repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
jayhetee/mpld3
mpld3/mpld3renderer.py
16
10262
""" mpld3 renderer ============== This is the renderer class which implements the mplexporter framework for mpld3 """ __all__ = ["MPLD3Renderer"] import random import json import jinja2 import itertools import numpy as np from .mplexporter.utils import color_to_hex from .mplexporter.exporter import Exporter from .mplexporter.renderers import Renderer from .utils import get_id from .plugins import get_plugins class MPLD3Renderer(Renderer): """Renderer class for mpld3 This renderer class plugs into the ``mplexporter`` package in order to convert matplotlib figures into a JSON-serializable dictionary representation which can be read by mpld3.js. """ def __init__(self): self.figure_json = None self.axes_json = None self.finished_figures = [] @staticmethod def datalabel(i): return "data{0:02d}".format(i) def add_data(self, data, key="data"): """Add a dataset to the current figure If the dataset matches any already added data, we use that instead. Parameters ---------- data : array_like a shape [N,2] array of data key : string (optional) the key to use for the data Returns ------- datadict : dictionary datadict has the keys "data", "xindex", "yindex", which will be passed to the mpld3 JSON object. """ # Check if any column of the data exists elsewhere # If so, we'll use that dataset rather than duplicating it. data = np.asarray(data) if data.ndim != 2 and data.shape[1] != 2: raise ValueError("Data is expected to be of size [N, 2]") for (i, d) in enumerate(self.datasets): if data.shape[0] != d.shape[0]: continue matches = np.array([np.all(col == d.T, axis=1) for col in data.T]) if not np.any(matches): continue # If we get here, we've found a dataset with a matching column # we'll update this data with additional columns if necessary new_data = list(self.datasets[i].T) indices = [] for j in range(data.shape[1]): whr = np.where(matches[j])[0] if len(whr): indices.append(whr[0]) else: # append a new column to the data new_data.append(data[:, j]) indices.append(len(new_data) - 1) self.datasets[i] = np.asarray(new_data).T datalabel = self.datalabel(i + 1) xindex, yindex = map(int, indices) break else: # else here can be thought of as "if no break" # if we get here, then there were no matching datasets self.datasets.append(data) datalabel = self.datalabel(len(self.datasets)) xindex = 0 yindex = 1 self.datalabels.append(datalabel) return {key: datalabel, "xindex": xindex, "yindex": yindex} def open_figure(self, fig, props): self.datasets = [] self.datalabels = [] self.figure_json = dict(width=props['figwidth'] * props['dpi'], height=props['figheight'] * props['dpi'], axes=[], data={}, id=get_id(fig)) def close_figure(self, fig): additional_css = [] additional_js = [] for i, dataset in enumerate(self.datasets): datalabel = self.datalabel(i + 1) self.figure_json['data'][datalabel] = np.asarray(dataset).tolist() self.figure_json["plugins"] = [] for plugin in get_plugins(fig): self.figure_json["plugins"].append(plugin.get_dict()) additional_css.append(plugin.css()) additional_js.append(plugin.javascript()) self.finished_figures.append((fig, self.figure_json, "".join(additional_css), "".join(additional_js))) def open_axes(self, ax, props): self.axes_json = dict(bbox=props['bounds'], xlim=props['xlim'], ylim=props['ylim'], xdomain=props['xdomain'], ydomain=props['ydomain'], xscale=props['xscale'], yscale=props['yscale'], axes=props['axes'], axesbg=props['axesbg'], axesbgalpha=props['axesbgalpha'], zoomable=bool(props['dynamic']), id=get_id(ax), lines=[], paths=[], markers=[], texts=[], collections=[], images=[]) self.figure_json['axes'].append(self.axes_json) # Get shared axes info xsib = ax.get_shared_x_axes().get_siblings(ax) ysib = ax.get_shared_y_axes().get_siblings(ax) self.axes_json['sharex'] = [get_id(axi) for axi in xsib if axi is not ax] self.axes_json['sharey'] = [get_id(axi) for axi in ysib if axi is not ax] def close_axes(self, ax): self.axes_json = None # If draw_line() is not implemented, it will be delegated to draw_path # Should we get rid of this? There's not really any advantage here def draw_line(self, data, coordinates, style, label, mplobj=None): line = self.add_data(data) line['coordinates'] = coordinates line['id'] = get_id(mplobj) for key in ['color', 'linewidth', 'dasharray', 'alpha', 'zorder']: line[key] = style[key] # Some browsers do not accept dasharray="10,0" # This should probably be addressed in mplexporter. if line['dasharray'] == "10,0": line['dasharray'] = "none" self.axes_json['lines'].append(line) def draw_path(self, data, coordinates, pathcodes, style, offset=None, offset_coordinates="data", mplobj=None): path = self.add_data(data) path['coordinates'] = coordinates path['pathcodes'] = pathcodes path['id'] = get_id(mplobj) if offset is not None: path['offset'] = list(offset) path['offsetcoordinates'] = offset_coordinates for key in ['dasharray', 'alpha', 'facecolor', 'edgecolor', 'edgewidth', 'zorder']: path[key] = style[key] # Some browsers do not accept dasharray="10,0" # This should probably be addressed in mplexporter. if path['dasharray'] == "10,0": path['dasharray'] = "none" self.axes_json['paths'].append(path) # If draw_markers is not implemented, it will be delegated to draw_path def draw_markers(self, data, coordinates, style, label, mplobj=None): markers = self.add_data(data) markers["coordinates"] = coordinates markers['id'] = get_id(mplobj, 'pts') for key in ['facecolor', 'edgecolor', 'edgewidth', 'alpha', 'zorder']: markers[key] = style[key] if style.get('markerpath'): vertices, codes = style['markerpath'] markers['markerpath'] = (vertices.tolist(), codes) self.axes_json['markers'].append(markers) # If draw_path_collection is not implemented, # it will be delegated to draw_path def draw_path_collection(self, paths, path_coordinates, path_transforms, offsets, offset_coordinates, offset_order, styles, mplobj=None): if len(paths) != 0: styles = dict(alphas=[styles['alpha']], edgecolors=[color_to_hex(ec) for ec in styles['edgecolor']], facecolors=[color_to_hex(fc) for fc in styles['facecolor']], edgewidths=styles['linewidth'], offsetcoordinates=offset_coordinates, pathcoordinates=path_coordinates, zorder=styles['zorder']) pathsdict = self.add_data(offsets, "offsets") pathsdict['paths'] = [(v.tolist(), p) for (v, p) in paths] pathsdict['pathtransforms'] = [(t[0, :2].tolist() + t[1, :2].tolist() + t[2, :2].tolist()) for t in path_transforms] pathsdict.update(styles) pathsdict['id'] = get_id(mplobj) self.axes_json['collections'].append(pathsdict) def draw_text(self, text, position, coordinates, style, text_type=None, mplobj=None): text = dict(text=text, position=tuple(position), coordinates=coordinates, h_anchor=TEXT_HA_DICT[style['halign']], v_baseline=TEXT_VA_DICT[style['valign']], rotation=-style['rotation'], fontsize=style['fontsize'], color=style['color'], alpha=style['alpha'], zorder=style['zorder'], id=get_id(mplobj)) self.axes_json['texts'].append(text) def draw_image(self, imdata, extent, coordinates, style, mplobj=None): image = dict(data=imdata, extent=extent, coordinates=coordinates) image.update(style) image['id'] = get_id(mplobj) self.axes_json['images'].append(image) TEXT_VA_DICT = {'bottom': 'auto', 'baseline': 'auto', 'center': 'central', 'top': 'hanging'} TEXT_HA_DICT = {'left': 'start', 'center': 'middle', 'right': 'end'}
bsd-3-clause
sparklingpandas/sparklingpandas
sparklingpandas/pstatcounter.py
4
5444
""" This module provides statistics for L{PRDD}s. Look at the stats() method on PRDD for more info. """ # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from sparklingpandas.utils import add_pyspark_path add_pyspark_path() from pyspark.statcounter import StatCounter import scipy.stats as scistats import numpy as np class PStatCounter(object): """ A wrapper around StatCounter which collects stats for multiple columns """ def __init__(self, dataframes, columns): """ Creates a stats counter for the provided DataFrames computing the stats for all of the columns in columns. Parameters ---------- dataframes: list of dataframes, containing the values to compute stats on. columns: list of strs, list of columns to compute the stats on. """ assert (not isinstance(columns, basestring)), "columns should be a " \ "list of strs, " \ "not a str!" assert isinstance(columns, list), "columns should be a list!" self._columns = columns self._counters = dict((column, StatCounter()) for column in columns) for df in dataframes: self.merge(df) def merge(self, frame): """ Add another DataFrame to the PStatCounter. """ for column, values in frame.iteritems(): # Temporary hack, fix later counter = self._counters.get(column) for value in values: if counter is not None: counter.merge(value) def merge_pstats(self, other): """ Merge all of the stats counters of the other PStatCounter with our counters. """ if not isinstance(other, PStatCounter): raise Exception("Can only merge PStatcounters!") for column, counter in self._counters.items(): other_counter = other._counters.get(column) self._counters[column] = counter.mergeStats(other_counter) return self def __str__(self): formatted_str = "" for column, counter in self._counters.items(): formatted_str += "(field: %s, counters: %s)" % (column, counter) return formatted_str def __repr__(self): return self.__str__() class ColumnStatCounters(object): """ A wrapper around StatCounter which collects stats for multiple columns """ def __init__(self, dataframes=None, columns=None): """ Creates a stats counter for the provided data frames computing the stats for all of the columns in columns. Parameters ---------- dataframes: list of dataframes, containing the values to compute stats on columns: list of strs, list of columns to compute the stats on """ self._column_stats = dict((column_name, StatCounter()) for column_name in columns) for single_df in dataframes: self.merge(single_df) def merge(self, frame): """ Add another DataFrame to the accumulated stats for each column. Parameters ---------- frame: pandas DataFrame we will update our stats counter with. """ for column_name, _ in self._column_stats.items(): data_arr = frame[[column_name]].values count, min_max_tup, mean, _, _, _ = \ scistats.describe(data_arr) stats_counter = StatCounter() stats_counter.n = count stats_counter.mu = mean stats_counter.m2 = np.sum((data_arr - mean) ** 2) stats_counter.minValue, stats_counter.maxValue = min_max_tup self._column_stats[column_name] = self._column_stats[ column_name].mergeStats(stats_counter) return self def merge_stats(self, other_col_counters): """ Merge statistics from a different column stats counter in to this one. Parameters ---------- other_column_counters: Other col_stat_counter to marge in to this one. """ for column_name, _ in self._column_stats.items(): self._column_stats[column_name] = self._column_stats[column_name] \ .mergeStats(other_col_counters._column_stats[column_name]) return self def __str__(self): formatted_str = "" for column, counter in self._column_stats.items(): formatted_str += "(field: %s, counters: %s)" % (column, counter) return formatted_str def __repr__(self): return self.__str__()
apache-2.0
DonBeo/scikit-learn
sklearn/linear_model/tests/test_logistic.py
11
23587
import numpy as np import scipy.sparse as sp from scipy import linalg, optimize, sparse from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_raise_message from sklearn.utils import ConvergenceWarning from sklearn.linear_model.logistic import ( LogisticRegression, logistic_regression_path, LogisticRegressionCV, _logistic_loss_and_grad, _logistic_loss_grad_hess, _multinomial_loss_grad_hess ) from sklearn.cross_validation import StratifiedKFold from sklearn.datasets import load_iris, make_classification X = [[-1, 0], [0, 1], [1, 1]] X_sp = sp.csr_matrix(X) Y1 = [0, 1, 1] Y2 = [2, 1, 0] iris = load_iris() def check_predictions(clf, X, y): """Check that the model is able to fit the classification data""" n_samples = len(y) classes = np.unique(y) n_classes = classes.shape[0] predicted = clf.fit(X, y).predict(X) assert_array_equal(clf.classes_, classes) assert_equal(predicted.shape, (n_samples,)) assert_array_equal(predicted, y) probabilities = clf.predict_proba(X) assert_equal(probabilities.shape, (n_samples, n_classes)) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(probabilities.argmax(axis=1), y) def test_predict_2_classes(): # Simple sanity check on a 2 classes dataset # Make sure it predicts the correct result on simple datasets. check_predictions(LogisticRegression(random_state=0), X, Y1) check_predictions(LogisticRegression(random_state=0), X_sp, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1) def test_error(): # Test for appropriate exception on errors assert_raises(ValueError, LogisticRegression(C=-1).fit, X, Y1) def test_predict_3_classes(): check_predictions(LogisticRegression(C=10), X, Y2) check_predictions(LogisticRegression(C=10), X_sp, Y2) def test_predict_iris(): # Test logistic regression with the iris dataset n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] # Test that both multinomial and OvR solvers handle # multiclass data correctly and give good accuracy # score (>0.95) for the training data. for clf in [LogisticRegression(C=len(iris.data)), LogisticRegression(C=len(iris.data), solver='lbfgs', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='newton-cg', multi_class='multinomial')]: clf.fit(iris.data, target) assert_array_equal(np.unique(target), clf.classes_) pred = clf.predict(iris.data) assert_greater(np.mean(pred == target), .95) probabilities = clf.predict_proba(iris.data) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) pred = iris.target_names[probabilities.argmax(axis=1)] assert_greater(np.mean(pred == target), .95) def test_multinomial_validation(): for solver in ['lbfgs', 'newton-cg']: lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial') assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1]) def test_multinomial_binary(): # Test multinomial LR on a binary problem. target = (iris.target > 0).astype(np.intp) target = np.array(["setosa", "not-setosa"])[target] for solver in ['lbfgs', 'newton-cg']: clf = LogisticRegression(solver=solver, multi_class='multinomial') clf.fit(iris.data, target) assert_equal(clf.coef_.shape, (1, iris.data.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_array_equal(clf.predict(iris.data), target) mlr = LogisticRegression(solver=solver, multi_class='multinomial', fit_intercept=False) mlr.fit(iris.data, target) pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)] assert_greater(np.mean(pred == target), .9) def test_sparsify(): # Test sparsify and densify members. n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] clf = LogisticRegression(random_state=0).fit(iris.data, target) pred_d_d = clf.decision_function(iris.data) clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred_s_d = clf.decision_function(iris.data) sp_data = sp.coo_matrix(iris.data) pred_s_s = clf.decision_function(sp_data) clf.densify() pred_d_s = clf.decision_function(sp_data) assert_array_almost_equal(pred_d_d, pred_s_d) assert_array_almost_equal(pred_d_d, pred_s_s) assert_array_almost_equal(pred_d_d, pred_d_s) def test_inconsistent_input(): # Test that an exception is raised on inconsistent input rng = np.random.RandomState(0) X_ = rng.random_sample((5, 10)) y_ = np.ones(X_.shape[0]) y_[0] = 0 clf = LogisticRegression(random_state=0) # Wrong dimensions for training data y_wrong = y_[:-1] assert_raises(ValueError, clf.fit, X, y_wrong) # Wrong dimensions for test data assert_raises(ValueError, clf.fit(X_, y_).predict, rng.random_sample((3, 12))) def test_write_parameters(): # Test that we can write to coef_ and intercept_ clf = LogisticRegression(random_state=0) clf.fit(X, Y1) clf.coef_[:] = 0 clf.intercept_[:] = 0 assert_array_almost_equal(clf.decision_function(X), 0) @raises(ValueError) def test_nan(): # Test proper NaN handling. # Regression test for Issue #252: fit used to go into an infinite loop. Xnan = np.array(X, dtype=np.float64) Xnan[0, 1] = np.nan LogisticRegression(random_state=0).fit(Xnan, Y1) def test_consistency_path(): # Test that the path algorithm is consistent rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = np.logspace(0, 4, 10) f = ignore_warnings # can't test with fit_intercept=True since LIBLINEAR # penalizes the intercept for method in ('lbfgs', 'newton-cg', 'liblinear'): coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=False, tol=1e-16, solver=method) for i, C in enumerate(Cs): lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-16) lr.fit(X, y) lr_coef = lr.coef_.ravel() assert_array_almost_equal(lr_coef, coefs[i], decimal=4) # test for fit_intercept=True for method in ('lbfgs', 'newton-cg', 'liblinear'): Cs = [1e3] coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=True, tol=1e-4, solver=method) lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4, intercept_scaling=10000) lr.fit(X, y) lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_]) assert_array_almost_equal(lr_coef, coefs[0], decimal=4) def test_liblinear_random_state(): X, y = make_classification(n_samples=20) lr1 = LogisticRegression(random_state=0) lr1.fit(X, y) lr2 = LogisticRegression(random_state=0) lr2.fit(X, y) assert_array_almost_equal(lr1.coef_, lr2.coef_) def test_logistic_loss_and_grad(): X_ref, y = make_classification(n_samples=20) n_features = X_ref.shape[1] X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = np.zeros(n_features) # First check that our derivation of the grad is correct loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad, approx_grad, decimal=2) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) assert_array_almost_equal(loss, loss_interp) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad_interp, approx_grad, decimal=2) def test_logistic_loss_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features = 50, 5 X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = .1 * np.ones(n_features) # First check that _logistic_loss_grad_hess is consistent # with _logistic_loss_and_grad loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) loss_2, grad_2, hess = _logistic_loss_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(grad, grad_2) # Now check our hessian along the second direction of the grad vector = np.zeros_like(grad) vector[1] = 1 hess_col = hess(vector) # Computation of the Hessian is particularly fragile to numerical # errors when doing simple finite differences. Here we compute the # grad along a path in the direction of the vector and then use a # least-square regression to estimate the slope e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(approx_hess_col, hess_col, decimal=3) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) loss_interp_2, grad_interp_2, hess = \ _logistic_loss_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(loss_interp, loss_interp_2) assert_array_almost_equal(grad_interp, grad_interp_2) def test_logistic_cv(): # test for LogisticRegressionCV object n_samples, n_features = 50, 5 rng = np.random.RandomState(0) X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False, solver='liblinear') lr_cv.fit(X_ref, y) lr = LogisticRegression(C=1., fit_intercept=False) lr.fit(X_ref, y) assert_array_almost_equal(lr.coef_, lr_cv.coef_) assert_array_equal(lr_cv.coef_.shape, (1, n_features)) assert_array_equal(lr_cv.classes_, [-1, 1]) assert_equal(len(lr_cv.classes_), 2) coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values())) assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features)) assert_array_equal(lr_cv.Cs_.shape, (1, )) scores = np.asarray(list(lr_cv.scores_.values())) assert_array_equal(scores.shape, (1, 3, 1)) def test_logistic_cv_sparse(): X, y = make_classification(n_samples=50, n_features=5, random_state=0) X[X < 1.0] = 0.0 csr = sp.csr_matrix(X) clf = LogisticRegressionCV(fit_intercept=True) clf.fit(X, y) clfs = LogisticRegressionCV(fit_intercept=True) clfs.fit(csr, y) assert_array_almost_equal(clfs.coef_, clf.coef_) assert_array_almost_equal(clfs.intercept_, clf.intercept_) assert_equal(clfs.C_, clf.C_) def test_intercept_logistic_helper(): n_samples, n_features = 10, 5 X, y = make_classification(n_samples=n_samples, n_features=n_features, random_state=0) # Fit intercept case. alpha = 1. w = np.ones(n_features + 1) loss_interp, grad_interp, hess_interp = _logistic_loss_grad_hess( w, X, y, alpha) # Do not fit intercept. This can be considered equivalent to adding # a feature vector of ones, i.e column of one vectors. X_ = np.hstack((X, np.ones(10)[:, np.newaxis])) loss, grad, hess = _logistic_loss_grad_hess(w, X_, y, alpha) # In the fit_intercept=False case, the feature vector of ones is # penalized. This should be taken care of. assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss) # Check gradient. assert_array_almost_equal(grad_interp[:n_features], grad[:n_features]) assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1]) rng = np.random.RandomState(0) grad = rng.rand(n_features + 1) hess_interp = hess_interp(grad) hess = hess(grad) assert_array_almost_equal(hess_interp[:n_features], hess[:n_features]) assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1]) def test_ovr_multinomial_iris(): # Test that OvR and multinomial are correct using the iris dataset. train, target = iris.data, iris.target n_samples, n_features = train.shape # Use pre-defined fold as folds generated for different y cv = StratifiedKFold(target, 3) clf = LogisticRegressionCV(cv=cv) clf.fit(train, target) clf1 = LogisticRegressionCV(cv=cv) target_copy = target.copy() target_copy[target_copy == 0] = 1 clf1.fit(train, target_copy) assert_array_almost_equal(clf.scores_[2], clf1.scores_[2]) assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_) assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_) # Test the shape of various attributes. assert_equal(clf.coef_.shape, (3, n_features)) assert_array_equal(clf.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf.Cs_.shape, (10, )) scores = np.asarray(list(clf.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) # Test that for the iris data multinomial gives a better accuracy than OvR for solver in ['lbfgs', 'newton-cg']: clf_multi = LogisticRegressionCV( solver=solver, multi_class='multinomial', max_iter=15 ) clf_multi.fit(train, target) multi_score = clf_multi.score(train, target) ovr_score = clf.score(train, target) assert_greater(multi_score, ovr_score) # Test attributes of LogisticRegressionCV assert_equal(clf.coef_.shape, clf_multi.coef_.shape) assert_array_equal(clf_multi.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf_multi.Cs_.shape, (10, )) scores = np.asarray(list(clf_multi.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) def test_logistic_regression_solvers(): X, y = make_classification(n_features=10, n_informative=5, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=3) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=3) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=3) def test_logistic_regression_solvers_multiclass(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=4) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regressioncv_class_weights(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) # Test the liblinear fails when class_weight of type dict is # provided, when it is multiclass. However it can handle # binary problems. clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2}, solver='liblinear') assert_raises(ValueError, clf_lib.fit, X, y) y_ = y.copy() y_[y == 2] = 1 clf_lib.fit(X, y_) assert_array_equal(clf_lib.classes_, [0, 1]) # Test for class_weight=auto X, y = make_classification(n_samples=20, n_features=20, n_informative=10, random_state=0) clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False, class_weight='auto') clf_lbf.fit(X, y) clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False, class_weight='auto') clf_lib.fit(X, y) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regression_convergence_warnings(): # Test that warnings are raised if model does not converge X, y = make_classification(n_samples=20, n_features=20) clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1) assert_warns(ConvergenceWarning, clf_lib.fit, X, y) assert_equal(clf_lib.n_iter_, 2) def test_logistic_regression_multinomial(): # Tests for the multinomial option in logistic regression # Some basic attributes of Logistic Regression n_samples, n_features, n_classes = 50, 20, 3 X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=10, n_classes=n_classes, random_state=0) clf_int = LogisticRegression(solver='lbfgs', multi_class='multinomial') clf_int.fit(X, y) assert_array_equal(clf_int.coef_.shape, (n_classes, n_features)) clf_wint = LogisticRegression(solver='lbfgs', multi_class='multinomial', fit_intercept=False) clf_wint.fit(X, y) assert_array_equal(clf_wint.coef_.shape, (n_classes, n_features)) # Similar tests for newton-cg solver option clf_ncg_int = LogisticRegression(solver='newton-cg', multi_class='multinomial') clf_ncg_int.fit(X, y) assert_array_equal(clf_ncg_int.coef_.shape, (n_classes, n_features)) clf_ncg_wint = LogisticRegression(solver='newton-cg', fit_intercept=False, multi_class='multinomial') clf_ncg_wint.fit(X, y) assert_array_equal(clf_ncg_wint.coef_.shape, (n_classes, n_features)) # Compare solutions between lbfgs and newton-cg assert_almost_equal(clf_int.coef_, clf_ncg_int.coef_, decimal=3) assert_almost_equal(clf_wint.coef_, clf_ncg_wint.coef_, decimal=3) assert_almost_equal(clf_int.intercept_, clf_ncg_int.intercept_, decimal=3) # Test that the path give almost the same results. However since in this # case we take the average of the coefs after fitting across all the # folds, it need not be exactly the same. for solver in ['lbfgs', 'newton-cg']: clf_path = LogisticRegressionCV(solver=solver, multi_class='multinomial', Cs=[1.]) clf_path.fit(X, y) assert_array_almost_equal(clf_path.coef_, clf_int.coef_, decimal=3) assert_almost_equal(clf_path.intercept_, clf_int.intercept_, decimal=3) def test_multinomial_loss_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features, n_classes = 100, 5, 3 X = rng.randn(n_samples, n_features) w = rng.rand(n_classes, n_features) Y = np.zeros((n_samples, n_classes)) ind = np.argmax(np.dot(X, w.T), axis=1) Y[range(0, n_samples), ind] = 1 w = w.ravel() sample_weights = np.ones(X.shape[0]) _, grad, hessp = _multinomial_loss_grad_hess(w, X, Y, alpha=1., sample_weight=sample_weights) # extract first column of hessian matrix vec = np.zeros(n_features * n_classes) vec[0] = 1 hess_col = hessp(vec) # Estimate hessian using least squares as done in # test_logistic_loss_grad_hess e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _multinomial_loss_grad_hess(w + t * vec, X, Y, alpha=1., sample_weight=sample_weights)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(hess_col, approx_hess_col) def test_liblinear_decision_function_zero(): # Test negative prediction when decision_function values are zero. # Liblinear predicts the positive class when decision_function values # are zero. This is a test to verify that we do not do the same. # See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600 # and the PR https://github.com/scikit-learn/scikit-learn/pull/3623 X, y = make_classification(n_samples=5, n_features=5) clf = LogisticRegression(fit_intercept=False) clf.fit(X, y) # Dummy data such that the decision function becomes zero. X = np.zeros((5, 5)) assert_array_equal(clf.predict(X), np.zeros(5)) def test_liblinear_logregcv_sparse(): # Test LogRegCV with solver='liblinear' works for sparse matrices X, y = make_classification(n_samples=10, n_features=5) clf = LogisticRegressionCV(solver='liblinear') clf.fit(sparse.csr_matrix(X), y) def test_logreg_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: clf = LogisticRegression(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % clf.intercept_scaling) assert_raise_message(ValueError, msg, clf.fit, X, Y1) def test_logreg_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False clf = LogisticRegression(fit_intercept=False) clf.fit(X, Y1) assert_equal(clf.intercept_, 0.)
