun_params = {'fun': 'augment_poses', 'args': {'normZeroOne': False, 'di': di, 'aug_modes': aug_modes, 'hd': HandDetector(train_data[0, 0].copy(), abs(di.fx), abs(di.fy), importer=di), 'proj': pca}} print("setup trainer") poseNetTrainer = PoseRegNetTrainer(poseNet, poseNetTrainerParams, rng, './eval/'+eval_prefix) poseNetTrainer.setData(train_data, train_gt3D_embed, val_data, val_gt3D_embed) poseNetTrainer.addStaticData({'val_data_y3D': val_gt3D}) poseNetTrainer.addStaticData({'pca_data': pca.components_, 'mean_data': pca.mean_}) poseNetTrainer.addManagedData({'train_data_cube': train_data_cube, 'train_data_com': train_data_com, 'train_data_M': train_data_M, 'train_gt3Dcrop': train_gt3Dcrop}) poseNetTrainer.compileFunctions(compileDebugFcts=False) ################################################################### # TRAIN train_res = poseNetTrainer.train(n_epochs=100) train_costs = train_res[0] val_errs = train_res[2] ################################################################### # TEST # plot cost fig = plt.figure() plt.semilogy(train_costs) plt.show(block=False) fig.savefig('./eval/'+eval_prefix+'/'+eval_prefix+'_cost.png') fig = plt.figure() plt.plot(numpy.asarray(val_errs).T) plt.show(block=False) fig.savefig('./eval/'+eval_prefix+'/'+eval_prefix+'_errs.png') # save results poseNet.save("./eval/{}/net_{}.pkl".format(eval_prefix, eval_prefix)) # poseNet.load("./eval/{}/net_{}.pkl".format(eval_prefix, eval_prefix)) # add prior to network cfg = HiddenLayerParams(inputDim=(batchSize, train_gt3D_embed.shape[1]), outputDim=(batchSize, numpy.prod(train_gt3D.shape[1:])), activation=None) pcalayer = HiddenLayer(rng, poseNet.layers[-1].output, cfg, layerNum=len(poseNet.layers)) pcalayer.W.set_value(pca.components_) pcalayer.b.set_value(pca.mean_) poseNet.layers.append(pcalayer) poseNet.output = pcalayer.output poseNet.cfgParams.numJoints = train_gt3D.shape[1] poseNet.cfgParams.nDims = train_gt3D.shape[2] poseNet.cfgParams.outputDim = pcalayer.cfgParams.outputDim poseNet.save("./eval/{}/network_prior.pkl".format(eval_prefix)) ################################################################### # test print("Testing ...") gt3D = [j.gt3Dorig for j in testSeqs[0].data] jts_embed = poseNet.computeOutput(test_data) jts = jts_embed joints = [] for i in xrange(test_data.shape[0]): joints.append(jts[i].reshape((-1, 3))*(testSeqs[0].config['cube'][2]/2.) + testSeqs[0].data[i].com) joints = numpy.array(joints) hpe = ICVLHandposeEvaluation(gt3D, joints) hpe.subfolder += '/'+eval_prefix+'/' print("Train samples: {}, test samples: {}".format(train_data.shape[0], len(gt3D))) print("Mean error: {}mm, max error: {}mm".format(hpe.getMeanError(), hpe.getMaxError())) print("{}".format([hpe.getJointMeanError(j) for j in range(joints[0].shape[0])])) print("{}".format([hpe.getJointMaxError(j) for j in range(joints[0].shape[0])])) # save results cPickle.dump(joints, open("./eval/{}/result_{}_{}.pkl".format(eval_prefix, os.path.split(__file__)[1], eval_prefix), "wb"), protocol=cPickle.HIGHEST_PROTOCOL) print "Testing baseline" ################################# # BASELINE # Load the evaluation data_baseline = di.loadBaseline('../data/ICVL/LRF_Results_seq_1.txt') hpe_base = ICVLHandposeEvaluation(gt3D, data_baseline) hpe_base.subfolder += '/'+eval_prefix+'/' print("Mean error: {}mm".format(hpe_base.getMeanError())) hpe.plotEvaluation(eval_prefix, methodName='Our regr', baseline=[('Tang et al.', hpe_base)]) ind = 0 for i in testSeqs[0].data: if ind % 20 != 0: ind += 1 continue jtI = transformPoints2D(di.joints3DToImg(joints[ind]), i.T) hpe.plotResult(i.dpt, i.gtcrop, jtI, "{}_{}".format(eval_prefix, ind)) ind += 1
gpl-3.0
mabuchilab/QNET
setup.py
1
2468
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" import os from setuptools import setup, find_packages def get_version(filename): """Extract the package version""" with open(filename) as in_fh: for line in in_fh: if line.startswith('__version__'): return line.split('=')[1].strip()[1:-1] raise ValueError("Cannot extract version from %s" % filename) with open('README.rst') as readme_file: readme = readme_file.read() try: with open('HISTORY.rst') as history_file: history = history_file.read() except OSError: history = '' requirements = ['sympy<1.2', 'scipy', 'numpy', 'attrs', 'uniseg'] dev_requirements = [ 'coverage', 'coveralls', 'pytest', 'pytest-cov', 'pytest-xdist', 'twine', 'pep8', 'flake8', 'wheel', 'sphinx', 'sphinx-autobuild', 'sphinx_rtd_theme', 'sphinx-autodoc-typehints', 'ipython'] dev_requirements.append('better-apidoc>=0.2.0') version = get_version(os.path.join('.', 'src', 'qnet', '__init__.py')) setup( name='QNET', version=version, description="Computer algebra package for quantum mechanics and " "photonic quantum networks", author="Nikolas Tezak, Michael Goerz", author_email='[email protected]', url='https://github.com/mabuchilab/QNET', classifiers=[ 'Programming Language :: Python', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Physics', 'Topic :: Scientific/Engineering :: Mathematics', ], install_requires=requirements, extras_require={ 'dev': dev_requirements, 'simulation': ['qutip>=3.0.1'], 'visualization': ['matplotlib', 'pyx>0.14'], }, license="MIT license", long_description=readme + '\n\n' + history, include_package_data=True, keywords=[ 'qnet', 'computer algebra', 'symbolic algebra', 'science', 'quantum computing', 'quantum mechanics', 'quantum optics', 'quantum networks', 'circuits', 'SLH', 'qutip', 'sympy'], packages=find_packages(where="src"), package_dir={"": "src"}, zip_safe=False, )
mit
dsullivan7/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
249
1982
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, label='Elastic net coefficients') plt.plot(lasso.coef_, label='Lasso coefficients') plt.plot(coef, '--', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
dkhavari/open-source-investing
scripts/correlation.py
1
2790
from tsvprocessing import tsv_to_tuple_list from pandas import Series import datetime as dt import time import sys import csv import re # ------------------------------ # Function: Grouping and Averaging # ------------------------------ def make_grouped_second_prices(equity, top_bound, bottom_bound, decrement): # Create result vector and variables. averaged_time_groups = [] equity_counter = 0 # Iterate through the time vector in ten-second steps. for i in xrange(0, 2340): # Iterate through the equity and group based on ten-second intervals. sum_of_interval = 0.0 number_to_average = 0.0 # Currently testing with this. while True: # Make sure we avoid any indexing errors. if equity_counter >= len(equity): break # Set up the trade and execution time for use. trade = equity[equity_counter] time_of_execution = trade[0] # If the time of execution is in the proper range, use it. if time_of_execution <= top_bound and time_of_execution > bottom_bound: price = trade[1] sum_of_interval += price number_to_average += 1 equity_counter += 1 else: break # Get the important metric: 10-second interval average price. if sum_of_interval is 0.0: # In other words, nothing found in range. average_executed_price = averaged_time_groups[i-1] else: average_executed_price = sum_of_interval / number_to_average averaged_time_groups.append(average_executed_price) # Move the loop forward. top_bound = top_bound - decrement bottom_bound = top_bound - decrement return averaged_time_groups # Access the two equity files passed in. equity_one = str(sys.argv[1]) equity_two = str(sys.argv[2]) file_one = open(equity_one, 'r') file_two = open(equity_two, 'r') # Parse the TSV files into something intelligible. tsv_one = csv.reader(file_one, delimiter='\t') tsv_two = csv.reader(file_two, delimiter='\t') # Use the miniature tsvprocessing module I made. equity_one = tsv_to_tuple_list(tsv_one) equity_two = tsv_to_tuple_list(tsv_two) # Set up the loop for aggregating to 10-second averages. decrement = dt.timedelta(seconds = 10) top_bound = dt.datetime.strptime('16:00:00', '%H:%M:%S') bottom_bound = top_bound - decrement # Get the averages. equity_one_ten_sec_avg = make_grouped_second_prices(equity_one, top_bound, bottom_bound, decrement) equity_two_ten_sec_avg = make_grouped_second_prices(equity_two, top_bound, bottom_bound, decrement) # Create the pandas series. one = Series(equity_one_ten_sec_avg) two = Series(equity_two_ten_sec_avg) # Compute Covariance. covariance = one.cov(two) # Compute standard deviations. one_stddev = one.std() two_stddev = two.std() # Correlation coefficient... correlation_coefficient = covariance/(one_stddev*two_stddev) print correlation_coefficient
mit
numenta-ci/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_cairo.py
69
16706
""" A Cairo backend for matplotlib Author: Steve Chaplin Cairo is a vector graphics library with cross-device output support. Features of Cairo: * anti-aliasing * alpha channel * saves image files as PNG, PostScript, PDF http://cairographics.org Requires (in order, all available from Cairo website): cairo, pycairo Naming Conventions * classes MixedUpperCase * varables lowerUpper * functions underscore_separated """ from __future__ import division import os, sys, warnings, gzip import numpy as npy def _fn_name(): return sys._getframe(1).f_code.co_name try: import cairo except ImportError: raise ImportError("Cairo backend requires that pycairo is installed.") _version_required = (1,2,0) if cairo.version_info < _version_required: raise ImportError ("Pycairo %d.%d.%d is installed\n" "Pycairo %d.%d.%d or later is required" % (cairo.version_info + _version_required)) backend_version = cairo.version del _version_required from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase from matplotlib.cbook import is_string_like from matplotlib.figure import Figure from matplotlib.mathtext import MathTextParser from matplotlib.path import Path from matplotlib.transforms import Bbox, Affine2D from matplotlib.font_manager import ttfFontProperty from matplotlib import rcParams _debug = False #_debug = True # Image::color_conv(format) for draw_image() if sys.byteorder == 'little': BYTE_FORMAT = 0 # BGRA else: BYTE_FORMAT = 1 # ARGB class RendererCairo(RendererBase): fontweights = { 100 : cairo.FONT_WEIGHT_NORMAL, 200 : cairo.FONT_WEIGHT_NORMAL, 300 : cairo.FONT_WEIGHT_NORMAL, 400 : cairo.FONT_WEIGHT_NORMAL, 500 : cairo.FONT_WEIGHT_NORMAL, 600 : cairo.FONT_WEIGHT_BOLD, 700 : cairo.FONT_WEIGHT_BOLD, 800 : cairo.FONT_WEIGHT_BOLD, 900 : cairo.FONT_WEIGHT_BOLD, 'ultralight' : cairo.FONT_WEIGHT_NORMAL, 'light' : cairo.FONT_WEIGHT_NORMAL, 'normal' : cairo.FONT_WEIGHT_NORMAL, 'medium' : cairo.FONT_WEIGHT_NORMAL, 'semibold' : cairo.FONT_WEIGHT_BOLD, 'bold' : cairo.FONT_WEIGHT_BOLD, 'heavy' : cairo.FONT_WEIGHT_BOLD, 'ultrabold' : cairo.FONT_WEIGHT_BOLD, 'black' : cairo.FONT_WEIGHT_BOLD, } fontangles = { 'italic' : cairo.FONT_SLANT_ITALIC, 'normal' : cairo.FONT_SLANT_NORMAL, 'oblique' : cairo.FONT_SLANT_OBLIQUE, } def __init__(self, dpi): """ """ if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) self.dpi = dpi self.text_ctx = cairo.Context ( cairo.ImageSurface (cairo.FORMAT_ARGB32,1,1)) self.mathtext_parser = MathTextParser('Cairo') def set_ctx_from_surface (self, surface): self.ctx = cairo.Context (surface) self.ctx.save() # restore, save - when call new_gc() def set_width_height(self, width, height): self.width = width self.height = height self.matrix_flipy = cairo.Matrix (yy=-1, y0=self.height) # use matrix_flipy for ALL rendering? # - problem with text? - will need to switch matrix_flipy off, or do a # font transform? def _fill_and_stroke (self, ctx, fill_c, alpha): if fill_c is not None: ctx.save() if len(fill_c) == 3: ctx.set_source_rgba (fill_c[0], fill_c[1], fill_c[2], alpha) else: ctx.set_source_rgba (fill_c[0], fill_c[1], fill_c[2], alpha*fill_c[3]) ctx.fill_preserve() ctx.restore() ctx.stroke() #@staticmethod def convert_path(ctx, tpath): for points, code in tpath.iter_segments(): if code == Path.MOVETO: ctx.move_to(*points) elif code == Path.LINETO: ctx.line_to(*points) elif code == Path.CURVE3: ctx.curve_to(points[0], points[1], points[0], points[1], points[2], points[3]) elif code == Path.CURVE4: ctx.curve_to(*points) elif code == Path.CLOSEPOLY: ctx.close_path() convert_path = staticmethod(convert_path) def draw_path(self, gc, path, transform, rgbFace=None): if len(path.vertices) > 18980: raise ValueError("The Cairo backend can not draw paths longer than 18980 points.") ctx = gc.ctx transform = transform + \ Affine2D().scale(1.0, -1.0).translate(0, self.height) tpath = transform.transform_path(path) ctx.new_path() self.convert_path(ctx, tpath) self._fill_and_stroke(ctx, rgbFace, gc.get_alpha()) def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): # bbox - not currently used if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) im.flipud_out() rows, cols, buf = im.color_conv (BYTE_FORMAT) surface = cairo.ImageSurface.create_for_data ( buf, cairo.FORMAT_ARGB32, cols, rows, cols*4) # function does not pass a 'gc' so use renderer.ctx ctx = self.ctx y = self.height - y - rows ctx.set_source_surface (surface, x, y) ctx.paint() im.flipud_out() def draw_text(self, gc, x, y, s, prop, angle, ismath=False): # Note: x,y are device/display coords, not user-coords, unlike other # draw_* methods if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) if ismath: self._draw_mathtext(gc, x, y, s, prop, angle) else: ctx = gc.ctx ctx.new_path() ctx.move_to (x, y) ctx.select_font_face (prop.get_name(), self.fontangles [prop.get_style()], self.fontweights[prop.get_weight()]) size = prop.get_size_in_points() * self.dpi / 72.0 ctx.save() if angle: ctx.rotate (-angle * npy.pi / 180) ctx.set_font_size (size) ctx.show_text (s.encode("utf-8")) ctx.restore() def _draw_mathtext(self, gc, x, y, s, prop, angle): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) ctx = gc.ctx width, height, descent, glyphs, rects = self.mathtext_parser.parse( s, self.dpi, prop) ctx.save() ctx.translate(x, y) if angle: ctx.rotate (-angle * npy.pi / 180) for font, fontsize, s, ox, oy in glyphs: ctx.new_path() ctx.move_to(ox, oy) fontProp = ttfFontProperty(font) ctx.save() ctx.select_font_face (fontProp.name, self.fontangles [fontProp.style], self.fontweights[fontProp.weight]) size = fontsize * self.dpi / 72.0 ctx.set_font_size(size) ctx.show_text(s.encode("utf-8")) ctx.restore() for ox, oy, w, h in rects: ctx.new_path() ctx.rectangle (ox, oy, w, h) ctx.set_source_rgb (0, 0, 0) ctx.fill_preserve() ctx.restore() def flipy(self): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) return True #return False # tried - all draw objects ok except text (and images?) # which comes out mirrored! def get_canvas_width_height(self): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) return self.width, self.height def get_text_width_height_descent(self, s, prop, ismath): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) if ismath: width, height, descent, fonts, used_characters = self.mathtext_parser.parse( s, self.dpi, prop) return width, height, descent ctx = self.text_ctx ctx.save() ctx.select_font_face (prop.get_name(), self.fontangles [prop.get_style()], self.fontweights[prop.get_weight()]) # Cairo (says it) uses 1/96 inch user space units, ref: cairo_gstate.c # but if /96.0 is used the font is too small size = prop.get_size_in_points() * self.dpi / 72.0 # problem - scale remembers last setting and font can become # enormous causing program to crash # save/restore prevents the problem ctx.set_font_size (size) y_bearing, w, h = ctx.text_extents (s)[1:4] ctx.restore() return w, h, h + y_bearing def new_gc(self): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) self.ctx.restore() # matches save() in set_ctx_from_surface() self.ctx.save() return GraphicsContextCairo (renderer=self) def points_to_pixels(self, points): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) return points/72.0 * self.dpi class GraphicsContextCairo(GraphicsContextBase): _joind = { 'bevel' : cairo.LINE_JOIN_BEVEL, 'miter' : cairo.LINE_JOIN_MITER, 'round' : cairo.LINE_JOIN_ROUND, } _capd = { 'butt' : cairo.LINE_CAP_BUTT, 'projecting' : cairo.LINE_CAP_SQUARE, 'round' : cairo.LINE_CAP_ROUND, } def __init__(self, renderer): GraphicsContextBase.__init__(self) self.renderer = renderer self.ctx = renderer.ctx def set_alpha(self, alpha): self._alpha = alpha rgb = self._rgb self.ctx.set_source_rgba (rgb[0], rgb[1], rgb[2], alpha) #def set_antialiased(self, b): # enable/disable anti-aliasing is not (yet) supported by Cairo def set_capstyle(self, cs): if cs in ('butt', 'round', 'projecting'): self._capstyle = cs self.ctx.set_line_cap (self._capd[cs]) else: raise ValueError('Unrecognized cap style. Found %s' % cs) def set_clip_rectangle(self, rectangle): self._cliprect = rectangle if rectangle is None: return x,y,w,h = rectangle.bounds # pixel-aligned clip-regions are faster x,y,w,h = round(x), round(y), round(w), round(h) ctx = self.ctx ctx.new_path() ctx.rectangle (x, self.renderer.height - h - y, w, h) ctx.clip () # Alternative: just set _cliprect here and actually set cairo clip rect # in fill_and_stroke() inside ctx.save() ... ctx.restore() def set_clip_path(self, path): if path is not None: tpath, affine = path.get_transformed_path_and_affine() ctx = self.ctx ctx.new_path() affine = affine + Affine2D().scale(1.0, -1.0).translate(0.0, self.renderer.height) tpath = affine.transform_path(tpath) RendererCairo.convert_path(ctx, tpath) ctx.clip() def set_dashes(self, offset, dashes): self._dashes = offset, dashes if dashes == None: self.ctx.set_dash([], 0) # switch dashes off else: self.ctx.set_dash ( self.renderer.points_to_pixels (npy.asarray(dashes)), offset) def set_foreground(self, fg, isRGB=None): GraphicsContextBase.set_foreground(self, fg, isRGB) if len(self._rgb) == 3: self.ctx.set_source_rgb(*self._rgb) else: self.ctx.set_source_rgba(*self._rgb) def set_graylevel(self, frac): GraphicsContextBase.set_graylevel(self, frac) if len(self._rgb) == 3: self.ctx.set_source_rgb(*self._rgb) else: self.ctx.set_source_rgba(*self._rgb) def set_joinstyle(self, js): if js in ('miter', 'round', 'bevel'): self._joinstyle = js self.ctx.set_line_join(self._joind[js]) else: raise ValueError('Unrecognized join style. Found %s' % js) def set_linewidth(self, w): self._linewidth = w self.ctx.set_line_width (self.renderer.points_to_pixels(w)) def new_figure_manager(num, *args, **kwargs): # called by backends/__init__.py """ Create a new figure manager instance """ if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasCairo(thisFig) manager = FigureManagerBase(canvas, num) return manager class FigureCanvasCairo (FigureCanvasBase): def print_png(self, fobj, *args, **kwargs): width, height = self.get_width_height() renderer = RendererCairo (self.figure.dpi) renderer.set_width_height (width, height) surface = cairo.ImageSurface (cairo.FORMAT_ARGB32, width, height) renderer.set_ctx_from_surface (surface) self.figure.draw (renderer) surface.write_to_png (fobj) def print_pdf(self, fobj, *args, **kwargs): return self._save(fobj, 'pdf', *args, **kwargs) def print_ps(self, fobj, *args, **kwargs): return self._save(fobj, 'ps', *args, **kwargs) def print_svg(self, fobj, *args, **kwargs): return self._save(fobj, 'svg', *args, **kwargs) def print_svgz(self, fobj, *args, **kwargs): return self._save(fobj, 'svgz', *args, **kwargs) def get_default_filetype(self): return rcParams['cairo.format'] def _save (self, fo, format, **kwargs): # save PDF/PS/SVG orientation = kwargs.get('orientation', 'portrait') dpi = 72 self.figure.dpi = dpi w_in, h_in = self.figure.get_size_inches() width_in_points, height_in_points = w_in * dpi, h_in * dpi if orientation == 'landscape': width_in_points, height_in_points = (height_in_points, width_in_points) if format == 'ps': if not cairo.HAS_PS_SURFACE: raise RuntimeError ('cairo has not been compiled with PS ' 'support enabled') surface = cairo.PSSurface (fo, width_in_points, height_in_points) elif format == 'pdf': if not cairo.HAS_PDF_SURFACE: raise RuntimeError ('cairo has not been compiled with PDF ' 'support enabled') surface = cairo.PDFSurface (fo, width_in_points, height_in_points) elif format in ('svg', 'svgz'): if not cairo.HAS_SVG_SURFACE: raise RuntimeError ('cairo has not been compiled with SVG ' 'support enabled') if format == 'svgz': filename = fo if is_string_like(fo): fo = open(fo, 'wb') fo = gzip.GzipFile(None, 'wb', fileobj=fo) surface = cairo.SVGSurface (fo, width_in_points, height_in_points) else: warnings.warn ("unknown format: %s" % format) return # surface.set_dpi() can be used renderer = RendererCairo (self.figure.dpi) renderer.set_width_height (width_in_points, height_in_points) renderer.set_ctx_from_surface (surface) ctx = renderer.ctx if orientation == 'landscape': ctx.rotate (npy.pi/2) ctx.translate (0, -height_in_points) # cairo/src/cairo_ps_surface.c # '%%Orientation: Portrait' is always written to the file header # '%%Orientation: Landscape' would possibly cause problems # since some printers would rotate again ? # TODO: # add portrait/landscape checkbox to FileChooser self.figure.draw (renderer) show_fig_border = False # for testing figure orientation and scaling if show_fig_border: ctx.new_path() ctx.rectangle(0, 0, width_in_points, height_in_points) ctx.set_line_width(4.0) ctx.set_source_rgb(1,0,0) ctx.stroke() ctx.move_to(30,30) ctx.select_font_face ('sans-serif') ctx.set_font_size(20) ctx.show_text('Origin corner') ctx.show_page() surface.finish()
agpl-3.0
huzq/scikit-learn
examples/linear_model/plot_sgd_penalties.py
23
1405
""" ============== SGD: Penalties ============== Contours of where the penalty is equal to 1 for the three penalties L1, L2 and elastic-net. All of the above are supported by :class:`~sklearn.linear_model.SGDClassifier` and :class:`~sklearn.linear_model.SGDRegressor`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt l1_color = "navy" l2_color = "c" elastic_net_color = "darkorange" line = np.linspace(-1.5, 1.5, 1001) xx, yy = np.meshgrid(line, line) l2 = xx ** 2 + yy ** 2 l1 = np.abs(xx) + np.abs(yy) rho = 0.5 elastic_net = rho * l1 + (1 - rho) * l2 plt.figure(figsize=(10, 10), dpi=100) ax = plt.gca() elastic_net_contour = plt.contour(xx, yy, elastic_net, levels=[1], colors=elastic_net_color) l2_contour = plt.contour(xx, yy, l2, levels=[1], colors=l2_color) l1_contour = plt.contour(xx, yy, l1, levels=[1], colors=l1_color) ax.set_aspect("equal") ax.spines['left'].set_position('center') ax.spines['right'].set_color('none') ax.spines['bottom'].set_position('center') ax.spines['top'].set_color('none') plt.clabel(elastic_net_contour, inline=1, fontsize=18, fmt={1.0: 'elastic-net'}, manual=[(-1, -1)]) plt.clabel(l2_contour, inline=1, fontsize=18, fmt={1.0: 'L2'}, manual=[(-1, -1)]) plt.clabel(l1_contour, inline=1, fontsize=18, fmt={1.0: 'L1'}, manual=[(-1, -1)]) plt.tight_layout() plt.show()
bsd-3-clause
harshaneelhg/scikit-learn
sklearn/kernel_ridge.py
155
6545
"""Module :mod:`sklearn.kernel_ridge` implements kernel ridge regression.""" # Authors: Mathieu Blondel <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import numpy as np from .base import BaseEstimator, RegressorMixin from .metrics.pairwise import pairwise_kernels from .linear_model.ridge import _solve_cholesky_kernel from .utils import check_X_y from .utils.validation import check_is_fitted class KernelRidge(BaseEstimator, RegressorMixin): """Kernel ridge regression. Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For non-linear kernels, this corresponds to a non-linear function in the original space. The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss, both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which learns a sparse model for epsilon > 0, at prediction-time. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <kernel_ridge>`. Parameters ---------- alpha : {float, array-like}, shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. kernel : string or callable, default="linear" Kernel mapping used internally. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. gamma : float, default=None Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. Attributes ---------- dual_coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s) in kernel space X_fit_ : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data, which is also required for prediction References ---------- * Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press chapter 14.4.3, pp. 492-493 See also -------- Ridge Linear ridge regression. SVR Support Vector Regression implemented using libsvm. Examples -------- >>> from sklearn.kernel_ridge import KernelRidge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> clf = KernelRidge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=None, kernel='linear', kernel_params=None) """ def __init__(self, alpha=1, kernel="linear", gamma=None, degree=3, coef0=1, kernel_params=None): self.alpha = alpha self.kernel = kernel self.gamma = gamma self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def _get_kernel(self, X, Y=None): if callable(self.kernel): params = self.kernel_params or {} else: params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0} return pairwise_kernels(X, Y, metric=self.kernel, filter_params=True, **params) @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, y=None, sample_weight=None): """Fit Kernel Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample, ignored if None is passed. Returns ------- self : returns an instance of self. """ # Convert data X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True) K = self._get_kernel(X) alpha = np.atleast_1d(self.alpha) ravel = False if len(y.shape) == 1: y = y.reshape(-1, 1) ravel = True copy = self.kernel == "precomputed" self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha, sample_weight, copy) if ravel: self.dual_coef_ = self.dual_coef_.ravel() self.X_fit_ = X return self def predict(self, X): """Predict using the the kernel ridge model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns ------- C : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, ["X_fit_", "dual_coef_"]) K = self._get_kernel(X, self.X_fit_) return np.dot(K, self.dual_coef_)
bsd-3-clause
joshloyal/scikit-learn
sklearn/utils/graph.py
24
6326
""" Graph utilities and algorithms Graphs are represented with their adjacency matrices, preferably using sparse matrices. """ # Authors: Aric Hagberg <[email protected]> # Gael Varoquaux <[email protected]> # Jake Vanderplas <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from .validation import check_array from .graph_shortest_path import graph_shortest_path ############################################################################### # Path and connected component analysis. # Code adapted from networkx def single_source_shortest_path_length(graph, source, cutoff=None): """Return the shortest path length from source to all reachable nodes. Returns a dictionary of shortest path lengths keyed by target. Parameters ---------- graph : sparse matrix or 2D array (preferably LIL matrix) Adjacency matrix of the graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search - only paths of length <= cutoff are returned. Examples -------- >>> from sklearn.utils.graph import single_source_shortest_path_length >>> import numpy as np >>> graph = np.array([[ 0, 1, 0, 0], ... [ 1, 0, 1, 0], ... [ 0, 1, 0, 1], ... [ 0, 0, 1, 0]]) >>> list(sorted(single_source_shortest_path_length(graph, 0).items())) [(0, 0), (1, 1), (2, 2), (3, 3)] >>> graph = np.ones((6, 6)) >>> list(sorted(single_source_shortest_path_length(graph, 2).items())) [(0, 1), (1, 1), (2, 0), (3, 1), (4, 1), (5, 1)] """ if sparse.isspmatrix(graph): graph = graph.tolil() else: graph = sparse.lil_matrix(graph) seen = {} # level (number of hops) when seen in BFS level = 0 # the current level next_level = [source] # dict of nodes to check at next level while next_level: this_level = next_level # advance to next level next_level = set() # and start a new list (fringe) for v in this_level: if v not in seen: seen[v] = level # set the level of vertex v next_level.update(graph.rows[v]) if cutoff is not None and cutoff <= level: break level += 1 return seen # return all path lengths as dictionary if hasattr(sparse, 'connected_components'): connected_components = sparse.connected_components else: from .sparsetools import connected_components ############################################################################### # Graph laplacian def graph_laplacian(csgraph, normed=False, return_diag=False): """ Return the Laplacian matrix of a directed graph. For non-symmetric graphs the out-degree is used in the computation. Parameters ---------- csgraph : array_like or sparse matrix, 2 dimensions compressed-sparse graph, with shape (N, N). normed : bool, optional If True, then compute normalized Laplacian. return_diag : bool, optional If True, then return diagonal as well as laplacian. Returns ------- lap : ndarray The N x N laplacian matrix of graph. diag : ndarray The length-N diagonal of the laplacian matrix. diag is returned only if return_diag is True. Notes ----- The Laplacian matrix of a graph is sometimes referred to as the "Kirchoff matrix" or the "admittance matrix", and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph. For non-symmetric directed graphs, the laplacian is computed using the out-degree of each node. """ if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: raise ValueError('csgraph must be a square matrix or array') if normed and (np.issubdtype(csgraph.dtype, np.int) or np.issubdtype(csgraph.dtype, np.uint)): csgraph = check_array(csgraph, dtype=np.float64, accept_sparse=True) if sparse.isspmatrix(csgraph): return _laplacian_sparse(csgraph, normed=normed, return_diag=return_diag) else: return _laplacian_dense(csgraph, normed=normed, return_diag=return_diag) def _laplacian_sparse(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] if not graph.format == 'coo': lap = (-graph).tocoo() else: lap = -graph.copy() diag_mask = (lap.row == lap.col) if not diag_mask.sum() == n_nodes: # The sparsity pattern of the matrix has holes on the diagonal, # we need to fix that diag_idx = lap.row[diag_mask] diagonal_holes = list(set(range(n_nodes)).difference(diag_idx)) new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))]) new_row = np.concatenate([lap.row, diagonal_holes]) new_col = np.concatenate([lap.col, diagonal_holes]) lap = sparse.coo_matrix((new_data, (new_row, new_col)), shape=lap.shape) diag_mask = (lap.row == lap.col) lap.data[diag_mask] = 0 w = -np.asarray(lap.sum(axis=1)).squeeze() if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap.data /= w[lap.row] lap.data /= w[lap.col] lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype( lap.data.dtype) else: lap.data[diag_mask] = w[lap.row[diag_mask]] if return_diag: return lap, w return lap def _laplacian_dense(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] lap = -np.asarray(graph) # minus sign leads to a copy # set diagonal to zero lap.flat[::n_nodes + 1] = 0 w = -lap.sum(axis=0) if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap /= w lap /= w[:, np.newaxis] lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype) else: lap.flat[::n_nodes + 1] = w.astype(lap.dtype) if return_diag: return lap, w return lap
bsd-3-clause
pelson/numpy
doc/sphinxext/docscrape_sphinx.py
154
7759
import re, inspect, textwrap, pydoc import sphinx from docscrape import NumpyDocString, FunctionDoc, ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param,param_type,desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc,8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::', ' :toctree:', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "="*maxlen_0 + " " + "="*maxlen_1 + " " + "="*10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause
AnthonyCAS/code-for-blog
2008/wx_mpl_dynamic_graph.py
13
11139
""" This demo demonstrates how to draw a dynamic mpl (matplotlib) plot in a wxPython application. It allows "live" plotting as well as manual zooming to specific regions. Both X and Y axes allow "auto" or "manual" settings. For Y, auto mode sets the scaling of the graph to see all the data points. For X, auto mode makes the graph "follow" the data. Set it X min to manual 0 to always see the whole data from the beginning. Note: press Enter in the 'manual' text box to make a new value affect the plot. Eli Bendersky ([email protected]) License: this code is in the public domain Last modified: 31.07.2008 """ import os import pprint import random import sys import wx # The recommended way to use wx with mpl is with the WXAgg # backend. # import matplotlib matplotlib.use('WXAgg') from matplotlib.figure import Figure from matplotlib.backends.backend_wxagg import \ FigureCanvasWxAgg as FigCanvas, \ NavigationToolbar2WxAgg as NavigationToolbar import numpy as np import pylab class DataGen(object): """ A silly class that generates pseudo-random data for display in the plot. """ def __init__(self, init=50): self.data = self.init = init def next(self): self._recalc_data() return self.data def _recalc_data(self): delta = random.uniform(-0.5, 0.5) r = random.random() if r > 0.9: self.data += delta * 15 elif r > 0.8: # attraction to the initial value delta += (0.5 if self.init > self.data else -0.5) self.data += delta else: self.data += delta class BoundControlBox(wx.Panel): """ A static box with a couple of radio buttons and a text box. Allows to switch between an automatic mode and a manual mode with an associated value. """ def __init__(self, parent, ID, label, initval): wx.Panel.__init__(self, parent, ID) self.value = initval box = wx.StaticBox(self, -1, label) sizer = wx.StaticBoxSizer(box, wx.VERTICAL) self.radio_auto = wx.RadioButton(self, -1, label="Auto", style=wx.RB_GROUP) self.radio_manual = wx.RadioButton(self, -1, label="Manual") self.manual_text = wx.TextCtrl(self, -1, size=(35,-1), value=str(initval), style=wx.TE_PROCESS_ENTER) self.Bind(wx.EVT_UPDATE_UI, self.on_update_manual_text, self.manual_text) self.Bind(wx.EVT_TEXT_ENTER, self.on_text_enter, self.manual_text) manual_box = wx.BoxSizer(wx.HORIZONTAL) manual_box.Add(self.radio_manual, flag=wx.ALIGN_CENTER_VERTICAL) manual_box.Add(self.manual_text, flag=wx.ALIGN_CENTER_VERTICAL) sizer.Add(self.radio_auto, 0, wx.ALL, 10) sizer.Add(manual_box, 0, wx.ALL, 10) self.SetSizer(sizer) sizer.Fit(self) def on_update_manual_text(self, event): self.manual_text.Enable(self.radio_manual.GetValue()) def on_text_enter(self, event): self.value = self.manual_text.GetValue() def is_auto(self): return self.radio_auto.GetValue() def manual_value(self): return self.value class GraphFrame(wx.Frame): """ The main frame of the application """ title = 'Demo: dynamic matplotlib graph' def __init__(self): wx.Frame.__init__(self, None, -1, self.title) self.datagen = DataGen() self.data = [self.datagen.next()] self.paused = False self.create_menu() self.create_status_bar() self.create_main_panel() self.redraw_timer = wx.Timer(self) self.Bind(wx.EVT_TIMER, self.on_redraw_timer, self.redraw_timer) self.redraw_timer.Start(100) def create_menu(self): self.menubar = wx.MenuBar() menu_file = wx.Menu() m_expt = menu_file.Append(-1, "&Save plot\tCtrl-S", "Save plot to file") self.Bind(wx.EVT_MENU, self.on_save_plot, m_expt) menu_file.AppendSeparator() m_exit = menu_file.Append(-1, "E&xit\tCtrl-X", "Exit") self.Bind(wx.EVT_MENU, self.on_exit, m_exit) self.menubar.Append(menu_file, "&File") self.SetMenuBar(self.menubar) def create_main_panel(self): self.panel = wx.Panel(self) self.init_plot() self.canvas = FigCanvas(self.panel, -1, self.fig) self.xmin_control = BoundControlBox(self.panel, -1, "X min", 0) self.xmax_control = BoundControlBox(self.panel, -1, "X max", 50) self.ymin_control = BoundControlBox(self.panel, -1, "Y min", 0) self.ymax_control = BoundControlBox(self.panel, -1, "Y max", 100) self.pause_button = wx.Button(self.panel, -1, "Pause") self.Bind(wx.EVT_BUTTON, self.on_pause_button, self.pause_button) self.Bind(wx.EVT_UPDATE_UI, self.on_update_pause_button, self.pause_button) self.cb_grid = wx.CheckBox(self.panel, -1, "Show Grid", style=wx.ALIGN_RIGHT) self.Bind(wx.EVT_CHECKBOX, self.on_cb_grid, self.cb_grid) self.cb_grid.SetValue(True) self.cb_xlab = wx.CheckBox(self.panel, -1, "Show X labels", style=wx.ALIGN_RIGHT) self.Bind(wx.EVT_CHECKBOX, self.on_cb_xlab, self.cb_xlab) self.cb_xlab.SetValue(True) self.hbox1 = wx.BoxSizer(wx.HORIZONTAL) self.hbox1.Add(self.pause_button, border=5, flag=wx.ALL | wx.ALIGN_CENTER_VERTICAL) self.hbox1.AddSpacer(20) self.hbox1.Add(self.cb_grid, border=5, flag=wx.ALL | wx.ALIGN_CENTER_VERTICAL) self.hbox1.AddSpacer(10) self.hbox1.Add(self.cb_xlab, border=5, flag=wx.ALL | wx.ALIGN_CENTER_VERTICAL) self.hbox2 = wx.BoxSizer(wx.HORIZONTAL) self.hbox2.Add(self.xmin_control, border=5, flag=wx.ALL) self.hbox2.Add(self.xmax_control, border=5, flag=wx.ALL) self.hbox2.AddSpacer(24) self.hbox2.Add(self.ymin_control, border=5, flag=wx.ALL) self.hbox2.Add(self.ymax_control, border=5, flag=wx.ALL) self.vbox = wx.BoxSizer(wx.VERTICAL) self.vbox.Add(self.canvas, 1, flag=wx.LEFT | wx.TOP | wx.GROW) self.vbox.Add(self.hbox1, 0, flag=wx.ALIGN_LEFT | wx.TOP) self.vbox.Add(self.hbox2, 0, flag=wx.ALIGN_LEFT | wx.TOP) self.panel.SetSizer(self.vbox) self.vbox.Fit(self) def create_status_bar(self): self.statusbar = self.CreateStatusBar() def init_plot(self): self.dpi = 100 self.fig = Figure((3.0, 3.0), dpi=self.dpi) self.axes = self.fig.add_subplot(111) self.axes.set_axis_bgcolor('black') self.axes.set_title('Very important random data', size=12) pylab.setp(self.axes.get_xticklabels(), fontsize=8) pylab.setp(self.axes.get_yticklabels(), fontsize=8) # plot the data as a line series, and save the reference # to the plotted line series # self.plot_data = self.axes.plot( self.data, linewidth=1, color=(1, 1, 0), )[0] def draw_plot(self): """ Redraws the plot """ # when xmin is on auto, it "follows" xmax to produce a # sliding window effect. therefore, xmin is assigned after # xmax. # if self.xmax_control.is_auto(): xmax = len(self.data) if len(self.data) > 50 else 50 else: xmax = int(self.xmax_control.manual_value()) if self.xmin_control.is_auto(): xmin = xmax - 50 else: xmin = int(self.xmin_control.manual_value()) # for ymin and ymax, find the minimal and maximal values # in the data set and add a mininal margin. # # note that it's easy to change this scheme to the # minimal/maximal value in the current display, and not # the whole data set. # if self.ymin_control.is_auto(): ymin = round(min(self.data), 0) - 1 else: ymin = int(self.ymin_control.manual_value()) if self.ymax_control.is_auto(): ymax = round(max(self.data), 0) + 1 else: ymax = int(self.ymax_control.manual_value()) self.axes.set_xbound(lower=xmin, upper=xmax) self.axes.set_ybound(lower=ymin, upper=ymax) # anecdote: axes.grid assumes b=True if any other flag is # given even if b is set to False. # so just passing the flag into the first statement won't # work. # if self.cb_grid.IsChecked(): self.axes.grid(True, color='gray') else: self.axes.grid(False) # Using setp here is convenient, because get_xticklabels # returns a list over which one needs to explicitly # iterate, and setp already handles this. # pylab.setp(self.axes.get_xticklabels(), visible=self.cb_xlab.IsChecked()) self.plot_data.set_xdata(np.arange(len(self.data))) self.plot_data.set_ydata(np.array(self.data)) self.canvas.draw() def on_pause_button(self, event): self.paused = not self.paused def on_update_pause_button(self, event): label = "Resume" if self.paused else "Pause" self.pause_button.SetLabel(label) def on_cb_grid(self, event): self.draw_plot() def on_cb_xlab(self, event): self.draw_plot() def on_save_plot(self, event): file_choices = "PNG (*.png)|*.png" dlg = wx.FileDialog( self, message="Save plot as...", defaultDir=os.getcwd(), defaultFile="plot.png", wildcard=file_choices, style=wx.SAVE) if dlg.ShowModal() == wx.ID_OK: path = dlg.GetPath() self.canvas.print_figure(path, dpi=self.dpi) self.flash_status_message("Saved to %s" % path) def on_redraw_timer(self, event): # if paused do not add data, but still redraw the plot # (to respond to scale modifications, grid change, etc.) # if not self.paused: self.data.append(self.datagen.next()) self.draw_plot() def on_exit(self, event): self.Destroy() def flash_status_message(self, msg, flash_len_ms=1500): self.statusbar.SetStatusText(msg) self.timeroff = wx.Timer(self) self.Bind( wx.EVT_TIMER, self.on_flash_status_off, self.timeroff) self.timeroff.Start(flash_len_ms, oneShot=True) def on_flash_status_off(self, event): self.statusbar.SetStatusText('') if __name__ == '__main__': app = wx.PySimpleApp() app.frame = GraphFrame() app.frame.Show() app.MainLoop()
unlicense
tapomayukh/projects_in_python
classification/Classification_with_HMM/Single_Contact_Classification/Variable_Stiffness_Variable_Velocity/HMM/with 1.2s/hmm_crossvalidation_force_motion_10_states_scaled_wrt_all_data.py
1
39780
# Hidden Markov Model Implementation import pylab as pyl import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy as scp import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle import ghmm import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/Classification/Data/Single_Contact_HMM/Variable_Stiffness_Variable_Velocity/') from data_variable_hshv3 import Fmat_original_hshv from data_variable_hslv3 import Fmat_original_hslv from data_variable_lshv3 import Fmat_original_lshv from data_variable_lslv3 import Fmat_original_lslv # Scaling function def scaling(mat): Fvec_a = mat[0:121,0:] Fvec_b = mat[121:242,0:] Fvec_c = mat[242:363,0:] # With Scaling max_a = np.max(abs(Fvec_a)) min_a = np.min(abs(Fvec_a)) mean_a = np.mean(Fvec_a) std_a = np.std(Fvec_a) #Fvec_a = (Fvec_a)/max_a #Fvec_a = (Fvec_a-mean_a) #Fvec_a = (Fvec_a-mean_a)/max_a Fvec_a = (Fvec_a-mean_a)/std_a # With Scaling max_b = np.max(abs(Fvec_b)) min_b = np.min(abs(Fvec_b)) mean_b = np.mean(Fvec_b) std_b = np.std(Fvec_b) #Fvec_b = (Fvec_b)/max_b #Fvec_b = (Fvec_b-mean_b) #Fvec_b = (Fvec_b-mean_b)/max_b #Fvec_b = (Fvec_b-mean_b)/std_b # With Scaling max_c = np.max(abs(Fvec_c)) min_c = np.min(abs(Fvec_c)) mean_c = np.mean(Fvec_c) std_c = np.std(Fvec_c) #Fvec_c = (Fvec_c)/max_c #Fvec_c = (Fvec_c-mean_c) #Fvec_c = (Fvec_c-mean_c)/max_c Fvec_c = (Fvec_c-mean_c)/std_c #Fvec_c = Fvec_c*np.max((max_a,max_b))/max_c Fvec = np.row_stack([Fvec_a,Fvec_b,Fvec_c]) n_Fvec, m_Fvec = np.shape(Fvec) #print 'Feature_Vector_Shape:',n_Fvec, m_Fvec return Fvec # Returns mu,sigma for 10 hidden-states from feature-vectors(123,35) for RF,SF,RM,SM models def feature_to_mu_cov(fvec1,fvec2): index = 0 m,n = np.shape(fvec1) #print m,n mu_1 = np.zeros((10,1)) mu_2 = np.zeros((10,1)) cov = np.zeros((10,2,2)) DIVS = m/10 while (index < 10): m_init = index*DIVS temp_fvec1 = fvec1[(m_init):(m_init+DIVS),0:] temp_fvec2 = fvec2[(m_init):(m_init+DIVS),0:] temp_fvec1 = np.reshape(temp_fvec1,DIVS*n) temp_fvec2 = np.reshape(temp_fvec2,DIVS*n) mu_1[index] = np.mean(temp_fvec1) mu_2[index] = np.mean(temp_fvec2) cov[index,:,:] = np.cov(np.concatenate((temp_fvec1,temp_fvec2),axis=0)) if index == 0: print 'mean = ', mu_2[index] print 'mean = ', scp.mean(fvec2[(m_init):(m_init+DIVS),0:]) print np.shape(np.concatenate((temp_fvec1,temp_fvec2),axis=0)) print cov[index,:,:] print scp.std(fvec2[(m_init):(m_init+DIVS),0:]) print scp.std(temp_fvec2) index = index+1 return mu_1,mu_2,cov if __name__ == '__main__': # Scaling wrt all data Fmat_rf_hshv = scaling(Fmat_original_hshv[:,0:15]) Fmat_rm_hshv = Fmat_original_hshv[:,15:15] Fmat_sf_hshv = scaling(Fmat_original_hshv[:,15:26]) Fmat_sm_hshv = scaling(Fmat_original_hshv[:,26:27]) Fmat_hshv = np.matrix(np.column_stack((Fmat_rf_hshv,Fmat_rm_hshv,Fmat_sf_hshv,Fmat_sm_hshv))) Fmat_rf_hslv = scaling(Fmat_original_hslv[:,0:15]) Fmat_rm_hslv = scaling(Fmat_original_hslv[:,15:30]) Fmat_sf_hslv = scaling(Fmat_original_hslv[:,30:45]) Fmat_sm_hslv = scaling(Fmat_original_hslv[:,45:52]) Fmat_hslv = np.matrix(np.column_stack((Fmat_rf_hslv,Fmat_rm_hslv,Fmat_sf_hslv,Fmat_sm_hslv))) Fmat_rf_lshv = scaling(Fmat_original_lshv[:,0:15]) Fmat_rm_lshv = scaling(Fmat_original_lshv[:,15:16]) Fmat_sf_lshv = scaling(Fmat_original_lshv[:,16:22]) Fmat_sm_lshv = scaling(Fmat_original_lshv[:,22:28]) Fmat_lshv = np.matrix(np.column_stack((Fmat_rf_lshv,Fmat_rm_lshv,Fmat_sf_lshv,Fmat_sm_lshv))) Fmat_rf_lslv = scaling(Fmat_original_lslv[:,0:15]) Fmat_rm_lslv = scaling(Fmat_original_lslv[:,15:28]) Fmat_sf_lslv = scaling(Fmat_original_lslv[:,28:36]) Fmat_sm_lslv = scaling(Fmat_original_lslv[:,36:42]) Fmat_lslv = np.matrix(np.column_stack((Fmat_rf_lslv,Fmat_rm_lslv,Fmat_sf_lslv,Fmat_sm_lslv))) Fmat = np.matrix(np.column_stack((Fmat_hshv,Fmat_hslv,Fmat_lshv,Fmat_lslv))) # HMM - Implementation: F = ghmm.Float() # emission domain of this model # A - Transition Matrix A = [[0.1, 0.25, 0.15, 0.15, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05], [0.0, 0.1, 0.25, 0.25, 0.2, 0.1, 0.05, 0.05, 0.05, 0.05], [0.0, 0.0, 0.1, 0.25, 0.25, 0.2, 0.05, 0.05, 0.05, 0.05], [0.0, 0.0, 0.0, 0.1, 0.3, 0.30, 0.20, 0.1, 0.05, 0.05], [0.0, 0.0, 0.0, 0.0, 0.1, 0.30, 0.30, 0.20, 0.05, 0.05], [0.0, 0.0, 0.0, 0.0, 0.00, 0.1, 0.35, 0.30, 0.20, 0.05], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.2, 0.30, 0.30, 0.20], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.2, 0.50, 0.30], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.4, 0.60], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00]] # pi - initial probabilities per state pi = [0.1] * 10 # Confusion Matrix cmat = np.zeros((4,4)) ############################################################################################################################################# # HSHV as testing set and Rest as training set # Checking the Data-Matrix mu_rf_force_hshv,mu_rf_motion_hshv,cov_rf_hshv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hslv[0:121,0:15], Fmat_lshv[0:121,0:15], Fmat_lslv[0:121,0:15])))), (np.matrix(np.column_stack((Fmat_hslv[242:363,0:15], Fmat_lshv[242:363,0:15], Fmat_lslv[242:363,0:15]))))) mu_rm_force_hshv,mu_rm_motion_hshv,cov_rm_hshv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hslv[0:121,15:30], Fmat_lshv[0:121,15:16], Fmat_lslv[0:121,15:28])))), (np.matrix(np.column_stack((Fmat_hslv[242:363,15:30], Fmat_lshv[242:363,15:16], Fmat_lslv[242:363,15:28]))))) mu_sf_force_hshv,mu_sf_motion_hshv,cov_sf_hshv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hslv[0:121,30:45], Fmat_lshv[0:121,16:22], Fmat_lslv[0:121,28:36])))), (np.matrix(np.column_stack((Fmat_hslv[242:363,30:45], Fmat_lshv[242:363,16:22], Fmat_lslv[242:363,28:36]))))) mu_sm_force_hshv,mu_sm_motion_hshv,cov_sm_hshv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hslv[0:121,45:52], Fmat_lshv[0:121,22:28], Fmat_lslv[0:121,36:42])))), (np.matrix(np.column_stack((Fmat_hslv[242:363,45:52], Fmat_lshv[242:363,22:28], Fmat_lslv[242:363,36:42]))))) # B - Emission Matrix, parameters of emission distributions in pairs of (mu, sigma) B_rf_hshv = [0.0]*10 B_rm_hshv = [0.0]*10 B_sf_hshv = [0.0]*10 B_sm_hshv = [0.0]*10 for num_states in range(10): B_rf_hshv[num_states] = [[mu_rf_force_hshv[num_states][0],mu_rf_motion_hshv[num_states][0]],[cov_rf_hshv[num_states][0][0],cov_rf_hshv[num_states][0][1],cov_rf_hshv[num_states][1][0],cov_rf_hshv[num_states][1][1]]] B_rm_hshv[num_states] = [[mu_rm_force_hshv[num_states][0],mu_rm_motion_hshv[num_states][0]],[cov_rm_hshv[num_states][0][0],cov_rm_hshv[num_states][0][1],cov_rm_hshv[num_states][1][0],cov_rm_hshv[num_states][1][1]]] B_sf_hshv[num_states] = [[mu_sf_force_hshv[num_states][0],mu_sf_motion_hshv[num_states][0]],[cov_sf_hshv[num_states][0][0],cov_sf_hshv[num_states][0][1],cov_sf_hshv[num_states][1][0],cov_sf_hshv[num_states][1][1]]] B_sm_hshv[num_states] = [[mu_sm_force_hshv[num_states][0],mu_sm_motion_hshv[num_states][0]],[cov_sm_hshv[num_states][0][0],cov_sm_hshv[num_states][0][1],cov_sm_hshv[num_states][1][0],cov_sm_hshv[num_states][1][1]]] print cov_sm_hshv[num_states][0][0],cov_sm_hshv[num_states][0][1],cov_sm_hshv[num_states][1][0],cov_sm_hshv[num_states][1][1] print "----" #print B_sm_hshv #print mu_sm_motion_hshv # generate RF, RM, SF, SM models from parameters model_rf_hshv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rf_hshv, pi) # Will be Trained model_rm_hshv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rm_hshv, pi) # Will be Trained model_sf_hshv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sf_hshv, pi) # Will be Trained model_sm_hshv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sm_hshv, pi) # Will be Trained # For Training total_seq_rf_force_hshv = np.matrix(np.column_stack((Fmat_hslv[0:121,0:15], Fmat_lshv[0:121,0:15], Fmat_lslv[0:121,0:15]))) total_seq_rm_force_hshv = np.matrix(np.column_stack((Fmat_hslv[0:121,15:30], Fmat_lshv[0:121,15:16], Fmat_lslv[0:121,15:28]))) total_seq_sf_force_hshv = np.matrix(np.column_stack((Fmat_hslv[0:121,30:45], Fmat_lshv[0:121,16:22], Fmat_lslv[0:121,28:36]))) total_seq_sm_force_hshv = np.matrix(np.column_stack((Fmat_hslv[0:121,45:52], Fmat_lshv[0:121,22:28], Fmat_lslv[0:121,36:42]))) total_seq_rf_motion_hshv = np.matrix(np.column_stack((Fmat_hslv[242:363,0:15], Fmat_lshv[242:363,0:15], Fmat_lslv[242:363,0:15]))) total_seq_rm_motion_hshv = np.matrix(np.column_stack((Fmat_hslv[242:363,15:30], Fmat_lshv[242:363,15:16], Fmat_lslv[242:363,15:28]))) total_seq_sf_motion_hshv = np.matrix(np.column_stack((Fmat_hslv[242:363,30:45], Fmat_lshv[242:363,16:22], Fmat_lslv[242:363,28:36]))) total_seq_sm_motion_hshv = np.matrix(np.column_stack((Fmat_hslv[242:363,45:52], Fmat_lshv[242:363,22:28], Fmat_lslv[242:363,36:42]))) total_seq_rf_hshv = np.zeros((242,45)) total_seq_rm_hshv = np.zeros((242,29)) total_seq_sf_hshv = np.zeros((242,29)) total_seq_sm_hshv = np.zeros((242,19)) i = 0 j = 0 while i < 242: total_seq_rf_hshv[i] = total_seq_rf_force_hshv[j] total_seq_rf_hshv[i+1] = total_seq_rf_motion_hshv[j] total_seq_rm_hshv[i] = total_seq_rm_force_hshv[j] total_seq_rm_hshv[i+1] = total_seq_rm_motion_hshv[j] total_seq_sf_hshv[i] = total_seq_sf_force_hshv[j] total_seq_sf_hshv[i+1] = total_seq_sf_motion_hshv[j] total_seq_sm_hshv[i] = total_seq_sm_force_hshv[j] total_seq_sm_hshv[i+1] = total_seq_sm_motion_hshv[j] j=j+1 i=i+2 train_seq_rf_hshv = (np.array(total_seq_rf_hshv).T).tolist() train_seq_rm_hshv = (np.array(total_seq_rm_hshv).T).tolist() train_seq_sf_hshv = (np.array(total_seq_sf_hshv).T).tolist() train_seq_sm_hshv = (np.array(total_seq_sm_hshv).T).tolist() #print train_seq_rf_hshv final_ts_rf_hshv = ghmm.SequenceSet(F,train_seq_rf_hshv) final_ts_rm_hshv = ghmm.SequenceSet(F,train_seq_rm_hshv) final_ts_sf_hshv = ghmm.SequenceSet(F,train_seq_sf_hshv) final_ts_sm_hshv = ghmm.SequenceSet(F,train_seq_sm_hshv) model_rf_hshv.baumWelch(final_ts_rf_hshv) model_rm_hshv.baumWelch(final_ts_rm_hshv) model_sf_hshv.baumWelch(final_ts_sf_hshv) model_sm_hshv.baumWelch(final_ts_sm_hshv) # For Testing total_seq_obj_hshv = np.zeros((242,27)) total_seq_obj_force_hshv = Fmat_hshv[0:121,:] total_seq_obj_motion_hshv = Fmat_hshv[242:363,:] i = 0 j = 0 while i < 242: total_seq_obj_hshv[i] = total_seq_obj_force_hshv[j] total_seq_obj_hshv[i+1] = total_seq_obj_motion_hshv[j] j=j+1 i=i+2 rf_hshv = np.matrix(np.zeros(np.size(total_seq_obj_hshv,1))) rm_hshv = np.matrix(np.zeros(np.size(total_seq_obj_hshv,1))) sf_hshv = np.matrix(np.zeros(np.size(total_seq_obj_hshv,1))) sm_hshv = np.matrix(np.zeros(np.size(total_seq_obj_hshv,1))) k = 0 while (k < np.size(total_seq_obj_hshv,1)): test_seq_obj_hshv = (np.array(total_seq_obj_hshv[:,k]).T).tolist() new_test_seq_obj_hshv = np.array(test_seq_obj_hshv) #print new_test_seq_obj_hshv ts_obj_hshv = new_test_seq_obj_hshv #print np.shape(ts_obj_hshv) final_ts_obj_hshv = ghmm.EmissionSequence(F,ts_obj_hshv.tolist()) # Find Viterbi Path path_rf_obj_hshv = model_rf_hshv.viterbi(final_ts_obj_hshv) path_rm_obj_hshv = model_rm_hshv.viterbi(final_ts_obj_hshv) path_sf_obj_hshv = model_sf_hshv.viterbi(final_ts_obj_hshv) path_sm_obj_hshv = model_sm_hshv.viterbi(final_ts_obj_hshv) obj_hshv = max(path_rf_obj_hshv[1],path_rm_obj_hshv[1],path_sf_obj_hshv[1],path_sm_obj_hshv[1]) if obj_hshv == path_rf_obj_hshv[1]: rf_hshv[0,k] = 1 elif obj_hshv == path_rm_obj_hshv[1]: rm_hshv[0,k] = 1 elif obj_hshv == path_sf_obj_hshv[1]: sf_hshv[0,k] = 1 else: sm_hshv[0,k] = 1 k = k+1 #print rf_hshv.T cmat[0][0] = cmat[0][0] + np.sum(rf_hshv[0,0:15]) cmat[0][1] = cmat[0][1] + np.sum(rf_hshv[0,15:15]) cmat[0][2] = cmat[0][2] + np.sum(rf_hshv[0,15:26]) cmat[0][3] = cmat[0][3] + np.sum(rf_hshv[0,26:27]) cmat[1][0] = cmat[1][0] + np.sum(rm_hshv[0,0:15]) cmat[1][1] = cmat[1][1] + np.sum(rm_hshv[0,15:15]) cmat[1][2] = cmat[1][2] + np.sum(rm_hshv[0,15:26]) cmat[1][3] = cmat[1][3] + np.sum(rm_hshv[0,26:27]) cmat[2][0] = cmat[2][0] + np.sum(sf_hshv[0,0:15]) cmat[2][1] = cmat[2][1] + np.sum(sf_hshv[0,15:15]) cmat[2][2] = cmat[2][2] + np.sum(sf_hshv[0,15:26]) cmat[2][3] = cmat[2][3] + np.sum(sf_hshv[0,26:27]) cmat[3][0] = cmat[3][0] + np.sum(sm_hshv[0,0:15]) cmat[3][1] = cmat[3][1] + np.sum(sm_hshv[0,15:15]) cmat[3][2] = cmat[3][2] + np.sum(sm_hshv[0,15:26]) cmat[3][3] = cmat[3][3] + np.sum(sm_hshv[0,26:27]) #print cmat ############################################################################################################################################# # HSLV as testing set and Rest as training set mu_rf_force_hslv,mu_rf_motion_hslv,cov_rf_hslv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,0:15], Fmat_lshv[0:121,0:15], Fmat_lslv[0:121,0:15])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,0:15], Fmat_lshv[242:363,0:15], Fmat_lslv[242:363,0:15]))))) mu_rm_force_hslv,mu_rm_motion_hslv,cov_rm_hslv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,15:15], Fmat_lshv[0:121,15:16], Fmat_lslv[0:121,15:28])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,15:15], Fmat_lshv[242:363,15:16], Fmat_lslv[242:363,15:28]))))) mu_sf_force_hslv,mu_sf_motion_hslv,cov_sf_hslv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,15:26], Fmat_lshv[0:121,16:22], Fmat_lslv[0:121,28:36])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,15:26], Fmat_lshv[242:363,16:22], Fmat_lslv[242:363,28:36]))))) mu_sm_force_hslv,mu_sm_motion_hslv,cov_sm_hslv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,26:27], Fmat_lshv[0:121,22:28], Fmat_lslv[0:121,36:42])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,26:27], Fmat_lshv[242:363,22:28], Fmat_lslv[242:363,36:42]))))) # B - Emission Matrix, parameters of emission distributions in pairs of (mu, sigma) B_rf_hslv = [0.0]*10 B_rm_hslv = [0.0]*10 B_sf_hslv = [0.0]*10 B_sm_hslv = [0.0]*10 for num_states in range(10): B_rf_hslv[num_states] = [[mu_rf_force_hslv[num_states][0],mu_rf_motion_hslv[num_states][0]],[cov_rf_hslv[num_states][0][0],cov_rf_hslv[num_states][0][1],cov_rf_hslv[num_states][1][0],cov_rf_hslv[num_states][1][1]]] B_rm_hslv[num_states] = [[mu_rm_force_hslv[num_states][0],mu_rm_motion_hslv[num_states][0]],[cov_rm_hslv[num_states][0][0],cov_rm_hslv[num_states][0][1],cov_rm_hslv[num_states][1][0],cov_rm_hslv[num_states][1][1]]] B_sf_hslv[num_states] = [[mu_sf_force_hslv[num_states][0],mu_sf_motion_hslv[num_states][0]],[cov_sf_hslv[num_states][0][0],cov_sf_hslv[num_states][0][1],cov_sf_hslv[num_states][1][0],cov_sf_hslv[num_states][1][1]]] B_sm_hslv[num_states] = [[mu_sm_force_hslv[num_states][0],mu_sm_motion_hslv[num_states][0]],[cov_sm_hslv[num_states][0][0],cov_sm_hslv[num_states][0][1],cov_sm_hslv[num_states][1][0],cov_sm_hslv[num_states][1][1]]] print cov_sm_hslv[num_states][0][0],cov_sm_hslv[num_states][0][1],cov_sm_hslv[num_states][1][0],cov_sm_hslv[num_states][1][1] print "----" #print B_sm_hslv #print mu_sm_motion_hslv # generate RF, RM, SF, SM models from parameters model_rf_hslv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rf_hslv, pi) # Will be Trained model_rm_hslv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rm_hslv, pi) # Will be Trained model_sf_hslv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sf_hslv, pi) # Will be Trained model_sm_hslv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sm_hslv, pi) # Will be Trained # For Training total_seq_rf_force_hslv = np.matrix(np.column_stack((Fmat_hshv[0:121,0:15], Fmat_lshv[0:121,0:15], Fmat_lslv[0:121,0:15]))) total_seq_rm_force_hslv = np.matrix(np.column_stack((Fmat_hshv[0:121,15:15], Fmat_lshv[0:121,15:16], Fmat_lslv[0:121,15:28]))) total_seq_sf_force_hslv = np.matrix(np.column_stack((Fmat_hshv[0:121,15:26], Fmat_lshv[0:121,16:22], Fmat_lslv[0:121,28:36]))) total_seq_sm_force_hslv = np.matrix(np.column_stack((Fmat_hshv[0:121,26:27], Fmat_lshv[0:121,22:28], Fmat_lslv[0:121,36:42]))) total_seq_rf_motion_hslv = np.matrix(np.column_stack((Fmat_hshv[242:363,0:15], Fmat_lshv[242:363,0:15], Fmat_lslv[242:363,0:15]))) total_seq_rm_motion_hslv = np.matrix(np.column_stack((Fmat_hshv[242:363,15:15], Fmat_lshv[242:363,15:16], Fmat_lslv[242:363,15:28]))) total_seq_sf_motion_hslv = np.matrix(np.column_stack((Fmat_hshv[242:363,15:26], Fmat_lshv[242:363,16:22], Fmat_lslv[242:363,28:36]))) total_seq_sm_motion_hslv = np.matrix(np.column_stack((Fmat_hshv[242:363,26:27], Fmat_lshv[242:363,22:28], Fmat_lslv[242:363,36:42]))) total_seq_rf_hslv = np.zeros((242,45)) total_seq_rm_hslv = np.zeros((242,14)) total_seq_sf_hslv = np.zeros((242,25)) total_seq_sm_hslv = np.zeros((242,13)) i = 0 j = 0 while i < 242: total_seq_rf_hslv[i] = total_seq_rf_force_hslv[j] total_seq_rf_hslv[i+1] = total_seq_rf_motion_hslv[j] total_seq_rm_hslv[i] = total_seq_rm_force_hslv[j] total_seq_rm_hslv[i+1] = total_seq_rm_motion_hslv[j] total_seq_sf_hslv[i] = total_seq_sf_force_hslv[j] total_seq_sf_hslv[i+1] = total_seq_sf_motion_hslv[j] total_seq_sm_hslv[i] = total_seq_sm_force_hslv[j] total_seq_sm_hslv[i+1] = total_seq_sm_motion_hslv[j] j=j+1 i=i+2 train_seq_rf_hslv = (np.array(total_seq_rf_hslv).T).tolist() train_seq_rm_hslv = (np.array(total_seq_rm_hslv).T).tolist() train_seq_sf_hslv = (np.array(total_seq_sf_hslv).T).tolist() train_seq_sm_hslv = (np.array(total_seq_sm_hslv).T).tolist() #print train_seq_rf_hslv final_ts_rf_hslv = ghmm.SequenceSet(F,train_seq_rf_hslv) final_ts_rm_hslv = ghmm.SequenceSet(F,train_seq_rm_hslv) final_ts_sf_hslv = ghmm.SequenceSet(F,train_seq_sf_hslv) final_ts_sm_hslv = ghmm.SequenceSet(F,train_seq_sm_hslv) model_rf_hslv.baumWelch(final_ts_rf_hslv) model_rm_hslv.baumWelch(final_ts_rm_hslv) model_sf_hslv.baumWelch(final_ts_sf_hslv) model_sm_hslv.baumWelch(final_ts_sm_hslv) # For Testing total_seq_obj_hslv = np.zeros((242,52)) total_seq_obj_force_hslv = Fmat_hslv[0:121,:] total_seq_obj_motion_hslv = Fmat_hslv[242:363,:] i = 0 j = 0 while i < 242: total_seq_obj_hslv[i] = total_seq_obj_force_hslv[j] total_seq_obj_hslv[i+1] = total_seq_obj_motion_hslv[j] j=j+1 i=i+2 rf_hslv = np.matrix(np.zeros(np.size(total_seq_obj_hslv,1))) rm_hslv = np.matrix(np.zeros(np.size(total_seq_obj_hslv,1))) sf_hslv = np.matrix(np.zeros(np.size(total_seq_obj_hslv,1))) sm_hslv = np.matrix(np.zeros(np.size(total_seq_obj_hslv,1))) k = 0 while (k < np.size(total_seq_obj_hslv,1)): test_seq_obj_hslv = (np.array(total_seq_obj_hslv[:,k]).T).tolist() new_test_seq_obj_hslv = np.array(test_seq_obj_hslv) #print new_test_seq_obj_hslv ts_obj_hslv = new_test_seq_obj_hslv #print np.shape(ts_obj_hslv) final_ts_obj_hslv = ghmm.EmissionSequence(F,ts_obj_hslv.tolist()) # Find Viterbi Path path_rf_obj_hslv = model_rf_hslv.viterbi(final_ts_obj_hslv) path_rm_obj_hslv = model_rm_hslv.viterbi(final_ts_obj_hslv) path_sf_obj_hslv = model_sf_hslv.viterbi(final_ts_obj_hslv) path_sm_obj_hslv = model_sm_hslv.viterbi(final_ts_obj_hslv) obj_hslv = max(path_rf_obj_hslv[1],path_rm_obj_hslv[1],path_sf_obj_hslv[1],path_sm_obj_hslv[1]) if obj_hslv == path_rf_obj_hslv[1]: rf_hslv[0,k] = 1 elif obj_hslv == path_rm_obj_hslv[1]: rm_hslv[0,k] = 1 elif obj_hslv == path_sf_obj_hslv[1]: sf_hslv[0,k] = 1 else: sm_hslv[0,k] = 1 k = k+1 #print rf_hshv.T cmat[0][0] = cmat[0][0] + np.sum(rf_hslv[0,0:15]) cmat[0][1] = cmat[0][1] + np.sum(rf_hslv[0,15:30]) cmat[0][2] = cmat[0][2] + np.sum(rf_hslv[0,30:45]) cmat[0][3] = cmat[0][3] + np.sum(rf_hslv[0,45:52]) cmat[1][0] = cmat[1][0] + np.sum(rm_hslv[0,0:15]) cmat[1][1] = cmat[1][1] + np.sum(rm_hslv[0,15:30]) cmat[1][2] = cmat[1][2] + np.sum(rm_hslv[0,30:45]) cmat[1][3] = cmat[1][3] + np.sum(rm_hslv[0,45:52]) cmat[2][0] = cmat[2][0] + np.sum(sf_hslv[0,0:15]) cmat[2][1] = cmat[2][1] + np.sum(sf_hslv[0,15:30]) cmat[2][2] = cmat[2][2] + np.sum(sf_hslv[0,30:45]) cmat[2][3] = cmat[2][3] + np.sum(sf_hslv[0,45:52]) cmat[3][0] = cmat[3][0] + np.sum(sm_hslv[0,0:15]) cmat[3][1] = cmat[3][1] + np.sum(sm_hslv[0,15:30]) cmat[3][2] = cmat[3][2] + np.sum(sm_hslv[0,30:45]) cmat[3][3] = cmat[3][3] + np.sum(sm_hslv[0,45:52]) #print cmat ############################################################################################################################################ # LSHV as testing set and Rest as training set mu_rf_force_lshv,mu_rf_motion_lshv,cov_rf_lshv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,0:15], Fmat_hslv[0:121,0:15], Fmat_lslv[0:121,0:15])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,0:15], Fmat_hslv[242:363,0:15], Fmat_lslv[242:363,0:15]))))) mu_rm_force_lshv,mu_rm_motion_lshv,cov_rm_lshv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,15:15], Fmat_hslv[0:121,15:30], Fmat_lslv[0:121,15:28])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,15:15], Fmat_hslv[242:363,15:30], Fmat_lslv[242:363,15:28]))))) mu_sf_force_lshv,mu_sf_motion_lshv,cov_sf_lshv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,15:26], Fmat_hslv[0:121,30:45], Fmat_lslv[0:121,28:36])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,15:26], Fmat_hslv[242:363,30:45], Fmat_lslv[242:363,28:36]))))) mu_sm_force_lshv,mu_sm_motion_lshv,cov_sm_lshv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,26:27], Fmat_hslv[0:121,45:52], Fmat_lslv[0:121,36:42])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,26:27], Fmat_hslv[242:363,45:52], Fmat_lslv[242:363,36:42]))))) # B - Emission Matrix, parameters of emission distributions in pairs of (mu, sigma) B_rf_lshv = [0.0]*10 B_rm_lshv = [0.0]*10 B_sf_lshv = [0.0]*10 B_sm_lshv = [0.0]*10 for num_states in range(10): B_rf_lshv[num_states] = [[mu_rf_force_lshv[num_states][0],mu_rf_motion_lshv[num_states][0]],[cov_rf_lshv[num_states][0][0],cov_rf_lshv[num_states][0][1],cov_rf_lshv[num_states][1][0],cov_rf_lshv[num_states][1][1]]] B_rm_lshv[num_states] = [[mu_rm_force_lshv[num_states][0],mu_rm_motion_lshv[num_states][0]],[cov_rm_lshv[num_states][0][0],cov_rm_lshv[num_states][0][1],cov_rm_lshv[num_states][1][0],cov_rm_lshv[num_states][1][1]]] B_sf_lshv[num_states] = [[mu_sf_force_lshv[num_states][0],mu_sf_motion_lshv[num_states][0]],[cov_sf_lshv[num_states][0][0],cov_sf_lshv[num_states][0][1],cov_sf_lshv[num_states][1][0],cov_sf_lshv[num_states][1][1]]] B_sm_lshv[num_states] = [[mu_sm_force_lshv[num_states][0],mu_sm_motion_lshv[num_states][0]],[cov_sm_lshv[num_states][0][0],cov_sm_lshv[num_states][0][1],cov_sm_lshv[num_states][1][0],cov_sm_lshv[num_states][1][1]]] print cov_sm_lshv[num_states][0][0],cov_sm_lshv[num_states][0][1],cov_sm_lshv[num_states][1][0],cov_sm_lshv[num_states][1][1] print "----" #print B_sm_lshv #print mu_sm_motion_lshv # generate RF, RM, SF, SM models from parameters model_rf_lshv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rf_lshv, pi) # Will be Trained model_rm_lshv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rm_lshv, pi) # Will be Trained model_sf_lshv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sf_lshv, pi) # Will be Trained model_sm_lshv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sm_lshv, pi) # Will be Trained # For Training total_seq_rf_force_lshv = np.matrix(np.column_stack((Fmat_hshv[0:121,0:15], Fmat_hslv[0:121,0:15], Fmat_lslv[0:121,0:15]))) total_seq_rm_force_lshv = np.matrix(np.column_stack((Fmat_hshv[0:121,15:15], Fmat_hslv[0:121,15:30], Fmat_lslv[0:121,15:28]))) total_seq_sf_force_lshv = np.matrix(np.column_stack((Fmat_hshv[0:121,15:26], Fmat_hslv[0:121,30:45], Fmat_lslv[0:121,28:36]))) total_seq_sm_force_lshv = np.matrix(np.column_stack((Fmat_hshv[0:121,26:27], Fmat_hslv[0:121,45:52], Fmat_lslv[0:121,36:42]))) total_seq_rf_motion_lshv = np.matrix(np.column_stack((Fmat_hshv[242:363,0:15], Fmat_hslv[242:363,0:15], Fmat_lslv[242:363,0:15]))) total_seq_rm_motion_lshv = np.matrix(np.column_stack((Fmat_hshv[242:363,15:15], Fmat_hslv[242:363,15:30], Fmat_lslv[242:363,15:28]))) total_seq_sf_motion_lshv = np.matrix(np.column_stack((Fmat_hshv[242:363,15:26], Fmat_hslv[242:363,30:45], Fmat_lslv[242:363,28:36]))) total_seq_sm_motion_lshv = np.matrix(np.column_stack((Fmat_hshv[242:363,26:27], Fmat_hslv[242:363,45:52], Fmat_lslv[242:363,36:42]))) total_seq_rf_lshv = np.zeros((242,45)) total_seq_rm_lshv = np.zeros((242,28)) total_seq_sf_lshv = np.zeros((242,34)) total_seq_sm_lshv = np.zeros((242,14)) i = 0 j = 0 while i < 242: total_seq_rf_lshv[i] = total_seq_rf_force_lshv[j] total_seq_rf_lshv[i+1] = total_seq_rf_motion_lshv[j] total_seq_rm_lshv[i] = total_seq_rm_force_lshv[j] total_seq_rm_lshv[i+1] = total_seq_rm_motion_lshv[j] total_seq_sf_lshv[i] = total_seq_sf_force_lshv[j] total_seq_sf_lshv[i+1] = total_seq_sf_motion_lshv[j] total_seq_sm_lshv[i] = total_seq_sm_force_lshv[j] total_seq_sm_lshv[i+1] = total_seq_sm_motion_lshv[j] j=j+1 i=i+2 train_seq_rf_lshv = (np.array(total_seq_rf_lshv).T).tolist() train_seq_rm_lshv = (np.array(total_seq_rm_lshv).T).tolist() train_seq_sf_lshv = (np.array(total_seq_sf_lshv).T).tolist() train_seq_sm_lshv = (np.array(total_seq_sm_lshv).T).tolist() #print train_seq_rf_lshv final_ts_rf_lshv = ghmm.SequenceSet(F,train_seq_rf_lshv) final_ts_rm_lshv = ghmm.SequenceSet(F,train_seq_rm_lshv) final_ts_sf_lshv = ghmm.SequenceSet(F,train_seq_sf_lshv) final_ts_sm_lshv = ghmm.SequenceSet(F,train_seq_sm_lshv) model_rf_lshv.baumWelch(final_ts_rf_lshv) model_rm_lshv.baumWelch(final_ts_rm_lshv) model_sf_lshv.baumWelch(final_ts_sf_lshv) model_sm_lshv.baumWelch(final_ts_sm_lshv) # For Testing total_seq_obj_lshv = np.zeros((242,28)) total_seq_obj_force_lshv = Fmat_lshv[0:121,:] total_seq_obj_motion_lshv = Fmat_lshv[242:363,:] i = 0 j = 0 while i < 242: total_seq_obj_lshv[i] = total_seq_obj_force_lshv[j] total_seq_obj_lshv[i+1] = total_seq_obj_motion_lshv[j] j=j+1 i=i+2 rf_lshv = np.matrix(np.zeros(np.size(total_seq_obj_lshv,1))) rm_lshv = np.matrix(np.zeros(np.size(total_seq_obj_lshv,1))) sf_lshv = np.matrix(np.zeros(np.size(total_seq_obj_lshv,1))) sm_lshv = np.matrix(np.zeros(np.size(total_seq_obj_lshv,1))) k = 0 while (k < np.size(total_seq_obj_lshv,1)): test_seq_obj_lshv = (np.array(total_seq_obj_lshv[:,k]).T).tolist() new_test_seq_obj_lshv = np.array(test_seq_obj_lshv) #print new_test_seq_obj_lshv ts_obj_lshv = new_test_seq_obj_lshv #print np.shape(ts_obj_lshv) final_ts_obj_lshv = ghmm.EmissionSequence(F,ts_obj_lshv.tolist()) # Find Viterbi Path path_rf_obj_lshv = model_rf_lshv.viterbi(final_ts_obj_lshv) path_rm_obj_lshv = model_rm_lshv.viterbi(final_ts_obj_lshv) path_sf_obj_lshv = model_sf_lshv.viterbi(final_ts_obj_lshv) path_sm_obj_lshv = model_sm_lshv.viterbi(final_ts_obj_lshv) obj_lshv = max(path_rf_obj_lshv[1],path_rm_obj_lshv[1],path_sf_obj_lshv[1],path_sm_obj_lshv[1]) if obj_lshv == path_rf_obj_lshv[1]: rf_lshv[0,k] = 1 elif obj_lshv == path_rm_obj_lshv[1]: rm_lshv[0,k] = 1 elif obj_lshv == path_sf_obj_lshv[1]: sf_lshv[0,k] = 1 else: sm_lshv[0,k] = 1 k = k+1 #print rf_lshv.T cmat[0][0] = cmat[0][0] + np.sum(rf_lshv[0,0:15]) cmat[0][1] = cmat[0][1] + np.sum(rf_lshv[0,15:16]) cmat[0][2] = cmat[0][2] + np.sum(rf_lshv[0,16:22]) cmat[0][3] = cmat[0][3] + np.sum(rf_lshv[0,22:28]) cmat[1][0] = cmat[1][0] + np.sum(rm_lshv[0,0:15]) cmat[1][1] = cmat[1][1] + np.sum(rm_lshv[0,15:16]) cmat[1][2] = cmat[1][2] + np.sum(rm_lshv[0,16:22]) cmat[1][3] = cmat[1][3] + np.sum(rm_lshv[0,22:28]) cmat[2][0] = cmat[2][0] + np.sum(sf_lshv[0,0:15]) cmat[2][1] = cmat[2][1] + np.sum(sf_lshv[0,15:16]) cmat[2][2] = cmat[2][2] + np.sum(sf_lshv[0,16:22]) cmat[2][3] = cmat[2][3] + np.sum(sf_lshv[0,22:28]) cmat[3][0] = cmat[3][0] + np.sum(sm_lshv[0,0:15]) cmat[3][1] = cmat[3][1] + np.sum(sm_lshv[0,15:16]) cmat[3][2] = cmat[3][2] + np.sum(sm_lshv[0,16:22]) cmat[3][3] = cmat[3][3] + np.sum(sm_lshv[0,22:28]) #print cmat ############################################################################################################################################# # LSLV as testing set and Rest as training set mu_rf_force_lslv,mu_rf_motion_lslv,cov_rf_lslv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,0:15], Fmat_hslv[0:121,0:15], Fmat_lshv[0:121,0:15])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,0:15], Fmat_hslv[242:363,0:15], Fmat_lshv[242:363,0:15]))))) mu_rm_force_lslv,mu_rm_motion_lslv,cov_rm_lslv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,15:15], Fmat_hslv[0:121,15:30], Fmat_lshv[0:121,15:16])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,15:15], Fmat_hslv[242:363,15:30], Fmat_lshv[242:363,15:16]))))) mu_sf_force_lslv,mu_sf_motion_lslv,cov_sf_lslv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,15:26], Fmat_hslv[0:121,30:45], Fmat_lshv[0:121,16:22])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,15:26], Fmat_hslv[242:363,30:45], Fmat_lshv[242:363,16:22]))))) mu_sm_force_lslv,mu_sm_motion_lslv,cov_sm_lslv = feature_to_mu_cov((np.matrix(np.column_stack((Fmat_hshv[0:121,26:27], Fmat_hslv[0:121,45:52], Fmat_lshv[0:121,22:28])))), (np.matrix(np.column_stack((Fmat_hshv[242:363,26:27], Fmat_hslv[242:363,45:52], Fmat_lshv[242:363,22:28]))))) # B - Emission Matrix, parameters of emission distributions in pairs of (mu, sigma) B_rf_lslv = [0.0]*10 B_rm_lslv = [0.0]*10 B_sf_lslv = [0.0]*10 B_sm_lslv = [0.0]*10 for num_states in range(10): B_rf_lslv[num_states] = [[mu_rf_force_lslv[num_states][0],mu_rf_motion_lslv[num_states][0]],[cov_rf_lslv[num_states][0][0],cov_rf_lslv[num_states][0][1],cov_rf_lslv[num_states][1][0],cov_rf_lslv[num_states][1][1]]] B_rm_lslv[num_states] = [[mu_rm_force_lslv[num_states][0],mu_rm_motion_lslv[num_states][0]],[cov_rm_lslv[num_states][0][0],cov_rm_lslv[num_states][0][1],cov_rm_lslv[num_states][1][0],cov_rm_lslv[num_states][1][1]]] B_sf_lslv[num_states] = [[mu_sf_force_lslv[num_states][0],mu_sf_motion_lslv[num_states][0]],[cov_sf_lslv[num_states][0][0],cov_sf_lslv[num_states][0][1],cov_sf_lslv[num_states][1][0],cov_sf_lslv[num_states][1][1]]] B_sm_lslv[num_states] = [[mu_sm_force_lslv[num_states][0],mu_sm_motion_lslv[num_states][0]],[cov_sm_lslv[num_states][0][0],cov_sm_lslv[num_states][0][1],cov_sm_lslv[num_states][1][0],cov_sm_lslv[num_states][1][1]]] print cov_sm_lslv[num_states][0][0],cov_sm_lslv[num_states][0][1],cov_sm_lslv[num_states][1][0],cov_sm_lslv[num_states][1][1] print "----" #print B_sm_lslv #print mu_sm_motion_lslv # generate RF, RM, SF, SM models from parameters model_rf_lslv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rf_lslv, pi) # Will be Trained model_rm_lslv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_rm_lslv, pi) # Will be Trained model_sf_lslv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sf_lslv, pi) # Will be Trained model_sm_lslv = ghmm.HMMFromMatrices(F,ghmm.MultivariateGaussianDistribution(F), A, B_sm_lslv, pi) # Will be Trained # For Training total_seq_rf_force_lslv = np.matrix(np.column_stack((Fmat_hshv[0:121,0:15], Fmat_hslv[0:121,0:15], Fmat_lshv[0:121,0:15]))) total_seq_rm_force_lslv = np.matrix(np.column_stack((Fmat_hshv[0:121,15:15], Fmat_hslv[0:121,15:30], Fmat_lshv[0:121,15:16]))) total_seq_sf_force_lslv = np.matrix(np.column_stack((Fmat_hshv[0:121,15:26], Fmat_hslv[0:121,30:45], Fmat_lshv[0:121,16:22]))) total_seq_sm_force_lslv = np.matrix(np.column_stack((Fmat_hshv[0:121,26:27], Fmat_hslv[0:121,45:52], Fmat_lshv[0:121,22:28]))) total_seq_rf_motion_lslv = np.matrix(np.column_stack((Fmat_hshv[242:363,0:15], Fmat_hslv[242:363,0:15], Fmat_lshv[242:363,0:15]))) total_seq_rm_motion_lslv = np.matrix(np.column_stack((Fmat_hshv[242:363,15:15], Fmat_hslv[242:363,15:30], Fmat_lshv[242:363,15:16]))) total_seq_sf_motion_lslv = np.matrix(np.column_stack((Fmat_hshv[242:363,15:26], Fmat_hslv[242:363,30:45], Fmat_lshv[242:363,16:22]))) total_seq_sm_motion_lslv = np.matrix(np.column_stack((Fmat_hshv[242:363,26:27], Fmat_hslv[242:363,45:52], Fmat_lshv[242:363,22:28]))) total_seq_rf_lslv = np.zeros((242,45)) total_seq_rm_lslv = np.zeros((242,16)) total_seq_sf_lslv = np.zeros((242,32)) total_seq_sm_lslv = np.zeros((242,14)) i = 0 j = 0 while i < 242: total_seq_rf_lslv[i] = total_seq_rf_force_lslv[j] total_seq_rf_lslv[i+1] = total_seq_rf_motion_lslv[j] total_seq_rm_lslv[i] = total_seq_rm_force_lslv[j] total_seq_rm_lslv[i+1] = total_seq_rm_motion_lslv[j] total_seq_sf_lslv[i] = total_seq_sf_force_lslv[j] total_seq_sf_lslv[i+1] = total_seq_sf_motion_lslv[j] total_seq_sm_lslv[i] = total_seq_sm_force_lslv[j] total_seq_sm_lslv[i+1] = total_seq_sm_motion_lslv[j] j=j+1 i=i+2 train_seq_rf_lslv = (np.array(total_seq_rf_lslv).T).tolist() train_seq_rm_lslv = (np.array(total_seq_rm_lslv).T).tolist() train_seq_sf_lslv = (np.array(total_seq_sf_lslv).T).tolist() train_seq_sm_lslv = (np.array(total_seq_sm_lslv).T).tolist() #print train_seq_rf_lslv final_ts_rf_lslv = ghmm.SequenceSet(F,train_seq_rf_lslv) final_ts_rm_lslv = ghmm.SequenceSet(F,train_seq_rm_lslv) final_ts_sf_lslv = ghmm.SequenceSet(F,train_seq_sf_lslv) final_ts_sm_lslv = ghmm.SequenceSet(F,train_seq_sm_lslv) model_rf_lslv.baumWelch(final_ts_rf_lslv) model_rm_lslv.baumWelch(final_ts_rm_lslv) model_sf_lslv.baumWelch(final_ts_sf_lslv) model_sm_lslv.baumWelch(final_ts_sm_lslv) # For Testing total_seq_obj_lslv = np.zeros((242,42)) total_seq_obj_force_lslv = Fmat_lslv[0:121,:] total_seq_obj_motion_lslv = Fmat_lslv[242:363,:] i = 0 j = 0 while i < 242: total_seq_obj_lslv[i] = total_seq_obj_force_lslv[j] total_seq_obj_lslv[i+1] = total_seq_obj_motion_lslv[j] j=j+1 i=i+2 rf_lslv = np.matrix(np.zeros(np.size(total_seq_obj_lslv,1))) rm_lslv = np.matrix(np.zeros(np.size(total_seq_obj_lslv,1))) sf_lslv = np.matrix(np.zeros(np.size(total_seq_obj_lslv,1))) sm_lslv = np.matrix(np.zeros(np.size(total_seq_obj_lslv,1))) k = 0 while (k < np.size(total_seq_obj_lslv,1)): test_seq_obj_lslv = (np.array(total_seq_obj_lslv[:,k]).T).tolist() new_test_seq_obj_lslv = np.array(test_seq_obj_lslv) #print new_test_seq_obj_lslv ts_obj_lslv = new_test_seq_obj_lslv #print np.shape(ts_obj_lslv) # Find Viterbi Path final_ts_obj_lslv = ghmm.EmissionSequence(F,ts_obj_lslv.tolist()) path_rf_obj_lslv = model_rf_lslv.viterbi(final_ts_obj_lslv) path_rm_obj_lslv = model_rm_lslv.viterbi(final_ts_obj_lslv) path_sf_obj_lslv = model_sf_lslv.viterbi(final_ts_obj_lslv) path_sm_obj_lslv = model_sm_lslv.viterbi(final_ts_obj_lslv) obj_lslv = max(path_rf_obj_lslv[1],path_rm_obj_lslv[1],path_sf_obj_lslv[1],path_sm_obj_lslv[1]) if obj_lslv == path_rf_obj_lslv[1]: rf_lslv[0,k] = 1 elif obj_lslv == path_rm_obj_lslv[1]: rm_lslv[0,k] = 1 elif obj_lslv == path_sf_obj_lslv[1]: sf_lslv[0,k] = 1 else: sm_lslv[0,k] = 1 k = k+1 #print rf_lslv.T cmat[0][0] = cmat[0][0] + np.sum(rf_lslv[0,0:15]) cmat[0][1] = cmat[0][1] + np.sum(rf_lslv[0,15:28]) cmat[0][2] = cmat[0][2] + np.sum(rf_lslv[0,28:36]) cmat[0][3] = cmat[0][3] + np.sum(rf_lslv[0,36:42]) cmat[1][0] = cmat[1][0] + np.sum(rm_lslv[0,0:15]) cmat[1][1] = cmat[1][1] + np.sum(rm_lslv[0,15:28]) cmat[1][2] = cmat[1][2] + np.sum(rm_lslv[0,28:36]) cmat[1][3] = cmat[1][3] + np.sum(rm_lslv[0,36:42]) cmat[2][0] = cmat[2][0] + np.sum(sf_lslv[0,0:15]) cmat[2][1] = cmat[2][1] + np.sum(sf_lslv[0,15:28]) cmat[2][2] = cmat[2][2] + np.sum(sf_lslv[0,28:36]) cmat[2][3] = cmat[2][3] + np.sum(sf_lslv[0,36:42]) cmat[3][0] = cmat[3][0] + np.sum(sm_lslv[0,0:15]) cmat[3][1] = cmat[3][1] + np.sum(sm_lslv[0,15:28]) cmat[3][2] = cmat[3][2] + np.sum(sm_lslv[0,28:36]) cmat[3][3] = cmat[3][3] + np.sum(sm_lslv[0,36:42]) #print cmat ############################################################################################################################################ # Plot Confusion Matrix # Plot Confusion Matrix Nlabels = 4 fig = pp.figure() ax = fig.add_subplot(111) figplot = ax.matshow(cmat, interpolation = 'nearest', origin = 'upper', extent=[0, Nlabels, 0, Nlabels]) ax.set_title('Performance of HMM Models') pp.xlabel("Targets") pp.ylabel("Predictions") ax.set_xticks([0.5,1.5,2.5,3.5]) ax.set_xticklabels(['Rigid-Fixed', 'Rigid-Movable', 'Soft-Fixed', 'Soft-Movable']) ax.set_yticks([3.5,2.5,1.5,0.5]) ax.set_yticklabels(['Rigid-Fixed', 'Rigid-Movable', 'Soft-Fixed', 'Soft-Movable']) figbar = fig.colorbar(figplot) i = 0 while (i < 4): j = 0 while (j < 4): pp.text(j+0.5,3.5-i,cmat[i][j]) j = j+1 i = i+1 pp.savefig('results_force_motion_10_states.png') pp.show()
mit
AlexandreAbraham/brainhack2013
brainhack/covariance/multi_covariance.py
1
5273
from sklearn.base import clone, BaseEstimator from nilearn.input_data.base_masker import filter_and_mask from nilearn._utils.cache_mixin import cache from nilearn.input_data import MultiNiftiMasker from joblib import Memory, Parallel, delayed import warnings import nibabel from nilearn._utils.class_inspect import get_params def subject_covariance( estimator, niimgs, mask_img, parameters, confounds=None, ref_memory_level=0, memory=Memory(cachedir=None), connectivity=None, verbose=0, copy=True): data, affine = cache( filter_and_mask, memory=memory, ref_memory_level=ref_memory_level, memory_level=2, ignore=['verbose', 'memory', 'ref_memory_level', 'copy'])( niimgs, mask_img, parameters, ref_memory_level=ref_memory_level, memory=memory, verbose=verbose, confounds=confounds, copy=copy) estimator = clone(estimator) if connectivity is not None: estimator.fit(data, connectivity=connectivity) else: estimator.fit(data) return estimator.covariance_ class MultiCovariance(BaseEstimator): def __init__(self, estimator, smoothing_fwhm=None, mask=None, detrend=None, standardize=None, target_affine=None, target_shape=None, low_pass=None, high_pass=None, t_r=None, memory=Memory(cachedir=None), memory_level=0, n_jobs=1, verbose=0): self.estimator = estimator self.mask = mask self.memory = memory self.memory_level = memory_level self.n_jobs = n_jobs self.verbose = verbose self.low_pass = low_pass self.high_pass = high_pass self.t_r = t_r self.smoothing_fwhm = smoothing_fwhm self.target_affine = target_affine self.target_shape = target_shape self.standardize = standardize self.detrend = detrend def fit(self, niimgs=None, y=None, confounds=None, connectivity=None): """Compute the mask and the components Parameters ---------- niimgs: list of filenames or NiImages Data on which the PCA must be calculated. If this is a list, the affine is considered the same for all. """ # Hack to support single-subject data: if isinstance(niimgs, (basestring, nibabel.Nifti1Image)): niimgs = [niimgs] # This is a very incomplete hack, as it won't work right for # single-subject list of 3D filenames # First, learn the mask if not isinstance(self.mask, MultiNiftiMasker): self.masker_ = MultiNiftiMasker(mask=self.mask, smoothing_fwhm=self.smoothing_fwhm, target_affine=self.target_affine, target_shape=self.target_shape, low_pass=self.low_pass, high_pass=self.high_pass, t_r=self.t_r, memory=self.memory, memory_level=self.memory_level) else: try: self.masker_ = clone(self.mask) except TypeError as e: # Workaround for a joblib bug: in joblib 0.6, a Memory object # with cachedir = None cannot be cloned. masker_memory = self.mask.memory if masker_memory.cachedir is None: self.mask.memory = None self.masker_ = clone(self.mask) self.mask.memory = masker_memory self.masker_.memory = Memory(cachedir=None) else: # The error was raised for another reason raise e for param_name in ['target_affine', 'target_shape', 'smoothing_fwhm', 'low_pass', 'high_pass', 't_r', 'memory', 'memory_level']: if getattr(self.masker_, param_name) is not None: warnings.warn('Parameter %s of the masker overriden' % param_name) setattr(self.masker_, param_name, getattr(self, param_name)) if self.masker_.mask is None: self.masker_.fit(niimgs) else: self.masker_.fit() self.mask_img_ = self.masker_.mask_img_ parameters = get_params(MultiNiftiMasker, self) # Now compute the covariances self.covariances_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(subject_covariance)( self.estimator, niimg, self.masker_.mask_img_, parameters, memory=self.memory, ref_memory_level=self.memory_level, confounds=confounds, connectivity=connectivity, verbose=self.verbose ) for niimg in niimgs) return self
bsd-3-clause
donK23/shed01
PyBeispiele/SherlockRec/model.py
1
3603
""" Name: model Purpose: Analytical model for collaborative filtering Author: Thomas Treml ([email protected]) Date: 2015-08-31 """ import numpy as np import pandas as pd from sklearn.metrics import jaccard_similarity_score from sklearn.cross_validation import train_test_split import cPickle # Load pre-loaded dataframes and explore books_df = cPickle.load(open("./data/books_df.p", "rb")) ratings_df = cPickle.load(open("./data/ratings_df.p", "rb")) # train-test-split train_df, test_df = train_test_split(ratings_df, test_size=0.2) # dummy ratings my_rating = [-1, 1, 1, -1, 0., 1, -1, 0., 0., 0., 0., 0., 0., 0., 0.] dummy_rating = list(np.random.randint(-1, 1, size=15)) """ Similarity Measurement """ def all_books_recommendation(user_rating=my_rating, ratings_data=ratings_df, method=jaccard_similarity_score): """ Recommendation engine based on collaborative filtering. Creates recommendation array summing up weighted similarity scores by book, divided by sum of user similarities per rating. :param user_rating: list of user inputs. Size 15, nan replaced with 0 :param ratings_data: dataframe with user ratings about the 15 books :param method: similarity measurement method. Jaccard similarity (default) :return: array of recommendation ratings for all 15 books """ ratings_matrix = ratings_data.ix[: , "RAT_B01":"RAT_B15"].as_matrix().astype(float) weighted_ratings = np.array([]); user_similarities = np.array([]) for row in ratings_matrix: similarity_coefficient = method(user_rating, row) weighted_row = row * similarity_coefficient row[row != 0.] = similarity_coefficient if weighted_ratings.size == 0 and user_similarities.size == 0: weighted_ratings = np.hstack((weighted_ratings, weighted_row)) user_similarities = np.hstack((user_similarities, row)) else: weighted_ratings = np.vstack((weighted_ratings, weighted_row)) user_similarities = np.vstack((user_similarities, row)) total = np.sum(weighted_ratings, axis=0) sim_sum = np.sum(user_similarities, axis=0) return total / sim_sum def filter_recommendation(recommendation, user_input=my_rating): """ Filter recommendation array based on input books :param recommendation: recommendation array of unsorted recommendation values :param user_input: list from user input :return: tuple ([index of recommended books],[ratings of recommended books]) """ recommend_books = [] recommend_books_ratings = [] for position, item in enumerate(user_input): if item == 0: recommend_books.append(position) for book_id in recommend_books: recommend_books_ratings.append(recommendation[book_id]) return recommend_books, recommend_books_ratings def sort_recommendation(recommended_idx, recommended_ratings): """ Sort recommendation based on rating values :param recommended_idx: list of book indices from recommendation :param recommended_ratings: list of ratings from recommendation :return: list of sorted recommendations - tuple of (book_id, rating) """ recommended_dict = {} for id, rating in zip(recommended_idx, recommended_ratings): recommended_dict[id] = rating return sorted(recommended_dict.items(), key=lambda x: x[1], reverse=True) recommended_books, recommended_ratings = filter_recommendation(all_books_recommendation(my_rating, ratings_data=train_df)) my_recommdendation = sort_recommendation(recommended_books, recommended_ratings) print my_recommdendation
apache-2.0
zak-k/cartopy
lib/cartopy/tests/mpl/test_axes.py
3
2980
# (C) British Crown Copyright 2011 - 2016, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) import unittest from matplotlib.testing.decorators import cleanup import matplotlib.path as mpath import matplotlib.pyplot as plt from nose.tools import assert_equal import numpy as np import cartopy.crs as ccrs from cartopy.mpl.geoaxes import InterProjectionTransform from .test_caching import CallCounter class TestNoSpherical(unittest.TestCase): def setUp(self): self.ax = plt.axes(projection=ccrs.PlateCarree()) self.data = np.arange(12).reshape((3, 4)) def tearDown(self): plt.clf() plt.close() def test_contour(self): with self.assertRaises(ValueError): self.ax.contour(self.data, transform=ccrs.Geodetic()) def test_contourf(self): with self.assertRaises(ValueError): self.ax.contourf(self.data, transform=ccrs.Geodetic()) def test_pcolor(self): with self.assertRaises(ValueError): self.ax.pcolor(self.data, transform=ccrs.Geodetic()) def test_pcolormesh(self): with self.assertRaises(ValueError): self.ax.pcolormesh(self.data, transform=ccrs.Geodetic()) def test_transform_PlateCarree_shortcut(): src = ccrs.PlateCarree(central_longitude=0) target = ccrs.PlateCarree(central_longitude=180) # of the 3 paths, 2 of them cannot be short-cutted. pth1 = mpath.Path([[0.5, 0], [10, 10]]) pth2 = mpath.Path([[0.5, 91], [10, 10]]) pth3 = mpath.Path([[-0.5, 0], [10, 10]]) trans = InterProjectionTransform(src, target) counter = CallCounter(target, 'project_geometry') with counter: trans.transform_path(pth1) # pth1 should allow a short-cut. assert_equal(counter.count, 0) with counter: trans.transform_path(pth2) assert_equal(counter.count, 1) with counter: trans.transform_path(pth3) assert_equal(counter.count, 2) @cleanup def test_geoaxes_subplot(): ax = plt.subplot(1, 1, 1, projection=ccrs.PlateCarree()) assert_equal(str(ax.__class__), "<class 'cartopy.mpl.geoaxes.GeoAxesSubplot'>") if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
lgpl-3.0
ahoyosid/scikit-learn
sklearn/lda.py
15
17655
""" Linear Discriminant Analysis (LDA) """ # Authors: Clemens Brunner # Martin Billinger # Matthieu Perrot # Mathieu Blondel # License: BSD 3-Clause from __future__ import print_function import warnings import numpy as np from scipy import linalg from .externals.six import string_types from .base import BaseEstimator, TransformerMixin from .linear_model.base import LinearClassifierMixin from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance from .utils.multiclass import unique_labels from .utils import check_array, check_X_y from .utils.validation import check_is_fitted from .utils.fixes import bincount from .preprocessing import StandardScaler __all__ = ['LDA'] def _cov(X, shrinkage=None): """Estimate covariance matrix (using optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. shrinkage : string or float, optional Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- s : array, shape (n_features, n_features) Estimated covariance matrix. """ shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, string_types): if shrinkage == 'auto': sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = sc.std_ * ledoit_wolf(X)[0] * sc.std_ # scale back elif shrinkage == 'empirical': s = empirical_covariance(X) else: raise ValueError('unknown shrinkage parameter') elif isinstance(shrinkage, float) or isinstance(shrinkage, int): if shrinkage < 0 or shrinkage > 1: raise ValueError('shrinkage parameter must be between 0 and 1') s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError('shrinkage must be of string or int type') return s def _class_means(X, y): """Compute class means. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like, shape (n_features,) Class means. """ means = [] classes = np.unique(y) for group in classes: Xg = X[y == group, :] means.append(Xg.mean(0)) return np.asarray(means) def _class_cov(X, y, priors=None, shrinkage=None): """Compute class covariance matrix. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like, shape (n_classes,) Class priors. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- cov : array-like, shape (n_features, n_features) Class covariance matrix. """ classes = np.unique(y) covs = [] for group in classes: Xg = X[y == group, :] covs.append(np.atleast_2d(_cov(Xg, shrinkage))) return np.average(covs, axis=0, weights=priors) class LDA(BaseEstimator, LinearClassifierMixin, TransformerMixin): """Linear Discriminant Analysis (LDA). A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix. The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions. Parameters ---------- solver : string, optional Solver to use, possible values: - 'svd': Singular value decomposition (default). Does not compute the covariance matrix, therefore this solver is recommended for data with a large number of features. - 'lsqr': Least squares solution, can be combined with shrinkage. - 'eigen': Eigenvalue decomposition, can be combined with shrinkage. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Note that shrinkage works only with 'lsqr' and 'eigen' solvers. priors : array, optional, shape (n_classes,) Class priors. n_components : int, optional Number of components (< n_classes - 1) for dimensionality reduction. store_covariance : bool, optional Additionally compute class covariance matrix (default False). tol : float, optional Threshold used for rank estimation in SVD solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : array, shape (n_features,) Intercept term. covariance_ : array-like, shape (n_features, n_features) Covariance matrix (shared by all classes). means_ : array-like, shape (n_classes, n_features) Class means. priors_ : array-like, shape (n_classes,) Class priors (sum to 1). scalings_ : array-like, shape (rank, n_classes - 1) Scaling of the features in the space spanned by the class centroids. xbar_ : array-like, shape (n_features,) Overall mean. classes_ : array-like, shape (n_classes,) Unique class labels. See also -------- sklearn.qda.QDA: Quadratic discriminant analysis Notes ----- The default solver is 'svd'. It can perform both classification and transform, and it does not rely on the calculation of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the 'svd' solver cannot be used with shrinkage. The 'lsqr' solver is an efficient algorithm that only works for classification. It supports shrinkage. The 'eigen' solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used for both classification and transform, and it supports shrinkage. However, the 'eigen' solver needs to compute the covariance matrix, so it might not be suitable for situations with a high number of features. Examples -------- >>> import numpy as np >>> from sklearn.lda import LDA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = LDA() >>> clf.fit(X, y) LDA(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] """ def __init__(self, solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=1e-4): self.solver = solver self.shrinkage = shrinkage self.priors = priors self.n_components = n_components self.store_covariance = store_covariance # used only in svd solver self.tol = tol # used only in svd solver def _solve_lsqr(self, X, y, shrinkage): """Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with optional shrinkage), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_eigen(self, X, y, shrinkage): """Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) Sw = self.covariance_ # within scatter St = _cov(X, shrinkage) # total scatter Sb = St - Sw # between scatter evals, evecs = linalg.eigh(Sb, Sw) evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors # evecs /= np.linalg.norm(evecs, axis=0) # doesn't work with numpy 1.6 evecs /= np.apply_along_axis(np.linalg.norm, 0, evecs) self.scalings_ = evecs self.coef_ = np.dot(self.means_, evecs).dot(evecs.T) self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_svd(self, X, y, store_covariance=False, tol=1.0e-4): """SVD solver. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. store_covariance : bool, optional Additionally compute class covariance matrix (default False). tol : float, optional Threshold used for rank estimation. """ n_samples, n_features = X.shape n_classes = len(self.classes_) self.means_ = _class_means(X, y) if store_covariance: self.covariance_ = _class_cov(X, y, self.priors_) Xc = [] for idx, group in enumerate(self.classes_): Xg = X[y == group, :] Xc.append(Xg - self.means_[idx]) self.xbar_ = np.dot(self.priors_, self.means_) Xc = np.concatenate(Xc, axis=0) # 1) within (univariate) scaling by with classes std-dev std = Xc.std(axis=0) # avoid division by zero in normalization std[std == 0] = 1. fac = 1. / (n_samples - n_classes) # 2) Within variance scaling X = np.sqrt(fac) * (Xc / std) # SVD of centered (within)scaled data U, S, V = linalg.svd(X, full_matrices=False) rank = np.sum(S > tol) if rank < n_features: warnings.warn("Variables are collinear.") # Scaling of within covariance is: V' 1/S scalings = (V[:rank] / std).T / S[:rank] # 3) Between variance scaling # Scale weighted centers X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T).T, scalings) # Centers are living in a space with n_classes-1 dim (maximum) # Use SVD to find projection in the space spanned by the # (n_classes) centers _, S, V = linalg.svd(X, full_matrices=0) rank = np.sum(S > tol * S[0]) self.scalings_ = np.dot(scalings, V.T[:, :rank]) coef = np.dot(self.means_ - self.xbar_, self.scalings_) self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) + np.log(self.priors_)) self.coef_ = np.dot(coef, self.scalings_.T) self.intercept_ -= np.dot(self.xbar_, self.coef_.T) def fit(self, X, y, store_covariance=False, tol=1.0e-4): """Fit LDA model according to the given training data and parameters. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array, shape (n_samples,) Target values. """ if store_covariance: warnings.warn("'store_covariance' was moved to the __init__()" "method in version 0.16 and will be removed from" "fit() in version 0.18.", DeprecationWarning) else: store_covariance = self.store_covariance if tol != 1.0e-4: warnings.warn("'tol' was moved to __init__() method in version" " 0.16 and will be removed from fit() in 0.18", DeprecationWarning) self.tol = tol X, y = check_X_y(X, y) self.classes_ = unique_labels(y) if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = bincount(y_t) / float(len(y)) else: self.priors_ = self.priors if self.solver == 'svd': if self.shrinkage is not None: raise NotImplementedError('shrinkage not supported') self._solve_svd(X, y, store_covariance=store_covariance, tol=tol) elif self.solver == 'lsqr': self._solve_lsqr(X, y, shrinkage=self.shrinkage) elif self.solver == 'eigen': self._solve_eigen(X, y, shrinkage=self.shrinkage) else: raise ValueError("unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver)) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2) self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0], ndmin=1) return self def transform(self, X): """Project data to maximize class separation. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data. """ if self.solver == 'lsqr': raise NotImplementedError("transform not implemented for 'lsqr' " "solver (use 'svd' or 'eigen').") check_is_fitted(self, ['xbar_', 'scalings_'], all_or_any=any) X = check_array(X) if self.solver == 'svd': X_new = np.dot(X - self.xbar_, self.scalings_) elif self.solver == 'eigen': X_new = np.dot(X, self.scalings_) n_components = X.shape[1] if self.n_components is None \ else self.n_components return X_new[:, :n_components] def predict_proba(self, X): """Estimate probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated probabilities. """ prob = self.decision_function(X) prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if len(self.classes_) == 2: # binary case return np.column_stack([1 - prob, prob]) else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob def predict_log_proba(self, X): """Estimate log probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated log probabilities. """ return np.log(self.predict_proba(X))
bsd-3-clause
ch3ll0v3k/scikit-learn
examples/linear_model/plot_lasso_coordinate_descent_path.py
254
2639
""" ===================== Lasso and Elastic Net ===================== Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent. The coefficients can be forced to be positive. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import lasso_path, enet_path from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter) # Compute paths eps = 5e-3 # the smaller it is the longer is the path print("Computing regularization path using the lasso...") alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False) print("Computing regularization path using the positive lasso...") alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path( X, y, eps, positive=True, fit_intercept=False) print("Computing regularization path using the elastic net...") alphas_enet, coefs_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, fit_intercept=False) print("Computing regularization path using the positve elastic net...") alphas_positive_enet, coefs_positive_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False) # Display results plt.figure(1) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_enet), coefs_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and Elastic-Net Paths') plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left') plt.axis('tight') plt.figure(2) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_positive_lasso), coefs_positive_lasso.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and positive Lasso') plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left') plt.axis('tight') plt.figure(3) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_enet), coefs_enet.T) l2 = plt.plot(-np.log10(alphas_positive_enet), coefs_positive_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Elastic-Net and positive Elastic-Net') plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'), loc='lower left') plt.axis('tight') plt.show()
bsd-3-clause
aigamedev/scikit-neuralnetwork
sknn/tests/test_types.py
3
6029
import unittest from nose.tools import (assert_is_not_none, assert_raises, assert_equal, assert_true) import os import random import shutil import tempfile import numpy import pandas import theano import scipy.sparse from sknn.mlp import MultiLayerPerceptron as MLP from sknn.mlp import Layer as L, Convolution as C # Sparse matrix must support indexing. Other types but these do not work for this reason. SPARSE_TYPES = ['csr_matrix', 'csc_matrix', 'dok_matrix', 'lil_matrix'] class TestScipySparseMatrix(unittest.TestCase): def setUp(self): self.nn = MLP(layers=[L("Linear", units=4)], n_iter=1) def test_FitFloat64(self): for t in SPARSE_TYPES: sparse_matrix = getattr(scipy.sparse, t) X = sparse_matrix((8, 4), dtype=numpy.float64) y = sparse_matrix((8, 4), dtype=numpy.float64) self.nn._fit(X, y) def test_FitFloat32(self): for t in SPARSE_TYPES: sparse_matrix = getattr(scipy.sparse, t) X = sparse_matrix((8, 4), dtype=numpy.float32) y = sparse_matrix((8, 4), dtype=numpy.float32) self.nn._fit(X, y) def test_FitHybrid(self): for t in SPARSE_TYPES: sparse_matrix = getattr(scipy.sparse, t) X = sparse_matrix((8, 4), dtype=numpy.float32) y = numpy.zeros((8, 4), dtype=numpy.float32) self.nn._fit(X, y) def test_FitMutator(self): def mutate(Xb, **_): self.count += 1 Xb -= 0.5 self.nn.callback = {'on_batch_start': mutate} for t in SPARSE_TYPES: sparse_matrix = getattr(scipy.sparse, t) X = sparse_matrix((8, 4), dtype=numpy.float32) y = numpy.zeros((8, 4), dtype=numpy.float32) self.count = 0 assert_equal(0, self.count) self.nn._fit(X, y) assert_equal(8, self.count) def test_Predict64(self): theano.config.floatX = 'float64' for t in SPARSE_TYPES: sparse_matrix = getattr(scipy.sparse, t) X = sparse_matrix((8, 4), dtype=numpy.float64) yp = self.nn._predict(X) assert_equal(yp.dtype, numpy.float64) def test_Predict32(self): theano.config.floatX = 'float32' for t in SPARSE_TYPES: sparse_matrix = getattr(scipy.sparse, t) X = sparse_matrix((8, 4), dtype=numpy.float32) yp = self.nn._predict(X) assert_equal(yp.dtype, numpy.float32) class TestMemoryMap(unittest.TestCase): __types__ = ['float32', 'float64'] def setUp(self): self.nn = MLP(layers=[L("Linear", units=3)], n_iter=1) self.directory = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.directory) def make(self, name, shape, dtype): filename = os.path.join(self.directory, name) return numpy.memmap(filename, dtype=dtype, mode='w+', shape=shape) def test_FitAllTypes(self): for t in self.__types__: theano.config.floatX = t X = self.make('X', (12, 3), dtype=t) y = self.make('y', (12, 3), dtype=t) self.nn._fit(X, y) def test_PredictAllTypes(self): for t in self.__types__: theano.config.floatX = t X = self.make('X', (12, 3), dtype=t) yp = self.nn._predict(X) class TestPandasDataFrame(TestMemoryMap): __types__ = ['float32'] def make(self, _, shape, dtype): return pandas.DataFrame(numpy.random.uniform(-1.0, 1.0, size=shape), dtype=dtype) class TestConvolution(unittest.TestCase): def setUp(self): self.nn = MLP( layers=[ C("Rectifier", kernel_shape=(3,3), channels=4), L("Linear")], n_iter=1) def test_FitError(self): # The sparse matrices can't store anything but 2D, but convolution needs 3D or more. for t in SPARSE_TYPES: sparse_matrix = getattr(scipy.sparse, t) X, y = sparse_matrix((8, 16)), sparse_matrix((8, 16)) assert_raises((TypeError, NotImplementedError), self.nn._fit, X, y) def test_FitResizeSquare(self): # The sparse matrices can't store anything but 2D, but convolution needs 3D or more. X, y = numpy.zeros((8, 36)), numpy.zeros((8, 4)) self.nn._fit(X, y) def test_FitResizeFails(self): # The sparse matrices can't store anything but 2D, but convolution needs 3D or more. X, y = numpy.zeros((8, 35)), numpy.zeros((8, 4)) assert_raises(AssertionError, self.nn._fit, X, y) class TestFormatDeterminism(unittest.TestCase): def test_TrainRandomOneEpoch(self): for t in ['dok_matrix', 'lil_matrix']: sparse_matrix = getattr(scipy.sparse, t) X_s, y_s = sparse_matrix((8, 16), dtype=numpy.float32), sparse_matrix((8, 16), dtype=numpy.float32) for i in range(X_s.shape[0]): X_s[i,random.randint(0, X_s.shape[1]-1)] = 1.0 y_s[i,random.randint(0, y_s.shape[1]-1)] = 1.0 X, y = X_s.toarray(), y_s.toarray() nn1 = MLP(layers=[L("Linear")], n_iter=1, random_state=1234) nn1._fit(X, y) nn2 = MLP(layers=[L("Linear")], n_iter=1, random_state=1234) nn2._fit(X_s, y_s) assert_true(numpy.all(nn1._predict(X_s) == nn1._predict(X_s))) def test_TrainConstantOneEpoch(self): for t in ['csr_matrix', 'csc_matrix']: sparse_matrix = getattr(scipy.sparse, t) X_s, y_s = sparse_matrix((8, 16), dtype=numpy.float32), sparse_matrix((8, 16), dtype=numpy.float32) X, y = X_s.toarray(), y_s.toarray() nn1 = MLP(layers=[L("Linear")], n_iter=1, random_state=1234) nn1._fit(X, y) nn2 = MLP(layers=[L("Linear")], n_iter=1, random_state=1234) nn2._fit(X_s, y_s) assert_true(numpy.all(nn1._predict(X_s) == nn1._predict(X_s)))
bsd-3-clause
dsquareindia/scikit-learn
sklearn/datasets/tests/test_svmlight_format.py
53
13398
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import scipy.sparse as sp import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): X_sparse, y_dense = load_svmlight_file(datafile) X_dense = X_sparse.toarray() y_sparse = sp.csr_matrix(y_dense) # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly X_sliced = X_sparse[np.arange(X_sparse.shape[0])] y_sliced = y_sparse[np.arange(y_sparse.shape[0])] for X in (X_sparse, X_dense, X_sliced): for y in (y_sparse, y_dense, y_sliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. if (sp.issparse(y) and y.shape[0] == 1): # make sure y's shape is: (n_samples, n_labels) # when it is sparse y = y.T dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) X2_dense = X2.toarray() if dtype == np.float32: # allow a rounding error at the last decimal place assert_array_almost_equal( X_dense.astype(dtype), X2_dense, 4) assert_array_almost_equal( y_dense.astype(dtype), y2, 4) else: # allow a rounding error at the last decimal place assert_array_almost_equal( X_dense.astype(dtype), X2_dense, 15) assert_array_almost_equal( y_dense.astype(dtype), y2, 15) def test_dump_multilabel(): X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]] y_dense = [[0, 1, 0], [1, 0, 1], [1, 1, 0]] y_sparse = sp.csr_matrix(y_dense) for y in [y_dense, y_sparse]: f = BytesIO() dump_svmlight_file(X, y, f, multilabel=True) f.seek(0) # make sure it dumps multilabel correctly assert_equal(f.readline(), b("1 0:1 2:3 4:5\n")) assert_equal(f.readline(), b("0,2 \n")) assert_equal(f.readline(), b("0,1 1:5 3:1\n")) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1) def test_load_with_long_qid(): # load svmfile with longint qid attribute data = b(""" 1 qid:0 0:1 1:2 2:3 0 qid:72048431380967004 0:1440446648 1:72048431380967004 2:236784985 0 qid:-9223372036854775807 0:1440446648 1:72048431380967004 2:236784985 3 qid:9223372036854775807 0:1440446648 1:72048431380967004 2:236784985""") X, y, qid = load_svmlight_file(BytesIO(data), query_id=True) true_X = [[1, 2, 3], [1440446648, 72048431380967004, 236784985], [1440446648, 72048431380967004, 236784985], [1440446648, 72048431380967004, 236784985]] true_y = [1, 0, 0, 3] trueQID = [0, 72048431380967004, -9223372036854775807, 9223372036854775807] assert_array_equal(y, true_y) assert_array_equal(X.toarray(), true_X) assert_array_equal(qid, trueQID) f = BytesIO() dump_svmlight_file(X, y, f, query_id=qid, zero_based=True) f.seek(0) X, y, qid = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_equal(y, true_y) assert_array_equal(X.toarray(), true_X) assert_array_equal(qid, trueQID) f.seek(0) X, y = load_svmlight_file(f, query_id=False, zero_based=True) assert_array_equal(y, true_y) assert_array_equal(X.toarray(), true_X)
bsd-3-clause
LEX2016WoKaGru/pyClamster
examples/clustering/cloud_clustering_slic.py
1
4919
# -*- coding: utf-8 -*- """ Created on 13.06.16 Created for pyclamster @author: Tobias Sebastian Finn, [email protected] Copyright (C) {2016} {Tobias Sebastian Finn} This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ # System modules import pickle import warnings import glob import os import time # External modules import numpy as np import scipy.interpolate import scipy.misc import scipy.ndimage from skimage.segmentation import slic from skimage.filters import threshold_otsu from skimage.filters import rank from skimage.morphology import disk from skimage.color import rgb2hsv from skimage.color.adapt_rgb import adapt_rgb, each_channel, hsv_value from skimage import filters from skimage import exposure import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec # Internal modules from pyclamster import Image, Labels from pyclamster.clustering.preprocess import LCN from pyclamster.functions import rbDetection plt.style.use('typhon') warnings.catch_warnings() warnings.filterwarnings('ignore') BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) image_directory = os.path.join(BASE_DIR, "examples", "images", 'wettermast') trained_models = os.path.join(BASE_DIR, "data") good_angle = 45 center = int(1920/2) good_angle_dpi = int(np.round(1920 / 180 * good_angle)) denoising_ratio = 10 all_images = glob.glob(os.path.join(image_directory, "Image_*.jpg")) predictor = pickle.load(open(os.path.join(trained_models, "kmeans.pk"), "rb")) for image_path in all_images: image = Image(image_path) image.cut([center - good_angle_dpi, center-good_angle_dpi, center+good_angle_dpi, center + good_angle_dpi]).save('test.jpg') image.data = image.data[center - good_angle_dpi:center + good_angle_dpi, center - good_angle_dpi:center + good_angle_dpi] #selem = np.ones((50,50)) #image.data = equal_each(image.data, selem) #segmented_image = slic(image.data, n_segments=50, compactness=10, sigma=1)+1 segmented_image = slic(image.data, slic_zero=True)+1 rb_image = image.data[:,:,0]-image.data[:,:,2] #selem = np.ones((250, 250)) #rb_image = exposure.adjust_sigmoid(rb_image, cutoff=0.1, gain=0.5) #p2, p98 = np.percentile(rb_image, (2, 98)) #rb_image = exposure.rescale_intensity(rb_image, in_range=(p2, p98)) #rb_image = exposure.equalize_adapthist(rb_image, clip_limit=0.03)*255 # rb_image = rb_image-np.min(rb_image) # rb_image = rb_image/(np.max(rb_image)-np.min(rb_image)+0.1) # rb_image = rb_image*255 #p10, p90 = np.percentile(rb_image, (10, 90)) global_thres = threshold_otsu( rb_image[rb_image>10]) threshold_array = np.zeros_like(segmented_image) threshold_array[:] = global_thres # threshold_array[:] = np.nan # for label in np.unique(segmented_image): # masked_rb = np.ma.masked_where(segmented_image!=label, rb_image) # lcenter = segmented_image==label # if (masked_rb.max()<global_thres) or (masked_rb.min()>global_thres): # threshold_array[lcenter] = global_thres # else: # local_otsu = threshold_otsu(rb_image[segmented_image==label]) # threshold_array[lcenter] = 0.5*local_otsu+0.5*global_thres # threshold_array = scipy.ndimage.filters.maximum_filter(threshold_array, footprint=np.ones((40,40)), mode='nearest') # threshold_array = scipy.ndimage.filters.gaussian_filter(threshold_array, sigma=20, mode='nearest') label = Labels((np.logical_or(rb_image>threshold_array, rb_image<10)).astype(int)) scipy.misc.imsave("cloud.png", label.labels) masks = label.getMaskStore() masks.denoise([1], 2000) cloud_labels, _ = masks.givenLabelMask(segmented_image, [1,]) scipy.misc.imsave("labels.png", cloud_labels.labels) gs = gridspec.GridSpec(2,3) ax = plt.subplot(gs[0, 0]) ax.imshow(image.data) ax = plt.subplot(gs[0, 1]) ax.imshow(rb_image) ax = plt.subplot(gs[1, :2]) ax.hist(rb_image.reshape((-1)), bins=256) ax.axvline(x=global_thres) ax = plt.subplot(gs[1, 2]) ax.imshow(threshold_array) ax = plt.subplot(gs[0, 2]) ax.imshow(cloud_labels.labels) plt.show() #scipy.misc.imshow(cloud_labels.labels) cloud_store = cloud_labels.getMaskStore()
gpl-3.0
altairpearl/scikit-learn
sklearn/cluster/k_means_.py
5
59442