bsd-3-clause
percyfal/bokeh
examples/app/pivot/main.py
8
27818
''' Provide a pivot chart maker example app. Similar to Excel pivot charts, but with additonal ability to explode into multiple charts. See README.md for more information. ''' from __future__ import division import os import math import json import pandas as pd import collections import bokeh.io as bio import bokeh.layouts as bl import bokeh.models.widgets as bmw import bokeh.models.sources as bms import bokeh.models.tools as bmt import bokeh.plotting as bp import datetime import six.moves.urllib.parse as urlp #Defaults to configure: PLOT_WIDTH = 300 PLOT_HEIGHT = 300 PLOT_FONT_SIZE = 10 PLOT_AXIS_LABEL_SIZE = 8 PLOT_LABEL_ORIENTATION = 45 OPACITY = 0.8 X_SCALE = 1 Y_SCALE = 1 CIRCLE_SIZE = 9 BAR_WIDTH = 0.5 LINE_WIDTH = 2 COLORS = ['#5e4fa2', '#3288bd', '#66c2a5', '#abdda4', '#e6f598', '#fee08b', '#fdae61', '#f46d43', '#d53e4f', '#9e0142']*1000 C_NORM = "#31AADE" CHARTTYPES = ['Dot', 'Line', 'Bar', 'Area'] STACKEDTYPES = ['Bar', 'Area'] AGGREGATIONS = ['None', 'Sum'] def get_data(data_source): ''' Read a csv into a pandas dataframe, and determine which columns of the dataframe are discrete (strings), continuous (numbers), able to be filtered (aka filterable), and able to be used as a series (aka seriesable). NA values are filled based on the type of column, and the dataframe and columns are returned. Args: data_source (string): Path to csv file. Returns: df_source (pandas dataframe): A dataframe of the csv source, with filled NA values. cols (dict): Keys are categories of columns of df_source, and values are a list of columns of that category. ''' df_source = pd.read_csv(data_source) cols = {} cols['all'] = df_source.columns.values.tolist() cols['discrete'] = [x for x in cols['all'] if df_source[x].dtype == object] cols['continuous'] = [x for x in cols['all'] if x not in cols['discrete']] cols['filterable'] = cols['discrete']+[x for x in cols['continuous'] if len(df_source[x].unique()) < 100] cols['seriesable'] = cols['discrete']+[x for x in cols['continuous'] if len(df_source[x].unique()) < 60] df_source[cols['discrete']] = df_source[cols['discrete']].fillna('{BLANK}') df_source[cols['continuous']] = df_source[cols['continuous']].fillna(0) return (df_source, cols) def build_widgets(df_source, cols, defaults, init_load=False, init_config={}): ''' Use a dataframe and its columns to set widget options. Widget values may be set by URL parameters via init_config. Args: df_source (pandas dataframe): Dataframe of the csv source. cols (dict): Keys are categories of columns of df_source, and values are a list of columns of that category. defaults (dict): Keys correspond to widgets, and values (str) are the default values of those widgets. init_load (boolean, optional): If this is the initial page load, then this will be True, else False. init_config (dict): Initial widget configuration passed via URL. Returns: wdg (ordered dict): Dictionary of bokeh.model.widgets. ''' #Add widgets wdg = collections.OrderedDict() wdg['data'] = bmw.TextInput(title='Data Source (required)', value=defaults['data_source'], css_classes=['wdgkey-data']) wdg['x_dropdown'] = bmw.Div(text='X-Axis (required)', css_classes=['x-dropdown']) wdg['x'] = bmw.Select(title='X-Axis (required)', value=defaults['x'], options=['None'] + cols['all'], css_classes=['wdgkey-x', 'x-drop']) wdg['x_group'] = bmw.Select(title='Group X-Axis By', value=defaults['x_group'], options=['None'] + cols['seriesable'], css_classes=['wdgkey-x_group', 'x-drop']) wdg['y_dropdown'] = bmw.Div(text='Y-Axis (required)', css_classes=['y-dropdown']) wdg['y'] = bmw.Select(title='Y-Axis (required)', value=defaults['y'], options=['None'] + cols['all'], css_classes=['wdgkey-y', 'y-drop']) wdg['y_agg'] = bmw.Select(title='Y-Axis Aggregation', value='Sum', options=AGGREGATIONS, css_classes=['wdgkey-y_agg', 'y-drop']) wdg['series_dropdown'] = bmw.Div(text='Series', css_classes=['series-dropdown']) wdg['series'] = bmw.Select(title='Separate Series By', value=defaults['series'], options=['None'] + cols['seriesable'], css_classes=['wdgkey-series', 'series-drop']) wdg['series_legend'] = bmw.Div(text='', css_classes=['series-drop']) wdg['explode_dropdown'] = bmw.Div(text='Explode', css_classes=['explode-dropdown']) wdg['explode'] = bmw.Select(title='Explode By', value=defaults['explode'], options=['None'] + cols['seriesable'], css_classes=['wdgkey-explode', 'explode-drop']) wdg['explode_group'] = bmw.Select(title='Group Exploded Charts By', value=defaults['explode_group'], options=['None'] + cols['seriesable'], css_classes=['wdgkey-explode_group', 'explode-drop']) wdg['filters'] = bmw.Div(text='Filters', css_classes=['filters-dropdown']) for j, col in enumerate(cols['filterable']): val_list = [str(i) for i in sorted(df_source[col].unique().tolist())] wdg['heading_filter_'+str(j)] = bmw.Div(text=col, css_classes=['filter-head']) wdg['filter_'+str(j)] = bmw.CheckboxGroup(labels=val_list, active=list(range(len(val_list))), css_classes=['wdgkey-filter_'+str(j), 'filter']) wdg['update'] = bmw.Button(label='Update Filters', button_type='success', css_classes=['filters-update']) wdg['adjustments'] = bmw.Div(text='Plot Adjustments', css_classes=['adjust-dropdown']) wdg['chart_type'] = bmw.Select(title='Chart Type', value=defaults['chart_type'], options=CHARTTYPES, css_classes=['wdgkey-chart_type', 'adjust-drop']) wdg['plot_width'] = bmw.TextInput(title='Plot Width (px)', value=str(PLOT_WIDTH), css_classes=['wdgkey-plot_width', 'adjust-drop']) wdg['plot_height'] = bmw.TextInput(title='Plot Height (px)', value=str(PLOT_HEIGHT), css_classes=['wdgkey-plot_height', 'adjust-drop']) wdg['plot_title'] = bmw.TextInput(title='Plot Title', value='', css_classes=['wdgkey-plot_title', 'adjust-drop']) wdg['plot_title_size'] = bmw.TextInput(title='Plot Title Font Size', value=str(PLOT_FONT_SIZE), css_classes=['wdgkey-plot_title_size', 'adjust-drop']) wdg['opacity'] = bmw.TextInput(title='Opacity (0-1)', value=str(OPACITY), css_classes=['wdgkey-opacity', 'adjust-drop']) wdg['x_scale'] = bmw.TextInput(title='X Scale', value=str(X_SCALE), css_classes=['wdgkey-x_scale', 'adjust-drop']) wdg['x_min'] = bmw.TextInput(title='X Min', value='', css_classes=['wdgkey-x_min', 'adjust-drop']) wdg['x_max'] = bmw.TextInput(title='X Max', value='', css_classes=['wdgkey-x_max', 'adjust-drop']) wdg['x_title'] = bmw.TextInput(title='X Title', value='', css_classes=['wdgkey-x_title', 'adjust-drop']) wdg['x_title_size'] = bmw.TextInput(title='X Title Font Size', value=str(PLOT_FONT_SIZE), css_classes=['wdgkey-x_title_size', 'adjust-drop']) wdg['x_major_label_size'] = bmw.TextInput(title='X Labels Font Size', value=str(PLOT_AXIS_LABEL_SIZE), css_classes=['wdgkey-x_major_label_size', 'adjust-drop']) wdg['x_major_label_orientation'] = bmw.TextInput(title='X Labels Degrees', value=str(PLOT_LABEL_ORIENTATION), css_classes=['wdgkey-x_major_label_orientation', 'adjust-drop']) wdg['y_scale'] = bmw.TextInput(title='Y Scale', value=str(Y_SCALE), css_classes=['wdgkey-y_scale', 'adjust-drop']) wdg['y_min'] = bmw.TextInput(title='Y Min', value='', css_classes=['wdgkey-y_min', 'adjust-drop']) wdg['y_max'] = bmw.TextInput(title='Y Max', value='', css_classes=['wdgkey-y_max', 'adjust-drop']) wdg['y_title'] = bmw.TextInput(title='Y Title', value='', css_classes=['wdgkey-y_title', 'adjust-drop']) wdg['y_title_size'] = bmw.TextInput(title='Y Title Font Size', value=str(PLOT_FONT_SIZE), css_classes=['wdgkey-y_title_size', 'adjust-drop']) wdg['y_major_label_size'] = bmw.TextInput(title='Y Labels Font Size', value=str(PLOT_AXIS_LABEL_SIZE), css_classes=['wdgkey-y_major_label_size', 'adjust-drop']) wdg['circle_size'] = bmw.TextInput(title='Circle Size (Dot Only)', value=str(CIRCLE_SIZE), css_classes=['wdgkey-circle_size', 'adjust-drop']) wdg['bar_width'] = bmw.TextInput(title='Bar Width (Bar Only)', value=str(BAR_WIDTH), css_classes=['wdgkey-bar_width', 'adjust-drop']) wdg['line_width'] = bmw.TextInput(title='Line Width (Line Only)', value=str(LINE_WIDTH), css_classes=['wdgkey-line_width', 'adjust-drop']) wdg['download'] = bmw.Button(label='Download csv', button_type='success') wdg['export_config'] = bmw.Div(text='Export Config to URL', css_classes=['export-config', 'bk-bs-btn', 'bk-bs-btn-success']) #use init_config (from 'widgets' parameter in URL query string) to configure widgets. if init_load: for key in init_config: if key in wdg: if hasattr(wdg[key], 'value'): wdg[key].value = str(init_config[key]) elif hasattr(wdg[key], 'active'): wdg[key].active = init_config[key] #Add update functions for widgets wdg['data'].on_change('value', update_data) wdg['update'].on_click(update_plots) wdg['download'].on_click(download) for name in wdg_col: wdg[name].on_change('value', update_wdg_col) for name in wdg_non_col: wdg[name].on_change('value', update_wdg) return wdg def set_df_plots(df_source, cols, wdg): ''' Apply filters, scaling, aggregation, and sorting to source dataframe, and return the result. Args: df_source (pandas dataframe): Dataframe of the csv source. cols (dict): Keys are categories of columns of df_source, and values are a list of columns of that category. wdg (ordered dict): Dictionary of bokeh model widgets. Returns: df_plots (pandas dataframe): df_source after having been filtered, scaled, aggregated, and sorted. ''' df_plots = df_source.copy() #Apply filters for j, col in enumerate(cols['filterable']): active = [wdg['filter_'+str(j)].labels[i] for i in wdg['filter_'+str(j)].active] if col in cols['continuous']: active = [float(i) for i in active] df_plots = df_plots[df_plots[col].isin(active)] #Scale Axes if wdg['x_scale'].value != '' and wdg['x'].value in cols['continuous']: df_plots[wdg['x'].value] = df_plots[wdg['x'].value] * float(wdg['x_scale'].value) if wdg['y_scale'].value != '' and wdg['y'].value in cols['continuous']: df_plots[wdg['y'].value] = df_plots[wdg['y'].value] * float(wdg['y_scale'].value) #Apply Aggregation if wdg['y_agg'].value == 'Sum' and wdg['y'].value in cols['continuous']: groupby_cols = [wdg['x'].value] if wdg['x_group'].value != 'None': groupby_cols = [wdg['x_group'].value] + groupby_cols if wdg['series'].value != 'None': groupby_cols = [wdg['series'].value] + groupby_cols if wdg['explode'].value != 'None': groupby_cols = [wdg['explode'].value] + groupby_cols if wdg['explode_group'].value != 'None': groupby_cols = [wdg['explode_group'].value] + groupby_cols df_plots = df_plots.groupby(groupby_cols, as_index=False, sort=False)[wdg['y'].value].sum() #Sort Dataframe sortby_cols = [wdg['x'].value] if wdg['x_group'].value != 'None': sortby_cols = [wdg['x_group'].value] + sortby_cols if wdg['series'].value != 'None': sortby_cols = [wdg['series'].value] + sortby_cols if wdg['explode'].value != 'None': sortby_cols = [wdg['explode'].value] + sortby_cols if wdg['explode_group'].value != 'None': sortby_cols = [wdg['explode_group'].value] + sortby_cols df_plots = df_plots.sort_values(sortby_cols).reset_index(drop=True) #Rearrange column order for csv download unsorted_columns = [col for col in df_plots.columns if col not in sortby_cols + [wdg['y'].value]] df_plots = df_plots[sortby_cols + unsorted_columns + [wdg['y'].value]] return df_plots def create_figures(df_plots, wdg, cols): ''' Create figures based on the data in a dataframe and widget configuration, and return figures in a list. The explode widget determines if there will be multiple figures. Args: df_plots (pandas dataframe): Dataframe of csv source after being filtered, scaled, aggregated, and sorted. wdg (ordered dict): Dictionary of bokeh model widgets. cols (dict): Keys are categories of columns of df_source, and values are a list of columns of that category. Returns: plot_list (list): List of bokeh.model.figures. ''' plot_list = [] df_plots_cp = df_plots.copy() if wdg['explode'].value == 'None': plot_list.append(create_figure(df_plots_cp, df_plots, wdg, cols)) else: if wdg['explode_group'].value == 'None': for explode_val in df_plots_cp[wdg['explode'].value].unique().tolist(): df_exploded = df_plots_cp[df_plots_cp[wdg['explode'].value].isin([explode_val])] plot_list.append(create_figure(df_exploded, df_plots, wdg, cols, explode_val)) else: for explode_group in df_plots_cp[wdg['explode_group'].value].unique().tolist(): df_exploded_group = df_plots_cp[df_plots_cp[wdg['explode_group'].value].isin([explode_group])] for explode_val in df_exploded_group[wdg['explode'].value].unique().tolist(): df_exploded = df_exploded_group[df_exploded_group[wdg['explode'].value].isin([explode_val])] plot_list.append(create_figure(df_exploded, df_plots, wdg, cols, explode_val, explode_group)) return plot_list def create_figure(df_exploded, df_plots, wdg, cols, explode_val=None, explode_group=None): ''' Create and return a figure based on the data in a dataframe and widget configuration. Args: df_exploded (pandas dataframe): Dataframe of just the data that will be plotted in this figure. df_plots (pandas dataframe): Dataframe of all plots data, used only for maintaining consistent series colors. wdg (ordered dict): Dictionary of bokeh model widgets. cols (dict): Keys are categories of columns of df_source, and values are a list of columns of that category. explode_val (string, optional): The value in the column designated by wdg['explode'] that applies to this figure. explode_group (string, optional): The value in the wdg['explode_group'] column that applies to this figure. Returns: p (bokeh.model.figure): A figure, with all glyphs added by the add_glyph() function. ''' # If x_group has a value, create a combined column in the dataframe for x and x_group x_col = wdg['x'].value if wdg['x_group'].value != 'None': x_col = str(wdg['x_group'].value) + '_' + str(wdg['x'].value) df_exploded[x_col] = df_exploded[wdg['x_group'].value].map(str) + ' ' + df_exploded[wdg['x'].value].map(str) #Build x and y ranges and figure title kw = dict() #Set x and y ranges. When x is grouped, there is added complication of separating the groups xs = df_exploded[x_col].values.tolist() ys = df_exploded[wdg['y'].value].values.tolist() if wdg['x_group'].value != 'None': kw['x_range'] = [] unique_groups = df_exploded[wdg['x_group'].value].unique().tolist() unique_xs = df_exploded[wdg['x'].value].unique().tolist() for i, ugr in enumerate(unique_groups): for uxs in unique_xs: kw['x_range'].append(str(ugr) + ' ' + str(uxs)) #Between groups, add entries that consist of spaces. Increase number of spaces from #one break to the next so that each entry is unique kw['x_range'].append(' ' * (i + 1)) elif wdg['x'].value in cols['discrete']: kw['x_range'] = sorted(set(xs)) if wdg['y'].value in cols['discrete']: kw['y_range'] = sorted(set(ys)) #Set figure title kw['title'] = wdg['plot_title'].value seperator = '' if kw['title'] == '' else ', ' if explode_val is not None: if explode_group is not None: kw['title'] = kw['title'] + seperator + "%s = %s" % (wdg['explode_group'].value, str(explode_group)) seperator = '' if kw['title'] == '' else ', ' kw['title'] = kw['title'] + seperator + "%s = %s" % (wdg['explode'].value, str(explode_val)) #Add figure tools hover = bmt.HoverTool( tooltips=[ ("ser", "@ser_legend"), ("x", "@x_legend"), ("y", "@y_legend"), ] ) TOOLS = [bmt.BoxZoomTool(), bmt.PanTool(), hover, bmt.ResetTool(), bmt.SaveTool()] #Create figure with the ranges, titles, and tools, and adjust formatting and labels p = bp.figure(plot_height=int(wdg['plot_height'].value), plot_width=int(wdg['plot_width'].value), tools=TOOLS, **kw) p.toolbar.active_drag = TOOLS[0] p.title.text_font_size = wdg['plot_title_size'].value + 'pt' p.xaxis.axis_label = wdg['x_title'].value p.yaxis.axis_label = wdg['y_title'].value p.xaxis.axis_label_text_font_size = wdg['x_title_size'].value + 'pt' p.yaxis.axis_label_text_font_size = wdg['y_title_size'].value + 'pt' p.xaxis.major_label_text_font_size = wdg['x_major_label_size'].value + 'pt' p.yaxis.major_label_text_font_size = wdg['y_major_label_size'].value + 'pt' p.xaxis.major_label_orientation = 'horizontal' if wdg['x_major_label_orientation'].value == '0' else math.radians(float(wdg['x_major_label_orientation'].value)) if wdg['x'].value in cols['continuous']: if wdg['x_min'].value != '': p.x_range.start = float(wdg['x_min'].value) if wdg['x_max'].value != '': p.x_range.end = float(wdg['x_max'].value) if wdg['y'].value in cols['continuous']: if wdg['y_min'].value != '': p.y_range.start = float(wdg['y_min'].value) if wdg['y_max'].value != '': p.y_range.end = float(wdg['y_max'].value) #Add glyphs to figure c = C_NORM if wdg['series'].value == 'None': if wdg['y_agg'].value != 'None' and wdg['y'].value in cols['continuous']: xs = df_exploded[x_col].values.tolist() ys = df_exploded[wdg['y'].value].values.tolist() add_glyph(wdg, p, xs, ys, c) else: full_series = df_plots[wdg['series'].value].unique().tolist() #for colors only if wdg['chart_type'].value in STACKEDTYPES: #We are stacking the series xs_full = sorted(df_exploded[x_col].unique().tolist()) y_bases_pos = [0]*len(xs_full) y_bases_neg = [0]*len(xs_full) for i, ser in enumerate(df_exploded[wdg['series'].value].unique().tolist()): c = COLORS[full_series.index(ser)] df_series = df_exploded[df_exploded[wdg['series'].value].isin([ser])] xs_ser = df_series[x_col].values.tolist() ys_ser = df_series[wdg['y'].value].values.tolist() if wdg['chart_type'].value not in STACKEDTYPES: #The series will not be stacked add_glyph(wdg, p, xs_ser, ys_ser, c, series=ser) else: #We are stacking the series ys_pos = [ys_ser[xs_ser.index(x)] if x in xs_ser and ys_ser[xs_ser.index(x)] > 0 else 0 for i, x in enumerate(xs_full)] ys_neg = [ys_ser[xs_ser.index(x)] if x in xs_ser and ys_ser[xs_ser.index(x)] < 0 else 0 for i, x in enumerate(xs_full)] ys_stacked_pos = [ys_pos[i] + y_bases_pos[i] for i in range(len(xs_full))] ys_stacked_neg = [ys_neg[i] + y_bases_neg[i] for i in range(len(xs_full))] add_glyph(wdg, p, xs_full, ys_stacked_pos, c, y_bases=y_bases_pos, series=ser) add_glyph(wdg, p, xs_full, ys_stacked_neg, c, y_bases=y_bases_neg, series=ser) y_bases_pos = ys_stacked_pos y_bases_neg = ys_stacked_neg return p def add_glyph(wdg, p, xs, ys, c, y_bases=None, series=None): ''' Add a glyph to a Bokeh figure, depending on the chosen chart type. Args: wdg (ordered dict): Dictionary of bokeh model widgets. p (bokeh.model.figure): Bokeh figure. xs (list): List of x-values. These could be numeric or strings. ys (list): List of y-values. These could be numeric or strings. If series data is stacked, these values include stacking. c (string): Color to use for this series. y_bases (list, optional): Only used when stacking series. This is the previous cumulative stacking level. series (string): Name of current series for this glyph. Returns: Nothing. ''' alpha = float(wdg['opacity'].value) y_unstacked = list(ys) if y_bases is None else [ys[i] - y_bases[i] for i in range(len(ys))] ser = ['None']*len(xs) if series is None else [series]*len(xs) if wdg['chart_type'].value == 'Dot': source = bms.ColumnDataSource({'x': xs, 'y': ys, 'x_legend': xs, 'y_legend': y_unstacked, 'ser_legend': ser}) p.circle('x', 'y', source=source, color=c, size=int(wdg['circle_size'].value), fill_alpha=alpha, line_color=None, line_width=None) elif wdg['chart_type'].value == 'Line': source = bms.ColumnDataSource({'x': xs, 'y': ys, 'x_legend': xs, 'y_legend': y_unstacked, 'ser_legend': ser}) p.line('x', 'y', source=source, color=c, alpha=alpha, line_width=float(wdg['line_width'].value)) elif wdg['chart_type'].value == 'Bar': if y_bases is None: y_bases = [0]*len(ys) centers = [(ys[i] + y_bases[i])/2 for i in range(len(ys))] heights = [abs(ys[i] - y_bases[i]) for i in range(len(ys))] source = bms.ColumnDataSource({'x': xs, 'y': centers, 'x_legend': xs, 'y_legend': y_unstacked, 'h': heights, 'ser_legend': ser}) p.rect('x', 'y', source=source, height='h', color=c, fill_alpha=alpha, width=float(wdg['bar_width'].value), line_color=None, line_width=None) elif wdg['chart_type'].value == 'Area': if y_bases is None: y_bases = [0]*len(ys) xs_around = xs + xs[::-1] ys_around = y_bases + ys[::-1] source = bms.ColumnDataSource({'x': xs_around, 'y': ys_around}) p.patch('x', 'y', source=source, alpha=alpha, fill_color=c, line_color=None, line_width=None) def build_series_legend(df_plots, series_val): ''' Return html for series legend, based on values of column that was chosen for series, and global COLORS. Args: df_plots (pandas dataframe): Dataframe of all plots data. series_val (string): Header for column chosen as series. Returns: series_legend_string (string): html to be used as legend. ''' series_legend_string = '<div class="legend-header">Series Legend</div><div class="legend-body">' if series_val != 'None': active_list = df_plots[series_val].unique().tolist() for i, txt in reversed(list(enumerate(active_list))): series_legend_string += '<div class="legend-entry"><span class="legend-color" style="background-color:' + str(COLORS[i]) + ';"></span>' series_legend_string += '<span class="legend-text">' + str(txt) +'</span></div>' series_legend_string += '</div>' return series_legend_string def update_data(attr, old, new): ''' When data source is updated, rebuild widgets and plots. ''' defaults['data_source'] = gl['widgets']['data'].value for w in wdg_col: defaults[w] = 'None' defaults['chart_type'] = 'Dot' gl['df_source'], gl['columns'] = get_data(defaults['data_source']) gl['widgets'] = build_widgets(gl['df_source'], gl['columns'], defaults) gl['controls'].children = list(gl['widgets'].values()) gl['plots'].children = [] def update_wdg(attr, old, new): ''' When general widgets are updated (not in wdg_col), update plots only. ''' update_plots() def update_wdg_col(attr, old, new): ''' When widgets in wdg_col are updated, set the options of all wdg_col widgets, and update plots. ''' set_wdg_col_options() update_plots() def set_wdg_col_options(): ''' Limit available options for wdg_col widgets based on their selected values, so that users cannot select the same value for two different wdg_col widgets. ''' cols = gl['columns'] wdg = gl['widgets'] #get list of selected values and use to reduce selection options. sels = [str(wdg[w].value) for w in wdg_col if str(wdg[w].value) !='None'] all_reduced = [x for x in cols['all'] if x not in sels] ser_reduced = [x for x in cols['seriesable'] if x not in sels] for w in wdg_col: val = str(wdg[w].value) none_append = [] if val == 'None' else ['None'] opt_reduced = all_reduced if w in wdg_col_all else ser_reduced wdg[w].options = [val] + opt_reduced + none_append def update_plots(): ''' Make sure x axis and y axis are set. If so, set the dataframe for the plots and build them. ''' if gl['widgets']['x'].value == 'None' or gl['widgets']['y'].value == 'None': gl['plots'].children = [] return gl['df_plots'] = set_df_plots(gl['df_source'], gl['columns'], gl['widgets']) gl['widgets']['series_legend'].text = build_series_legend(gl['df_plots'], gl['widgets']['series'].value) gl['plots'].children = create_figures(gl['df_plots'], gl['widgets'], gl['columns']) def download(): ''' Download a csv file of the currently viewed data to the downloads/ directory, with the current timestamp. ''' gl['df_plots'].to_csv(os.path.dirname(os.path.realpath(__file__)) + '/downloads/out '+ datetime.datetime.now().strftime("%Y-%m-%d %H-%M-%S-%f")+'.csv', index=False) #initialize globals dict gl = {'df_source':None, 'df_plots':None, 'columns':None, 'widgets':None, 'controls': None, 'plots':None} #List of widgets that use columns as their selectors wdg_col_all = ['x', 'y'] #all columns available for these widgets wdg_col_ser = ['x_group', 'series', 'explode', 'explode_group'] #seriesable columns available for these widgets wdg_col = wdg_col_all + wdg_col_ser #List of widgets that don't use columns as selector and share general widget update function wdg_non_col = ['chart_type', 'y_agg', 'plot_title', 'plot_title_size', 'plot_width', 'plot_height', 'opacity', 'x_min', 'x_max', 'x_scale', 'x_title', 'x_title_size', 'x_major_label_size', 'x_major_label_orientation', 'y_min', 'y_max', 'y_scale', 'y_title', 'y_title_size', 'y_major_label_size', 'circle_size', 'bar_width', 'line_width'] #Specify default widget values defaults = {} defaults['data_source'] = os.path.dirname(os.path.realpath(__file__)) + '/csv/US_electric_power_generation.csv' for w in wdg_col: defaults[w] = 'None' defaults['x'] = 'Year' defaults['y'] = 'Electricity Generation (TWh)' defaults['series'] = 'Technology' defaults['explode'] = 'Case' defaults['chart_type'] = 'Area' #On initial load, read 'widgets' parameter from URL query string and use to set data source (data_source) #and widget configuration object (wdg_config) wdg_config = {} args = bio.curdoc().session_context.request.arguments wdg_arr = args.get('widgets') if wdg_arr is not None: wdg_config = json.loads(urlp.unquote(wdg_arr[0].decode('utf-8'))) if 'data' in wdg_config: defaults['data_source'] = str(wdg_config['data']) for w in wdg_col: defaults[w] = 'None' #build widgets and plots gl['df_source'], gl['columns'] = get_data(defaults['data_source']) gl['widgets'] = build_widgets(gl['df_source'], gl['columns'], defaults, init_load=True, init_config=wdg_config) set_wdg_col_options() gl['controls'] = bl.widgetbox(list(gl['widgets'].values()), id='widgets_section') gl['plots'] = bl.column([], id='plots_section') update_plots() layout = bl.row(gl['controls'], gl['plots'], id='layout') bio.curdoc().add_root(layout) bio.curdoc().title = "Exploding Pivot Chart Maker"
bsd-3-clause
peterbraden/tensorflow
tensorflow/contrib/learn/python/learn/tests/test_early_stopping.py
5
2501
# Copyright 2015-present The Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import random from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score from tensorflow.contrib.learn.python.learn.estimators._sklearn import train_test_split class EarlyStoppingTest(tf.test.TestCase): def testIrisES(self): random.seed(42) iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) X_train, X_val, y_train, y_val = train_test_split( X_train, y_train, test_size=0.2) val_monitor = learn.monitors.ValidationMonitor(X_val, y_val, n_classes=3) # classifier without early stopping - overfitting classifier1 = learn.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3, steps=1000) classifier1.fit(X_train, y_train) score1 = accuracy_score(y_test, classifier1.predict(X_test)) # classifier with early stopping - improved accuracy on testing set classifier2 = learn.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3, steps=1000) classifier2.fit(X_train, y_train, val_monitor) score2 = accuracy_score(y_test, classifier2.predict(X_test)) # self.assertGreater(score2, score1, "No improvement using early stopping.") if __name__ == "__main__": tf.test.main()
apache-2.0
pdamodaran/yellowbrick
yellowbrick/features/importances.py
1
13346