"""K-means clustering""" # Authors: Gael Varoquaux <[email protected]> # Thomas Rueckstiess <[email protected]> # James Bergstra <[email protected]> # Jan Schlueter <[email protected]> # Nelle Varoquaux # Peter Prettenhofer <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # License: BSD 3 clause import warnings import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, ClusterMixin, TransformerMixin from ..metrics.pairwise import euclidean_distances from ..utils.extmath import row_norms, squared_norm from ..utils.sparsefuncs_fast import assign_rows_csr from ..utils.sparsefuncs import mean_variance_axis from ..utils.fixes import astype from ..utils import check_array from ..utils import check_random_state from ..utils import as_float_array from ..utils import gen_batches from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..utils.random import choice from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.six import string_types from . import _k_means from ._k_means_elkan import k_means_elkan ############################################################################### # Initialization heuristic def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None): """Init n_clusters seeds according to k-means++ Parameters ----------- X: array or sparse matrix, shape (n_samples, n_features) The data to pick seeds for. To avoid memory copy, the input data should be double precision (dtype=np.float64). n_clusters: integer The number of seeds to choose x_squared_norms: array, shape (n_samples,) Squared Euclidean norm of each data point. random_state: numpy.RandomState The generator used to initialize the centers. n_local_trials: integer, optional The number of seeding trials for each center (except the first), of which the one reducing inertia the most is greedily chosen. Set to None to make the number of trials depend logarithmically on the number of seeds (2+log(k)); this is the default. Notes ----- Selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. see: Arthur, D. and Vassilvitskii, S. "k-means++: the advantages of careful seeding". ACM-SIAM symposium on Discrete algorithms. 2007 Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip, which is the implementation used in the aforementioned paper. """ n_samples, n_features = X.shape centers = np.empty((n_clusters, n_features), dtype=X.dtype) assert x_squared_norms is not None, 'x_squared_norms None in _k_init' # Set the number of local seeding trials if none is given if n_local_trials is None: # This is what Arthur/Vassilvitskii tried, but did not report # specific results for other than mentioning in the conclusion # that it helped. n_local_trials = 2 + int(np.log(n_clusters)) # Pick first center randomly center_id = random_state.randint(n_samples) if sp.issparse(X): centers[0] = X[center_id].toarray() else: centers[0] = X[center_id] # Initialize list of closest distances and calculate current potential closest_dist_sq = euclidean_distances( centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms, squared=True) current_pot = closest_dist_sq.sum() # Pick the remaining n_clusters-1 points for c in range(1, n_clusters): # Choose center candidates by sampling with probability proportional # to the squared distance to the closest existing center rand_vals = random_state.random_sample(n_local_trials) * current_pot candidate_ids = np.searchsorted(closest_dist_sq.cumsum(), rand_vals) # Compute distances to center candidates distance_to_candidates = euclidean_distances( X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True) # Decide which candidate is the best best_candidate = None best_pot = None best_dist_sq = None for trial in range(n_local_trials): # Compute potential when including center candidate new_dist_sq = np.minimum(closest_dist_sq, distance_to_candidates[trial]) new_pot = new_dist_sq.sum() # Store result if it is the best local trial so far if (best_candidate is None) or (new_pot < best_pot): best_candidate = candidate_ids[trial] best_pot = new_pot best_dist_sq = new_dist_sq # Permanently add best center candidate found in local tries if sp.issparse(X): centers[c] = X[best_candidate].toarray() else: centers[c] = X[best_candidate] current_pot = best_pot closest_dist_sq = best_dist_sq return centers ############################################################################### # K-means batch estimation by EM (expectation maximization) def _validate_center_shape(X, n_centers, centers): """Check if centers is compatible with X and n_centers""" if len(centers) != n_centers: raise ValueError('The shape of the initial centers (%s) ' 'does not match the number of clusters %i' % (centers.shape, n_centers)) if centers.shape[1] != X.shape[1]: raise ValueError( "The number of features of the initial centers %s " "does not match the number of features of the data %s." % (centers.shape[1], X.shape[1])) def _tolerance(X, tol): """Return a tolerance which is independent of the dataset""" if sp.issparse(X): variances = mean_variance_axis(X, axis=0)[1] else: variances = np.var(X, axis=0) return np.mean(variances) * tol def k_means(X, n_clusters, init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=1e-4, random_state=None, copy_x=True, n_jobs=1, algorithm="auto", return_n_iter=False): """K-means clustering algorithm. Read more in the :ref:`User Guide <k_means>`. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) The observations to cluster. n_clusters : int The number of clusters to form as well as the number of centroids to generate. max_iter : int, optional, default 300 Maximum number of iterations of the k-means algorithm to run. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. init : {'k-means++', 'random', or ndarray, or a callable}, optional Method for initialization, default to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': generate k centroids from a Gaussian with mean and variance estimated from the data. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. If a callable is passed, it should take arguments X, k and and a random state and return an initialization. algorithm : "auto", "full" or "elkan", default="auto" K-means algorithm to use. The classical EM-style algorithm is "full". The "elkan" variation is more efficient by using the triangle inequality, but currently doesn't support sparse data. "auto" chooses "elkan" for dense data and "full" for sparse data. precompute_distances : {'auto', True, False} Precompute distances (faster but takes more memory). 'auto' : do not precompute distances if n_samples * n_clusters > 12 million. This corresponds to about 100MB overhead per job using double precision. True : always precompute distances False : never precompute distances tol : float, optional The relative increment in the results before declaring convergence. verbose : boolean, optional Verbosity mode. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. copy_x : boolean, optional When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True, then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. return_n_iter : bool, optional Whether or not to return the number of iterations. Returns ------- centroid : float ndarray with shape (k, n_features) Centroids found at the last iteration of k-means. label : integer ndarray with shape (n_samples,) label[i] is the code or index of the centroid the i'th observation is closest to. inertia : float The final value of the inertia criterion (sum of squared distances to the closest centroid for all observations in the training set). best_n_iter: int Number of iterations corresponding to the best results. Returned only if `return_n_iter` is set to True. """ if n_init <= 0: raise ValueError("Invalid number of initializations." " n_init=%d must be bigger than zero." % n_init) random_state = check_random_state(random_state) if max_iter <= 0: raise ValueError('Number of iterations should be a positive number,' ' got %d instead' % max_iter) best_inertia = np.infty X = as_float_array(X, copy=copy_x) tol = _tolerance(X, tol) # If the distances are precomputed every job will create a matrix of shape # (n_clusters, n_samples). To stop KMeans from eating up memory we only # activate this if the created matrix is guaranteed to be under 100MB. 12 # million entries consume a little under 100MB if they are of type double. if precompute_distances == 'auto': n_samples = X.shape[0] precompute_distances = (n_clusters * n_samples) < 12e6 elif isinstance(precompute_distances, bool): pass else: raise ValueError("precompute_distances should be 'auto' or True/False" ", but a value of %r was passed" % precompute_distances) # subtract of mean of x for more accurate distance computations if not sp.issparse(X) or hasattr(init, '__array__'): X_mean = X.mean(axis=0) if not sp.issparse(X): # The copy was already done above X -= X_mean if hasattr(init, '__array__'): init = check_array(init, dtype=X.dtype.type, copy=True) _validate_center_shape(X, n_clusters, init) init -= X_mean if n_init != 1: warnings.warn( 'Explicit initial center position passed: ' 'performing only one init in k-means instead of n_init=%d' % n_init, RuntimeWarning, stacklevel=2) n_init = 1 # precompute squared norms of data points x_squared_norms = row_norms(X, squared=True) best_labels, best_inertia, best_centers = None, None, None if n_clusters == 1: # elkan doesn't make sense for a single cluster, full will produce # the right result. algorithm = "full" if algorithm == "auto": algorithm = "full" if sp.issparse(X) else 'elkan' if algorithm == "full": kmeans_single = _kmeans_single_lloyd elif algorithm == "elkan": kmeans_single = _kmeans_single_elkan else: raise ValueError("Algorithm must be 'auto', 'full' or 'elkan', got" " %s" % str(algorithm)) if n_jobs == 1: # For a single thread, less memory is needed if we just store one set # of the best results (as opposed to one set per run per thread). for it in range(n_init): # run a k-means once labels, inertia, centers, n_iter_ = kmeans_single( X, n_clusters, max_iter=max_iter, init=init, verbose=verbose, precompute_distances=precompute_distances, tol=tol, x_squared_norms=x_squared_norms, random_state=random_state) # determine if these results are the best so far if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia best_n_iter = n_iter_ else: # parallelisation of k-means runs seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=0)( delayed(kmeans_single)(X, n_clusters, max_iter=max_iter, init=init, verbose=verbose, tol=tol, precompute_distances=precompute_distances, x_squared_norms=x_squared_norms, # Change seed to ensure variety random_state=seed) for seed in seeds) # Get results with the lowest inertia labels, inertia, centers, n_iters = zip(*results) best = np.argmin(inertia) best_labels = labels[best] best_inertia = inertia[best] best_centers = centers[best] best_n_iter = n_iters[best] if not sp.issparse(X): if not copy_x: X += X_mean best_centers += X_mean if return_n_iter: return best_centers, best_labels, best_inertia, best_n_iter else: return best_centers, best_labels, best_inertia def _kmeans_single_elkan(X, n_clusters, max_iter=300, init='k-means++', verbose=False, x_squared_norms=None, random_state=None, tol=1e-4, precompute_distances=True): if sp.issparse(X): raise ValueError("algorithm='elkan' not supported for sparse input X") X = check_array(X, order="C") random_state = check_random_state(random_state) if x_squared_norms is None: x_squared_norms = row_norms(X, squared=True) # init centers = _init_centroids(X, n_clusters, init, random_state=random_state, x_squared_norms=x_squared_norms) centers = np.ascontiguousarray(centers) if verbose: print('Initialization complete') centers, labels, n_iter = k_means_elkan(X, n_clusters, centers, tol=tol, max_iter=max_iter, verbose=verbose) inertia = np.sum((X - centers[labels]) ** 2, dtype=np.float64) return labels, inertia, centers, n_iter def _kmeans_single_lloyd(X, n_clusters, max_iter=300, init='k-means++', verbose=False, x_squared_norms=None, random_state=None, tol=1e-4, precompute_distances=True): """A single run of k-means, assumes preparation completed prior. Parameters ---------- X: array-like of floats, shape (n_samples, n_features) The observations to cluster. n_clusters: int The number of clusters to form as well as the number of centroids to generate. max_iter: int, optional, default 300 Maximum number of iterations of the k-means algorithm to run. init: {'k-means++', 'random', or ndarray, or a callable}, optional Method for initialization, default to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': generate k centroids from a Gaussian with mean and variance estimated from the data. If an ndarray is passed, it should be of shape (k, p) and gives the initial centers. If a callable is passed, it should take arguments X, k and and a random state and return an initialization. tol: float, optional The relative increment in the results before declaring convergence. verbose: boolean, optional Verbosity mode x_squared_norms: array Precomputed x_squared_norms. precompute_distances : boolean, default: True Precompute distances (faster but takes more memory). random_state: integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Returns ------- centroid: float ndarray with shape (k, n_features) Centroids found at the last iteration of k-means. label: integer ndarray with shape (n_samples,) label[i] is the code or index of the centroid the i'th observation is closest to. inertia: float The final value of the inertia criterion (sum of squared distances to the closest centroid for all observations in the training set). n_iter : int Number of iterations run. """ random_state = check_random_state(random_state) best_labels, best_inertia, best_centers = None, None, None # init centers = _init_centroids(X, n_clusters, init, random_state=random_state, x_squared_norms=x_squared_norms) if verbose: print("Initialization complete") # Allocate memory to store the distances for each sample to its # closer center for reallocation in case of ties distances = np.zeros(shape=(X.shape[0],), dtype=X.dtype) # iterations for i in range(max_iter): centers_old = centers.copy() # labels assignment is also called the E-step of EM labels, inertia = \ _labels_inertia(X, x_squared_norms, centers, precompute_distances=precompute_distances, distances=distances) # computation of the means is also called the M-step of EM if sp.issparse(X): centers = _k_means._centers_sparse(X, labels, n_clusters, distances) else: centers = _k_means._centers_dense(X, labels, n_clusters, distances) if verbose: print("Iteration %2d, inertia %.3f" % (i, inertia)) if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia center_shift_total = squared_norm(centers_old - centers) if center_shift_total <= tol: if verbose: print("Converged at iteration %d: " "center shift %e within tolerance %e" % (i, center_shift_total, tol)) break if center_shift_total > 0: # rerun E-step in case of non-convergence so that predicted labels # match cluster centers best_labels, best_inertia = \ _labels_inertia(X, x_squared_norms, best_centers, precompute_distances=precompute_distances, distances=distances) return best_labels, best_inertia, best_centers, i + 1 def _labels_inertia_precompute_dense(X, x_squared_norms, centers, distances): """Compute labels and inertia using a full distance matrix. This will overwrite the 'distances' array in-place. Parameters ---------- X : numpy array, shape (n_sample, n_features) Input data. x_squared_norms : numpy array, shape (n_samples,) Precomputed squared norms of X. centers : numpy array, shape (n_clusters, n_features) Cluster centers which data is assigned to. distances : numpy array, shape (n_samples,) Pre-allocated array in which distances are stored. Returns ------- labels : numpy array, dtype=np.int, shape (n_samples,) Indices of clusters that samples are assigned to. inertia : float Sum of distances of samples to their closest cluster center. """ n_samples = X.shape[0] k = centers.shape[0] all_distances = euclidean_distances(centers, X, x_squared_norms, squared=True) labels = np.empty(n_samples, dtype=np.int32) labels.fill(-1) mindist = np.empty(n_samples) mindist.fill(np.infty) for center_id in range(k): dist = all_distances[center_id] labels[dist < mindist] = center_id mindist = np.minimum(dist, mindist) if n_samples == distances.shape[0]: # distances will be changed in-place distances[:] = mindist inertia = mindist.sum() return labels, inertia def _labels_inertia(X, x_squared_norms, centers, precompute_distances=True, distances=None): """E step of the K-means EM algorithm. Compute the labels and the inertia of the given samples and centers. This will compute the distances in-place. Parameters ---------- X: float64 array-like or CSR sparse matrix, shape (n_samples, n_features) The input samples to assign to the labels. x_squared_norms: array, shape (n_samples,) Precomputed squared euclidean norm of each data point, to speed up computations. centers: float array, shape (k, n_features) The cluster centers. precompute_distances : boolean, default: True Precompute distances (faster but takes more memory). distances: float array, shape (n_samples,) Pre-allocated array to be filled in with each sample's distance to the closest center. Returns ------- labels: int array of shape(n) The resulting assignment inertia : float Sum of distances of samples to their closest cluster center. """ n_samples = X.shape[0] # set the default value of centers to -1 to be able to detect any anomaly # easily labels = -np.ones(n_samples, np.int32) if distances is None: distances = np.zeros(shape=(0,), dtype=X.dtype) # distances will be changed in-place if sp.issparse(X): inertia = _k_means._assign_labels_csr( X, x_squared_norms, centers, labels, distances=distances) else: if precompute_distances: return _labels_inertia_precompute_dense(X, x_squared_norms, centers, distances) inertia = _k_means._assign_labels_array( X, x_squared_norms, centers, labels, distances=distances) return labels, inertia def _init_centroids(X, k, init, random_state=None, x_squared_norms=None, init_size=None): """Compute the initial centroids Parameters ---------- X: array, shape (n_samples, n_features) k: int number of centroids init: {'k-means++', 'random' or ndarray or callable} optional Method for initialization random_state: integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. x_squared_norms: array, shape (n_samples,), optional Squared euclidean norm of each data point. Pass it if you have it at hands already to avoid it being recomputed here. Default: None init_size : int, optional Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by running a batch KMeans on a random subset of the data. This needs to be larger than k. Returns ------- centers: array, shape(k, n_features) """ random_state = check_random_state(random_state) n_samples = X.shape[0] if x_squared_norms is None: x_squared_norms = row_norms(X, squared=True) if init_size is not None and init_size < n_samples: if init_size < k: warnings.warn( "init_size=%d should be larger than k=%d. " "Setting it to 3*k" % (init_size, k), RuntimeWarning, stacklevel=2) init_size = 3 * k init_indices = random_state.randint(0, n_samples, init_size) X = X[init_indices] x_squared_norms = x_squared_norms[init_indices] n_samples = X.shape[0] elif n_samples < k: raise ValueError( "n_samples=%d should be larger than k=%d" % (n_samples, k)) if isinstance(init, string_types) and init == 'k-means++': centers = _k_init(X, k, random_state=random_state, x_squared_norms=x_squared_norms) elif isinstance(init, string_types) and init == 'random': seeds = random_state.permutation(n_samples)[:k] centers = X[seeds] elif hasattr(init, '__array__'): # ensure that the centers have the same dtype as X # this is a requirement of fused types of cython centers = np.array(init, dtype=X.dtype) elif callable(init): centers = init(X, k, random_state=random_state) centers = np.asarray(centers, dtype=X.dtype) else: raise ValueError("the init parameter for the k-means should " "be 'k-means++' or 'random' or an ndarray, " "'%s' (type '%s') was passed." % (init, type(init))) if sp.issparse(centers): centers = centers.toarray() _validate_center_shape(X, k, centers) return centers class KMeans(BaseEstimator, ClusterMixin, TransformerMixin): """K-Means clustering Read more in the :ref:`User Guide <k_means>`. Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. max_iter : int, default: 300 Maximum number of iterations of the k-means algorithm for a single run. n_init : int, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. init : {'k-means++', 'random' or an ndarray} Method for initialization, defaults to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose k observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. algorithm : "auto", "full" or "elkan", default="auto" K-means algorithm to use. The classical EM-style algorithm is "full". The "elkan" variation is more efficient by using the triangle inequality, but currently doesn't support sparse data. "auto" chooses "elkan" for dense data and "full" for sparse data. precompute_distances : {'auto', True, False} Precompute distances (faster but takes more memory). 'auto' : do not precompute distances if n_samples * n_clusters > 12 million. This corresponds to about 100MB overhead per job using double precision. True : always precompute distances False : never precompute distances tol : float, default: 1e-4 Relative tolerance with regards to inertia to declare convergence n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. verbose : int, default 0 Verbosity mode. copy_x : boolean, default True When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True, then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers labels_ : Labels of each point inertia_ : float Sum of distances of samples to their closest cluster center. Examples -------- >>> from sklearn.cluster import KMeans >>> import numpy as np >>> X = np.array([[1, 2], [1, 4], [1, 0], ... [4, 2], [4, 4], [4, 0]]) >>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X) >>> kmeans.labels_ array([0, 0, 0, 1, 1, 1], dtype=int32) >>> kmeans.predict([[0, 0], [4, 4]]) array([0, 1], dtype=int32) >>> kmeans.cluster_centers_ array([[ 1., 2.], [ 4., 2.]]) See also -------- MiniBatchKMeans Alternative online implementation that does incremental updates of the centers positions using mini-batches. For large scale learning (say n_samples > 10k) MiniBatchKMeans is probably much faster than the default batch implementation. Notes ------ The k-means problem is solved using Lloyd's algorithm. The average complexity is given by O(k n T), were n is the number of samples and T is the number of iteration. The worst case complexity is given by O(n^(k+2/p)) with n = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii, 'How slow is the k-means method?' SoCG2006) In practice, the k-means algorithm is very fast (one of the fastest clustering algorithms available), but it falls in local minima. That's why it can be useful to restart it several times. """ def __init__(self, n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=1e-4, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto'): self.n_clusters = n_clusters self.init = init self.max_iter = max_iter self.tol = tol self.precompute_distances = precompute_distances self.n_init = n_init self.verbose = verbose self.random_state = random_state self.copy_x = copy_x self.n_jobs = n_jobs self.algorithm = algorithm def _check_fit_data(self, X): """Verify that the number of samples given is larger than k""" X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32]) if X.shape[0] < self.n_clusters: raise ValueError("n_samples=%d should be >= n_clusters=%d" % ( X.shape[0], self.n_clusters)) return X def _check_test_data(self, X): X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES) n_samples, n_features = X.shape expected_n_features = self.cluster_centers_.shape[1] if not n_features == expected_n_features: raise ValueError("Incorrect number of features. " "Got %d features, expected %d" % ( n_features, expected_n_features)) return X def fit(self, X, y=None): """Compute k-means clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) """ random_state = check_random_state(self.random_state) X = self._check_fit_data(X) self.cluster_centers_, self.labels_, self.inertia_, self.n_iter_ = \ k_means( X, n_clusters=self.n_clusters, init=self.init, n_init=self.n_init, max_iter=self.max_iter, verbose=self.verbose, precompute_distances=self.precompute_distances, tol=self.tol, random_state=random_state, copy_x=self.copy_x, n_jobs=self.n_jobs, algorithm=self.algorithm, return_n_iter=True) return self def fit_predict(self, X, y=None): """Compute cluster centers and predict cluster index for each sample. Convenience method; equivalent to calling fit(X) followed by predict(X). """ return self.fit(X).labels_ def fit_transform(self, X, y=None): """Compute clustering and transform X to cluster-distance space. Equivalent to fit(X).transform(X), but more efficiently implemented. """ # Currently, this just skips a copy of the data if it is not in # np.array or CSR format already. # XXX This skips _check_test_data, which may change the dtype; # we should refactor the input validation. X = self._check_fit_data(X) return self.fit(X)._transform(X) def transform(self, X, y=None): """Transform X to a cluster-distance space. In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the array returned by `transform` will typically be dense. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. Returns ------- X_new : array, shape [n_samples, k] X transformed in the new space. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) return self._transform(X) def _transform(self, X): """guts of transform method; no input validation""" return euclidean_distances(X, self.cluster_centers_) def predict(self, X): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) return _labels_inertia(X, x_squared_norms, self.cluster_centers_)[0] def score(self, X, y=None): """Opposite of the value of X on the K-means objective. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data. Returns ------- score : float Opposite of the value of X on the K-means objective. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) return -_labels_inertia(X, x_squared_norms, self.cluster_centers_)[1] def _mini_batch_step(X, x_squared_norms, centers, counts, old_center_buffer, compute_squared_diff, distances, random_reassign=False, random_state=None, reassignment_ratio=.01, verbose=False): """Incremental update of the centers for the Minibatch K-Means algorithm. Parameters ---------- X : array, shape (n_samples, n_features) The original data array. x_squared_norms : array, shape (n_samples,) Squared euclidean norm of each data point. centers : array, shape (k, n_features) The cluster centers. This array is MODIFIED IN PLACE counts : array, shape (k,) The vector in which we keep track of the numbers of elements in a cluster. This array is MODIFIED IN PLACE distances : array, dtype float, shape (n_samples), optional If not None, should be a pre-allocated array that will be used to store the distances of each sample to its closest center. May not be None when random_reassign is True. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. random_reassign : boolean, optional If True, centers with very low counts are randomly reassigned to observations. reassignment_ratio : float, optional Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more likely to be reassigned, which means that the model will take longer to converge, but should converge in a better clustering. verbose : bool, optional, default False Controls the verbosity. compute_squared_diff : bool If set to False, the squared diff computation is skipped. old_center_buffer : int Copy of old centers for monitoring convergence. Returns ------- inertia : float Sum of distances of samples to their closest cluster center. squared_diff : numpy array, shape (n_clusters,) Squared distances between previous and updated cluster centers. """ # Perform label assignment to nearest centers nearest_center, inertia = _labels_inertia(X, x_squared_norms, centers, distances=distances) if random_reassign and reassignment_ratio > 0: random_state = check_random_state(random_state) # Reassign clusters that have very low counts to_reassign = counts < reassignment_ratio * counts.max() # pick at most .5 * batch_size samples as new centers if to_reassign.sum() > .5 * X.shape[0]: indices_dont_reassign = np.argsort(counts)[int(.5 * X.shape[0]):] to_reassign[indices_dont_reassign] = False n_reassigns = to_reassign.sum() if n_reassigns: # Pick new clusters amongst observations with uniform probability new_centers = choice(X.shape[0], replace=False, size=n_reassigns, random_state=random_state) if verbose: print("[MiniBatchKMeans] Reassigning %i cluster centers." % n_reassigns) if sp.issparse(X) and not sp.issparse(centers): assign_rows_csr(X, astype(new_centers, np.intp), astype(np.where(to_reassign)[0], np.intp), centers) else: centers[to_reassign] = X[new_centers] # reset counts of reassigned centers, but don't reset them too small # to avoid instant reassignment. This is a pretty dirty hack as it # also modifies the learning rates. counts[to_reassign] = np.min(counts[~to_reassign]) # implementation for the sparse CSR representation completely written in # cython if sp.issparse(X): return inertia, _k_means._mini_batch_update_csr( X, x_squared_norms, centers, counts, nearest_center, old_center_buffer, compute_squared_diff) # dense variant in mostly numpy (not as memory efficient though) k = centers.shape[0] squared_diff = 0.0 for center_idx in range(k): # find points from minibatch that are assigned to this center center_mask = nearest_center == center_idx count = center_mask.sum() if count > 0: if compute_squared_diff: old_center_buffer[:] = centers[center_idx] # inplace remove previous count scaling centers[center_idx] *= counts[center_idx] # inplace sum with new points members of this cluster centers[center_idx] += np.sum(X[center_mask], axis=0) # update the count statistics for this center counts[center_idx] += count # inplace rescale to compute mean of all points (old and new) # Note: numpy >= 1.10 does not support '/=' for the following # expression for a mixture of int and float (see numpy issue #6464) centers[center_idx] = centers[center_idx] / counts[center_idx] # update the squared diff if necessary if compute_squared_diff: diff = centers[center_idx].ravel() - old_center_buffer.ravel() squared_diff += np.dot(diff, diff) return inertia, squared_diff def _mini_batch_convergence(model, iteration_idx, n_iter, tol, n_samples, centers_squared_diff, batch_inertia, context, verbose=0): """Helper function to encapsulate the early stopping logic""" # Normalize inertia to be able to compare values when # batch_size changes batch_inertia /= model.batch_size centers_squared_diff /= model.batch_size # Compute an Exponentially Weighted Average of the squared # diff to monitor the convergence while discarding # minibatch-local stochastic variability: # https://en.wikipedia.org/wiki/Moving_average ewa_diff = context.get('ewa_diff') ewa_inertia = context.get('ewa_inertia') if ewa_diff is None: ewa_diff = centers_squared_diff ewa_inertia = batch_inertia else: alpha = float(model.batch_size) * 2.0 / (n_samples + 1) alpha = 1.0 if alpha > 1.0 else alpha ewa_diff = ewa_diff * (1 - alpha) + centers_squared_diff * alpha ewa_inertia = ewa_inertia * (1 - alpha) + batch_inertia * alpha # Log progress to be able to monitor convergence if verbose: progress_msg = ( 'Minibatch iteration %d/%d:' ' mean batch inertia: %f, ewa inertia: %f ' % ( iteration_idx + 1, n_iter, batch_inertia, ewa_inertia)) print(progress_msg) # Early stopping based on absolute tolerance on squared change of # centers position (using EWA smoothing) if tol > 0.0 and ewa_diff <= tol: if verbose: print('Converged (small centers change) at iteration %d/%d' % (iteration_idx + 1, n_iter)) return True # Early stopping heuristic due to lack of improvement on smoothed inertia ewa_inertia_min = context.get('ewa_inertia_min') no_improvement = context.get('no_improvement', 0) if ewa_inertia_min is None or ewa_inertia < ewa_inertia_min: no_improvement = 0 ewa_inertia_min = ewa_inertia else: no_improvement += 1 if (model.max_no_improvement is not None and no_improvement >= model.max_no_improvement): if verbose: print('Converged (lack of improvement in inertia)' ' at iteration %d/%d' % (iteration_idx + 1, n_iter)) return True # update the convergence context to maintain state across successive calls: context['ewa_diff'] = ewa_diff context['ewa_inertia'] = ewa_inertia context['ewa_inertia_min'] = ewa_inertia_min context['no_improvement'] = no_improvement return False class MiniBatchKMeans(KMeans): """Mini-Batch K-Means clustering Read more in the :ref:`User Guide <mini_batch_kmeans>`. Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. max_iter : int, optional Maximum number of iterations over the complete dataset before stopping independently of any early stopping criterion heuristics. max_no_improvement : int, default: 10 Control early stopping based on the consecutive number of mini batches that does not yield an improvement on the smoothed inertia. To disable convergence detection based on inertia, set max_no_improvement to None. tol : float, default: 0.0 Control early stopping based on the relative center changes as measured by a smoothed, variance-normalized of the mean center squared position changes. This early stopping heuristics is closer to the one used for the batch variant of the algorithms but induces a slight computational and memory overhead over the inertia heuristic. To disable convergence detection based on normalized center change, set tol to 0.0 (default). batch_size : int, optional, default: 100 Size of the mini batches. init_size : int, optional, default: 3 * batch_size Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by running a batch KMeans on a random subset of the data. This needs to be larger than n_clusters. init : {'k-means++', 'random' or an ndarray}, default: 'k-means++' Method for initialization, defaults to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose k observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. n_init : int, default=3 Number of random initializations that are tried. In contrast to KMeans, the algorithm is only run once, using the best of the ``n_init`` initializations as measured by inertia. compute_labels : boolean, default=True Compute label assignment and inertia for the complete dataset once the minibatch optimization has converged in fit. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. reassignment_ratio : float, default: 0.01 Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more easily reassigned, which means that the model will take longer to converge, but should converge in a better clustering. verbose : boolean, optional Verbosity mode. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers labels_ : Labels of each point (if compute_labels is set to True). inertia_ : float The value of the inertia criterion associated with the chosen partition (if compute_labels is set to True). The inertia is defined as the sum of square distances of samples to their nearest neighbor. See also -------- KMeans The classic implementation of the clustering method based on the Lloyd's algorithm. It consumes the whole set of input data at each iteration. Notes ----- See http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf """ def __init__(self, n_clusters=8, init='k-means++', max_iter=100, batch_size=100, verbose=0, compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10, init_size=None, n_init=3, reassignment_ratio=0.01): super(MiniBatchKMeans, self).__init__( n_clusters=n_clusters, init=init, max_iter=max_iter, verbose=verbose, random_state=random_state, tol=tol, n_init=n_init) self.max_no_improvement = max_no_improvement self.batch_size = batch_size self.compute_labels = compute_labels self.init_size = init_size self.reassignment_ratio = reassignment_ratio def fit(self, X, y=None): """Compute the centroids on X by chunking it into mini-batches. Parameters ---------- X : array-like, shape = [n_samples, n_features] Coordinates of the data points to cluster """ random_state = check_random_state(self.random_state) X = check_array(X, accept_sparse="csr", order='C', dtype=[np.float64, np.float32]) n_samples, n_features = X.shape if n_samples < self.n_clusters: raise ValueError("Number of samples smaller than number " "of clusters.") n_init = self.n_init if hasattr(self.init, '__array__'): self.init = np.ascontiguousarray(self.init, dtype=X.dtype) if n_init != 1: warnings.warn( 'Explicit initial center position passed: ' 'performing only one init in MiniBatchKMeans instead of ' 'n_init=%d' % self.n_init, RuntimeWarning, stacklevel=2) n_init = 1 x_squared_norms = row_norms(X, squared=True) if self.tol > 0.0: tol = _tolerance(X, self.tol) # using tol-based early stopping needs the allocation of a # dedicated before which can be expensive for high dim data: # hence we allocate it outside of the main loop old_center_buffer = np.zeros(n_features, dtype=X.dtype) else: tol = 0.0 # no need for the center buffer if tol-based early stopping is # disabled old_center_buffer = np.zeros(0, dtype=X.dtype) distances = np.zeros(self.batch_size, dtype=X.dtype) n_batches = int(np.ceil(float(n_samples) / self.batch_size)) n_iter = int(self.max_iter * n_batches) init_size = self.init_size if init_size is None: init_size = 3 * self.batch_size if init_size > n_samples: init_size = n_samples self.init_size_ = init_size validation_indices = random_state.randint(0, n_samples, init_size) X_valid = X[validation_indices] x_squared_norms_valid = x_squared_norms[validation_indices] # perform several inits with random sub-sets best_inertia = None for init_idx in range(n_init): if self.verbose: print("Init %d/%d with method: %s" % (init_idx + 1, n_init, self.init)) counts = np.zeros(self.n_clusters, dtype=np.int32) # TODO: once the `k_means` function works with sparse input we # should refactor the following init to use it instead. # Initialize the centers using only a fraction of the data as we # expect n_samples to be very large when using MiniBatchKMeans cluster_centers = _init_centroids( X, self.n_clusters, self.init, random_state=random_state, x_squared_norms=x_squared_norms, init_size=init_size) # Compute the label assignment on the init dataset batch_inertia, centers_squared_diff = _mini_batch_step( X_valid, x_squared_norms[validation_indices], cluster_centers, counts, old_center_buffer, False, distances=None, verbose=self.verbose) # Keep only the best cluster centers across independent inits on # the common validation set _, inertia = _labels_inertia(X_valid, x_squared_norms_valid, cluster_centers) if self.verbose: print("Inertia for init %d/%d: %f" % (init_idx + 1, n_init, inertia)) if best_inertia is None or inertia < best_inertia: self.cluster_centers_ = cluster_centers self.counts_ = counts best_inertia = inertia # Empty context to be used inplace by the convergence check routine convergence_context = {} # Perform the iterative optimization until the final convergence # criterion for iteration_idx in range(n_iter): # Sample a minibatch from the full dataset minibatch_indices = random_state.randint( 0, n_samples, self.batch_size) # Perform the actual update step on the minibatch data batch_inertia, centers_squared_diff = _mini_batch_step( X[minibatch_indices], x_squared_norms[minibatch_indices], self.cluster_centers_, self.counts_, old_center_buffer, tol > 0.0, distances=distances, # Here we randomly choose whether to perform # random reassignment: the choice is done as a function # of the iteration index, and the minimum number of # counts, in order to force this reassignment to happen # every once in a while random_reassign=((iteration_idx + 1) % (10 + self.counts_.min()) == 0), random_state=random_state, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) # Monitor convergence and do early stopping if necessary if _mini_batch_convergence( self, iteration_idx, n_iter, tol, n_samples, centers_squared_diff, batch_inertia, convergence_context, verbose=self.verbose): break self.n_iter_ = iteration_idx + 1 if self.compute_labels: self.labels_, self.inertia_ = self._labels_inertia_minibatch(X) return self def _labels_inertia_minibatch(self, X): """Compute labels and inertia using mini batches. This is slightly slower than doing everything at once but preventes memory errors / segfaults. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- labels : array, shap (n_samples,) Cluster labels for each point. inertia : float Sum of squared distances of points to nearest cluster. """ if self.verbose: print('Computing label assignment and total inertia') x_squared_norms = row_norms(X, squared=True) slices = gen_batches(X.shape[0], self.batch_size) results = [_labels_inertia(X[s], x_squared_norms[s], self.cluster_centers_) for s in slices] labels, inertia = zip(*results) return np.hstack(labels), np.sum(inertia) def partial_fit(self, X, y=None): """Update k means estimate on a single mini-batch X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Coordinates of the data points to cluster. """ X = check_array(X, accept_sparse="csr") n_samples, n_features = X.shape if hasattr(self.init, '__array__'): self.init = np.ascontiguousarray(self.init, dtype=X.dtype) if n_samples == 0: return self x_squared_norms = row_norms(X, squared=True) self.random_state_ = getattr(self, "random_state_", check_random_state(self.random_state)) if (not hasattr(self, 'counts_') or not hasattr(self, 'cluster_centers_')): # this is the first call partial_fit on this object: # initialize the cluster centers self.cluster_centers_ = _init_centroids( X, self.n_clusters, self.init, random_state=self.random_state_, x_squared_norms=x_squared_norms, init_size=self.init_size) self.counts_ = np.zeros(self.n_clusters, dtype=np.int32) random_reassign = False distances = None else: # The lower the minimum count is, the more we do random # reassignment, however, we don't want to do random # reassignment too often, to allow for building up counts random_reassign = self.random_state_.randint( 10 * (1 + self.counts_.min())) == 0 distances = np.zeros(X.shape[0], dtype=X.dtype) _mini_batch_step(X, x_squared_norms, self.cluster_centers_, self.counts_, np.zeros(0, dtype=X.dtype), 0, random_reassign=random_reassign, distances=distances, random_state=self.random_state_, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) if self.compute_labels: self.labels_, self.inertia_ = _labels_inertia( X, x_squared_norms, self.cluster_centers_) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) return self._labels_inertia_minibatch(X)[0]
bsd-3-clause
quantopian/zipline
zipline/__main__.py
1
11860
import errno import os import click import logbook import pandas as pd from six import text_type import zipline from zipline.data import bundles as bundles_module from trading_calendars import get_calendar from zipline.utils.compat import wraps from zipline.utils.cli import Date, Timestamp from zipline.utils.run_algo import _run, BenchmarkSpec, load_extensions from zipline.extensions import create_args try: __IPYTHON__ except NameError: __IPYTHON__ = False @click.group() @click.option( '-e', '--extension', multiple=True, help='File or module path to a zipline extension to load.', ) @click.option( '--strict-extensions/--non-strict-extensions', is_flag=True, help='If --strict-extensions is passed then zipline will not ' 'run if it cannot load all of the specified extensions. ' 'If this is not passed or --non-strict-extensions is passed ' 'then the failure will be logged but execution will continue.', ) @click.option( '--default-extension/--no-default-extension', is_flag=True, default=True, help="Don't load the default zipline extension.py file in $ZIPLINE_HOME.", ) @click.option( '-x', multiple=True, help='Any custom command line arguments to define, in key=value form.' ) @click.pass_context def main(ctx, extension, strict_extensions, default_extension, x): """Top level zipline entry point. """ # install a logbook handler before performing any other operations logbook.StderrHandler().push_application() create_args(x, zipline.extension_args) load_extensions( default_extension, extension, strict_extensions, os.environ, ) def extract_option_object(option): """Convert a click.option call into a click.Option object. Parameters ---------- option : decorator A click.option decorator. Returns ------- option_object : click.Option The option object that this decorator will create. """ @option def opt(): pass return opt.__click_params__[0] def ipython_only(option): """Mark that an option should only be exposed in IPython. Parameters ---------- option : decorator A click.option decorator. Returns ------- ipython_only_dec : decorator A decorator that correctly applies the argument even when not using IPython mode. """ if __IPYTHON__: return option argname = extract_option_object(option).name def d(f): @wraps(f) def _(*args, **kwargs): kwargs[argname] = None return f(*args, **kwargs) return _ return d DEFAULT_BUNDLE = 'quantopian-quandl' @main.command() @click.option( '-f', '--algofile', default=None, type=click.File('r'), help='The file that contains the algorithm to run.', ) @click.option( '-t', '--algotext', help='The algorithm script to run.', ) @click.option( '-D', '--define', multiple=True, help="Define a name to be bound in the namespace before executing" " the algotext. For example '-Dname=value'. The value may be any " "python expression. These are evaluated in order so they may refer " "to previously defined names.", ) @click.option( '--data-frequency', type=click.Choice({'daily', 'minute'}), default='daily', show_default=True, help='The data frequency of the simulation.', ) @click.option( '--capital-base', type=float, default=10e6, show_default=True, help='The starting capital for the simulation.', ) @click.option( '-b', '--bundle', default=DEFAULT_BUNDLE, metavar='BUNDLE-NAME', show_default=True, help='The data bundle to use for the simulation.', ) @click.option( '--bundle-timestamp', type=Timestamp(), default=pd.Timestamp.utcnow(), show_default=False, help='The date to lookup data on or before.\n' '[default: <current-time>]' ) @click.option( '-bf', '--benchmark-file', default=None, type=click.Path(exists=True, dir_okay=False, readable=True, path_type=str), help='The csv file that contains the benchmark returns', ) @click.option( '--benchmark-symbol', default=None, type=click.STRING, help="The symbol of the instrument to be used as a benchmark " "(should exist in the ingested bundle)", ) @click.option( '--benchmark-sid', default=None, type=int, help="The sid of the instrument to be used as a benchmark " "(should exist in the ingested bundle)", ) @click.option( '--no-benchmark', is_flag=True, default=False, help="If passed, use a benchmark of zero returns.", ) @click.option( '-s', '--start', type=Date(tz='utc', as_timestamp=True), help='The start date of the simulation.', ) @click.option( '-e', '--end', type=Date(tz='utc', as_timestamp=True), help='The end date of the simulation.', ) @click.option( '-o', '--output', default='-', metavar='FILENAME', show_default=True, help="The location to write the perf data. If this is '-' the perf will" " be written to stdout.", ) @click.option( '--trading-calendar', metavar='TRADING-CALENDAR', default='XNYS', help="The calendar you want to use e.g. XLON. XNYS is the default." ) @click.option( '--print-algo/--no-print-algo', is_flag=True, default=False, help='Print the algorithm to stdout.', ) @click.option( '--metrics-set', default='default', help='The metrics set to use. New metrics sets may be registered in your' ' extension.py.', ) @click.option( '--blotter', default='default', help="The blotter to use.", show_default=True, ) @ipython_only(click.option( '--local-namespace/--no-local-namespace', is_flag=True, default=None, help='Should the algorithm methods be resolved in the local namespace.' )) @click.pass_context def run(ctx, algofile, algotext, define, data_frequency, capital_base, bundle, bundle_timestamp, benchmark_file, benchmark_symbol, benchmark_sid, no_benchmark, start, end, output, trading_calendar, print_algo, metrics_set, local_namespace, blotter): """Run a backtest for the given algorithm. """ # check that the start and end dates are passed correctly if start is None and end is None: # check both at the same time to avoid the case where a user # does not pass either of these and then passes the first only # to be told they need to pass the second argument also ctx.fail( "must specify dates with '-s' / '--start' and '-e' / '--end'", ) if start is None: ctx.fail("must specify a start date with '-s' / '--start'") if end is None: ctx.fail("must specify an end date with '-e' / '--end'") if (algotext is not None) == (algofile is not None): ctx.fail( "must specify exactly one of '-f' / '--algofile' or" " '-t' / '--algotext'", ) trading_calendar = get_calendar(trading_calendar) benchmark_spec = BenchmarkSpec.from_cli_params( no_benchmark=no_benchmark, benchmark_sid=benchmark_sid, benchmark_symbol=benchmark_symbol, benchmark_file=benchmark_file, ) return _run( initialize=None, handle_data=None, before_trading_start=None, analyze=None, algofile=algofile, algotext=algotext, defines=define, data_frequency=data_frequency, capital_base=capital_base, bundle=bundle, bundle_timestamp=bundle_timestamp, start=start, end=end, output=output, trading_calendar=trading_calendar, print_algo=print_algo, metrics_set=metrics_set, local_namespace=local_namespace, environ=os.environ, blotter=blotter, benchmark_spec=benchmark_spec, ) def zipline_magic(line, cell=None): """The zipline IPython cell magic. """ load_extensions( default=True, extensions=[], strict=True, environ=os.environ, ) try: return run.main( # put our overrides at the start of the parameter list so that # users may pass values with higher precedence [ '--algotext', cell, '--output', os.devnull, # don't write the results by default ] + ([ # these options are set when running in line magic mode # set a non None algo text to use the ipython user_ns '--algotext', '', '--local-namespace', ] if cell is None else []) + line.split(), '%s%%zipline' % ((cell or '') and '%'), # don't use system exit and propogate errors to the caller standalone_mode=False, ) except SystemExit as e: # https://github.com/mitsuhiko/click/pull/533 # even in standalone_mode=False `--help` really wants to kill us ;_; if e.code: raise ValueError('main returned non-zero status code: %d' % e.code) @main.command() @click.option( '-b', '--bundle', default=DEFAULT_BUNDLE, metavar='BUNDLE-NAME', show_default=True, help='The data bundle to ingest.', ) @click.option( '--assets-version', type=int, multiple=True, help='Version of the assets db to which to downgrade.', ) @click.option( '--show-progress/--no-show-progress', default=True, help='Print progress information to the terminal.' ) def ingest(bundle, assets_version, show_progress): """Ingest the data for the given bundle. """ bundles_module.ingest( bundle, os.environ, pd.Timestamp.utcnow(), assets_version, show_progress, ) @main.command() @click.option( '-b', '--bundle', default=DEFAULT_BUNDLE, metavar='BUNDLE-NAME', show_default=True, help='The data bundle to clean.', ) @click.option( '-e', '--before', type=Timestamp(), help='Clear all data before TIMESTAMP.' ' This may not be passed with -k / --keep-last', ) @click.option( '-a', '--after', type=Timestamp(), help='Clear all data after TIMESTAMP' ' This may not be passed with -k / --keep-last', ) @click.option( '-k', '--keep-last', type=int, metavar='N', help='Clear all but the last N downloads.' ' This may not be passed with -e / --before or -a / --after', ) def clean(bundle, before, after, keep_last): """Clean up data downloaded with the ingest command. """ bundles_module.clean( bundle, before, after, keep_last, ) @main.command() def bundles(): """List all of the available data bundles. """ for bundle in sorted(bundles_module.bundles.keys()): if bundle.startswith('.'): # hide the test data continue try: ingestions = list( map(text_type, bundles_module.ingestions_for_bundle(bundle)) ) except OSError as e: if e.errno != errno.ENOENT: raise ingestions = [] # If we got no ingestions, either because the directory didn't exist or # because there were no entries, print a single message indicating that # no ingestions have yet been made. for timestamp in ingestions or ["<no ingestions>"]: click.echo("%s %s" % (bundle, timestamp)) if __name__ == '__main__': main()
apache-2.0
shenzebang/scikit-learn
sklearn/manifold/tests/test_isomap.py
226
3941
from itertools import product import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from sklearn import datasets from sklearn import manifold from sklearn import neighbors from sklearn import pipeline from sklearn import preprocessing from sklearn.utils.testing import assert_less eigen_solvers = ['auto', 'dense', 'arpack'] path_methods = ['auto', 'FW', 'D'] def test_isomap_simple_grid(): # Isomap should preserve distances when all neighbors are used N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # distances from each point to all others G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() assert_array_almost_equal(G, G_iso) def test_isomap_reconstruction_error(): # Same setup as in test_isomap_simple_grid, with an added dimension N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # add noise in a third dimension rng = np.random.RandomState(0) noise = 0.1 * rng.randn(Npts, 1) X = np.concatenate((X, noise), 1) # compute input kernel G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() centerer = preprocessing.KernelCenterer() K = centerer.fit_transform(-0.5 * G ** 2) for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) # compute output kernel G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() K_iso = centerer.fit_transform(-0.5 * G_iso ** 2) # make sure error agrees reconstruction_error = np.linalg.norm(K - K_iso) / Npts assert_almost_equal(reconstruction_error, clf.reconstruction_error()) def test_transform(): n_samples = 200 n_components = 10 noise_scale = 0.01 # Create S-curve dataset X, y = datasets.samples_generator.make_s_curve(n_samples, random_state=0) # Compute isomap embedding iso = manifold.Isomap(n_components, 2) X_iso = iso.fit_transform(X) # Re-embed a noisy version of the points rng = np.random.RandomState(0) noise = noise_scale * rng.randn(*X.shape) X_iso2 = iso.transform(X + noise) # Make sure the rms error on re-embedding is comparable to noise_scale assert_less(np.sqrt(np.mean((X_iso - X_iso2) ** 2)), 2 * noise_scale) def test_pipeline(): # check that Isomap works fine as a transformer in a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('isomap', manifold.Isomap()), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y))
bsd-3-clause
quiltdata/quilt
api/python/tests/integration/test_packages.py
1
85028
""" Integration tests for Quilt Packages. """ import io import locale import os import pathlib import shutil import tempfile from collections import Counter from contextlib import redirect_stderr from datetime import datetime from io import BytesIO from pathlib import Path from unittest import mock from unittest.mock import ANY, Mock, call, patch import jsonlines import pandas as pd import pytest import quilt3 from quilt3 import Package from quilt3.backends.local import ( LocalPackageRegistryV1, LocalPackageRegistryV2, ) from quilt3.backends.s3 import S3PackageRegistryV1, S3PackageRegistryV2 from quilt3.util import ( PhysicalKey, QuiltException, RemovedInQuilt4Warning, validate_package_name, ) from ..utils import QuiltTestCase DATA_DIR = Path(__file__).parent / 'data' LOCAL_MANIFEST = DATA_DIR / 'local_manifest.jsonl' REMOTE_MANIFEST = DATA_DIR / 'quilt_manifest.jsonl' SERIALIZATION_DIR = Path('serialization_dir') LOCAL_REGISTRY = Path('local_registry') # Set by QuiltTestCase def _mock_copy_file_list(file_list, callback=None, message=None): return [key for _, key, _ in file_list] class PackageTest(QuiltTestCase): default_registry_version = 1 S3PackageRegistryDefault = S3PackageRegistryV1 LocalPackageRegistryDefault = LocalPackageRegistryV1 default_test_top_hash = 'e99b760a05539460ac0a7349abb8f476e8c75282a38845fa828f8a5d28374303' def setUp(self): super().setUp() load_config_wrapped = quilt3.util.load_config def load_config_wrapper(): config = load_config_wrapped() config.update(default_registry_version=self.default_registry_version) return config _config_patcher = patch( 'quilt3.util.load_config', side_effect=load_config_wrapper, ) self.addCleanup(_config_patcher.stop) _config_patcher.start() def _patch_registry(self, obj, *args, **kwargs): patcher = patch.object(obj, *args, **kwargs) self.addCleanup(patcher.stop) return patcher.start() def patch_local_registry(self, *args, **kwargs): return self._patch_registry(self.LocalPackageRegistryDefault, *args, **kwargs) def patch_s3_registry(self, *args, **kwargs): return self._patch_registry(self.S3PackageRegistryDefault, *args, **kwargs) def setup_s3_stubber_resolve_pointer(self, pkg_registry, pkg_name, *, pointer, top_hash): self.s3_stubber.add_response( method='get_object', service_response={ 'VersionId': 'v1', 'Body': BytesIO(top_hash.encode()), }, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.pointer_pk(pkg_name, pointer).path, } ) def setup_s3_stubber_delete_pointer(self, pkg_registry, pkg_name, *, pointer): self.s3_stubber.add_response( method='delete_object', service_response={}, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.pointer_pk(pkg_name, pointer).path, } ) def setup_s3_stubber_pkg_install(self, pkg_registry, pkg_name, *, top_hash=None, manifest=None, entries=()): top_hash = top_hash or self.default_test_top_hash self.setup_s3_stubber_resolve_pointer(pkg_registry, pkg_name, pointer='latest', top_hash=top_hash) if manifest: self.s3_stubber.add_response( method='head_object', service_response={ 'VersionId': 'v1', 'ContentLength': len(manifest), }, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.manifest_pk(pkg_name, top_hash).path, } ) self.s3_stubber.add_response( method='get_object', service_response={ 'VersionId': 'v1', 'Body': BytesIO(manifest), 'ContentLength': len(manifest), }, expected_params={ 'Bucket': pkg_registry.root.bucket, 'VersionId': 'v1', 'Key': pkg_registry.manifest_pk(pkg_name, top_hash).path, } ) for url, content in entries: key = PhysicalKey.from_url(url) self.s3_stubber.add_response( method='get_object', service_response={ 'VersionId': 'v1', 'Body': BytesIO(content), }, expected_params={ 'Bucket': key.bucket, 'Key': key.path, } ) def setup_s3_stubber_list_top_hash_candidates(self, pkg_registry, pkg_name, top_hashes): self.s3_stubber.add_response( method='list_objects_v2', service_response={ 'Contents': [ { 'Key': pkg_registry.manifest_pk(pkg_name, top_hash).path, 'Size': 64, } for top_hash in top_hashes ] }, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Prefix': pkg_registry.manifests_package_dir(pkg_name).path, } ) def setup_s3_stubber_push_manifest(self, pkg_registry, pkg_name, top_hash, *, pointer_name): self.s3_stubber.add_response( method='put_object', service_response={ 'VersionId': 'v2' }, expected_params={ 'Body': ANY, 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.manifest_pk(pkg_name, top_hash).path, } ) if pkg_registry.revision_pointers: self.s3_stubber.add_response( method='put_object', service_response={ 'VersionId': 'v3' }, expected_params={ 'Body': top_hash.encode(), 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.pointer_pk(pkg_name, pointer_name).path, } ) self.s3_stubber.add_response( method='put_object', service_response={ 'VersionId': 'v4' }, expected_params={ 'Body': top_hash.encode(), 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.pointer_latest_pk(pkg_name).path, } ) def setup_s3_stubber_upload_pkg_data(self, pkg_registry, pkg_name, *, lkey, data, version): self.s3_stubber.add_response( method='put_object', service_response={ 'VersionId': version, }, expected_params={ 'Body': ANY, # TODO: use data here. 'Bucket': pkg_registry.root.bucket, 'Key': f'{pkg_name}/{lkey}', } ) def setup_s3_stubber_list_pkg_pointers(self, pkg_registry, pkg_name, *, pointers): self.s3_stubber.add_response( method='list_objects_v2', service_response={ 'Contents': [ { 'Key': pkg_registry.pointer_pk(pkg_name, pointer).path, 'Size': 64, } for pointer in pointers ] }, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Prefix': pkg_registry.pointers_dir(pkg_name).path, } ) def test_build_default_registry(self): """ build() dumps the manifest to location specified by 'default_local_registry' in config. """ # Create a dummy file to add to the package. test_file_name = 'bar' test_file = Path(test_file_name).resolve() test_file.write_text('test_file_content_string') pkg_name = 'Quilt/Test' def patch_get_from_config(registry_path): return patch( 'quilt3.backends.get_from_config', wraps=quilt3.util.get_from_config, side_effect=lambda key: registry_path.as_uri() if key == 'default_local_registry' else mock.DEFAULT, ) for suffix in ('suffix1', 'suffix2'): local_registry_path = Path.cwd() / LOCAL_REGISTRY / suffix with patch_get_from_config(local_registry_path) as mocked_get_from_config: local_registry = self.LocalPackageRegistryDefault(PhysicalKey.from_path(local_registry_path)) new_pkg = Package() # Build a new package into the local registry. new_pkg = new_pkg.set('foo', test_file_name) top_hash = new_pkg.build(pkg_name) mocked_get_from_config.assert_any_call('default_local_registry') # Verify manifest is registered by hash. with open(local_registry.manifest_pk(pkg_name, top_hash).path) as fd: pkg = Package.load(fd) assert PhysicalKey.from_path(test_file) == pkg['foo'].physical_key # Verify latest points to the new location. assert Path(local_registry.pointer_latest_pk(pkg_name).path).read_text() == top_hash @patch('quilt3.Package._browse', lambda name, registry, top_hash: Package()) def test_default_install_location(self): """Verify that pushes to the default local install location work as expected""" self.patch_local_registry('shorten_top_hash', return_value='7a67ff4') with patch('quilt3.Package._build') as build_mock: pkg_name = 'Quilt/nice-name' Package.install(pkg_name, registry='s3://my-test-bucket') build_mock.assert_called_once_with( pkg_name, registry=self.LocalPackageRegistryDefault( PhysicalKey.from_url(quilt3.util.get_install_location()) ), message=None ) def test_read_manifest(self): """ Verify reading serialized manifest from disk. """ with open(LOCAL_MANIFEST) as fd: pkg = Package.load(fd) out_path = 'new_manifest.jsonl' with open(out_path, 'w') as fd: pkg.dump(fd) # Insepct the jsonl to verify everything is maintained, i.e. # that load/dump results in an equivalent set. # todo: Use load/dump once __eq__ implemented. with open(LOCAL_MANIFEST) as fd: original_set = list(jsonlines.Reader(fd)) with open(out_path) as fd: written_set = list(jsonlines.Reader(fd)) assert len(original_set) == len(written_set) if os.name != 'nt': # TODO: LOCAL_MANIFEST contains paths like file:///foo - # but they're not valid absolute paths on Windows. What do we do? assert sorted(original_set, key=lambda k: k.get('logical_key', 'manifest')) \ == sorted(written_set, key=lambda k: k.get('logical_key', 'manifest')) @pytest.mark.usefixtures('isolate_packages_cache') def test_remote_browse(self): """ Verify loading manifest from s3 """ registry = 's3://test-bucket' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_name = 'Quilt/test' top_hash = 'abcdefgh' * 8 # Make the first request. self.setup_s3_stubber_pkg_install( pkg_registry, pkg_name, top_hash=top_hash, manifest=REMOTE_MANIFEST.read_bytes()) pkg = Package.browse('Quilt/test', registry=registry) assert 'foo' in pkg # Make the second request. Gets "latest" - but the rest should be cached. self.setup_s3_stubber_pkg_install(pkg_registry, pkg_name, top_hash=top_hash) pkg2 = Package.browse(pkg_name, registry=registry) assert 'foo' in pkg2 # Make another request with a top hash. Everything should be cached. pkg3 = Package.browse(pkg_name, top_hash=top_hash, registry=registry) assert 'foo' in pkg3 # Make a request with a short hash. self.setup_s3_stubber_list_top_hash_candidates(pkg_registry, pkg_name, (top_hash, 'a' * 64)) pkg3 = Package.browse(pkg_name, top_hash='abcdef', registry=registry) assert 'foo' in pkg3 # Make a request with a bad short hash. with pytest.raises(QuiltException, match='Invalid hash'): Package.browse(pkg_name, top_hash='abcde', registry=registry) with pytest.raises(QuiltException, match='Invalid hash'): Package.browse(pkg_name, top_hash='a' * 65, registry=registry) # Make a request with a non-existant short hash. self.setup_s3_stubber_list_top_hash_candidates(pkg_registry, pkg_name, (top_hash, 'a' * 64)) with pytest.raises(QuiltException, match='Found zero matches'): Package.browse(pkg_name, top_hash='123456', registry=registry) def test_install_restrictions(self): """Verify that install can only operate remote -> local.""" # disallow installs which send package data to a remote registry with pytest.raises(QuiltException): quilt3.Package.install('Quilt/nice-name', dest='s3://test-bucket') # disallow installs which send the package manifest to a remote registry with pytest.raises(QuiltException): quilt3.Package.install('Quilt/nice-name', dest_registry='s3://test-bucket') def test_package_fetch(self): """ Package.fetch() on nested, relative keys """ package_ = Package().set_dir('/', DATA_DIR / 'nested') out_dir = 'output' new_package_ = package_.fetch(out_dir) expected = {'one.txt': '1', 'two.txt': '2', 'three.txt': '3'} file_count = 0 for dirpath, _, files in os.walk(out_dir): for name in files: file_count += 1 with open(os.path.join(dirpath, name)) as file_: assert name in expected, 'unexpected file: {}'.format(name) contents = file_.read().strip() assert contents == expected[name], \ 'unexpected contents in {}: {}'.format(name, contents) assert file_count == len(expected), \ 'fetch wrote {} files; expected: {}'.format(file_count, expected) # test that package re-rooting works as expected out_dir_abs_path = pathlib.Path(out_dir).resolve() for _, entry in new_package_.walk(): # relative_to will raise an exception if the first path is not inside the second path. pathlib.Path(entry.physical_key.path).relative_to(out_dir_abs_path) def test_package_fetch_default_dest(self): """Verify fetching a package to the default local destination.""" Package().set_dir('/', DATA_DIR / 'nested').fetch() assert pathlib.Path('one.txt').exists() assert pathlib.Path('sub/two.txt').exists() assert pathlib.Path('sub/three.txt').exists() def test_fetch(self): """ Verify fetching a package entry. """ pkg = ( Package() .set('foo', DATA_DIR / 'foo.txt', {'user_meta': 'blah'}) .set('bar', DATA_DIR / 'foo.txt', {'user_meta': 'blah'}) ) pkg['foo'].meta['target'] = 'unicode' pkg['bar'].meta['target'] = 'unicode' with open(DATA_DIR / 'foo.txt') as fd: assert fd.read().replace('\n', '') == '123' # Copy foo.text to bar.txt pkg['foo'].fetch('data/bar.txt') with open('data/bar.txt') as fd: assert fd.read().replace('\n', '') == '123' # Raise an error if you copy to yourself. with pytest.raises(shutil.SameFileError): pkg.set('foo', DATA_DIR / 'foo.txt')['foo'].fetch(DATA_DIR / 'foo.txt') # The key gets re-rooted correctly. pkg = quilt3.Package().set('foo', DATA_DIR / 'foo.txt') new_pkg_entry = pkg['foo'].fetch('bar.txt') assert new_pkg_entry.physical_key == PhysicalKey.from_path('bar.txt') def test_fetch_default_dest(tmpdir): """Verify fetching a package entry to a default destination.""" with patch('quilt3.packages.copy_file') as copy_mock: (Package() .set('foo', os.path.join(os.path.dirname(__file__), 'data', 'foo.txt'))['foo'] .fetch()) filepath = os.path.join(os.path.dirname(__file__), 'data', 'foo.txt') copy_mock.assert_called_once_with( PhysicalKey.from_path(filepath), PhysicalKey.from_path('foo.txt') ) @patch('quilt3.workflows.validate', mock.MagicMock(return_value=None)) def test_load_into_quilt(self): """ Verify loading local manifest and data into S3. """ self.patch_s3_registry('shorten_top_hash', return_value='7a67ff4') registry = 's3://my_test_bucket/' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_name = 'Quilt/package' def add_pkg_file(pkg, lk, filename, data, *, version): path = Path(filename) path.write_text(data) pkg.set(lk, path) self.setup_s3_stubber_upload_pkg_data(pkg_registry, pkg_name, lkey=lk, data=data, version=version) new_pkg = Package() # Create two dummy files to add to the package. add_pkg_file(new_pkg, 'foo1', 'bar1', 'blah', version='v1') add_pkg_file(new_pkg, 'foo2', 'bar2', 'omg', version='v1') timestamp1 = 1234567890 self.setup_s3_stubber_push_manifest( pkg_registry, pkg_name, '7fd8e7f49a344aadf4154a2210fe6b08297ecb23218d95027963dc0410548440', pointer_name=str(timestamp1), ) with patch('time.time', return_value=timestamp1), \ patch('quilt3.data_transfer.MAX_CONCURRENCY', 1): remote_pkg = new_pkg.push(pkg_name, registry) # Modify one file, and check that only that file gets uploaded. add_pkg_file(remote_pkg, 'foo2', 'bar3', '!!!', version='v2') timestamp2 = 1234567891 self.setup_s3_stubber_push_manifest( pkg_registry, pkg_name, 'd4efbb1734a53726d97086824d153e6cb5e9d8bc31d15ead0dbc019022cfe539', pointer_name=str(timestamp2), ) with patch('time.time', return_value=timestamp2), \ patch('quilt3.packages.DISABLE_TQDM', True), patch('quilt3.data_transfer.DISABLE_TQDM', True), \ patch('quilt3.data_transfer.MAX_CONCURRENCY', 1): stderr = io.StringIO() with redirect_stderr(stderr), patch('quilt3.packages.DISABLE_TQDM', True): remote_pkg.push(pkg_name, registry) assert not stderr.getvalue() def test_package_deserialize(self): """ Verify loading data from a local file. """ pkg = ( Package() .set('foo', DATA_DIR / 'foo.txt', {'user_meta_foo': 'blah'}) .set('bar', DATA_DIR / 'foo.unrecognized.ext') .set('baz', DATA_DIR / 'foo.txt') ) pkg.build('foo/bar') pkg['foo'].meta['target'] = 'unicode' assert pkg['foo'].deserialize() == '123\n' assert pkg['baz'].deserialize() == '123\n' with pytest.raises(QuiltException): pkg['bar'].deserialize() def test_package_entry_physical_keys(self): pkg = Package().set('foo', DATA_DIR / 'foo.txt') entry = pkg['foo'] physical_key = entry.physical_key with pytest.warns(RemovedInQuilt4Warning, match='PackageEntry.physical_keys is deprecated'): physical_keys = entry.physical_keys assert [physical_key] == physical_keys def test_local_set_dir(self): """ Verify building a package from a local directory. """ pkg = Package() # Create some nested example files that contain their names. foodir = pathlib.Path("foo_dir") bazdir = pathlib.Path(foodir, "baz_dir") bazdir.mkdir(parents=True, exist_ok=True) with open('bar', 'w') as fd: fd.write(fd.name) with open('foo', 'w') as fd: fd.write(fd.name) with open(bazdir / 'baz', 'w') as fd: fd.write(fd.name) with open(foodir / 'bar', 'w') as fd: fd.write(fd.name) pkg = pkg.set_dir("/", ".", meta="test_meta") assert PhysicalKey.from_path('foo') == pkg['foo'].physical_key assert PhysicalKey.from_path('bar') == pkg['bar'].physical_key assert PhysicalKey.from_path(bazdir / 'baz') == pkg['foo_dir/baz_dir/baz'].physical_key assert PhysicalKey.from_path(foodir / 'bar') == pkg['foo_dir/bar'].physical_key assert pkg.meta == "test_meta" pkg = Package() pkg = pkg.set_dir('/', 'foo_dir/baz_dir/') # todo nested at set_dir site or relative to set_dir path. assert PhysicalKey.from_path(bazdir / 'baz') == pkg['baz'].physical_key pkg = Package() pkg = pkg.set_dir('my_keys', 'foo_dir/baz_dir/') # todo nested at set_dir site or relative to set_dir path. assert PhysicalKey.from_path(bazdir / 'baz') == pkg['my_keys/baz'].physical_key # Verify ignoring files in the presence of a dot-quiltignore with open('.quiltignore', 'w') as fd: fd.write('foo\n') fd.write('bar') pkg = Package() pkg = pkg.set_dir("/", ".") assert 'foo_dir' in pkg.keys() assert 'foo' not in pkg.keys() and 'bar' not in pkg.keys() with open('.quiltignore', 'w') as fd: fd.write('foo_dir') pkg = Package() pkg = pkg.set_dir("/", ".") assert 'foo_dir' not in pkg.keys() with open('.quiltignore', 'w') as fd: fd.write('foo_dir\n') fd.write('foo_dir/baz_dir') pkg = Package() pkg = pkg.set_dir("/", ".") assert 'foo_dir/baz_dir' not in pkg.keys() and 'foo_dir' not in pkg.keys() pkg = pkg.set_dir("new_dir", ".", meta="new_test_meta") assert PhysicalKey.from_path('foo') == pkg['new_dir/foo'].physical_key assert PhysicalKey.from_path('bar') == pkg['new_dir/bar'].physical_key assert pkg['new_dir'].meta == "new_test_meta" # verify set_dir logical key shortcut pkg = Package() pkg.set_dir("/") assert PhysicalKey.from_path('foo') == pkg['foo'].physical_key assert PhysicalKey.from_path('bar') == pkg['bar'].physical_key def test_s3_set_dir(self): """ Verify building a package from an S3 directory. """ with patch('quilt3.packages.list_object_versions') as list_object_versions_mock: pkg = Package() list_object_versions_mock.return_value = ([ dict(Key='foo/a.txt', VersionId='xyz', IsLatest=True, Size=10), dict(Key='foo/x/y.txt', VersionId='null', IsLatest=True, Size=10), dict(Key='foo/z.txt', VersionId='123', IsLatest=False, Size=10), ], []) pkg.set_dir('', 's3://bucket/foo/', meta='test_meta') assert pkg['a.txt'].get() == 's3://bucket/foo/a.txt?versionId=xyz' assert pkg['x']['y.txt'].get() == 's3://bucket/foo/x/y.txt?versionId=null' assert pkg.meta == "test_meta" assert pkg['x']['y.txt'].size == 10 # GH368 list_object_versions_mock.assert_called_with('bucket', 'foo/') list_object_versions_mock.reset_mock() pkg.set_dir('bar', 's3://bucket/foo') assert pkg['bar']['a.txt'].get() == 's3://bucket/foo/a.txt?versionId=xyz' assert pkg['bar']['x']['y.txt'].get() == 's3://bucket/foo/x/y.txt?versionId=null' assert pkg['bar']['a.txt'].size == 10 # GH368 list_object_versions_mock.assert_called_with('bucket', 'foo/') def test_set_dir_wrong_update_policy(self): """Verify non existing update policy raises value error.""" pkg = Package() expected_err = "Update policy should be one of" with pytest.raises(ValueError) as e: pkg.set_dir("nested", DATA_DIR, update_policy='invalid_policy') assert expected_err in str(e.value) def test_package_entry_meta(self): pkg = ( Package() .set('foo', DATA_DIR / 'foo.txt', {'value': 'blah'}) .set('bar', DATA_DIR / 'foo.txt', {'value': 'blah2'}) ) pkg['foo']._meta['target'] = 'unicode' pkg['bar']._meta['target'] = 'unicode' assert pkg['foo'].meta == {'value': 'blah'} assert pkg['bar'].meta == {'value': 'blah2'} assert pkg['foo']._meta == {'target': 'unicode', 'user_meta': {'value': 'blah'}} assert pkg['bar']._meta == {'target': 'unicode', 'user_meta': {'value': 'blah2'}} pkg['foo'].set_meta({'value': 'other value'}) assert pkg['foo'].meta == {'value': 'other value'} assert pkg['foo']._meta == {'target': 'unicode', 'user_meta': {'value': 'other value'}} def local_manifest_timestamp_fixer(self, timestamp): return patch('time.time', return_value=timestamp) def test_list_local_packages(self): """Verify that list returns packages in the appdirs directory.""" assert not list(quilt3.list_packages()) assert not list(quilt3.list_package_versions('test/not-exists')) pkg_names = ('Quilt/Foo', 'Quilt/Bar', 'Quilt/Test') # Build a new package into the local registry. timestamp = 1234567890 with self.local_manifest_timestamp_fixer(timestamp): for pkg_name in pkg_names: Package().build(pkg_name) # Verify packages are returned. assert sorted(quilt3.list_packages()) == sorted(pkg_names) top_hash = '2a5a67156ca9238c14d12042db51c5b52260fdd5511b61ea89b58929d6e1769b' expected_versions = [ (str(timestamp), top_hash), ] if self.LocalPackageRegistryDefault.revision_pointers: expected_versions.append(('latest', top_hash)) assert sorted(quilt3.list_package_versions(pkg_names[0])) == sorted(expected_versions) # Verify specifying a local path explicitly works as expected. assert sorted(quilt3.list_packages()) == sorted(quilt3.list_packages(LOCAL_REGISTRY.as_posix())) def test_set_package_entry(self): """ Set the physical key for a PackageEntry""" pkg = ( Package() .set('foo', DATA_DIR / 'foo.txt', {'user_meta': 'blah'}) .set('bar', DATA_DIR / 'foo.txt', {'user_meta': 'blah'}) ) pkg['foo'].meta['target'] = 'unicode' pkg['bar'].meta['target'] = 'unicode' # Build a dummy file to add to the map. test_file = Path('bar.txt') test_file.write_text('test_file_content_string') pkg['bar'].set('bar.txt') assert PhysicalKey.from_path(test_file) == pkg['bar'].physical_key # Test shortcut codepath pkg = Package().set('bar.txt') assert PhysicalKey.from_path(test_file) == pkg['bar.txt'].physical_key @patch('quilt3.workflows.validate', mock.MagicMock(return_value=None)) def test_set_package_entry_as_object(self): self.patch_s3_registry('shorten_top_hash', return_value='7a67ff4') pkg = Package() nasty_string = 'a,"\tb' num_col = [11, 22, 33] str_col = ['a', 'b', nasty_string] df = pd.DataFrame({'col_num': num_col, 'col_str': str_col}) # Test with serialization_dir set pkg.set("mydataframe1.parquet", df, meta={'user_meta': 'blah'}, serialization_location=SERIALIZATION_DIR/"df1.parquet") pkg.set("mydataframe2.csv", df, meta={'user_meta': 'blah2'}, serialization_location=SERIALIZATION_DIR/"df2.csv") pkg.set("mydataframe3.tsv", df, meta={'user_meta': 'blah3'}, serialization_location=SERIALIZATION_DIR/"df3.tsv") # Test without serialization_dir set pkg.set("mydataframe4.parquet", df, meta={'user_meta': 'blah4'}) pkg.set("mydataframe5.csv", df, meta={'user_meta': 'blah5'}) pkg.set("mydataframe6.tsv", df, meta={'user_meta': 'blah6'}) for lk, entry in pkg.walk(): file_path = entry.physical_key.path assert pathlib.Path(file_path).exists(), "The serialization files should exist" pkg._fix_sha256() for lk, entry in pkg.walk(): assert df.equals(entry.deserialize()), "The deserialized PackageEntry should be equal to the object " \ "that was serialized" # Test that push cleans up the temporary files, if and only if the serialization_location was not set with patch('quilt3.Package._push_manifest'), \ patch('quilt3.packages.copy_file_list', _mock_copy_file_list): pkg.push('Quilt/test_pkg_name', 's3://test-bucket') for lk in ["mydataframe1.parquet", "mydataframe2.csv", "mydataframe3.tsv"]: file_path = pkg[lk].physical_key.path assert pathlib.Path(file_path).exists(), "These files should not have been deleted during push()" for lk in ["mydataframe4.parquet", "mydataframe5.csv", "mydataframe6.tsv"]: file_path = pkg[lk].physical_key.path assert not pathlib.Path(file_path).exists(), "These temp files should have been deleted during push()" def test_tophash_changes(self): test_file = Path('test.txt') test_file.write_text('asdf', 'utf-8') pkg = Package() th1 = pkg.top_hash pkg.set('asdf', test_file) pkg.build('foo/bar') th2 = pkg.top_hash assert th1 != th2 test_file.write_text('jkl', 'utf-8') pkg.set('jkl', test_file) pkg.build('foo/bar') th3 = pkg.top_hash assert th1 != th3 assert th2 != th3 pkg.delete('jkl') th4 = pkg.top_hash assert th2 == th4 def test_top_hash_empty_build(self): assert Package().build('pkg/test') == '2a5a67156ca9238c14d12042db51c5b52260fdd5511b61ea89b58929d6e1769b' @patch('quilt3.workflows.validate', Mock(return_value='workflow data')) def test_top_hash_empty_build_workflow(self): assert Package().build('pkg/test') == 'd181e7fd54b64f7f61a3ec33753b93c748748d36fa1e8e6189d598697648a52f' def test_keys(self): pkg = Package() assert not pkg.keys() pkg.set('asdf', LOCAL_MANIFEST) assert set(pkg.keys()) == {'asdf'} pkg.set('jkl;', REMOTE_MANIFEST) assert set(pkg.keys()) == {'asdf', 'jkl;'} pkg.delete('asdf') assert set(pkg.keys()) == {'jkl;'} def test_iter(self): pkg = Package() assert not pkg pkg.set('asdf', LOCAL_MANIFEST) assert list(pkg) == ['asdf'] pkg.set('jkl;', REMOTE_MANIFEST) assert set(pkg) == {'asdf', 'jkl;'} def test_invalid_set_key(self): """Verify an exception when setting a key with a path object.""" pkg = Package() with pytest.raises(TypeError): pkg.set('asdf/jkl', Package()) def test_brackets(self): pkg = Package() pkg.set('asdf/jkl', LOCAL_MANIFEST) pkg.set('asdf/qwer', LOCAL_MANIFEST) pkg.set('qwer/asdf', LOCAL_MANIFEST) assert set(pkg.keys()) == {'asdf', 'qwer'} pkg2 = pkg['asdf'] assert set(pkg2.keys()) == {'jkl', 'qwer'} assert pkg['asdf']['qwer'].get() == LOCAL_MANIFEST.as_uri() assert pkg['asdf']['qwer'] == pkg['asdf/qwer'] == pkg[('asdf', 'qwer')] assert pkg[[]] == pkg pkg = ( Package() .set('foo', DATA_DIR / 'foo.txt', {'foo': 'blah'}) ) pkg['foo'].meta['target'] = 'unicode' pkg.build("Quilt/Test") assert pkg['foo'].deserialize() == '123\n' assert pkg['foo']() == '123\n' with pytest.raises(KeyError): pkg['baz'] with pytest.raises(TypeError): pkg[b'asdf'] with pytest.raises(TypeError): pkg[0] def _test_list_remote_packages_setup_stubber(self, pkg_registry, *, pkg_names): pkg_name1, pkg_name2, pkg_name3 = pkg_names pointers = ( (pkg_name1, '1549931300'), (pkg_name1, '1549931634'), (pkg_name1, 'latest'), (pkg_name2, '1549931301'), (pkg_name2, '1549931634'), (pkg_name2, 'latest'), (pkg_name3, '1549931300'), (pkg_name3, '1549931635'), (pkg_name3, 'latest'), ) self.s3_stubber.add_response( method='list_objects_v2', service_response={ 'Contents': [ { 'Key': pkg_registry.pointer_pk(pkg, pointer).path, 'Size': 64, } for pkg, pointer in pointers ] }, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Prefix': pkg_registry.pointers_global_dir.path, } ) def test_list_remote_packages(self): """Verify that listing remote packages works as expected.""" registry = 's3://my_test_bucket/' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_names = ('foo/bar', 'foo/bar1', 'foo1/bar') self._test_list_remote_packages_setup_stubber(pkg_registry, pkg_names=pkg_names) assert Counter(quilt3.list_packages(registry)) == Counter(pkg_names) def test_validate_package_name(self): validate_package_name("a/b") validate_package_name("21312/bes") with pytest.raises(QuiltException): validate_package_name("b") with pytest.raises(QuiltException): validate_package_name("a/b/") with pytest.raises(QuiltException): validate_package_name("a\\/b") with pytest.raises(QuiltException): validate_package_name("a/b/c") with pytest.raises(QuiltException): validate_package_name("a/") with pytest.raises(QuiltException): validate_package_name("/b") with pytest.raises(QuiltException): validate_package_name("b") def test_diff(self): new_pkg = Package() # Create a dummy file to add to the package. test_file_name = 'bar' with open(test_file_name, "w") as fd: fd.write('test_file_content_string') test_file = Path(fd.name) # Build a new package into the local registry. new_pkg = new_pkg.set('foo', test_file_name) top_hash = new_pkg.build("Quilt/Test") p1 = Package.browse('Quilt/Test') p2 = Package.browse('Quilt/Test') assert p1.diff(p2) == ([], [], []) def test_dir_meta(self): test_meta = {'test': 'meta'} pkg = Package() pkg.set('asdf/jkl', LOCAL_MANIFEST) pkg.set('asdf/qwer', LOCAL_MANIFEST) pkg.set('qwer/asdf', LOCAL_MANIFEST) pkg.set('qwer/as/df', LOCAL_MANIFEST) pkg.build('Quilt/Test') assert pkg['asdf'].meta == {} assert pkg.meta == {} assert pkg['qwer']['as'].meta == {} pkg['asdf'].set_meta(test_meta) assert pkg['asdf'].meta == test_meta pkg['qwer']['as'].set_meta(test_meta) assert pkg['qwer']['as'].meta == test_meta pkg.set_meta(test_meta) assert pkg.meta == test_meta dump_path = 'test_meta' with open(dump_path, 'w') as f: pkg.dump(f) with open(dump_path) as f: pkg2 = Package.load(f) assert pkg2['asdf'].meta == test_meta assert pkg2['qwer']['as'].meta == test_meta assert pkg2.meta == test_meta def test_top_hash_stable(self): """Ensure that top_hash() never changes for a given manifest""" top_hash = '3426a3f721e41a1d83174c691432a39ff13720426267fc799dccf3583153e850' manifest_path = DATA_DIR / 'top_hash_test_manifest.jsonl' pkg = Package._from_path(manifest_path) assert pkg.top_hash == top_hash, f'Unexpected top_hash for {manifest_path}' pkg['b'].set_meta({'key': 'value'}) # Currently dir-level metadata doesn't affect top hash, though it should. assert pkg.top_hash == top_hash def test_local_package_delete(self): """Verify local package delete works.""" top_hash = Package().build("Quilt/Test") assert 'Quilt/Test' in quilt3.list_packages() quilt3.delete_package('Quilt/Test') assert 'Quilt/Test' not in quilt3.list_packages() def test_local_delete_package_revision(self): pkg_name = 'Quilt/Test' top_hash1 = 'top_hash1' top_hash2 = 'top_hash2' top_hash3 = 'top_hash3' top_hashes = (top_hash1, top_hash2, top_hash3) for i, top_hash in enumerate(top_hashes): with patch('quilt3.Package.top_hash', top_hash), \ patch('time.time', return_value=i): Path(top_hash).write_text(top_hash) Package().set(top_hash, top_hash).build(pkg_name) # All is set up correctly. assert pkg_name in quilt3.list_packages() assert {top_hash for _, top_hash in quilt3.list_package_versions(pkg_name)} == set(top_hashes) assert Package.browse(pkg_name)[top_hash3].get_as_string() == top_hash3 # Remove latest revision, latest now points to the previous one. quilt3.delete_package(pkg_name, top_hash=top_hash3) assert pkg_name in quilt3.list_packages() assert {top_hash for _, top_hash in quilt3.list_package_versions(pkg_name)} == {top_hash1, top_hash2} assert Package.browse(pkg_name)[top_hash2].get_as_string() == top_hash2 # Remove non-latest revision, latest stays the same. quilt3.delete_package(pkg_name, top_hash=top_hash1) assert pkg_name in quilt3.list_packages() assert {top_hash for _, top_hash in quilt3.list_package_versions(pkg_name)} == {top_hash2} assert Package.browse(pkg_name)[top_hash2].get_as_string() == top_hash2 # Remove the last revision, package is not listed anymore. quilt3.delete_package(pkg_name, top_hash=top_hash2) assert pkg_name not in quilt3.list_packages() assert not list(quilt3.list_package_versions(pkg_name)) def _test_remote_package_delete_setup_stubber(self, pkg_registry, pkg_name, *, pointers): self.setup_s3_stubber_list_pkg_pointers(pkg_registry, pkg_name, pointers=pointers) for pointer in pointers: self.setup_s3_stubber_delete_pointer(pkg_registry, pkg_name, pointer=pointer) def test_remote_package_delete(self): """Verify remote package delete works.""" registry = 's3://test-bucket' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_name = 'Quilt/Test' self._test_remote_package_delete_setup_stubber(pkg_registry, pkg_name, pointers=('0', 'latest')) quilt3.delete_package(pkg_name, registry=registry) def _test_remote_revision_delete_setup_stubber(self, pkg_registry, pkg_name, *, top_hashes, latest, remove, new_latest): pointers = {str(i): top_hash for top_hash, i in top_hashes.items()} pointers['latest'] = latest self.setup_s3_stubber_list_pkg_pointers(pkg_registry, pkg_name, pointers=pointers) for pointer, top_hash in pointers.items(): self.setup_s3_stubber_resolve_pointer(pkg_registry, pkg_name, pointer=pointer, top_hash=top_hash) self.setup_s3_stubber_delete_pointer(pkg_registry, pkg_name, pointer=str(top_hashes[remove])) if latest == remove: self.setup_s3_stubber_delete_pointer(pkg_registry, pkg_name, pointer='latest') if new_latest: self.s3_stubber.add_response( method='head_object', service_response={ 'ContentLength': len(new_latest), }, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.pointer_pk(pkg_name, str(top_hashes[new_latest])).path, } ) self.s3_stubber.add_response( method='copy_object', service_response={}, expected_params={ 'CopySource': { 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.pointer_pk(pkg_name, str(top_hashes[new_latest])).path, }, 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.pointer_latest_pk(pkg_name).path, } ) def test_remote_delete_package_revision(self): self.patch_s3_registry('resolve_top_hash', lambda self, pkg_name, top_hash: top_hash) registry = 's3://test-bucket' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_name = 'Quilt/Test' top_hash1 = 'top_hash1' top_hash2 = 'top_hash2' top_hash3 = 'top_hash3' top_hashes = { top_hash1: 1, top_hash2: 2, top_hash3: 3, } self._test_remote_revision_delete_setup_stubber( pkg_registry, pkg_name, top_hashes=top_hashes, latest=top_hash3, new_latest=top_hash2, remove=top_hash3) quilt3.delete_package(pkg_name, top_hash=top_hash3, registry=registry) top_hashes.pop(top_hash3) self._test_remote_revision_delete_setup_stubber( pkg_registry, pkg_name, top_hashes=top_hashes, latest=top_hash2, new_latest=None, remove=top_hash1) quilt3.delete_package(pkg_name, top_hash=top_hash1, registry=registry) top_hashes.pop(top_hash1) self._test_remote_revision_delete_setup_stubber( pkg_registry, pkg_name, top_hashes=top_hashes, latest=top_hash2, new_latest=None, remove=top_hash2) quilt3.delete_package(pkg_name, top_hash=top_hash2, registry=registry) def test_push_restrictions(self): p = Package() # disallow pushing not to the top level of a remote S3 registry with pytest.raises(QuiltException): p.push('Quilt/Test', 's3://test-bucket/foo/bar') # disallow pushing to the local filesystem (use install instead) with pytest.raises(QuiltException): p.push('Quilt/Test', './') # disallow pushing the package manifest to remote but package data to local with pytest.raises(QuiltException): p.push('Quilt/Test', 's3://test-bucket', dest='./') # disallow pushing the pacakge manifest to remote but package data to a different remote with pytest.raises(QuiltException): p.push('Quilt/Test', 's3://test-bucket', dest='s3://other-test-bucket') @patch('quilt3.workflows.validate', return_value=None) def test_commit_message_on_push(self, mocked_workflow_validate): """ Verify commit messages populate correctly on push.""" self.patch_s3_registry('shorten_top_hash', return_value='7a67ff4') with patch('quilt3.packages.copy_file_list', _mock_copy_file_list), \ patch('quilt3.Package._push_manifest') as push_manifest_mock, \ patch('quilt3.Package._calculate_top_hash', return_value=mock.sentinel.top_hash): with open(REMOTE_MANIFEST) as fd: pkg = Package.load(fd) pkg.push('Quilt/test_pkg_name', 's3://test-bucket', message='test_message') registry = self.S3PackageRegistryDefault(PhysicalKey.from_url('s3://test-bucket')) message = 'test_message' push_manifest_mock.assert_called_once_with( 'Quilt/test_pkg_name', registry, mock.sentinel.top_hash, ) mocked_workflow_validate.assert_called_once_with( registry=registry, workflow=..., meta={}, message=message, ) def test_overwrite_dir_fails(self): with pytest.raises(QuiltException): pkg = Package() pkg.set('asdf/jkl', LOCAL_MANIFEST) pkg.set('asdf', LOCAL_MANIFEST) def test_overwrite_entry_fails(self): with pytest.raises(QuiltException): pkg = Package() pkg.set('asdf', LOCAL_MANIFEST) pkg.set('asdf/jkl', LOCAL_MANIFEST) def test_siblings_succeed(self): pkg = Package() pkg.set('as/df', LOCAL_MANIFEST) pkg.set('as/qw', LOCAL_MANIFEST) def test_local_repr(self): TEST_REPR = ( "(local Package)\n" " └─asdf\n" " └─path1/\n" " └─asdf\n" " └─qwer\n" " └─path2/\n" " └─first/\n" " └─asdf\n" " └─second/\n" " └─asdf\n" " └─qwer\n" ) pkg = Package() pkg.set('asdf', LOCAL_MANIFEST) pkg.set('qwer', LOCAL_MANIFEST) pkg.set('path1/asdf', LOCAL_MANIFEST) pkg.set('path1/qwer', LOCAL_MANIFEST) pkg.set('path2/first/asdf', LOCAL_MANIFEST) pkg.set('path2/second/asdf', LOCAL_MANIFEST) assert repr(pkg) == TEST_REPR def test_remote_repr(self): with patch('quilt3.packages.get_size_and_version', return_value=(0, '0')): TEST_REPR = ( "(remote Package)\n" " └─asdf\n" ) pkg = Package() pkg.set('asdf', 's3://my-bucket/asdf') assert repr(pkg) == TEST_REPR TEST_REPR = ( "(remote Package)\n" " └─asdf\n" " └─qwer\n" ) pkg = Package() pkg.set('asdf', 's3://my-bucket/asdf') pkg.set('qwer', LOCAL_MANIFEST) assert repr(pkg) == TEST_REPR def test_repr_empty_package(self): pkg = Package() r = repr(pkg) assert r == "(empty Package)" def test_manifest(self): pkg = Package().set_meta({'metadata': '💩'}) pkg.set('as/df', LOCAL_MANIFEST) pkg.set('as/qw', LOCAL_MANIFEST) top_hash = pkg.build('foo/bar') manifest = list(pkg.manifest) current_locale = locale.setlocale(locale.LC_ALL) try: for locale_name in ('C', ''): with self.subTest(locale_name=locale_name): locale.setlocale(locale.LC_ALL, locale_name) pkg2 = Package.browse('foo/bar', top_hash=top_hash) assert list(pkg2.manifest) == manifest finally: locale.setlocale(locale.LC_ALL, current_locale) @patch('quilt3.Package._push_manifest', mock.MagicMock()) @patch('quilt3.packages.copy_file_list', mock.MagicMock()) @patch('quilt3.workflows.validate', mock.MagicMock(return_value='workflow data')) def test_manifest_workflow(self): self.patch_s3_registry('shorten_top_hash', return_value='7a67ff4') for method in (Package.build, Package.push): with self.subTest(method=method): pkg = Package() method(pkg, 'foo/bar', registry='s3://test-bucket') data, = pkg.manifest assert 'workflow' in data assert data['workflow'] == "workflow data" def test_map(self): pkg = Package() pkg.set('as/df', LOCAL_MANIFEST) pkg.set('as/qw', LOCAL_MANIFEST) assert set(pkg.map(lambda lk, entry: lk)) == {'as/df', 'as/qw'} pkg['as'].set_meta({'foo': 'bar'}) assert set(pkg.map(lambda lk, entry: lk, include_directories=True)) ==\ {'as/df', 'as/qw', 'as/'} def test_filter(self): pkg = Package() pkg.set('a/df', LOCAL_MANIFEST) pkg.set('a/qw', LOCAL_MANIFEST) p_copy = pkg.filter(lambda lk, entry: lk == 'a/df') assert list(p_copy) == ['a'] and list(p_copy['a']) == ['df'] pkg = Package() pkg.set('a/df', LOCAL_MANIFEST) pkg.set('a/qw', LOCAL_MANIFEST) pkg.set('b/df', LOCAL_MANIFEST) pkg['a'].set_meta({'foo': 'bar'}) pkg['b'].set_meta({'foo': 'bar'}) p_copy = pkg.filter(lambda lk, entry: lk == 'a/', include_directories=True) assert list(p_copy) == [] p_copy = pkg.filter(lambda lk, entry: lk == 'a/' or lk == 'a/df', include_directories=True) assert list(p_copy) == ['a'] and list(p_copy['a']) == ['df'] @pytest.mark.usefixtures('clear_data_modules_cache') def test_import(self): with patch('quilt3.Package._browse') as browse_mock, \ patch.object(self.LocalPackageRegistryDefault, 'list_packages') as list_packages_mock: browse_mock.return_value = quilt3.Package() list_packages_mock.return_value = ['foo/bar', 'foo/baz'] from quilt3.data.foo import bar assert isinstance(bar, Package) browse_mock.assert_has_calls( [call('foo/baz', registry=ANY), call('foo/bar', registry=ANY)], any_order=True ) from quilt3.data import foo assert hasattr(foo, 'bar') and hasattr(foo, 'baz') def test_invalid_key(self): pkg = Package() with pytest.raises(QuiltException): pkg.set('', LOCAL_MANIFEST) with pytest.raises(QuiltException): pkg.set('foo/', LOCAL_MANIFEST) with pytest.raises(QuiltException): pkg.set('foo', './') with pytest.raises(QuiltException): pkg.set('foo', os.path.dirname(__file__)) # we do not allow '.' or '..' files or filename separators with pytest.raises(QuiltException): pkg.set('.', LOCAL_MANIFEST) with pytest.raises(QuiltException): pkg.set('..', LOCAL_MANIFEST) with pytest.raises(QuiltException): pkg.set('./foo', LOCAL_MANIFEST) with pytest.raises(QuiltException): pkg.set('../foo', LOCAL_MANIFEST) with pytest.raises(QuiltException): pkg.set('foo/.', LOCAL_MANIFEST) with pytest.raises(QuiltException): pkg.set('foo/..', LOCAL_MANIFEST) with pytest.raises(QuiltException): pkg.set('foo/./bar', LOCAL_MANIFEST) with pytest.raises(QuiltException): pkg.set('foo/../bar', LOCAL_MANIFEST) with pytest.raises(QuiltException): pkg.set('s3://foo/.', LOCAL_MANIFEST) with pytest.raises(QuiltException): pkg.set('s3://foo/..', LOCAL_MANIFEST) @pytest.mark.usefixtures('clear_data_modules_cache') @pytest.mark.usefixtures('isolate_packages_cache') def test_install(self): self.patch_local_registry('shorten_top_hash', return_value='7a67ff4') registry = 's3://my-test-bucket' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_name = 'Quilt/Foo' self.setup_s3_stubber_pkg_install( pkg_registry, pkg_name, manifest=REMOTE_MANIFEST.read_bytes(), entries=( ('s3://my_bucket/my_data_pkg/bar.csv', b'a,b,c'), ('s3://my_bucket/my_data_pkg/baz/bat', b'Hello World!'), ('s3://my_bucket/my_data_pkg/foo', '💩'.encode()), ), ) with patch('quilt3.data_transfer.MAX_CONCURRENCY', 1): Package.install(pkg_name, registry=registry, dest='package') p = Package.browse(pkg_name) assert p['foo'].get() == 's3://my_bucket/my_data_pkg/foo' # Check that the cache works. local_path = pathlib.Path(p['foo'].get_cached_path()) assert local_path == pathlib.Path.cwd() / 'package/foo' assert local_path.read_text('utf8') == '💩' # Test that get_bytes and get_as_text works assert p['foo'].get_bytes().decode("utf-8") == '💩' assert p['foo'].get_as_string() == '💩' # Check that moving the file invalidates the cache... local_path.rename('foo2') assert p['foo'].get_cached_path() is None # ...but moving it back fixes it. pathlib.Path('foo2').rename(local_path) assert pathlib.Path(p['foo'].get_cached_path()) == local_path # Check that changing the contents invalidates the cache. local_path.write_text('omg') assert p['foo'].get_cached_path() is None # Check that installing the package again reuses the cached manifest and two objects - but not "foo". self.setup_s3_stubber_pkg_install( pkg_registry, pkg_name, entries=( ('s3://my_bucket/my_data_pkg/foo', '💩'.encode()), ), ) with patch('quilt3.data_transfer.MAX_CONCURRENCY', 1): Package.install(pkg_name, registry=registry, dest='package/') # import works for installation outside named package directory with patch('quilt3.Package._browse') as browse_mock: browse_mock.return_value = quilt3.Package() from quilt3.data.Quilt import Foo assert isinstance(Foo, Package) browse_mock.assert_called_once() # make sure import works for an installed named package pkg_name2 = 'test/foo' same_manifest_path = ( pkg_registry.manifest_pk(pkg_name2, self.default_test_top_hash) == pkg_registry.manifest_pk(pkg_name, self.default_test_top_hash) ) self.setup_s3_stubber_pkg_install( pkg_registry, pkg_name2, # Manifest is cached on PackageRegistryV1, since it's on the same path. manifest=None if same_manifest_path else REMOTE_MANIFEST.read_bytes(), ) with patch('quilt3.data_transfer.MAX_CONCURRENCY', 1), \ tempfile.TemporaryDirectory() as tmp_dir, \ patch( 'quilt3.packages.get_install_location', return_value=str(PhysicalKey.from_path(tmp_dir)) ) as mocked_get_install_location: Package.install(pkg_name2, registry=registry) mocked_get_install_location.assert_called_once_with() items = [] for dirpath, dirnames, filenames in os.walk(tmp_dir): dirpath = pathlib.Path(dirpath) for dirname in dirnames: items.append((dirpath / dirname).relative_to(tmp_dir)) for filename in filenames: items.append((dirpath / filename).relative_to(tmp_dir)) items.sort() assert items == list(map(pathlib.Path, ( 'test', 'test/foo', 'test/foo/bar.csv', 'test/foo/baz', 'test/foo/baz/bat', 'test/foo/foo', ))) @pytest.mark.usefixtures('isolate_packages_cache') @patch('quilt3.util.IS_CACHE_ENABLED', False) @patch('quilt3.packages.ObjectPathCache') def test_install_disabled_cache(self, object_path_cache_mock): registry = 's3://my-test-bucket' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_name = 'Quilt/Foo' # Install a package twice and make sure cache functions weren't called. for x in range(2): self.setup_s3_stubber_pkg_install( pkg_registry, pkg_name, manifest=REMOTE_MANIFEST.read_bytes(), entries=( ('s3://my_bucket/my_data_pkg/bar.csv', b'a,b,c'), ('s3://my_bucket/my_data_pkg/baz/bat', b'Hello World!'), ('s3://my_bucket/my_data_pkg/foo', '💩'.encode()), ), ) with patch('quilt3.data_transfer.MAX_CONCURRENCY', 1): Package.install(pkg_name, registry=registry, dest='package') object_path_cache_mock.get.assert_not_called() object_path_cache_mock.set.assert_not_called() @pytest.mark.usefixtures('isolate_packages_cache') @patch('quilt3.util.IS_CACHE_ENABLED', False) @patch('quilt3.packages.ObjectPathCache') def test_package_entry_disabled_cache(self, object_path_cache_mock): registry = 's3://my-test-bucket' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_name = 'Quilt/Foo' self.setup_s3_stubber_pkg_install( pkg_registry, pkg_name, manifest=REMOTE_MANIFEST.read_bytes(), ) pkg = Package.browse(pkg_name, registry=registry) for lk, entry in pkg.walk(): assert entry.get_cached_path() is None object_path_cache_mock.get.assert_not_called() def test_install_subpackage_deprecated_and_new(self): pkg_name = 'Quilt/Foo' bucket = 'my-test-bucket' path = 'baz' dest = 'package' with pytest.warns(RemovedInQuilt4Warning): with pytest.raises(ValueError): Package.install(f'{pkg_name}/{path}', registry=f's3://{bucket}', dest=dest, path=path) @pytest.mark.usefixtures('isolate_packages_cache') @patch('quilt3.data_transfer.MAX_CONCURRENCY', 1) @patch('quilt3.packages.ObjectPathCache.set') def test_install_subpackage_deprecated(self, mocked_cache_set): registry = 's3://my-test-bucket' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_name = 'Quilt/Foo' subpackage_path = 'baz' entry_url = 's3://my_bucket/my_data_pkg/baz/bat' entry_content = b'42' entries = ( (entry_url, entry_content), ) dest = 'package' self.setup_s3_stubber_pkg_install( pkg_registry, pkg_name, manifest=REMOTE_MANIFEST.read_bytes(), entries=entries) with pytest.warns(RemovedInQuilt4Warning): Package.install(f'{pkg_name}/{subpackage_path}', registry=registry, dest=dest) path = pathlib.Path.cwd() / dest / 'bat' mocked_cache_set.assert_called_once_with( entry_url, PhysicalKey.from_path(path).path, ) assert path.read_bytes() == entry_content @pytest.mark.usefixtures('isolate_packages_cache') @patch('quilt3.data_transfer.MAX_CONCURRENCY', 1) @patch('quilt3.packages.ObjectPathCache.set') def test_install_entry_deprecated(self, mocked_cache_set): registry = 's3://my-test-bucket' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_name = 'Quilt/Foo' subpackage_path = 'baz/bat' entry_url = 's3://my_bucket/my_data_pkg/baz/bat' entry_content = b'42' entries = ( (entry_url, entry_content), ) dest = 'package' self.setup_s3_stubber_pkg_install( pkg_registry, pkg_name, manifest=REMOTE_MANIFEST.read_bytes(), entries=entries) with pytest.warns(RemovedInQuilt4Warning): Package.install(f'{pkg_name}/{subpackage_path}', registry=registry, dest=dest) path = pathlib.Path.cwd() / dest / 'bat' mocked_cache_set.assert_called_once_with( entry_url, PhysicalKey.from_path(path).path, ) assert path.read_bytes() == entry_content @pytest.mark.usefixtures('isolate_packages_cache') @patch('quilt3.data_transfer.MAX_CONCURRENCY', 1) @patch('quilt3.packages.ObjectPathCache.set') def test_install_subpackage(self, mocked_cache_set): registry = 's3://my-test-bucket' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_name = 'Quilt/Foo' path = 'baz' entry_url = 's3://my_bucket/my_data_pkg/baz/bat' entry_content = b'42' entries = ( (entry_url, entry_content), ) dest = 'package' self.setup_s3_stubber_pkg_install( pkg_registry, pkg_name, manifest=REMOTE_MANIFEST.read_bytes(), entries=entries) Package.install(pkg_name, registry=registry, dest=dest, path=path) path = pathlib.Path.cwd() / dest / 'bat' mocked_cache_set.assert_called_once_with( entry_url, PhysicalKey.from_path(path).path, ) assert path.read_bytes() == entry_content @pytest.mark.usefixtures('isolate_packages_cache') @patch('quilt3.data_transfer.MAX_CONCURRENCY', 1) @patch('quilt3.packages.ObjectPathCache.set') def test_install_entry(self, mocked_cache_set): registry = 's3://my-test-bucket' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url(registry)) pkg_name = 'Quilt/Foo' path = 'baz/bat' entry_url = 's3://my_bucket/my_data_pkg/baz/bat' entry_content = b'42' entries = ( (entry_url, entry_content), ) dest = 'package' self.setup_s3_stubber_pkg_install( pkg_registry, pkg_name, manifest=REMOTE_MANIFEST.read_bytes(), entries=entries) Package.install(pkg_name, registry=registry, dest=dest, path=path) path = pathlib.Path.cwd() / dest / 'bat' mocked_cache_set.assert_called_once_with( entry_url, PhysicalKey.from_path(path).path, ) assert path.read_bytes() == entry_content def test_install_bad_name(self): with self.assertRaisesRegex(QuiltException, 'Invalid package name'): Package().install('?') def test_rollback(self): p = Package() p.set('foo', DATA_DIR / 'foo.txt') p.build('quilt/tmp') good_hash = p.top_hash assert 'foo' in Package.browse('quilt/tmp') p.delete('foo') p.build('quilt/tmp') assert 'foo' not in Package.browse('quilt/tmp') Package.rollback('quilt/tmp', LOCAL_REGISTRY, good_hash) assert 'foo' in Package.browse('quilt/tmp') with self.assertRaises(QuiltException): Package.rollback('quilt/tmp', LOCAL_REGISTRY, '12345678' * 8) with self.assertRaises(QuiltException): Package.rollback('quilt/blah', LOCAL_REGISTRY, good_hash) def test_rollback_none_registry(self): with pytest.raises(ValueError): Package.rollback('quilt/tmp', None, '12345678' * 8) def test_verify(self): self.patch_local_registry('shorten_top_hash', return_value='7a67ff4') pkg = Package() pkg.set('foo', b'Hello, World!') pkg.build('quilt/test') Package.install('quilt/test', LOCAL_REGISTRY, dest='test') assert pkg.verify('test') Path('test/blah').write_text('123') assert not pkg.verify('test') assert pkg.verify('test', extra_files_ok=True) Path('test/foo').write_text('123') assert not pkg.verify('test') assert not pkg.verify('test', extra_files_ok=True) Path('test/foo').write_text('Hello, World!') Path('test/blah').unlink() assert pkg.verify('test') @patch('quilt3.packages.calculate_sha256') def test_fix_sha256_fail(self, mocked_calculate_sha256): data = b'Hello, World!' pkg = Package() pkg.set('foo', data) _, entry = next(pkg.walk()) exc = Exception('test exception') mocked_calculate_sha256.return_value = [exc] with pytest.raises(quilt3.exceptions.PackageException) as excinfo: pkg._fix_sha256() mocked_calculate_sha256.assert_called_once_with([entry.physical_key], [len(data)]) assert entry.hash is None assert excinfo.value.