# yellowbrick.features.importances # Feature importance visualizer # # Author: Benjamin Bengfort <[email protected]> # Created: Fri Mar 02 15:21:36 2018 -0500 # Author: Rebecca Bilbro <[email protected]> # Updated: Sun Jun 24 10:53:36 2018 -0500 # # Copyright (C) 2018 District Data Labs # For license information, see LICENSE.txt # # ID: importances.py [] [email protected] $ """ Implementation of a feature importances visualizer. This visualizer sits in kind of a weird place since it is technically a model scoring visualizer, but is generally used for feature engineering. """ ########################################################################## ## Imports ########################################################################## import warnings import numpy as np import matplotlib.pyplot as plt from yellowbrick.base import ModelVisualizer from yellowbrick.utils import is_dataframe, is_classifier from yellowbrick.exceptions import YellowbrickTypeError, NotFitted, YellowbrickWarning from ..draw import bar_stack ########################################################################## ## Feature Visualizer ########################################################################## class FeatureImportances(ModelVisualizer): """ Displays the most informative features in a model by showing a bar chart of features ranked by their importances. Although primarily a feature engineering mechanism, this visualizer requires a model that has either a ``coef_`` or ``feature_importances_`` parameter after fit. Note: Some classification models such as ``LogisticRegression``, return ``coef_`` as a multidimensional array of shape ``(n_classes, n_features)``. In this case, the ``FeatureImportances`` visualizer computes the mean of the ``coefs_`` by class for each feature. Parameters ---------- model : Estimator A Scikit-Learn estimator that learns feature importances. Must support either ``coef_`` or ``feature_importances_`` parameters. ax : matplotlib Axes, default: None The axis to plot the figure on. If None is passed in the current axes will be used (or generated if required). labels : list, default: None A list of feature names to use. If a DataFrame is passed to fit and features is None, feature names are selected as the column names. relative : bool, default: True If true, the features are described by their relative importance as a percentage of the strongest feature component; otherwise the raw numeric description of the feature importance is shown. absolute : bool, default: False Make all coeficients absolute to more easily compare negative coeficients with positive ones. xlabel : str, default: None The label for the X-axis. If None is automatically determined by the underlying model and options provided. stack : bool, default: False If true and the classifier returns multi-class feature importance, then a stacked bar plot is plotted; otherwise the mean of the feature importance across classes are plotted. kwargs : dict Keyword arguments that are passed to the base class and may influence the visualization as defined in other Visualizers. Attributes ---------- features_ : np.array The feature labels ranked according to their importance feature_importances_ : np.array The numeric value of the feature importance computed by the model classes_ : np.array The classees labeled. Is not None only for classifier. Examples -------- >>> from sklearn.ensemble import GradientBoostingClassifier >>> visualizer = FeatureImportances(GradientBoostingClassifier()) >>> visualizer.fit(X, y) >>> visualizer.poof() """ def __init__(self, model, ax=None, labels=None, relative=True, absolute=False, xlabel=None, stack=False, **kwargs): super(FeatureImportances, self).__init__(model, ax, **kwargs) # Data Parameters self.set_params( labels=labels, relative=relative, absolute=absolute, xlabel=xlabel, stack=stack ) def fit(self, X, y=None, **kwargs): """ Fits the estimator to discover the feature importances described by the data, then draws those importances as a bar plot. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n An array or series of target or class values kwargs : dict Keyword arguments passed to the fit method of the estimator. Returns ------- self : visualizer The fit method must always return self to support pipelines. """ super(FeatureImportances, self).fit(X, y, **kwargs) # Get the feature importances from the model self.feature_importances_ = self._find_importances_param() # Get the classes from the model if is_classifier(self): self.classes_ = self._find_classes_param() else: self.classes_ = None self.stack = False # If self.stack = True and feature importances is a multidim array, # we're expecting a shape of (n_classes, n_features) # therefore we flatten by taking the average by # column to get shape (n_features,) (see LogisticRegression) if not self.stack and self.feature_importances_.ndim > 1: self.feature_importances_ = np.mean(self.feature_importances_, axis=0) warnings.warn(( "detected multi-dimensional feature importances but stack=False, " "using mean to aggregate them." ), YellowbrickWarning) # Apply absolute value filter before normalization if self.absolute: self.feature_importances_ = np.abs(self.feature_importances_) # Normalize features relative to the maximum if self.relative: maxv = np.abs(self.feature_importances_).max() self.feature_importances_ /= maxv self.feature_importances_ *= 100.0 # Create labels for the feature importances # NOTE: this code is duplicated from MultiFeatureVisualizer if self.labels is None: # Use column names if a dataframe if is_dataframe(X): self.features_ = np.array(X.columns) # Otherwise use the column index as the labels else: _, ncols = X.shape self.features_ = np.arange(0, ncols) else: self.features_ = np.array(self.labels) # Sort the features and their importances if self.stack: sort_idx = np.argsort(np.mean(self.feature_importances_, 0)) self.features_ = self.features_[sort_idx] self.feature_importances_ = self.feature_importances_[:, sort_idx] else: sort_idx = np.argsort(self.feature_importances_) self.features_ = self.features_[sort_idx] self.feature_importances_ = self.feature_importances_[sort_idx] # Draw the feature importances self.draw() return self def draw(self, **kwargs): """ Draws the feature importances as a bar chart; called from fit. """ # Quick validation for param in ('feature_importances_', 'features_'): if not hasattr(self, param): raise NotFitted("missing required param '{}'".format(param)) # Find the positions for each bar pos = np.arange(self.features_.shape[0]) + 0.5 # Plot the bar chart if self.stack: legend_kws = {'bbox_to_anchor':(1.04, 0.5), 'loc':"center left"} bar_stack(self.feature_importances_, ax=self.ax, labels=list(self.classes_), ticks=self.features_, orientation='h', legend_kws=legend_kws) else: self.ax.barh(pos, self.feature_importances_, align='center') # Set the labels for the bars self.ax.set_yticks(pos) self.ax.set_yticklabels(self.features_) return self.ax def finalize(self, **kwargs): """ Finalize the drawing setting labels and title. """ # Set the title self.set_title('Feature Importances of {} Features using {}'.format( len(self.features_), self.name)) # Set the xlabel self.ax.set_xlabel(self._get_xlabel()) # Remove the ygrid self.ax.grid(False, axis='y') # Ensure we have a tight fit plt.tight_layout() def _find_classes_param(self): """ Searches the wrapped model for the classes_ parameter. """ for attr in ["classes_"]: try: return getattr(self.estimator, attr) except AttributeError: continue raise YellowbrickTypeError( "could not find classes_ param on {}".format( self.estimator.__class__.__name__ ) ) def _find_importances_param(self): """ Searches the wrapped model for the feature importances parameter. """ for attr in ("feature_importances_", "coef_"): try: return getattr(self.estimator, attr) except AttributeError: continue raise YellowbrickTypeError( "could not find feature importances param on {}".format( self.estimator.__class__.__name__ ) ) def _get_xlabel(self): """ Determines the xlabel based on the underlying data structure """ # Return user-specified label if self.xlabel: return self.xlabel # Label for coefficients if hasattr(self.estimator, "coef_"): if self.relative: return "relative coefficient magnitude" return "coefficient value" # Default label for feature_importances_ if self.relative: return "relative importance" return "feature importance" def _is_fitted(self): """ Returns true if the visualizer has been fit. """ return hasattr(self, 'feature_importances_') and hasattr(self, 'features_') ########################################################################## ## Quick Method ########################################################################## def feature_importances(model, X, y=None, ax=None, labels=None, relative=True, absolute=False, xlabel=None, stack=False, **kwargs): """ Displays the most informative features in a model by showing a bar chart of features ranked by their importances. Although primarily a feature engineering mechanism, this visualizer requires a model that has either a ``coef_`` or ``feature_importances_`` parameter after fit. Parameters ---------- model : Estimator A Scikit-Learn estimator that learns feature importances. Must support either ``coef_`` or ``feature_importances_`` parameters. X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n, optional An array or series of target or class values ax : matplotlib Axes, default: None The axis to plot the figure on. If None is passed in the current axes will be used (or generated if required). labels : list, default: None A list of feature names to use. If a DataFrame is passed to fit and features is None, feature names are selected as the column names. relative : bool, default: True If true, the features are described by their relative importance as a percentage of the strongest feature component; otherwise the raw numeric description of the feature importance is shown. absolute : bool, default: False Make all coeficients absolute to more easily compare negative coeficients with positive ones. xlabel : str, default: None The label for the X-axis. If None is automatically determined by the underlying model and options provided. stack : bool, default: False If true and the classifier returns multi-class feature importance, then a stacked bar plot is plotted; otherwise the mean of the feature importance across classes are plotted. kwargs : dict Keyword arguments that are passed to the base class and may influence the visualization as defined in other Visualizers. Returns ------- ax : matplotlib axes Returns the axes that the parallel coordinates were drawn on. """ # Instantiate the visualizer visualizer = FeatureImportances( model, ax, labels, relative, absolute, xlabel, stack, **kwargs) # Fit and transform the visualizer (calls draw) visualizer.fit(X, y) visualizer.finalize() # Return the axes object on the visualizer return visualizer.ax
apache-2.0
imanmafi/High-Frequency-Trading-Model-with-IB
params/strategy_parameters.py
7
1981
""" Author: James Ma Email stuff here: [email protected] """ from datetime import datetime import pandas as pd import datetime as dt class StrategyParameters: def __init__(self, evaluation_time_secs, resample_interval_secs): self.resample_interval_secs = resample_interval_secs self.__evaluation_time_secs = evaluation_time_secs self.__bootstrap_completed = False self.last_evaluation_time = datetime.now() self.__COL_BETA = 'beta' self.__COL_VOLATILITY_RATIO = 'volatility_ratio' self.indicators = pd.DataFrame(columns=[self.__COL_BETA, self.__COL_VOLATILITY_RATIO]) def add_indicators(self, beta, volatility_ratio): timestamp = dt.datetime.now() self.indicators.loc[timestamp] = [beta, volatility_ratio] self.indicators.sort_index(inplace=True) def trim_indicators_series(self, cutoff_timestamp): self.indicators = self.indicators[ self.indicators.index >= cutoff_timestamp] def get_volatility_ratio(self): return self.__get_latest_indicator_value(self.__COL_VOLATILITY_RATIO, 1) def get_beta(self): return self.__get_latest_indicator_value(self.__COL_BETA) def __get_latest_indicator_value(self, column_name, default_value=0): if len(self.indicators) > 0: return self.indicators[column_name].values[-1] return default_value def set_bootstrap_completed(self): self.__bootstrap_completed = True self.set_new_evaluation_time() def is_evaluation_time_elapsed(self): seconds_elapsed = (datetime.now() - self.last_evaluation_time).seconds return seconds_elapsed > self.__evaluation_time_secs def set_new_evaluation_time(self): self.last_evaluation_time = datetime.now() def is_bootstrap_completed(self): return self.__bootstrap_completed
mit
rajat1994/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
85
8565
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import TempMemmap from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_lassocd_readonly_data(): n_components = 12 with TempMemmap(X) as X_read_only: dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X_read_only).transform(X_read_only) assert_array_almost_equal(np.dot(code, dico.components_), X_read_only, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
mhallsmoore/qstrader
tests/unit/broker/portfolio/test_position_handler.py
1
4684
from collections import OrderedDict import numpy as np import pandas as pd import pytz from qstrader.broker.portfolio.position_handler import PositionHandler from qstrader.broker.transaction.transaction import Transaction def test_transact_position_new_position(): """ Tests the 'transact_position' method for a transaction with a brand new asset and checks that all objects are set correctly. """ # Create the PositionHandler, Transaction and # carry out a transaction ph = PositionHandler() asset = 'EQ:AMZN' transaction = Transaction( asset, quantity=100, dt=pd.Timestamp('2015-05-06 15:00:00', tz=pytz.UTC), price=960.0, order_id=123, commission=26.83 ) ph.transact_position(transaction) # Check that the position object is set correctly pos = ph.positions[asset] assert pos.buy_quantity == 100 assert pos.sell_quantity == 0 assert pos.net_quantity == 100 assert pos.direction == 1 assert pos.avg_price == 960.2683000000001 def test_transact_position_current_position(): """ Tests the 'transact_position' method for a transaction with a current asset and checks that all objects are set correctly. """ # Create the PositionHandler, Transaction and # carry out a transaction ph = PositionHandler() asset = 'EQ:AMZN' dt = pd.Timestamp('2015-05-06 15:00:00', tz=pytz.UTC) new_dt = pd.Timestamp('2015-05-06 16:00:00', tz=pytz.UTC) transaction_long = Transaction( asset, quantity=100, dt=dt, price=960.0, order_id=123, commission=26.83 ) ph.transact_position(transaction_long) transaction_long_again = Transaction( asset, quantity=200, dt=new_dt, price=990.0, order_id=234, commission=18.53 ) ph.transact_position(transaction_long_again) # Check that the position object is set correctly pos = ph.positions[asset] assert pos.buy_quantity == 300 assert pos.sell_quantity == 0 assert pos.net_quantity == 300 assert pos.direction == 1 assert np.isclose(pos.avg_price, 980.1512) def test_transact_position_quantity_zero(): """ Tests the 'transact_position' method for a transaction with net zero quantity after the transaction to ensure deletion of the position. """ # Create the PositionHandler, Transaction and # carry out a transaction ph = PositionHandler() asset = 'EQ:AMZN' dt = pd.Timestamp('2015-05-06 15:00:00', tz=pytz.UTC) new_dt = pd.Timestamp('2015-05-06 16:00:00', tz=pytz.UTC) transaction_long = Transaction( asset, quantity=100, dt=dt, price=960.0, order_id=123, commission=26.83 ) ph.transact_position(transaction_long) transaction_close = Transaction( asset, quantity=-100, dt=new_dt, price=980.0, order_id=234, commission=18.53 ) ph.transact_position(transaction_close) # Go long and then close, then check that the # positions OrderedDict is empty assert ph.positions == OrderedDict() def test_total_values_for_no_transactions(): """ Tests 'total_market_value', 'total_unrealised_pnl', 'total_realised_pnl' and 'total_pnl' for the case of no transactions being carried out. """ ph = PositionHandler() assert ph.total_market_value() == 0.0 assert ph.total_unrealised_pnl() == 0.0 assert ph.total_realised_pnl() == 0.0 assert ph.total_pnl() == 0.0 def test_total_values_for_two_separate_transactions(): """ Tests 'total_market_value', 'total_unrealised_pnl', 'total_realised_pnl' and 'total_pnl' for single transactions in two separate assets. """ ph = PositionHandler() # Asset 1 asset1 = 'EQ:AMZN' dt1 = pd.Timestamp('2015-05-06 15:00:00', tz=pytz.UTC) trans_pos_1 = Transaction( asset1, quantity=75, dt=dt1, price=483.45, order_id=1, commission=15.97 ) ph.transact_position(trans_pos_1) # Asset 2 asset2 = 'EQ:MSFT' dt2 = pd.Timestamp('2015-05-07 15:00:00', tz=pytz.UTC) trans_pos_2 = Transaction( asset2, quantity=250, dt=dt2, price=142.58, order_id=2, commission=8.35 ) ph.transact_position(trans_pos_2) # Check all total values assert ph.total_market_value() == 71903.75 assert np.isclose(ph.total_unrealised_pnl(), -24.31999999999971) assert ph.total_realised_pnl() == 0.0 assert np.isclose(ph.total_pnl(), -24.31999999999971)
mit
f171a9a3497c8b/fractals
fractals/lsys.py
1
7311
#!/usr/bin/python3 """FRACTALS: LINDENMAYER SYSTEM""" import numpy as np import matplotlib.pyplot as plt PRECISION = np.float32 def calc_rot_matrix(angle): """ Input: angle -- integer or float number -- rotation angle in radians -- positive number gives counter-clockwise direction of rotation (turns left) -- negative number gives clockwise direction of rotation (turns right) Returns 2x2 numpy array of floats, a 2D rotation matrix. """ return np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]], dtype=PRECISION) def generate_pattern(lvl, states, rewrite_rules): """ Inputs: lvl -- integer number -- the number of times (iterations) rewrite rules will be applied states -- string, the initial state (axiom) of the system rewrite_rules -- dictionary -- keys (character) -> symbols -- values (string) -> replacement rules Returns string of symbols. """ # In each iteration: check every character in states, replace valid symbol # with rewrite rule or copy character, and update states for _ in range(lvl + 1): states = ''.join([rewrite_rules.get(symbol, symbol) for symbol in states]) # Clean states form rewrite rule flags/symbols drawing_rules = 'F+-' states = ''.join([symbol for symbol in states if symbol in drawing_rules]) return states def generate_points(alpha, theta, length, states): """ Inputs: alpha -- integer or float number -- angle (in degrees) between the positive x axis and initial displacement vector theta -- integer or float number -- angle (in degrees) of a single rotation length -- integer or float number -- length of a displacement vector for one step states -- string of symbols Retrurns numpy array of coordinates of points on a plane. Notes: ** Initial displacement vector starting point is allways in the origin of the coordinate system. ** Only character F in states (alphabet) generates a new point. """ # Convert angles from degrees to radians alpha = np.radians(alpha) theta = np.radians(theta) # Displacement vector, 2x1 numpy array vec = np.array([[np.cos(alpha)], [np.sin(alpha)]], dtype=PRECISION) vec_len = np.sqrt(vec[0] ** 2 + vec[1] ** 2) # Rescale displacement vector vec = vec / vec_len * length # Rotation matrices for positive and negative angles rot_left = calc_rot_matrix(theta) rot_right = calc_rot_matrix(-theta) # Container to store xy components/coordinates of points on a plane points = np.zeros(shape=(2, states.count('F') + 1), dtype=PRECISION) point_index = 1 for st in states: if st == '+': vec = np.dot(rot_right, vec) elif st == '-': vec = np.dot(rot_left, vec) else: points[:, point_index] = points[:, point_index - 1] + vec[:, 0] point_index += 1 return points def lindemayer(lvl, length, init_angle, angle, init_state, title='LINDENMAYER FRACTAL', color='#0080FF', **rewrite_rules): """ Inputs: lvl -- integer number -- the number of times (iterations) rewrite rules will be applied length -- integer or float number -- length of a displacement vector of each step init_angle -- integer or float number -- initial angle (in degrees) measured from the positive x axis angle -- integer or float number -- angle (in degrees) of a single rotation -- positive number gives counter-clockwise direction of rotation (turns left) -- negative number gives clockwise direction of rotation (turns right) init_state -- string, the initial state (axiom) of the system title -- string, title of the plot color -- string, valid matplotlib color rewrite_rules -- keyword arguments -- keys (character) hold flags/symbols -- values (string) hold rules for production/replacement Displays the plot of calculated sequence of points. This function does not return any value. """ states = generate_pattern(lvl, init_state, rewrite_rules) points = generate_points(init_angle, angle, length, states) plt.ioff() plt.figure(num=title, facecolor='white', frameon=False, clear=True) plt.style.use('fivethirtyeight') plt.grid(False) plt.axis('off') plt.axis('equal') plot_options = { 'color': color, 'alpha': 0.5, 'linestyle': '-', 'linewidth': 1.3, 'marker': '', 'antialiased': False, } plt.plot(points[0, :], points[1, :], **plot_options) plt.show() def heighway_dragon(lvl, length=1, init_angle=0, angle=90): lindemayer(lvl, length, init_angle, angle, 'FX', 'HEIGHWAY DRAGON', X='X+YF+', Y='-FX-Y') def twin_dragon(lvl, length=1, init_angle=0, angle=90): lindemayer(lvl, length, init_angle, angle, 'FX+FX+', 'TWIN DRAGON', X='X+YF', Y='FX-Y') def tetra_dragon(lvl, length=1, init_angle=0, angle=120): lindemayer(lvl, length, init_angle, angle, 'F', 'TETRA DRAGON', F='F+F-F') def levy_dragon(lvl, length=1, init_angle=90, angle=45): lindemayer(lvl, length, init_angle, angle, 'F', 'LEVY DRAGON', F='+F--F+') def koch_snowflake(lvl, length=1, init_angle=0, angle=60): lindemayer(lvl, length, init_angle, angle, 'F++F++F', 'KOCH SNOWFLAKE', F='F-F++F-F') def koch_curve(lvl, length=1, init_angle=0, angle=90): lindemayer(lvl, length, init_angle, angle, 'F+F+F+F', 'KOCH CURVE', F='F+F-F-FF+F+F-F') def sierpinski_triangle(lvl, length=1, init_angle=0, angle=120): lindemayer(lvl, length, init_angle, angle, 'F+F+F', 'SIERPINSKI TRIANGLE', F='F+F-F-F+F') def hilbert_curve(lvl, length=1, init_angle=0, angle=90): lindemayer(lvl, length, init_angle, angle, 'X', 'HILBERT CURVE', X='-YF+XFX+FY-', Y='+XF-YFY-FX+') def moor_curve(lvl, length=1, init_angle=0, angle=90): lindemayer(lvl, length, init_angle, angle, 'XFX+F+XFX', 'MOOR CURVE', X='-YF+XFX+FY-', Y='+XF-YFY-FX+') def peano_curve(lvl, length=1, init_angle=0, angle=90): lindemayer(lvl, length, init_angle, angle, 'X', 'PEANO CURVE', X='XFYFX+F+YFXFY-F-XFYFX', Y='YFXFY-F-XFYFX+F+YFXFY') def tiles(lvl, length=1, init_angle=0, angle=90): lindemayer(lvl, length, init_angle, angle, 'F+F+F+F', 'TILES', F='FF+F-F+F+FF') def pentadendryt(lvl, length=2, init_angle=0, angle=72): lindemayer(lvl, length, init_angle, angle, 'F', 'PENTADENDRYT', F='F+F-F--F+F+F') if __name__ == '__main__': heighway_dragon(7) # twin_dragon(10) # tetra_dragon(6) # levy_dragon(13) koch_snowflake(2) # koch_curve(2) # sierpinski_triangle(5) # hilbert_curve(5) moor_curve(4) # peano_curve(3) # tiles(2) # pentadendryt(4)
mit
mozman/ezdxf
tests/test_08_addons/test_814_text2path.py
1
14273
# Copyright (c) 2021, Manfred Moitzi # License: MIT License import pytest pytest.importorskip("matplotlib") # requires matplotlib! from matplotlib.font_manager import FontProperties, findfont from ezdxf.tools.fonts import FontFace from ezdxf.addons import text2path from ezdxf.path import Path from ezdxf import path, bbox from ezdxf.entities import Text, Hatch from ezdxf.layouts import VirtualLayout NOTO_SANS_SC = "Noto Sans SC" noto_sans_sc_not_found = "Noto" not in findfont( FontProperties(family=NOTO_SANS_SC) ) def _to_paths(s, f="Arial"): return text2path.make_paths_from_str(s, font=FontFace(family=f)) @pytest.mark.parametrize( "s,c", [ ["1", 1], ["2", 1], [".", 1], ["0", 2], ["a", 2], ["!", 2], ["@", 2], ["8", 3], ["ü", 3], ["&", 3], ["ä", 4], ["ö", 4], ["%", 5], ], ) def test_make_paths_from_str(s, c): assert len(_to_paths(s)) == c @pytest.mark.skipif( noto_sans_sc_not_found, reason=f'Font "{NOTO_SANS_SC}" not found' ) @pytest.mark.parametrize("s,c", [["中", 3], ["国", 4], ["文", 3], ["字", 2]]) def test_chinese_char_paths_from_str(s, c): assert len(_to_paths(s, f=NOTO_SANS_SC)) == c def contour_and_holes(group): return group[0], group[1:] @pytest.mark.parametrize( "s,h", [ ["1", 0], ["2", 0], [".", 0], ["0", 1], ["a", 1], ["8", 2], ], ) def test_group_one_contour_with_holes(s, h): paths = _to_paths(s) result = list(path.group_paths(paths)) contour, holes = contour_and_holes(result[0]) assert isinstance(contour, Path) assert len(holes) == h @pytest.mark.parametrize("s", [":", "!", ";", "="]) def test_group_two_contours_without_holes(s): paths = _to_paths(s) result = list(path.group_paths(paths)) assert len(result) == 2 contour, holes = contour_and_holes(result[0]) assert isinstance(contour, Path) assert len(holes) == 0 @pytest.mark.parametrize( "s", [ "Ü", "ö", "ä", ], ) def test_group_three_contours_and_ignore_holes(s): paths = _to_paths(s) result = list(path.group_paths(paths)) assert len(result) == 3 contour, holes = contour_and_holes(result[0]) assert isinstance(contour, Path) def test_group_percent_sign(): # Special case %: lower o is inside of the slash bounding box, but HATCH # creation works as expected! paths = _to_paths("%") result = list(path.group_paths(paths)) assert len(result) == 2 contour, holes = contour_and_holes(result[0]) assert isinstance(contour, Path) assert len(holes) == 2 @pytest.mark.skipif( noto_sans_sc_not_found, reason='Font "Noto Sans SC" not found' ) @pytest.mark.parametrize("s,c", [["中", 1], ["国", 1], ["文", 2], ["字", 2]]) def test_group_chinese_chars_and_ignore_holes(s, c): paths = _to_paths(s, f=NOTO_SANS_SC) result = list(path.group_paths(paths)) assert len(result) == c contour, holes = contour_and_holes(result[0]) assert isinstance(contour, Path) @pytest.fixture(scope="module") def ff(): return FontFace(family="Arial") class TestMakePathFromString: # Surprise - even 0 and negative values work without any exceptions! @pytest.mark.parametrize("size", [0, 0.05, 1, 2, 100, -1, -2, -100]) def test_text_path_height_for_exact_drawing_units(self, size, ff): paths = text2path.make_paths_from_str("X", font=ff, size=size) bbox = path.bbox(paths) assert bbox.size.y == pytest.approx(abs(size)) @pytest.mark.parametrize("size", [0.05, 1, 2, 100]) def test_path_coordinates_for_positive_size(self, size, ff): paths = text2path.make_paths_from_str("X", font=ff, size=size) bbox = path.bbox(paths) assert bbox.extmax.y == pytest.approx(size) assert bbox.extmin.y == pytest.approx(0) @pytest.mark.parametrize("size", [-0.05, -1, -2, -100]) def test_path_coordinates_for_negative_size(self, size, ff): # Negative text height mirrors text about the x-axis! paths = text2path.make_paths_from_str("X", font=ff, size=size) bbox = path.bbox(paths) assert bbox.extmax.y == pytest.approx(0) assert bbox.extmin.y == pytest.approx(size) @pytest.mark.parametrize("size", [0.05, 1, 2, 100]) def test_length_for_fit_alignment(self, size, ff): length = 3 paths = text2path.make_paths_from_str( "XXX", font=ff, size=size, align="FIT", length=length ) bbox = path.bbox(paths) assert bbox.size.x == pytest.approx(length), "expect exact length" assert bbox.size.y == pytest.approx( size ), "text height should be unscaled" @pytest.mark.parametrize("size", [0.05, 1, 2, 100]) def test_scaled_height_and_length_for_aligned_text(self, size, ff): length = 3 paths = text2path.make_paths_from_str( "XXX", font=ff, size=size, align="LEFT" ) default = path.bbox(paths) paths = text2path.make_paths_from_str( "XXX", font=ff, size=size, align="ALIGNED", length=length ) bbox = path.bbox(paths) scale = bbox.size.x / default.size.x assert bbox.size.x == pytest.approx(length), "expect exact length" assert bbox.size.y == pytest.approx( size * scale ), "text height should be scaled" def test_paths_from_empty_string(self, ff): paths = text2path.make_paths_from_str("", font=ff) assert len(paths) == 0 def test_make_multi_path_object(self, ff): p = text2path.make_path_from_str("ABC", font=ff) assert p.has_sub_paths is True assert len(list(p.sub_paths())) == 6 def test_make_empty_multi_path_object(self, ff): p = text2path.make_path_from_str("", font=ff) assert p.has_sub_paths is False assert len(p) == 0 class TestMakeHatchesFromString: def test_hatches_from_empty_string(self, ff): hatches = text2path.make_hatches_from_str("", font=ff) assert len(hatches) == 0 def test_make_exterior_only_hatches(self, ff): hatches = text2path.make_hatches_from_str("XXX", font=ff) assert len(hatches) == 3 assert len(hatches[0].paths) == 1 def test_make_hatches_with_holes(self, ff): hatches = text2path.make_hatches_from_str("AAA", font=ff) assert len(hatches) == 3 assert len(hatches[0].paths) == 2, "expected external and one hole" def test_total_length_for_fit_alignment(self, ff): length = 3 hatches = text2path.make_hatches_from_str( "XXX", font=ff, align="FIT", length=length ) paths = [] for hatch in hatches: paths.extend(path.from_hatch(hatch)) bbox = path.bbox(paths) assert bbox.size.x == pytest.approx(length), "expect exact length" assert bbox.size.y == pytest.approx( 1.0 ), "text height should be unscaled" def test_check_entity_type(): with pytest.raises(TypeError): text2path.check_entity_type(None) with pytest.raises(TypeError): text2path.check_entity_type(Hatch()) def make_text(text, location, alignment, height=1.0, rotation=0): text = Text.new( dxfattribs={ "text": text, "height": height, "rotation": rotation, } ) text.set_pos(location, align=alignment) return text def get_path_bbox(text): p = text2path.make_path_from_entity(text) return path.bbox([p], flatten=0) def get_paths_bbox(text): paths = text2path.make_paths_from_entity(text) return path.bbox(paths, flatten=0) def get_hatches_bbox(text): hatches = text2path.make_hatches_from_entity(text) return bbox.extents(hatches, flatten=0) @pytest.fixture(params=[get_path_bbox, get_paths_bbox, get_hatches_bbox]) def get_bbox(request): return request.param class TestMakePathsFromEntity: """Test Paths (and Hatches) from TEXT entities. make_hatches_from_entity() is basically make_paths_from_entity(), but returns Hatch entities instead of Path objects. Important: Don't use text with top or bottom curves for testing ("S", "O"). The Path bounding box calculation uses the "fast" method by checking only the curve control points, which are outside the curve borders. """ @pytest.mark.parametrize( "builder, type_", [ (text2path.make_paths_from_entity, Path), (text2path.make_hatches_from_entity, Hatch), ], ) def test_text_returns_correct_types(self, builder, type_): text = make_text("TEXT", (0, 0), "LEFT") objects = builder(text) assert len(objects) == 4 assert isinstance(objects[0], type_) def test_text_height(self, get_bbox): text = make_text("TEXT", (0, 0), "LEFT", height=1.5) bbox = get_bbox(text) assert bbox.size.y == pytest.approx(1.5) def test_alignment_left(self, get_bbox): text = make_text("TEXT", (7, 7), "LEFT") bbox = get_bbox(text) # font rendering is tricky, base offsets depend on the rendering engine # and on extended font metrics, ... assert bbox.extmin.x == pytest.approx(7, abs=0.1) def test_alignment_center(self, get_bbox): text = make_text("TEXT", (7, 7), "CENTER") bbox = get_bbox(text) assert bbox.center.x == pytest.approx(7) def test_alignment_right(self, get_bbox): text = make_text("TEXT", (7, 7), "RIGHT") bbox = get_bbox(text) assert bbox.extmax.x == pytest.approx(7) def test_alignment_baseline(self, get_bbox): text = make_text("TEXT", (7, 7), "CENTER") bbox = get_bbox(text) assert bbox.extmin.y == pytest.approx(7) def test_alignment_bottom(self, get_bbox): text = make_text("j", (7, 7), "BOTTOM_CENTER") bbox = get_bbox(text) # bottom border of descender should be 7, but ... assert bbox.extmin.y == pytest.approx(7, abs=0.1) def test_alignment_middle(self, get_bbox): text = make_text("X", (7, 7), "MIDDLE_CENTER") bbox = get_bbox(text) assert bbox.center.y == pytest.approx(7) def test_alignment_top(self, get_bbox): text = make_text("X", (7, 7), "TOP_CENTER") bbox = get_bbox(text) assert bbox.extmax.y == pytest.approx(7) def test_alignment_fit(self, get_bbox): length = 2 height = 1 text = make_text("TEXT", (0, 0), "LEFT", height=height) text.set_pos((1, 0), (1 + length, 0), "FIT") bbox = get_bbox(text) assert ( bbox.size.x == length ), "expected text length fits into given length" assert bbox.size.y == height, "expected unscaled text height" assert bbox.extmin.isclose((1, 0)) def test_alignment_aligned(self, get_bbox): length = 2 height = 1 text = make_text("TEXT", (0, 0), "CENTER", height=height) bbox = get_bbox(text) ratio = bbox.size.x / bbox.size.y text.set_pos((1, 0), (1 + length, 0), "ALIGNED") bbox = get_bbox(text) assert ( bbox.size.x == length ), "expected text length fits into given length" assert bbox.size.y != height, "expected scaled text height" assert bbox.extmin.isclose((1, 0)) assert bbox.size.x / bbox.size.y == pytest.approx( ratio ), "expected same width/height ratio" def test_rotation_90(self, get_bbox): # Horizontal reference measurements: bbox_hor = get_bbox(make_text("TEXT", (7, 7), "MIDDLE_CENTER")) text_vert = make_text("TEXT", (7, 7), "MIDDLE_CENTER", rotation=90) bbox_vert = get_bbox(text_vert) assert bbox_hor.center == bbox_vert.center assert bbox_hor.size.x == bbox_vert.size.y assert bbox_hor.size.y == bbox_vert.size.x Kind = text2path.Kind class TestVirtualEntities: @pytest.fixture def text(self): return make_text("TEST", (0, 0), "LEFT") def test_virtual_entities_as_hatches(self, text): entities = text2path.virtual_entities(text, kind=Kind.HATCHES) types = {e.dxftype() for e in entities} assert types == {"HATCH"} def test_virtual_entities_as_splines_and_polylines(self, text): entities = text2path.virtual_entities(text, kind=Kind.SPLINES) types = {e.dxftype() for e in entities} assert types == {"SPLINE", "POLYLINE"} def test_virtual_entities_as_lwpolylines(self, text): entities = text2path.virtual_entities(text, kind=Kind.LWPOLYLINES) types = {e.dxftype() for e in entities} assert types == {"LWPOLYLINE"} def test_virtual_entities_to_all_types_at_once(self, text): entities = text2path.virtual_entities( text, kind=Kind.HATCHES + Kind.SPLINES + Kind.LWPOLYLINES ) types = {e.dxftype() for e in entities} assert types == {"LWPOLYLINE", "SPLINE", "POLYLINE", "HATCH"} class TestExplode: """Based on text2path.virtual_entities() function, see test above.""" @pytest.fixture def text(self): return make_text("TEST", (0, 0), "LEFT") def test_source_entity_is_destroyed(self, text): assert text.is_alive is True text2path.explode(text, kind=4) assert ( text.is_alive is False ), "source entity should always be destroyed" def test_explode_entity_into_layout(self, text): layout = VirtualLayout() entities = text2path.explode(text, kind=Kind.LWPOLYLINES, target=layout) assert len(entities) == len( layout ), "expected all entities added to the target layout" def test_explode_entity_into_the_void(self, text): assert ( text.get_layout() is None ), "source entity should not have a layout" entities = text2path.explode(text, kind=Kind.LWPOLYLINES, target=None) assert len(entities) == 4, "explode should work without a target layout" if __name__ == "__main__": pytest.main([__file__])
mit
andaag/scikit-learn
sklearn/calibration.py
137
18876
"""Calibration of predicted probabilities.""" # Author: Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause from __future__ import division import inspect import warnings from math import log import numpy as np from scipy.optimize import fmin_bfgs from .base import BaseEstimator, ClassifierMixin, RegressorMixin, clone from .preprocessing import LabelBinarizer from .utils import check_X_y, check_array, indexable, column_or_1d from .utils.validation import check_is_fitted from .isotonic import IsotonicRegression from .svm import LinearSVC from .cross_validation import check_cv from .metrics.classification import _check_binary_probabilistic_predictions class CalibratedClassifierCV(BaseEstimator, ClassifierMixin): """Probability calibration with isotonic regression or sigmoid. With this class, the base_estimator is fit on the train set of the cross-validation generator and the test set is used for calibration. The probabilities for each of the folds are then averaged for prediction. In case that cv="prefit" is passed to __init__, it is it is assumed that base_estimator has been fitted already and all data is used for calibration. Note that data for fitting the classifier and for calibrating it must be disjpint. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- base_estimator : instance BaseEstimator The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs. If cv=prefit, the classifier must have been fit already on data. method : 'sigmoid' | 'isotonic' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parameteric approach. It is not advised to use isotonic calibration with too few calibration samples (<<1000) since it tends to overfit. Use sigmoids (Platt's calibration) in this case. cv : integer or cross-validation generator or "prefit", optional If an integer is passed, it is the number of folds (default 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. If "prefit" is passed, it is assumed that base_estimator has been fitted already and all data is used for calibration. Attributes ---------- classes_ : array, shape (n_classes) The class labels. calibrated_classifiers_: list (len() equal to cv or 1 if cv == "prefit") The list of calibrated classifiers, one for each crossvalidation fold, which has been fitted on all but the validation fold and calibrated on the validation fold. References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ def __init__(self, base_estimator=None, method='sigmoid', cv=3): self.base_estimator = base_estimator self.method = method self.cv = cv def fit(self, X, y, sample_weight=None): """Fit the calibrated model Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False) X, y = indexable(X, y) lb = LabelBinarizer().fit(y) self.classes_ = lb.classes_ # Check that we each cross-validation fold can have at least one # example per class n_folds = self.cv if isinstance(self.cv, int) \ else self.cv.n_folds if hasattr(self.cv, "n_folds") else None if n_folds and \ np.any([np.sum(y == class_) < n_folds for class_ in self.classes_]): raise ValueError("Requesting %d-fold cross-validation but provided" " less than %d examples for at least one class." % (n_folds, n_folds)) self.calibrated_classifiers_ = [] if self.base_estimator is None: # we want all classifiers that don't expose a random_state # to be deterministic (and we don't want to expose this one). base_estimator = LinearSVC(random_state=0) else: base_estimator = self.base_estimator if self.cv == "prefit": calibrated_classifier = _CalibratedClassifier( base_estimator, method=self.method) if sample_weight is not None: calibrated_classifier.fit(X, y, sample_weight) else: calibrated_classifier.fit(X, y) self.calibrated_classifiers_.append(calibrated_classifier) else: cv = check_cv(self.cv, X, y, classifier=True) arg_names = inspect.getargspec(base_estimator.fit)[0] estimator_name = type(base_estimator).__name__ if (sample_weight is not None and "sample_weight" not in arg_names): warnings.warn("%s does not support sample_weight. Samples" " weights are only used for the calibration" " itself." % estimator_name) base_estimator_sample_weight = None else: base_estimator_sample_weight = sample_weight for train, test in cv: this_estimator = clone(base_estimator) if base_estimator_sample_weight is not None: this_estimator.fit( X[train], y[train], sample_weight=base_estimator_sample_weight[train]) else: this_estimator.fit(X[train], y[train]) calibrated_classifier = _CalibratedClassifier( this_estimator, method=self.method) if sample_weight is not None: calibrated_classifier.fit(X[test], y[test], sample_weight[test]) else: calibrated_classifier.fit(X[test], y[test]) self.calibrated_classifiers_.append(calibrated_classifier) return self def predict_proba(self, X): """Posterior probabilities of classification This function returns posterior probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples, n_classes) The predicted probas. """ check_is_fitted(self, ["classes_", "calibrated_classifiers_"]) X = check_array(X, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False) # Compute the arithmetic mean of the predictions of the calibrated # classfiers mean_proba = np.zeros((X.shape[0], len(self.classes_))) for calibrated_classifier in self.calibrated_classifiers_: proba = calibrated_classifier.predict_proba(X) mean_proba += proba mean_proba /= len(self.calibrated_classifiers_) return mean_proba def predict(self, X): """Predict the target of new samples. Can be different from the prediction of the uncalibrated classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples,) The predicted class. """ check_is_fitted(self, ["classes_", "calibrated_classifiers_"]) return self.classes_[np.argmax(self.predict_proba(X), axis=1)] class _CalibratedClassifier(object): """Probability calibration with isotonic regression or sigmoid. It assumes that base_estimator has already been fit, and trains the calibration on the input set of the fit function. Note that this class should not be used as an estimator directly. Use CalibratedClassifierCV with cv="prefit" instead. Parameters ---------- base_estimator : instance BaseEstimator The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs. No default value since it has to be an already fitted estimator. method : 'sigmoid' | 'isotonic' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parameteric approach based on isotonic regression. References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ def __init__(self, base_estimator, method='sigmoid'): self.base_estimator = base_estimator self.method = method def _preproc(self, X): n_classes = len(self.classes_) if hasattr(self.base_estimator, "decision_function"): df = self.base_estimator.decision_function(X) if df.ndim == 1: df = df[:, np.newaxis] elif hasattr(self.base_estimator, "predict_proba"): df = self.base_estimator.predict_proba(X) if n_classes == 2: df = df[:, 1:] else: raise RuntimeError('classifier has no decision_function or ' 'predict_proba method.') idx_pos_class = np.arange(df.shape[1]) return df, idx_pos_class def fit(self, X, y, sample_weight=None): """Calibrate the fitted model Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ lb = LabelBinarizer() Y = lb.fit_transform(y) self.classes_ = lb.classes_ df, idx_pos_class = self._preproc(X) self.calibrators_ = [] for k, this_df in zip(idx_pos_class, df.T): if self.method == 'isotonic': calibrator = IsotonicRegression(out_of_bounds='clip') elif self.method == 'sigmoid': calibrator = _SigmoidCalibration() else: raise ValueError('method should be "sigmoid" or ' '"isotonic". Got %s.' % self.method) calibrator.fit(this_df, Y[:, k], sample_weight) self.calibrators_.append(calibrator) return self def predict_proba(self, X): """Posterior probabilities of classification This function returns posterior probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples, n_classes) The predicted probas. Can be exact zeros. """ n_classes = len(self.classes_) proba = np.zeros((X.shape[0], n_classes)) df, idx_pos_class = self._preproc(X) for k, this_df, calibrator in \ zip(idx_pos_class, df.T, self.calibrators_): if n_classes == 2: k += 1 proba[:, k] = calibrator.predict(this_df) # Normalize the probabilities if n_classes == 2: proba[:, 0] = 1. - proba[:, 1] else: proba /= np.sum(proba, axis=1)[:, np.newaxis] # XXX : for some reason all probas can be 0 proba[np.isnan(proba)] = 1. / n_classes # Deal with cases where the predicted probability minimally exceeds 1.0 proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0 return proba def _sigmoid_calibration(df, y, sample_weight=None): """Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- df : ndarray, shape (n_samples,) The decision function or predict proba for the samples. y : ndarray, shape (n_samples,) The targets. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines" """ df = column_or_1d(df) y = column_or_1d(y) F = df # F follows Platt's notations tiny = np.finfo(np.float).tiny # to avoid division by 0 warning # Bayesian priors (see Platt end of section 2.2) prior0 = float(np.sum(y <= 0)) prior1 = y.shape[0] - prior0 T = np.zeros(y.shape) T[y > 0] = (prior1 + 1.) / (prior1 + 2.) T[y <= 0] = 1. / (prior0 + 2.) T1 = 1. - T def objective(AB): # From Platt (beginning of Section 2.2) E = np.exp(AB[0] * F + AB[1]) P = 1. / (1. + E) l = -(T * np.log(P + tiny) + T1 * np.log(1. - P + tiny)) if sample_weight is not None: return (sample_weight * l).sum() else: return l.sum() def grad(AB): # gradient of the objective function E = np.exp(AB[0] * F + AB[1]) P = 1. / (1. + E) TEP_minus_T1P = P * (T * E - T1) if sample_weight is not None: TEP_minus_T1P *= sample_weight dA = np.dot(TEP_minus_T1P, F) dB = np.sum(TEP_minus_T1P) return np.array([dA, dB]) AB0 = np.array([0., log((prior0 + 1.) / (prior1 + 1.))]) AB_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False) return AB_[0], AB_[1] class _SigmoidCalibration(BaseEstimator, RegressorMixin): """Sigmoid regression model. Attributes ---------- a_ : float The slope. b_ : float The intercept. """ def fit(self, X, y, sample_weight=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples,) Training data. y : array-like, shape (n_samples,) Training target. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X = column_or_1d(X) y = column_or_1d(y) X, y = indexable(X, y) self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight) return self def predict(self, T): """Predict new data by linear interpolation. Parameters ---------- T : array-like, shape (n_samples,) Data to predict from. Returns ------- T_ : array, shape (n_samples,) The predicted data. """ T = column_or_1d(T) return 1. / (1. + np.exp(self.a_ * T + self.b_)) def calibration_curve(y_true, y_prob, normalize=False, n_bins=5): """Compute true and predicted probabilities for a calibration curve. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array, shape (n_samples,) True targets. y_prob : array, shape (n_samples,) Probabilities of the positive class. normalize : bool, optional, default=False Whether y_prob needs to be normalized into the bin [0, 1], i.e. is not a proper probability. If True, the smallest value in y_prob is mapped onto 0 and the largest one onto 1. n_bins : int Number of bins. A bigger number requires more data. Returns ------- prob_true : array, shape (n_bins,) The true probability in each bin (fraction of positives). prob_pred : array, shape (n_bins,) The mean predicted probability in each bin. References ---------- Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning, in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative Analysis of Predictions). """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) if normalize: # Normalize predicted values into interval [0, 1] y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min()) elif y_prob.min() < 0 or y_prob.max() > 1: raise ValueError("y_prob has values outside [0, 1] and normalize is " "set to False.") y_true = _check_binary_probabilistic_predictions(y_true, y_prob) bins = np.linspace(0., 1. + 1e-8, n_bins + 1) binids = np.digitize(y_prob, bins) - 1 bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins)) bin_true = np.bincount(binids, weights=y_true, minlength=len(bins)) bin_total = np.bincount(binids, minlength=len(bins)) nonzero = bin_total != 0 prob_true = (bin_true[nonzero] / bin_total[nonzero]) prob_pred = (bin_sums[nonzero] / bin_total[nonzero]) return prob_true, prob_pred
bsd-3-clause
larsoner/mne-python
mne/decoding/tests/test_base.py
12
15702
# Author: Jean-Remi King, <[email protected]> # Marijn van Vliet, <[email protected]> # # License: BSD (3-clause) import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_equal, assert_allclose, assert_array_less) import pytest from mne import create_info, EpochsArray from mne.fixes import is_regressor, is_classifier from mne.utils import requires_sklearn, requires_version from mne.decoding.base import (_get_inverse_funcs, LinearModel, get_coef, cross_val_multiscore, BaseEstimator) from mne.decoding.search_light import SlidingEstimator from mne.decoding import (Scaler, TransformerMixin, Vectorizer, GeneralizingEstimator) def _make_data(n_samples=1000, n_features=5, n_targets=3): """Generate some testing data. Parameters ---------- n_samples : int The number of samples. n_features : int The number of features. n_targets : int The number of targets. Returns ------- X : ndarray, shape (n_samples, n_features) The measured data. Y : ndarray, shape (n_samples, n_targets) The latent variables generating the data. A : ndarray, shape (n_features, n_targets) The forward model, mapping the latent variables (=Y) to the measured data (=X). """ # Define Y latent factors np.random.seed(0) cov_Y = np.eye(n_targets) * 10 + np.random.rand(n_targets, n_targets) cov_Y = (cov_Y + cov_Y.T) / 2. mean_Y = np.random.rand(n_targets) Y = np.random.multivariate_normal(mean_Y, cov_Y, size=n_samples) # The Forward model A = np.random.randn(n_features, n_targets) X = Y.dot(A.T) X += np.random.randn(n_samples, n_features) # add noise X += np.random.rand(n_features) # Put an offset return X, Y, A @requires_sklearn def test_get_coef(): """Test getting linear coefficients (filters/patterns) from estimators.""" from sklearn.base import TransformerMixin, BaseEstimator from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn import svm from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV lm_classification = LinearModel() assert (is_classifier(lm_classification)) lm_regression = LinearModel(Ridge()) assert (is_regressor(lm_regression)) parameters = {'kernel': ['linear'], 'C': [1, 10]} lm_gs_classification = LinearModel( GridSearchCV(svm.SVC(), parameters, cv=2, refit=True, n_jobs=1)) assert (is_classifier(lm_gs_classification)) lm_gs_regression = LinearModel( GridSearchCV(svm.SVR(), parameters, cv=2, refit=True, n_jobs=1)) assert (is_regressor(lm_gs_regression)) # Define a classifier, an invertible transformer and an non-invertible one. class Clf(BaseEstimator): def fit(self, X, y): return self class NoInv(TransformerMixin): def fit(self, X, y): return self def transform(self, X): return X class Inv(NoInv): def inverse_transform(self, X): return X X, y, A = _make_data(n_samples=1000, n_features=3, n_targets=1) # I. Test inverse function # Check that we retrieve the right number of inverse functions even if # there are nested pipelines good_estimators = [ (1, make_pipeline(Inv(), Clf())), (2, make_pipeline(Inv(), Inv(), Clf())), (3, make_pipeline(Inv(), make_pipeline(Inv(), Inv()), Clf())), ] for expected_n, est in good_estimators: est.fit(X, y) assert (expected_n == len(_get_inverse_funcs(est))) bad_estimators = [ Clf(), # no preprocessing Inv(), # final estimator isn't classifier make_pipeline(NoInv(), Clf()), # first step isn't invertible make_pipeline(Inv(), make_pipeline( Inv(), NoInv()), Clf()), # nested step isn't invertible ] for est in bad_estimators: est.fit(X, y) invs = _get_inverse_funcs(est) assert_equal(invs, list()) # II. Test get coef for classification/regression estimators and pipelines rng = np.random.RandomState(0) for clf in (lm_regression, lm_gs_classification, make_pipeline(StandardScaler(), lm_classification), make_pipeline(StandardScaler(), lm_gs_regression)): # generate some categorical/continuous data # according to the type of estimator. if is_classifier(clf): n, n_features = 1000, 3 X = rng.rand(n, n_features) y = np.arange(n) % 2 else: X, y, A = _make_data(n_samples=1000, n_features=3, n_targets=1) y = np.ravel(y) clf.fit(X, y) # Retrieve final linear model filters = get_coef(clf, 'filters_', False) if hasattr(clf, 'steps'): if hasattr(clf.steps[-1][-1].model, 'best_estimator_'): # Linear Model with GridSearchCV coefs = clf.steps[-1][-1].model.best_estimator_.coef_ else: # Standard Linear Model coefs = clf.steps[-1][-1].model.coef_ else: if hasattr(clf.model, 'best_estimator_'): # Linear Model with GridSearchCV coefs = clf.model.best_estimator_.coef_ else: # Standard Linear Model coefs = clf.model.coef_ if coefs.ndim == 2 and coefs.shape[0] == 1: coefs = coefs[0] assert_array_equal(filters, coefs) patterns = get_coef(clf, 'patterns_', False) assert (filters[0] != patterns[0]) n_chans = X.shape[1] assert_array_equal(filters.shape, patterns.shape, [n_chans, n_chans]) # Inverse transform linear model filters_inv = get_coef(clf, 'filters_', True) assert (filters[0] != filters_inv[0]) patterns_inv = get_coef(clf, 'patterns_', True) assert (patterns[0] != patterns_inv[0]) class _Noop(BaseEstimator, TransformerMixin): def fit(self, X, y=None): return self def transform(self, X): return X.copy() inverse_transform = transform @requires_sklearn @pytest.mark.parametrize('inverse', (True, False)) @pytest.mark.parametrize('Scale, kwargs', [ (Scaler, dict(info=None, scalings='mean')), (_Noop, dict()), ]) def test_get_coef_inverse_transform(inverse, Scale, kwargs): """Test get_coef with and without inverse_transform.""" from sklearn.linear_model import Ridge from sklearn.pipeline import make_pipeline lm_regression = LinearModel(Ridge()) X, y, A = _make_data(n_samples=1000, n_features=3, n_targets=1) # Check with search_light and combination of preprocessing ending with sl: # slider = SlidingEstimator(make_pipeline(StandardScaler(), lm_regression)) # XXX : line above should work but does not as only last step is # used in get_coef ... slider = SlidingEstimator(make_pipeline(lm_regression)) X = np.transpose([X, -X], [1, 2, 0]) # invert X across 2 time samples clf = make_pipeline(Scale(**kwargs), slider) clf.fit(X, y) patterns = get_coef(clf, 'patterns_', inverse) filters = get_coef(clf, 'filters_', inverse) assert_array_equal(filters.shape, patterns.shape, X.shape[1:]) # the two time samples get inverted patterns assert_equal(patterns[0, 0], -patterns[0, 1]) for t in [0, 1]: filters_t = get_coef( clf.named_steps['slidingestimator'].estimators_[t], 'filters_', False) if Scale is _Noop: assert_array_equal(filters_t, filters[:, t]) @requires_sklearn @pytest.mark.parametrize('n_features', [1, 5]) @pytest.mark.parametrize('n_targets', [1, 3]) def test_get_coef_multiclass(n_features, n_targets): """Test get_coef on multiclass problems.""" # Check patterns with more than 1 regressor from sklearn.linear_model import LinearRegression, Ridge from sklearn.pipeline import make_pipeline X, Y, A = _make_data( n_samples=30000, n_features=n_features, n_targets=n_targets) lm = LinearModel(LinearRegression()).fit(X, Y) assert_array_equal(lm.filters_.shape, lm.patterns_.shape) if n_targets == 1: want_shape = (n_features,) else: want_shape = (n_targets, n_features) assert_array_equal(lm.filters_.shape, want_shape) if n_features > 1 and n_targets > 1: assert_array_almost_equal(A, lm.patterns_.T, decimal=2) lm = LinearModel(Ridge(alpha=0)) clf = make_pipeline(lm) clf.fit(X, Y) if n_features > 1 and n_targets > 1: assert_allclose(A, lm.patterns_.T, atol=2e-2) coef = get_coef(clf, 'patterns_', inverse_transform=True) assert_allclose(lm.patterns_, coef, atol=1e-5) # With epochs, scaler, and vectorizer (typical use case) X_epo = X.reshape(X.shape + (1,)) info = create_info(n_features, 1000., 'eeg') lm = LinearModel(Ridge(alpha=1)) clf = make_pipeline( Scaler(info, scalings=dict(eeg=1.)), # XXX adding this step breaks Vectorizer(), lm, ) clf.fit(X_epo, Y) if n_features > 1 and n_targets > 1: assert_allclose(A, lm.patterns_.T, atol=2e-2) coef = get_coef(clf, 'patterns_', inverse_transform=True) lm_patterns_ = lm.patterns_[..., np.newaxis] assert_allclose(lm_patterns_, coef, atol=1e-5) # Check can pass fitting parameters lm.fit(X, Y, sample_weight=np.ones(len(Y))) @requires_version('sklearn', '0.22') # roc_auc_ovr_weighted @pytest.mark.parametrize('n_classes, n_channels, n_times', [ (4, 10, 2), (4, 3, 2), (3, 2, 1), (3, 1, 2), ]) def test_get_coef_multiclass_full(n_classes, n_channels, n_times): """Test a full example with pattern extraction.""" from sklearn.pipeline import make_pipeline from sklearn.linear_model import LogisticRegression from sklearn.model_selection import StratifiedKFold data = np.zeros((10 * n_classes, n_channels, n_times)) # Make only the first channel informative for ii in range(n_classes): data[ii * 10:(ii + 1) * 10, 0] = ii events = np.zeros((len(data), 3), int) events[:, 0] = np.arange(len(events)) events[:, 2] = data[:, 0, 0] info = create_info(n_channels, 1000., 'eeg') epochs = EpochsArray(data, info, events, tmin=0) clf = make_pipeline( Scaler(epochs.info), Vectorizer(), LinearModel(LogisticRegression(random_state=0, multi_class='ovr')), ) scorer = 'roc_auc_ovr_weighted' time_gen = GeneralizingEstimator(clf, scorer, verbose=True) X = epochs.get_data() y = epochs.events[:, 2] n_splits = 3 cv = StratifiedKFold(n_splits=n_splits) scores = cross_val_multiscore(time_gen, X, y, cv=cv, verbose=True) want = (n_splits,) if n_times > 1: want += (n_times, n_times) assert scores.shape == want assert_array_less(0.8, scores) clf.fit(X, y) patterns = get_coef(clf, 'patterns_', inverse_transform=True) assert patterns.shape == (n_classes, n_channels, n_times) assert_allclose(patterns[:, 1:], 0., atol=1e-7) # no other channels useful @requires_sklearn def test_linearmodel(): """Test LinearModel class for computing filters and patterns.""" # check categorical target fit in standard linear model from sklearn.linear_model import LinearRegression rng = np.random.RandomState(0) clf = LinearModel() n, n_features = 20, 3 X = rng.rand(n, n_features) y = np.arange(n) % 2 clf.fit(X, y) assert_equal(clf.filters_.shape, (n_features,)) assert_equal(clf.patterns_.shape, (n_features,)) with pytest.raises(ValueError): wrong_X = rng.rand(n, n_features, 99) clf.fit(wrong_X, y) # check categorical target fit in standard linear model with GridSearchCV from sklearn import svm from sklearn.model_selection import GridSearchCV parameters = {'kernel': ['linear'], 'C': [1, 10]} clf = LinearModel( GridSearchCV(svm.SVC(), parameters, cv=2, refit=True, n_jobs=1)) clf.fit(X, y) assert_equal(clf.filters_.shape, (n_features,)) assert_equal(clf.patterns_.shape, (n_features,)) with pytest.raises(ValueError): wrong_X = rng.rand(n, n_features, 99) clf.fit(wrong_X, y) # check continuous target fit in standard linear model with GridSearchCV n_targets = 1 Y = rng.rand(n, n_targets) clf = LinearModel( GridSearchCV(svm.SVR(), parameters, cv=2, refit=True, n_jobs=1)) clf.fit(X, y) assert_equal(clf.filters_.shape, (n_features, )) assert_equal(clf.patterns_.shape, (n_features, )) with pytest.raises(ValueError): wrong_y = rng.rand(n, n_features, 99) clf.fit(X, wrong_y) # check multi-target fit in standard linear model n_targets = 5 Y = rng.rand(n, n_targets) clf = LinearModel(LinearRegression()) clf.fit(X, Y) assert_equal(clf.filters_.shape, (n_targets, n_features)) assert_equal(clf.patterns_.shape, (n_targets, n_features)) with pytest.raises(ValueError): wrong_y = rng.rand(n, n_features, 99) clf.fit(X, wrong_y) @requires_sklearn def test_cross_val_multiscore(): """Test cross_val_multiscore for computing scores on decoding over time.""" from sklearn.model_selection import KFold, StratifiedKFold, cross_val_score from sklearn.linear_model import LogisticRegression, LinearRegression logreg = LogisticRegression(solver='liblinear', random_state=0) # compare to cross-val-score X = np.random.rand(20, 3) y = np.arange(20) % 2 cv = KFold(2, random_state=0, shuffle=True) clf = logreg assert_array_equal(cross_val_score(clf, X, y, cv=cv), cross_val_multiscore(clf, X, y, cv=cv)) # Test with search light X = np.random.rand(20, 4, 3) y = np.arange(20) % 2 clf = SlidingEstimator(logreg, scoring='accuracy') scores_acc = cross_val_multiscore(clf, X, y, cv=cv) assert_array_equal(np.shape(scores_acc), [2, 3]) # check values scores_acc_manual = list() for train, test in cv.split(X, y): clf.fit(X[train], y[train]) scores_acc_manual.append(clf.score(X[test], y[test])) assert_array_equal(scores_acc, scores_acc_manual) # check scoring metric # raise an error if scoring is defined at cross-val-score level and # search light, because search light does not return a 1-dimensional # prediction. pytest.raises(ValueError, cross_val_multiscore, clf, X, y, cv=cv, scoring='roc_auc') clf = SlidingEstimator(logreg, scoring='roc_auc') scores_auc = cross_val_multiscore(clf, X, y, cv=cv, n_jobs=1) scores_auc_manual = list() for train, test in cv.split(X, y): clf.fit(X[train], y[train]) scores_auc_manual.append(clf.score(X[test], y[test])) assert_array_equal(scores_auc, scores_auc_manual) # indirectly test that cross_val_multiscore rightly detects the type of # estimator and generates a StratifiedKFold for classiers and a KFold # otherwise X = np.random.randn(1000, 3) y = np.ones(1000, dtype=int) y[::2] = 0 clf = logreg reg = LinearRegression() for cross_val in (cross_val_score, cross_val_multiscore): manual = cross_val(clf, X, y, cv=StratifiedKFold(2)) auto = cross_val(clf, X, y, cv=2) assert_array_equal(manual, auto) manual = cross_val(reg, X, y, cv=KFold(2)) auto = cross_val(reg, X, y, cv=2) assert_array_equal(manual, auto)
bsd-3-clause
rohanp/scikit-learn
sklearn/tree/tests/test_export.py
31
9588
""" Testing for export functions of decision trees (sklearn.tree.export). """ from re import finditer from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.tree import export_graphviz from sklearn.externals.six import StringIO from sklearn.utils.testing import assert_in # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] y2 = [[-1, 1], [-1, 1], [-1, 1], [1, 2], [1, 2], [1, 3]] w = [1, 1, 1, .5, .5, .5] def test_graphviz_toy(): # Check correctness of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2, criterion="gini", random_state=2) clf.fit(X, y) # Test export code out = StringIO() export_graphviz(clf, out_file=out) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with feature_names out = StringIO() export_graphviz(clf, out_file=out, feature_names=["feature0", "feature1"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with class_names out = StringIO() export_graphviz(clf, out_file=out, class_names=["yes", "no"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = yes"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \ 'class = yes"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n' \ 'class = no"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test plot_options out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False, proportion=True, special_characters=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'edge [fontname=helvetica] ;\n' \ '0 [label=<X<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>' \ 'value = [0.5, 0.5]>, fillcolor="#e5813900"] ;\n' \ '1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, ' \ 'fillcolor="#399de5ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, class_names=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = y[0]"] ;\n' \ '1 [label="(...)"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth with plot_options out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, filled=True, node_ids=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \ 'samples = 6\\nvalue = [3, 3]", fillcolor="#e5813900"] ;\n' \ '1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test multi-output with weighted samples clf = DecisionTreeClassifier(max_depth=2, min_samples_split=2, criterion="gini", random_state=2) clf = clf.fit(X, y2, sample_weight=w) out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="X[0] <= 0.0\\nsamples = 6\\n' \ 'value = [[3.0, 1.5, 0.0]\\n' \ '[3.0, 1.0, 0.5]]", fillcolor="#e5813900"] ;\n' \ '1 [label="samples = 3\\nvalue = [[3, 0, 0]\\n' \ '[3, 0, 0]]", fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="X[0] <= 1.5\\nsamples = 3\\n' \ 'value = [[0.0, 1.5, 0.0]\\n' \ '[0.0, 1.0, 0.5]]", fillcolor="#e5813986"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '3 [label="samples = 2\\nvalue = [[0, 1, 0]\\n' \ '[0, 1, 0]]", fillcolor="#e58139ff"] ;\n' \ '2 -> 3 ;\n' \ '4 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n' \ '[0.0, 0.0, 0.5]]", fillcolor="#e58139ff"] ;\n' \ '2 -> 4 ;\n' \ '}' assert_equal(contents1, contents2) # Test regression output with plot_options clf = DecisionTreeRegressor(max_depth=3, min_samples_split=2, criterion="mse", random_state=2) clf.fit(X, y) out = StringIO() export_graphviz(clf, out_file=out, filled=True, leaves_parallel=True, rotate=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'graph [ranksep=equally, splines=polyline] ;\n' \ 'edge [fontname=helvetica] ;\n' \ 'rankdir=LR ;\n' \ '0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \ 'value = 0.0", fillcolor="#e5813980"] ;\n' \ '1 [label="mse = 0.0\\nsamples = 3\\nvalue = -1.0", ' \ 'fillcolor="#e5813900"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="True"] ;\n' \ '2 [label="mse = 0.0\\nsamples = 3\\nvalue = 1.0", ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="False"] ;\n' \ '{rank=same ; 0} ;\n' \ '{rank=same ; 1; 2} ;\n' \ '}' assert_equal(contents1, contents2) def test_graphviz_errors(): # Check for errors of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2) clf.fit(X, y) # Check feature_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, feature_names=[]) # Check class_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, class_names=[]) def test_friedman_mse_in_graphviz(): clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0) clf.fit(X, y) dot_data = StringIO() export_graphviz(clf, out_file=dot_data) clf = GradientBoostingClassifier(n_estimators=2, random_state=0) clf.fit(X, y) for estimator in clf.estimators_: export_graphviz(estimator[0], out_file=dot_data) for finding in finditer("\[.*?samples.*?\]", dot_data.getvalue()): assert_in("friedman_mse", finding.group())
bsd-3-clause
aarondewindt/paparazzi_torrap
sw/tools/calibration/calib_mag_live.py
13
6700