__cause__ == exc @patch('quilt3.packages.calculate_sha256') def test_fix_sha256(self, mocked_calculate_sha256): data = b'Hello, World!' pkg = Package() pkg.set('foo', data) _, entry = next(pkg.walk()) hash_ = object() mocked_calculate_sha256.return_value = [hash_] pkg._fix_sha256() mocked_calculate_sha256.assert_called_once_with([entry.physical_key], [len(data)]) assert entry.hash == {'type': 'SHA256', 'value': hash_} def test_resolve_hash_invalid_pkg_name(self): with pytest.raises(QuiltException, match='Invalid package name'): Package.resolve_hash('?', Mock(), Mock()) def _test_resolve_hash_without_pkg_name(self, hash_prefix, top_hash1): msg = r"Calling resolve_hash\(\) without the 'name' parameter is deprecated." with pytest.warns(RemovedInQuilt4Warning, match=msg): assert Package.resolve_hash(LOCAL_REGISTRY, hash_prefix) == top_hash1 def test_resolve_hash(self): pkg_name = 'Quilt/Test' top_hash1 = 'top_hash11' top_hash2 = 'top_hash22' top_hash3 = 'top_hash13' hash_prefix = 'top_hash1' with pytest.raises(QuiltException, match='Found zero matches'): Package.resolve_hash(pkg_name, LOCAL_REGISTRY, hash_prefix) with patch('quilt3.Package.top_hash', top_hash1), \ patch('time.time', return_value=1): Package().build(pkg_name) with patch('quilt3.Package.top_hash', top_hash2), \ patch('time.time', return_value=2): Package().build(pkg_name) assert Package.resolve_hash(pkg_name, LOCAL_REGISTRY, hash_prefix) == top_hash1 self._test_resolve_hash_without_pkg_name(hash_prefix, top_hash1) with patch('quilt3.Package.top_hash', top_hash3), \ patch('time.time', return_value=3): Package().build(pkg_name) with pytest.raises(QuiltException, match='Found multiple matches'): Package.resolve_hash(pkg_name, LOCAL_REGISTRY, hash_prefix) @patch('quilt3.Package._fix_sha256', wraps=quilt3.Package._fix_sha256) @patch('quilt3.Package._build', wraps=quilt3.Package._build) def test_workflow_validation_error(self, build_mock, fix_hashes): self.patch_s3_registry('shorten_top_hash', return_value='7a67ff4') pkg = Package().set('foo', DATA_DIR / 'foo.txt') for method in (pkg.build, pkg.push): with self.subTest(method=method): with patch( 'quilt3.workflows.validate', side_effect=Exception('test exception') ) as workflow_validate_mock: with pytest.raises(Exception) as excinfo: method('test/pkg', registry='s3://test-bucket') assert excinfo.value is workflow_validate_mock.side_effect workflow_validate_mock.assert_called_once() assert not build_mock.mock_calls assert not fix_hashes.mock_calls assert pkg._workflow is None @patch('quilt3.packages.copy_file_list') @patch('quilt3.workflows.validate', return_value=mock.sentinel.returned_workflow) @patch('quilt3.Package._calculate_top_hash', mock.MagicMock(return_value=mock.sentinel.top_hash)) @patch('quilt3.Package._set_commit_message', mock.MagicMock()) def test_workflow_validation(self, workflow_validate_mock, copy_file_list_mock): registry = 's3://test-bucket' pkg_registry = self.S3PackageRegistryDefault(PhysicalKey.from_url('s3://test-bucket')) self.patch_s3_registry('shorten_top_hash', return_value='7a67ff4') for method in (Package.build, Package.push): with self.subTest(method=method): with patch('quilt3.Package._push_manifest') as push_manifest_mock: pkg = Package().set('foo', DATA_DIR / 'foo.txt') method(pkg, 'test/pkg', registry) workflow_validate_mock.assert_called_once_with( registry=pkg_registry, workflow=..., meta={}, message=None, ) assert pkg._workflow is mock.sentinel.returned_workflow push_manifest_mock.assert_called_once() workflow_validate_mock.reset_mock() if method is Package.push: copy_file_list_mock.assert_called_once() copy_file_list_mock.reset_mock() with self.subTest(method=method): with patch('quilt3.Package._push_manifest') as push_manifest_mock: pkg = Package().set('foo', DATA_DIR / 'foo.txt').set_meta(mock.sentinel.pkg_meta) method( pkg, 'test/pkg', registry, workflow=mock.sentinel.workflow, message=mock.sentinel.message, ) workflow_validate_mock.assert_called_once_with( registry=pkg_registry, workflow=mock.sentinel.workflow, meta=mock.sentinel.pkg_meta, message=mock.sentinel.message, ) assert pkg._workflow is mock.sentinel.returned_workflow push_manifest_mock.assert_called_once() workflow_validate_mock.reset_mock() if method is Package.push: copy_file_list_mock.assert_called_once() copy_file_list_mock.reset_mock() @patch('quilt3.workflows.validate', mock.MagicMock(return_value=None)) def test_push_dest_fn_non_string(self): pkg = Package().set('foo', DATA_DIR / 'foo.txt') for val in (None, 42): with self.subTest(value=val): with pytest.raises(TypeError) as excinfo: pkg.push('foo/bar', registry='s3://test-bucket', dest=(lambda v: lambda *args, **kwargs: v)(val)) assert 'str is expected' in str(excinfo.value) @patch('quilt3.workflows.validate', mock.MagicMock(return_value=None)) def test_push_dest_fn_non_supported_uri(self): pkg = Package().set('foo', DATA_DIR / 'foo.txt') for val in ('http://example.com', 'file:///bffd'): with self.subTest(value=val): with pytest.raises(quilt3.util.URLParseError): pkg.push('foo/bar', registry='s3://test-bucket', dest=(lambda v: lambda *args, **kwargs: v)(val)) @patch('quilt3.workflows.validate', mock.MagicMock(return_value=None)) def test_push_dest_fn_s3_uri_with_version_id(self): pkg = Package().set('foo', DATA_DIR / 'foo.txt') with pytest.raises(ValueError) as excinfo: pkg.push('foo/bar', registry='s3://test-bucket', dest=lambda *args, **kwargs: 's3://bucket/ds?versionId=v') assert 'URI must not include versionId' in str(excinfo.value) @patch('quilt3.workflows.validate', mock.MagicMock(return_value=None)) @patch('quilt3.Package._calculate_top_hash', mock.MagicMock(return_value=mock.sentinel.top_hash)) def test_push_dest_fn(self): pkg_name = 'foo/bar' lk = 'foo' pkg = Package().set(lk, DATA_DIR / 'foo.txt') dest_bucket = 'new-bucket' dest_key = 'new-key' dest_fn = mock.MagicMock(return_value=f's3://{dest_bucket}/{dest_key}') version = '1' self.s3_stubber.add_response( method='put_object', service_response={ 'VersionId': '1', }, expected_params={ 'Body': ANY, 'Bucket': dest_bucket, 'Key': dest_key, } ) push_manifest_mock = self.patch_s3_registry('push_manifest') self.patch_s3_registry('shorten_top_hash', return_value='7a67ff4') pkg.push(pkg_name, registry='s3://test-bucket', dest=dest_fn) dest_fn.assert_called_once_with(lk, pkg[lk], mock.sentinel.top_hash) push_manifest_mock.assert_called_once_with(pkg_name, mock.sentinel.top_hash, ANY) assert Package.load( BytesIO(push_manifest_mock.call_args[0][2]) )[lk].physical_key == PhysicalKey(dest_bucket, dest_key, version) def test_package_dump_file_mode(self): """ Package.dump() works with both files opened in binary and text mode. """ meta = {'💩': '💩'} pkg = Package().set_meta(meta) for mode in 'bt': with self.subTest(mode=mode): fn = f'test-manifest-{mode}.jsonl' with open(fn, f'w{mode}', **({'encoding': 'utf-8'} if mode == 't' else {})) as f: pkg.dump(f) with open(fn, encoding='utf-8') as f: assert Package.load(f).meta == meta def test_max_manifest_record_size(self): with open(os.devnull, 'wb') as buf: with mock.patch('quilt3.packages.MANIFEST_MAX_RECORD_SIZE', 1): with pytest.raises(QuiltException) as excinfo: Package().dump(buf) assert 'Size of manifest record for package metadata' in str(excinfo.value) with mock.patch('quilt3.packages.MANIFEST_MAX_RECORD_SIZE', 10_000): with pytest.raises(QuiltException) as excinfo: Package().set('foo', DATA_DIR / 'foo.txt', {'user_meta': 'x' * 10_000}).dump(buf) assert "Size of manifest record for entry with logical key 'foo'" in str(excinfo.value) with pytest.raises(QuiltException) as excinfo: Package().set_dir('bar', DATA_DIR / 'nested', meta={'user_meta': 'x' * 10_000}).dump(buf) assert "Size of manifest record for entry with logical key 'bar/'" in str(excinfo.value) # This would fail if non-ASCII chars were encoded using escape sequences. Package().set_meta({'a': '💩' * 2_000}).dump(buf) class PackageTestV2(PackageTest): default_registry_version = 2 S3PackageRegistryDefault = S3PackageRegistryV2 LocalPackageRegistryDefault = LocalPackageRegistryV2 def _test_resolve_hash_without_pkg_name(self, hash_prefix, top_hash1): with pytest.raises(TypeError, match='Package name is required'): assert Package.resolve_hash(LOCAL_REGISTRY, hash_prefix) == top_hash1 def local_manifest_timestamp_fixer(self, timestamp): wrapped = self.LocalPackageRegistryDefault.push_manifest def wrapper(pkg_registry, pkg_name, top_hash, manifest_data): wrapped(pkg_registry, pkg_name, top_hash, manifest_data) os.utime(pkg_registry._manifest_parent_pk(pkg_name, top_hash).path, (timestamp, timestamp)) return patch.object(self.LocalPackageRegistryDefault, 'push_manifest', wrapper) def _test_list_remote_packages_setup_stubber(self, pkg_registry, *, pkg_names): self.s3_stubber.add_response( method='list_objects_v2', service_response={ 'CommonPrefixes': [ {'Prefix': pkg_registry.manifests_package_dir(pkg_name).path} for pkg_name in pkg_names ] }, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Prefix': pkg_registry.manifests_global_dir.path, 'Delimiter': '/', } ) def _test_remote_package_delete_setup_stubber(self, pkg_registry, pkg_name, *, pointers): top_hashes = ( 'e99b760a05539460ac0a7349abb8f476e8c75282a38845fa828f8a5d28374303', '20de5433549a4db332a11d8d64b934a82bdea8f144b4aecd901e7d4134f8e733', ) self.s3_stubber.add_response( method='list_objects_v2', service_response={ 'Contents': [ { 'Key': pkg_registry.manifest_pk(pkg_name, top_hash).path, 'Size': 64, } for top_hash in top_hashes ] }, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Prefix': pkg_registry.manifests_package_dir(pkg_name).path, } ) for top_hash in top_hashes: self.s3_stubber.add_response( method='delete_object', service_response={}, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.manifest_pk(pkg_name, top_hash).path, } ) super()._test_remote_package_delete_setup_stubber(pkg_registry, pkg_name, pointers=pointers) def _test_remote_revision_delete_setup_stubber(self, pkg_registry, pkg_name, *, top_hashes, latest, remove, new_latest): self.s3_stubber.add_response( method='delete_object', service_response={}, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.manifest_pk(pkg_name, remove).path, } ) self.setup_s3_stubber_resolve_pointer(pkg_registry, pkg_name, pointer='latest', top_hash=latest) if latest == remove: self.setup_s3_stubber_delete_pointer(pkg_registry, pkg_name, pointer='latest') self.s3_stubber.add_response( method='list_objects_v2', service_response={ 'Contents': [ { 'Key': pkg_registry.manifest_pk(pkg_name, top_hash).path, 'Size': 64, 'LastModified': datetime.fromtimestamp(timestamp), } for top_hash, timestamp in top_hashes.items() if top_hash != remove ] }, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Prefix': pkg_registry.manifests_package_dir(pkg_name).path, } ) if new_latest: self.s3_stubber.add_response( method='put_object', service_response={}, expected_params={ 'Body': new_latest.encode(), 'Bucket': pkg_registry.root.bucket, 'Key': pkg_registry.pointer_latest_pk(pkg_name).path, } ) self.s3_stubber.add_response( method='list_objects_v2', service_response={ 'Contents': [], }, expected_params={ 'Bucket': pkg_registry.root.bucket, 'Prefix': pkg_registry.pointers_dir(pkg_name).path, } ) # The following tests were moved out of the PackageTest class to enable parametrization. # see (https://docs.pytest.org/en/latest/unittest.html#pytest-features-in-unittest-testcase-subclasses) @pytest.mark.parametrize( 'target_dir, update_policy, expected_one_byte, expected_two_byte, expected_three_byte, expected_keys', [ ('/', None, b'one', b'two', b'three', {'one.txt', 'two.txt', 'three.txt', 'sub'}), ('/', 'incoming', b'one', b'two', b'three', {'one.txt', 'two.txt', 'three.txt', 'sub'}), ('/', 'existing', b'1', b'two', b'three', {'one.txt', 'two.txt', 'three.txt', 'sub'}), ('', 'incoming', b'one', b'two', b'three', {'one.txt', 'two.txt', 'three.txt', 'sub'}), ('', 'existing', b'1', b'two', b'three', {'one.txt', 'two.txt', 'three.txt', 'sub'}), ('sub/', 'incoming', b'one', b'two', b'three', {'one.txt', 'sub'}), ('sub/', 'existing', b'one', b'2', b'3', {'one.txt', 'sub'}), ('new-sub/', 'incoming', b'one', b'two', b'three', {'one.txt', 'sub', 'new-sub'}), ('new-sub/', 'existing', b'one', b'two', b'three', {'one.txt', 'sub', 'new-sub'}), pytest.param('/', 'bad_policy', b'1', b'2', b'3', set(), marks=pytest.mark.xfail(raises=ValueError)), ] ) def test_set_dir_update_policy( target_dir: str, update_policy: str, expected_one_byte: bytes, expected_two_byte: bytes, expected_three_byte: bytes, expected_keys: set ): """Verify building a package with update policy. """ nested_dir = DATA_DIR / 'nested' pkg = Package() pkg.set_dir("/", nested_dir, meta={'name': 'test_meta'}) assert set(pkg.keys()) == {'one.txt', 'sub'} assert set(pkg['sub'].keys()) == {'two.txt', 'three.txt'} assert pkg.meta == {'name': 'test_meta'} nested_dir_2 = DATA_DIR / 'nested2' if update_policy: pkg.set_dir(target_dir, nested_dir_2, update_policy=update_policy) else: pkg.set_dir(target_dir, nested_dir_2) assert set(pkg.keys()) == expected_keys target_dir = target_dir.strip("/") if target_dir: assert pkg['one.txt'].get_bytes() == b'1' assert set(pkg[target_dir].keys()) == {'one.txt', 'two.txt', 'three.txt'} assert pkg[target_dir + '/one.txt'].get_bytes() == expected_one_byte assert pkg[target_dir + '/two.txt'].get_bytes() == expected_two_byte assert pkg[target_dir + '/three.txt'].get_bytes() == expected_three_byte else: assert pkg['one.txt'].get_bytes() == expected_one_byte assert pkg['two.txt'].get_bytes() == expected_two_byte assert pkg['three.txt'].get_bytes() == expected_three_byte assert set(pkg['sub'].keys()) == {'two.txt', 'three.txt'} @pytest.mark.parametrize( 'update_policy, expected_a_url, expected_xy_url', [ ('existing', 's3://bucket/foo/a.txt?versionId=xyz', 's3://bucket/foo/x/y.txt?versionId=null'), ('incoming', 's3://bucket/bar/a.txt?versionId=abc', 's3://bucket/bar/x/y.txt?versionId=null'), (None, 's3://bucket/bar/a.txt?versionId=abc', 's3://bucket/bar/x/y.txt?versionId=null') ] ) def test_set_dir_update_policy_s3(update_policy, expected_a_url, expected_xy_url): with patch('quilt3.packages.list_object_versions') as list_object_versions_mock: list_object_versions_mock.return_value = ( [ dict(Key='foo/a.txt', VersionId='xyz', IsLatest=True, Size=10), dict(Key='foo/b.txt', VersionId='byc', IsLatest=True, Size=10), dict(Key='foo/x/y.txt', VersionId='null', IsLatest=True, Size=10), dict(Key='foo/z.txt', VersionId='123', IsLatest=False, Size=10), ], [] ) pkg = Package() pkg.set_dir('', 's3://bucket/foo/', meta={'name': 'test_meta'}) assert 'c.txt' not in pkg.keys() assert pkg['a.txt'].get() == 's3://bucket/foo/a.txt?versionId=xyz' assert pkg['b.txt'].get() == 's3://bucket/foo/b.txt?versionId=byc' assert pkg['x/y.txt'].get() == 's3://bucket/foo/x/y.txt?versionId=null' list_object_versions_mock.assert_called_once_with('bucket', 'foo/') list_object_versions_mock.return_value = ( [ dict(Key='bar/a.txt', VersionId='abc', IsLatest=True, Size=10), dict(Key='bar/c.txt', VersionId='cyb', IsLatest=True, Size=10), dict(Key='bar/x/y.txt', VersionId='null', IsLatest=True, Size=10), dict(Key='bar/z.txt', VersionId='123', IsLatest=True, Size=10), ], [] ) if update_policy: pkg.set_dir('', 's3://bucket/bar', update_policy=update_policy) else: pkg.set_dir('', 's3://bucket/bar') assert pkg['a.txt'].get() == expected_a_url assert pkg['b.txt'].get() == 's3://bucket/foo/b.txt?versionId=byc' assert pkg['c.txt'].get() == 's3://bucket/bar/c.txt?versionId=cyb' assert pkg['x/y.txt'].get() == expected_xy_url assert pkg['z.txt'].get() == 's3://bucket/bar/z.txt?versionId=123' assert list_object_versions_mock.call_count == 2 list_object_versions_mock.assert_has_calls([call('bucket', 'foo/'), call('bucket', 'bar/')])
apache-2.0
QuLogic/cartopy
examples/lines_and_polygons/hurricane_katrina.py
2
3271
""" Hurricane Katrina ----------------- This example uses the power of Shapely to illustrate states that are likely to have been significantly impacted by Hurricane Katrina. """ import matplotlib.patches as mpatches import matplotlib.pyplot as plt import shapely.geometry as sgeom import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader def sample_data(): """ Return a list of latitudes and a list of longitudes (lons, lats) for Hurricane Katrina (2005). The data was originally sourced from the HURDAT2 dataset from AOML/NOAA: https://www.aoml.noaa.gov/hrd/hurdat/newhurdat-all.html on 14th Dec 2012. """ lons = [-75.1, -75.7, -76.2, -76.5, -76.9, -77.7, -78.4, -79.0, -79.6, -80.1, -80.3, -81.3, -82.0, -82.6, -83.3, -84.0, -84.7, -85.3, -85.9, -86.7, -87.7, -88.6, -89.2, -89.6, -89.6, -89.6, -89.6, -89.6, -89.1, -88.6, -88.0, -87.0, -85.3, -82.9] lats = [23.1, 23.4, 23.8, 24.5, 25.4, 26.0, 26.1, 26.2, 26.2, 26.0, 25.9, 25.4, 25.1, 24.9, 24.6, 24.4, 24.4, 24.5, 24.8, 25.2, 25.7, 26.3, 27.2, 28.2, 29.3, 29.5, 30.2, 31.1, 32.6, 34.1, 35.6, 37.0, 38.6, 40.1] return lons, lats def main(): fig = plt.figure() # to get the effect of having just the states without a map "background" # turn off the background patch and axes frame ax = fig.add_axes([0, 0, 1, 1], projection=ccrs.LambertConformal(), frameon=False) ax.patch.set_visible(False) ax.set_extent([-125, -66.5, 20, 50], ccrs.Geodetic()) shapename = 'admin_1_states_provinces_lakes' states_shp = shpreader.natural_earth(resolution='110m', category='cultural', name=shapename) lons, lats = sample_data() ax.set_title('US States which intersect the track of ' 'Hurricane Katrina (2005)') # turn the lons and lats into a shapely LineString track = sgeom.LineString(zip(lons, lats)) # buffer the linestring by two degrees (note: this is a non-physical # distance) track_buffer = track.buffer(2) def colorize_state(geometry): facecolor = (0.9375, 0.9375, 0.859375) if geometry.intersects(track): facecolor = 'red' elif geometry.intersects(track_buffer): facecolor = '#FF7E00' return {'facecolor': facecolor, 'edgecolor': 'black'} ax.add_geometries( shpreader.Reader(states_shp).geometries(), ccrs.PlateCarree(), styler=colorize_state) ax.add_geometries([track_buffer], ccrs.PlateCarree(), facecolor='#C8A2C8', alpha=0.5) ax.add_geometries([track], ccrs.PlateCarree(), facecolor='none', edgecolor='k') # make two proxy artists to add to a legend direct_hit = mpatches.Rectangle((0, 0), 1, 1, facecolor="red") within_2_deg = mpatches.Rectangle((0, 0), 1, 1, facecolor="#FF7E00") labels = ['State directly intersects\nwith track', 'State is within \n2 degrees of track'] ax.legend([direct_hit, within_2_deg], labels, loc='lower left', bbox_to_anchor=(0.025, -0.1), fancybox=True) plt.show() if __name__ == '__main__': main()
lgpl-3.0
shangwuhencc/scikit-learn
sklearn/neighbors/tests/test_ball_tree.py
159
10196
import pickle import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.ball_tree import (BallTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils.testing import SkipTest, assert_allclose rng = np.random.RandomState(10) V = rng.rand(3, 3) V = np.dot(V, V.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'minkowski': dict(p=3), 'chebyshev': {}, 'seuclidean': dict(V=np.random.random(DIMENSION)), 'wminkowski': dict(p=3, w=np.random.random(DIMENSION)), 'mahalanobis': dict(V=V)} DISCRETE_METRICS = ['hamming', 'canberra', 'braycurtis'] BOOLEAN_METRICS = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_ball_tree_query(): np.random.seed(0) X = np.random.random((40, DIMENSION)) Y = np.random.random((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): bt = BallTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = bt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_ball_tree_query_boolean_metrics(): np.random.seed(0) X = np.random.random((40, 10)).round(0) Y = np.random.random((10, 10)).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in BOOLEAN_METRICS: yield check_neighbors, metric def test_ball_tree_query_discrete_metrics(): np.random.seed(0) X = (4 * np.random.random((40, 10))).round(0) Y = (4 * np.random.random((10, 10))).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in DISCRETE_METRICS: yield check_neighbors, metric def test_ball_tree_query_radius(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = bt.query_radius([query_pt], r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_ball_tree_query_radius_distance(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = bt.query_radius([query_pt], r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_ball_tree_kde(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) bt = BallTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) def check_results(kernel, h, atol, rtol, breadth_first): dens = bt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde np.random.seed(0) x_in = np.random.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: bt = BallTree(x_in[:, None]) try: gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) except TypeError: raise SkipTest("Old version of scipy, doesn't accept " "explicit bandwidth.") dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_bt, dens_gkde, decimal=3) def test_ball_tree_two_point(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) r = np.linspace(0, 1, 10) bt = BallTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = bt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_ball_tree_pickle(): np.random.seed(0) X = np.random.random((10, 3)) bt1 = BallTree(X, leaf_size=1) # Test if BallTree with callable metric is picklable bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2) ind1, dist1 = bt1.query(X) ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(bt1, protocol=protocol) bt2 = pickle.loads(s) s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol) bt2_pyfunc = pickle.loads(s_pyfunc) ind2, dist2 = bt2.query(X) ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc) assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = np.random.random(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = np.random.random(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = np.random.random((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2) def test_query_haversine(): np.random.seed(0) X = 2 * np.pi * np.random.random((40, 2)) bt = BallTree(X, leaf_size=1, metric='haversine') dist1, ind1 = bt.query(X, k=5) dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine') assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2)
bsd-3-clause
kai5263499/networkx
examples/graph/napoleon_russian_campaign.py
44
3216
#!/usr/bin/env python """ Minard's data from Napoleon's 1812-1813 Russian Campaign. http://www.math.yorku.ca/SCS/Gallery/minard/minard.txt """ __author__ = """Aric Hagberg ([email protected])""" # Copyright (C) 2006 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import string import networkx as nx def minard_graph(): data1="""\ 24.0,54.9,340000,A,1 24.5,55.0,340000,A,1 25.5,54.5,340000,A,1 26.0,54.7,320000,A,1 27.0,54.8,300000,A,1 28.0,54.9,280000,A,1 28.5,55.0,240000,A,1 29.0,55.1,210000,A,1 30.0,55.2,180000,A,1 30.3,55.3,175000,A,1 32.0,54.8,145000,A,1 33.2,54.9,140000,A,1 34.4,55.5,127100,A,1 35.5,55.4,100000,A,1 36.0,55.5,100000,A,1 37.6,55.8,100000,A,1 37.7,55.7,100000,R,1 37.5,55.7,98000,R,1 37.0,55.0,97000,R,1 36.8,55.0,96000,R,1 35.4,55.3,87000,R,1 34.3,55.2,55000,R,1 33.3,54.8,37000,R,1 32.0,54.6,24000,R,1 30.4,54.4,20000,R,1 29.2,54.3,20000,R,1 28.5,54.2,20000,R,1 28.3,54.3,20000,R,1 27.5,54.5,20000,R,1 26.8,54.3,12000,R,1 26.4,54.4,14000,R,1 25.0,54.4,8000,R,1 24.4,54.4,4000,R,1 24.2,54.4,4000,R,1 24.1,54.4,4000,R,1""" data2="""\ 24.0,55.1,60000,A,2 24.5,55.2,60000,A,2 25.5,54.7,60000,A,2 26.6,55.7,40000,A,2 27.4,55.6,33000,A,2 28.7,55.5,33000,R,2 29.2,54.2,30000,R,2 28.5,54.1,30000,R,2 28.3,54.2,28000,R,2""" data3="""\ 24.0,55.2,22000,A,3 24.5,55.3,22000,A,3 24.6,55.8,6000,A,3 24.6,55.8,6000,R,3 24.2,54.4,6000,R,3 24.1,54.4,6000,R,3""" cities="""\ 24.0,55.0,Kowno 25.3,54.7,Wilna 26.4,54.4,Smorgoni 26.8,54.3,Moiodexno 27.7,55.2,Gloubokoe 27.6,53.9,Minsk 28.5,54.3,Studienska 28.7,55.5,Polotzk 29.2,54.4,Bobr 30.2,55.3,Witebsk 30.4,54.5,Orscha 30.4,53.9,Mohilow 32.0,54.8,Smolensk 33.2,54.9,Dorogobouge 34.3,55.2,Wixma 34.4,55.5,Chjat 36.0,55.5,Mojaisk 37.6,55.8,Moscou 36.6,55.3,Tarantino 36.5,55.0,Malo-Jarosewii""" c={} for line in cities.split('\n'): x,y,name=line.split(',') c[name]=(float(x),float(y)) g=[] for data in [data1,data2,data3]: G=nx.Graph() i=0 G.pos={} # location G.pop={} # size last=None for line in data.split('\n'): x,y,p,r,n=line.split(',') G.pos[i]=(float(x),float(y)) G.pop[i]=int(p) if last is None: last=i else: G.add_edge(i,last,{r:int(n)}) last=i i=i+1 g.append(G) return g,c if __name__ == "__main__": (g,city)=minard_graph() try: import matplotlib.pyplot as plt plt.figure(1,figsize=(11,5)) plt.clf() colors=['b','g','r'] for G in g: c=colors.pop(0) node_size=[int(G.pop[n]/300.0) for n in G] nx.draw_networkx_edges(G,G.pos,edge_color=c,width=4,alpha=0.5) nx.draw_networkx_nodes(G,G.pos,node_size=node_size,node_color=c,alpha=0.5) nx.draw_networkx_nodes(G,G.pos,node_size=5,node_color='k') for c in city: x,y=city[c] plt.text(x,y+0.1,c) plt.savefig("napoleon_russian_campaign.png") except ImportError: pass
bsd-3-clause
alexlib/openpiv-python
openpiv/test/test_windef.py
2
5243
# -*- coding: utf-8 -*- """ Created on Fri Oct 4 14:33:21 2019 @author: Theo """ import numpy as np from openpiv import windef from openpiv.test import test_process from openpiv import preprocess import pathlib import os import matplotlib.pyplot as plt frame_a, frame_b = test_process.create_pair(image_size=256) shift_u, shift_v, threshold = test_process.shift_u, test_process.shift_v, \ test_process.threshold # this test are created only to test the displacement evaluation of the # function the validation methods are not tested here ant therefore # are disabled. settings = windef.Settings() settings.windowsizes = (64,) settings.overlap = (32,) settings.num_iterations = 1 settings.correlation_method = 'circular' settings.sig2noise_method = 'peak2peak' settings.subpixel_method = 'gaussian' settings.sig2noise_mask = 2 # circular cross correlation def test_first_pass_circ(): """ test of the first pass """ x, y, u, v, s2n = windef.first_pass( frame_a, frame_b, settings ) print("\n", x, y, u, v, s2n) assert np.mean(np.abs(u - shift_u)) < threshold assert np.mean(np.abs(v - shift_v)) < threshold def test_multi_pass_circ(): """ test fot the multipass """ settings.windowsizes = (64, 64, 16) settings.overlap = (32, 32, 8) settings.num_iterations = 2 settings.interpolation_order = 3 settings.validation_first_pass = True settings.sig2noise_validate = False # ettings.show_all_plots = True x, y, u, v, s2n = windef.first_pass( frame_a, frame_b, settings, ) print("first pass\n") print("\n", x, y, u, v, s2n) assert np.allclose(u, shift_u, atol = threshold) assert np.allclose(v, shift_v, atol = threshold) if settings.image_mask: image_mask = np.logical_and(mask_a, mask_b) mask_coords = preprocess.mask_coordinates(image_mask) # mark those points on the grid of PIV inside the mask grid_mask = preprocess.prepare_mask_on_grid(x,y,mask_coords) # mask the velocity u = np.ma.masked_array(u, mask=grid_mask) v = np.ma.masked_array(v, mask=grid_mask) else: mask_coords = [] u = np.ma.masked_array(u, mask=np.ma.nomask) v = np.ma.masked_array(v, mask=np.ma.nomask) for i in range(1,settings.num_iterations): x, y, u, v, s2n, _ = windef.multipass_img_deform( frame_a, frame_b, i, x, y, u, v, settings ) print(f"Pass {i}\n") print(x) print(y) print(u) print(v) print(s2n) assert np.mean(np.abs(u - shift_u)) < threshold assert np.mean(np.abs(v - shift_v)) < threshold # the second condition is to check if the multipass is done. # It need's a little numerical inaccuracy. # linear cross correlation def test_first_pass_lin(): """ test of the first pass """ settings.correlation_method = 'linear' x, y, u, v, s2n = windef.first_pass( frame_a, frame_b, settings, ) print("\n", x, y, u, v, s2n) assert np.mean(np.abs(u - shift_u)) < threshold assert np.mean(np.abs(v - shift_v)) < threshold def test_invert_and_piv(): """ Test windef.piv with invert option """ settings = windef.Settings() 'Data related settings' # Folder with the images to process settings.filepath_images = pathlib.Path(__file__).parent / '../examples/test1' settings.save_path = '.' # Root name of the output Folder for Result Files settings.save_folder_suffix = 'test' # Format and Image Sequence settings.frame_pattern_a = 'exp1_001_a.bmp' settings.frame_pattern_b = 'exp1_001_b.bmp' settings.num_iterations = 1 settings.show_plot = False settings.scale_plot = 100 settings.show_all_plots = False settings.invert = True windef.piv(settings) def test_multi_pass_lin(): """ test fot the multipass """ settings.windowsizes = (64, 32, 16) settings.overlap = (32, 16, 8) settings.num_iterations = 1 settings.sig2noise_validate = True settings.correlation_method = 'linear' settings.normalized_correlation = True settings.sig2noise_threshold = 1.0 # note the value for linear/normalized x, y, u, v, s2n = windef.first_pass( frame_a, frame_b, settings, ) print("\n", x, y, u, v, s2n) assert np.mean(np.abs(u - shift_u)) < threshold assert np.mean(np.abs(v - shift_v)) < threshold mask_coords = [] u = np.ma.masked_array(u, mask=np.ma.nomask) v = np.ma.masked_array(v, mask=np.ma.nomask) for i in range(1, settings.num_iterations): x, y, u, v, s2n, _ = windef.multipass_img_deform( frame_a, frame_b, i, x, y, u, v, settings, ) print(f"Iteration {i}") print("\n", x, y, u, v, s2n) assert np.allclose(u, shift_u, atol=threshold) assert np.allclose(v, shift_v, atol=threshold) # the second condition is to check if the multipass is done. # It need's a little numerical inaccuracy.
gpl-3.0
WarrenWeckesser/scikits-image
skimage/viewer/utils/core.py
18
6556
import warnings import numpy as np from ..qt import QtWidgets, has_qt, FigureManagerQT, FigureCanvasQTAgg import matplotlib as mpl from matplotlib.figure import Figure from matplotlib import _pylab_helpers from matplotlib.colors import LinearSegmentedColormap if has_qt and 'agg' not in mpl.get_backend().lower(): warnings.warn("Recommended matplotlib backend is `Agg` for full " "skimage.viewer functionality.") __all__ = ['init_qtapp', 'start_qtapp', 'RequiredAttr', 'figimage', 'LinearColormap', 'ClearColormap', 'FigureCanvas', 'new_plot', 'update_axes_image'] QApp = None def init_qtapp(): """Initialize QAppliction. The QApplication needs to be initialized before creating any QWidgets """ global QApp QApp = QtWidgets.QApplication.instance() if QApp is None: QApp = QtWidgets.QApplication([]) return QApp def is_event_loop_running(app=None): """Return True if event loop is running.""" if app is None: app = init_qtapp() if hasattr(app, '_in_event_loop'): return app._in_event_loop else: return False def start_qtapp(app=None): """Start Qt mainloop""" if app is None: app = init_qtapp() if not is_event_loop_running(app): app._in_event_loop = True app.exec_() app._in_event_loop = False else: app._in_event_loop = True class RequiredAttr(object): """A class attribute that must be set before use.""" instances = dict() def __init__(self, init_val=None): self.instances[self, None] = init_val def __get__(self, obj, objtype): value = self.instances[self, obj] if value is None: raise AttributeError('Required attribute not set') return value def __set__(self, obj, value): self.instances[self, obj] = value class LinearColormap(LinearSegmentedColormap): """LinearSegmentedColormap in which color varies smoothly. This class is a simplification of LinearSegmentedColormap, which doesn't support jumps in color intensities. Parameters ---------- name : str Name of colormap. segmented_data : dict Dictionary of 'red', 'green', 'blue', and (optionally) 'alpha' values. Each color key contains a list of `x`, `y` tuples. `x` must increase monotonically from 0 to 1 and corresponds to input values for a mappable object (e.g. an image). `y` corresponds to the color intensity. """ def __init__(self, name, segmented_data, **kwargs): segmented_data = dict((key, [(x, y, y) for x, y in value]) for key, value in segmented_data.items()) LinearSegmentedColormap.__init__(self, name, segmented_data, **kwargs) class ClearColormap(LinearColormap): """Color map that varies linearly from alpha = 0 to 1 """ def __init__(self, rgb, max_alpha=1, name='clear_color'): r, g, b = rgb cg_speq = {'blue': [(0.0, b), (1.0, b)], 'green': [(0.0, g), (1.0, g)], 'red': [(0.0, r), (1.0, r)], 'alpha': [(0.0, 0.0), (1.0, max_alpha)]} LinearColormap.__init__(self, name, cg_speq) class FigureCanvas(FigureCanvasQTAgg): """Canvas for displaying images.""" def __init__(self, figure, **kwargs): self.fig = figure FigureCanvasQTAgg.__init__(self, self.fig) FigureCanvasQTAgg.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) FigureCanvasQTAgg.updateGeometry(self) def resizeEvent(self, event): FigureCanvasQTAgg.resizeEvent(self, event) # Call to `resize_event` missing in FigureManagerQT. # See https://github.com/matplotlib/matplotlib/pull/1585 self.resize_event() def new_canvas(*args, **kwargs): """Return a new figure canvas.""" allnums = _pylab_helpers.Gcf.figs.keys() num = max(allnums) + 1 if allnums else 1 FigureClass = kwargs.pop('FigureClass', Figure) figure = FigureClass(*args, **kwargs) canvas = FigureCanvas(figure) fig_manager = FigureManagerQT(canvas, num) return fig_manager.canvas def new_plot(parent=None, subplot_kw=None, **fig_kw): """Return new figure and axes. Parameters ---------- parent : QtWidget Qt widget that displays the plot objects. If None, you must manually call ``canvas.setParent`` and pass the parent widget. subplot_kw : dict Keyword arguments passed ``matplotlib.figure.Figure.add_subplot``. fig_kw : dict Keyword arguments passed ``matplotlib.figure.Figure``. """ if subplot_kw is None: subplot_kw = {} canvas = new_canvas(**fig_kw) canvas.setParent(parent) fig = canvas.figure ax = fig.add_subplot(1, 1, 1, **subplot_kw) return fig, ax def figimage(image, scale=1, dpi=None, **kwargs): """Return figure and axes with figure tightly surrounding image. Unlike pyplot.figimage, this actually plots onto an axes object, which fills the figure. Plotting the image onto an axes allows for subsequent overlays of axes artists. Parameters ---------- image : array image to plot scale : float If scale is 1, the figure and axes have the same dimension as the image. Smaller values of `scale` will shrink the figure. dpi : int Dots per inch for figure. If None, use the default rcParam. """ dpi = dpi if dpi is not None else mpl.rcParams['figure.dpi'] kwargs.setdefault('interpolation', 'nearest') kwargs.setdefault('cmap', 'gray') h, w, d = np.atleast_3d(image).shape figsize = np.array((w, h), dtype=float) / dpi * scale fig, ax = new_plot(figsize=figsize, dpi=dpi) fig.subplots_adjust(left=0, bottom=0, right=1, top=1) ax.set_axis_off() ax.imshow(image, **kwargs) ax.figure.canvas.draw() return fig, ax def update_axes_image(image_axes, image): """Update the image displayed by an image plot. This sets the image plot's array and updates its shape appropriately Parameters ---------- image_axes : `matplotlib.image.AxesImage` Image axes to update. image : array Image array. """ image_axes.set_array(image) # Adjust size if new image shape doesn't match the original h, w = image.shape[:2] image_axes.set_extent((0, w, h, 0))
bsd-3-clause
toobaz/pandas
pandas/core/computation/eval.py
2
12438
#!/usr/bin/env python """ Top level ``eval`` module. """ import tokenize import warnings from pandas.util._validators import validate_bool_kwarg from pandas.core.computation.engines import _engines from pandas.core.computation.scope import _ensure_scope from pandas.io.formats.printing import pprint_thing def _check_engine(engine): """ Make sure a valid engine is passed. Parameters ---------- engine : str Raises ------ KeyError * If an invalid engine is passed ImportError * If numexpr was requested but doesn't exist Returns ------- string engine """ from pandas.core.computation.check import _NUMEXPR_INSTALLED if engine is None: if _NUMEXPR_INSTALLED: engine = "numexpr" else: engine = "python" if engine not in _engines: valid = list(_engines.keys()) raise KeyError( "Invalid engine {engine!r} passed, valid engines are" " {valid}".format(engine=engine, valid=valid) ) # TODO: validate this in a more general way (thinking of future engines # that won't necessarily be import-able) # Could potentially be done on engine instantiation if engine == "numexpr": if not _NUMEXPR_INSTALLED: raise ImportError( "'numexpr' is not installed or an " "unsupported version. Cannot use " "engine='numexpr' for query/eval " "if 'numexpr' is not installed" ) return engine def _check_parser(parser): """ Make sure a valid parser is passed. Parameters ---------- parser : str Raises ------ KeyError * If an invalid parser is passed """ from pandas.core.computation.expr import _parsers if parser not in _parsers: raise KeyError( "Invalid parser {parser!r} passed, valid parsers are" " {valid}".format(parser=parser, valid=_parsers.keys()) ) def _check_resolvers(resolvers): if resolvers is not None: for resolver in resolvers: if not hasattr(resolver, "__getitem__"): name = type(resolver).__name__ raise TypeError( "Resolver of type {name!r} does not implement " "the __getitem__ method".format(name=name) ) def _check_expression(expr): """ Make sure an expression is not an empty string Parameters ---------- expr : object An object that can be converted to a string Raises ------ ValueError * If expr is an empty string """ if not expr: raise ValueError("expr cannot be an empty string") def _convert_expression(expr): """ Convert an object to an expression. Thus function converts an object to an expression (a unicode string) and checks to make sure it isn't empty after conversion. This is used to convert operators to their string representation for recursive calls to :func:`~pandas.eval`. Parameters ---------- expr : object The object to be converted to a string. Returns ------- s : unicode The string representation of an object. Raises ------ ValueError * If the expression is empty. """ s = pprint_thing(expr) _check_expression(s) return s def _check_for_locals(expr, stack_level, parser): from pandas.core.computation.expr import tokenize_string at_top_of_stack = stack_level == 0 not_pandas_parser = parser != "pandas" if not_pandas_parser: msg = "The '@' prefix is only supported by the pandas parser" elif at_top_of_stack: msg = ( "The '@' prefix is not allowed in " "top-level eval calls, \nplease refer to " "your variables by name without the '@' " "prefix" ) if at_top_of_stack or not_pandas_parser: for toknum, tokval in tokenize_string(expr): if toknum == tokenize.OP and tokval == "@": raise SyntaxError(msg) def eval( expr, parser="pandas", engine=None, truediv=True, local_dict=None, global_dict=None, resolvers=(), level=0, target=None, inplace=False, ): """ Evaluate a Python expression as a string using various backends. The following arithmetic operations are supported: ``+``, ``-``, ``*``, ``/``, ``**``, ``%``, ``//`` (python engine only) along with the following boolean operations: ``|`` (or), ``&`` (and), and ``~`` (not). Additionally, the ``'pandas'`` parser allows the use of :keyword:`and`, :keyword:`or`, and :keyword:`not` with the same semantics as the corresponding bitwise operators. :class:`~pandas.Series` and :class:`~pandas.DataFrame` objects are supported and behave as they would with plain ol' Python evaluation. Parameters ---------- expr : str or unicode The expression to evaluate. This string cannot contain any Python `statements <https://docs.python.org/3/reference/simple_stmts.html#simple-statements>`__, only Python `expressions <https://docs.python.org/3/reference/simple_stmts.html#expression-statements>`__. parser : string, default 'pandas', {'pandas', 'python'} The parser to use to construct the syntax tree from the expression. The default of ``'pandas'`` parses code slightly different than standard Python. Alternatively, you can parse an expression using the ``'python'`` parser to retain strict Python semantics. See the :ref:`enhancing performance <enhancingperf.eval>` documentation for more details. engine : string or None, default 'numexpr', {'python', 'numexpr'} The engine used to evaluate the expression. Supported engines are - None : tries to use ``numexpr``, falls back to ``python`` - ``'numexpr'``: This default engine evaluates pandas objects using numexpr for large speed ups in complex expressions with large frames. - ``'python'``: Performs operations as if you had ``eval``'d in top level python. This engine is generally not that useful. More backends may be available in the future. truediv : bool, optional Whether to use true division, like in Python >= 3 local_dict : dict or None, optional A dictionary of local variables, taken from locals() by default. global_dict : dict or None, optional A dictionary of global variables, taken from globals() by default. resolvers : list of dict-like or None, optional A list of objects implementing the ``__getitem__`` special method that you can use to inject an additional collection of namespaces to use for variable lookup. For example, this is used in the :meth:`~DataFrame.query` method to inject the ``DataFrame.index`` and ``DataFrame.columns`` variables that refer to their respective :class:`~pandas.DataFrame` instance attributes. level : int, optional The number of prior stack frames to traverse and add to the current scope. Most users will **not** need to change this parameter. target : object, optional, default None This is the target object for assignment. It is used when there is variable assignment in the expression. If so, then `target` must support item assignment with string keys, and if a copy is being returned, it must also support `.copy()`. inplace : bool, default False If `target` is provided, and the expression mutates `target`, whether to modify `target` inplace. Otherwise, return a copy of `target` with the mutation. Returns ------- ndarray, numeric scalar, DataFrame, Series Raises ------ ValueError There are many instances where such an error can be raised: - `target=None`, but the expression is multiline. - The expression is multiline, but not all them have item assignment. An example of such an arrangement is this: a = b + 1 a + 2 Here, there are expressions on different lines, making it multiline, but the last line has no variable assigned to the output of `a + 2`. - `inplace=True`, but the expression is missing item assignment. - Item assignment is provided, but the `target` does not support string item assignment. - Item assignment is provided and `inplace=False`, but the `target` does not support the `.copy()` method See Also -------- DataFrame.query DataFrame.eval Notes ----- The ``dtype`` of any objects involved in an arithmetic ``%`` operation are recursively cast to ``float64``. See the :ref:`enhancing performance <enhancingperf.eval>` documentation for more details. """ from pandas.core.computation.expr import Expr inplace = validate_bool_kwarg(inplace, "inplace") if isinstance(expr, str): _check_expression(expr) exprs = [e.strip() for e in expr.splitlines() if e.strip() != ""] else: exprs = [expr] multi_line = len(exprs) > 1 if multi_line and target is None: raise ValueError( "multi-line expressions are only valid in the " "context of data, use DataFrame.eval" ) ret = None first_expr = True target_modified = False for expr in exprs: expr = _convert_expression(expr) engine = _check_engine(engine) _check_parser(parser) _check_resolvers(resolvers) _check_for_locals(expr, level, parser) # get our (possibly passed-in) scope env = _ensure_scope( level + 1, global_dict=global_dict, local_dict=local_dict, resolvers=resolvers, target=target, ) parsed_expr = Expr(expr, engine=engine, parser=parser, env=env, truediv=truediv) # construct the engine and evaluate the parsed expression eng = _engines[engine] eng_inst = eng(parsed_expr) ret = eng_inst.evaluate() if parsed_expr.assigner is None: if multi_line: raise ValueError( "Multi-line expressions are only valid" " if all expressions contain an assignment" ) elif inplace: raise ValueError("Cannot operate inplace " "if there is no assignment") # assign if needed assigner = parsed_expr.assigner if env.target is not None and assigner is not None: target_modified = True # if returning a copy, copy only on the first assignment if not inplace and first_expr: try: target = env.target.copy() except AttributeError: raise ValueError("Cannot return a copy of the target") else: target = env.target # TypeError is most commonly raised (e.g. int, list), but you # get IndexError if you try to do this assignment on np.ndarray. # we will ignore numpy warnings here; e.g. if trying # to use a non-numeric indexer try: with warnings.catch_warnings(record=True): # TODO: Filter the warnings we actually care about here. target[assigner] = ret except (TypeError, IndexError): raise ValueError("Cannot assign expression output to target") if not resolvers: resolvers = ({assigner: ret},) else: # existing resolver needs updated to handle # case of mutating existing column in copy for resolver in resolvers: if assigner in resolver: resolver[assigner] = ret break else: resolvers += ({assigner: ret},) ret = None first_expr = False # We want to exclude `inplace=None` as being False. if inplace is False: return target if target_modified else ret
bsd-3-clause
syazdan25/SE17-Project
Pform3.py
1
3882
from flask import Flask, render_template, flash, request from wtforms import Form, TextField, TextAreaField, validators, StringField, SubmitField import nltk import numpy from nltk.classify import SklearnClassifier from sklearn.naive_bayes import BernoulliNB from sklearn.svm import SVC import webbrowser # App config. DEBUG = True app = Flask(__name__) app.config.from_object(__name__) app.config['SECRET_KEY'] = '7d441f27d441f27567d441f2b6176a' class ReusableForm(Form): name = TextField('Name:', validators=[validators.required()]) @app.route("/", methods=['GET', 'POST']) def hello(): print ("hello") f = open("Training_amazon_data.txt") pos_tweets = list() neg_tweets = list() for line in f: words = line.split("\t") if words[1] == '0\n' or words[1] == '0': neg_tweets.append(words) else: pos_tweets.append(words) f.close() tweets = [] for (words, sentiment) in pos_tweets + neg_tweets: words_filtered = [e.lower() for e in words.split() if len(e) >= 3] tweets.append((words_filtered, sentiment)) def get_words_in_tweets(tweets): all_words = [] for (words, sentiment) in tweets: all_words.extend(words) return all_words def get_word_features(wordlist): wordlist = nltk.FreqDist(wordlist) word_features = wordlist.keys() return word_features word_features = get_word_features(get_words_in_tweets(tweets)) def extract_features(document): document_words = set(document) features = {} for word in word_features: features['contains(%s)' % word] = (word in document_words) return features training_set = nltk.classify.apply_features(extract_features, tweets) #classifie = nltk.NaiveBayesClassifier.train(training_set) classifie = SklearnClassifier(BernoulliNB()).train(training_set) form = ReusableForm(request.form) print (form.errors) if request.method == 'POST': name=request.form['name'] file = open("Testing_amazon_data.txt") resfile = open("result.txt", "w") predicted = numpy.array([]); actual = numpy.array([]); index = 0 for line in file: label = classifie.classify(extract_features(line.split())) words = line.split("\t") actual = numpy.insert(actual, index, int(words[1])) predicted = numpy.insert(predicted, index, int(label)) index = index + 1 resfile.write(line) resfile.write(label) file.close() f = open("Stats.txt", "w") confusion = actual - predicted FP = numpy.count_nonzero(confusion==-1) FN = numpy.count_nonzero(confusion==1) print(FP) #print(FN) Accuracy = numpy.count_nonzero(confusion==0)/(numpy.count_nonzero(confusion==0) + FP+ FN) print (Accuracy) f.write(Accuracy) f.write(line) f.write(FP) f.write(line) f.write(FN) f.close() #if #TP = #TN #if (classifie.classify(extract_features(name.split())) == '1'): # review = 'Positive' # else: # review = 'Negative' name = classifie.classify(extract_features(name.split())) print (name) if form.validate(): # Save the comment here. flash(name) else: flash('Error: All the form fields are required. ') return render_template('analysis.html', form=form) if __name__ == "__main__": url = 'http://127.0.0.1:5000' webbrowser.open_new(url) app.run()
gpl-3.0
ChanderG/scikit-learn
sklearn/cluster/tests/test_k_means.py
132
25860
"""Testing for K-means""" import sys import numpy as np from scipy import sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import if_not_mac_os from sklearn.utils.validation import DataConversionWarning from sklearn.utils.extmath import row_norms from sklearn.metrics.cluster import v_measure_score from sklearn.cluster import KMeans, k_means from sklearn.cluster import MiniBatchKMeans from sklearn.cluster.k_means_ import _labels_inertia from sklearn.cluster.k_means_ import _mini_batch_step from sklearn.datasets.samples_generator import make_blobs from sklearn.externals.six.moves import cStringIO as StringIO # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [1.0, 1.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 100 n_clusters, n_features = centers.shape X, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) X_csr = sp.csr_matrix(X) def test_kmeans_dtype(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) X = (X * 10).astype(np.uint8) km = KMeans(n_init=1).fit(X) pred_x = assert_warns(DataConversionWarning, km.predict, X) assert_array_equal(km.labels_, pred_x) def test_labels_assignment_and_inertia(): # pure numpy implementation as easily auditable reference gold # implementation rng = np.random.RandomState(42) noisy_centers = centers + rng.normal(size=centers.shape) labels_gold = - np.ones(n_samples, dtype=np.int) mindist = np.empty(n_samples) mindist.fill(np.infty) for center_id in range(n_clusters): dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1) labels_gold[dist < mindist] = center_id mindist = np.minimum(dist, mindist) inertia_gold = mindist.sum() assert_true((mindist >= 0.0).all()) assert_true((labels_gold != -1).all()) # perform label assignment using the dense array input x_squared_norms = (X ** 2).sum(axis=1) labels_array, inertia_array = _labels_inertia( X, x_squared_norms, noisy_centers) assert_array_almost_equal(inertia_array, inertia_gold) assert_array_equal(labels_array, labels_gold) # perform label assignment using the sparse CSR input x_squared_norms_from_csr = row_norms(X_csr, squared=True) labels_csr, inertia_csr = _labels_inertia( X_csr, x_squared_norms_from_csr, noisy_centers) assert_array_almost_equal(inertia_csr, inertia_gold) assert_array_equal(labels_csr, labels_gold) def test_minibatch_update_consistency(): # Check that dense and sparse minibatch update give the same results rng = np.random.RandomState(42) old_centers = centers + rng.normal(size=centers.shape) new_centers = old_centers.copy() new_centers_csr = old_centers.copy() counts = np.zeros(new_centers.shape[0], dtype=np.int32) counts_csr = np.zeros(new_centers.shape[0], dtype=np.int32) x_squared_norms = (X ** 2).sum(axis=1) x_squared_norms_csr = row_norms(X_csr, squared=True) buffer = np.zeros(centers.shape[1], dtype=np.double) buffer_csr = np.zeros(centers.shape[1], dtype=np.double) # extract a small minibatch X_mb = X[:10] X_mb_csr = X_csr[:10] x_mb_squared_norms = x_squared_norms[:10] x_mb_squared_norms_csr = x_squared_norms_csr[:10] # step 1: compute the dense minibatch update old_inertia, incremental_diff = _mini_batch_step( X_mb, x_mb_squared_norms, new_centers, counts, buffer, 1, None, random_reassign=False) assert_greater(old_inertia, 0.0) # compute the new inertia on the same batch to check that it decreased labels, new_inertia = _labels_inertia( X_mb, x_mb_squared_norms, new_centers) assert_greater(new_inertia, 0.0) assert_less(new_inertia, old_inertia) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers - old_centers) ** 2) assert_almost_equal(incremental_diff, effective_diff) # step 2: compute the sparse minibatch update old_inertia_csr, incremental_diff_csr = _mini_batch_step( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr, counts_csr, buffer_csr, 1, None, random_reassign=False) assert_greater(old_inertia_csr, 0.0) # compute the new inertia on the same batch to check that it decreased labels_csr, new_inertia_csr = _labels_inertia( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr) assert_greater(new_inertia_csr, 0.0) assert_less(new_inertia_csr, old_inertia_csr) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers_csr - old_centers) ** 2) assert_almost_equal(incremental_diff_csr, effective_diff) # step 3: check that sparse and dense updates lead to the same results assert_array_equal(labels, labels_csr) assert_array_almost_equal(new_centers, new_centers_csr) assert_almost_equal(incremental_diff, incremental_diff_csr) assert_almost_equal(old_inertia, old_inertia_csr) assert_almost_equal(new_inertia, new_inertia_csr) def _check_fitted_model(km): # check that the number of clusters centers and distinct labels match # the expectation centers = km.cluster_centers_ assert_equal(centers.shape, (n_clusters, n_features)) labels = km.labels_ assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(km.inertia_, 0.0) # check error on dataset being too small assert_raises(ValueError, km.fit, [[0., 1.]]) def test_k_means_plus_plus_init(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_new_centers(): # Explore the part of the code where a new center is reassigned X = np.array([[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]]) labels = [0, 1, 2, 1, 1, 2] bad_centers = np.array([[+0, 1, 0, 0], [.2, 0, .2, .2], [+0, 0, 0, 0]]) km = KMeans(n_clusters=3, init=bad_centers, n_init=1, max_iter=10, random_state=1) for this_X in (X, sp.coo_matrix(X)): km.fit(this_X) this_labels = km.labels_ # Reorder the labels so that the first instance is in cluster 0, # the second in cluster 1, ... this_labels = np.unique(this_labels, return_index=True)[1][this_labels] np.testing.assert_array_equal(this_labels, labels) def _has_blas_lib(libname): from numpy.distutils.system_info import get_info return libname in get_info('blas_opt').get('libraries', []) @if_not_mac_os() def test_k_means_plus_plus_init_2_jobs(): if _has_blas_lib('openblas'): raise SkipTest('Multi-process bug with OpenBLAS (see issue #636)') km = KMeans(init="k-means++", n_clusters=n_clusters, n_jobs=2, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_precompute_distances_flag(): # check that a warning is raised if the precompute_distances flag is not # supported km = KMeans(precompute_distances="wrong") assert_raises(ValueError, km.fit, X) def test_k_means_plus_plus_init_sparse(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_random_init(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X) _check_fitted_model(km) def test_k_means_random_init_sparse(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_plus_plus_init_not_precomputed(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_random_init_not_precomputed(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_perfect_init(): km = KMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1) km.fit(X) _check_fitted_model(km) def test_k_means_n_init(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) # two regression tests on bad n_init argument # previous bug: n_init <= 0 threw non-informative TypeError (#3858) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=0).fit, X) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=-1).fit, X) def test_k_means_fortran_aligned_data(): # Check the KMeans will work well, even if X is a fortran-aligned data. X = np.asfortranarray([[0, 0], [0, 1], [0, 1]]) centers = np.array([[0, 0], [0, 1]]) labels = np.array([0, 1, 1]) km = KMeans(n_init=1, init=centers, precompute_distances=False, random_state=42) km.fit(X) assert_array_equal(km.cluster_centers_, centers) assert_array_equal(km.labels_, labels) def test_mb_k_means_plus_plus_init_dense_array(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X) _check_fitted_model(mb_k_means) def test_mb_kmeans_verbose(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: mb_k_means.fit(X) finally: sys.stdout = old_stdout def test_mb_k_means_plus_plus_init_sparse_matrix(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_init_with_large_k(): mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, n_clusters=20) # Check that a warning is raised, as the number clusters is larger # than the init_size assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_random_init_dense_array(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_random_init_sparse_csr(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_k_means_perfect_init_dense_array(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_init_multiple_runs_with_explicit_centers(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=10) assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_perfect_init_sparse_csr(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_sensible_reassign_fit(): # check if identical initial clusters are reassigned # also a regression test for when there are more desired reassignments than # samples. zeroed_X, true_labels = make_blobs(n_samples=100, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=10, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) # do the same with batch-size > X.shape[0] (regression test) mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=201, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_sensible_reassign_partial_fit(): zeroed_X, true_labels = make_blobs(n_samples=n_samples, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, random_state=42, init="random") for i in range(100): mb_k_means.partial_fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_reassign(): # Give a perfect initialization, but a large reassignment_ratio, # as a result all the centers should be reassigned and the model # should not longer be good for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, random_state=42) mb_k_means.fit(this_X) score_before = mb_k_means.score(this_X) try: old_stdout = sys.stdout sys.stdout = StringIO() # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1, verbose=True) finally: sys.stdout = old_stdout assert_greater(score_before, mb_k_means.score(this_X)) # Give a perfect initialization, with a small reassignment_ratio, # no center should be reassigned for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init=centers.copy(), random_state=42, n_init=1) mb_k_means.fit(this_X) clusters_before = mb_k_means.cluster_centers_ # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1e-15) assert_array_almost_equal(clusters_before, mb_k_means.cluster_centers_) def test_minibatch_with_many_reassignments(): # Test for the case that the number of clusters to reassign is bigger # than the batch_size n_samples = 550 rnd = np.random.RandomState(42) X = rnd.uniform(size=(n_samples, 10)) # Check that the fit works if n_clusters is bigger than the batch_size. # Run the test with 550 clusters and 550 samples, because it turned out # that this values ensure that the number of clusters to reassign # is always bigger than the batch_size n_clusters = 550 MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init_size=n_samples, random_state=42).fit(X) def test_sparse_mb_k_means_callable_init(): def test_init(X, k, random_state): return centers # Small test to check that giving the wrong number of centers # raises a meaningful error assert_raises(ValueError, MiniBatchKMeans(init=test_init, random_state=42).fit, X_csr) # Now check that the fit actually works mb_k_means = MiniBatchKMeans(n_clusters=3, init=test_init, random_state=42).fit(X_csr) _check_fitted_model(mb_k_means) def test_mini_batch_k_means_random_init_partial_fit(): km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42) # use the partial_fit API for online learning for X_minibatch in np.array_split(X, 10): km.partial_fit(X_minibatch) # compute the labeling on the complete dataset labels = km.predict(X) assert_equal(v_measure_score(true_labels, labels), 1.0) def test_minibatch_default_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, batch_size=10, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size) _check_fitted_model(mb_k_means) def test_minibatch_tol(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=10, random_state=42, tol=.01).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_set_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, init_size=666, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size, 666) assert_equal(mb_k_means.init_size_, n_samples) _check_fitted_model(mb_k_means) def test_k_means_invalid_init(): km = KMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_mini_match_k_means_invalid_init(): km = MiniBatchKMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_k_means_copyx(): # Check if copy_x=False returns nearly equal X after de-centering. my_X = X.copy() km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42) km.fit(my_X) _check_fitted_model(km) # check if my_X is centered assert_array_almost_equal(my_X, X) def test_k_means_non_collapsed(): # Check k_means with a bad initialization does not yield a singleton # Starting with bad centers that are quickly ignored should not # result in a repositioning of the centers to the center of mass that # would lead to collapsed centers which in turns make the clustering # dependent of the numerical unstabilities. my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]]) array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]]) km = KMeans(init=array_init, n_clusters=3, random_state=42, n_init=1) km.fit(my_X) # centers must not been collapsed assert_equal(len(np.unique(km.labels_)), 3) centers = km.cluster_centers_ assert_true(np.linalg.norm(centers[0] - centers[1]) >= 0.1) assert_true(np.linalg.norm(centers[0] - centers[2]) >= 0.1) assert_true(np.linalg.norm(centers[1] - centers[2]) >= 0.1) def test_predict(): km = KMeans(n_clusters=n_clusters, random_state=42) km.fit(X) # sanity check: predict centroid labels pred = km.predict(km.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = km.predict(X) assert_array_equal(pred, km.labels_) # re-predict labels for training set using fit_predict pred = km.fit_predict(X) assert_array_equal(pred, km.labels_) def test_score(): km1 = KMeans(n_clusters=n_clusters, max_iter=1, random_state=42) s1 = km1.fit(X).score(X) km2 = KMeans(n_clusters=n_clusters, max_iter=10, random_state=42) s2 = km2.fit(X).score(X) assert_greater(s2, s1) def test_predict_minibatch_dense_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, random_state=40).fit(X) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = mb_k_means.predict(X) assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_kmeanspp_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='k-means++', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_random_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_input_dtypes(): X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]] X_int = np.array(X_list, dtype=np.int32) X_int_csr = sp.csr_matrix(X_int) init_int = X_int[:2] fitted_models = [ KMeans(n_clusters=2).fit(X_list), KMeans(n_clusters=2).fit(X_int), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_list), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int), # mini batch kmeans is very unstable on such a small dataset hence # we use many inits MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_list), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int_csr), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_list), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int_csr), ] expected_labels = [0, 1, 1, 0, 0, 1] scores = np.array([v_measure_score(expected_labels, km.labels_) for km in fitted_models]) assert_array_equal(scores, np.ones(scores.shape[0])) def test_transform(): km = KMeans(n_clusters=n_clusters) km.fit(X) X_new = km.transform(km.cluster_centers_) for c in range(n_clusters): assert_equal(X_new[c, c], 0) for c2 in range(n_clusters): if c != c2: assert_greater(X_new[c, c2], 0) def test_fit_transform(): X1 = KMeans(n_clusters=3, random_state=51).fit(X).transform(X) X2 = KMeans(n_clusters=3, random_state=51).fit_transform(X) assert_array_equal(X1, X2) def test_n_init(): # Check that increasing the number of init increases the quality n_runs = 5 n_init_range = [1, 5, 10] inertia = np.zeros((len(n_init_range), n_runs)) for i, n_init in enumerate(n_init_range): for j in range(n_runs): km = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, random_state=j).fit(X) inertia[i, j] = km.inertia_ inertia = inertia.mean(axis=1) failure_msg = ("Inertia %r should be decreasing" " when n_init is increasing.") % list(inertia) for i in range(len(n_init_range) - 1): assert_true(inertia[i] >= inertia[i + 1], failure_msg) def test_k_means_function(): # test calling the k_means function directly # catch output old_stdout = sys.stdout sys.stdout = StringIO() try: cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters, verbose=True) finally: sys.stdout = old_stdout centers = cluster_centers assert_equal(centers.shape, (n_clusters, n_features)) labels = labels assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(inertia, 0.0) # check warning when centers are passed assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters, init=centers) # to many clusters desired assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1)