#! /usr/bin/env python from __future__ import print_function, division import time import logging import sys from os import path, getenv # if PAPARAZZI_SRC not set, then assume the tree containing this # file is a reasonable substitute PPRZ_SRC = getenv("PAPARAZZI_SRC", path.normpath(path.join(path.dirname(path.abspath(__file__)), '../../../'))) sys.path.append(PPRZ_SRC + "/sw/lib/python") sys.path.append(PPRZ_SRC + "/sw/ext/pprzlink/lib/v1.0/python") PPRZ_HOME = getenv("PAPARAZZI_HOME", PPRZ_SRC) from pprzlink.ivy import IvyMessagesInterface import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 import matplotlib.animation as animation import scipy from scipy import optimize import calibration_utils class MagPlot(object): def __init__(self): # Setup the figure and axes... self.fig = plt.figure() #self.ax = self.fig.add_subplot(1, 1, 1, projection='3d') self.ax = p3.Axes3D(self.fig) self.ax.set_aspect('equal') self.ax.set_xlabel('X') self.ax.set_ylabel('Y') self.ax.set_zlabel('Z') self.set_ax_lim(10) self.ax.set_title("Raw Mag data") self.data = np.zeros((1, 3)) self.max_lim = 1 # Then setup FuncAnimation. self.ani = animation.FuncAnimation(self.fig, self.update, interval=100, init_func=self.setup_plot, blit=False) def set_ax_lim(self, lim): lim = [-lim, lim] self.ax.set_xlim3d(lim) self.ax.set_ylim3d(lim) self.ax.set_zlim3d(lim) def setup_plot(self): x = self.data[:, 0] y = self.data[:, 1] z = self.data[:, 2] self.scat = self.ax.scatter(x, y, z, alpha=1) # For FuncAnimation's sake, we need to return the artist we'll be using # Note that it expects a sequence of artists, thus the trailing comma. return self.scat, def show(self, block=True): plt.show(block=block) def update(self, i): logging.debug("updating scatter: %d with %s" % (i, len(self.data))) self.scat.set_offsets(self.data[:, 0:2]) self.scat.set_3d_properties(self.data[:, 2], 'z') # We need to return the updated artist for FuncAnimation to draw.. # Note that it expects a sequence of artists, thus the trailing comma. return self.scat, def add_data(self, data): logging.debug("adding data %s" % data) if len(self.data) == 1 and not np.any(self.data): self.data[0] = np.array(data) else: self.data = np.vstack((self.data, np.array(data))) max_lim = np.max(np.abs(data)) if max_lim > self.max_lim: self.max_lim = max_lim self.set_ax_lim(max_lim) class MagCalibrator(object): def __init__(self, plot_results=True, verbose=False): self._interface = IvyMessagesInterface("calib_mag") self.plotter = MagPlot() self.data = [] self.flt_meas = [] self.p0 = np.array([0, 0, 0, 0, 0, 0]) self.optimization_done = False self.plot_results = plot_results def start_collect(self): self._interface.subscribe(self.message_recv, "(.*IMU_MAG_RAW.*)") def stop_collect(self): self._interface.unsubscribe_all() def message_recv(self, ac_id, msg): self.data.append(np.array([int(v) for v in msg.fieldvalues])) if self.plot_results: self.plotter.add_data((map(int, msg.fieldvalues))) def shutdown(self): if self._interface is not None: print("Shutting down ivy interface...") self._interface.shutdown() self._interface = None def __del__(self): self.shutdown() def calc_min_max_guess(self): if len(self.data) > 3: # filter out noisy measurements? self.flt_meas = np.array(self.data) self.p0 = calibration_utils.get_min_max_guess(self.flt_meas, 1.0) def print_min_max_guess(self): self.calc_min_max_guess() if self.data: print("Current guess from %d measurements: neutral [%d, %d, %d], scale [%.3f, %.3f, %.3f]" % (len(self.flt_meas), int(round(self.p0[0])), int(round(self.p0[1])), int(round(self.p0[2])), self.p0[3]*2**11, self.p0[4]*2**11, self.p0[5]*2**11)) def calibrate(self): self.calc_min_max_guess() if len(self.flt_meas) < 10: logging.warning("Not enough measurements") return cp0, np0 = calibration_utils.scale_measurements(self.flt_meas, self.p0) logging.info("initial guess : avg "+str(np0.mean())+" std "+str(np0.std())) calibration_utils.print_xml(self.p0, "MAG", 11) def err_func(p, meas, y): cp, np = calibration_utils.scale_measurements(meas, p) err = y * scipy.ones(len(meas)) - np return err p1, cov, info, msg, success = optimize.leastsq(err_func, self.p0[:], args=(self.flt_meas, 1.0), full_output=1) self.optimization_done = success in [1, 2, 3, 4] if not self.optimization_done: logging.warning("Optimization error: ", msg) cp1, np1 = calibration_utils.scale_measurements(self.flt_meas, p1) if self.optimization_done: logging.info("optimized guess : avg " + str(np1.mean()) + " std " + str(np1.std())) calibration_utils.print_xml(p1, "MAG", 11) else: logging.info("last iteration of failed optimized guess : avg " + str(np1.mean()) + " std " + str(np1.std())) if self.plot_results: calibration_utils.plot_results("MAG", np.array(self.data), range(len(self.data)), self.flt_meas, cp0, np0, cp1, np1, 1.0, blocking=False) calibration_utils.plot_mag_3d(self.flt_meas, cp1, p1) if __name__ == '__main__': import argparse logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser() parser.add_argument('-p', '--plot', action='store_true', help='Interactive plot') args = parser.parse_args() if args.plot: print("Close the interactive plot window to run the final calibration.") else: print("Press CTRL-C to stop data collection and run the final calibration.") try: mc = MagCalibrator(plot_results=args.plot) mc.start_collect() if args.plot: mc.plotter.show() else: while True: time.sleep(2) mc.print_min_max_guess() except KeyboardInterrupt: print("Stopping on request") mc.stop_collect() mc.calibrate() mc.shutdown()
gpl-2.0
sserrot/champion_relationships
venv/Lib/site-packages/ipywidgets/widgets/interaction.py
1
20907
# Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. """Interact with functions using widgets.""" from __future__ import print_function from __future__ import division try: # Python >= 3.3 from inspect import signature, Parameter except ImportError: from IPython.utils.signatures import signature, Parameter from inspect import getcallargs try: from inspect import getfullargspec as check_argspec except ImportError: from inspect import getargspec as check_argspec # py2 import sys from IPython.core.getipython import get_ipython from . import (ValueWidget, Text, FloatSlider, IntSlider, Checkbox, Dropdown, VBox, Button, DOMWidget, Output) from IPython.display import display, clear_output from ipython_genutils.py3compat import string_types, unicode_type from traitlets import HasTraits, Any, Unicode, observe from numbers import Real, Integral from warnings import warn try: from collections.abc import Iterable, Mapping except ImportError: from collections import Iterable, Mapping # py2 empty = Parameter.empty def show_inline_matplotlib_plots(): """Show matplotlib plots immediately if using the inline backend. With ipywidgets 6.0, matplotlib plots don't work well with interact when using the inline backend that comes with ipykernel. Basically, the inline backend only shows the plot after the entire cell executes, which does not play well with drawing plots inside of an interact function. See https://github.com/jupyter-widgets/ipywidgets/issues/1181/ and https://github.com/ipython/ipython/issues/10376 for more details. This function displays any matplotlib plots if the backend is the inline backend. """ if 'matplotlib' not in sys.modules: # matplotlib hasn't been imported, nothing to do. return try: import matplotlib as mpl from ipykernel.pylab.backend_inline import flush_figures except ImportError: return if mpl.get_backend() == 'module://ipykernel.pylab.backend_inline': flush_figures() def interactive_output(f, controls): """Connect widget controls to a function. This function does not generate a user interface for the widgets (unlike `interact`). This enables customisation of the widget user interface layout. The user interface layout must be defined and displayed manually. """ out = Output() def observer(change): kwargs = {k:v.value for k,v in controls.items()} show_inline_matplotlib_plots() with out: clear_output(wait=True) f(**kwargs) show_inline_matplotlib_plots() for k,w in controls.items(): w.observe(observer, 'value') show_inline_matplotlib_plots() observer(None) return out def _matches(o, pattern): """Match a pattern of types in a sequence.""" if not len(o) == len(pattern): return False comps = zip(o,pattern) return all(isinstance(obj,kind) for obj,kind in comps) def _get_min_max_value(min, max, value=None, step=None): """Return min, max, value given input values with possible None.""" # Either min and max need to be given, or value needs to be given if value is None: if min is None or max is None: raise ValueError('unable to infer range, value from: ({0}, {1}, {2})'.format(min, max, value)) diff = max - min value = min + (diff / 2) # Ensure that value has the same type as diff if not isinstance(value, type(diff)): value = min + (diff // 2) else: # value is not None if not isinstance(value, Real): raise TypeError('expected a real number, got: %r' % value) # Infer min/max from value if value == 0: # This gives (0, 1) of the correct type vrange = (value, value + 1) elif value > 0: vrange = (-value, 3*value) else: vrange = (3*value, -value) if min is None: min = vrange[0] if max is None: max = vrange[1] if step is not None: # ensure value is on a step tick = int((value - min) / step) value = min + tick * step if not min <= value <= max: raise ValueError('value must be between min and max (min={0}, value={1}, max={2})'.format(min, value, max)) return min, max, value def _yield_abbreviations_for_parameter(param, kwargs): """Get an abbreviation for a function parameter.""" name = param.name kind = param.kind ann = param.annotation default = param.default not_found = (name, empty, empty) if kind in (Parameter.POSITIONAL_OR_KEYWORD, Parameter.KEYWORD_ONLY): if name in kwargs: value = kwargs.pop(name) elif ann is not empty: warn("Using function annotations to implicitly specify interactive controls is deprecated. Use an explicit keyword argument for the parameter instead.", DeprecationWarning) value = ann elif default is not empty: value = default else: yield not_found yield (name, value, default) elif kind == Parameter.VAR_KEYWORD: # In this case name=kwargs and we yield the items in kwargs with their keys. for k, v in kwargs.copy().items(): kwargs.pop(k) yield k, v, empty class interactive(VBox): """ A VBox container containing a group of interactive widgets tied to a function. Parameters ---------- __interact_f : function The function to which the interactive widgets are tied. The `**kwargs` should match the function signature. __options : dict A dict of options. Currently, the only supported keys are ``"manual"`` and ``"manual_name"``. **kwargs : various, optional An interactive widget is created for each keyword argument that is a valid widget abbreviation. Note that the first two parameters intentionally start with a double underscore to avoid being mixed up with keyword arguments passed by ``**kwargs``. """ def __init__(self, __interact_f, __options={}, **kwargs): VBox.__init__(self, _dom_classes=['widget-interact']) self.result = None self.args = [] self.kwargs = {} self.f = f = __interact_f self.clear_output = kwargs.pop('clear_output', True) self.manual = __options.get("manual", False) self.manual_name = __options.get("manual_name", "Run Interact") self.auto_display = __options.get("auto_display", False) new_kwargs = self.find_abbreviations(kwargs) # Before we proceed, let's make sure that the user has passed a set of args+kwargs # that will lead to a valid call of the function. This protects against unspecified # and doubly-specified arguments. try: check_argspec(f) except TypeError: # if we can't inspect, we can't validate pass else: getcallargs(f, **{n:v for n,v,_ in new_kwargs}) # Now build the widgets from the abbreviations. self.kwargs_widgets = self.widgets_from_abbreviations(new_kwargs) # This has to be done as an assignment, not using self.children.append, # so that traitlets notices the update. We skip any objects (such as fixed) that # are not DOMWidgets. c = [w for w in self.kwargs_widgets if isinstance(w, DOMWidget)] # If we are only to run the function on demand, add a button to request this. if self.manual: self.manual_button = Button(description=self.manual_name) c.append(self.manual_button) self.out = Output() c.append(self.out) self.children = c # Wire up the widgets # If we are doing manual running, the callback is only triggered by the button # Otherwise, it is triggered for every trait change received # On-demand running also suppresses running the function with the initial parameters if self.manual: self.manual_button.on_click(self.update) # Also register input handlers on text areas, so the user can hit return to # invoke execution. for w in self.kwargs_widgets: if isinstance(w, Text): w.on_submit(self.update) else: for widget in self.kwargs_widgets: widget.observe(self.update, names='value') self.on_displayed(self.update) # Callback function def update(self, *args): """ Call the interact function and update the output widget with the result of the function call. Parameters ---------- *args : ignored Required for this method to be used as traitlets callback. """ self.kwargs = {} if self.manual: self.manual_button.disabled = True try: show_inline_matplotlib_plots() with self.out: if self.clear_output: clear_output(wait=True) for widget in self.kwargs_widgets: value = widget.get_interact_value() self.kwargs[widget._kwarg] = value self.result = self.f(**self.kwargs) show_inline_matplotlib_plots() if self.auto_display and self.result is not None: display(self.result) except Exception as e: ip = get_ipython() if ip is None: self.log.warn("Exception in interact callback: %s", e, exc_info=True) else: ip.showtraceback() finally: if self.manual: self.manual_button.disabled = False # Find abbreviations def signature(self): return signature(self.f) def find_abbreviations(self, kwargs): """Find the abbreviations for the given function and kwargs. Return (name, abbrev, default) tuples. """ new_kwargs = [] try: sig = self.signature() except (ValueError, TypeError): # can't inspect, no info from function; only use kwargs return [ (key, value, value) for key, value in kwargs.items() ] for param in sig.parameters.values(): for name, value, default in _yield_abbreviations_for_parameter(param, kwargs): if value is empty: raise ValueError('cannot find widget or abbreviation for argument: {!r}'.format(name)) new_kwargs.append((name, value, default)) return new_kwargs # Abbreviations to widgets def widgets_from_abbreviations(self, seq): """Given a sequence of (name, abbrev, default) tuples, return a sequence of Widgets.""" result = [] for name, abbrev, default in seq: widget = self.widget_from_abbrev(abbrev, default) if not (isinstance(widget, ValueWidget) or isinstance(widget, fixed)): if widget is None: raise ValueError("{!r} cannot be transformed to a widget".format(abbrev)) else: raise TypeError("{!r} is not a ValueWidget".format(widget)) if not widget.description: widget.description = name widget._kwarg = name result.append(widget) return result @classmethod def widget_from_abbrev(cls, abbrev, default=empty): """Build a ValueWidget instance given an abbreviation or Widget.""" if isinstance(abbrev, ValueWidget) or isinstance(abbrev, fixed): return abbrev if isinstance(abbrev, tuple): widget = cls.widget_from_tuple(abbrev) if default is not empty: try: widget.value = default except Exception: # ignore failure to set default pass return widget # Try single value widget = cls.widget_from_single_value(abbrev) if widget is not None: return widget # Something iterable (list, dict, generator, ...). Note that str and # tuple should be handled before, that is why we check this case last. if isinstance(abbrev, Iterable): widget = cls.widget_from_iterable(abbrev) if default is not empty: try: widget.value = default except Exception: # ignore failure to set default pass return widget # No idea... return None @staticmethod def widget_from_single_value(o): """Make widgets from single values, which can be used as parameter defaults.""" if isinstance(o, string_types): return Text(value=unicode_type(o)) elif isinstance(o, bool): return Checkbox(value=o) elif isinstance(o, Integral): min, max, value = _get_min_max_value(None, None, o) return IntSlider(value=o, min=min, max=max) elif isinstance(o, Real): min, max, value = _get_min_max_value(None, None, o) return FloatSlider(value=o, min=min, max=max) else: return None @staticmethod def widget_from_tuple(o): """Make widgets from a tuple abbreviation.""" if _matches(o, (Real, Real)): min, max, value = _get_min_max_value(o[0], o[1]) if all(isinstance(_, Integral) for _ in o): cls = IntSlider else: cls = FloatSlider return cls(value=value, min=min, max=max) elif _matches(o, (Real, Real, Real)): step = o[2] if step <= 0: raise ValueError("step must be >= 0, not %r" % step) min, max, value = _get_min_max_value(o[0], o[1], step=step) if all(isinstance(_, Integral) for _ in o): cls = IntSlider else: cls = FloatSlider return cls(value=value, min=min, max=max, step=step) @staticmethod def widget_from_iterable(o): """Make widgets from an iterable. This should not be done for a string or tuple.""" # Dropdown expects a dict or list, so we convert an arbitrary # iterable to either of those. if isinstance(o, (list, dict)): return Dropdown(options=o) elif isinstance(o, Mapping): return Dropdown(options=list(o.items())) else: return Dropdown(options=list(o)) # Return a factory for interactive functions @classmethod def factory(cls): options = dict(manual=False, auto_display=True, manual_name="Run Interact") return _InteractFactory(cls, options) class _InteractFactory(object): """ Factory for instances of :class:`interactive`. This class is needed to support options like:: >>> @interact.options(manual=True) ... def greeting(text="World"): ... print("Hello {}".format(text)) Parameters ---------- cls : class The subclass of :class:`interactive` to construct. options : dict A dict of options used to construct the interactive function. By default, this is returned by ``cls.default_options()``. kwargs : dict A dict of **kwargs to use for widgets. """ def __init__(self, cls, options, kwargs={}): self.cls = cls self.opts = options self.kwargs = kwargs def widget(self, f): """ Return an interactive function widget for the given function. The widget is only constructed, not displayed nor attached to the function. Returns ------- An instance of ``self.cls`` (typically :class:`interactive`). Parameters ---------- f : function The function to which the interactive widgets are tied. """ return self.cls(f, self.opts, **self.kwargs) def __call__(self, __interact_f=None, **kwargs): """ Make the given function interactive by adding and displaying the corresponding :class:`interactive` widget. Expects the first argument to be a function. Parameters to this function are widget abbreviations passed in as keyword arguments (``**kwargs``). Can be used as a decorator (see examples). Returns ------- f : __interact_f with interactive widget attached to it. Parameters ---------- __interact_f : function The function to which the interactive widgets are tied. The `**kwargs` should match the function signature. Passed to :func:`interactive()` **kwargs : various, optional An interactive widget is created for each keyword argument that is a valid widget abbreviation. Passed to :func:`interactive()` Examples -------- Render an interactive text field that shows the greeting with the passed in text:: # 1. Using interact as a function def greeting(text="World"): print("Hello {}".format(text)) interact(greeting, text="IPython Widgets") # 2. Using interact as a decorator @interact def greeting(text="World"): print("Hello {}".format(text)) # 3. Using interact as a decorator with named parameters @interact(text="IPython Widgets") def greeting(text="World"): print("Hello {}".format(text)) Render an interactive slider widget and prints square of number:: # 1. Using interact as a function def square(num=1): print("{} squared is {}".format(num, num*num)) interact(square, num=5) # 2. Using interact as a decorator @interact def square(num=2): print("{} squared is {}".format(num, num*num)) # 3. Using interact as a decorator with named parameters @interact(num=5) def square(num=2): print("{} squared is {}".format(num, num*num)) """ # If kwargs are given, replace self by a new # _InteractFactory with the updated kwargs if kwargs: kw = dict(self.kwargs) kw.update(kwargs) self = type(self)(self.cls, self.opts, kw) f = __interact_f if f is None: # This branch handles the case 3 # @interact(a=30, b=40) # def f(*args, **kwargs): # ... # # Simply return the new factory return self # positional arg support in: https://gist.github.com/8851331 # Handle the cases 1 and 2 # 1. interact(f, **kwargs) # 2. @interact # def f(*args, **kwargs): # ... w = self.widget(f) try: f.widget = w except AttributeError: # some things (instancemethods) can't have attributes attached, # so wrap in a lambda f = lambda *args, **kwargs: __interact_f(*args, **kwargs) f.widget = w show_inline_matplotlib_plots() display(w) return f def options(self, **kwds): """ Change options for interactive functions. Returns ------- A new :class:`_InteractFactory` which will apply the options when called. """ opts = dict(self.opts) for k in kwds: try: # Ensure that the key exists because we want to change # existing options, not add new ones. _ = opts[k] except KeyError: raise ValueError("invalid option {!r}".format(k)) opts[k] = kwds[k] return type(self)(self.cls, opts, self.kwargs) interact = interactive.factory() interact_manual = interact.options(manual=True, manual_name="Run Interact") class fixed(HasTraits): """A pseudo-widget whose value is fixed and never synced to the client.""" value = Any(help="Any Python object") description = Unicode('', help="Any Python object") def __init__(self, value, **kwargs): super(fixed, self).__init__(value=value, **kwargs) def get_interact_value(self): """Return the value for this widget which should be passed to interactive functions. Custom widgets can change this method to process the raw value ``self.value``. """ return self.value
mit
crowdresearch/daemo
crowdsourcing/models.py
2
38402
import json import os import pandas as pd from django.conf import settings from django.contrib.auth.models import User from django.contrib.postgres.fields import ArrayField, JSONField from django.db import models from django.utils import timezone from crowdsourcing.utils import get_delimiter, get_worker_cache class TimeStampable(models.Model): created_at = models.DateTimeField(auto_now_add=True, auto_now=False) updated_at = models.DateTimeField(auto_now_add=False, auto_now=True) class Meta: abstract = True class StripeObject(models.Model): stripe_id = models.CharField(max_length=128, db_index=True) stripe_data = JSONField(null=True) class Meta: abstract = True class ArchiveQuerySet(models.query.QuerySet): def active(self): return self.filter(deleted_at__isnull=True) def inactive(self): return self.filter(deleted_at__isnull=False) class Archivable(models.Model): deleted_at = models.DateTimeField(null=True) objects = ArchiveQuerySet.as_manager() class Meta: abstract = True def delete(self, using=None, keep_parents=False): self.archive() def archive(self): self.deleted_at = timezone.now() self.save() def hard_delete(self, using=None, keep_parents=False): super(Archivable, self).delete() class Activable(models.Model): is_active = models.BooleanField(default=True) class Meta: abstract = True class Verifiable(models.Model): is_verified = models.BooleanField(default=False) class Meta: abstract = True class Revisable(models.Model): revised_at = models.DateTimeField(auto_now_add=True, auto_now=False) revision_log = models.CharField(max_length=512, null=True, blank=True) group_id = models.IntegerField(null=True, db_index=True) class Meta: abstract = True class Region(TimeStampable): name = models.CharField(max_length=64, error_messages={'required': 'Please specify the region!'}) code = models.CharField(max_length=16, error_messages={'required': 'Please specify the region code!'}) class Country(TimeStampable): name = models.CharField(max_length=64, error_messages={'required': 'Please specify the country!'}) code = models.CharField(max_length=8, error_messages={'required': 'Please specify the country code!'}) region = models.ForeignKey(Region, related_name='countries', null=True, blank=True) def __unicode__(self): return u'%s' % (self.name,) class City(TimeStampable): name = models.CharField(max_length=64, error_messages={'required': 'Please specify the city!'}) state = models.CharField(max_length=64, blank=True) state_code = models.CharField(max_length=64, blank=True) country = models.ForeignKey(Country, related_name='cities') def __unicode__(self): return u'%s' % (self.name,) class Address(TimeStampable): street = models.CharField(max_length=128, blank=True, null=True) city = models.ForeignKey(City, related_name='addresses', null=True, blank=True) postal_code = models.CharField(null=True, blank=True, max_length=32) def __unicode__(self): return u'%s, %s, %s' % (self.street, self.city.name, self.city.country.name) class Language(TimeStampable): name = models.CharField(max_length=64, error_messages={'required': 'Please specify the language!'}) iso_code = models.CharField(max_length=8) class Skill(TimeStampable, Archivable, Verifiable): name = models.CharField(max_length=128, error_messages={'required': "Please enter the skill name!"}) description = models.CharField(max_length=512, error_messages={'required': "Please enter the skill description!"}) parent = models.ForeignKey('self', related_name='skills', null=True) class Role(TimeStampable, Archivable, Activable): name = models.CharField(max_length=32, unique=True, error_messages={'required': 'Please specify the role name!', 'unique': 'The role %(value)r already exists. Please provide another name!' }) class Currency(TimeStampable): name = models.CharField(max_length=32) iso_code = models.CharField(max_length=8) class Category(TimeStampable, Archivable): name = models.CharField(max_length=128, error_messages={'required': "Please enter the category name!"}) parent = models.ForeignKey('self', related_name='categories', null=True) class UserRegistration(TimeStampable): user = models.OneToOneField(User) activation_key = models.CharField(max_length=40) class RegistrationWhitelist(TimeStampable): email = models.EmailField(db_index=True) valid_from = models.DateTimeField(null=True) class UserPasswordReset(TimeStampable): user = models.OneToOneField(User) reset_key = models.CharField(max_length=40) class UserProfile(TimeStampable, Verifiable): MALE = 'M' FEMALE = 'F' OTHER = 'O' DO_NOT_STATE = ('DNS', 'Prefer not to specify') GENDER = ( (MALE, 'Male'), (FEMALE, 'Female'), (OTHER, 'Other') ) PERSONAL = 'personal' PROFESSIONAL = 'professional' OTHER = 'other' RESEARCH = 'research' PURPOSE_OF_USE = ( (PROFESSIONAL, 'Professional'), (PERSONAL, 'personal'), (RESEARCH, 'research'), (OTHER, 'other') ) ETHNICITY = ( ('white', 'White'), ('hispanic', 'Hispanic'), ('black', 'Black'), ('islander', 'Native Hawaiian or Other Pacific Islander'), ('indian', 'Indian'), ('asian', 'Asian'), ('native', 'Native American or Alaska Native'), ('mixed', 'Mixed Race'), ('other', 'Other') ) INCOME = ( ('less_1k', 'Less than $1,000'), ('1k', '$1,000 - $1,999'), ('2.5k', '$2,500 - $4,999'), ('5k', '$5,000 - $7,499'), ('7.5k', '$7,500 - $9,999'), ('10k', '$10,000 - $14,999'), ('15k', '$15,000 - $24,999'), ('25k', '$25,000 - $39,999'), ('40k', '$40,000 - $59,999'), ('60k', '$60,000 - $74,999'), ('75k', '$75,000 - $99,999'), ('100k', '$100,000 - $149,999'), ('150k', '$150,000 - $199,999'), ('200k', '$200,000 - $299,999'), ('300k_more', '$300,000 or more') ) EDUCATION = ( ('some_high', 'Some High School, No Degree'), ('high', 'High School Degree or Equivalent'), ('some_college', 'Some College, No Degree'), ('associates', 'Associates Degree'), ('bachelors', 'Bachelors Degree'), ('masters', 'Graduate Degree, Masters'), ('doctorate', 'Graduate Degree, Doctorate') ) user = models.OneToOneField(User, related_name='profile') gender = models.CharField(max_length=1, choices=GENDER, blank=True, null=True) purpose_of_use = models.CharField(max_length=64, choices=PURPOSE_OF_USE, blank=True, null=True) ethnicity = models.CharField(max_length=8, choices=ETHNICITY, blank=True, null=True) job_title = models.CharField(max_length=100, blank=True, null=True) address = models.ForeignKey(Address, related_name='+', blank=True, null=True) birthday = models.DateTimeField(blank=True, null=True) nationality = models.ManyToManyField(Country, through='UserCountry') languages = models.ManyToManyField(Language, through='UserLanguage') picture = models.BinaryField(null=True) last_active = models.DateTimeField(auto_now_add=False, auto_now=False, null=True) is_worker = models.BooleanField(default=True) is_requester = models.BooleanField(default=False) income = models.CharField(max_length=9, choices=INCOME, blank=True, null=True) education = models.CharField(max_length=12, choices=EDUCATION, blank=True, null=True) unspecified_responses = JSONField(null=True) handle = models.CharField(max_length=32, db_index=True, blank=False, unique=True) class UserCountry(TimeStampable): country = models.ForeignKey(Country) user = models.ForeignKey(UserProfile) class UserSkill(TimeStampable, Verifiable): user = models.ForeignKey(User) skill = models.ForeignKey(Skill) level = models.IntegerField(default=0) class Meta: unique_together = ('user', 'skill') class UserRole(TimeStampable): user = models.ForeignKey(User) role = models.ForeignKey(Role) class UserLanguage(TimeStampable): language = models.ForeignKey(Language) user = models.ForeignKey(UserProfile) class UserPreferences(TimeStampable): user = models.OneToOneField(User, related_name='preferences') language = models.ForeignKey(Language, null=True, blank=True) currency = models.ForeignKey(Currency, null=True, blank=True) login_alerts = models.SmallIntegerField(default=0) auto_accept = models.BooleanField(default=False) new_tasks_notifications = models.BooleanField(default=True) aux_attributes = JSONField(default={}) class Template(TimeStampable, Archivable, Revisable): name = models.CharField(max_length=128, error_messages={'required': "Please enter the template name!"}) owner = models.ForeignKey(User, related_name='templates') source_html = models.TextField(default=None, null=True) price = models.FloatField(default=0) share_with_others = models.BooleanField(default=False) class BatchFile(TimeStampable, Archivable): name = models.CharField(max_length=256) file = models.FileField(upload_to='project_files/') format = models.CharField(max_length=8, default='csv') number_of_rows = models.IntegerField(default=1, null=True) column_headers = ArrayField(models.CharField(max_length=64)) first_row = JSONField(null=True, blank=True) hash_sha512 = models.CharField(max_length=128, null=True, blank=True) url = models.URLField(null=True, blank=True) def parse_csv(self): delimiter = get_delimiter(self.file.name) df = pd.DataFrame(pd.read_csv(self.file, sep=delimiter, encoding='utf-8')) df = df.where((pd.notnull(df)), None) return df.to_dict(orient='records') def delete(self, *args, **kwargs): root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) path = os.path.join(root, self.file.url[1:]) os.remove(path) super(BatchFile, self).delete(*args, **kwargs) class ProjectQueryset(models.query.QuerySet): def active(self): return self.filter(deleted_at__isnull=True) def inactive(self): return self.filter(deleted_at__isnull=False) def filter_by_boomerang(self, worker, sort_by='-boomerang'): worker_cache = get_worker_cache(worker.id) worker_data = json.dumps(worker_cache) # noinspection SqlResolve query = ''' WITH projects AS ( SELECT ratings.project_id, ratings.min_rating new_min_rating, requester_ratings.requester_rating, requester_ratings.raw_rating, p_available.remaining available_tasks FROM crowdsourcing_project p INNER JOIN (SELECT p.id, count(t.id) remaining FROM crowdsourcing_task t INNER JOIN (SELECT group_id, max(id) id FROM crowdsourcing_task WHERE deleted_at IS NULL GROUP BY group_id) t_max ON t_max.id = t.id INNER JOIN crowdsourcing_project p ON p.id = t.project_id INNER JOIN ( SELECT t.group_id, sum(t.own) own, sum(t.others) others FROM ( SELECT t.group_id, CASE WHEN (tw.worker_id = (%(worker_id)s) AND tw.status <> 6) or tw.is_qualified is FALSE THEN 1 ELSE 0 END own, CASE WHEN (tw.worker_id IS NOT NULL AND tw.worker_id <> (%(worker_id)s)) AND tw.status NOT IN (4, 6, 7) THEN 1 ELSE 0 END others FROM crowdsourcing_task t LEFT OUTER JOIN crowdsourcing_taskworker tw ON (t.id = tw.task_id) WHERE t.exclude_at IS NULL AND t.deleted_at IS NULL) t GROUP BY t.group_id) t_count ON t_count.group_id = t.group_id WHERE t_count.own = 0 AND t_count.others < p.repetition GROUP BY p.id) p_available ON p_available.id = p.id INNER JOIN ( SELECT u.id, u.username, CASE WHEN e.id IS NOT NULL THEN TRUE ELSE FALSE END is_denied FROM auth_user u LEFT OUTER JOIN crowdsourcing_requesteraccesscontrolgroup g ON g.requester_id = u.id AND g.type = 2 AND g.is_global = TRUE LEFT OUTER JOIN crowdsourcing_workeraccesscontrolentry e ON e.group_id = g.id AND e.worker_id = (%(worker_id)s)) requester ON requester.id=p.owner_id LEFT OUTER JOIN ( SELECT qualification_id, json_agg(i.expression::JSON) expressions FROM crowdsourcing_qualificationitem i where i.scope = 'project' GROUP BY i.qualification_id ) quals ON quals.qualification_id = p.qualification_id INNER JOIN get_min_project_ratings() ratings ON p.id = ratings.project_id LEFT OUTER JOIN ( SELECT requester_id, requester_rating AS raw_rating, CASE WHEN requester_rating IS NULL AND requester_avg_rating IS NOT NULL THEN requester_avg_rating WHEN requester_rating IS NULL AND requester_avg_rating IS NULL THEN 1.99 WHEN requester_rating IS NOT NULL AND requester_avg_rating IS NULL THEN requester_rating ELSE requester_rating + 0.1 * requester_avg_rating END requester_rating FROM get_requester_ratings(%(worker_id)s)) requester_ratings ON requester_ratings.requester_id = ratings.owner_id INNER JOIN (SELECT requester_id, CASE WHEN worker_rating IS NULL AND worker_avg_rating IS NOT NULL THEN worker_avg_rating WHEN worker_rating IS NULL AND worker_avg_rating IS NULL THEN 1.99 WHEN worker_rating IS NOT NULL AND worker_avg_rating IS NULL THEN worker_rating ELSE worker_rating + 0.1 * worker_avg_rating END worker_rating FROM get_worker_ratings(%(worker_id)s)) worker_ratings ON worker_ratings.requester_id = ratings.owner_id AND (worker_ratings.worker_rating >= ratings.min_rating or p.enable_boomerang is FALSE or p.owner_id = %(worker_id)s) WHERE coalesce(p.deadline, NOW() + INTERVAL '1 minute') > NOW() AND p.status = 3 AND deleted_at IS NULL AND (requester.is_denied = FALSE OR p.enable_blacklist = FALSE) AND is_worker_qualified(quals.expressions, (%(worker_data)s)::JSON) ORDER BY requester_rating DESC, ratings.project_id desc ) select p.id, p.name, p.price, p.owner_id, p.created_at, p.allow_feedback, p.is_prototype, projects.requester_rating, projects.raw_rating, projects.available_tasks, up.handle requester_handle, p.published_at FROM crowdsourcing_project p INNER JOIN crowdsourcing_userprofile up on up.user_id = p.owner_id INNER JOIN projects ON projects.project_id = p.id ORDER BY case when %(sort_by)s='-boomerang' then requester_rating when %(sort_by)s='-available_tasks' then available_tasks when %(sort_by)s='-published_at' then 12 when %(sort_by)s='-price' then p.price end desc nulls last, p.id desc; ''' return self.raw(query, params={ 'worker_id': worker.id, 'st_in_progress': Project.STATUS_IN_PROGRESS, 'worker_data': worker_data, 'sort_by': sort_by }) class Project(TimeStampable, Archivable, Revisable): STATUS_DRAFT = 1 STATUS_PUBLISHED = 2 STATUS_IN_PROGRESS = 3 STATUS_COMPLETED = 4 STATUS_PAUSED = 5 STATUS_CROWD_REJECTED = 6 STATUS_ARCHIVED = 7 STATUS = ( (STATUS_DRAFT, 'Draft'), (STATUS_PUBLISHED, 'Published'), (STATUS_IN_PROGRESS, 'In Progress'), (STATUS_COMPLETED, 'Completed'), (STATUS_PAUSED, 'Paused'), (STATUS_CROWD_REJECTED, 'Rejected'), (STATUS_ARCHIVED, 'Archived'), ) PERMISSION_ORW_WRW = 1 PERMISSION_OR_WRW = 2 PERMISSION_OR_WR = 3 PERMISSION_WR = 4 PERMISSION = ( (PERMISSION_ORW_WRW, 'Others:Read+Write::Workers:Read+Write'), (PERMISSION_OR_WRW, 'Others:Read::Workers:Read+Write'), (PERMISSION_OR_WR, 'Others:Read::Workers:Read'), (PERMISSION_WR, 'Others:None::Workers:Read') ) name = models.CharField(max_length=256, default="Untitled Project", error_messages={'required': "Please enter the project name!"}) description = models.TextField(null=True, max_length=2048, blank=True) owner = models.ForeignKey(User, related_name='projects') parent = models.ForeignKey('self', related_name='projects', null=True, on_delete=models.SET_NULL) template = models.ForeignKey(Template, null=True) categories = models.ManyToManyField(Category, through='ProjectCategory') keywords = models.TextField(null=True, blank=True) status = models.IntegerField(choices=STATUS, default=STATUS_DRAFT) qualification = models.ForeignKey('Qualification', null=True) price = models.DecimalField(decimal_places=2, max_digits=19, null=True) aux_attributes = JSONField(null=True, default={'sort_results_by': 'worker_id'}) repetition = models.IntegerField(default=1) max_tasks = models.PositiveIntegerField(null=True, default=None) is_micro = models.BooleanField(default=True) is_prototype = models.BooleanField(default=True) is_api_only = models.BooleanField(default=True) is_paid = models.BooleanField(default=False) is_review = models.BooleanField(default=False) # has_review = models.BooleanField(default=False) timeout = models.DurationField(null=True, default=settings.DEFAULT_TASK_TIMEOUT) deadline = models.DateTimeField(null=True) task_time = models.DurationField(null=True) has_data_set = models.BooleanField(default=False) data_set_location = models.CharField(max_length=256, null=True, blank=True) batch_files = models.ManyToManyField(BatchFile, through='ProjectBatchFile') min_rating = models.FloatField(default=3.0) previous_min_rating = models.FloatField(default=3.0) tasks_in_progress = models.IntegerField(default=0) rating_updated_at = models.DateTimeField(auto_now_add=True, auto_now=False) allow_feedback = models.BooleanField(default=True) feedback_permissions = models.IntegerField(choices=PERMISSION, default=PERMISSION_ORW_WRW) enable_blacklist = models.BooleanField(default=True) enable_whitelist = models.BooleanField(default=True) post_mturk = models.BooleanField(default=False) publish_at = models.DateTimeField(null=True) published_at = models.DateTimeField(null=True) last_opened_at = models.DateTimeField(null=True) allow_price_per_task = models.BooleanField(default=False) task_price_field = models.CharField(max_length=32, null=True) amount_due = models.DecimalField(decimal_places=2, max_digits=8, default=0) discussion_link = models.TextField(null=True, blank=True) topic_id = models.IntegerField(null=True, default=-1) post_id = models.IntegerField(null=True, default=-1) enable_boomerang = models.BooleanField(default=True) objects = ProjectQueryset.as_manager() class Meta: index_together = [['deadline', 'status', 'min_rating', 'deleted_at'], ['owner', 'deleted_at', 'created_at']] class ProjectWorkerToRate(TimeStampable): project = models.ForeignKey(Project, on_delete=models.CASCADE) batch = models.ForeignKey('Batch', on_delete=models.SET_NULL, null=True) worker = models.ForeignKey(User) class ProjectBatchFile(models.Model): batch_file = models.ForeignKey(BatchFile, on_delete=models.CASCADE) project = models.ForeignKey(Project, on_delete=models.CASCADE) class Meta: unique_together = ('batch_file', 'project',) class ProjectCategory(TimeStampable): project = models.ForeignKey(Project) category = models.ForeignKey(Category) class Meta: unique_together = ('category', 'project') class TemplateItem(TimeStampable, Revisable): ROLE_DISPLAY = 'display' ROLE_INPUT = 'input' ROLE = ( (ROLE_DISPLAY, 'Display'), (ROLE_INPUT, 'Input'), ) name = models.CharField(max_length=128, default='') template = models.ForeignKey(Template, related_name='items', on_delete=models.CASCADE) role = models.CharField(max_length=16, choices=ROLE, default=ROLE_DISPLAY) type = models.CharField(max_length=16, db_index=True) sub_type = models.CharField(max_length=16, null=True) position = models.IntegerField(null=True) required = models.BooleanField(default=True) predecessor = models.ForeignKey('self', null=True, related_name='successors', on_delete=models.SET_NULL, db_index=True) aux_attributes = JSONField() class Meta: ordering = ['position'] class TemplateItemProperties(TimeStampable): template_item = models.ForeignKey(TemplateItem, related_name='properties') attribute = models.CharField(max_length=128) operator = models.CharField(max_length=128) value1 = models.CharField(max_length=128) value2 = models.CharField(max_length=128) class CollectiveRejection(TimeStampable, Archivable): REASON_LOW_PAY = 1 REASON_INAPPROPRIATE = 2 REASON_OTHER = 3 REASON = ( (REASON_LOW_PAY, 'The pay is too low for the amount of work'), (REASON_INAPPROPRIATE, 'The content is offensive or inappropriate'), (REASON_OTHER, 'Other') ) reason = models.IntegerField(choices=REASON) detail = models.CharField(max_length=1024, null=True, blank=True) class Batch(TimeStampable): parent = models.ForeignKey('Batch', null=True) class Task(TimeStampable, Archivable, Revisable): project = models.ForeignKey(Project, related_name='tasks', on_delete=models.CASCADE) data = JSONField(null=True) exclude_at = models.ForeignKey(Project, related_name='excluded_tasks', db_column='exclude_at', null=True, on_delete=models.SET_NULL) row_number = models.IntegerField(null=True, db_index=True) rerun_key = models.CharField(max_length=64, db_index=True, null=True) batch = models.ForeignKey('Batch', related_name='tasks', null=True, on_delete=models.CASCADE) hash = models.CharField(max_length=64, db_index=True) min_rating = models.FloatField(default=3.0) rating_updated_at = models.DateTimeField(auto_now=False, auto_now_add=False, null=True) price = models.DecimalField(decimal_places=2, max_digits=19, null=True) class Meta: index_together = (('rerun_key', 'hash',),) class TaskWorker(TimeStampable, Archivable, Revisable): STATUS_IN_PROGRESS = 1 STATUS_SUBMITTED = 2 STATUS_ACCEPTED = 3 STATUS_REJECTED = 4 STATUS_RETURNED = 5 STATUS_SKIPPED = 6 STATUS_EXPIRED = 7 STATUS = ( (STATUS_IN_PROGRESS, 'In Progress'), (STATUS_SUBMITTED, 'Submitted'), (STATUS_ACCEPTED, 'Accepted'), (STATUS_REJECTED, 'Rejected'), (STATUS_RETURNED, 'Returned'), (STATUS_SKIPPED, 'Skipped'), (STATUS_EXPIRED, 'Expired'), ) task = models.ForeignKey(Task, related_name='task_workers', on_delete=models.CASCADE) worker = models.ForeignKey(User, related_name='task_workers') status = models.IntegerField(choices=STATUS, default=STATUS_IN_PROGRESS, db_index=True) is_paid = models.BooleanField(default=False) paid_at = models.DateTimeField(auto_now_add=False, auto_now=False, null=True) collective_rejection = models.OneToOneField(CollectiveRejection, null=True) charge = models.ForeignKey('StripeCharge', null=True) submitted_at = models.DateTimeField(auto_now_add=False, auto_now=False, null=True, db_index=True) started_at = models.DateTimeField(auto_now_add=False, auto_now=False, null=True) approved_at = models.DateTimeField(auto_now_add=False, auto_now=False, null=True) returned_at = models.DateTimeField(auto_now_add=False, auto_now=False, null=True) is_qualified = models.BooleanField(default=True, db_index=True) attempt = models.SmallIntegerField(default=0) auto_approved = models.BooleanField(default=False) class Meta: unique_together = ('task', 'worker') class TaskWorkerSession(TimeStampable): started_at = models.DateTimeField(auto_now_add=False, auto_now=False, db_index=True) ended_at = models.DateTimeField(auto_now_add=False, auto_now=False, null=True, db_index=True) task_worker = models.ForeignKey('TaskWorker', related_name='sessions') class TaskWorkerResult(TimeStampable, Archivable): task_worker = models.ForeignKey(TaskWorker, related_name='results', on_delete=models.CASCADE) result = JSONField(null=True) attachment = models.ForeignKey('FileResponse', null=True) template_item = models.ForeignKey(TemplateItem, related_name='+') class FileResponse(TimeStampable): file = models.FileField(upload_to='responses/%Y/%m/%d/') name = models.CharField(max_length=256) owner = models.ForeignKey(User) hash_sha512 = models.CharField(max_length=128, null=True, blank=True) class WorkerProjectScore(TimeStampable): project_group_id = models.IntegerField() worker = models.ForeignKey(User, related_name='project_scores') mu = models.FloatField(default=25.000) sigma = models.FloatField(default=8.333) class WorkerMatchScore(TimeStampable): worker = models.ForeignKey(TaskWorker, related_name='match_scores') project_score = models.ForeignKey(WorkerProjectScore, related_name='match_scores') mu = models.FloatField() sigma = models.FloatField() class MatchGroup(TimeStampable): batch = models.ForeignKey(Batch, related_name='match_group') rerun_key = models.CharField(max_length=64, null=True, db_index=True) hash = models.CharField(max_length=64, db_index=True) parent = models.ForeignKey('self', related_name='children_groups', null=True) class Meta: index_together = (('rerun_key', 'hash',),) class Match(TimeStampable): STATUS_CREATED = 1 STATUS_COMPLETED = 2 STATUS = ( (STATUS_CREATED, 'Created'), (STATUS_COMPLETED, 'Completed'), ) status = models.IntegerField(choices=STATUS, default=STATUS_CREATED) submitted_at = models.DateTimeField(null=True) group = models.ForeignKey(MatchGroup, related_name='matches') task = models.ForeignKey(Task, related_name='matches', null=True) class MatchWorker(TimeStampable): match = models.ForeignKey(Match, related_name='workers') task_worker = models.ForeignKey(TaskWorker, related_name='matches') mu = models.FloatField(null=True) sigma = models.FloatField(null=True) old_mu = models.FloatField(default=25.0, null=True) old_sigma = models.FloatField(default=8.333, null=True) class ActivityLog(TimeStampable): """ Track all user's activities: Create, Update and Delete """ activity = models.CharField(max_length=512) author = models.ForeignKey(User, related_name='activities') class Qualification(TimeStampable): TYPE_STRICT = 1 TYPE_FLEXIBLE = 2 name = models.CharField(max_length=64, null=True) description = models.CharField(max_length=512, null=True) owner = models.ForeignKey(User, related_name='qualifications') TYPE = ( (TYPE_STRICT, "Strict"), (TYPE_FLEXIBLE, 'Flexible') ) type = models.IntegerField(choices=TYPE, default=TYPE_STRICT) class QualificationItem(TimeStampable): qualification = models.ForeignKey(Qualification, related_name='items', on_delete=models.CASCADE) expression = JSONField() position = models.SmallIntegerField(null=True) group = models.SmallIntegerField(default=1) scope = models.CharField(max_length=32, default='project', db_index=True) class Rating(TimeStampable): RATING_WORKER = 1 RATING_REQUESTER = 2 RATING = ( (RATING_WORKER, "Worker"), (RATING_REQUESTER, 'Requester') ) origin = models.ForeignKey(User, related_name='ratings_to') target = models.ForeignKey(User, related_name='ratings_from') weight = models.FloatField(default=2) origin_type = models.IntegerField(choices=RATING) task = models.ForeignKey(Task, null=True) class Meta: index_together = [ ['origin', 'target'], ['origin', 'target', 'updated_at', 'origin_type'] ] class RawRatingFeedback(TimeStampable): requester = models.ForeignKey(User, related_name='raw_feedback') worker = models.ForeignKey(User, related_name='+') weight = models.FloatField(default=0) task = models.ForeignKey(Task, null=True) is_excluded = models.BooleanField(default=False) class Meta: unique_together = ('requester', 'worker', 'task') index_together = ('requester', 'worker', 'task', 'is_excluded') class BoomerangLog(TimeStampable): object_id = models.PositiveIntegerField() object_type = models.CharField(max_length=8, default='project') min_rating = models.FloatField(default=3.0) rating_updated_at = models.DateTimeField(auto_now=False, auto_now_add=False, null=True) reason = models.CharField(max_length=64, null=True) class Conversation(TimeStampable, Archivable): subject = models.CharField(max_length=64) sender = models.ForeignKey(User, related_name='conversations') recipients = models.ManyToManyField(User, through='ConversationRecipient') class ConversationRecipient(TimeStampable, Archivable): STATUS_OPEN = 1 STATUS_MINIMIZED = 2 STATUS_CLOSED = 3 STATUS_MUTED = 4 STATUS = ( (STATUS_OPEN, "Open"), (STATUS_MINIMIZED, 'Minimized'), (STATUS_CLOSED, 'Closed'), (STATUS_MUTED, 'Muted') ) recipient = models.ForeignKey(User) conversation = models.ForeignKey(Conversation, on_delete=models.CASCADE) status = models.SmallIntegerField(choices=STATUS, default=STATUS_OPEN) class Message(TimeStampable, Archivable): conversation = models.ForeignKey(Conversation, related_name='messages', on_delete=models.CASCADE) sender = models.ForeignKey(User, related_name='messages') body = models.TextField(max_length=8192) recipients = models.ManyToManyField(User, through='MessageRecipient') class MessageRecipient(TimeStampable, Archivable): STATUS_SENT = 1 STATUS_DELIVERED = 2 STATUS_READ = 3 STATUS = ( (STATUS_SENT, 'Sent'), (STATUS_DELIVERED, 'Delivered'), (STATUS_READ, 'Read') ) message = models.ForeignKey(Message, on_delete=models.CASCADE) recipient = models.ForeignKey(User) status = models.IntegerField(choices=STATUS, default=STATUS_SENT) delivered_at = models.DateTimeField(blank=True, null=True) read_at = models.DateTimeField(blank=True, null=True) class EmailNotification(TimeStampable): # use updated_at to check last notification sent recipient = models.OneToOneField(User) class Comment(TimeStampable, Archivable): sender = models.ForeignKey(User, related_name='comments') body = models.TextField(max_length=8192) parent = models.ForeignKey('self', related_name='comments', null=True) class Meta: ordering = ['created_at'] class ProjectComment(TimeStampable, Archivable): project = models.ForeignKey(Project, related_name='comments') comment = models.ForeignKey(Comment) ready_for_launch = models.NullBooleanField() aux_attributes = JSONField(default={}, null=True) class TaskComment(TimeStampable, Archivable): task = models.ForeignKey(Task, related_name='comments') comment = models.ForeignKey(Comment) class FinancialAccount(TimeStampable, Activable): TYPE_WORKER = 1 TYPE_REQUESTER = 2 TYPE_ESCROW = 3 TYPE = ( (TYPE_WORKER, 'Earnings'), (TYPE_REQUESTER, 'Deposits'), (TYPE_ESCROW, 'Escrow') ) owner = models.ForeignKey(User, related_name='financial_accounts', null=True) type = models.IntegerField(choices=TYPE) balance = models.DecimalField(default=0, decimal_places=4, max_digits=19) is_system = models.BooleanField(default=False) class RequesterAccessControlGroup(TimeStampable): TYPE_ALLOW = 1 TYPE_DENY = 2 TYPE = ( (TYPE_ALLOW, "allow"), (TYPE_DENY, "deny") ) requester = models.ForeignKey(User, related_name="access_groups") type = models.SmallIntegerField(choices=TYPE, default=TYPE_ALLOW) name = models.CharField(max_length=256, null=True) is_global = models.BooleanField(default=False) class Meta: index_together = [['requester', 'type', 'is_global']] class WorkerAccessControlEntry(TimeStampable): worker = models.ForeignKey(User) group = models.ForeignKey(RequesterAccessControlGroup, related_name='entries') class Meta: unique_together = ('group', 'worker') index_together = [['group', 'worker']] class ReturnFeedback(TimeStampable, Archivable): body = models.TextField(max_length=8192) task_worker = models.ForeignKey(TaskWorker, related_name='return_feedback', on_delete=models.CASCADE) notification_sent = models.BooleanField(default=False, db_index=True) notification_sent_at = models.DateTimeField(null=True, auto_now_add=False, auto_now=False) class Meta: ordering = ['-created_at'] class Error(TimeStampable, Archivable): code = models.CharField(max_length=16) message = models.CharField(max_length=256) trace = models.CharField(max_length=4096, null=True) owner = models.ForeignKey(User, null=True, related_name='errors') class StripeAccount(TimeStampable, Verifiable, StripeObject): owner = models.OneToOneField(User, related_name='stripe_account') class StripeCustomer(TimeStampable, StripeObject): owner = models.OneToOneField(User, related_name='stripe_customer') account_balance = models.IntegerField(default=0) class StripeCharge(TimeStampable, StripeObject): customer = models.ForeignKey(StripeCustomer, related_name='charges') expired = models.BooleanField(default=False) expired_at = models.DateTimeField(auto_now_add=False, auto_now=False, null=True) balance = models.IntegerField() discount_applied = models.BooleanField(default=False) raw_amount = models.IntegerField() discount = models.FloatField(default=1.0) class Meta: index_together = (('created_at',), ('created_at', 'customer')) class StripeRefund(TimeStampable, StripeObject): charge = models.ForeignKey(StripeCharge, related_name='refunds') class StripeTransfer(TimeStampable, StripeObject): destination = models.ForeignKey(User, related_name='received_transfers') class StripeTransferReversal(TimeStampable, StripeObject): transfer = models.ForeignKey(StripeTransfer, related_name='reversals') class ProjectNotificationPreference(TimeStampable): project_group_id = models.IntegerField() worker = models.ForeignKey(User, related_name='notification_preferences') notify = models.BooleanField(default=True) class Meta: unique_together = ('project_group_id', 'worker') class WorkerProjectNotification(TimeStampable): project = models.ForeignKey('Project') worker = models.ForeignKey(User, related_name='project_notifications') class WorkerBonus(TimeStampable): worker = models.ForeignKey(User, related_name='bonuses_received') requester = models.ForeignKey(User, related_name='bonuses_given') reason = models.CharField(max_length=256, null=True, blank=True) models.ForeignKey(Project, related_name='worker_bonuses', null=True) charge = models.ForeignKey('StripeCharge', null=True) amount = models.IntegerField() class ProjectPreview(TimeStampable): project = models.ForeignKey('Project') user = models.ForeignKey(User)
mit
sealhuang/brainDecodingToolbox
braincode/vim2/util.py
3
14748
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: import os import glob import numpy as np import nibabel as nib import matplotlib.pylab as plt import matplotlib.image as mpimg from braincode.math import corr2_coef, make_2d_gaussian, make_2d_dog, make_2d_log def idx2coord(vec_idx): """Convert row index in response data matrix into 3D coordinate in (original) ROI volume. """ data_size = (18, 64, 64) coord_z = vec_idx % data_size[2] coord_x = vec_idx / (data_size[1]*data_size[2]) coord_y = (vec_idx % (data_size[1]*data_size[2])) / data_size[2] return (coord_x, coord_y, coord_z) def coord2idx(coord): """Convert a 3D coordinate from nifti file into row index in response data matrix. Input must be a tuple. """ ncoord = (coord[2], coord[0], 63-coord[1]) return ncoord[2]+ncoord[0]*64*64+ncoord[1]*64 def node2feature(node_idx, data_shape): """Convert node index from CNN activation vector into 3 features including index of channel, row and column position of the filter. Return a tuple of (channel index, row index, column index). """ #data_size = {'conv1': [96, 55, 55], # 'conv2': [256, 27, 27], # 'conv3': [384, 13, 13], # 'conv4': [384, 13, 13], # 'cpnv5': [256, 13, 13], # 'pool5': [256, 6, 6]} #s = data_size[layer_name] s = data_shape col_idx = node_idx % s[2] channel_idx = node_idx / (s[1]*s[2]) row_idx = (node_idx % (s[1]*s[2])) / s[2] return (channel_idx, row_idx, col_idx) def vxl_data2nifti(data, vxl_idx, out_file): """Save data according to its voxel index into a nifti file.""" data_mtx = np.zeros((18, 64, 64)) data_mtx[:] = np.nan data_mtx = data_mtx.flatten() data_mtx[vxl_idx] = data save2nifti(data_mtx.reshape(18, 64, 64), out_file) def save2nifti(data, filename): """Save 3D data as nifti file. Original data shape is (18, 64, 64), and the resulting data shape is (64, 64, 18) which orientation is SRP.""" # roll axis ndata = np.rollaxis(data, 0, 3) ndata = ndata[:, ::-1, :] # generate affine matrix aff = np.zeros((4, 4)) aff[0, 1] = 2 aff[1, 2] = -2.5 aff[2, 0] = 2 aff[3, 3] = 1 img = nib.Nifti1Image(ndata, aff) nib.save(img, filename) def mask2nifti(data, filename): """Save 3D mask derived from pycortex as nifti file. Original data shape is (18, 64, 64), and the resulting data shape is (64, 64, 18) which orientation is SRP.""" # roll axis data = data.astype('<f8') ndata = np.rollaxis(data, 0, 3) ndata = np.rollaxis(ndata, 0, 2) ndata = ndata[:, ::-1, :] # generate affine matrix aff = np.zeros((4, 4)) aff[0, 1] = 2 aff[1, 2] = -2.5 aff[2, 0] = 2 aff[3, 3] = 1 img = nib.Nifti1Image(ndata, aff) nib.save(img, filename) def plot_prf(prf_file): """Plot pRF.""" prf_data = np.load(prf_file) vxl = prf_data[..., 0] # figure config for f in range(96): fig, axs = plt.subplots(5, 8) for t in range(40): tmp = vxl[:, t].reshape(96, 55, 55) tmp = tmp[f, :] im = axs[t/8][t%8].imshow(tmp, interpolation='nearest', cmap=plt.cm.ocean, vmin=-0.2, vmax=0.3) fig.colorbar(im) #plt.show() fig.savefig('%s.png'%(f)) def channel_sim(feat_file): """Compute similarity between each pair of channels.""" feat = np.load(feat_file) print feat.shape feat = feat.reshape(96, 55, 55, 540) simmtx = np.zeros((feat.shape[0], feat.shape[0])) for i in range(feat.shape[0]): for j in range(i+1, feat.shape[0]): print '%s - %s' %(i, j) x = feat[i, :].reshape(-1, feat.shape[3]) y = feat[j, :].reshape(-1, feat.shape[3]) tmp = corr2_coef(x, y) tmp = tmp.diagonal() simmtx[i, j] = tmp.mean() np.save('sim_mtx.npy', simmtx) im = plt.imshow(simmtx, interpolation='nearest', cmap=plt.cm.ocean) plt.colorbar(im) plt.show() def data_swap(nifti_file): """Convert nifti data into original data shape.""" data = nib.load(nifti_file).get_data() ndata = data[:, ::-1, :] ndata = np.rollaxis(ndata, 0, 3) ndata = np.rollaxis(ndata, 0, 3) return ndata def nifti4pycortex(nifti_file): """Load nifti file for pycortex visualization.""" data = nib.load(nifti_file).get_data() ndata = np.rollaxis(data, 0, 3) ndata = np.rollaxis(ndata, 0, 2) return ndata def plot_cca_fweights(data, out_dir, prefix_name, two_side=False): """Plot features weights derived from CCA.""" if len(data.shape)==3: data = np.expand_dims(data, axis=3) n_components = data.shape[3] n_channels = data.shape[0] for f in range(n_components): fig, axs = plt.subplots(8, 12) cdata = data[..., f] if two_side: maxv = max(cdata.max(), -1*cdata.min()) minv = -1 * maxv else: maxv = cdata.max() minv = cdata.min() for c in range(n_channels): tmp = cdata[c, ...] im = axs[c/12][c%12].imshow(tmp, interpolation='nearest', vmin=minv, vmax=maxv) axs[c/12][c%12].get_xaxis().set_visible(False) axs[c/12][c%12].get_yaxis().set_visible(False) fig.subplots_adjust(right=0.85) cbar_ax = fig.add_axes([0.88, 0.2, 0.03, 0.6]) fig.colorbar(im, cax=cbar_ax) fig.savefig(os.path.join(out_dir, prefix_name+'_%s.png'%(f+1))) def plot_avg_weights_pattern(feat_weights, top_channels_num=None): """Plot average features weights derived from CCA.""" if len(feat_weights.shape)==3: feat_weights = np.expand_dims(feat_weights, axis=3) n_components = feat_weights.shape[3] n_channels = feat_weights.shape[0] if top_channels_num and top_channels_num <= n_channels: avg_weights = feat_weights[:top_channels_num, ...].mean(axis=0) else: avg_weights = feat_weights.mean(axis=0) maxv = avg_weights.max() minv = avg_weights.min() fig, axs = plt.subplots(2, 5) for f in range(n_components): cdata = avg_weights[..., f] im = axs[f/5][f%5].imshow(cdata, interpolation='nearest', vmin=minv, vmax=maxv) axs[f/5][f%5].get_xaxis().set_visible(False) axs[f/5][f%5].get_yaxis().set_visible(False) fig.subplots_adjust(right=0.85) cbar_ax = fig.add_axes([0.88, 0.2, 0.03, 0.6]) fig.colorbar(im, cax=cbar_ax) fig.show() def save_cca_volweights(fmri_weights, mask_file, out_dir, prefix_name, out_png=True, two_side=False): """Save fmri weights derived from CCA as nifti files.""" n_components = fmri_weights.shape[1] mask = data_swap(mask_file) vxl_idx = np.nonzero(mask.flatten()==1)[0] for i in range(n_components): tmp = np.zeros_like(mask.flatten(), dtype=np.float64) tmp[vxl_idx] = fmri_weights[:, i] tmp = tmp.reshape(mask.shape) nii_file = os.path.join(out_dir, prefix_name+'%s.nii.gz'%(i+1)) save2nifti(tmp, nii_file) if out_png: import cortex from matplotlib import cm subj_id = out_dir.split('/')[-3] if two_side: img = cortex.quickflat.make_figure(cortex.Volume(nii_file, subj_id, 'func2anat', cmap=cm.bwr, vmin=-1., vmax=1.), with_curvature=True) else: img = cortex.quickflat.make_figure(cortex.Volume(nii_file, subj_id, 'func2anat', cmap=cm.hot, vmin=0., vmax=1.), with_curvature=True) png_file = os.path.join(out_dir, prefix_name+'%s.png'%(i+1)) img.savefig(png_file, dpi=200) def display_video(dataset): """Display 3D video.""" plt.ion() for i in range(dataset.shape[2]): plt.imshow(dataset[:, i]) plt.pause(0.05) def plot_kernerls(in_dir, basename, filename): """Plot several kernel images in one screen.""" file_num = len(glob.glob(os.path.join(in_dir, basename+'*'))) fig, axs = plt.subplots(8, 12) for n in range(file_num): f = os.path.join(in_dir, basename+str(n)+'.png') img = mpimg.imread(f) # normalize image into zero-one range nimg = (img - img.min()) / (img.max() - img.min()) im = axs[n/12][n%12].imshow(nimg) axs[n/12][n%12].get_xaxis().set_visible(False) axs[n/12][n%12].get_yaxis().set_visible(False) fig.savefig(os.path.join(in_dir, filename)) def save_imshow(data, filename, val_range=None): """Save `imshow` figure as file.""" fig, ax = plt.subplots() if val_range: vmin = val_range[0] vmax = val_range[1] else: vmin = data.min() vmax = data.max() cax = ax.imshow(data.astype(np.float64), vmin=vmin, vmax=vmax, cmap='gray') fig.colorbar(cax) fig.savefig(filename) plt.close() def save_hue(data, filename): """Save hue tune for a voxel.""" fig, ax = plt.subplots() x = np.linspace(0, 2*np.pi, 201) ax.plot(x, data) fig.savefig(filename) plt.close() def fweights_bar(feat_weights): """Bar plots for feature weights derived from CCA. For each feature/2D feature map, top 20% `abs` weights are averaged for evaluation. """ avg_weights = fweights_top_mean(feat_weights, 0.2) cc_num = avg_weights.shape[0] fig, axs = plt.subplots(cc_num, 1) for i in range(cc_num): ind = np.arange(channel_num) axs[i].bar(ind, avg_weights[i], 0.35) plt.show() def fweights_top_mean(feat_weights, top_ratio): """Derive average of top `top_ratio` weights from each channels.""" cc_num = feat_weights.shape[3] channel_num = feat_weights.shape[0] avg_weights = np.zeros((cc_num, channel_num)) for i in range(cc_num): tmp = feat_weights[..., i] for j in range(channel_num): ctmp = np.abs(tmp[j, ...]).flatten() ctmp.sort() avg_weights[i, j] = ctmp[-1*int(ctmp.shape[0]*top_ratio):].mean() return avg_weights def roi2nifti(fmri_table, filename, mode='full'): """Save ROI as a nifti file. `mode`: 'full' for whole ROIs mask creation. 'small' for mask creation for alignment. """ if mode=='full': roi_label = {'v1lh': 1, 'v1rh': 2, 'v2lh': 3, 'v2rh': 4, 'v3lh': 5, 'v3rh': 6, 'v3alh': 7, 'v3arh': 8, 'v3blh': 9, 'v3brh': 10, 'v4lh': 11, 'v4rh': 12, 'latocclh': 13, 'latoccrh': 14, 'VOlh': 15, 'VOrh': 16, 'STSlh': 17, 'STSrh': 18, 'RSClh': 19, 'RSCrh': 20, 'PPAlh': 21, 'PPArh': 22, 'OBJlh': 23, 'OBJrh': 24, 'MTlh': 25, 'MTrh': 26, 'MTplh': 27, 'MTprh': 28, 'IPlh': 29, 'IPrh': 30, 'FFAlh': 31, 'FFArh': 32, 'EBAlh': 33, 'EBArh': 34, 'OFAlh': 35, 'OFArh': 36, 'v7alh': 37, 'v7arh': 38, 'v7blh': 39, 'v7brh': 40, 'v7clh': 41, 'v7crh': 42, 'v7lh': 43, 'v7rh': 44, 'IPS1lh': 45, 'IPS1rh': 46, 'IPS2lh': 47, 'IPS2rh': 48, 'IPS3lh': 49, 'IPS3rh': 50, 'IPS4lh': 51, 'IPS4rh': 52, 'MSTlh': 53, 'MSTrh': 54, 'TOSlh': 55, 'TOSrh': 56} else: roi_label = {'v1lh': 1, 'v1rh': 2, 'v2lh': 3, 'v2rh': 4, 'v3lh': 5, 'v3rh': 6, 'v3alh': 7, 'v3arh': 8, 'v3blh': 9, 'v3brh': 10, 'v4lh': 11, 'v4rh': 12, 'MTlh': 13, 'MTrh': 14, 'MTplh': 15, 'MTprh': 16} roi_list = fmri_table.list_nodes('/roi') roi_shape = roi_list[0].shape roi_mask = np.zeros(roi_shape) roi_list = [r.name for r in roi_list if r.name in roi_label] for r in roi_list: roi_mask += fmri_table.get_node('/roi/%s'%(r))[:] * roi_label[r] save2nifti(roi_mask, filename) def get_roi_mask(fmri_table, nifti=False): """Save ROIs as a mask.""" roi_list = fmri_table.list_nodes('/roi') roi_shape = roi_list[0].shape mask = np.zeros(roi_shape) for r in roi_list: mask += fmri_table.get_node('/roi/%s'%(r.name))[:] if nifti: save2nifti(mask, 'all_roi_mask.nii.gz') else: return mask.flatten() def gen_mean_vol(fmri_table, dataset, filename): """Make a mean response map as a reference volume.""" data = fmri_table.get_node('/'+dataset)[:] # replace nan to zero data = np.nan_to_num(data) mean_data = np.mean(data, axis=1) vol = np.zeros((18, 64, 64)) for i in range(data.shape[0]): c = vutil.idx2coord(i) vol[c[0], c[1], c[2]] = mean_data[i] save2nifti(vol, filename) def spatial_sim_seq(fmri_data): """Calculate spatial similarity between adjacent time points. fmri_data : A 2D array, each row represents a voxel's time course. """ length = fmri_data.shape[1] ssim_seq = np.zeros((length, )) for i in range(1, length): pdata = fmri_data[:, i-1] ndata = fmri_data[:, i] ssim_seq[i] = np.corrcoef(pdata, ndata)[0, 1] return ssim_seq def make_gaussian_prf(size): """Generate various pRFs based on 2d Gaussian kernel with different parameters. Return a pRF matrixs which shape is (size, size, size*size*fwhm#) """ fwhm_num = 10 fwhms = np.arange(1, fwhm_num+1) prfs = np.zeros((size, size, size*size*fwhm_num)) for k in range(fwhm_num): for i in range(size): for j in range(size): idx = k*size*size + i*size + j prfs[:, :, idx] = make_2d_gaussian(size, fwhm=fwhms[k], center=(j, i)) return prfs def sugar_gaussian_f(size, x0, y0, sigma, offset, beta): """Sugar function for model fitting.""" g = make_2d_gaussian(size, sigma, center=(y0, x0)) g = offset + beta * g return g.ravel() def sugar_dog_f(size, x0, y0, c_sigma, s_sigma, c_beta, s_beta): """Sugar function for model fitting.""" g = make_2d_dog(size, c_sigma, s_sigma, c_beta, s_beta, center=(y0, x0)) return g.ravel() def sugar_log_f(size, x0, y0, sigma, offset, beta): """Sugar function for model fitting.""" g = make_2d_log(size, sigma, center=(y0, x0)) g = offset + beta * g return g.ravel()