bsd-3-clause
jjx02230808/project0223
examples/calibration/plot_calibration_multiclass.py
272
6972
""" ================================================== Probability Calibration for 3-class classification ================================================== This example illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem. Illustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green: class 2, blue: class 3). The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800 training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical classifier, which was trained on 600 datapoints, with method='sigmoid' on the remaining 200 datapoints reduces the confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center. This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base estimators which would have resulted in a similar decrease in log-loss. """ print(__doc__) # Author: Jan Hendrik Metzen <[email protected]> # License: BSD Style. import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import log_loss np.random.seed(0) # Generate data X, y = make_blobs(n_samples=1000, n_features=2, random_state=42, cluster_std=5.0) X_train, y_train = X[:600], y[:600] X_valid, y_valid = X[600:800], y[600:800] X_train_valid, y_train_valid = X[:800], y[:800] X_test, y_test = X[800:], y[800:] # Train uncalibrated random forest classifier on whole train and validation # data and evaluate on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train_valid, y_train_valid) clf_probs = clf.predict_proba(X_test) score = log_loss(y_test, clf_probs) # Train random forest classifier, calibrate on validation data and evaluate # on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) sig_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit") sig_clf.fit(X_valid, y_valid) sig_clf_probs = sig_clf.predict_proba(X_test) sig_score = log_loss(y_test, sig_clf_probs) # Plot changes in predicted probabilities via arrows plt.figure(0) colors = ["r", "g", "b"] for i in range(clf_probs.shape[0]): plt.arrow(clf_probs[i, 0], clf_probs[i, 1], sig_clf_probs[i, 0] - clf_probs[i, 0], sig_clf_probs[i, 1] - clf_probs[i, 1], color=colors[y_test[i]], head_width=1e-2) # Plot perfect predictions plt.plot([1.0], [0.0], 'ro', ms=20, label="Class 1") plt.plot([0.0], [1.0], 'go', ms=20, label="Class 2") plt.plot([0.0], [0.0], 'bo', ms=20, label="Class 3") # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") # Annotate points on the simplex plt.annotate(r'($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)', xy=(1.0/3, 1.0/3), xytext=(1.0/3, .23), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.plot([1.0/3], [1.0/3], 'ko', ms=5) plt.annotate(r'($\frac{1}{2}$, $0$, $\frac{1}{2}$)', xy=(.5, .0), xytext=(.5, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $\frac{1}{2}$, $\frac{1}{2}$)', xy=(.0, .5), xytext=(.1, .5), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($\frac{1}{2}$, $\frac{1}{2}$, $0$)', xy=(.5, .5), xytext=(.6, .6), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $0$, $1$)', xy=(0, 0), xytext=(.1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($1$, $0$, $0$)', xy=(1, 0), xytext=(1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $1$, $0$)', xy=(0, 1), xytext=(.1, 1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') # Add grid plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Change of predicted probabilities after sigmoid calibration") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.legend(loc="best") print("Log-loss of") print(" * uncalibrated classifier trained on 800 datapoints: %.3f " % score) print(" * classifier trained on 600 datapoints and calibrated on " "200 datapoint: %.3f" % sig_score) # Illustrate calibrator plt.figure(1) # generate grid over 2-simplex p1d = np.linspace(0, 1, 20) p0, p1 = np.meshgrid(p1d, p1d) p2 = 1 - p0 - p1 p = np.c_[p0.ravel(), p1.ravel(), p2.ravel()] p = p[p[:, 2] >= 0] calibrated_classifier = sig_clf.calibrated_classifiers_[0] prediction = np.vstack([calibrator.predict(this_p) for calibrator, this_p in zip(calibrated_classifier.calibrators_, p.T)]).T prediction /= prediction.sum(axis=1)[:, None] # Ploit modifications of calibrator for i in range(prediction.shape[0]): plt.arrow(p[i, 0], p[i, 1], prediction[i, 0] - p[i, 0], prediction[i, 1] - p[i, 1], head_width=1e-2, color=colors[np.argmax(p[i])]) # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Illustration of sigmoid calibrator") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.show()
bsd-3-clause
Jailander/COSMOS
kriging_exploration/src/kriging_exploration/canvas.py
1
7053
#import urllib #import math import numpy as np import cv2 from matplotlib import colors as mcolors from map_coords import MapCoords class ViewerCanvas(object): def __init__(self, shape, centre, res): self.size = shape[0] self.res = res self.centre = centre self.image = np.zeros(shape, dtype=np.uint8) self.shape = shape def _coord2pix(self, point): dnorth = ((self.centre.northing- point.northing)/self.res) + (self.size/2) deast = ((point.easting - self.centre.easting)/self.res) + (self.size/2) return deast, dnorth def _pix2coord(self, x, y): xcord = (x - (self.size/2))*self.res ycord = -(y - (self.size/2))*self.res click_coord = self.centre._get_rel_point(xcord,ycord) return click_coord def _latlong2pix(self, lat, lon): point = MapCoords(lat, lon) deast, dnorth = self._coord2pix(point) return deast, dnorth def clear_image(self): self.image = np.zeros(self.shape, dtype=np.uint8) def draw_coordinate(self, coord, colour, size=6, thickness=2, alpha=128): mx, my =self._coord2pix(coord) b = [int(255*x) for x in mcolors.hex2color(mcolors.cnames[colour])] b = b[::-1] b.append(alpha) cv2.circle(self.image, (int(mx), int(my)), size, b, thickness) def draw_waypoints(self, waypoints, colour,thickness=2): for i in waypoints: mx0, my0 = self._coord2pix(i.coord) cv2.circle(self.image, (int(mx0), int(my0)), 2, colour, thickness=thickness) def draw_plan(self, waypoints, colour, thickness=2, alpha=128): b = [int(255*x) for x in mcolors.hex2color(mcolors.cnames[colour])] b = b[::-1] b.append(alpha) for i in range(0, len(waypoints)-1): mx0, my0 =self._coord2pix(waypoints[i].coord) mx1, my1 =self._coord2pix(waypoints[i+1].coord) cv2.line(self.image, (int(mx0), int(my0)), (int(mx1), int(my1)), b, thickness=thickness) def draw_grid(self, grid, cell_size, colour, thickness=2): nx = len(grid)-1 ny = len(grid[0])-1 for i in range(0, len(grid[0])): mx0, my0 =self._coord2pix(grid[0][i]._get_rel_point(-cell_size/2,-cell_size/2)) mx1, my1 =self._coord2pix(grid[nx][i]._get_rel_point(-cell_size/2,cell_size/2)) cv2.line(self.image, (int(mx0), int(my0)), (int(mx1), int(my1)), colour, thickness=thickness) mx0, my0 =self._coord2pix(grid[0][ny]._get_rel_point(cell_size/2,-cell_size/2)) mx1, my1 =self._coord2pix(grid[nx][ny]._get_rel_point(cell_size/2,cell_size/2)) cv2.line(self.image, (int(mx0), int(my0)), (int(mx1), int(my1)), colour, thickness=thickness) for i in range(0, len(grid)): mx0, my0 =self._coord2pix(grid[i][0]._get_rel_point(-cell_size/2,-cell_size/2)) mx1, my1 =self._coord2pix(grid[i][ny]._get_rel_point(cell_size/2,-cell_size/2)) cv2.line(self.image, (int(mx0), int(my0)), (int(mx1), int(my1)), colour, thickness=thickness) mx0, my0 =self._coord2pix(grid[nx][0]._get_rel_point(-cell_size/2,cell_size/2)) mx1, my1 =self._coord2pix(grid[nx][ny]._get_rel_point(cell_size/2,cell_size/2)) cv2.line(self.image, (int(mx0), int(my0)), (int(mx1), int(my1)), colour, thickness=thickness) def draw_cell(self, cell, cell_size, colour, thickness=2): mx0, my0 =self._coord2pix(cell._get_rel_point(-cell_size/2,-cell_size/2)) mx1, my1 =self._coord2pix(cell._get_rel_point(cell_size/2,cell_size/2)) cv2.rectangle(self.image, (int(mx0), int(my0)), (int(mx1), int(my1)), colour, thickness=thickness) def draw_list_of_coords(self, list_of_coords, colour, size=6, thickness=2): for i in list_of_coords: mx, my = self._coord2pix(i) cv2.circle(self.image, (int(mx), int(my)), size, colour, thickness) def draw_polygon(self, list_of_coords, colour, thickness=2): for i in range(1, len(list_of_coords)): mx0, my0 =self._coord2pix(list_of_coords[i-1]) mx1, my1 =self._coord2pix(list_of_coords[i]) cv2.line(self.image, (int(mx0), int(my0)), (int(mx1), int(my1)), colour, thickness=thickness) mx0, my0 =self._coord2pix(list_of_coords[0]) cv2.line(self.image, (int(mx0), int(my0)), (int(mx1), int(my1)), colour, thickness=thickness) def draw_line(self, line, colour, size=3, thickness=2, alpha=128): mx1, my1 =self._coord2pix(line[0]) mx2, my2 =self._coord2pix(line[1]) b = [int(255*x) for x in mcolors.hex2color(mcolors.cnames[colour])] b = b[::-1] b.append(alpha) cv2.circle(self.image, (int(mx1), int(my1)), size, b, thickness) cv2.circle(self.image, (int(mx2), int(my2)), size, b, thickness) cv2.line(self.image, (int(mx1), int(my1)), (int(mx2), int(my2)), b, thickness=thickness) def draw_legend(self, vmin, vmax, colmap, title="OUTPUTS"): font = cv2.FONT_HERSHEY_SIMPLEX if (vmax-vmin) > 1: step = float(vmax - vmin)/float(600-40) else: vmax = vmax + 500 vmin = vmin - 500 step = float(vmax - vmin)/float(600-40) if step>1.0: ind = 0 while ind < 560: # print int(vmin+(ind*step)) a= colmap.to_rgba(int(vmin+(ind*step))) b= (int(a[2]*255), int(a[1]*255), int(a[0]*255),int(a[3]*255)) cv2.rectangle(self.image, (int(ind+40), int(510)), (int(ind+1+40), int(530)), b , thickness=-1) ind+=1 else: step=1/step ind = 0 while ind < 560: # print int(vmin+(ind*step)) a= colmap.to_rgba(int(vmin+(ind/step))) b= (int(a[2]*255), int(a[1]*255), int(a[0]*255),int(a[3]*255)) cv2.rectangle(self.image, (int(ind+40), int(510)), (int(ind+1+40), int(530)), b , thickness=-1) ind+=1 a= colmap.to_rgba(int(vmin)) b= (int(a[2]*255), int(a[1]*255), int(a[0]*255), int(a[3]*250)) cv2.putText(self.image, str(np.floor(vmin)) + " Kpa", (int(5), int(500)), font, 0.6, b, 2) a= colmap.to_rgba(int(vmax)) b= (int(a[2]*255), int(a[1]*255), int(a[0]*255), int(a[3]*250)) tsz=cv2.getTextSize(str(np.ceil(vmax)) + " Kpa", font, 0.6, 2) cv2.putText(self.image, str(np.ceil(vmax)) + " Kpa", (int(640)-tsz[0][0]-5, int(500)), font, 0.6, b, 2) cv2.putText(self.image, title, (240,80), font, 0.8, (200, 200, 200,255), 2) def put_text(self,text,colour=(200,200,200,200)): font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(self.image, text, (int(520), int(80)), font, 0.8, colour, 2)
mit
great-expectations/great_expectations
tests/data_context/conftest.py
1
6202
import os import shutil import pytest import great_expectations as ge from great_expectations.data_context.types.base import DataContextConfig from great_expectations.data_context.util import file_relative_path from tests.integration.usage_statistics.test_integration_usage_statistics import ( USAGE_STATISTICS_QA_URL, ) @pytest.fixture() def data_context_without_config_variables_filepath_configured(tmp_path_factory): # This data_context is *manually* created to have the config we want, vs created with DataContext.create project_path = str(tmp_path_factory.mktemp("data_context")) context_path = os.path.join(project_path, "great_expectations") asset_config_path = os.path.join(context_path, "expectations") create_data_context_files( context_path, asset_config_path, ge_config_fixture_filename="great_expectations_basic_without_config_variables_filepath.yml", config_variables_fixture_filename=None, ) return ge.data_context.DataContext(context_path) @pytest.fixture() def data_context_with_variables_in_config(tmp_path_factory, monkeypatch): monkeypatch.setenv("FOO", "BAR") monkeypatch.setenv("REPLACE_ME_ESCAPED_ENV", "ive_been_$--replaced") # This data_context is *manually* created to have the config we want, vs created with DataContext.create project_path = str(tmp_path_factory.mktemp("data_context")) context_path = os.path.join(project_path, "great_expectations") asset_config_path = os.path.join(context_path, "expectations") create_data_context_files( context_path, asset_config_path, ge_config_fixture_filename="great_expectations_basic_with_variables.yml", config_variables_fixture_filename="config_variables.yml", ) return ge.data_context.DataContext(context_path) @pytest.fixture() def data_context_with_variables_in_config_exhaustive(tmp_path_factory): # This data_context is *manually* created to have the config we want, vs created with DataContext.create project_path = str(tmp_path_factory.mktemp("data_context")) context_path = os.path.join(project_path, "great_expectations") asset_config_path = os.path.join(context_path, "expectations") create_data_context_files( context_path, asset_config_path, ge_config_fixture_filename="great_expectations_basic_with_exhaustive_variables.yml", config_variables_fixture_filename="config_variables_exhaustive.yml", ) return ge.data_context.DataContext(context_path) def create_data_context_files( context_path, asset_config_path, ge_config_fixture_filename, config_variables_fixture_filename=None, ): if config_variables_fixture_filename: os.makedirs(context_path, exist_ok=True) os.makedirs(os.path.join(context_path, "uncommitted"), exist_ok=True) copy_relative_path( f"../test_fixtures/{config_variables_fixture_filename}", str(os.path.join(context_path, "uncommitted/config_variables.yml")), ) copy_relative_path( f"../test_fixtures/{ge_config_fixture_filename}", str(os.path.join(context_path, "great_expectations.yml")), ) else: os.makedirs(context_path, exist_ok=True) copy_relative_path( f"../test_fixtures/{ge_config_fixture_filename}", str(os.path.join(context_path, "great_expectations.yml")), ) create_common_data_context_files(context_path, asset_config_path) def create_common_data_context_files(context_path, asset_config_path): os.makedirs( os.path.join(asset_config_path, "mydatasource/mygenerator/my_dag_node"), exist_ok=True, ) copy_relative_path( "../test_fixtures/" "expectation_suites/parameterized_expectation_suite_fixture.json", os.path.join( asset_config_path, "mydatasource/mygenerator/my_dag_node/default.json" ), ) os.makedirs(os.path.join(context_path, "plugins"), exist_ok=True) copy_relative_path( "../test_fixtures/custom_pandas_dataset.py", str(os.path.join(context_path, "plugins", "custom_pandas_dataset.py")), ) copy_relative_path( "../test_fixtures/custom_sqlalchemy_dataset.py", str(os.path.join(context_path, "plugins", "custom_sqlalchemy_dataset.py")), ) copy_relative_path( "../test_fixtures/custom_sparkdf_dataset.py", str(os.path.join(context_path, "plugins", "custom_sparkdf_dataset.py")), ) def copy_relative_path(relative_src, dest): shutil.copy(file_relative_path(__file__, relative_src), dest) @pytest.fixture def basic_data_context_config(): return DataContextConfig( **{ "commented_map": {}, "config_version": 2, "plugins_directory": "plugins/", "evaluation_parameter_store_name": "evaluation_parameter_store", "validations_store_name": "does_not_have_to_be_real", "expectations_store_name": "expectations_store", "config_variables_file_path": "uncommitted/config_variables.yml", "datasources": {}, "stores": { "expectations_store": { "class_name": "ExpectationsStore", "store_backend": { "class_name": "TupleFilesystemStoreBackend", "base_directory": "expectations/", }, }, "evaluation_parameter_store": { "module_name": "great_expectations.data_context.store", "class_name": "EvaluationParameterStore", }, }, "data_docs_sites": {}, "validation_operators": { "default": { "class_name": "ActionListValidationOperator", "action_list": [], } }, "anonymous_usage_statistics": { "enabled": True, "data_context_id": "6a52bdfa-e182-455b-a825-e69f076e67d6", "usage_statistics_url": USAGE_STATISTICS_QA_URL, }, } )
apache-2.0
araichev/affordability_nz
notebooks/helpers.py
1
6985
""" This module contains the functions that create most of data files for a particular region of New Zealand. It assumes that you have the created the following files for a region <region> already:: |- data/ |- processed/ |- rents.csv |- rental_areas.geojson |- rental_area_points.geojson |- <region>/ |- walking_commutes.csv |- bicycling_commutes.csv |- driving_commutes.csv |- transit_commutes.csv TODO: - Add automated tests """ from typing import Optional, List import json import os from pathlib import Path import datetime as dt import numpy as np import pandas as pd import geopandas as gpd ROOT = Path(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) DATA_DIR = ROOT/'docs'/'data' CRS_NZGD49 = 'epsg:27200' CRS_NZTM = 'epsg:2193' CRS_WGS84 = 'epsg:4326' REGIONS = [ 'auckland', 'canterbury', 'wellington', ] MODES = [ 'walking', 'bicycling', 'driving', 'transit', ] # Cost in NZD/km. Get transit costs from an origin-destination matrix. COST_BY_MODE = { 'walking': 0, 'bicycling': 0, 'driving': 0.274, 'transit': 0, } def get_secret(key, secrets_path=ROOT/'secrets.json'): """ Open the JSON file at ``secrets_path``, and return the value corresponding to the given key. """ secrets_path = Path(secrets_path) with secrets_path.open() as src: secrets = json.load(src) return secrets[key] def get_path(key, region=None): """ Return the path (Path object) of the file corresponding to the given key (string) and region (string). """ path = DATA_DIR/'processed' error = ValueError('Invalid key-region pair ({!s}, {!s})'.format( key, region)) if region is None: if key == 'property_titles': # Special case using collected data path = DATA_DIR/'collected'/'nz-cadastral-titles-jan-10.gpkg' elif key == 'au2001_csv': path /= 'au2001.csv' elif key == 'au2001': path /= 'au2001.geojson' elif key == 'rental_areas_csv': path /= 'rental_areas.csv' elif key == 'rental_areas': path /= 'rental_areas.geojson' elif key == 'rental_points': path /= 'rental_points.geojson' elif key == 'rents': path /= 'rents.csv' else: raise error else: path /= region if key == 'rental_areas': path /= 'rental_areas.geojson' elif key == 'rental_points': path /= 'rental_points.geojson' elif key == 'rents': path /= 'rents.csv' elif key == 'rents_json': path /= 'rents.json' elif key == 'commutes_walking': path /= 'commutes_walking.csv' elif key == 'commutes_bicycling': path /= 'commutes_bicycling.csv' elif key == 'commutes_driving': path /= region/'commutes_driving.csv' elif key == 'commutes_transit': path /= 'commutes_transit.csv' elif key == 'transit_costs': path /= 'transit_costs.csv' elif key == 'commute_costs': path /= 'commute_costs.json' else: raise error return path def get_data(key, region=None): """ Return the data corresponding to the given key (string) and region (string) and key. """ path = get_path(key, region) if not path.exists: raise ValueError('Data does not exist for key-region pair' ' ({!s}, {!s})'.format(key, region)) s = path.suffix if s == '.csv': result = pd.read_csv(path, dtype={'au2001': str}) elif s in ['.geojson', '.gpkg']: result = gpd.read_file(str(path)) elif s == '.json': with path.open() as src: result = json.load(src) return result def get_latest_quarters(n: int, *, from_today=False) -> List[str]: """ Return a list of the latest ``n`` rental data quarters as YYYY-MM-DD datestrings sorted chronologically. Each quarter will be of the form YYYY-03-01, YYYY-06-01, YYYY-09-01, or YYYY-12-01. If ``from_today``, get the latest quarters theoretically possible from today's date; otherwise, get them from the rental data. """ if from_today: quarters = [q.strftime('%Y-%m') + '-01' for q in pd.date_range(end=dt.datetime.now(), freq='Q', periods=n)] else: quarters = get_data('rents')['quarter'].unique()[-n:].tolist() return quarters def aggregate_rents(rents, date=None, groupby_cols=('rental_area', 'num_bedrooms')): """ Given a DataFrame of rents, group the rents by the given groupby columns, recomputing the counts and means. Return the resulting data frame, which have the following columns. - the columns in ``groupby_cols`` - ``'territory'`` - ``'region'`` - ``'rent_count'`` - ``'rent_mean'`` - ``'rent_geo_mean'`` If a date (YYYY-MM-DD date string) is given, then first slice the rents to calendar quarters equal to or later than the date. """ if date is not None: f = rents.loc[lambda x: x.quarter >= date].copy() else: f = rents.copy() def my_agg(group): d = {} if 'territory' not in groupby_cols: d['territory'] = group['territory'].iat[0] if 'region' not in groupby_cols: d['region'] = group['region'].iat[0] d['rent_count'] = group['rent_count'].sum() d['rent_mean'] = (group['rent_mean']*group['rent_count']).sum()/\ d['rent_count'] if d['rent_count']: d['rent_geo_mean'] = (group['rent_geo_mean']**( group['rent_count']/d['rent_count'])).prod() else: d['rent_geo_mean'] = np.nan return pd.Series(d) return ( f .groupby(list(groupby_cols)) .apply(my_agg) .reset_index() ) def nan_to_none(df): """ Replace the NaN values in the given DataFrame with None and return the resulting DataFrame. """ return df.where((pd.notnull(df)), None) def build_json_rents(rents): """ Given a DataFrame of rents of the form output by :func:read_data('rents'), aggregate the rents by rental area and number of bedrooms ('1', '2', '3', or '4'), and return the result as a dictionary of the form rental area -> num_bedrooms -> rent geometric mean. Some of the mean rents could be ``None``. """ f = aggregate_rents(rents) # Drop 5+ bedrooms and round to nearest dollar f = f[f['num_bedrooms'] != '5+'].copy().round() # Replace NaN with None to make JSON-compatible f = nan_to_none(f) # Save to dictionary of form rental area -> num_bedrooms -> rent geo mean d = {area: dict(g[['num_bedrooms', 'rent_geo_mean']].values) for area, g in f.groupby('rental_area')} return d
mit
hsiaoyi0504/scikit-learn
sklearn/svm/tests/test_sparse.py
95
12156
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.utils import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns, assert_raise_message # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0) sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1).fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(X[2]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict(X[2]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catchs some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
ElDeveloper/scikit-learn
sklearn/neighbors/unsupervised.py
117
4755
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p: integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Affects only :meth:`k_neighbors` and :meth:`kneighbors_graph` methods. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> nbrs = neigh.radius_neighbors([[0, 0, 1.3]], 0.4, return_distance=False) >>> np.asarray(nbrs[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs)
bsd-3-clause
rohit21122012/DCASE2013
runs/2016/baseline128/src/dataset.py
37
78389
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import urllib2 import socket import locale import zipfile import tarfile from sklearn.cross_validation import StratifiedShuffleSplit, KFold from ui import * from general import * from files import * class Dataset(object): """Dataset base class. The specific dataset classes are inherited from this class, and only needed methods are reimplemented. """ def __init__(self, data_path='data', name='dataset'): """__init__ method. Parameters ---------- data_path : str Basepath where the dataset is stored. (Default value='data') """ # Folder name for dataset self.name = name # Path to the dataset self.local_path = os.path.join(data_path, self.name) # Create the dataset path if does not exist if not os.path.isdir(self.local_path): os.makedirs(self.local_path) # Evaluation setup folder self.evaluation_setup_folder = 'evaluation_setup' # Path to the folder containing evaluation setup files self.evaluation_setup_path = os.path.join(self.local_path, self.evaluation_setup_folder) # Meta data file, csv-format self.meta_filename = 'meta.txt' # Path to meta data file self.meta_file = os.path.join(self.local_path, self.meta_filename) # Hash file to detect removed or added files self.filelisthash_filename = 'filelist.hash' # Number of evaluation folds self.evaluation_folds = 1 # List containing dataset package items # Define this in the inherited class. # Format: # { # 'remote_package': download_url, # 'local_package': os.path.join(self.local_path, 'name_of_downloaded_package'), # 'local_audio_path': os.path.join(self.local_path, 'name_of_folder_containing_audio_files'), # } self.package_list = [] # List of audio files self.files = None # List of meta data dict self.meta_data = None # Training meta data for folds self.evaluation_data_train = {} # Testing meta data for folds self.evaluation_data_test = {} # Recognized audio extensions self.audio_extensions = {'wav', 'flac'} # Info fields for dataset self.authors = '' self.name_remote = '' self.url = '' self.audio_source = '' self.audio_type = '' self.recording_device_model = '' self.microphone_model = '' @property def audio_files(self): """Get all audio files in the dataset Parameters ---------- Nothing Returns ------- filelist : list File list with absolute paths """ if self.files is None: self.files = [] for item in self.package_list: path = item['local_audio_path'] if path: l = os.listdir(path) for f in l: file_name, file_extension = os.path.splitext(f) if file_extension[1:] in self.audio_extensions: self.files.append(os.path.abspath(os.path.join(path, f))) self.files.sort() return self.files @property def audio_file_count(self): """Get number of audio files in dataset Parameters ---------- Nothing Returns ------- filecount : int Number of audio files """ return len(self.audio_files) @property def meta(self): """Get meta data for dataset. If not already read from disk, data is read and returned. Parameters ---------- Nothing Returns ------- meta_data : list List containing meta data as dict. Raises ------- IOError meta file not found. """ if self.meta_data is None: self.meta_data = [] meta_id = 0 if os.path.isfile(self.meta_file): f = open(self.meta_file, 'rt') try: reader = csv.reader(f, delimiter='\t') for row in reader: if len(row) == 2: # Scene meta self.meta_data.append({'file': row[0], 'scene_label': row[1].rstrip()}) elif len(row) == 4: # Audio tagging meta self.meta_data.append( {'file': row[0], 'scene_label': row[1].rstrip(), 'tag_string': row[2].rstrip(), 'tags': row[3].split(';')}) elif len(row) == 6: # Event meta self.meta_data.append({'file': row[0], 'scene_label': row[1].rstrip(), 'event_onset': float(row[2]), 'event_offset': float(row[3]), 'event_label': row[4].rstrip(), 'event_type': row[5].rstrip(), 'id': meta_id }) meta_id += 1 finally: f.close() else: raise IOError("Meta file not found [%s]" % self.meta_file) return self.meta_data @property def meta_count(self): """Number of meta data items. Parameters ---------- Nothing Returns ------- meta_item_count : int Meta data item count """ return len(self.meta) @property def fold_count(self): """Number of fold in the evaluation setup. Parameters ---------- Nothing Returns ------- fold_count : int Number of folds """ return self.evaluation_folds @property def scene_labels(self): """List of unique scene labels in the meta data. Parameters ---------- Nothing Returns ------- labels : list List of scene labels in alphabetical order. """ labels = [] for item in self.meta: if 'scene_label' in item and item['scene_label'] not in labels: labels.append(item['scene_label']) labels.sort() return labels @property def scene_label_count(self): """Number of unique scene labels in the meta data. Parameters ---------- Nothing Returns ------- scene_label_count : int Number of unique scene labels. """ return len(self.scene_labels) @property def event_labels(self): """List of unique event labels in the meta data. Parameters ---------- Nothing Returns ------- labels : list List of event labels in alphabetical order. """ labels = [] for item in self.meta: if 'event_label' in item and item['event_label'].rstrip() not in labels: labels.append(item['event_label'].rstrip()) labels.sort() return labels @property def event_label_count(self): """Number of unique event labels in the meta data. Parameters ---------- Nothing Returns ------- event_label_count : int Number of unique event labels """ return len(self.event_labels) @property def audio_tags(self): """List of unique audio tags in the meta data. Parameters ---------- Nothing Returns ------- labels : list List of audio tags in alphabetical order. """ tags = [] for item in self.meta: if 'tags' in item: for tag in item['tags']: if tag and tag not in tags: tags.append(tag) tags.sort() return tags @property def audio_tag_count(self): """Number of unique audio tags in the meta data. Parameters ---------- Nothing Returns ------- audio_tag_count : int Number of unique audio tags """ return len(self.audio_tags) def __getitem__(self, i): """Getting meta data item Parameters ---------- i : int item id Returns ------- meta_data : dict Meta data item """ if i < len(self.meta): return self.meta[i] else: return None def __iter__(self): """Iterator for meta data items Parameters ---------- Nothing Returns ------- Nothing """ i = 0 meta = self[i] # yield window while it's valid while meta is not None: yield meta # get next item i += 1 meta = self[i] @staticmethod def print_bytes(num_bytes): """Output number of bytes according to locale and with IEC binary prefixes Parameters ---------- num_bytes : int > 0 [scalar] Bytes Returns ------- bytes : str Human readable string """ KiB = 1024 MiB = KiB * KiB GiB = KiB * MiB TiB = KiB * GiB PiB = KiB * TiB EiB = KiB * PiB ZiB = KiB * EiB YiB = KiB * ZiB locale.setlocale(locale.LC_ALL, '') output = locale.format("%d", num_bytes, grouping=True) + ' bytes' if num_bytes > YiB: output += ' (%.4g YiB)' % (num_bytes / YiB) elif num_bytes > ZiB: output += ' (%.4g ZiB)' % (num_bytes / ZiB) elif num_bytes > EiB: output += ' (%.4g EiB)' % (num_bytes / EiB) elif num_bytes > PiB: output += ' (%.4g PiB)' % (num_bytes / PiB) elif num_bytes > TiB: output += ' (%.4g TiB)' % (num_bytes / TiB) elif num_bytes > GiB: output += ' (%.4g GiB)' % (num_bytes / GiB) elif num_bytes > MiB: output += ' (%.4g MiB)' % (num_bytes / MiB) elif num_bytes > KiB: output += ' (%.4g KiB)' % (num_bytes / KiB) return output def download(self): """Download dataset over the internet to the local path Parameters ---------- Nothing Returns ------- Nothing Raises ------- IOError Download failed. """ section_header('Download dataset') for item in self.package_list: try: if item['remote_package'] and not os.path.isfile(item['local_package']): data = None req = urllib2.Request(item['remote_package'], data, {}) handle = urllib2.urlopen(req) if "Content-Length" in handle.headers.items(): size = int(handle.info()["Content-Length"]) else: size = None actualSize = 0 blocksize = 64 * 1024 tmp_file = os.path.join(self.local_path, 'tmp_file') fo = open(tmp_file, "wb") terminate = False while not terminate: block = handle.read(blocksize) actualSize += len(block) if size: progress(title_text=os.path.split(item['local_package'])[1], percentage=actualSize / float(size), note=self.print_bytes(actualSize)) else: progress(title_text=os.path.split(item['local_package'])[1], note=self.print_bytes(actualSize)) if len(block) == 0: break fo.write(block) fo.close() os.rename(tmp_file, item['local_package']) except (urllib2.URLError, socket.timeout), e: try: fo.close() except: raise IOError('Download failed [%s]' % (item['remote_package'])) foot() def extract(self): """Extract the dataset packages Parameters ---------- Nothing Returns ------- Nothing """ section_header('Extract dataset') for item_id, item in enumerate(self.package_list): if item['local_package']: if item['local_package'].endswith('.zip'): with zipfile.ZipFile(item['local_package'], "r") as z: # Trick to omit first level folder parts = [] for name in z.namelist(): if not name.endswith('/'): parts.append(name.split('/')[:-1]) prefix = os.path.commonprefix(parts) or '' if prefix: if len(prefix) > 1: prefix_ = list() prefix_.append(prefix[0]) prefix = prefix_ prefix = '/'.join(prefix) + '/' offset = len(prefix) # Start extraction members = z.infolist() file_count = 1 for i, member in enumerate(members): if len(member.filename) > offset: member.filename = member.filename[offset:] if not os.path.isfile(os.path.join(self.local_path, member.filename)): z.extract(member, self.local_path) progress(title_text='Extracting ['+str(item_id)+'/'+str(len(self.package_list))+']', percentage=(file_count / float(len(members))), note=member.filename) file_count += 1 elif item['local_package'].endswith('.tar.gz'): tar = tarfile.open(item['local_package'], "r:gz") for i, tar_info in enumerate(tar): if not os.path.isfile(os.path.join(self.local_path, tar_info.name)): tar.extract(tar_info, self.local_path) progress(title_text='Extracting ['+str(item_id)+'/'+str(len(self.package_list))+']', note=tar_info.name) tar.members = [] tar.close() foot() def on_after_extract(self): """Dataset meta data preparation, this will be overloaded in dataset specific classes Parameters ---------- Nothing Returns ------- Nothing """ pass def get_filelist(self): """List of files under local_path Parameters ---------- Nothing Returns ------- filelist: list File list """ filelist = [] for path, subdirs, files in os.walk(self.local_path): for name in files: filelist.append(os.path.join(path, name)) return filelist def check_filelist(self): """Generates hash from file list and check does it matches with one saved in filelist.hash. If some files have been deleted or added, checking will result False. Parameters ---------- Nothing Returns ------- result: bool Result """ if os.path.isfile(os.path.join(self.local_path, self.filelisthash_filename)): hash = load_text(os.path.join(self.local_path, self.filelisthash_filename))[0] if hash != get_parameter_hash(sorted(self.get_filelist())): return False else: return True else: return False def save_filelist_hash(self): """Generates file list hash, and saves it as filelist.hash under local_path. Parameters ---------- Nothing Returns ------- Nothing """ filelist = self.get_filelist() filelist_hash_not_found = True for file in filelist: if self.filelisthash_filename in file: filelist_hash_not_found = False if filelist_hash_not_found: filelist.append(os.path.join(self.local_path, self.filelisthash_filename)) save_text(os.path.join(self.local_path, self.filelisthash_filename), get_parameter_hash(sorted(filelist))) def fetch(self): """Download, extract and prepare the dataset. Parameters ---------- Nothing Returns ------- Nothing """ if not self.check_filelist(): self.download() self.extract() self.on_after_extract() self.save_filelist_hash() return self def train(self, fold=0): """List of training items. Parameters ---------- fold : int > 0 [scalar] Fold id, if zero all meta data is returned. (Default value=0) Returns ------- list : list of dicts List containing all meta data assigned to training set for given fold. """ if fold not in self.evaluation_data_train: self.evaluation_data_train[fold] = [] if fold > 0: with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'rt') as f: for row in csv.reader(f, delimiter='\t'): if len(row) == 2: # Scene meta self.evaluation_data_train[fold].append({ 'file': self.relative_to_absolute_path(row[0]), 'scene_label': row[1] }) elif len(row) == 4: # Audio tagging meta self.evaluation_data_train[fold].append({ 'file': self.relative_to_absolute_path(row[0]), 'scene_label': row[1], 'tag_string': row[2], 'tags': row[3].split(';') }) elif len(row) == 5: # Event meta self.evaluation_data_train[fold].append({ 'file': self.relative_to_absolute_path(row[0]), 'scene_label': row[1], 'event_onset': float(row[2]), 'event_offset': float(row[3]), 'event_label': row[4] }) else: data = [] for item in self.meta: if 'event_label' in item: data.append({'file': self.relative_to_absolute_path(item['file']), 'scene_label': item['scene_label'], 'event_onset': item['event_onset'], 'event_offset': item['event_offset'], 'event_label': item['event_label'], }) else: data.append({'file': self.relative_to_absolute_path(item['file']), 'scene_label': item['scene_label'] }) self.evaluation_data_train[0] = data return self.evaluation_data_train[fold] def test(self, fold=0): """List of testing items. Parameters ---------- fold : int > 0 [scalar] Fold id, if zero all meta data is returned. (Default value=0) Returns ------- list : list of dicts List containing all meta data assigned to testing set for given fold. """ if fold not in self.evaluation_data_test: self.evaluation_data_test[fold] = [] if fold > 0: with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'rt') as f: for row in csv.reader(f, delimiter='\t'): self.evaluation_data_test[fold].append({'file': self.relative_to_absolute_path(row[0])}) else: data = [] files = [] for item in self.meta: if self.relative_to_absolute_path(item['file']) not in files: data.append({'file': self.relative_to_absolute_path(item['file'])}) files.append(self.relative_to_absolute_path(item['file'])) self.evaluation_data_test[fold] = data return self.evaluation_data_test[fold] def folds(self, mode='folds'): """List of fold ids Parameters ---------- mode : str {'folds','full'} Fold setup type, possible values are 'folds' and 'full'. In 'full' mode fold number is set 0 and all data is used for training. (Default value=folds) Returns ------- list : list of integers Fold ids """ if mode == 'folds': return range(1, self.evaluation_folds + 1) elif mode == 'full': return [0] def file_meta(self, file): """Meta data for given file Parameters ---------- file : str File name Returns ------- list : list of dicts List containing all meta data related to given file. """ file = self.absolute_to_relative(file) file_meta = [] for item in self.meta: if item['file'] == file: file_meta.append(item) return file_meta def relative_to_absolute_path(self, path): """Converts relative path into absolute path. Parameters ---------- path : str Relative path Returns ------- path : str Absolute path """ return os.path.abspath(os.path.join(self.local_path, path)) def absolute_to_relative(self, path): """Converts absolute path into relative path. Parameters ---------- path : str Absolute path Returns ------- path : str Relative path """ if path.startswith(os.path.abspath(self.local_path)): return os.path.relpath(path, self.local_path) else: return path # ===================================================== # DCASE 2016 # ===================================================== class TUTAcousticScenes_2016_DevelopmentSet(Dataset): """TUT Acoustic scenes 2016 development dataset This dataset is used in DCASE2016 - Task 1, Acoustic scene classification """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='TUT-acoustic-scenes-2016-development') self.authors = 'Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen' self.name_remote = 'TUT Acoustic Scenes 2016, development dataset' self.url = 'https://zenodo.org/record/45739' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Roland Edirol R-09' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 4 self.package_list = [ { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.doc.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.doc.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.meta.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.meta.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.1.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.1.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.2.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.2.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.3.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.3.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.4.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.4.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.5.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.5.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.6.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.6.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.7.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.7.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.8.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.8.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), } ] def on_after_extract(self): """After dataset packages are downloaded and extracted, meta-files are checked. Parameters ---------- nothing Returns ------- nothing """ if not os.path.isfile(self.meta_file): section_header('Generating meta file for dataset') meta_data = {} for fold in xrange(1, self.evaluation_folds): # Read train files in train_filename = os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt') f = open(train_filename, 'rt') reader = csv.reader(f, delimiter='\t') for row in reader: if row[0] not in meta_data: meta_data[row[0]] = row[1] f.close() # Read evaluation files in eval_filename = os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt') f = open(eval_filename, 'rt') reader = csv.reader(f, delimiter='\t') for row in reader: if row[0] not in meta_data: meta_data[row[0]] = row[1] f.close() f = open(self.meta_file, 'wt') try: writer = csv.writer(f, delimiter='\t') for file in meta_data: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) label = meta_data[file] writer.writerow((os.path.join(relative_path, raw_filename), label)) finally: f.close() foot() class TUTAcousticScenes_2016_EvaluationSet(Dataset): """TUT Acoustic scenes 2016 evaluation dataset This dataset is used in DCASE2016 - Task 1, Acoustic scene classification """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='TUT-acoustic-scenes-2016-evaluation') self.authors = 'Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen' self.name_remote = 'TUT Acoustic Scenes 2016, evaluation dataset' self.url = 'http://www.cs.tut.fi/sgn/arg/dcase2016/download/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Roland Edirol R-09' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 1 self.package_list = [ { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio'), }, ] def on_after_extract(self): """After dataset packages are downloaded and extracted, meta-files are checked. Parameters ---------- nothing Returns ------- nothing """ eval_filename = os.path.join(self.evaluation_setup_path, 'evaluate.txt') if not os.path.isfile(self.meta_file) and os.path.isfile(eval_filename): section_header('Generating meta file for dataset') meta_data = {} f = open(eval_filename, 'rt') reader = csv.reader(f, delimiter='\t') for row in reader: if row[0] not in meta_data: meta_data[row[0]] = row[1] f.close() f = open(self.meta_file, 'wt') try: writer = csv.writer(f, delimiter='\t') for file in meta_data: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) label = meta_data[file] writer.writerow((os.path.join(relative_path, raw_filename), label)) finally: f.close() foot() def train(self, fold=0): raise IOError('Train setup not available.') # TUT Sound events 2016 development and evaluation sets class TUTSoundEvents_2016_DevelopmentSet(Dataset): """TUT Sound events 2016 development dataset This dataset is used in DCASE2016 - Task 3, Sound event detection in real life audio """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='TUT-sound-events-2016-development') self.authors = 'Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen' self.name_remote = 'TUT Sound Events 2016, development dataset' self.url = 'https://zenodo.org/record/45759' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Roland Edirol R-09' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 4 self.package_list = [ { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio', 'residential_area'), }, { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio', 'home'), }, { 'remote_package': 'https://zenodo.org/record/45759/files/TUT-sound-events-2016-development.doc.zip', 'local_package': os.path.join(self.local_path, 'TUT-sound-events-2016-development.doc.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45759/files/TUT-sound-events-2016-development.meta.zip', 'local_package': os.path.join(self.local_path, 'TUT-sound-events-2016-development.meta.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45759/files/TUT-sound-events-2016-development.audio.zip', 'local_package': os.path.join(self.local_path, 'TUT-sound-events-2016-development.audio.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, ] def event_label_count(self, scene_label=None): return len(self.event_labels(scene_label=scene_label)) def event_labels(self, scene_label=None): labels = [] for item in self.meta: if scene_label is None or item['scene_label'] == scene_label: if 'event_label' in item and item['event_label'].rstrip() not in labels: labels.append(item['event_label'].rstrip()) labels.sort() return labels def on_after_extract(self): """After dataset packages are downloaded and extracted, meta-files are checked. Parameters ---------- nothing Returns ------- nothing """ if not os.path.isfile(self.meta_file): meta_file_handle = open(self.meta_file, 'wt') try: writer = csv.writer(meta_file_handle, delimiter='\t') for filename in self.audio_files: raw_path, raw_filename = os.path.split(filename) relative_path = self.absolute_to_relative(raw_path) scene_label = relative_path.replace('audio', '')[1:] base_filename, file_extension = os.path.splitext(raw_filename) annotation_filename = os.path.join(self.local_path, relative_path.replace('audio', 'meta'), base_filename + '.ann') if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, float(annotation_file_row[0].replace(',', '.')), float(annotation_file_row[1].replace(',', '.')), annotation_file_row[2], 'm')) finally: annotation_file_handle.close() finally: meta_file_handle.close() def train(self, fold=0, scene_label=None): if fold not in self.evaluation_data_train: self.evaluation_data_train[fold] = {} for scene_label_ in self.scene_labels: if scene_label_ not in self.evaluation_data_train[fold]: self.evaluation_data_train[fold][scene_label_] = [] if fold > 0: with open(os.path.join(self.evaluation_setup_path, scene_label_+'_fold' + str(fold) + '_train.txt'), 'rt') as f: for row in csv.reader(f, delimiter='\t'): if len(row) == 5: # Event meta self.evaluation_data_train[fold][scene_label_].append({ 'file': self.relative_to_absolute_path(row[0]), 'scene_label': row[1], 'event_onset': float(row[2]), 'event_offset': float(row[3]), 'event_label': row[4] }) else: data = [] for item in self.meta: if item['scene_label'] == scene_label_: if 'event_label' in item: data.append({'file': self.relative_to_absolute_path(item['file']), 'scene_label': item['scene_label'], 'event_onset': item['event_onset'], 'event_offset': item['event_offset'], 'event_label': item['event_label'], }) self.evaluation_data_train[0][scene_label_] = data if scene_label: return self.evaluation_data_train[fold][scene_label] else: data = [] for scene_label_ in self.scene_labels: for item in self.evaluation_data_train[fold][scene_label_]: data.append(item) return data def test(self, fold=0, scene_label=None): if fold not in self.evaluation_data_test: self.evaluation_data_test[fold] = {} for scene_label_ in self.scene_labels: if scene_label_ not in self.evaluation_data_test[fold]: self.evaluation_data_test[fold][scene_label_] = [] if fold > 0: with open(os.path.join(self.evaluation_setup_path, scene_label_+'_fold' + str(fold) + '_test.txt'), 'rt') as f: for row in csv.reader(f, delimiter='\t'): self.evaluation_data_test[fold][scene_label_].append({'file': self.relative_to_absolute_path(row[0])}) else: data = [] files = [] for item in self.meta: if scene_label_ in item: if self.relative_to_absolute_path(item['file']) not in files: data.append({'file': self.relative_to_absolute_path(item['file'])}) files.append(self.relative_to_absolute_path(item['file'])) self.evaluation_data_test[0][scene_label_] = data if scene_label: return self.evaluation_data_test[fold][scene_label] else: data = [] for scene_label_ in self.scene_labels: for item in self.evaluation_data_test[fold][scene_label_]: data.append(item) return data class TUTSoundEvents_2016_EvaluationSet(Dataset): """TUT Sound events 2016 evaluation dataset This dataset is used in DCASE2016 - Task 3, Sound event detection in real life audio """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='TUT-sound-events-2016-evaluation') self.authors = 'Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen' self.name_remote = 'TUT Sound Events 2016, evaluation dataset' self.url = 'http://www.cs.tut.fi/sgn/arg/dcase2016/download/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Roland Edirol R-09' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 1 self.package_list = [ { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio', 'home'), }, { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio', 'residential_area'), }, ] @property def scene_labels(self): labels = ['home', 'residential_area'] labels.sort() return labels def event_label_count(self, scene_label=None): return len(self.event_labels(scene_label=scene_label)) def event_labels(self, scene_label=None): labels = [] for item in self.meta: if scene_label is None or item['scene_label'] == scene_label: if 'event_label' in item and item['event_label'] not in labels: labels.append(item['event_label']) labels.sort() return labels def on_after_extract(self): """After dataset packages are downloaded and extracted, meta-files are checked. Parameters ---------- nothing Returns ------- nothing """ if not os.path.isfile(self.meta_file) and os.path.isdir(os.path.join(self.local_path,'meta')): meta_file_handle = open(self.meta_file, 'wt') try: writer = csv.writer(meta_file_handle, delimiter='\t') for filename in self.audio_files: raw_path, raw_filename = os.path.split(filename) relative_path = self.absolute_to_relative(raw_path) scene_label = relative_path.replace('audio', '')[1:] base_filename, file_extension = os.path.splitext(raw_filename) annotation_filename = os.path.join(self.local_path, relative_path.replace('audio', 'meta'), base_filename + '.ann') if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, float(annotation_file_row[0].replace(',', '.')), float(annotation_file_row[1].replace(',', '.')), annotation_file_row[2], 'm')) finally: annotation_file_handle.close() finally: meta_file_handle.close() def train(self, fold=0, scene_label=None): raise IOError('Train setup not available.') def test(self, fold=0, scene_label=None): if fold not in self.evaluation_data_test: self.evaluation_data_test[fold] = {} for scene_label_ in self.scene_labels: if scene_label_ not in self.evaluation_data_test[fold]: self.evaluation_data_test[fold][scene_label_] = [] if fold > 0: with open(os.path.join(self.evaluation_setup_path, scene_label + '_fold' + str(fold) + '_test.txt'), 'rt') as f: for row in csv.reader(f, delimiter='\t'): self.evaluation_data_test[fold][scene_label_].append({'file': self.relative_to_absolute_path(row[0])}) else: data = [] files = [] for item in self.audio_files: if scene_label_ in item: if self.relative_to_absolute_path(item) not in files: data.append({'file': self.relative_to_absolute_path(item)}) files.append(self.relative_to_absolute_path(item)) self.evaluation_data_test[0][scene_label_] = data if scene_label: return self.evaluation_data_test[fold][scene_label] else: data = [] for scene_label_ in self.scene_labels: for item in self.evaluation_data_test[fold][scene_label_]: data.append(item) return data # CHIME home class CHiMEHome_DomesticAudioTag_DevelopmentSet(Dataset): def __init__(self, data_path=None): Dataset.