bsd-3-clause
dendisuhubdy/tensorflow
tensorflow/contrib/training/python/training/feeding_queue_runner_test.py
76
5052
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests `FeedingQueueRunner` using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.client import session from tensorflow.python.estimator.inputs.queues.feeding_functions import _enqueue_data as enqueue_data from tensorflow.python.framework import ops from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False def get_rows(array, row_indices): rows = [array[i] for i in row_indices] return np.vstack(rows) class FeedingQueueRunnerTestCase(test.TestCase): """Tests for `FeedingQueueRunner`.""" def testArrayFeeding(self): with ops.Graph().as_default(): array = np.arange(32).reshape([16, 2]) q = enqueue_data(array, capacity=100) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_dq = get_rows(array, indices) dq = sess.run(dq_op) np.testing.assert_array_equal(indices, dq[0]) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testArrayFeedingMultiThread(self): with ops.Graph().as_default(): array = np.arange(256).reshape([128, 2]) q = enqueue_data(array, capacity=128, num_threads=8, shuffle=True) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_dq = get_rows(array, indices) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testPandasFeeding(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(32) array2 = np.arange(32, 64) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(64, 96)) q = enqueue_data(df, capacity=100) batch_size = 5 dq_op = q.dequeue_many(5) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array1.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_df_indices = df.index[indices] expected_rows = df.iloc[indices] dq = sess.run(dq_op) np.testing.assert_array_equal(expected_df_indices, dq[0]) for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) def testPandasFeedingMultiThread(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(128, 256) array2 = 2 * array1 df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(128)) q = enqueue_data(df, capacity=128, num_threads=8, shuffle=True) batch_size = 5 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_rows = df.iloc[indices] for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) if __name__ == "__main__": test.main()
apache-2.0
nat13ejo/garn
garn/wire_3d.py
1
9734
import kwant from math import sqrt from matplotlib import pyplot import numpy as np from garn.geometry import hexagon, extension from garn.system_wide import Wire class Wire3D(Wire): """Wire3D facilitates the modelling of nanowire contact geometries in Kwant by actings as a help in constructing a hexagonal nanowire and attaching customizabel contacts in each end. """ def __init__(self, base=3, wire_length=30, lead_length=5, identifier="unnamed", file_name="", step_length=1, start_top=True, start_right=True, start_left=True, start_bottom=False, end_top=True, end_right=True, end_left=True, end_bottom=False): """A Instance of Wire3D describes the properties of a 3D nanowire .. warning:: If keyword parameter `file_name` is set to anything else than "" all other parameters are ignored. It is only to facilitate the use of parameter `file_name` that `base`, `wire_length` and, `lead_length` parameters are optional. Parameters ---------- base : int or float, optional Width of wire. wire_length : int or float, optional Length of complete wire including leads. lead_length : int or float, optional Length of lead-wire interface in direction of the Other Parameters ---------------- indentifier : str, optional Identifies the wire represented in plots and data files produced by garn. step_length : int or float, optional Discretization step. start_top : bool, optional Boolian vaules of there should be a lead on the top at the start of the wire start_right : bool, optional Boolian vaules of there should be a lead on the right side at the start of the wire. start_left : bool, optional Boolian vaules of there should be a lead on the left side at the start of the wire. start_bottom : bool, optional Boolian vaules of there should be a lead on the bottom at the start of the wire end_top : bool, optional Boolian vaules of there should be a lead on the top at the end of the wire. end_right : bool, optional Boolian vaules of there should be a lead on the right side at the end of the wire. end_left : bool, optional Boolian vaules of there should be a lead on the left side at the end of the wire. end_bottom : bool, optional Boolian vaules of there should be a lead on the bottom at the end of the wire. file_name : str, optional Uses the data-file specified by the str to create a the instance. """ Wire.__init__(self, base=base, wire_length=wire_length, lead_length=lead_length, identifier=identifier, file_name=file_name, step_length=step_length, start_top=start_top, start_right=start_right, start_left=start_left, start_bottom=start_bottom, end_top=end_top, end_right=end_right, end_left=end_left, end_bottom=end_bottom) self.lattice = self._lattice() self._make_system() #--------------------------------------------------------------------- # Internal functions #--------------------------------------------------------------------- def _attach_leads(self, lead_start_top, lead_start_side, lead_end_top, lead_end_side): """Attaches leads to system according to the self.leads list Parameters ---------- lead_start_top : Builder_ with 1D translational symmetry in z-direction Builder of the lead which is to be attached on the top of the beginning. lead_start_side : Builder_ with 1D translational symmetry in x-direction Builder of the lead which is to be attached on the side of the beginning. lead_end_top : Builder_ with 1D translational symmetry in z-direction Builder of the lead which is to be attached on the top of the end. lead_end_side : Builder_ with 1D translational symmetry in x-direction Builder of the lead which is to be attached on the side of the end. .. _Builder:: http://kwant-project.org/doc/1.0/reference/generated/kwant.builder.Builder#kwant.builder.Builder """ if self.leads[0]: self.sys.attach_lead(lead_start_top) if self.leads[1]: self.sys.attach_lead(lead_start_side) if self.leads[2]: self.sys.attach_lead(lead_start_side.reversed()) if self.leads[3]: self.sys.attach_lead(lead_start_top.reversed()) if self.leads[4]: self.sys.attach_lead(lead_end_top) if self.leads[5]: self.sys.attach_lead(lead_end_side) if self.leads[6]: self.sys.attach_lead(lead_end_side.reversed()) if self.leads[7]: self.sys.attach_lead(lead_end_top.reversed()) def _make_system(self): """Fills the Builder object with sites and hoppings. This is were the sites in the scattering region are added to the kwant.Builder object and functions to create leads and attach them are called. Welcome to the heart of :class:`garn.Wire3D`. """ #add sites in scattering region self.sys[self.lattice.shape( self._hexagon_wire, (0, 0, 0))] = self._onsite self.sys[self.lattice.neighbors()] = - self.t lead_start_top, lead_end_top = self._create_leads((0, 0, self.a)) lead_start_side, lead_end_side = self._create_leads((self.a, 0, 0)) self._attach_leads(lead_start_top, lead_start_side, lead_end_top, lead_end_side) #self.system_plot() self.sys = self.sys.finalized() def _hexagon_wire(self, pos): """ Find out if the position is inside a hexagonal wire.""" x, y, z = pos if (hexagon((x, z), self.base) & (y >= 0) & (y < self.wire_length)): return True else: return False def _positions_of_leads(self): """Calculate positions from where to start fill leads Returns ------- start_top_site: tuple of 3 floats Top left corner of rectange enclosing the hexagon of the beggining of the wire. end_top_site: tuple of 3 floats Top left corner of rectange enclosing the hexagon of the wire at a the begging of the lead at the end of the wire. Notes ----- Explaining these positions are messy so here is some math instead. .. math:: start_top_site = (-\dfrac{base}{2}, 0, \dfrac{\sqrt{3}base}{2}) \ start_end_site = (-\dfrac{base}\2}, wire_length - lead_length, \dfrac{\sqrt{3}base}{2}) """ xs, ys, zs = self.lattice.closest(( - self.base / 2.0, 0, sqrt(3) / 2.0 * self.base)) xe, ye, ze = self.lattice.closest( (- self.base / 2.0, self.wire_length - self.lead_length, sqrt(3) / 2.0 * self.base)) start_top_site = (xs, ys, zs) end_top_site = (xe, ye, ze) return start_top_site, end_top_site def _lattice(self): # Set lattice vectors for lattice object basis_vectors = ((self.a, 0, 0), (0, self.a, 0), (0, 0, self.a)) # return the lattice object return kwant.lattice.Monatomic(basis_vectors) def _onsite(self, args): # + kwant.digest.gauss(str(site.pos)) return 6 * self.t def _fill_lead(self, lead, position, side=False): x, y, z = position start_x = -self.base + 1 if not side: lead[[self.lattice(i, j, 0) for i in range(-self.base+1, self.base) for j in range(y, y + self.lead_length)]] = 6 * self.t return lead if side: lead[[self.lattice(0, j, k) for j in range(y, y + self.lead_length) for k in range(int(-self.base * sqrt(3) / 2.0), int(self.base * sqrt(3) / 2.0)+1)]] = 6 * self.t return lead def _create_leads(self, sym): """ Return lead at the start and end of wire with symetry sym""" if (sym == (self.a, 0, 0)): side = True else: side = False lead_start = kwant.Builder( kwant.TranslationalSymmetry(sym)) lead_end = kwant.Builder( kwant.TranslationalSymmetry(sym)) pos_start, pos_end = self._positions_of_leads() lead_end = self._fill_lead(lead_end, pos_end, side) lead_start = self._fill_lead(lead_start, pos_start, side) lead_end[self.lattice.neighbors()] = -self.t lead_start[self.lattice.neighbors()] = -self.t return lead_start, lead_end
mit
dsquareindia/scikit-learn
sklearn/metrics/cluster/tests/test_supervised.py
34
10313
import numpy as np from sklearn.metrics.cluster import adjusted_mutual_info_score from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.cluster import completeness_score from sklearn.metrics.cluster import contingency_matrix from sklearn.metrics.cluster import entropy from sklearn.metrics.cluster import expected_mutual_information from sklearn.metrics.cluster import fowlkes_mallows_score from sklearn.metrics.cluster import homogeneity_completeness_v_measure from sklearn.metrics.cluster import homogeneity_score from sklearn.metrics.cluster import mutual_info_score from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.metrics.cluster import v_measure_score from sklearn.utils.testing import ( assert_equal, assert_almost_equal, assert_raise_message, ) from numpy.testing import assert_array_almost_equal score_funcs = [ adjusted_rand_score, homogeneity_score, completeness_score, v_measure_score, adjusted_mutual_info_score, normalized_mutual_info_score, ] def test_error_messages_on_wrong_input(): for score_func in score_funcs: expected = ('labels_true and labels_pred must have same size,' ' got 2 and 3') assert_raise_message(ValueError, expected, score_func, [0, 1], [1, 1, 1]) expected = "labels_true must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [[0, 1], [1, 0]], [1, 1, 1]) expected = "labels_pred must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [0, 1, 0], [[1, 1], [0, 0]]) def test_perfect_matches(): for score_func in score_funcs: assert_equal(score_func([], []), 1.0) assert_equal(score_func([0], [1]), 1.0) assert_equal(score_func([0, 0, 0], [0, 0, 0]), 1.0) assert_equal(score_func([0, 1, 0], [42, 7, 42]), 1.0) assert_equal(score_func([0., 1., 0.], [42., 7., 42.]), 1.0) assert_equal(score_func([0., 1., 2.], [42., 7., 2.]), 1.0) assert_equal(score_func([0, 1, 2], [42, 7, 2]), 1.0) def test_homogeneous_but_not_complete_labeling(): # homogeneous but not complete clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 2, 2]) assert_almost_equal(h, 1.00, 2) assert_almost_equal(c, 0.69, 2) assert_almost_equal(v, 0.81, 2) def test_complete_but_not_homogeneous_labeling(): # complete but not homogeneous clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 1, 1, 2, 2], [0, 0, 1, 1, 1, 1]) assert_almost_equal(h, 0.58, 2) assert_almost_equal(c, 1.00, 2) assert_almost_equal(v, 0.73, 2) def test_not_complete_and_not_homogeneous_labeling(): # neither complete nor homogeneous but not so bad either h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) def test_non_consicutive_labels(): # regression tests for labels with gaps h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 2, 2, 2], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(ari_1, 0.24, 2) assert_almost_equal(ari_2, 0.24, 2) def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10, seed=42): # Compute score for random uniform cluster labelings random_labels = np.random.RandomState(seed).randint scores = np.zeros((len(k_range), n_runs)) for i, k in enumerate(k_range): for j in range(n_runs): labels_a = random_labels(low=0, high=k, size=n_samples) labels_b = random_labels(low=0, high=k, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores def test_adjustment_for_chance(): # Check that adjusted scores are almost zero on random labels n_clusters_range = [2, 10, 50, 90] n_samples = 100 n_runs = 10 scores = uniform_labelings_scores( adjusted_rand_score, n_samples, n_clusters_range, n_runs) max_abs_scores = np.abs(scores).max(axis=1) assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2) def test_adjusted_mutual_info_score(): # Compute the Adjusted Mutual Information and test against known values labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) # Mutual information mi = mutual_info_score(labels_a, labels_b) assert_almost_equal(mi, 0.41022, 5) # with provided sparse contingency C = contingency_matrix(labels_a, labels_b, sparse=True) mi = mutual_info_score(labels_a, labels_b, contingency=C) assert_almost_equal(mi, 0.41022, 5) # with provided dense contingency C = contingency_matrix(labels_a, labels_b) mi = mutual_info_score(labels_a, labels_b, contingency=C) assert_almost_equal(mi, 0.41022, 5) # Expected mutual information n_samples = C.sum() emi = expected_mutual_information(C, n_samples) assert_almost_equal(emi, 0.15042, 5) # Adjusted mutual information ami = adjusted_mutual_info_score(labels_a, labels_b) assert_almost_equal(ami, 0.27502, 5) ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3]) assert_equal(ami, 1.0) # Test with a very large array a110 = np.array([list(labels_a) * 110]).flatten() b110 = np.array([list(labels_b) * 110]).flatten() ami = adjusted_mutual_info_score(a110, b110) # This is not accurate to more than 2 places assert_almost_equal(ami, 0.37, 2) def test_expected_mutual_info_overflow(): # Test for regression where contingency cell exceeds 2**16 # leading to overflow in np.outer, resulting in EMI > 1 assert expected_mutual_information(np.array([[70000]]), 70000) <= 1 def test_entropy(): ent = entropy([0, 0, 42.]) assert_almost_equal(ent, 0.6365141, 5) assert_almost_equal(entropy([]), 1) def test_contingency_matrix(): labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) C = contingency_matrix(labels_a, labels_b) C2 = np.histogram2d(labels_a, labels_b, bins=(np.arange(1, 5), np.arange(1, 5)))[0] assert_array_almost_equal(C, C2) C = contingency_matrix(labels_a, labels_b, eps=.1) assert_array_almost_equal(C, C2 + .1) def test_contingency_matrix_sparse(): labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) C = contingency_matrix(labels_a, labels_b) C_sparse = contingency_matrix(labels_a, labels_b, sparse=True).toarray() assert_array_almost_equal(C, C_sparse) C_sparse = assert_raise_message(ValueError, "Cannot set 'eps' when sparse=True", contingency_matrix, labels_a, labels_b, eps=1e-10, sparse=True) def test_exactly_zero_info_score(): # Check numerical stability when information is exactly zero for i in np.logspace(1, 4, 4).astype(np.int): labels_a, labels_b = (np.ones(i, dtype=np.int), np.arange(i, dtype=np.int)) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(v_measure_score(labels_a, labels_b), 0.0) assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) def test_v_measure_and_mutual_information(seed=36): # Check relation between v_measure, entropy and mutual information for i in np.logspace(1, 4, 4).astype(np.int): random_state = np.random.RandomState(seed) labels_a, labels_b = (random_state.randint(0, 10, i), random_state.randint(0, 10, i)) assert_almost_equal(v_measure_score(labels_a, labels_b), 2.0 * mutual_info_score(labels_a, labels_b) / (entropy(labels_a) + entropy(labels_b)), 0) def test_fowlkes_mallows_score(): # General case score = fowlkes_mallows_score([0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 2, 2]) assert_almost_equal(score, 4. / np.sqrt(12. * 6.)) # Perfect match but where the label names changed perfect_score = fowlkes_mallows_score([0, 0, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0]) assert_almost_equal(perfect_score, 1.) # Worst case worst_score = fowlkes_mallows_score([0, 0, 0, 0, 0, 0], [0, 1, 2, 3, 4, 5]) assert_almost_equal(worst_score, 0.) def test_fowlkes_mallows_score_properties(): # handcrafted example labels_a = np.array([0, 0, 0, 1, 1, 2]) labels_b = np.array([1, 1, 2, 2, 0, 0]) expected = 1. / np.sqrt((1. + 3.) * (1. + 2.)) # FMI = TP / sqrt((TP + FP) * (TP + FN)) score_original = fowlkes_mallows_score(labels_a, labels_b) assert_almost_equal(score_original, expected) # symetric property score_symetric = fowlkes_mallows_score(labels_b, labels_a) assert_almost_equal(score_symetric, expected) # permutation property score_permuted = fowlkes_mallows_score((labels_a + 1) % 3, labels_b) assert_almost_equal(score_permuted, expected) # symetric and permutation(both together) score_both = fowlkes_mallows_score(labels_b, (labels_a + 2) % 3) assert_almost_equal(score_both, expected)
bsd-3-clause
jblupus/PyLoyaltyProject
loyalty/loyalty.py
1
15648
#!/usr/bin/python # coding=utf-8 import json import os from threading import Thread import numpy as np import pandas as pd from utils import HOME PATH = HOME + '/Dropbox/Twitter/' DATASETS_PATH = PATH + 'Data/datasets/' PROFILE_PATH = PATH + 'Data/profile/users_profile_data.csv' class Entropy(Thread): def __init__(self, inputfile, outputfile): super(Entropy, self).__init__() self.inputfile = inputfile self.outputfile = outputfile def run(self): with open(self.inputfile, 'r') as infile, open(self.outputfile, 'wb') as outfile: entropies = {} for line in infile.readlines(): line_json = json.loads(line) key = line_json.keys()[0] if len(line_json[key]) > 10: entropies.update({key: calc_entropy(line_json[key])}) json.dump({'entropies': entropies}, outfile, indent=4) def calc_entropy(freq): rel_freq = np.array(freq) / float(sum(freq)) return -1 * np.sum(rel_freq * np.log10(rel_freq)) / np.log10(np.size(freq)) def calc_interval_size(values, size): return round(np.size(values) / size, 4) def clean_dict(intervals): keys = filter(lambda k: intervals[k] == 0, intervals) for key in keys: del intervals[key] return intervals def save_json(filename, data): with open(filename, 'wb') as outfile: json.dump({'intervals': data}, outfile, indent=4) def calc_alters(values): size = float(np.size(values)) if size == 0: return {} values_mean = np.mean(values) values_sd = np.std(values) intervals = {0: calc_interval_size(filter(lambda v: v <= values_mean, values), size)} if values_sd > 0: max_value = np.max(values) next_values = map(lambda v: v, values) for i in xrange(0, int(np.ceil((max_value - values_mean) / values_sd))): inf = values_mean + (i * values_sd) next_values = filter(lambda v: v > inf, next_values) sup = values_mean + ((i + 1) * values_sd) rel_size = calc_interval_size(filter(lambda v: v <= sup, next_values), size) intervals.update({i + 1: rel_size}) return clean_dict(intervals) class Loyalty(Thread): def __init__(self, in_filename, out_filename): super(Loyalty, self).__init__() self.in_filename = in_filename self.out_filename = out_filename def run(self): with open(self.in_filename, 'r') as infile: loyalties = {} for line in infile.readlines(): line_json = json.loads(line) key = line_json.keys()[0] loyalties.update({key: calc_alters(line_json[key])}) save_json(self.out_filename, data=loyalties) class TopAlters(Thread): def __init__(self, in_filename, out_filename, ids=[]): super(TopAlters, self).__init__() self.in_filename = in_filename self.out_filename = out_filename self.ids = ids def run(self): with open(self.in_filename, 'r') as infile: top_alters = {} json_values = json.load(infile)['intervals'] has_ids = np.size(self.ids) == 0 for json_value in json_values: if has_ids or int(json_value) in self.ids: if len(json_values[json_value]) > 0: try: max_interval = np.max(np.array(json_values[json_value].keys()).astype(int)) except ValueError as v: print json_value, len(json_values[json_value]), json_values[json_value] raise v top_alters.update({json_value: max_interval}) df = pd.DataFrame() df['ego_id'] = top_alters.keys() df['max_interval'] = top_alters.values() df.to_csv(self.out_filename) def text_loyalty(): for filename in ['like.jsons', 'mention.jsons', 'retweet.jsons']: in_filename = PATH + 'Text.Distributions/' + filename out_filename = PATH + 'Text.Loyalty/' + format() Loyalty(in_filename=in_filename, out_filename=out_filename).run() def interactions_loyalty(): for filename in ['like.jsons', 'mention.jsons', 'retweet.jsons', 'union.jsons']: in_filename = PATH + 'Filtered.Distributions/' + filename out_filename = PATH + 'Interactions.Loyalty/' + filename Loyalty(in_filename=in_filename, out_filename=out_filename).run() def check(filename): with open(filename, 'r') as infile: json_values = json.load(infile)['intervals'] for json_value in json_values: print json_value, np.sum(json_values[json_value].values()) def top_alters(): for filename in [('like.jsons', 'like.csv'), ('mention.jsons', 'mention.csv'), ('retweet.jsons', 'retweet.csv'), ('union.jsons', 'union.csv')]: in_filename = PATH + 'Interactions.Loyalty/' + filename[0] out_filename = PATH + 'Interactions.TopAlters/' + filename[1] TopAlters(in_filename=in_filename, out_filename=out_filename).run() def friend_top_alters(): # for filename in [('like.jsons', 'd_friend_like.csv'), # ('mention.jsons', 'd_friend_mention.csv'), # ('retweet.jsons', 'd_friend_retweet.csv')]: # df_friends = pd.read_csv(FRIENDS_PATH + filename[1]) # friends = df_friends['seed_id'].values # in_filename = PATH + 'Interactions.Loyalty/' + filename[0] # out_filename = PATH + 'Interactions.TopAlters/' + filename[1] # TopAlters(in_filename=in_filename, out_filename=out_filename, friends=friends).run() union_friends = set() for filename in ['d_friend_like.csv', 'd_friend_mention.csv', 'd_friend_retweet.csv']: df_friends = pd.read_csv(DATASETS_PATH + filename) friends = df_friends['seed_id'].values union_friends.update(friends) union_friends = list(union_friends) in_filename = PATH + 'Interactions.Loyalty/union.jsons' out_filename = PATH + 'Interactions.TopAlters/d_friend_union.csv' TopAlters(in_filename=in_filename, out_filename=out_filename, ids=union_friends).run() # friend_top_alters() def language_top_atlers(): df = pd.read_csv(PROFILE_PATH) langs = ['en', 'es', 'pt', 'fr', 'it', 'de', 'ja', 'others'] df['language'] = map(lambda lang: lang if 'en-' not in lang else 'en', df['language']) df['language'] = map(lambda lang: lang if 'es-' not in lang else 'es', df['language']) df['language'] = map(lambda lang: lang if 'pt-' not in lang else 'pt', df['language']) df['language'] = map(lambda lang: lang if 'fr-' not in lang else 'fr', df['language']) df['language'] = map(lambda lang: lang if 'it-' not in lang else 'it', df['language']) df['language'] = map(lambda lang: lang if 'de-' not in lang else 'de', df['language']) df['language'] = map(lambda lang: lang if 'ja-' not in lang else 'ja', df['language']) df['language'] = map(lambda lang: lang if lang in langs else 'others', df['language']) for language in langs: lang_ids = df.loc[df['language'] == language]['user_id'].values for filename in [('like.jsons', 'd_like_' + language + '.csv'), ('mention.jsons', 'd_mention_' + language + '.csv'), ('retweet.jsons', 'd_retweet_' + language + '.csv'), ('union.jsons', 'd_union_' + language + '.csv')]: in_filename = PATH + 'Interactions.Loyalty/' + filename[0] out_filename = PATH + 'Language.TopAlters/' + filename[1] TopAlters(in_filename=in_filename, out_filename=out_filename, ids=lang_ids).run() # friend_top_alters() def datasets_size(): d_size = 188511.0 print '\n\nDatasets' for dataset in np.sort(filter(lambda x: 'union' not in x, os.listdir(DATASETS_PATH))): df = pd.read_csv(DATASETS_PATH + dataset) size = np.size(df['seed_id'].values) print dataset.split('.')[0], ' & '.join([str(size), str(round(100 * size / d_size, 2))]) print '\n\nLanguages Datasets' for dataset in np.sort(filter(lambda x: 'union' not in x, os.listdir(PATH + 'Language.TopAlters/'))): df = pd.read_csv(PATH + 'Language.TopAlters/' + dataset) size = np.size(df['ego_id'].values) print dataset.split('.')[0], ' & '.join([str(size), str(round(100 * size / d_size, 2))]) # datasets_size() def get_top_alters(filename=None, values=[], ids=[]): if filename is not None: df = pd.read_csv(filename) if len(ids) == 0: values = df['max_interval'].values else: d = dict(zip(df['ego_id'], df['max_interval'])) values = [d[key] for key in ids] values = filter(lambda x: x > 0, values) total = float(np.size(values)) i0 = np.size(filter(lambda x: x == 0, values)) i1 = np.size(filter(lambda x: 1 <= x <= 3, values)) i2 = np.size(filter(lambda x: 4 <= x <= 6, values)) i3 = np.size(filter(lambda x: 7 <= x <= 9, values)) i4 = np.size(filter(lambda x: 10 <= x <= 12, values)) i5 = np.size(filter(lambda x: 13 <= x <= 15, values)) i6 = np.size(filter(lambda x: 16 <= x, values)) counts = {0: i0, 1: i1, 2: i2, 3: i3, 4: i4, 5: i5, 6: i6} # counts = dict([(key, round(100 * counts[key] / total, 4)) for key in np.sort(counts.keys())]) return total, np.array(counts.values()).astype(float).tolist() def check_top(filename): with open(filename, 'r') as infile: i = [] for line in infile.readlines(): values = np.array(line.split(' '))[1:] i.append(float(values[0].split(':')[0])) total, counts = get_top_alters(values=i) print total, 100.0 * np.array(counts) / total, counts def top_category(): langs = ['en', 'es', 'pt', 'fr', 'it', 'de', 'ja', 'others'] datapath = PATH + 'Interactions.TopAlters/' langdatapath = PATH + 'Language.TopAlters/' total, values = get_top_alters(datapath + 'like.csv') print 'like.csv', total, ' & '.join(np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' for lang in langs: total, values = get_top_alters(langdatapath + 'd_like_' + lang + '.csv') print 'd_like_' + lang + '.csv', total, ' & '.join(np.array(np.round(100.0 * np.array(values) / total, 4)) .astype(str)) + '\\\\' print '\n' total, values = get_top_alters(datapath + 'mention.csv') print 'mention.csv', total, ' & '.join( np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' for lang in langs: total, values = get_top_alters(langdatapath + 'd_mention_' + lang + '.csv') print 'd_mention_' + lang + '.csv', total, ' & '.join(np.array(np.round(100.0 * np.array(values) / total, 4)) .astype(str)) + '\\\\' print '\n' total, values = get_top_alters(datapath + 'retweet.csv') print 'retweet.csv', total, ' & '.join( np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' for lang in langs: total, values = get_top_alters(langdatapath + 'd_retweet_' + lang + '.csv') print 'd_retweet_' + lang + '.csv', total, ' & '.join( np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' print '\n' total, values = get_top_alters(datapath + 'union.csv') print 'union.csv', total, ' & '.join( np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' for lang in langs: total, values = get_top_alters(langdatapath + 'd_union_' + lang + '.csv') print 'd_union_' + lang + '.csv', total, ' & '.join( np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' # top_category() def co_top_category(): ids = set() for _file in ['d_like.csv', 'd_mention.csv', 'd_retweet.csv']: _ids = np.array(pd.read_csv(DATASETS_PATH + _file)['seed_id']).astype(int) if len(ids) > 0: ids = ids.intersection(_ids.tolist()) else: ids.update(_ids.tolist()) datapath = PATH + 'Interactions.TopAlters/' total, values = get_top_alters(filename=datapath + 'like.csv', ids=list(ids)) print 'like.csv', total, ' & '.join(np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' total, values = get_top_alters(filename=datapath + 'mention.csv', ids=list(ids)) print 'mention.csv', total, ' & '.join( np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' total, values = get_top_alters(filename=datapath + 'retweet.csv', ids=list(ids)) print 'retweet.csv', total, ' & '.join( np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' total, values = get_top_alters(filename=datapath + 'union.csv', ids=list(ids)) print 'union.csv', total, ' & '.join( np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' # co_top_category() def friends_top_category(): for _file in [('d_like.csv', 'd_friend_like.csv'), ('d_mention.csv', 'd_friend_mention.csv'), ('d_retweet.csv', 'd_friend_retweet.csv'), ('d_union.csv', 'd_friend_union.csv')]: # _ids = np.array(pd.read_csv(DATASETS_PATH + _file[1])['seed_id']).astype(int) datapath = PATH + 'Interactions.TopAlters/' total, values = get_top_alters(filename=datapath + _file[1]) print _file[0], total, ' & '.join(np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' # friends_top_category() def co_friends_top_category(): ids = set() for _file in ['d_friend_like.csv', 'd_friend_mention.csv', 'd_friend_retweet.csv']: _ids = np.array(pd.read_csv(DATASETS_PATH + _file)['seed_id']).astype(int) if len(ids) > 0: ids = ids.intersection(_ids.tolist()) else: ids.update(_ids.tolist()) for _file in [('d_like.csv', 'd_friend_like.csv'), ('d_mention.csv', 'd_friend_mention.csv'), ('d_retweet.csv', 'd_friend_retweet.csv'), ('d_union.csv', 'd_friend_union.csv')]: datapath = PATH + 'Interactions.TopAlters/' total, values = get_top_alters(filename=datapath + _file[1], ids=list(ids)) print _file[0], total, ' & '.join(np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\' # co_friends_top_category() def text_top_alters(): for filename in [('like.jsons', 'like.csv'), ('mention.jsons', 'mention.csv'), ('retweet.jsons', 'retweet.csv')]: in_filename = PATH + 'Text.Loyalty/' + filename[0] out_filename = PATH + 'Text.TopAlters/' + filename[1] TopAlters(in_filename=in_filename, out_filename=out_filename).run() # text_top_alters() def text_top_category(): for _file in ['like.csv', 'mention.csv', 'retweet.csv']: datapath = PATH + 'Text.TopAlters/' total, values = get_top_alters(filename=datapath + _file) print _file, total, ' & '.join(np.array(np.round(100.0 * np.array(values) / total, 4)).astype(str)) + '\\\\'