__init__(self, data_path=data_path, name = 'CHiMeHome-audiotag-development') self.authors = 'Peter Foster, Siddharth Sigtia, Sacha Krstulovic, Jon Barker, and Mark Plumbley' self.name_remote = 'The CHiME-Home dataset is a collection of annotated domestic environment audio recordings.' self.url = '' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Unknown' self.microphone_model = 'Unknown' self.evaluation_folds = 10 self.package_list = [ { 'remote_package': 'https://archive.org/download/chime-home/chime_home.tar.gz', 'local_package': os.path.join(self.local_path, 'chime_home.tar.gz'), 'local_audio_path': os.path.join(self.local_path, 'chime_home', 'chunks'), }, ] @property def audio_files(self): """Get all audio files in the dataset, use only file from CHime-Home-refined set. Parameters ---------- nothing Returns ------- files : list audio files """ if self.files is None: refined_files = [] with open(os.path.join(self.local_path, 'chime_home', 'chunks_refined.csv'), 'rt') as f: for row in csv.reader(f, delimiter=','): refined_files.append(row[1]) self.files = [] for file in self.package_list: path = file['local_audio_path'] if path: l = os.listdir(path) p = path.replace(self.local_path + os.path.sep, '') for f in l: fileName, fileExtension = os.path.splitext(f) if fileExtension[1:] in self.audio_extensions and fileName in refined_files: self.files.append(os.path.abspath(os.path.join(path, f))) self.files.sort() return self.files def read_chunk_meta(self, meta_filename): if os.path.isfile(meta_filename): meta_file_handle = open(meta_filename, 'rt') try: meta_file_reader = csv.reader(meta_file_handle, delimiter=',') data = {} for meta_file_row in meta_file_reader: data[meta_file_row[0]] = meta_file_row[1] finally: meta_file_handle.close() return data def tagcode_to_taglabel(self, tag): map = {'c': 'child speech', 'm': 'adult male speech', 'f': 'adult female speech', 'v': 'video game/tv', 'p': 'percussive sound', 'b': 'broadband noise', 'o': 'other', 'S': 'silence/background', 'U': 'unidentifiable' } if tag in map: return map[tag] else: return None def on_after_extract(self): """After dataset packages are downloaded and extracted, meta-files are checked. Legacy dataset meta files are converted to be compatible with current scheme. Parameters ---------- nothing Returns ------- nothing """ if not os.path.isfile(self.meta_file): section_header('Generating meta file for dataset') scene_label = 'home' f = open(self.meta_file, 'wt') try: writer = csv.writer(f, delimiter='\t') for file in self.audio_files: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) base_filename, file_extension = os.path.splitext(raw_filename) annotation_filename = os.path.join(raw_path, base_filename + '.csv') meta_data = self.read_chunk_meta(annotation_filename) tags = [] for i, tag in enumerate(meta_data['majorityvote']): if tag is 'b': print file if tag is not 'S' and tag is not 'U': tags.append(self.tagcode_to_taglabel(tag)) tags = ';'.join(tags) writer.writerow( (os.path.join(relative_path, raw_filename), scene_label, meta_data['majorityvote'], tags)) finally: f.close() foot() all_folds_found = True for fold in xrange(1, self.evaluation_folds): for target_tag in self.audio_tags: if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_' + target_tag.replace('/', '-').replace(' ', '_') + '_train.txt')): all_folds_found = False if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_' + target_tag.replace('/', '-').replace(' ', '_') + '_test.txt')): all_folds_found = False if not all_folds_found: if not os.path.isdir(self.evaluation_setup_path): os.makedirs(self.evaluation_setup_path) numpy.random.seed(475686) kf = KFold(n=len(self.audio_files), n_folds=self.evaluation_folds, shuffle=True) refined_files = [] with open(os.path.join(self.local_path, 'chime_home', 'chunks_refined.csv'), 'rt') as f: for row in csv.reader(f, delimiter=','): refined_files.append(self.relative_to_absolute_path(os.path.join('chime_home','chunks',row[1]+'.wav'))) fold = 1 files = numpy.array(refined_files) for train_index, test_index in kf: train_files = files[train_index] test_files = files[test_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in train_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') item = self.file_meta(file)[0] writer.writerow([os.path.join(relative_path, raw_filename), item['scene_label'],item['tag_string'], ';'.join(item['tags'])]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') writer.writerow([os.path.join(relative_path, raw_filename)]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') item = self.file_meta(file)[0] writer.writerow([os.path.join(relative_path, raw_filename), item['scene_label'],item['tag_string'], ';'.join(item['tags'])]) fold+= 1 # Legacy datasets # ===================================================== # DCASE 2013 # ===================================================== class DCASE2013_Scene_DevelopmentSet(Dataset): """DCASE 2013 Acoustic scene classification, development dataset """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='DCASE2013-scene-development') self.authors = 'Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, and Mark Plumbley' self.name_remote = 'IEEE AASP 2013 CASA Challenge - Public Dataset for Scene Classification Task' self.url = 'http://www.elec.qmul.ac.uk/digitalmusic/sceneseventschallenge/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Unknown' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 5 self.package_list = [ { 'remote_package': 'http://c4dm.eecs.qmul.ac.uk/rdr/bitstream/handle/123456789/29/scenes_stereo.zip?sequence=1', 'local_package': os.path.join(self.local_path, 'scenes_stereo.zip'), 'local_audio_path': os.path.join(self.local_path, 'scenes_stereo'), } ] def on_after_extract(self): # Make legacy dataset compatible with DCASE2016 dataset scheme if not os.path.isfile(self.meta_file): section_header('Generating meta file for dataset') f = open(self.meta_file, 'wt') try: writer = csv.writer(f, delimiter='\t') for file in self.audio_files: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) label = os.path.splitext(os.path.split(file)[1])[0][:-2] writer.writerow((os.path.join(relative_path, raw_filename), label)) finally: f.close() foot() all_folds_found = True for fold in xrange(1, self.evaluation_folds): if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt')): all_folds_found = False if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt')): all_folds_found = False if not all_folds_found: section_header('Generating evaluation setup files for dataset') if not os.path.isdir(self.evaluation_setup_path): os.makedirs(self.evaluation_setup_path) print self.evaluation_setup_path classes = [] files = [] for item in self.meta: classes.append(item['scene_label']) files.append(item['file']) files = numpy.array(files) sss = StratifiedShuffleSplit(y=classes, n_iter=self.evaluation_folds, test_size=0.3, random_state=0) fold = 1 for train_index, test_index in sss: # print("TRAIN:", train_index, "TEST:", test_index) train_files = files[train_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in train_files: raw_path, raw_filename = os.path.split(file) label = self.file_meta(file)[0]['scene_label'] writer.writerow([os.path.join(raw_path, raw_filename), label]) test_files = files[test_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) writer.writerow([os.path.join(raw_path, raw_filename)]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) label = self.file_meta(file)[0]['scene_label'] writer.writerow([os.path.join(raw_path, raw_filename), label]) fold += 1 foot() class DCASE2013_Scene_EvaluationSet(DCASE2013_Scene_DevelopmentSet): """DCASE 2013 Acoustic scene classification, evaluation dataset """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='DCASE2013-scene-challenge') self.authors = 'Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, and Mark Plumbley' self.name_remote = 'IEEE AASP 2013 CASA Challenge - Private Dataset for Scene Classification Task' self.url = 'http://www.elec.qmul.ac.uk/digitalmusic/sceneseventschallenge/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Unknown' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 5 self.package_list = [ { 'remote_package': 'https://archive.org/download/dcase2013_scene_classification_testset/scenes_stereo_testset.zip', 'local_package': os.path.join(self.local_path, 'scenes_stereo_testset.zip'), 'local_audio_path': os.path.join(self.local_path, 'scenes_stereo_testset'), } ] def on_after_extract(self): # Make legacy dataset compatible with DCASE2016 dataset scheme if not os.path.isfile(self.meta_file) or 1: section_header('Generating meta file for dataset') f = open(self.meta_file, 'wt') try: writer = csv.writer(f, delimiter='\t') for file in self.audio_files: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) label = os.path.splitext(os.path.split(file)[1])[0][:-2] writer.writerow((os.path.join(relative_path, raw_filename), label)) finally: f.close() foot() all_folds_found = True for fold in xrange(1, self.evaluation_folds): if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt')): all_folds_found = False if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt')): all_folds_found = False if not all_folds_found: section_header('Generating evaluation setup files for dataset') if not os.path.isdir(self.evaluation_setup_path): os.makedirs(self.evaluation_setup_path) classes = [] files = [] for item in self.meta: classes.append(item['scene_label']) files.append(item['file']) files = numpy.array(files) sss = StratifiedShuffleSplit(y=classes, n_iter=self.evaluation_folds, test_size=0.3, random_state=0) fold = 1 for train_index, test_index in sss: train_files = files[train_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in train_files: raw_path, raw_filename = os.path.split(file) label = self.file_meta(file)[0]['scene_label'] writer.writerow([os.path.join(raw_path, raw_filename), label]) test_files = files[test_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) writer.writerow([os.path.join(raw_path, raw_filename)]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) label = self.file_meta(file)[0]['scene_label'] writer.writerow([os.path.join(raw_path, raw_filename), label]) fold += 1 foot() # Sound events class DCASE2013_Event_DevelopmentSet(Dataset): """DCASE 2013 Sound event detection, development dataset """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='DCASE2013-event-development') self.authors = 'Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, and Mark Plumbley' self.name_remote = 'IEEE AASP CASA Challenge - Public Dataset for Event Detection Task' self.url = 'http://www.elec.qmul.ac.uk/digitalmusic/sceneseventschallenge/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Unknown' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 5 self.package_list = [ { 'remote_package': 'https://archive.org/download/dcase2013_event_detection_development_OS/events_OS_development_v2.zip', 'local_package': os.path.join(self.local_path, 'events_OS_development_v2.zip'), 'local_audio_path': os.path.join(self.local_path, 'events_OS_development_v2'), }, # { # 'remote_package':'http://c4dm.eecs.qmul.ac.uk/rdr/bitstream/handle/123456789/28/singlesounds_annotation.zip?sequence=9', # 'local_package': os.path.join(self.local_path, 'singlesounds_annotation.zip'), # 'local_audio_path': None, # }, # { # 'remote_package':'http://c4dm.eecs.qmul.ac.uk/rdr/bitstream/handle/123456789/28/singlesounds_stereo.zip?sequence=7', # 'local_package': os.path.join(self.local_path, 'singlesounds_stereo.zip'), # 'local_audio_path': os.path.join(self.local_path, 'singlesounds_stereo'), # }, ] def on_after_extract(self): # Make legacy dataset compatible with DCASE2016 dataset scheme scene_label = 'office' if not os.path.isfile(self.meta_file): meta_file_handle = open(self.meta_file, 'wt') try: writer = csv.writer(meta_file_handle, delimiter='\t') for file in self.audio_files: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) base_filename, file_extension = os.path.splitext(raw_filename) if file.find('singlesounds_stereo') != -1: annotation_filename = os.path.join(self.local_path, 'Annotation1', base_filename + '_bdm.txt') label = base_filename[:-2] if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, annotation_file_row[0], annotation_file_row[1], label, 'i')) finally: annotation_file_handle.close() elif file.find('events_OS_development_v2') != -1: annotation_filename = os.path.join(self.local_path, 'events_OS_development_v2', base_filename + '_v2.txt') if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, annotation_file_row[0], annotation_file_row[1], annotation_file_row[2], 'm')) finally: annotation_file_handle.close() finally: meta_file_handle.close() all_folds_found = True for fold in xrange(1, self.evaluation_folds): if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt')): all_folds_found = False if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt')): all_folds_found = False if not all_folds_found: # Construct training and testing sets. Isolated sound are used for training and # polyphonic mixtures are used for testing. if not os.path.isdir(self.evaluation_setup_path): os.makedirs(self.evaluation_setup_path) files = [] for item in self.meta: if item['file'] not in files: files.append(item['file']) files = numpy.array(files) f = numpy.zeros(len(files)) sss = StratifiedShuffleSplit(y=f, n_iter=5, test_size=0.3, random_state=0) fold = 1 for train_index, test_index in sss: # print("TRAIN:", train_index, "TEST:", test_index) train_files = files[train_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in train_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') for item in self.meta: if item['file'] == file: writer.writerow([os.path.join(relative_path, raw_filename), item['scene_label'], item['event_onset'], item['event_offset'], item['event_label']]) test_files = files[test_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') writer.writerow([os.path.join(relative_path, raw_filename)]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') for item in self.meta: if item['file'] == file: writer.writerow([os.path.join(relative_path, raw_filename), item['scene_label'], item['event_onset'], item['event_offset'], item['event_label']]) fold += 1 class DCASE2013_Event_EvaluationSet(Dataset): """DCASE 2013 Sound event detection, evaluation dataset """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='DCASE2013-event-challenge') self.authors = 'Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, and Mark Plumbley' self.name_remote = 'IEEE AASP CASA Challenge - Private Dataset for Event Detection Task' self.url = 'http://www.elec.qmul.ac.uk/digitalmusic/sceneseventschallenge/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Unknown' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 5 self.package_list = [ { 'remote_package': 'https://archive.org/download/dcase2013_event_detection_testset_OS/dcase2013_event_detection_testset_OS.zip', 'local_package': os.path.join(self.local_path, 'dcase2013_event_detection_testset_OS.zip'), 'local_audio_path': os.path.join(self.local_path, 'dcase2013_event_detection_testset_OS'), } ] def on_after_extract(self): # Make legacy dataset compatible with DCASE2016 dataset scheme scene_label = 'office' if not os.path.isfile(self.meta_file): meta_file_handle = open(self.meta_file, 'wt') try: writer = csv.writer(meta_file_handle, delimiter='\t') for file in self.audio_files: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) base_filename, file_extension = os.path.splitext(raw_filename) if file.find('dcase2013_event_detection_testset_OS') != -1: annotation_filename = os.path.join(self.local_path, 'dcase2013_event_detection_testset_OS',base_filename + '_v2.txt') if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, annotation_file_row[0], annotation_file_row[1], annotation_file_row[2], 'm')) finally: annotation_file_handle.close() else: annotation_filename = os.path.join(self.local_path, 'dcase2013_event_detection_testset_OS',base_filename + '.txt') if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, annotation_file_row[0], annotation_file_row[1], annotation_file_row[2], 'm')) finally: annotation_file_handle.close() finally: meta_file_handle.close() all_folds_found = True for fold in xrange(1, self.evaluation_folds): if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt')): all_folds_found = False if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt')): all_folds_found = False if not all_folds_found: # Construct training and testing sets. Isolated sound are used for training and # polyphonic mixtures are used for testing. if not os.path.isdir(self.evaluation_setup_path): os.makedirs(self.evaluation_setup_path) files = [] for item in self.meta: if item['file'] not in files: files.append(item['file']) files = numpy.array(files) f = numpy.zeros(len(files)) sss = StratifiedShuffleSplit(y=f, n_iter=5, test_size=0.3, random_state=0) fold = 1 for train_index, test_index in sss: # print("TRAIN:", train_index, "TEST:", test_index) train_files = files[train_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in train_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') for item in self.meta: if item['file'] == file: writer.writerow([os.path.join(relative_path, raw_filename), item['scene_label'], item['event_onset'], item['event_offset'], item['event_label']]) test_files = files[test_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') writer.writerow([os.path.join(relative_path, raw_filename)]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') for item in self.meta: if item['file'] == file: writer.writerow([os.path.join(relative_path, raw_filename), item['scene_label'], item['event_onset'], item['event_offset'], item['event_label']]) fold += 1
mit
maestrotf/pymepps
pymepps/loader/filehandler/netcdfhandler.py
1
5732
#!/bin/env python # -*- coding: utf-8 -*- # """ # Created on 14.12.16 # # Created for pymepps # # @author: Tobias Sebastian Finn, [email protected] # # Copyright (C) {2016} {Tobias Sebastian Finn} # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # """ # System modules import logging # External modules import xarray as xr import numpy as np # Internal modules from .filehandler import FileHandler logger = logging.getLogger(__name__) def cube_to_series(cube, var_name): cleaned_dims = list(cube.dims) if 'index' in cleaned_dims: cleaned_dims.remove('index') elif 'time' in cleaned_dims: cleaned_dims.remove('time') elif 'validtime' in cleaned_dims: cleaned_dims.remove('validtime') if cleaned_dims: stacked = cube.stack(col=cleaned_dims) data = stacked.to_pandas() else: data = cube.to_series() data.name = var_name return data class NetCDFHandler(FileHandler): def _get_varnames(self): var_names = list(self.ds.data_vars) return var_names def is_type(self): try: self.open() self.close() return True except OSError: return False def open(self): if self.ds is None: self.ds = xr.open_dataset(self.file, engine='netcdf4') return self def close(self): if self.ds is not None: self.ds.close() self.ds = None @property def lon_lat(self): attrs = {} try: attrs['latitude'] = float(self.ds.lat.values) except TypeError or KeyError: pass try: attrs['longitude'] = float(self.ds.lon.values) except TypeError or KeyError: pass try: attrs['altitude'] = float(self.ds.zsl.values) except TypeError or KeyError: pass return attrs def load_cube(self, var_name): """ Method to load a variable from the netcdf file and return it as xr.DataArray. Parameters ---------- var_name : str The variable name, which should be extracted. Returns ------- variable : xr.DataArray The DataArray of the variable. """ variable = self.ds[var_name] if hasattr(variable, '_FillValue'): variable.values[variable.values == variable._FillValue] = np.nan elif hasattr(variable, 'missing_value'): variable.values[variable.values == variable.missing_value] = np.nan else: variable.values[variable.values==9.96921e+36] = np.nan return variable def get_timeseries(self, var_name, **kwargs): """ Method to get the time series from a NetCDF file. This is designed for measurement site data in netcdf format. At the moment this method is only tested for Wettermast Hamburg data! Parameters ---------- var_name : str The variable name, which should be extracted. Returns ------- data : dict with pandas series The selected variable is extracted as dict with pandas series as values. """ cube = self.load_cube(var_name).load() data = cube_to_series(cube, var_name) return data def get_messages(self, var_name, **kwargs): """ Method to imitate the message-like behaviour of grib files. Parameters ---------- var_name : str The variable name, which should be extracted. runtime : np.datetime64, optional If the dataset has no runtime this runtime is used. If the runtime is not set, the runtime will be inferred from file name. ensemble : int or str, optional If the dataset has no ensemble information this ensemble is used. If the ensemble is not set, the ensemble will be inferred from file name. sliced_coords : tuple(slice), optional If the cube should be sliced before it is loaded. This is helpful by large opendap requests. These slice will be used from the behind. So (slice(1,2,1), slice(3,5,1)) means [..., 1:2, 3:5]. If it is not set all data is used. T Returns ------- data : list of xr.DataArray The list with the message-wise data as DataArray. The DataArray have six coordinates (analysis, ensemble, time, level, y, x). The shape of DataArray are normally (1,1,1,1,y_size,x_size). """ cube = self.load_cube(var_name) if 'sliced_coords' in kwargs: cube = cube[(...,)+kwargs['sliced_coords']] cube.attrs.update(self.ds.attrs) cube = cube.load() cube = cube.pp.normalize_coords( runtime=self._get_runtime(**kwargs), ensemble=self._get_ensemble(**kwargs), validtime=self._get_validtime(**kwargs) ) return cube
gpl-3.0
pv/scikit-learn
sklearn/utils/fixes.py
133
12882
"""Compatibility fixes for older version of python, numpy and scipy If you add content to this file, please give the version of the package at which the fixe is no longer needed. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Lars Buitinck # # License: BSD 3 clause import inspect import warnings import sys import functools import os import errno import numpy as np import scipy.sparse as sp import scipy def _parse_version(version_string): version = [] for x in version_string.split('.'): try: version.append(int(x)) except ValueError: # x may be of the form dev-1ea1592 version.append(x) return tuple(version) np_version = _parse_version(np.__version__) sp_version = _parse_version(scipy.__version__) try: from scipy.special import expit # SciPy >= 0.10 with np.errstate(invalid='ignore', over='ignore'): if np.isnan(expit(1000)): # SciPy < 0.14 raise ImportError("no stable expit in scipy.special") except ImportError: def expit(x, out=None): """Logistic sigmoid function, ``1 / (1 + exp(-x))``. See sklearn.utils.extmath.log_logistic for the log of this function. """ if out is None: out = np.empty(np.atleast_1d(x).shape, dtype=np.float64) out[:] = x # 1 / (1 + exp(-x)) = (1 + tanh(x / 2)) / 2 # This way of computing the logistic is both fast and stable. out *= .5 np.tanh(out, out) out += 1 out *= .5 return out.reshape(np.shape(x)) # little danse to see if np.copy has an 'order' keyword argument if 'order' in inspect.getargspec(np.copy)[0]: def safe_copy(X): # Copy, but keep the order return np.copy(X, order='K') else: # Before an 'order' argument was introduced, numpy wouldn't muck with # the ordering safe_copy = np.copy try: if (not np.allclose(np.divide(.4, 1, casting="unsafe"), np.divide(.4, 1, casting="unsafe", dtype=np.float)) or not np.allclose(np.divide(.4, 1), .4)): raise TypeError('Divide not working with dtype: ' 'https://github.com/numpy/numpy/issues/3484') divide = np.divide except TypeError: # Compat for old versions of np.divide that do not provide support for # the dtype args def divide(x1, x2, out=None, dtype=None): out_orig = out if out is None: out = np.asarray(x1, dtype=dtype) if out is x1: out = x1.copy() else: if out is not x1: out[:] = x1 if dtype is not None and out.dtype != dtype: out = out.astype(dtype) out /= x2 if out_orig is None and np.isscalar(x1): out = np.asscalar(out) return out try: np.array(5).astype(float, copy=False) except TypeError: # Compat where astype accepted no copy argument def astype(array, dtype, copy=True): if not copy and array.dtype == dtype: return array return array.astype(dtype) else: astype = np.ndarray.astype try: with warnings.catch_warnings(record=True): # Don't raise the numpy deprecation warnings that appear in # 1.9, but avoid Python bug due to simplefilter('ignore') warnings.simplefilter('always') sp.csr_matrix([1.0, 2.0, 3.0]).max(axis=0) except (TypeError, AttributeError): # in scipy < 14.0, sparse matrix min/max doesn't accept an `axis` argument # the following code is taken from the scipy 0.14 codebase def _minor_reduce(X, ufunc): major_index = np.flatnonzero(np.diff(X.indptr)) if X.data.size == 0 and major_index.size == 0: # Numpy < 1.8.0 don't handle empty arrays in reduceat value = np.zeros_like(X.data) else: value = ufunc.reduceat(X.data, X.indptr[major_index]) return major_index, value def _min_or_max_axis(X, axis, min_or_max): N = X.shape[axis] if N == 0: raise ValueError("zero-size array to reduction operation") M = X.shape[1 - axis] mat = X.tocsc() if axis == 0 else X.tocsr() mat.sum_duplicates() major_index, value = _minor_reduce(mat, min_or_max) not_full = np.diff(mat.indptr)[major_index] < N value[not_full] = min_or_max(value[not_full], 0) mask = value != 0 major_index = np.compress(mask, major_index) value = np.compress(mask, value) from scipy.sparse import coo_matrix if axis == 0: res = coo_matrix((value, (np.zeros(len(value)), major_index)), dtype=X.dtype, shape=(1, M)) else: res = coo_matrix((value, (major_index, np.zeros(len(value)))), dtype=X.dtype, shape=(M, 1)) return res.A.ravel() def _sparse_min_or_max(X, axis, min_or_max): if axis is None: if 0 in X.shape: raise ValueError("zero-size array to reduction operation") zero = X.dtype.type(0) if X.nnz == 0: return zero m = min_or_max.reduce(X.data.ravel()) if X.nnz != np.product(X.shape): m = min_or_max(zero, m) return m if axis < 0: axis += 2 if (axis == 0) or (axis == 1): return _min_or_max_axis(X, axis, min_or_max) else: raise ValueError("invalid axis, use 0 for rows, or 1 for columns") def sparse_min_max(X, axis): return (_sparse_min_or_max(X, axis, np.minimum), _sparse_min_or_max(X, axis, np.maximum)) else: def sparse_min_max(X, axis): return (X.min(axis=axis).toarray().ravel(), X.max(axis=axis).toarray().ravel()) try: from numpy import argpartition except ImportError: # numpy.argpartition was introduced in v 1.8.0 def argpartition(a, kth, axis=-1, kind='introselect', order=None): return np.argsort(a, axis=axis, order=order) try: from itertools import combinations_with_replacement except ImportError: # Backport of itertools.combinations_with_replacement for Python 2.6, # from Python 3.4 documentation (http://tinyurl.com/comb-w-r), copyright # Python Software Foundation (https://docs.python.org/3/license.html) def combinations_with_replacement(iterable, r): # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC pool = tuple(iterable) n = len(pool) if not n and r: return indices = [0] * r yield tuple(pool[i] for i in indices) while True: for i in reversed(range(r)): if indices[i] != n - 1: break else: return indices[i:] = [indices[i] + 1] * (r - i) yield tuple(pool[i] for i in indices) try: from numpy import isclose except ImportError: def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): """ Returns a boolean array where two arrays are element-wise equal within a tolerance. This function was added to numpy v1.7.0, and the version you are running has been backported from numpy v1.8.1. See its documentation for more details. """ def within_tol(x, y, atol, rtol): with np.errstate(invalid='ignore'): result = np.less_equal(abs(x - y), atol + rtol * abs(y)) if np.isscalar(a) and np.isscalar(b): result = bool(result) return result x = np.array(a, copy=False, subok=True, ndmin=1) y = np.array(b, copy=False, subok=True, ndmin=1) xfin = np.isfinite(x) yfin = np.isfinite(y) if all(xfin) and all(yfin): return within_tol(x, y, atol, rtol) else: finite = xfin & yfin cond = np.zeros_like(finite, subok=True) # Since we're using boolean indexing, x & y must be the same shape. # Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in # lib.stride_tricks, though, so we can't import it here. x = x * np.ones_like(cond) y = y * np.ones_like(cond) # Avoid subtraction with infinite/nan values... cond[finite] = within_tol(x[finite], y[finite], atol, rtol) # Check for equality of infinite values... cond[~finite] = (x[~finite] == y[~finite]) if equal_nan: # Make NaN == NaN cond[np.isnan(x) & np.isnan(y)] = True return cond if np_version < (1, 7): # Prior to 1.7.0, np.frombuffer wouldn't work for empty first arg. def frombuffer_empty(buf, dtype): if len(buf) == 0: return np.empty(0, dtype=dtype) else: return np.frombuffer(buf, dtype=dtype) else: frombuffer_empty = np.frombuffer if np_version < (1, 8): def in1d(ar1, ar2, assume_unique=False, invert=False): # Backport of numpy function in1d 1.8.1 to support numpy 1.6.2 # Ravel both arrays, behavior for the first array could be different ar1 = np.asarray(ar1).ravel() ar2 = np.asarray(ar2).ravel() # This code is significantly faster when the condition is satisfied. if len(ar2) < 10 * len(ar1) ** 0.145: if invert: mask = np.ones(len(ar1), dtype=np.bool) for a in ar2: mask &= (ar1 != a) else: mask = np.zeros(len(ar1), dtype=np.bool) for a in ar2: mask |= (ar1 == a) return mask # Otherwise use sorting if not assume_unique: ar1, rev_idx = np.unique(ar1, return_inverse=True) ar2 = np.unique(ar2) ar = np.concatenate((ar1, ar2)) # We need this to be a stable sort, so always use 'mergesort' # here. The values from the first array should always come before # the values from the second array. order = ar.argsort(kind='mergesort') sar = ar[order] if invert: bool_ar = (sar[1:] != sar[:-1]) else: bool_ar = (sar[1:] == sar[:-1]) flag = np.concatenate((bool_ar, [invert])) indx = order.argsort(kind='mergesort')[:len(ar1)] if assume_unique: return flag[indx] else: return flag[indx][rev_idx] else: from numpy import in1d if sp_version < (0, 15): # Backport fix for scikit-learn/scikit-learn#2986 / scipy/scipy#4142 from ._scipy_sparse_lsqr_backport import lsqr as sparse_lsqr else: from scipy.sparse.linalg import lsqr as sparse_lsqr if sys.version_info < (2, 7, 0): # partial cannot be pickled in Python 2.6 # http://bugs.python.org/issue1398 class partial(object): def __init__(self, func, *args, **keywords): functools.update_wrapper(self, func) self.func = func self.args = args self.keywords = keywords def __call__(self, *args, **keywords): args = self.args + args kwargs = self.keywords.copy() kwargs.update(keywords) return self.func(*args, **kwargs) else: from functools import partial if np_version < (1, 6, 2): # Allow bincount to accept empty arrays # https://github.com/numpy/numpy/commit/40f0844846a9d7665616b142407a3d74cb65a040 def bincount(x, weights=None, minlength=None): if len(x) > 0: return np.bincount(x, weights, minlength) else: if minlength is None: minlength = 0 minlength = np.asscalar(np.asarray(minlength, dtype=np.intp)) return np.zeros(minlength, dtype=np.intp) else: from numpy import bincount if 'exist_ok' in inspect.getargspec(os.makedirs).args: makedirs = os.makedirs else: def makedirs(name, mode=0o777, exist_ok=False): """makedirs(name [, mode=0o777][, exist_ok=False]) Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any intermediate path segment (not just the rightmost) will be created if it does not exist. If the target directory already exists, raise an OSError if exist_ok is False. Otherwise no exception is raised. This is recursive. """ try: os.makedirs(name, mode=mode) except OSError as e: if (not exist_ok or e.errno != errno.EEXIST or not os.path.isdir(name)): raise
bsd-3-clause
winklerand/pandas
pandas/tests/indexes/timedeltas/test_timedelta.py
2
14189
import pytest import numpy as np from datetime import timedelta import pandas as pd import pandas.util.testing as tm from pandas import (timedelta_range, date_range, Series, Timedelta, TimedeltaIndex, Index, DataFrame, Int64Index) from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_index_equal) from ..datetimelike import DatetimeLike randn = np.random.randn class TestTimedeltaIndex(DatetimeLike): _holder = TimedeltaIndex _multiprocess_can_split_ = True def setup_method(self, method): self.indices = dict(index=tm.makeTimedeltaIndex(10)) self.setup_indices() def create_index(self): return pd.to_timedelta(range(5), unit='d') + pd.offsets.Hour(1) def test_numeric_compat(self): # Dummy method to override super's version; this test is now done # in test_arithmetic.py pass def test_shift(self): # test shift for TimedeltaIndex # err8083 drange = self.create_index() result = drange.shift(1) expected = TimedeltaIndex(['1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00'], freq='D') tm.assert_index_equal(result, expected) result = drange.shift(3, freq='2D 1s') expected = TimedeltaIndex(['6 days 01:00:03', '7 days 01:00:03', '8 days 01:00:03', '9 days 01:00:03', '10 days 01:00:03'], freq='D') tm.assert_index_equal(result, expected) def test_pickle_compat_construction(self): pass def test_fillna_timedelta(self): # GH 11343 idx = pd.TimedeltaIndex(['1 day', pd.NaT, '3 day']) exp = pd.TimedeltaIndex(['1 day', '2 day', '3 day']) tm.assert_index_equal(idx.fillna(pd.Timedelta('2 day')), exp) exp = pd.TimedeltaIndex(['1 day', '3 hour', '3 day']) idx.fillna(pd.Timedelta('3 hour')) exp = pd.Index( [pd.Timedelta('1 day'), 'x', pd.Timedelta('3 day')], dtype=object) tm.assert_index_equal(idx.fillna('x'), exp) def test_difference_freq(self): # GH14323: Difference of TimedeltaIndex should not preserve frequency index = timedelta_range("0 days", "5 days", freq="D") other = timedelta_range("1 days", "4 days", freq="D") expected = TimedeltaIndex(["0 days", "5 days"], freq=None) idx_diff = index.difference(other) tm.assert_index_equal(idx_diff, expected) tm.assert_attr_equal('freq', idx_diff, expected) other = timedelta_range("2 days", "5 days", freq="D") idx_diff = index.difference(other) expected = TimedeltaIndex(["0 days", "1 days"], freq=None) tm.assert_index_equal(idx_diff, expected) tm.assert_attr_equal('freq', idx_diff, expected) def test_isin(self): index = tm.makeTimedeltaIndex(4) result = index.isin(index) assert result.all() result = index.isin(list(index)) assert result.all() assert_almost_equal(index.isin([index[2], 5]), np.array([False, False, True, False])) def test_factorize(self): idx1 = TimedeltaIndex(['1 day', '1 day', '2 day', '2 day', '3 day', '3 day']) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp) exp_idx = TimedeltaIndex(['1 day', '2 day', '3 day']) arr, idx = idx1.factorize() tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) arr, idx = idx1.factorize(sort=True) tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) # freq must be preserved idx3 = timedelta_range('1 day', periods=4, freq='s') exp_arr = np.array([0, 1, 2, 3], dtype=np.intp) arr, idx = idx3.factorize() tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, idx3) def test_join_self(self): index = timedelta_range('1 day', periods=10) kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = index.join(index, how=kind) tm.assert_index_equal(index, joined) def test_does_not_convert_mixed_integer(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args, **kwargs: randn(), r_idx_type='i', c_idx_type='td') str(df) cols = df.columns.join(df.index, how='outer') joined = cols.join(df.columns) assert cols.dtype == np.dtype('O') assert cols.dtype == joined.dtype tm.assert_index_equal(cols, joined) def test_sort_values(self): idx = TimedeltaIndex(['4d', '1d', '2d']) ordered = idx.sort_values() assert ordered.is_monotonic ordered = idx.sort_values(ascending=False) assert ordered[::-1].is_monotonic ordered, dexer = idx.sort_values(return_indexer=True) assert ordered.is_monotonic tm.assert_numpy_array_equal(dexer, np.array([1, 2, 0]), check_dtype=False) ordered, dexer = idx.sort_values(return_indexer=True, ascending=False) assert ordered[::-1].is_monotonic tm.assert_numpy_array_equal(dexer, np.array([0, 2, 1]), check_dtype=False) def test_get_duplicates(self): idx = TimedeltaIndex(['1 day', '2 day', '2 day', '3 day', '3day', '4day']) result = idx.get_duplicates() ex = TimedeltaIndex(['2 day', '3day']) tm.assert_index_equal(result, ex) def test_argmin_argmax(self): idx = TimedeltaIndex(['1 day 00:00:05', '1 day 00:00:01', '1 day 00:00:02']) assert idx.argmin() == 1 assert idx.argmax() == 0 def test_misc_coverage(self): rng = timedelta_range('1 day', periods=5) result = rng.groupby(rng.days) assert isinstance(list(result.values())[0][0], Timedelta) idx = TimedeltaIndex(['3d', '1d', '2d']) assert not idx.equals(list(idx)) non_td = Index(list('abc')) assert not idx.equals(list(non_td)) def test_map(self): # test_map_dictlike generally tests rng = timedelta_range('1 day', periods=10) f = lambda x: x.days result = rng.map(f) exp = Int64Index([f(x) for x in rng]) tm.assert_index_equal(result, exp) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] exp = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, exp) # raise TypeError for now pytest.raises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) def test_total_seconds(self): # GH 10939 # test index rng = timedelta_range('1 days, 10:11:12.100123456', periods=2, freq='s') expt = [1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9, 1 * 86400 + 10 * 3600 + 11 * 60 + 13 + 100123456. / 1e9] tm.assert_almost_equal(rng.total_seconds(), Index(expt)) # test Series s = Series(rng) s_expt = Series(expt, index=[0, 1]) tm.assert_series_equal(s.dt.total_seconds(), s_expt) # with nat s[1] = np.nan s_expt = Series([1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9, np.nan], index=[0, 1]) tm.assert_series_equal(s.dt.total_seconds(), s_expt) # with both nat s = Series([np.nan, np.nan], dtype='timedelta64[ns]') tm.assert_series_equal(s.dt.total_seconds(), Series([np.nan, np.nan], index=[0, 1])) def test_pass_TimedeltaIndex_to_index(self): rng = timedelta_range('1 days', '10 days') idx = Index(rng, dtype=object) expected = Index(rng.to_pytimedelta(), dtype=object) tm.assert_numpy_array_equal(idx.values, expected.values) def test_pickle(self): rng = timedelta_range('1 days', periods=10) rng_p = tm.round_trip_pickle(rng) tm.assert_index_equal(rng, rng_p) def test_hash_error(self): index = timedelta_range('1 days', periods=10) with tm.assert_raises_regex(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_append_join_nondatetimeindex(self): rng = timedelta_range('1 days', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) assert isinstance(result[0], Timedelta) # it works rng.join(idx, how='outer') def test_append_numpy_bug_1681(self): td = timedelta_range('1 days', '10 days', freq='2D') a = DataFrame() c = DataFrame({'A': 'foo', 'B': td}, index=td) str(c) result = a.append(c) assert (result['B'] == td).all() def test_fields(self): rng = timedelta_range('1 days, 10:11:12.100123456', periods=2, freq='s') tm.assert_index_equal(rng.days, Index([1, 1], dtype='int64')) tm.assert_index_equal( rng.seconds, Index([10 * 3600 + 11 * 60 + 12, 10 * 3600 + 11 * 60 + 13], dtype='int64')) tm.assert_index_equal( rng.microseconds, Index([100 * 1000 + 123, 100 * 1000 + 123], dtype='int64')) tm.assert_index_equal(rng.nanoseconds, Index([456, 456], dtype='int64')) pytest.raises(AttributeError, lambda: rng.hours) pytest.raises(AttributeError, lambda: rng.minutes) pytest.raises(AttributeError, lambda: rng.milliseconds) # with nat s = Series(rng) s[1] = np.nan tm.assert_series_equal(s.dt.days, Series([1, np.nan], index=[0, 1])) tm.assert_series_equal(s.dt.seconds, Series( [10 * 3600 + 11 * 60 + 12, np.nan], index=[0, 1])) # preserve name (GH15589) rng.name = 'name' assert rng.days.name == 'name' def test_freq_conversion(self): # doc example # series td = Series(date_range('20130101', periods=4)) - \ Series(date_range('20121201', periods=4)) td[2] += timedelta(minutes=5, seconds=3) td[3] = np.nan result = td / np.timedelta64(1, 'D') expected = Series([31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan ]) assert_series_equal(result, expected) result = td.astype('timedelta64[D]') expected = Series([31, 31, 31, np.nan]) assert_series_equal(result, expected) result = td / np.timedelta64(1, 's') expected = Series([31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan]) assert_series_equal(result, expected) result = td.astype('timedelta64[s]') assert_series_equal(result, expected) # tdi td = TimedeltaIndex(td) result = td / np.timedelta64(1, 'D') expected = Index([31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan]) assert_index_equal(result, expected) result = td.astype('timedelta64[D]') expected = Index([31, 31, 31, np.nan]) assert_index_equal(result, expected) result = td / np.timedelta64(1, 's') expected = Index([31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan]) assert_index_equal(result, expected) result = td.astype('timedelta64[s]') assert_index_equal(result, expected) class TestTimeSeries(object): _multiprocess_can_split_ = True def test_series_box_timedelta(self): rng = timedelta_range('1 day 1 s', periods=5, freq='h') s = Series(rng) assert isinstance(s[1], Timedelta) assert isinstance(s.iat[2], Timedelta)
bsd-3-clause
matthewpklein/battsimpy
tests/dae_genPart.py
1
59229
import numpy import numpy.linalg import scipy.linalg import scipy.interpolate from scipy.signal import wiener, filtfilt, butter, gaussian from scipy.ndimage import filters from matplotlib import pyplot as plt plt.style.use('classic') from assimulo.solvers import IDA from assimulo.problem import Implicit_Problem from scipy.sparse.linalg import spsolve as sparseSolve from scipy.sparse import csr_matrix as sparseMat import scipy.sparse as sps import scipy.sparse as sparse import math from copy import deepcopy def compute_deriv( func, x0 ) : y0 = func(x0) J = numpy.zeros( (len(x0),len(x0)), dtype='d' ) x_higher = deepcopy(x0) eps = 1e-8 for ivar in range(len(x0)) : x_higher[ivar] = x_higher[ivar] + eps # evaluate the function y_higher = func(x_higher) dy_dx = (y_higher-y0) / eps J[:,ivar] = dy_dx x_higher[ivar] = x0[ivar] return J def right_side_coeffs( h_n, h_n1 ) : a_n = h_n / ( h_n1 * (h_n1+h_n) ) b_n = -( h_n1 + h_n) / ( h_n1 * h_n ) c_n = ( 2*h_n + h_n1 ) / ( h_n * (h_n1+h_n) ) return a_n, b_n, c_n def left_side_coeffs( h_n, h_n1 ) : a_n = -( 2*h_n + h_n1 ) / ( h_n * (h_n1+h_n) ) b_n = ( h_n1 + h_n) / ( h_n1 * h_n ) c_n = - h_n / ( h_n1 * (h_n1+h_n) ) return a_n, b_n, c_n def build_interp_2d( path ) : raw_map = numpy.loadtxt( path, delimiter="," ) v1 = raw_map[1:,0] v2 = raw_map[0,1:] dat_map = raw_map[1:,1:] if v1[1] < v1[0] : v1 = numpy.flipud( v1 ) dat_map = numpy.flipud(dat_map) if v2[1] < v2[0] : v2 = numpy.flipud( v2 ) dat_map = numpy.fliplr(dat_map) return scipy.interpolate.RectBivariateSpline( v1, v2, dat_map ) def ButterworthFilter( x, y, ff=0.2 ) : b, a = butter(1, ff) fl = filtfilt( b, a, y ) return fl def get_smooth_Uref_data( Ua_path, Uc_path, ffa=0.4, ffc=0.2 ) : """ Smooth the Uref data to aid in improving numerical stability. This should be verified by the user to ensure it is not changing the original Uref data beyond a tolerable amount (defined by the user). A linear interpolator class is output for Uref and dUref_dx for both anode and cathode. """ ## Load the data files uref_a_map = numpy.loadtxt( Ua_path, delimiter=',' ) uref_c_map = numpy.loadtxt( Uc_path, delimiter=',' ) if uref_a_map[1,0] < uref_a_map[0,0] : uref_a_map = numpy.flipud( uref_a_map ) if uref_c_map[1,0] < uref_c_map[0,0] : uref_c_map = numpy.flipud( uref_c_map ) xa = uref_a_map[:,0] xc = uref_c_map[:,0] # big_xa = numpy.linspace( xa[0], xa[-1], 300 ) # big_xc = numpy.linspace( xc[0], xc[-1], 300 ) # big_Ua = numpy.interp( big_xa, xa, uref_a_map[:,1] ) # big_Uc = numpy.interp( big_xc, xc, uref_c_map[:,1] ) # numpy.savetxt( bsp_dir + '/data/Model_v1/Model_Pars/solid/thermodynamics/uref_anode_bigx.csv', numpy.array([big_xa, big_Ua]).T, delimiter=',' ) # numpy.savetxt( bsp_dir + '/data/Model_v1/Model_Pars/solid/thermodynamics/uref_cathode_bigx.csv', numpy.array([big_xc, big_Uc]).T, delimiter=',' ) ## Smooth the signals Ua_butter = ButterworthFilter( xa, uref_a_map[:,1], ff=ffa ) Uc_butter = ButterworthFilter( xc, uref_c_map[:,1], ff=ffc ) ## Create the interpolators Ua_intp = scipy.interpolate.interp1d( xa, Ua_butter, kind='linear' ) Uc_intp = scipy.interpolate.interp1d( xc, Uc_butter, kind='linear' ) # duref_a_map = numpy.gradient( uref_a_map[:,1] ) / numpy.gradient( xa ) # duref_c_map = numpy.gradient( uref_c_map[:,1] ) / numpy.gradient( xc ) duref_a = numpy.gradient( Ua_butter ) / numpy.gradient( xa ) duref_c = numpy.gradient( Uc_butter ) / numpy.gradient( xc ) dUa_intp = scipy.interpolate.interp1d( xa, duref_a, kind='linear' ) dUc_intp = scipy.interpolate.interp1d( xc, duref_c, kind='linear' ) # # Plot the Uref data for verification # plt.figure() # plt.plot( xa, uref_a_map[:,1], label='Ua map' ) # plt.plot( xc, uref_c_map[:,1], label='Uc map' ) ## plt.plot( xa, Ua_butter, label='Ua butter' ) ## plt.plot( xc, Uc_butter, label='Uc butter' ) # plt.plot( xa, self.uref_a(xa), label='Ua interp lin' ) # plt.plot( xc, self.uref_c(xc), label='Uc interp lin' ) # plt.legend() # plt.figure() # plt.plot( xa, duref_a_map, label='dUa map' ) # plt.plot( xc, duref_c_map, label='dUc map' ) ## plt.plot( xa, duref_a_b, label='dUa B' ) ## plt.plot( xc, duref_c_b, label='dUc B' ) # plt.plot( xa, self.duref_a_interp(xa), label='dUa interp butter' ) # plt.plot( xc, self.duref_c_interp(xc), label='dUc interp butter' ) # plt.legend() # plt.show() return Ua_intp, Uc_intp, dUa_intp, dUc_intp def nonlinspace( Rf,k,N ) : r = numpy.zeros(N) for i in range(N) : r[i] = (1./k)**(-i) if k!=1 : r=max(r)-r r=r/max(r)*Rf else : r=r*Rf return r def mid_to_edge( var_mid, x_e ) : var_edge = numpy.array( [var_mid[0]] + [ var_mid[i]*var_mid[i+1]/( ((x_e[i+1]-x_e[i])/((x_e[i+2]-x_e[i+1])+(x_e[i+1]-x_e[i])))*var_mid[i+1] + (1- ((x_e[i+1]-x_e[i])/((x_e[i+2]-x_e[i+1])+(x_e[i+1]-x_e[i]))))*var_mid[i] ) for i in range(len(var_mid)-1) ] + [var_mid[-1]] ) return var_edge def flux_mat_builder( N, x_m, vols, P ) : A = numpy.zeros([N,N], dtype='d') for i in range(1,N-1) : A[i,i-1] = (1./vols[i]) * (P[i ]) / (x_m[i ] - x_m[i-1]) A[i,i ] = -(1./vols[i]) * (P[i ]) / (x_m[i ] - x_m[i-1]) - (1./vols[i]) * (P[i+1]) / (x_m[i+1] - x_m[i]) A[i,i+1] = (1./vols[i]) * (P[i+1]) / (x_m[i+1] - x_m[i ]) i=0 A[0,0] = -(1./vols[i]) * (P[i+1]) / (x_m[i+1] - x_m[i]) A[0,1] = (1./vols[i]) * (P[i+1]) / (x_m[i+1] - x_m[i]) i=N-1 A[i,i-1] = (1./vols[i]) * (P[i]) / (x_m[i] - x_m[i-1]) A[i,i ] = -(1./vols[i]) * (P[i]) / (x_m[i] - x_m[i-1]) return A class MyProblem( Implicit_Problem ) : def __init__(self, Na, Ns, Nc, Nra, Nrc, X, Ra, Rc, Ac, bsp_dir, y0, yd0, name ) : Implicit_Problem.__init__(self,y0=y0,yd0=yd0,name=name) self.T = 298.15 # Cell temperature, [K] self.Ac = Ac # Cell coated area, [m^2] ### Control volumes and node points (mid node points and edge node points) self.Ns = Ns self.Na = Na self.Nc = Nc self.N = Na + Ns + Nc self.X = X self.x_e = numpy.linspace( 0.0, X, N+1 ) self.x_m = numpy.array( [ 0.5*(self.x_e[i+1]+self.x_e[i]) for i in range(N) ], dtype='d' ) self.vols = numpy.array( [ (self.x_e[i+1] - self.x_e[i]) for i in range(N)], dtype='d' ) # Radial mesh self.Nra = Nra self.Nrc = Nrc k=0.85 self.r_e_a = nonlinspace( Ra, k, Nra+1 ) self.r_m_a = numpy.array( [ 0.5*(self.r_e_a[i+1]+self.r_e_a[i]) for i in range(Nra) ], dtype='d' ) self.r_e_c = nonlinspace( Rc, k, Nrc+1 ) self.r_m_c = numpy.array( [ 0.5*(self.r_e_c[i+1]+self.r_e_c[i]) for i in range(Nrc) ], dtype='d' ) self.vols_ra_m = numpy.array( [ 1/3.*(self.r_e_a[i+1]**3 - self.r_e_a[i]**3) for i in range(Nra)], dtype='d' ) self.vols_rc_m = numpy.array( [ 1/3.*(self.r_e_c[i+1]**3 - self.r_e_c[i]**3) for i in range(Nrc)], dtype='d' ) # Useful sub-meshes for the phi_s functions self.x_m_a = self.x_m[:Na] self.x_m_c = self.x_m[-Nc:] self.x_e_a = self.x_e[:Na+1] self.x_e_c = self.x_e[-Nc-1:] self.vols_a = self.vols[:Na] self.vols_c = self.vols[-Nc:] self.num_diff_vars = self.N + self.Nra*self.Na + self.Nrc*self.Nc self.num_algr_vars = self.Na+self.Nc + self.N + self.Na+self.Nc ### Volume fraction vectors and matrices for effective parameters self.La, self.Ls, self.Lc = self.Na*X/self.N, self.Ns*X/self.N, self.Nc*X/self.N self.Na, self.Ns, self.Nc = Na, Ns, Nc eps_a = 0.25 eps_s = 0.45 eps_c = 0.2 ba, bs, bc = 1.2, 0.5, 0.5 eps_a_vec = [ eps_a for i in range(Na) ] # list( eps_a + eps_a/2.*numpy.sin(numpy.linspace(0.,Na/4,Na)) ) # list(eps_a + eps_a*numpy.random.randn(Na)/5.) # eps_s_vec = [ eps_s for i in range(Ns) ] eps_c_vec = [ eps_c for i in range(Nc) ] # list( eps_c + eps_c/2.*numpy.sin(numpy.linspace(0.,Nc/4,Nc)) ) # list(eps_c + eps_c*numpy.random.randn(Nc)/5.) # self.eps_m = numpy.array( eps_a_vec + eps_s_vec + eps_c_vec, dtype='d' ) self.k_m = 1./self.eps_m self.eps_mb = numpy.array( [ ea**ba for ea in eps_a_vec ] + [ es**bs for es in eps_s_vec ] + [ ec**bc for ec in eps_c_vec ], dtype='d' ) self.eps_eff = numpy.array( [ ea**(1.+ba) for ea in eps_a_vec ] + [ es**(1.+bs) for es in eps_s_vec ] + [ ec**(1.+bc) for ec in eps_c_vec ], dtype='d' ) self.eps_a_eff = self.eps_eff[:Na] self.eps_c_eff = self.eps_eff[-Nc:] self.K_m = numpy.diag( self.k_m ) t_plus = 0.36 F = 96485.0 self.t_plus = t_plus self.F = F self.R_gas = 8.314 self.Rp_a = Ra self.Rp_c = Rc as_a = 3.*(1.0-numpy.array(eps_a_vec, dtype='d'))/self.Rp_a as_c = 3.*(1.0-numpy.array(eps_c_vec, dtype='d'))/self.Rp_c self.as_a = as_a self.as_c = as_c self.as_a_mean = 1./self.La*sum( [ asa*v for asa,v in zip(as_a, self.vols[:Na]) ] ) self.as_c_mean = 1./self.Lc*sum( [ asc*v for asc,v in zip(as_c, self.vols[-Nc:]) ] ) print 'asa diff', self.as_a_mean - as_a[0] print 'asc diff', self.as_c_mean - as_c[0] ### Electrolyte constant B_ce matrix Ba = [ (1.-t_plus)*asa/ea for ea, asa in zip(eps_a_vec,as_a) ] Bs = [ 0.0 for i in range(Ns) ] Bc = [ (1.-t_plus)*asc/ec for ec, asc in zip(eps_c_vec,as_c) ] self.B_ce = numpy.diag( numpy.array(Ba+Bs+Bc, dtype='d') ) Bap = [ asa*F for asa in as_a ] Bsp = [ 0.0 for i in range(Ns) ] Bcp = [ asc*F for asc in as_c ] self.B2_pe = numpy.diag( numpy.array(Bap+Bsp+Bcp, dtype='d') ) # Interpolators for De, ke self.De_intp = build_interp_2d( bsp_dir+'data/Model_v1/Model_Pars/electrolyte/De.csv' ) self.ke_intp = build_interp_2d( bsp_dir+'data/Model_v1/Model_Pars/electrolyte/kappa.csv' ) self.fca_intp = build_interp_2d( bsp_dir+'data/Model_v1/Model_Pars/electrolyte/fca.csv' ) ### Solid phase parameters and j vector matrices self.sig_a = 100. # [S/m] self.sig_c = 40. # [S/m] self.sig_a_eff = self.sig_a * self.eps_a_eff self.sig_c_eff = self.sig_c * self.eps_c_eff self.A_ps_a = flux_mat_builder( self.Na, self.x_m_a, numpy.ones_like(self.vols_a), self.sig_a_eff ) self.A_ps_c = flux_mat_builder( self.Nc, self.x_m_c, numpy.ones_like(self.vols_c), self.sig_c_eff ) # Grounding form for BCs (was only needed during testing, before BVK was incorporated for coupling # self.A_ps_a[-1,-1] = 2*self.A_ps_a[-1,-1] # self.A_ps_c[ 0, 0] = 2*self.A_ps_c[ 0, 0] Baps = numpy.array( [ asa*F*dxa for asa,dxa in zip(as_a, self.vols_a) ], dtype='d' ) Bcps = numpy.array( [ asc*F*dxc for asc,dxc in zip(as_c, self.vols_c) ], dtype='d' ) self.B_ps_a = numpy.diag( Baps ) self.B_ps_c = numpy.diag( Bcps ) self.B2_ps_a = numpy.zeros( self.Na, dtype='d' ) self.B2_ps_a[ 0] = -1. self.B2_ps_c = numpy.zeros( self.Nc, dtype='d' ) self.B2_ps_c[-1] = -1. ### Solid phase diffusion model # Load the Ds data files Dsa_map = numpy.loadtxt( bsp_dir+'data/Model_v1/Model_Pars/solid/diffusion/Ds_anode.csv', delimiter="," ) Dsc_map = numpy.loadtxt( bsp_dir+'data/Model_v1/Model_Pars/solid/diffusion/Ds_cathode.csv', delimiter="," ) if Dsa_map[1,0] < Dsa_map[0,0] : Dsa_map = numpy.flipud( Dsa_map ) if Dsc_map[1,0] < Dsc_map[0,0] : Dsc_map = numpy.flipud( Dsc_map ) ## Create the interpolators self.Dsa_intp = scipy.interpolate.interp1d( Dsa_map[:,0], Dsa_map[:,1], kind='linear' ) self.Dsc_intp = scipy.interpolate.interp1d( Dsc_map[:,0], Dsc_map[:,1], kind='linear' ) Dsa = numpy.mean(Dsa_map[:,1]) Dsc = numpy.mean(Dsc_map[:,1]) self.Dsa = Dsa self.Dsc = Dsc self.csa_max = 30555.0 # [mol/m^3] self.csc_max = 51554.0 # [mol/m^3] ## Two parameter Solid phase diffusion model # self.B_cs_a = numpy.diag( numpy.array( [-3.0/self.Rp_a for i in range(Na)], dtype='d' ) ) # self.B_cs_c = numpy.diag( numpy.array( [-3.0/self.Rp_c for i in range(Nc)], dtype='d' ) ) # self.C_cs_a = numpy.eye(Na) # self.C_cs_c = numpy.eye(Nc) # self.D_cs_a = numpy.diag( numpy.array( [-self.Rp_a/Dsa/5.0 for i in range(Na)], dtype='d' ) ) # self.D_cs_c = numpy.diag( numpy.array( [-self.Rp_c/Dsc/5.0 for i in range(Nc)], dtype='d' ) ) ## 1D spherical diffusion model # A_cs pre build self.A_csa_single = flux_mat_builder( Nra, self.r_m_a, self.vols_ra_m, Dsa*(self.r_e_a**2) ) self.A_csc_single = flux_mat_builder( Nrc, self.r_m_c, self.vols_rc_m, Dsc*(self.r_e_c**2) ) # A_cs build up to the stacked full cs size (Nr and Nx) b = [self.A_csa_single]*Na self.A_cs_a = scipy.linalg.block_diag( *b ) b = [self.A_csc_single]*Nc self.A_cs_c = scipy.linalg.block_diag( *b ) # B_cs and C_cs are constant (i.e., are not state-dependent) self.B_csa_single = numpy.array( [ 0. for i in range(Nra-1) ]+[-1.*self.r_e_a[-1]**2/self.vols_ra_m[-1]], dtype='d' ) self.B_csc_single = numpy.array( [ 0. for i in range(Nrc-1) ]+[-1.