bsd-2-clause
abhishekgahlot/scikit-learn
examples/cluster/plot_segmentation_toy.py
258
3336
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
cysuncn/python
study/machinelearning/tensorflow/faceSensor/PR/face_train_use_keras.py
1
10408
#-*- coding: utf-8 -*- import random import numpy as np from sklearn.model_selection import train_test_split from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.models import load_model from keras import backend as K from load_face_dataset import load_dataset, resize_image, IMAGE_SIZE class Dataset: def __init__(self, path_name): # 训练集 self.train_images = None self.train_labels = None # 验证集 self.valid_images = None self.valid_labels = None # 测试集 self.test_images = None self.test_labels = None # 数据集加载路径 self.path_name = path_name # 当前库采用的维度顺序 self.input_shape = None # 加载数据集并按照交叉验证的原则划分数据集并进行相关预处理工作 def load(self, img_rows=IMAGE_SIZE, img_cols=IMAGE_SIZE, img_channels=3, nb_classes=2): # 加载数据集到内存 images, labels = load_dataset(self.path_name) train_images, valid_images, train_labels, valid_labels = train_test_split(images, labels, test_size=0.3, random_state=random.randint(0, 100)) _, test_images, _, test_labels = train_test_split(images, labels, test_size=0.5, random_state=random.randint(0, 100)) # 当前的维度顺序如果为'th',则输入图片数据时的顺序为:channels,rows,cols,否则:rows,cols,channels # 这部分代码就是根据keras库要求的维度顺序重组训练数据集 if K.image_dim_ordering() == 'th': train_images = train_images.reshape(train_images.shape[0], img_channels, img_rows, img_cols) valid_images = valid_images.reshape(valid_images.shape[0], img_channels, img_rows, img_cols) test_images = test_images.reshape(test_images.shape[0], img_channels, img_rows, img_cols) self.input_shape = (img_channels, img_rows, img_cols) else: train_images = train_images.reshape(train_images.shape[0], img_rows, img_cols, img_channels) valid_images = valid_images.reshape(valid_images.shape[0], img_rows, img_cols, img_channels) test_images = test_images.reshape(test_images.shape[0], img_rows, img_cols, img_channels) self.input_shape = (img_rows, img_cols, img_channels) # 输出训练集、验证集、测试集的数量 print(train_images.shape[0], 'train samples') print(valid_images.shape[0], 'valid samples') print(test_images.shape[0], 'test samples') # 我们的模型使用categorical_crossentropy作为损失函数,因此需要根据类别数量nb_classes将 # 类别标签进行one-hot编码使其向量化,在这里我们的类别只有两种,经过转化后标签数据变为二维 train_labels = np_utils.to_categorical(train_labels, nb_classes) valid_labels = np_utils.to_categorical(valid_labels, nb_classes) test_labels = np_utils.to_categorical(test_labels, nb_classes) # 像素数据浮点化以便归一化 train_images = train_images.astype('float32') valid_images = valid_images.astype('float32') test_images = test_images.astype('float32') # 将其归一化,图像的各像素值归一化到0~1区间 train_images /= 255 valid_images /= 255 test_images /= 255 self.train_images = train_images self.valid_images = valid_images self.test_images = test_images self.train_labels = train_labels self.valid_labels = valid_labels self.test_labels = test_labels # CNN网络模型类 class Model: def __init__(self): self.model = None def build_model(self, dataset, nb_classes=2): # 构建一个空的网络模型,它是一个线性堆叠模型,各神经网络层会被顺序添加,专业名称为序贯模型或线性堆叠模型 self.model = Sequential() # 以下代码将顺序添加CNN网络需要的各层,一个add就是一个网络层 self.model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=dataset.input_shape)) # 1 2维卷积层 self.model.add(Activation('relu')) # 2 激活函数层 self.model.add(Convolution2D(32, 3, 3)) # 3 2维卷积层 self.model.add(Activation('relu')) # 4 激活函数层 self.model.add(MaxPooling2D(pool_size=(2, 2))) # 5 池化层 self.model.add(Dropout(0.25)) # 6 Dropout层 self.model.add(Convolution2D(64, 3, 3, border_mode='same')) # 7 2维卷积层 self.model.add(Activation('relu')) # 8 激活函数层 self.model.add(Convolution2D(64, 3, 3)) # 9 2维卷积层 self.model.add(Activation('relu')) # 10 激活函数层 self.model.add(MaxPooling2D(pool_size=(2, 2))) # 11 池化层 self.model.add(Dropout(0.25)) # 12 Dropout层 self.model.add(Flatten()) # 13 Flatten层 self.model.add(Dense(512)) # 14 Dense层,又被称作全连接层 self.model.add(Activation('relu')) # 15 激活函数层 self.model.add(Dropout(0.5)) # 16 Dropout层 self.model.add(Dense(nb_classes)) # 17 Dense层 self.model.add(Activation('softmax')) # 18 分类层,输出最终结果 # 输出模型概况 self.model.summary() def train(self, dataset, batch_size=20, nb_epoch=10, data_augmentation=True): sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) # 采用SGD+momentum的优化器进行训练,首先生成一个优化器对象 self.model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) # 完成实际的模型配置工作 # 不使用数据提升,所谓的提升就是从我们提供的训练数据中利用旋转、翻转、加噪声等方法创造新的 # 训练数据,有意识的提升训练数据规模,增加模型训练量 if not data_augmentation: self.model.fit(dataset.train_images, dataset.train_labels, batch_size=batch_size, nb_epoch=nb_epoch, validation_data=(dataset.valid_images, dataset.valid_labels), shuffle=True) # 使用实时数据提升 else: # 定义数据生成器用于数据提升,其返回一个生成器对象datagen,datagen每被调用一 # 次其生成一组数据(顺序生成),节省内存,其实就是python的数据生成器 datagen = ImageDataGenerator(featurewise_center=False, # 是否使输入数据去中心化(均值为0), samplewise_center=False, # 是否使输入数据的每个样本均值为0 featurewise_std_normalization=False, # 是否数据标准化(输入数据除以数据集的标准差) samplewise_std_normalization=False, # 是否将每个样本数据除以自身的标准差 zca_whitening=False, # 是否对输入数据施以ZCA白化 rotation_range=20, # 数据提升时图片随机转动的角度(范围为0~180) width_shift_range=0.2, # 数据提升时图片水平偏移的幅度(单位为图片宽度的占比,0~1之间的浮点数) height_shift_range=0.2, # 同上,只不过这里是垂直 horizontal_flip=True, # 是否进行随机水平翻转 vertical_flip=False) # 是否进行随机垂直翻转 # 计算整个训练样本集的数量以用于特征值归一化、ZCA白化等处理 datagen.fit(dataset.train_images) # 利用生成器开始训练模型 self.model.fit_generator(datagen.flow(dataset.train_images, dataset.train_labels, batch_size=batch_size), samples_per_epoch=dataset.train_images.shape[0], nb_epoch=nb_epoch, validation_data=(dataset.valid_images, dataset.valid_labels)) MODEL_PATH = 'D:\model\me.face.model.h5' def save_model(self, file_path=MODEL_PATH): self.model.save(file_path) def load_model(self, file_path=MODEL_PATH): self.model = load_model(file_path) def evaluate(self, dataset): score = self.model.evaluate(dataset.test_images, dataset.test_labels, verbose=1) print("%s: %.2f%%" % (self.model.metrics_names[1], score[1] * 100)) # 识别人脸 def face_predict(self, image): # 依然是根据后端系统确定维度顺序 if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE): image = resize_image(image) # 尺寸必须与训练集一致都应该是IMAGE_SIZE x IMAGE_SIZE image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE)) # 与模型训练不同,这次只是针对1张图片进行预测 elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3): image = resize_image(image) image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3)) # 浮点并归一化 image = image.astype('float32') image /= 255 # 给出输入属于各个类别的概率,我们是二值类别,则该函数会给出输入图像属于0和1的概率各为多少 result = self.model.predict_proba(image) print('result:', result) # 给出类别预测:0或者1 result = self.model.predict_classes_customerize(image) # 返回类别预测结果 return result[0] if __name__ == '__main__': dataset = Dataset('D:/data') dataset.load() model = Model() model.build_model(dataset) model.train(dataset) model.save_model(file_path='D:\model\me.face.model.h5') #评估模型 model = Model() model.load_model(file_path='D:\model\me.face.model.h5') model.evaluate(dataset)
gpl-3.0
dubourg/openturns
python/test/t_features.py
1
2344
#! /usr/bin/env python from __future__ import print_function import os width = 40 # check that python can load OpenTURNS module print('1: Python module load'.ljust(width), end=' ') try: import openturns as ot print('OK') except: print('no') # check that python can find the Viewer module # If it fails, check that matplotlib package is installed print('2: Viewer (matplotlib)'.ljust(width), end=' ') try: import openturns.viewer print('OK') except: print('no') # check that OpenTURNS can run R # It should produce a file named testDraw.png print('3: drawing (R)'.ljust(width), end=' ') try: graph = ot.Normal().drawPDF() fname = 'testDraw.png' try: graph.draw(fname) os.remove(fname) except: raise print('OK') except: print('no') # check that rot package is installed print('4: linear model (R.rot)'.ljust(width), end=' ') try: lm = ot.LinearModelFactory().build( ot.Normal(2).getSample(10), ot.Normal().getSample(10)) print('OK') except: print('no') # check XML support print('5: serialization (LibXML2)'.ljust(width), end=' ') try: storageManager = ot.XMLStorageManager('myFile.xml') print('OK') except: print('no') # check that analytical function are available print('6: analytical function (muParser)'.ljust(width), end=' ') try: f = ot.NumericalMathFunction(['x1', 'x2'], ['y'], ['x1+x2']) print('OK') except: print('no') # check that hmat library was found print('7: HMatrix (hmat-oss)'.ljust(width), end=' ') try: # This is a little bit tricky because HMat 1.0 fails with 1x1 matrices ot.ResourceMap.SetAsUnsignedInteger( 'TemporalNormalProcess-SamplingMethod', 1) vertices = [[0.0, 0.0, 0.0]] vertices.append([1.0, 0.0, 0.0]) vertices.append([0.0, 1.0, 0.0]) vertices.append([0.0, 0.0, 1.0]) simplices = [[0, 1, 2, 3]] # Discard messages from HMat ot.Log.Show(0) process = ot.TemporalNormalProcess( ot.ExponentialModel(3), ot.Mesh(vertices, simplices)) f = process.getRealization() print('OK') except: print('no') # check that nlopt library was found print('8: optimization (NLopt)'.ljust(width), end=' ') try: problem = ot.OptimizationProblem() algo = ot.SLSQP() algo.setProblem(problem) print('OK') except: print('no')
gpl-3.0
dbftdiyoeywga/bards
bards/utils.py
1
3353
import time import os import random import numpy as np import pandas as pd import argparse import mlflow from pathlib import Path from contextlib import contextmanager @contextmanager def timer(name): t0 = time.time() yield print(f"[{name}] done in {time.time() - t0:.0f} s") def reduce_mem_usage(df: pd.DataFrame): """iterate through all the columns of a dataframe and modify the data type to reduce memory usage. """ start_mem = df.memory_usage().sum() / 1024 ** 2 print("Memory usage of dataframe is {:.2f} MB".format(start_mem)) for col in df.columns: col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == "int": if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if ( c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max ): df[col] = df[col].astype(np.float16) elif ( c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max ): df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype("category") end_mem = df.memory_usage().sum() / 1024 ** 2 print("Memory usage after optimization is: {:.2f} MB".format(end_mem)) print("Decreased by {:.1f}%".format(100 * (start_mem - end_mem) / start_mem)) return df def seed_everything(seed: int): random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) def csv2feather(path: str, target=None): df = pd.read_csv(path) p = Path(path) o_path = p.with_suffix(".ftr") if Path(o_path).exists(): pass else: df.to_feather(o_path) if target is not None: o_path = p.parent / "target.ftr" if Path(o_path).exists(): pass else: df_ = pd.DataFrame() df_["target"] = df[target] df_.to_feather(o_path) def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument( "--force", "-f", action="store_true", help="Overwrite existing files" ) return parser.parse_args() def save_log(score_dict): mlflow.log_metrics(score_dict) mlflow.log_artifact("./config/config.yaml") def load_dataset(features: list): train = [pd.read_feather(f"./features/{f}_train.ftr") for f in features] test = [pd.read_feather(f"./features/{f}_test.ftr") for f in features] return pd.concat(train, axis=1), pd.concat(test, axis=1) def load_target(feature: str): target = pd.read_feather("./data/raw/")
mit
rothnic/bokeh
bokeh/charts/builder/tests/test_line_builder.py
33
2376
""" This is the Bokeh charts testing interface. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from collections import OrderedDict import unittest import numpy as np from numpy.testing import assert_array_equal import pandas as pd from bokeh.charts import Line from bokeh.charts.builder.tests._utils import create_chart #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class TestLine(unittest.TestCase): def test_supported_input(self): xyvalues = OrderedDict() y_python = xyvalues['python'] = [2, 3, 7, 5, 26] y_pypy = xyvalues['pypy'] = [12, 33, 47, 15, 126] y_jython = xyvalues['jython'] = [22, 43, 10, 25, 26] xyvaluesdf = pd.DataFrame(xyvalues) for i, _xy in enumerate([xyvalues, xyvaluesdf]): hm = create_chart(Line, _xy) builder = hm._builders[0] self.assertEqual(sorted(builder._groups), sorted(list(xyvalues.keys()))) assert_array_equal(builder._data['x'], [0, 1, 2, 3, 4]) assert_array_equal(builder._data['y_python'], y_python) assert_array_equal(builder._data['y_pypy'], y_pypy) assert_array_equal(builder._data['y_jython'], y_jython) lvalues = [[2, 3, 7, 5, 26], [12, 33, 47, 15, 126], [22, 43, 10, 25, 26]] for _xy in [lvalues, np.array(lvalues)]: hm = create_chart(Line, _xy) builder = hm._builders[0] self.assertEqual(builder._groups, ['0', '1', '2']) assert_array_equal(builder._data['x'], [0, 1, 2, 3, 4]) assert_array_equal(builder._data['y_0'], y_python) assert_array_equal(builder._data['y_1'], y_pypy) assert_array_equal(builder._data['y_2'], y_jython)
bsd-3-clause
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/pandas/tests/test_internals.py
7
47893
# -*- coding: utf-8 -*- # pylint: disable=W0102 from datetime import datetime, date import nose import numpy as np import re import itertools from pandas import (Index, MultiIndex, DataFrame, DatetimeIndex, Series, Categorical) from pandas.compat import OrderedDict, lrange from pandas.sparse.array import SparseArray from pandas.core.internals import (BlockPlacement, SingleBlockManager, make_block, BlockManager) import pandas.core.algorithms as algos import pandas.util.testing as tm import pandas as pd from pandas import lib from pandas.util.testing import (assert_almost_equal, assert_frame_equal, randn, assert_series_equal) from pandas.compat import zip, u def assert_block_equal(left, right): tm.assert_numpy_array_equal(left.values, right.values) assert (left.dtype == right.dtype) tm.assertIsInstance(left.mgr_locs, lib.BlockPlacement) tm.assertIsInstance(right.mgr_locs, lib.BlockPlacement) tm.assert_numpy_array_equal(left.mgr_locs.as_array, right.mgr_locs.as_array) def get_numeric_mat(shape): arr = np.arange(shape[0]) return np.lib.stride_tricks.as_strided(x=arr, shape=shape, strides=( arr.itemsize, ) + (0, ) * (len(shape) - 1)).copy() N = 10 def create_block(typestr, placement, item_shape=None, num_offset=0): """ Supported typestr: * float, f8, f4, f2 * int, i8, i4, i2, i1 * uint, u8, u4, u2, u1 * complex, c16, c8 * bool * object, string, O * datetime, dt, M8[ns], M8[ns, tz] * timedelta, td, m8[ns] * sparse (SparseArray with fill_value=0.0) * sparse_na (SparseArray with fill_value=np.nan) * category, category2 """ placement = BlockPlacement(placement) num_items = len(placement) if item_shape is None: item_shape = (N, ) shape = (num_items, ) + item_shape mat = get_numeric_mat(shape) if typestr in ('float', 'f8', 'f4', 'f2', 'int', 'i8', 'i4', 'i2', 'i1', 'uint', 'u8', 'u4', 'u2', 'u1'): values = mat.astype(typestr) + num_offset elif typestr in ('complex', 'c16', 'c8'): values = 1.j * (mat.astype(typestr) + num_offset) elif typestr in ('object', 'string', 'O'): values = np.reshape(['A%d' % i for i in mat.ravel() + num_offset], shape) elif typestr in ('b', 'bool', ): values = np.ones(shape, dtype=np.bool_) elif typestr in ('datetime', 'dt', 'M8[ns]'): values = (mat * 1e9).astype('M8[ns]') elif typestr.startswith('M8[ns'): # datetime with tz m = re.search(r'M8\[ns,\s*(\w+\/?\w*)\]', typestr) assert m is not None, "incompatible typestr -> {0}".format(typestr) tz = m.groups()[0] assert num_items == 1, "must have only 1 num items for a tz-aware" values = DatetimeIndex(np.arange(N) * 1e9, tz=tz) elif typestr in ('timedelta', 'td', 'm8[ns]'): values = (mat * 1).astype('m8[ns]') elif typestr in ('category', ): values = Categorical([1, 1, 2, 2, 3, 3, 3, 3, 4, 4]) elif typestr in ('category2', ): values = Categorical(['a', 'a', 'a', 'a', 'b', 'b', 'c', 'c', 'c', 'd' ]) elif typestr in ('sparse', 'sparse_na'): # FIXME: doesn't support num_rows != 10 assert shape[-1] == 10 assert all(s == 1 for s in shape[:-1]) if typestr.endswith('_na'): fill_value = np.nan else: fill_value = 0.0 values = SparseArray([fill_value, fill_value, 1, 2, 3, fill_value, 4, 5, fill_value, 6], fill_value=fill_value) arr = values.sp_values.view() arr += (num_offset - 1) else: raise ValueError('Unsupported typestr: "%s"' % typestr) return make_block(values, placement=placement, ndim=len(shape)) def create_single_mgr(typestr, num_rows=None): if num_rows is None: num_rows = N return SingleBlockManager( create_block(typestr, placement=slice(0, num_rows), item_shape=()), np.arange(num_rows)) def create_mgr(descr, item_shape=None): """ Construct BlockManager from string description. String description syntax looks similar to np.matrix initializer. It looks like this:: a,b,c: f8; d,e,f: i8 Rules are rather simple: * see list of supported datatypes in `create_block` method * components are semicolon-separated * each component is `NAME,NAME,NAME: DTYPE_ID` * whitespace around colons & semicolons are removed * components with same DTYPE_ID are combined into single block * to force multiple blocks with same dtype, use '-SUFFIX':: 'a:f8-1; b:f8-2; c:f8-foobar' """ if item_shape is None: item_shape = (N, ) offset = 0 mgr_items = [] block_placements = OrderedDict() for d in descr.split(';'): d = d.strip() if not len(d): continue names, blockstr = d.partition(':')[::2] blockstr = blockstr.strip() names = names.strip().split(',') mgr_items.extend(names) placement = list(np.arange(len(names)) + offset) try: block_placements[blockstr].extend(placement) except KeyError: block_placements[blockstr] = placement offset += len(names) mgr_items = Index(mgr_items) blocks = [] num_offset = 0 for blockstr, placement in block_placements.items(): typestr = blockstr.split('-')[0] blocks.append(create_block(typestr, placement, item_shape=item_shape, num_offset=num_offset, )) num_offset += len(placement) return BlockManager(sorted(blocks, key=lambda b: b.mgr_locs[0]), [mgr_items] + [np.arange(n) for n in item_shape]) class TestBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): # self.fblock = get_float_ex() # a,c,e # self.cblock = get_complex_ex() # # self.oblock = get_obj_ex() # self.bool_block = get_bool_ex() # self.int_block = get_int_ex() self.fblock = create_block('float', [0, 2, 4]) self.cblock = create_block('complex', [7]) self.oblock = create_block('object', [1, 3]) self.bool_block = create_block('bool', [5]) self.int_block = create_block('int', [6]) def test_constructor(self): int32block = create_block('i4', [0]) self.assertEqual(int32block.dtype, np.int32) def test_pickle(self): def _check(blk): assert_block_equal(self.round_trip_pickle(blk), blk) _check(self.fblock) _check(self.cblock) _check(self.oblock) _check(self.bool_block) def test_mgr_locs(self): tm.assertIsInstance(self.fblock.mgr_locs, lib.BlockPlacement) tm.assert_numpy_array_equal(self.fblock.mgr_locs.as_array, np.array([0, 2, 4], dtype=np.int64)) def test_attrs(self): self.assertEqual(self.fblock.shape, self.fblock.values.shape) self.assertEqual(self.fblock.dtype, self.fblock.values.dtype) self.assertEqual(len(self.fblock), len(self.fblock.values)) def test_merge(self): avals = randn(2, 10) bvals = randn(2, 10) ref_cols = Index(['e', 'a', 'b', 'd', 'f']) ablock = make_block(avals, ref_cols.get_indexer(['e', 'b'])) bblock = make_block(bvals, ref_cols.get_indexer(['a', 'd'])) merged = ablock.merge(bblock) tm.assert_numpy_array_equal(merged.mgr_locs.as_array, np.array([0, 1, 2, 3], dtype=np.int64)) tm.assert_numpy_array_equal(merged.values[[0, 2]], np.array(avals)) tm.assert_numpy_array_equal(merged.values[[1, 3]], np.array(bvals)) # TODO: merge with mixed type? def test_copy(self): cop = self.fblock.copy() self.assertIsNot(cop, self.fblock) assert_block_equal(self.fblock, cop) def test_reindex_index(self): pass def test_reindex_cast(self): pass def test_insert(self): pass def test_delete(self): newb = self.fblock.copy() newb.delete(0) tm.assertIsInstance(newb.mgr_locs, lib.BlockPlacement) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([2, 4], dtype=np.int64)) self.assertTrue((newb.values[0] == 1).all()) newb = self.fblock.copy() newb.delete(1) tm.assertIsInstance(newb.mgr_locs, lib.BlockPlacement) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([0, 4], dtype=np.int64)) self.assertTrue((newb.values[1] == 2).all()) newb = self.fblock.copy() newb.delete(2) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([0, 2], dtype=np.int64)) self.assertTrue((newb.values[1] == 1).all()) newb = self.fblock.copy() self.assertRaises(Exception, newb.delete, 3) def test_split_block_at(self): # with dup column support this method was taken out # GH3679 raise nose.SkipTest("skipping for now") bs = list(self.fblock.split_block_at('a')) self.assertEqual(len(bs), 1) self.assertTrue(np.array_equal(bs[0].items, ['c', 'e'])) bs = list(self.fblock.split_block_at('c')) self.assertEqual(len(bs), 2) self.assertTrue(np.array_equal(bs[0].items, ['a'])) self.assertTrue(np.array_equal(bs[1].items, ['e'])) bs = list(self.fblock.split_block_at('e')) self.assertEqual(len(bs), 1) self.assertTrue(np.array_equal(bs[0].items, ['a', 'c'])) # bblock = get_bool_ex(['f']) # bs = list(bblock.split_block_at('f')) # self.assertEqual(len(bs), 0) class TestDatetimeBlock(tm.TestCase): _multiprocess_can_split_ = True def test_try_coerce_arg(self): block = create_block('datetime', [0]) # coerce None none_coerced = block._try_coerce_args(block.values, None)[2] self.assertTrue(pd.Timestamp(none_coerced) is pd.NaT) # coerce different types of date bojects vals = (np.datetime64('2010-10-10'), datetime(2010, 10, 10), date(2010, 10, 10)) for val in vals: coerced = block._try_coerce_args(block.values, val)[2] self.assertEqual(np.int64, type(coerced)) self.assertEqual(pd.Timestamp('2010-10-10'), pd.Timestamp(coerced)) class TestBlockManager(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.mgr = create_mgr( 'a: f8; b: object; c: f8; d: object; e: f8;' 'f: bool; g: i8; h: complex; i: datetime-1; j: datetime-2;' 'k: M8[ns, US/Eastern]; l: M8[ns, CET];') def test_constructor_corner(self): pass def test_attrs(self): mgr = create_mgr('a,b,c: f8-1; d,e,f: f8-2') self.assertEqual(mgr.nblocks, 2) self.assertEqual(len(mgr), 6) def test_is_mixed_dtype(self): self.assertFalse(create_mgr('a,b:f8').is_mixed_type) self.assertFalse(create_mgr('a:f8-1; b:f8-2').is_mixed_type) self.assertTrue(create_mgr('a,b:f8; c,d: f4').is_mixed_type) self.assertTrue(create_mgr('a,b:f8; c,d: object').is_mixed_type) def test_is_indexed_like(self): mgr1 = create_mgr('a,b: f8') mgr2 = create_mgr('a:i8; b:bool') mgr3 = create_mgr('a,b,c: f8') self.assertTrue(mgr1._is_indexed_like(mgr1)) self.assertTrue(mgr1._is_indexed_like(mgr2)) self.assertTrue(mgr1._is_indexed_like(mgr3)) self.assertFalse(mgr1._is_indexed_like(mgr1.get_slice( slice(-1), axis=1))) def test_duplicate_ref_loc_failure(self): tmp_mgr = create_mgr('a:bool; a: f8') axes, blocks = tmp_mgr.axes, tmp_mgr.blocks blocks[0].mgr_locs = np.array([0]) blocks[1].mgr_locs = np.array([0]) # test trying to create block manager with overlapping ref locs self.assertRaises(AssertionError, BlockManager, blocks, axes) blocks[0].mgr_locs = np.array([0]) blocks[1].mgr_locs = np.array([1]) mgr = BlockManager(blocks, axes) mgr.iget(1) def test_contains(self): self.assertIn('a', self.mgr) self.assertNotIn('baz', self.mgr) def test_pickle(self): mgr2 = self.round_trip_pickle(self.mgr) assert_frame_equal(DataFrame(self.mgr), DataFrame(mgr2)) # share ref_items # self.assertIs(mgr2.blocks[0].ref_items, mgr2.blocks[1].ref_items) # GH2431 self.assertTrue(hasattr(mgr2, "_is_consolidated")) self.assertTrue(hasattr(mgr2, "_known_consolidated")) # reset to False on load self.assertFalse(mgr2._is_consolidated) self.assertFalse(mgr2._known_consolidated) def test_non_unique_pickle(self): mgr = create_mgr('a,a,a:f8') mgr2 = self.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) mgr = create_mgr('a: f8; a: i8') mgr2 = self.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) def test_categorical_block_pickle(self): mgr = create_mgr('a: category') mgr2 = self.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) smgr = create_single_mgr('category') smgr2 = self.round_trip_pickle(smgr) assert_series_equal(Series(smgr), Series(smgr2)) def test_get_scalar(self): for item in self.mgr.items: for i, index in enumerate(self.mgr.axes[1]): res = self.mgr.get_scalar((item, index)) exp = self.mgr.get(item, fastpath=False)[i] self.assertEqual(res, exp) exp = self.mgr.get(item).internal_values()[i] self.assertEqual(res, exp) def test_get(self): cols = Index(list('abc')) values = np.random.rand(3, 3) block = make_block(values=values.copy(), placement=np.arange(3)) mgr = BlockManager(blocks=[block], axes=[cols, np.arange(3)]) assert_almost_equal(mgr.get('a', fastpath=False), values[0]) assert_almost_equal(mgr.get('b', fastpath=False), values[1]) assert_almost_equal(mgr.get('c', fastpath=False), values[2]) assert_almost_equal(mgr.get('a').internal_values(), values[0]) assert_almost_equal(mgr.get('b').internal_values(), values[1]) assert_almost_equal(mgr.get('c').internal_values(), values[2]) def test_set(self): mgr = create_mgr('a,b,c: int', item_shape=(3, )) mgr.set('d', np.array(['foo'] * 3)) mgr.set('b', np.array(['bar'] * 3)) tm.assert_numpy_array_equal(mgr.get('a').internal_values(), np.array([0] * 3)) tm.assert_numpy_array_equal(mgr.get('b').internal_values(), np.array(['bar'] * 3, dtype=np.object_)) tm.assert_numpy_array_equal(mgr.get('c').internal_values(), np.array([2] * 3)) tm.assert_numpy_array_equal(mgr.get('d').internal_values(), np.array(['foo'] * 3, dtype=np.object_)) def test_insert(self): self.mgr.insert(0, 'inserted', np.arange(N)) self.assertEqual(self.mgr.items[0], 'inserted') assert_almost_equal(self.mgr.get('inserted'), np.arange(N)) for blk in self.mgr.blocks: yield self.assertIs, self.mgr.items, blk.ref_items def test_set_change_dtype(self): self.mgr.set('baz', np.zeros(N, dtype=bool)) self.mgr.set('baz', np.repeat('foo', N)) self.assertEqual(self.mgr.get('baz').dtype, np.object_) mgr2 = self.mgr.consolidate() mgr2.set('baz', np.repeat('foo', N)) self.assertEqual(mgr2.get('baz').dtype, np.object_) mgr2.set('quux', randn(N).astype(int)) self.assertEqual(mgr2.get('quux').dtype, np.int_) mgr2.set('quux', randn(N)) self.assertEqual(mgr2.get('quux').dtype, np.float_) def test_set_change_dtype_slice(self): # GH8850 cols = MultiIndex.from_tuples([('1st', 'a'), ('2nd', 'b'), ('3rd', 'c') ]) df = DataFrame([[1.0, 2, 3], [4.0, 5, 6]], columns=cols) df['2nd'] = df['2nd'] * 2.0 self.assertEqual(sorted(df.blocks.keys()), ['float64', 'int64']) assert_frame_equal(df.blocks['float64'], DataFrame( [[1.0, 4.0], [4.0, 10.0]], columns=cols[:2])) assert_frame_equal(df.blocks['int64'], DataFrame( [[3], [6]], columns=cols[2:])) def test_copy(self): cp = self.mgr.copy(deep=False) for blk, cp_blk in zip(self.mgr.blocks, cp.blocks): # view assertion self.assertTrue(cp_blk.equals(blk)) self.assertTrue(cp_blk.values.base is blk.values.base) cp = self.mgr.copy(deep=True) for blk, cp_blk in zip(self.mgr.blocks, cp.blocks): # copy assertion we either have a None for a base or in case of # some blocks it is an array (e.g. datetimetz), but was copied self.assertTrue(cp_blk.equals(blk)) if cp_blk.values.base is not None and blk.values.base is not None: self.assertFalse(cp_blk.values.base is blk.values.base) else: self.assertTrue(cp_blk.values.base is None and blk.values.base is None) def test_sparse