*self.r_e_c[-1]**2/self.vols_rc_m[-1]], dtype='d' ) b = [self.B_csa_single]*Na self.B_cs_a = scipy.linalg.block_diag( *b ).T b = [self.B_csc_single]*Nc self.B_cs_c = scipy.linalg.block_diag( *b ).T # Particle surface concentration h_na = self.r_e_a[-1] - self.r_m_a[-1] h_n1a = self.r_m_a[-1] - self.r_m_a[-2] h_nc = self.r_e_c[-1] - self.r_m_c[-1] h_n1c = self.r_m_c[-1] - self.r_m_c[-2] self.a_n_a, self.b_n_a, self.c_n_a = right_side_coeffs( h_na, h_n1a ) self.a_n_c, self.b_n_c, self.c_n_c = right_side_coeffs( h_nc, h_n1c ) self.C_cs_a_single = numpy.array( [0. for i in range(Nra-2)]+[-self.a_n_a/self.c_n_a, -self.b_n_a/self.c_n_a], dtype='d' ) self.C_cs_c_single = numpy.array( [0. for i in range(Nrc-2)]+[-self.a_n_c/self.c_n_c, -self.b_n_c/self.c_n_c], dtype='d' ) self.C_cs_a = scipy.linalg.block_diag( *[self.C_cs_a_single]*Na ) self.C_cs_c = scipy.linalg.block_diag( *[self.C_cs_c_single]*Nc ) # Particle core concentration h_na = self.r_e_a[0] - self.r_m_a[0] h_n1a = self.r_m_a[1] - self.r_m_a[0] h_nc = self.r_e_c[0] - self.r_m_c[0] h_n1c = self.r_m_c[1] - self.r_m_c[0] a_n_a, b_n_a, c_n_a = left_side_coeffs( h_na, h_n1a ) a_n_c, b_n_c, c_n_c = left_side_coeffs( h_nc, h_n1c ) C_cso_a_single = numpy.array( [-b_n_a/a_n_a, -c_n_a/a_n_a] + [0. for i in range(Nra-2)], dtype='d' ) C_cso_c_single = numpy.array( [-b_n_c/a_n_c, -c_n_c/a_n_c] + [0. for i in range(Nrc-2)], dtype='d' ) self.C_cso_a = scipy.linalg.block_diag( *[C_cso_a_single]*Na ) self.C_cso_c = scipy.linalg.block_diag( *[C_cso_c_single]*Nc ) # D_cs prelim values, note this is Ds(cs) dependent and therefore requires updating for state dependent Ds self.D_cs_a = -1.0/(Dsa*self.c_n_a)*numpy.eye( Na ) self.D_cs_c = -1.0/(Dsc*self.c_n_c)*numpy.eye( Nc ) ### OCV Ua_path = bsp_dir+'data/Model_v1/Model_Pars/solid/thermodynamics/uref_anode_bigx.csv' Uc_path = bsp_dir+'data/Model_v1/Model_Pars/solid/thermodynamics/uref_cathode_bigx.csv' self.uref_a, self.uref_c, self.duref_a, self.duref_c = get_smooth_Uref_data( Ua_path, Uc_path, ffa=0.4, ffc=0.2 ) ### Reaction kinetics parameters self.io_a = 5.0 # [A/m^2] self.io_c = 5.0 # [A/m^2] ### System indices self.ce_inds = range( self.N ) self.ce_inds_r = numpy.reshape( self.ce_inds, [len(self.ce_inds),1] ) self.ce_inds_c = numpy.reshape( self.ce_inds, [1,len(self.ce_inds)] ) self.csa_inds = range( self.N, self.N + (self.Na*self.Nra) ) self.csa_inds_r = numpy.reshape( self.csa_inds, [len(self.csa_inds),1] ) self.csa_inds_c = numpy.reshape( self.csa_inds, [1,len(self.csa_inds)] ) self.csc_inds = range( self.N + (self.Na*self.Nra), self.N + (self.Na*self.Nra) + (self.Nc*self.Nrc) ) self.csc_inds_r = numpy.reshape( self.csc_inds, [len(self.csc_inds),1] ) self.csc_inds_c = numpy.reshape( self.csc_inds, [1,len(self.csc_inds)] ) self.T_ind = self.N + (self.Na*self.Nra) + (self.Nc*self.Nrc) c_end = self.N + (self.Na*self.Nra) + (self.Nc*self.Nrc) + 1 self.ja_inds = range(c_end, c_end+self.Na) self.ja_inds_r = numpy.reshape( self.ja_inds, [len(self.ja_inds),1] ) self.ja_inds_c = numpy.reshape( self.ja_inds, [1,len(self.ja_inds)] ) self.jc_inds = range(c_end+self.Na, c_end+self.Na +self.Nc) self.jc_inds_r = numpy.reshape( self.jc_inds, [len(self.jc_inds),1] ) self.jc_inds_c = numpy.reshape( self.jc_inds, [1,len(self.jc_inds)] ) self.pe_inds = range( c_end+self.Na+self.Nc, c_end+self.Na+self.Nc +self.N ) self.pe_inds_r = numpy.reshape( self.pe_inds, [len(self.pe_inds),1] ) self.pe_inds_c = numpy.reshape( self.pe_inds, [1,len(self.pe_inds)] ) self.pe_a_inds = range( c_end+self.Na+self.Nc, c_end+self.Na+self.Nc +self.Na ) self.pe_a_inds_r = numpy.reshape( self.pe_a_inds, [len(self.pe_a_inds),1] ) self.pe_a_inds_c = numpy.reshape( self.pe_a_inds, [1,len(self.pe_a_inds)] ) self.pe_c_inds = range( c_end+self.Na+self.Nc +self.Na+self.Ns, c_end+self.Na+self.Nc +self.N ) self.pe_c_inds_r = numpy.reshape( self.pe_c_inds, [len(self.pe_c_inds),1] ) self.pe_c_inds_c = numpy.reshape( self.pe_c_inds, [1,len(self.pe_c_inds)] ) self.pa_inds = range( c_end+self.Na+self.Nc+self.N, c_end+self.Na+self.Nc+self.N +self.Na ) self.pa_inds_r = numpy.reshape( self.pa_inds, [len(self.pa_inds),1] ) self.pa_inds_c = numpy.reshape( self.pa_inds, [1,len(self.pa_inds)] ) self.pc_inds = range( c_end+self.Na+self.Nc+self.N+self.Na, c_end+self.Na+self.Nc+self.N+self.Na +self.Nc ) self.pc_inds_r = numpy.reshape( self.pc_inds, [len(self.pc_inds),1] ) self.pc_inds_c = numpy.reshape( self.pc_inds, [1,len(self.pc_inds)] ) # second set for manual jac version c_end = 0 self.ja_inds2 = range(c_end, c_end+self.Na) self.ja_inds_r2 = numpy.reshape( self.ja_inds2, [len(self.ja_inds2),1] ) self.ja_inds_c2 = numpy.reshape( self.ja_inds2, [1,len(self.ja_inds2)] ) self.jc_inds2 = range(c_end+self.Na, c_end+self.Na +self.Nc) self.jc_inds_r2 = numpy.reshape( self.jc_inds2, [len(self.jc_inds2),1] ) self.jc_inds_c2 = numpy.reshape( self.jc_inds2, [1,len(self.jc_inds2)] ) self.pe_inds2 = range( c_end+self.Na+self.Nc, c_end+self.Na+self.Nc +self.N ) self.pe_inds_r2 = numpy.reshape( self.pe_inds2, [len(self.pe_inds2),1] ) self.pe_inds_c2 = numpy.reshape( self.pe_inds2, [1,len(self.pe_inds2)] ) self.pe_a_inds2 = range( c_end+self.Na+self.Nc, c_end+self.Na+self.Nc +self.Na ) self.pe_a_inds_r2 = numpy.reshape( self.pe_a_inds2, [len(self.pe_a_inds2),1] ) self.pe_a_inds_c2 = numpy.reshape( self.pe_a_inds2, [1,len(self.pe_a_inds2)] ) self.pe_c_inds2 = range( c_end+self.Na+self.Nc +self.Na+self.Ns, c_end+self.Na+self.Nc +self.N ) self.pe_c_inds_r2 = numpy.reshape( self.pe_c_inds2, [len(self.pe_c_inds2),1] ) self.pe_c_inds_c2 = numpy.reshape( self.pe_c_inds2, [1,len(self.pe_c_inds2)] ) self.pa_inds2 = range( c_end+self.Na+self.Nc+self.N, c_end+self.Na+self.Nc+self.N +self.Na ) self.pa_inds_r2 = numpy.reshape( self.pa_inds2, [len(self.pa_inds2),1] ) self.pa_inds_c2 = numpy.reshape( self.pa_inds2, [1,len(self.pa_inds2)] ) self.pc_inds2 = range( c_end+self.Na+self.Nc+self.N+self.Na, c_end+self.Na+self.Nc+self.N+self.Na +self.Nc ) self.pc_inds_r2 = numpy.reshape( self.pc_inds2, [len(self.pc_inds2),1] ) self.pc_inds_c2 = numpy.reshape( self.pc_inds2, [1,len(self.pc_inds2)] ) def set_iapp( self, I_app ) : self.i_app = I_app / self.Ac # cs mats def update_cs_mats( self, csa, csc, csa_ss, csc_ss, csa_o, csc_o ) : Acsa_list = [ [] for i in range(self.Na) ] Acsc_list = [ [] for i in range(self.Nc) ] Dsa_ss = [ 0. for i in range(self.Na) ] Dsc_ss = [ 0. for i in range(self.Nc) ] for ia in range(self.Na) : csa_m = csa[ia*self.Nra:(ia+1)*self.Nra] csa_e = numpy.array( [csa_o[ia]] + [ 0.5*(csa_m[i+1]+csa_m[i]) for i in range(self.Nra-1) ] + [csa_ss[ia]] ) Ua_e = self.uref_a( csa_e/self.csa_max ) Dsa_e = self.Dsa_intp( Ua_e ) Acsa_list[ia] = flux_mat_builder( self.Nra, self.r_m_a, self.vols_ra_m, Dsa_e*(self.r_e_a**2) ) Dsa_ss[ia] = Dsa_e[-1] for ic in range(self.Nc) : csc_m = csc[ic*self.Nrc:(ic+1)*self.Nrc] csc_e = numpy.array( [csc_o[ic]] + [ 0.5*(csc_m[i+1]+csc_m[i]) for i in range(self.Nrc-1) ] + [csc_ss[ic]] ) Uc_e = self.uref_c( csc_e/self.csc_max ) Dsc_e = self.Dsc_intp( Uc_e ) Acsc_list[ic] = flux_mat_builder( self.Nrc, self.r_m_c, self.vols_rc_m, Dsc_e*(self.r_e_c**2) ) Dsc_ss[ic] = Dsc_e[-1] # b = self.A_csa_single.reshape(1,Nra,Nra).repeat(Na,axis=0) self.A_cs_a = scipy.linalg.block_diag( *Acsa_list ) self.A_cs_c = scipy.linalg.block_diag( *Acsc_list ) self.D_cs_a = numpy.diag( -1.0/(numpy.array(Dsa_ss)*self.c_n_a) ) self.D_cs_c = numpy.diag( -1.0/(numpy.array(Dsc_ss)*self.c_n_c) ) ## Define c_e functions def build_Ace_mat( self, c ) : D_eff = self.Diff_ce( c ) A = self.K_m.dot( flux_mat_builder( self.N, self.x_m, self.vols, D_eff ) ) return A def Diff_ce( self, c ) : T = self.T # D_ce = 1e-4 * 10.0**( -4.43 - (54./(T-229.-5e-3*c)) - (0.22e-3*c) ) ## Torchio (LIONSIMBA) ECS paper D_ce = self.De_intp( c, T, grid=False ).flatten() D_mid = D_ce * self.eps_eff if type(c) == float : D_edge = D_mid else : D_edge = mid_to_edge( D_mid, self.x_e ) return D_edge ## Define phi_e functions def build_Ape_mat( self, c ) : k_eff = self.kapp_ce( c ) A = flux_mat_builder( self.N, self.x_m, self.vols, k_eff ) A[-1,-1] = 2*A[-1,-1] # BC update for phi_e = 0 return A def build_Bpe_mat( self, c ) : gam = 2.*(1.-self.t_plus)*self.R_gas*self.T / self.F k_eff = self.kapp_ce( c ) c_edge = mid_to_edge( c, self.x_e ) B1 = flux_mat_builder( self.N, self.x_m, self.vols, k_eff*gam/c_edge ) return B1 def kapp_ce( self, c, mid_on=0 ) : T = self.T # k_ce = 1e-4 * c *( -10.5 +0.668e-3*c + 0.494e-6*c**2 # + (0.074 - 1.78*1e-5*c - 8.86e-10*c**2)*T # + (-6.96e-5 + 2.8e-8*c)*T**2 )**2 ## Torchio (LIONSIMBA) ECS paper k_ce = 1e-1*self.ke_intp( c, T, grid=False ).flatten() # 1e-1 converts from mS/cm to S/m (model uses SI units) k_mid = k_ce * self.eps_eff if mid_on : k_out = k_mid else : if type(c) == float : k_out = k_mid else : k_out = mid_to_edge( k_mid, self.x_e ) return k_edge def build_Bjac_mat( self, eta, a, b ) : d = a*numpy.cosh( b*eta )*b return numpy.diag( d ) def get_voltage( self, y ) : """ Return the cell potential """ pc = y[self.pc_inds] pa = y[self.pa_inds] Vcell = pc[-1] - pa[0] return Vcell def calc_heat( self, ce, csa, csc, ja, jc, phi, phi_s_a, phi_s_c, eta_a, eta_c ) : """ Return the total integrated heat source across the cell sandwich """ # Gradients for heat calc dphi_s_a = numpy.gradient( phi_s_a ) / numpy.gradient( self.x_m_a ) dphi_s_c = numpy.gradient( phi_s_c ) / numpy.gradient( self.x_m_c ) dphi = numpy.gradient( phi ) / numpy.gradient( self.x_m ) dlnce = 1./ce * ( numpy.gradient(ce) / numpy.gradient( self.x_m ) ) kapp_eff_m = self.kapp_ce( c, mid_on=1 ) # kapp_eff at the node points (middle of control volume, rather than edge) K = numpy.diag(kapp_eff_m) dp = self.G.dot(phi) # Reaction kinetics heat Q_rxn_a = sum( (self.F*self.as_a*ja*eta_a)*self.vols_a ) Q_rxn_c = sum( (self.F*self.as_c*jc*eta_c)*self.vols_c ) Q_rxn = Q_rxn_a + Q_rxn_c # Ohmic heat in electrolyte and solid Q_ohm_e = sum( ( kapp_eff_m*(dphi)**2 + (2*kapp_eff_m*self.R*self.T/self.F*(1-self.t_plus))*dlnce*dphi )*self.vols ) Q_ohm_s = sum( (self.sig_a_eff*(dphi_s_a)**2)*self.vols_a ) + sum( (self.sig_c_eff*(dphi_s_c)**2)*self.vols_c ) Q_ohm = Q_ohm_e + Q_ohm_s # Entropic heat ## ?? # Total heat Q_tot = Q_ohm + Q_rxn return Q_tot ## Define system equations def res( self, t, y, yd ) : ## Parse out the states # E-lyte conc ce = y[ self.ce_inds] c_dots = yd[self.ce_inds] # Solid conc a:anode, c:cathode csa = y[ self.csa_inds] csc = y[ self.csc_inds] csa_dt = yd[self.csa_inds] csc_dt = yd[self.csc_inds] # Reaction (Butler-Volmer Kinetics) ja_rxn = y[self.ja_inds] jc_rxn = y[self.jc_inds] # E-lyte potential phi = y[self.pe_inds] # Solid potential phi_s_a = y[self.pa_inds] phi_s_c = y[self.pc_inds] ## Grab state dependent matrices # For E-lyte conc and potential (i.e., De(ce), kapp_e(ce)) A_ce = self.build_Ace_mat( ce ) A_pe = self.build_Ape_mat( ce ) B_pe = self.build_Bpe_mat( ce ) # For Solid conc Ds csa_ss = (self.C_cs_a.dot(csa)).flatten() + (self.D_cs_a.dot(ja_rxn)).flatten() csc_ss = (self.C_cs_c.dot(csc)).flatten() + (self.D_cs_c.dot(jc_rxn)).flatten() csa_o = (self.C_cso_a.dot(csa)).flatten() csc_o = (self.C_cso_c.dot(csc)).flatten() self.update_cs_mats( csa, csc, csa_ss, csc_ss, csa_o, csc_o ) ## Compute extra variables # For the reaction kinetics Uref_a = self.uref_a( csa_ss/self.csa_max ) # anode equilibrium potential Uref_c = self.uref_c( csc_ss/self.csc_max ) # cathode equilibrium potential eta_a = phi_s_a - phi[:self.Na] - Uref_a # anode overpotential eta_c = phi_s_c - phi[-self.Nc:] - Uref_c # cathode overpotential # ja = 2.0*self.io_a * numpy.sqrt( ce[:self.Na]/self.ce_nom * (1.0 - csa_ss/self.csa_max) * (csa_ss/self.csa_max) ) * numpy.sinh( self.R_gas/(2.0*self.F*self.T)*eta_a ) # jc = 2.0*self.io_c * numpy.sqrt( ce[-self.Nc:]/self.ce_nom * (1.0 - csc_ss/self.csc_max) * (csc_ss/self.csc_max) ) * numpy.sinh( self.R_gas/(2.0*self.F*self.T)*eta_c ) ja = 2.0*self.io_a/self.F * numpy.sinh( 0.5*self.F/(self.R_gas*self.T)*eta_a ) jc = 2.0*self.io_c/self.F * numpy.sinh( 0.5*self.F/(self.R_gas*self.T)*eta_c ) j = numpy.concatenate( [ ja_rxn, numpy.zeros(self.Ns), jc_rxn ] ) ## Compute the residuals # Time deriv components r1 = c_dots - ( ((A_ce.dot(ce)).flatten() + (self.B_ce.dot(j)).flatten()) ) # E-lyte conc r2 = csa_dt - (self.A_cs_a.dot(csa).flatten() + self.B_cs_a.dot(ja_rxn).flatten()) # Anode conc r3 = csc_dt - (self.A_cs_c.dot(csc).flatten() + self.B_cs_c.dot(jc_rxn).flatten()) # Cathode conc # Algebraic components r4 = ja_rxn - ja r5 = jc_rxn - jc r6 = A_pe.dot(phi).flatten() - B_pe.dot(ce).flatten() + self.B2_pe.dot(j).flatten() # E-lyte potential r7 = self.A_ps_a.dot(phi_s_a).flatten() - self.B_ps_a.dot(ja_rxn).flatten() - self.B2_ps_a*self.i_app # Anode potential r8 = self.A_ps_c.dot(phi_s_c).flatten() - self.B_ps_c.dot(jc_rxn).flatten() + self.B2_ps_c*self.i_app # Cathode potential res_out = numpy.concatenate( [r1, r2, r3, r4, r5, r6, r7, r8] ) return res_out def jac( self, c, t, y, yd ) : ### Setup ## Parse out the states # E-lyte conc ce = y[ self.ce_inds] c_dots = yd[self.ce_inds] # Solid conc a:anode, c:cathode csa = y[ self.csa_inds] csc = y[ self.csc_inds] csa_dt = yd[self.csa_inds] csc_dt = yd[self.csc_inds] # Reaction (Butler-Volmer Kinetics) ja_rxn = y[self.ja_inds] jc_rxn = y[self.jc_inds] # E-lyte potential phi = y[self.pe_inds] # Solid potential phi_s_a = y[self.pa_inds] phi_s_c = y[self.pc_inds] ## Grab state dependent matrices # For E-lyte conc and potential (i.e., De(ce), kapp_e(ce)) A_ce = self.build_Ace_mat( ce ) A_pe = self.build_Ape_mat( ce ) B_pe = self.build_Bpe_mat( ce ) ## Compute extra variables # For the reaction kinetics # csa_ss = numpy.array( [ csa[(i+1)*(self.Nra)-1] for i in range(self.Na) ] ) # csc_ss = numpy.array( [ csc[(i+1)*(self.Nrc)-1] for i in range(self.Nc) ] ) csa_ss = (self.C_cs_a.dot(csa)).flatten() + (self.D_cs_a.dot(ja_rxn)).flatten() csc_ss = (self.C_cs_c.dot(csc)).flatten() + (self.D_cs_c.dot(jc_rxn)).flatten() Uref_a = self.uref_a( csa_ss/self.csa_max ) # anode equilibrium potential Uref_c = self.uref_c( csc_ss/self.csc_max ) # cathode equilibrium potential eta_a = phi_s_a - phi[:self.Na] - Uref_a # anode overpotential eta_c = phi_s_c - phi[-self.Nc:] - Uref_c # cathode overpotential ### ### Build the Jac matrix ## Self coupling A_dots = numpy.diag( [1*c for i in range(self.num_diff_vars)] ) j_c = A_dots - scipy.linalg.block_diag( A_ce, self.A_cs_a, self.A_cs_c ) Bjac_a = self.build_Bjac_mat( eta_a, 2.0*self.io_a/self.F, 0.5*self.F/(self.R_gas*self.T) ) Bjac_c = self.build_Bjac_mat( eta_c, 2.0*self.io_c/self.F, 0.5*self.F/(self.R_gas*self.T) ) DUDcsa_ss = numpy.diag( (1.0/self.csa_max)*self.duref_a(csa_ss/self.csa_max) ) DUDcsc_ss = numpy.diag( (1.0/self.csc_max)*self.duref_c(csc_ss/self.csc_max) ) A_ja = numpy.diag(numpy.ones(self.Na)) - (Bjac_a.dot(-1.0*DUDcsa_ss*1.0)).dot( self.D_cs_a ) A_jc = numpy.diag(numpy.ones(self.Nc)) - (Bjac_c.dot(-1.0*DUDcsc_ss*1.0)).dot( self.D_cs_c ) j = scipy.linalg.block_diag( j_c, A_ja, A_jc, A_pe, self.A_ps_a, self.A_ps_c ) ## Cross coupling # c_e: j coupling back in j[ numpy.ix_(self.ce_inds, self.ja_inds) ] = -self.B_ce[:, :self.Na ] j[ numpy.ix_(self.ce_inds, self.jc_inds) ] = -self.B_ce[:, -self.Nc:] # cs_a: j coupling j[ numpy.ix_(self.csa_inds, self.ja_inds) ] = -self.B_cs_a # cs_c: j coupling j[ numpy.ix_(self.csc_inds, self.jc_inds) ] = -self.B_cs_c # T # j_a: pe, pa, csa coupling j[numpy.ix_(self.ja_inds, self.pa_inds )] = -Bjac_a*( 1.0) j[numpy.ix_(self.ja_inds, self.pe_a_inds)] = -Bjac_a*(-1.0) j[numpy.ix_(self.ja_inds, self.csa_inds )] = -(Bjac_a.dot(-1.0*DUDcsa_ss*1.0)).dot( self.C_cs_a ) # j_c: pe, pc, csc coupling j[numpy.ix_(self.jc_inds, self.pc_inds )] = -Bjac_c*( 1.0) j[numpy.ix_(self.jc_inds, self.pe_c_inds)] = -Bjac_c*(-1.0) j[numpy.ix_(self.jc_inds, self.csc_inds )] = -(Bjac_c.dot(-1.0*DUDcsc_ss*1.0)).dot( self.C_cs_c ) # phi_e: ce coupling into phi_e equation j[numpy.ix_(self.pe_inds,self.ce_inds)] = -B_pe j[numpy.ix_(self.pe_inds,self.ja_inds)] = self.B2_pe[:,:self.Na] j[numpy.ix_(self.pe_inds,self.jc_inds)] = self.B2_pe[:,-self.Nc:] # phi_s_a: ja j[numpy.ix_(self.pa_inds,self.ja_inds)] = -self.B_ps_a # phi_s_c: jc j[numpy.ix_(self.pc_inds,self.jc_inds)] = -self.B_ps_c ### return j csa_max = 30555.0 # [mol/m^3] csc_max = 51554.0 # [mol/m^3] #bsp_dir = '/home/m_klein/Projects/battsimpy/' bsp_dir = '/home/mk-sim-linux/Battery_TempGrad/Python/batt_simulation/battsimpy/' #bsp_dir = '/Users/mk/Desktop/battsim/battsimpy/' Ua_path = bsp_dir+'data/Model_v1/Model_Pars/solid/thermodynamics/uref_anode_bigx.csv' Uc_path = bsp_dir+'data/Model_v1/Model_Pars/solid/thermodynamics/uref_cathode_bigx.csv' uref_a, uref_c, duref_a, duref_c = get_smooth_Uref_data( Ua_path, Uc_path, ffa=0.4, ffc=0.2 ) xa_init, xc_init = 0.8, 0.37 ca_init = xa_init*csa_max cc_init = xc_init*csc_max Ua_init = uref_a( xa_init ) Uc_init = uref_c( xc_init ) print Ua_init print Uc_init ### Mesh La = 65.0 Ls = 25.0 Lc = 55.0 Lt = (La+Ls+Lc) X = Lt*1e-6 # [m] N = 80 Ns = int(N*(Ls/Lt)) Na = int(N*(La/Lt)) Nc = N - Ns - Na print 'Na, Ns, Nc:', Na, Ns, Nc Nra = 10 Nrc = 15 Ra = 12.0e-6 Rc = 6.5e-6 Crate = 3. Vcut = 3.0 # [V], cutoff voltage for end of discharge ce_lims = [50.,3700.] cell_coated_area = 1.0 # [m^2] cell_cap = 29.0 I_app = Crate*cell_cap # A #i_app = I_app / cell_coated_area # current density, [A/m^2] ### Initial conditions # E-lyte conc c_init = 1100.0 # [mol/m^3] c_centered = c_init*numpy.ones( N, dtype='d' ) # E-lyte potential p_init = 0.0 # [V] p_centered = p_init*numpy.ones( N, dtype='d' ) # Solid potential on anode and cathode pa_init = Ua_init #0.0 # [V] pa_centered = pa_init*numpy.ones( Na, dtype='d' ) pc_init = Uc_init #0.0 # [V] pc_centered = pc_init*numpy.ones( Nc, dtype='d' ) # Solid conc on anode and cathode ca_centered = ca_init*numpy.ones( Na*Nra, dtype='d' ) cc_centered = cc_init*numpy.ones( Nc*Nrc, dtype='d' ) # j init ja = numpy.zeros(Na) jc = numpy.zeros(Nc) num_diff_vars = len(c_centered)+len(ca_centered)+len(cc_centered) num_algr_vars = len(ja)+len(jc)+len(p_centered)+len(pa_centered)+len(pc_centered) #The initial conditons y0 = numpy.concatenate( [c_centered, ca_centered, cc_centered, ja, jc, p_centered, pa_centered, pc_centered] ) #Initial conditions yd0 = [0.0 for i in range(len(y0))] #Initial conditions #Create an Assimulo implicit problem imp_mod = MyProblem(Na,Ns,Nc,Nra,Nrc,X,Ra,Rc,cell_coated_area,bsp_dir,y0,yd0,'Example using an analytic Jacobian') #Sets the options to the problem imp_mod.algvar = [1.0 for i in range(num_diff_vars)] + [0.0 for i in range(num_algr_vars)] #Set the algebraic components #Create an Assimulo implicit solver (IDA) imp_sim = IDA(imp_mod) #Create a IDA solver #Sets the paramters imp_sim.atol = 1e-5 #Default 1e-6 imp_sim.rtol = 1e-5 #Default 1e-6 imp_sim.suppress_alg = True #Suppres the algebraic variables on the error test imp_sim.display_progress = False imp_sim.verbosity = 50 imp_sim.report_continuously = True imp_sim.time_limit = 10. ### Simulate t01, t02 = 0.1, 0.2 imp_mod.set_iapp( I_app/10. ) imp_sim.make_consistent('IDA_YA_YDP_INIT') ta, ya, yda = imp_sim.simulate(t01,2) imp_mod.set_iapp( I_app/2. ) imp_sim.make_consistent('IDA_YA_YDP_INIT') tb, yb, ydb = imp_sim.simulate(t02,2) # Sim step 1 #imp_mod.set_iapp( I_app ) #imp_sim.make_consistent('IDA_YA_YDP_INIT') #t1, y1, yd1 = imp_sim.simulate(1.0/Crate*3600.0,100) NT = 100 time = numpy.linspace( t02+0.1, 1.0/Crate*3600.0, NT ) t_out = [ 0 for ts in time ] V_out = [ 0 for ts in time ] y_out = numpy.zeros( [len(time), yb.shape[ 1]] ) yd_out = numpy.zeros( [len(time), ydb.shape[1]] ) it = 0 V_cell = imp_mod.get_voltage( yb[-1,:].flatten() ) ce_now = yb[-1,imp_mod.ce_inds].flatten() print 'V_cell prior to time loop:', V_cell imp_mod.set_iapp( I_app ) imp_sim.make_consistent('IDA_YA_YDP_INIT') sim_stopped = 0 while V_cell > Vcut and max(ce_now)<max(ce_lims) and min(ce_now)>min(ce_lims) and not sim_stopped and it<len(time) : try : ti, yi, ydi = imp_sim.simulate(time[it],1) except : ti = [t_out[it-1],t_out[it-1]] yi = y_out[ it-2:it,:] ydi = yd_out[ it-2:it,:] sim_stopped = 1 print 'Sim stopped due time integration failure.' t_out[ it] = ti[ -1 ] y_out[ it,:] = yi[ -1,:] yd_out[it,:] = ydi[-1,:] V_cell = imp_mod.get_voltage( y_out[it,:] ) V_out[it] = V_cell ce_now = y_out[it,imp_mod.ce_inds] print 'time:',round(t_out[it],3), ' | Voltage:', round(V_cell,3) if V_cell < Vcut : print '\n','Vcut stopped simulation.' elif max(ce_now)>max(ce_lims) : print '\n','ce max stopped simulation.' elif min(ce_now)<min(ce_lims) : print '\n','ce min stopped simulation.' it+=1 if it < len(time) : t_out = t_out[ :it ] V_out = V_out[ :it ] y_out = y_out[ :it,:] yd_out = yd_out[:it,:] ce = y_out[:,imp_mod.ce_inds] f,ax=plt.subplots(1,2) ax[0].plot( imp_mod.x_m, ce.T ) ax[1].plot( t_out, V_out ) plt.show() t1 = t_out y1 = y_out yd1 = yd_out print t_out[it-1] # Sim step 2 imp_mod.set_iapp( 0.0 ) imp_sim.make_consistent('IDA_YA_YDP_INIT') t2, y2, yd2 = imp_sim.simulate(t_out[-1]*1.5,100) plot_on = 1 if plot_on : # extract variables im = imp_mod ce_1 = y1[:,im.ce_inds] ca_1 = y1[:,im.csa_inds] cc_1 = y1[:,im.csc_inds] ca1_r = [ numpy.reshape( ca_1[it,:], (im.Na, im.Nra) ) for it in range(len(t1)) ] cc1_r = [ numpy.reshape( cc_1[it,:], (im.Nc, im.Nrc) ) for it in range(len(t1)) ] pe_1 = y1[:,im.pe_inds] pa_1 = y1[:,im.pa_inds] pc_1 = y1[:,im.pc_inds] ja_1 = y1[:,im.ja_inds] jc_1 = y1[:,im.jc_inds] ce_2 = y2[:,im.ce_inds] ca_2 = y2[:,im.csa_inds] cc_2 = y2[:,im.csc_inds] ca2_r = [ numpy.reshape( ca_2[it,:], (im.Na, im.Nra) ) for it in range(len(t2)) ] cc2_r = [ numpy.reshape( cc_2[it,:], (im.Nc, im.Nrc) ) for it in range(len(t2)) ] pe_2 = y2[:,im.pe_inds] pa_2 = y2[:,im.pa_inds] pc_2 = y2[:,im.pc_inds] ja_2 = y2[:,im.ja_inds] jc_2 = y2[:,im.jc_inds] #Plot # t1 # Plot through space f, ax = plt.subplots(2,4) # ce vs x ax[0,0].plot(imp_mod.x_m*1e6,ce_1.T) # pe vs x ax[0,1].plot(imp_mod.x_m*1e6,pe_1.T) # pa vs x ax[0,2].plot(imp_mod.x_m_a*1e6,pa_1.T) # pc vs x ax[0,2].plot(imp_mod.x_m_c*1e6,pc_1.T) ax[0,0].set_title('t1 c') ax[0,0].set_xlabel('Cell Thickness [$\mu$m]') ax[0,0].set_ylabel('E-lyte Conc. [mol/m$^3$]') ax[0,1].set_title('t1 p') ax[0,1].set_xlabel('Cell Thickness [$\mu$m]') ax[0,1].set_ylabel('E-lyte Potential [V]') ax[0,2].set_title('t1 p solid') ax[0,2].set_xlabel('Cell Thickness [$\mu$m]') ax[0,2].set_ylabel('Solid Potential [V]') #ax[0,3].set_title('t1 conc solid') #ax[0,3].set_xlabel('Cell Thickness [$\mu$m]') #ax[0,3].set_ylabel('Solid Conc. [mol/m$^3$]') # t2 ax[1,0].plot(imp_mod.x_m*1e6,ce_2.T) ax[1,1].plot(imp_mod.x_m*1e6,pe_2.T) ax[1,2].plot(imp_mod.x_m_a*1e6,pa_2.T) ax[1,2].plot(imp_mod.x_m_c*1e6,pc_2.T) ax[1,0].set_title('t2 c') ax[1,0].set_xlabel('Cell Thickness [$\mu$m]') ax[1,0].set_ylabel('E-lyte Conc. [mol/m$^3$]') ax[1,1].set_title('t2 p e-lyte') ax[1,1].set_xlabel('Cell Thickness [$\mu$m]') ax[1,1].set_ylabel('E-lyte Potential [V]') ax[1,2].set_title('t2 p solid') ax[1,2].set_xlabel('Cell Thickness [$\mu$m]') ax[1,2].set_ylabel('Solid Potential [V]') #ax[1,3].set_title('t2 Solid Conc.') #ax[1,3].set_xlabel('Cell Thickness [$\mu$m]') #ax[1,3].set_ylabel('Solid Conc. [mol/m$^3$]') plt.tight_layout() fcs, ax = plt.subplots(1,2) ira, irc = im.Nra-1, im.Nrc-1 for it in range(len(t1)) : # ca vs x ax[0].plot(imp_mod.x_m_a*1e6, ca1_r[it][:,ira]) # cc vs x ax[0].plot(imp_mod.x_m_c*1e6, cc1_r[it][:,irc]) for it in range(len(t1)) : ax[1].plot(imp_mod.x_m_a*1e6, ca2_r[it][:,ira]) ax[1].plot(imp_mod.x_m_c*1e6, cc2_r[it][:,irc]) ax[0].set_title('t1 Solid Conc.') ax[1].set_title('t2 Solid Conc.') ax[0].set_xlabel('Cell Thickness [$\mu$m]') ax[0].set_ylabel('Solid Conc. [mol/m$^3$]') plt.tight_layout() fcsr, ax = plt.subplots(1,2) ixa, ixc = im.Na-1, 0 for it in range(len(t1)) : # ca vs x ax[0].plot(imp_mod.r_m_a*1e6, ca1_r[it][ixa,:]) # cc vs x ax[0].plot(imp_mod.r_m_c*1e6, cc1_r[it][ixc,:]) for it in range(len(t1)) : ax[1].plot(imp_mod.r_m_a*1e6, ca2_r[it][ixa,:]) ax[1].plot(imp_mod.r_m_c*1e6, cc2_r[it][ixc,:]) ax[0].set_title('t1 Solid Conc.') ax[1].set_title('t2 Solid Conc.') ax[0].set_xlabel('Cell Thickness [$\mu$m]') ax[0].set_ylabel('Solid Conc. [mol/m$^3$]') plt.tight_layout() # Plot through time f, ax = plt.subplots(1,3) ax[0].plot(t1,ce_1) ax[1].plot(t1,pe_1) ax[2].plot(t1,pa_1) ax[2].plot(t1,pc_1) #ax[3].plot(t1,ca_1) #ax[3].plot(t1,cc_1) ax[0].plot(t2,ce_2) ax[1].plot(t2,pe_2) ax[2].plot(t2,pa_2) ax[2].plot(t2,pc_2) #ax[3].plot(t2,ca_2) #ax[3].plot(t2,cc_2) ax[0].set_ylabel('E-lyte Conc. [mol/m$^3$]') ax[0].set_xlabel('Time [s]') ax[1].set_ylabel('E-lyte Potential [V]') ax[1].set_xlabel('Time [s]') ax[2].set_ylabel('Solid Potential [V]') ax[2].set_xlabel('Time [s]') #ax[3].set_ylabel('Solid Conc. [mol/m$^3$]') #ax[3].set_xlabel('Time [s]') plt.tight_layout() plt.figure() plt.plot( t1, pc_1[:,-1] - pa_1[:,0] ) plt.plot( t2, pc_2[:,-1] - pa_2[:,0] ) plt.show() # # # #imp_mod = MyProblem(Na,Ns,Nc,Nra,Nrc,X,Ra,Rc,cell_coated_area,bsp_dir,y0,yd0,'Example using an analytic Jacobian') # ## my own time solver # #delta_t = 1.0 #tf = 10. #time = [ i*delta_t for i in range(int(tf/delta_t)+1) ] # #print time # #x_out = numpy.zeros( [num_diff_vars, len(time)] ) #z_out = numpy.zeros( [num_algr_vars, len(time)] ) # #x_out[:,0] = numpy.concatenate( [c_centered, ca_centered, cc_centered] ) #z_out[:,0] = numpy.concatenate( [ja, jc, p_centered, pa_centered, pc_centered] ) # #for it, t in enumerate(time[1:]) : # # if it == 0 : # Cur_vec = [ 0.0, 0.0, 0.1*I_app ] # elif it == 1 : # Cur_vec = [ 0.0, 0.1*I_app, 0.5*I_app ] # elif it == 2 : # Cur_vec = [ 0.1*I_app, 0.5*I_app, I_app ] # elif it == 3 : # Cur_vec = [ 0.5*I_app, I_app, I_app ] # else : # Cur_vec = [ I_app, I_app, I_app ] # # x_out[:,it+1], z_out[:,it+1], newtonStats = imp_mod.cn_solver( x_out[:,it], z_out[:,it], Cur_vec, delta_t ) # #plt.close() #f, ax = plt.subplots(1,3) #ax[0].plot( imp_mod.x_m, x_out[:imp_mod.N] ) # #ax[1].plot( imp_mod.x_m, z_out[imp_mod.Na+imp_mod.Nc:imp_mod.Na+imp_mod.Nc+imp_mod.N,:-1] ) # #ax[2].plot( imp_mod.x_m_a, z_out[-imp_mod.Na-imp_mod.Nc:-imp_mod.Nc,:-1] ) #ax[2].plot( imp_mod.x_m_c, z_out[-imp_mod.Nc:,:-1] ) #plt.show() # #print z_out # # # def dae_system( self, x, z, Input, get_mats=0 ) : # # self.set_iapp( Input ) # # y = numpy.concatenate([x,z]) # # ## Parse out the states # # E-lyte conc # ce = y[ self.ce_inds] # # # Solid conc a:anode, c:cathode # csa = y[ self.csa_inds] # csc = y[ self.csc_inds] # # # Reaction (Butler-Volmer Kinetics) # ja_rxn = y[self.ja_inds] # jc_rxn = y[self.jc_inds] # # # E-lyte potential # phi = y[self.pe_inds] # # # Solid potential # phi_s_a = y[self.pa_inds] # phi_s_c = y[self.pc_inds] # # ## Grab state dependent matrices # # For E-lyte conc and potential (i.e., De(ce), kapp_e(ce)) # A_ce = self.build_Ace_mat( ce ) # A_pe = self.build_Ape_mat( ce ) # B_pe = self.build_Bpe_mat( ce ) # # ## Compute extra variables # # For the reaction kinetics ## csa_ss = numpy.array( [ csa[(i+1)*(self.Nra)-1] for i in range(self.Na) ] ) ## csc_ss = numpy.array( [ csc[(i+1)*(self.Nrc)-1] for i in range(self.Nc) ] ) # csa_ss = (self.C_cs_a.dot(csa)).flatten() + (self.D_cs_a.dot(ja_rxn)).flatten() # csc_ss = (self.C_cs_c.dot(csc)).flatten() + (self.D_cs_c.dot(jc_rxn)).flatten() # # xa = csa /self.csa_max # xc = csc /self.csc_max # xa_ss = csa_ss/self.csa_max # xc_ss = csc_ss/self.csc_max # # Uref_a = self.uref_a( xa_ss ) # anode equilibrium potential # Uref_c = self.uref_c( xc_ss ) # cathode equilibrium potential # # eta_a = phi_s_a - phi[:self.Na] - Uref_a # anode overpotential # eta_c = phi_s_c - phi[-self.Nc:] - Uref_c # cathode overpotential # ## ja = 2.0*self.io_a * numpy.sqrt( ce[:self.Na]/self.ce_nom * (1.0 - csa_ss/self.csa_max) * (csa_ss/self.csa_max) ) * numpy.sinh( self.R_gas/(2.0*self.F*self.T)*eta_a ) ## jc = 2.0*self.io_c * numpy.sqrt( ce[-self.Nc:]/self.ce_nom * (1.0 - csc_ss/self.csc_max) * (csc_ss/self.csc_max) ) * numpy.sinh( self.R_gas/(2.0*self.F*self.T)*eta_c ) # ja = 2.0*self.io_a/self.F * numpy.sinh( 0.5*self.F/(self.R_gas*self.T)*eta_a ) # jc = 2.0*self.io_c/self.F * numpy.sinh( 0.5*self.F/(self.R_gas*self.T)*eta_c ) # # j = numpy.concatenate( [ ja_rxn, numpy.zeros(self.Ns), jc_rxn ] ) # # ## Compute the residuals # # Time deriv components # r1 = ( ((A_ce.dot(ce)).flatten() + (self.B_ce.dot(j)).flatten()) ) # E-lyte conc # # r2 = ( (self.A_cs_a.dot(csa)).flatten() + (self.B_cs_a.dot(ja_rxn)).flatten() ) # Anode conc # r3 = ( (self.A_cs_c.dot(csc)).flatten() + (self.B_cs_c.dot(jc_rxn)).flatten() ) # Cathode conc # # # Algebraic components # r4 = ja_rxn - ja # r5 = jc_rxn - jc # # r6 = A_pe.dot(phi).flatten() - B_pe.dot(ce).flatten() + self.B2_pe.dot(j).flatten() # E-lyte potential # # r7 = self.A_ps_a.dot(phi_s_a).flatten() - self.B_ps_a.dot(ja_rxn).flatten() - self.B2_ps_a*self.i_app # Anode potential # r8 = self.A_ps_c.dot(phi_s_c).flatten() - self.B_ps_c.dot(jc_rxn).flatten() + self.B2_ps_c*self.i_app # Cathode potential # # if get_mats : # res_out = numpy.concatenate( [r1,r2,r3] ), numpy.concatenate( [r4, r5, r6, r7, r8] ), { 'A_ce':A_ce, 'A_pe':A_pe, 'B_pe':B_pe, 'csa':csa, 'csc':csc, 'csa_ss':csa_ss, 'csc_ss':csc_ss, 'xa':xa, 'xc':xc, 'xa_ss':xa_ss, 'xc_ss':xc_ss, 'eta_a':eta_a, 'eta_c':eta_c } # else : # res_out = numpy.concatenate( [r1,r2,r3] ), numpy.concatenate( [r4, r5, r6, r7, r8] ) # # return res_out # # def dae_system_num( self, y ) : # # ## Parse out the states # # E-lyte conc # ce = y[ self.ce_inds] # # # Solid conc a:anode, c:cathode # csa = y[ self.csa_inds] # csc = y[ self.csc_inds] # # # Reaction (Butler-Volmer Kinetics) # ja_rxn = y[self.ja_inds] # jc_rxn = y[self.jc_inds] # # # E-lyte potential # phi = y[self.pe_inds] # # # Solid potential # phi_s_a = y[self.pa_inds] # phi_s_c = y[self.pc_inds] # # ## Grab state dependent matrices # # For E-lyte conc and potential (i.e., De(ce), kapp_e(ce)) # A_ce = self.build_Ace_mat( ce ) # A_pe = self.build_Ape_mat( ce ) # B_pe = self.build_Bpe_mat( ce ) # # ## Compute extra variables # # For the reaction kinetics ## csa_ss = numpy.array( [ csa[(i+1)*(self.Nra)-1] for i in range(self.Na) ] ) ## csc_ss = numpy.array( [ csc[(i+1)*(self.Nrc)-1] for i in range(self.Nc) ] ) # csa_ss = (self.C_cs_a.dot(csa)).flatten() + (self.D_cs_a.dot(ja_rxn)).flatten() # csc_ss = (self.C_cs_c.dot(csc)).flatten() + (self.D_cs_c.dot(jc_rxn)).flatten() # # xa = csa /self.csa_max # xc = csc /self.csc_max # xa_ss = csa_ss/self.csa_max # xc_ss = csc_ss/self.csc_max # # Uref_a = self.uref_a( xa_ss ) # anode equilibrium potential # Uref_c = self.uref_c( xc_ss ) # cathode equilibrium potential # # eta_a = phi_s_a - phi[:self.Na] - Uref_a # anode overpotential # eta_c = phi_s_c - phi[-self.Nc:] - Uref_c # cathode overpotential # ## ja = 2.0*self.io_a * numpy.sqrt( ce[:self.Na]/self.ce_nom * (1.0 - csa_ss/self.csa_max) * (csa_ss/self.csa_max) ) * numpy.sinh( self.R_gas/(2.0*self.F*self.T)*eta_a ) ## jc = 2.0*self.io_c * numpy.sqrt( ce[-self.Nc:]/self.ce_nom * (1.0 - csc_ss/self.csc_max) * (csc_ss/self.csc_max) ) * numpy.sinh( self.R_gas/(2.0*self.F*self.T)*eta_c ) # ja = 2.0*self.io_a/self.F * numpy.sinh( 0.5*self.F/(self.R_gas*self.T)*eta_a ) # jc = 2.0*self.io_c/self.F * numpy.sinh( 0.5*self.F/(self.R_gas*self.T)*eta_c ) # # j = numpy.concatenate( [ ja_rxn, numpy.zeros(self.Ns), jc_rxn ] ) # # ## Compute the residuals # # Time deriv components # r1 = ( ((A_ce.dot(ce)).flatten() + (self.B_ce.dot(j)).flatten()) ) # E-lyte conc # # r2 = ( (self.A_cs_a.dot(csa)).flatten() + (self.B_cs_a.dot(ja_rxn)).flatten() ) # Anode conc # r3 = ( (self.A_cs_c.dot(csc)).flatten() + (self.B_cs_c.dot(jc_rxn)).flatten() ) # Cathode conc # # # Algebraic components # r4 = ja_rxn - ja # r5 = jc_rxn - jc # # r6 = A_pe.dot(phi).flatten() - B_pe.dot(ce).flatten() + self.B2_pe.dot(j).flatten() # E-lyte potential # # r7 = self.A_ps_a.dot(phi_s_a).flatten() - self.B_ps_a.dot(ja_rxn).flatten() - self.B2_ps_a*self.i_app # Anode potential # r8 = self.A_ps_c.dot(phi_s_c).flatten() - self.B_ps_c.dot(jc_rxn).flatten() + self.B2_ps_c*self.i_app # Cathode potential # # res_out = numpy.concatenate( [r1,r2,r3, r4, r5, r6, r7, r8] ) # # return res_out # # # def jac_system( self, mats ) : # # A_ce = mats['A_ce'] # A_pe = mats['A_pe'] # B_pe = mats['B_pe'] # # Bjac_a = self.build_Bjac_mat( mats['eta_a'], 2.0*self.io_a/self.F, 0.5*self.F/(self.R_gas*self.T) ) # Bjac_c = self.build_Bjac_mat( mats['eta_c'], 2.0*self.io_c/self.F, 0.5*self.F/(self.R_gas*self.T) ) # # DUDcsa_ss = numpy.diag( (1.0/self.csa_max)*self.duref_a(mats['xa_ss']) ) # DUDcsc_ss = numpy.diag( (1.0/self.csc_max)*self.duref_c(mats['xc_ss']) ) # # A_ja = numpy.diag(numpy.ones(self.Na)) - (Bjac_a.dot(-1.0*DUDcsa_ss*1.0)).dot( self.D_cs_a ) # A_jc = numpy.diag(numpy.ones(self.Nc)) - (Bjac_c.dot(-1.0*DUDcsc_ss*1.0)).dot( self.D_cs_c ) # # ## fx # fx = scipy.linalg.block_diag( A_ce, self.A_cs_a, self.A_cs_c ) # ## # # ## fz # fz = numpy.zeros( [self.num_diff_vars, self.num_algr_vars] ) # # ce vs j # fz[ numpy.ix_(self.ce_inds, self.ja_inds2) ] = self.B_ce[:, :self.Na ] # fz[ numpy.ix_(self.ce_inds, self.jc_inds2) ] = self.B_ce[:, -self.Nc:] # # cs vs j # fz[ numpy.ix_(self.csa_inds, self.ja_inds2) ] = self.B_cs_a # fz[ numpy.ix_(self.csc_inds, self.jc_inds2) ] = self.B_cs_c # ## # # ## gx # gx = numpy.zeros( [self.num_algr_vars, self.num_diff_vars] ) # # j vs cs_ss # gx[ numpy.ix_(self.ja_inds2, self.csa_inds) ] = -(Bjac_a.dot(-1.0*DUDcsa_ss*1.0)).dot(self.C_cs_a) # gx[ numpy.ix_(self.jc_inds2, self.csc_inds) ] = -(Bjac_c.dot(-1.0*DUDcsc_ss*1.0)).dot(self.C_cs_c) # # phi_e vs ce # gx[ numpy.ix_(self.pe_inds2, self.ce_inds) ] = -B_pe # ## # # ## gz # # z vs z # gz0 = scipy.linalg.block_diag( A_ja, A_jc, A_pe, self.A_ps_a, self.A_ps_c ) # # z cross coupling # gz00 = numpy.zeros_like( gz0 ) # # phi_e vs j # gz00[ numpy.ix_(self.pe_inds2, self.ja_inds2) ] = self.B2_pe[:,:self.Na] # gz00[ numpy.ix_(self.pe_inds2, self.jc_inds2) ] = self.B2_pe[:,-self.Nc:] # # phi_s vs j # gz00[ numpy.ix_(self.pa_inds2, self.ja_inds2) ] = -self.B_ps_a # gz00[ numpy.ix_(self.pc_inds2, self.jc_inds2) ] = -self.B_ps_c # # j vs phi_s # gz00[ numpy.ix_(self.ja_inds2, self.pa_inds2) ] = -Bjac_a*( 1.0) # gz00[ numpy.ix_(self.jc_inds2, self.pc_inds2) ] = -Bjac_c*( 1.0) # # j vs phi_e # gz00[ numpy.ix_(self.ja_inds2, self.pe_a_inds2) ] = -Bjac_a*(-1.0) # gz00[ numpy.ix_(self.jc_inds2, self.pe_c_inds2) ] = -Bjac_c*(-1.0) # # gz = gz0 + gz00 # # return fx, fz, gx, gz # # # def cn_solver( self, x, z, Cur_vec, delta_t ) : # """ # Crank-Nicholson solver for marching through time # """ # Cur_prev, Cur, Cur_nxt = Cur_vec[0], Cur_vec[1], Cur_vec[2] # # maxIters = 20 # tol = 1e-5 # # Nx = self.num_diff_vars # Nz = self.num_algr_vars # # x_nxt = numpy.zeros( (Nx,maxIters), dtype='d' ) # z_nxt = numpy.zeros( (Nz,maxIters), dtype='d' ) # # relres = numpy.zeros( maxIters, dtype='d' ) # relres[0] = 1.0 # # var_flag = {'lim_on':0} # # # Solve for consistent ICs # if Cur != Cur_prev : # z_cons = numpy.zeros( (Nz, maxIters), dtype='d' ) # z_cons[:,0] = deepcopy(z) # # junk_f, g, mats = self.dae_system( x, z, Cur, get_mats=1 ) # for idx in range(maxIters-1) : # (junk_fx, junk_fz, junk_gx, g_z) = self.jac_system( mats ) # # Delta_z = -sparseSolve( sparseMat(g_z), g ) # z_cons[:,idx+1] = z_cons[:,idx] + Delta_z # # relres_z = numpy.linalg.norm(Delta_z,numpy.inf) / numpy.linalg.norm(z,numpy.inf) # if relres_z < tol : # break # elif idx == maxIters-1 : # print(('Warning: Max Newton iterations reached for consistency | RelChange=',relres_z*100.0)) # # z = z_cons[:,idx+1] # # #print Cur # # f, g = self.dae_system( deepcopy(x), deepcopy(z), Cur ) # # x_nxt[:,0] = deepcopy(x) # z_nxt[:,0] = deepcopy(z) # # # plt.figure(1) # # plt.plot( x_nxt[:,0] ) # # plt.plot( z_nxt[:,0] ) # # plt.show() # # for idx in range(maxIters-1) : # f_nxt, g_nxt, mats = self.dae_system( x_nxt[:,idx], z_nxt[:,idx], Cur_nxt, get_mats=1 ) # ## print 'x:',x.shape ## print 'xnxt:',x_nxt[:,idx].shape ## print 'f:',f.shape ## print 'fnxt:',f_nxt.shape # ## print 'z:', z.shape ## print 'g:', g.shape ## print 'znxt:', z_nxt[:,idx].shape ## print 'gnxt:', g_nxt.shape # # F1 = x - x_nxt[:,idx] + delta_t/2.*( f+f_nxt ) # F2 = g_nxt # F = numpy.concatenate( (F1, F2), axis=0 ) # # fx, fz, gx, gz = self.jac_system( mats ) # # # jmat = numpy.concatenate( (numpy.concatenate( (fx, fz), axis=1 ), # numpy.concatenate( (gx, gz), axis=1 )) ) # # self.Input = Cur_nxt # jmat_num = compute_deriv( self.dae_system_num, numpy.concatenate( (x_nxt[:,idx], z_nxt[:,idx]) ) ) # # fx_num = jmat_num[:self.num_diff_vars,:self.num_diff_vars] # fz_num = jmat_num[:self.num_diff_vars,self.num_diff_vars:] # gx_num = jmat_num[self.num_diff_vars:,:self.num_diff_vars] # gz_num = jmat_num[self.num_diff_vars:,self.num_diff_vars:] # # F1x_num = -sparse.eye(len(x)) + delta_t/2. * fx_num # F1z_num = delta_t/2. * fz_num # # F1_x = -sparse.eye(len(x)) + delta_t/2. * fx # F1_z = delta_t/2. * fz # F2_x = gx # F2_z = gz # # J = numpy.concatenate( (numpy.concatenate( (F1_x, F1_z), axis=1 ), # numpy.concatenate( (F2_x, F2_z), axis=1 )) ) # ## Jnum = numpy.concatenate( (numpy.concatenate( (F1x_num, F1z_num), axis=1 ), ## numpy.concatenate( (gx_num , gz_num ), axis=1 )) ) # # # Jsp = sparseMat( J ) # ## Jspnum = sparseMat( Jnum ) # ## Delta_y = -sparseSolve( Jspnum, F ) # Delta_y = -sparseSolve( Jsp, F ) # # # x_nxt[:,idx+1] = x_nxt[:,idx] + Delta_y[:Nx] # z_nxt[:,idx+1] = z_nxt[:,idx] + Delta_y[Nx:] # # # plt.figure(1) # # plt.plot(Delta_y) # # # plt.figure(2) # # plt.plot(x_nxt[:,idx]) # # plt.plot(x_nxt[:,idx+1]) # ## plt.show() # # y = numpy.concatenate( (x_nxt[:,idx+1], z_nxt[:,idx+1]), axis=0 ) # relres[idx+1] = numpy.linalg.norm( Delta_y, numpy.inf ) / numpy.linalg.norm( y, numpy.inf ) # # if (relres[idx+1]<tol) and (numpy.linalg.norm(F, numpy.inf)<tol) : # break # elif idx==maxIters-1 : # print( ('Warning: Max Newton iterations reached in main CN loop | RelChange = ',relres[-1]*100.0) ) # # x_nxtf = x_nxt[:,idx+1] # z_nxtf = z_nxt[:,idx+1] # # newtonStats = {'var_flag':var_flag} # newtonStats['iters'] = idx # newtonStats['relres'] = relres # # print '###############################################' # print 'numpy.allclose( fx, fx_num, rtol=0.001 ):', numpy.allclose( fx, fx_num, rtol=0.001 ) # # print '###############################################' # print 'numpy.allclose( fz, fz_num, rtol=0.001 ):', numpy.allclose( fz, fz_num, rtol=0.001 ) # # print '###############################################' # print 'numpy.allclose( gx, gx_num, rtol=0.001 ):', numpy.allclose( gx, gx_num, rtol=0.001 ) # # print '###############################################' # print 'numpy.allclose( gz, gz_num, rtol=0.001 ):', numpy.allclose( gz, gz_num, rtol=0.001 ) # # print '###############################################' # print 'numpy.allclose( jmat, jmat_num, rtol=0.001 ):', numpy.allclose( jmat, jmat_num, rtol=0.001 ) # # jm1_sp = sps.csr_matrix(jmat) # jm2_sp = sps.csr_matrix(jmat_num) # # fig, ax = plt.subplots(1,2) # ax[0].spy( jm1_sp ) # ax[0].set_title('Analytical Jacobian') # ax[1].spy( jm2_sp ) # ax[1].set_title('Numerical Jacobian') # plt.suptitle( 'numpy.allclose( jmat, jmat_num, rtol=0.001 ):' + str(numpy.allclose( jmat, jmat_num, rtol=0.001 )) ) # plt.show() # # print 'Finished t_step' # # return x_nxtf, z_nxtf, newtonStats1]
gpl-3.0
cgroll/j_r_docker
plugin/ipythonPlugins/src/dist/python3/beaker_runtime.py
2
3001
# Copyright 2014 TWO SIGMA OPEN SOURCE, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, urllib, urllib2, json, pandas, yaml, numpy # should be inner class to Beaker class DataFrameEncoder(json.JSONEncoder): def default(self, obj): # similarly handle Panels. # make this extensible by the user to handle their own types. if type(obj) == pandas.core.frame.DataFrame: return obj.to_dict(outtype='list') if type(obj) == pandas.core.series.Series: return obj.to_dict() if isinstance(obj, numpy.ndarray) and obj.ndim == 1: return obj.tolist() if isinstance(obj, numpy.generic): return obj.item() return json.JSONEncoder.default(self, obj) class Beaker: """Runtime support for Python code in Beaker.""" session_id = '' core_url = '127.0.0.1:' + os.environ['beaker_core_port'] password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm() password_mgr.add_password(None, core_url, 'beaker', os.environ['beaker_core_password']) urllib2.install_opener(urllib2.build_opener(urllib2.HTTPBasicAuthHandler(password_mgr))) def set4(self, var, val, unset, sync): args = {'name': var, 'session':self.session_id, 'sync':sync} if not unset: args['value'] = json.dumps(val, cls=DataFrameEncoder) req = urllib2.Request('http://' + self.core_url + '/rest/namespace/set', urllib.urlencode(args)) conn = urllib2.urlopen(req) reply = conn.read() if reply != 'ok': raise NameError(reply) def get(self, var): req = urllib2.Request('http://' + self.core_url + '/rest/namespace/get?' + urllib.urlencode({'name': var, 'session':self.session_id})) conn = urllib2.urlopen(req) result = yaml.load(conn.read()) # would use json.loads but it returns unicode if not result['defined']: raise NameError('name \'' + var + '\' is not defined in notebook namespace') return result['value'] def set_session(self, id): self.session_id = id def set(self, var, val): return self.set4(var, val, False, True) def __setattr__(self, name, value): if 'session_id' == name: self.__dict__['session_id'] = value return return self.set(name, value) def __getattr__(self, name): return self.get(name)
mit
antiface/python-acoustics
acoustics/aio.py
2
3474
from __future__ import unicode_literals import csv import io import re try: import pandas as pd except ImportError: raise Exception("Pandas is required to use this module.") def read_csv_cirrus(filename): """Read a Cirrus CSV file. Currently exists support for some types of CSV files extracted with NoiseTools. There is no support for CSVs related with occupational noise. If there are NC and NR values in the csv file, they will be stored in the returned object with attributes ``nc`` and ``nr``. If the CSV file contains time history, you can access to date and time with the ``time`` attribute. Also, it is possible to know the integration time with the ``integration_time`` attribute. :param filename: CSV file name. :returns: Pandas dataframe with all data extracted from the CSV file. :rtype: Pandas dataframe. """ with open(filename, "r") as csvfile: csvreader = csvfile.read() csvreader = re.sub(r" dB", "", csvreader) # Clean " dB" from data dialect = csv.Sniffer().sniff(csvreader, delimiters=",;") separator = dialect.delimiter # Guess decimal separator decimal_sep = re.search(r"\"\d{2,3}" r"(\.|,)" # Decimal separator r"\d{1,2}\"", csvreader).group(1) n_cols = re.search("(.+)\n", csvreader).group(1).count(separator) + 1 if n_cols < 5: unsorted_data = [] pdindex = ["Z"] for i, c in enumerate(csvreader.splitlines()): if c[:4] == '"NR"': nr = int(re.search(r"\d{2}", c).group(0)) continue elif c[:4] == '"NC"': nc = int(re.search(r"\d{2}", c).group(0)) continue if i != 0: unsorted_data.append(c.split(separator)) else: if n_cols == 3: pdindex.append(c[-2:-1]) elif n_cols == 4: pdindex.append("A") pdindex.append("C") # Create a sorted temporary csv-like file csv_data = list(zip(*unsorted_data)) temp_csv = "" for row in csv_data: temp_csv += separator.join(row) + "\n" # Then, read it with pandas data = pd.read_csv(io.StringIO(temp_csv), sep=separator, decimal=decimal_sep) # Assign NC and NR data if they are present try: data.nc = nc data.nr = nr except: pass # If the csv file contains global data from the "Details" tab in # NoiseTools, skip row names if n_cols != 2: data.index = pdindex else: data = pd.read_csv(filename, parse_dates=[[0, 1]], sep=separator, decimal=decimal_sep) # Fix time name column en_columns = data.columns.values en_columns[0] = "time" data.columns = en_columns # Guess integration time with statistical mode because the csv could # have been cleaned from unwanted noise data["time"] = pd.to_datetime(data.time) delta = data.time.diff().fillna(0) int_time = int(delta.mode()) * 1e-9 # Mode and change from ns to s if round(int_time, 2) == 0.06: # Fix for 1/16 s int_time = 0.0625 data.integration_time = int_time return data
bsd-3-clause
feranick/SpectralMachine
Archive/SpectraLearnPredict2/SpectraLearnPredict2/slp/slp_keras.py
1
13951
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' ********************************************************** * * SpectraLearnPredict2 - Keras * Perform Machine Learning on Spectroscopy Data. * * Uses: Deep Neural Networks, TensorFlow, SVM, PCA, K-Means * * By: Nicola Ferralis <[email protected]> * *********************************************************** ''' import matplotlib if matplotlib.get_backend() == 'TkAgg': matplotlib.use('Agg') import numpy as np import sys, os.path, getopt, glob, csv, pydot, graphviz import random, time, configparser, os, pickle from os.path import exists, splitext from os import rename from datetime import datetime, date from .slp_config import * #********************************************** ''' Format input data for Estimator ''' #********************************************** def input_fn(A, Cl2): import tensorflow as tf x = tf.constant(A.astype(np.float32)) y = tf.constant(Cl2) return x,y #******************************************************************************** ''' Keras ''' ''' https://keras.io/getting-started/sequential-model-guide/#examples''' #******************************************************************************** def trainKeras(En, A, Cl, A_test, Cl_test, Root): if Configuration().useTF2: print(" Using tf.keras API") import tensorflow.keras as keras #tf.keras opts = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=1) # Tensorflow 2.0 conf = tf.compat.v1.ConfigProto(gpu_options=opts) # Tensorflow 2.0 #gpus = tf.config.experimental.list_physical_devices('GPU') #if gpus: # for gpu in gpus: # tf.config.experimental.set_memory_growth(gpu, True) # if dP.setMaxMem: # tf.config.experimental.set_virtual_device_configuration( # gpus[0], # [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=dP.maxMem)]) def_val_mae = 'val_mae' def_acc = 'accuracy' def_val_acc = 'val_accuracy' else: opts = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=1) conf = tf.compat.v1.ConfigProto(gpu_options=opts) conf.gpu_options.allow_growth = True if dP.useTFKeras: print(" Using tf.keras API") import tensorflow.keras as keras #tf.keras tf.compat.v1.Session(config=conf) else: print(" Using pure keras API") import keras # pure keras from keras.backend.tensorflow_backend import set_session set_session(tf.compat.v1.Session(config=conf)) def_val_mae = 'val_mean_absolute_error' def_acc = 'acc' def_val_acc = 'val_acc' from sklearn import preprocessing from tensorflow.contrib.learn.python.learn import monitors as monitor_lib tb_directory = "keras_" + str(len(kerasDef.hidden_layers))+"HL_"+str(kerasDef.hidden_layers[0]) model_directory = "." if kerasDef.regressor: model_name = model_directory+"/keras_regressor_"+str(len(kerasDef.hidden_layers))+"HL_"+str(kerasDef.hidden_layers[0])+".hd5" else: model_name = model_directory+"/keras_"+str(len(kerasDef.hidden_layers))+"HL_"+str(kerasDef.hidden_layers[0])+".hd5" model_le = model_directory+"/keras_model_le.pkl" if kerasDef.alwaysRetrain == False: print(" Training model saved in: ", model_name, "\n") else: kerasDef.alwaysImprove = False print(" Training model not saved\n") #********************************************** ''' Initialize Estimator and training data ''' #********************************************** print(' Preprocessing data and classes for Keras\n') totA = np.vstack((A, A_test)) totCl = np.append(Cl, Cl_test) if kerasDef.regressor: Cl2 = np.copy(Cl) Cl2_test = np.copy(Cl_test) le = None else: numTotClasses = np.unique(totCl).size le = preprocessing.LabelEncoder() totCl2 = le.fit_transform(totCl) Cl2 = le.transform(Cl) Cl2_test = le.transform(Cl_test) totCl2 = keras.utils.to_categorical(totCl2, num_classes=np.unique(totCl).size) Cl2 = keras.utils.to_categorical(Cl2, num_classes=np.unique(totCl).size+1) Cl2_test = keras.utils.to_categorical(Cl2_test, num_classes=np.unique(totCl).size+1) print(" Label Encoder saved in:", model_le) with open(model_le, 'ab') as f: f.write(pickle.dumps(le)) if kerasDef.fullBatch: batch_size = A.shape[0] else: batch_size = kerasDef.batchSize printParamKeras(A) if kerasDef.alwaysImprove == True or os.path.exists(model_name) is False: model = keras.models.Sequential() for numLayers in kerasDef.hidden_layers: model.add(keras.layers.Dense(numLayers, activation = kerasDef.activation_function, input_dim=A.shape[1], kernel_regularizer=keras.regularizers.l2(kerasDef.l2_reg_strength))) model.add(keras.layers.Dropout(kerasDef.dropout_perc)) if kerasDef.regressor: model.add(keras.layers.Dense(1)) model.compile(loss='mse', optimizer=kerasDef.optimizer, metrics=['mae']) else: model.add(keras.layers.Dense(np.unique(totCl).size+1, activation = 'softmax')) model.compile(loss='categorical_crossentropy', optimizer=kerasDef.optimizer, metrics=['accuracy']) tbLog = keras.callbacks.TensorBoard(log_dir=tb_directory, histogram_freq=kerasDef.tbHistogramFreq, write_graph=True, write_images=True) #tbLog.set_model(model) tbLogs = [tbLog] log = model.fit(A, Cl2, epochs=kerasDef.trainingSteps, batch_size=batch_size, callbacks = tbLogs, verbose = 2, validation_data=(A_test, Cl2_test)) loss = np.asarray(log.history['loss']) val_loss = np.asarray(log.history['val_loss']) if kerasDef.regressor: accuracy = None val_acc = None else: accuracy = np.asarray(log.history[def_acc]) val_acc = np.asarray(log.history[def_val_acc]) if Configuration().useTF2: model.save(dP.model_name, save_format='h5') else: model.save(dP.model_name) if kerasDef.plotModel: from keras.utils import plot_model keras.utils.plot_model(model, to_file=model_directory+'/keras_MLP_model.png', show_shapes=True) import matplotlib.pyplot as plt plt.figure(tight_layout=True) plotInd = int(len(kerasDef.hidden_layers))*100+11 visibleX = True for layer in model.layers: try: w_layer = layer.get_weights()[0] ax = plt.subplot(plotInd) newX = np.arange(En[0], En[-1], (En[-1]-En[0])/w_layer.shape[0]) plt.plot(En, np.interp(En, newX, w_layer[:,0]), label=layer.get_config()['name']) plt.legend(loc='upper right') plt.setp(ax.get_xticklabels(), visible=visibleX) visibleX = False plotInd +=1 except: pass plt.xlabel('Raman shift [1/cm]') plt.legend(loc='upper right') plt.savefig('keras_weights_MLP' + '.png', dpi = 160, format = 'png') # Save plot printModelKeras(model) print("\n Number of spectra = ",A.shape[0]) print(" Number of points in each spectra = ", A.shape[1]) if kerasDef.regressor == False: print(" Number unique classes (training): ", np.unique(Cl).size) print(" Number unique classes (validation):", np.unique(Cl_test).size) print(" Number unique classes (total): ", np.unique(totCl).size) printParamKeras(A) printTrainSummary(accuracy, loss, val_acc, val_loss) else: print(" Retreaving training model from: ", model_name,"\n") model = keras.models.load_model(model_name) printModelKeras(model) printParamKeras(A) score = model.evaluate(A_test, Cl2_test, batch_size=batch_size) printEvalSummary(model_name, score) return model, le #*********************************************** ''' Summary visualization panels ''' #*********************************************** def printTrainSummary(accuracy,loss, val_acc, val_loss): if kerasDef.regressor: print('\n ========================================================') print(' \033[1mKeras MLP - Regressor\033[0m - Training Summary') print(' ========================================================') print(" \033[1mLoss\033[0m - Average: {0:.4f}; Min: {1:.4f}; Last: {2:.4f}".format(np.average(loss), np.amin(loss), loss[-1])) print(' ========================================================\n') else: print('\n ================================================') print(' \033[1mKeras MLP - Classifier \033[0m - Training Summary') print(' ================================================') print(" Accuracy - Average: {0:.2f}%; Max: {1:.2f}%".format(100*np.average(accuracy), 100*np.amax(accuracy))) print(" Loss - Average: {0:.4f}; Min: {1:.4f}".format(np.average(loss), np.amin(loss))) print("\n Validation ({0:.0f}%) - Average: {1:.2f}%; Max: {2:.2f}%".format(100*preprocDef.percentCrossValid, 100*np.average(val_acc), 100*np.amax(val_acc))) print(" Loss - Average: {0:.4f}; Min: {1:.4f}".format(np.average(val_loss), np.amin(val_loss))) print(' ================================================\n\n') def printEvalSummary(model_name, score): print('\n\n ================================================') print(' \033[1mKeras MLP\033[0m - Evaluation Summary') print(' ================================================') print(" Evaluation ({0:.0f}%) - Loss: {1:.4f}".format(100*preprocDef.percentCrossValid, score[0])) if kerasDef.regressor == False: print(" Accuracy: {0:.2f}%".format(100*score[1])) print(" Global step: {:d}".format(kerasDef.trainingSteps)) if os.path.exists(model_name) is True: print("\n Model saved in:", model_name) print(' ================================================\n') def printModelKeras(model): print('\n ================================================') print(' \033[1mKeras MLP\033[0m - Model Configuration') print(' ================================================') for conf in model.get_config(): print(conf,"\n") model.summary() def printParamKeras(A): print('\n ================================================') if kerasDef.regressor: print(' \033[1mKeras MLP - Regressor \033[0m - Parameters') else: print(' \033[1mKeras MLP - Classifier \033[0m - Parameters') print(' ================================================') print(' Optimizer:',kerasDef.optimizer_tag, '\n Hidden layers:', kerasDef.hidden_layers, '\n Activation function:',kerasDef.activation_function, '\n L2:',kerasDef.l2_reg_strength, '\n Dropout:', kerasDef.dropout_perc, '\n Learning rate:', kerasDef.learning_rate, '\n Learning decay rate:', kerasDef.learning_decay_rate) if kerasDef.fullBatch: print(' Full batch size: {0:d} spectra, {1:.3f} Mb'.format(A.shape[0],(1e-6*A.size*A.itemsize))) else: print(' Batch size:', kerasDef.batchSize) print(' ================================================\n') #******************************************************************************** ''' Predict using Keras model ''' #******************************************************************************** def predKeras(model, le, R, Cl): if kerasDef.useTFKeras: import tensorflow.keras as keras #tf.keras else: import keras # pure keras from sklearn import preprocessing if kerasDef.regressor: predictions = model.predict(R).flatten()[0] print(' ========================================================') print(' \033[1mKeras MLP - Regressor\033[0m - Prediction') print(' ========================================================') predValue = predictions print('\033[1m\n Predicted value = {0:.4f}\033[0m\n'.format(predValue)) print(' ========================================================\n') predProb = 0 else: predictions = model.predict(R, verbose=1) pred_class = np.argmax(predictions) if pred_class.size >0: predValue = le.inverse_transform([pred_class])[0] else: predValue = 0 predProb = round(100*predictions[0][pred_class],2) print('\n ==================================') print(' \033[1mKeras\033[0m - Probability >',str(kerasDef.thresholdProbabilityPred),'%') print(' ==================================') print(' Prediction\tProbability [%]') for i in range(len(predictions[0])-1): if predictions[0][i]>kerasDef.thresholdProbabilityPred: print(' ',str(np.unique(Cl)[i]),'\t\t', str('{:.2f}'.format(100*predictions[0][i]))) print(' ==================================') print('\033[1m' + '\n Predicted value (Keras) = ' + str(predValue) + ' (probability = ' + str(predProb) + '%)\033[0m\n') return predValue, predProb
gpl-3.0
fabianp/scikit-learn
sklearn/decomposition/base.py
313
5647
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause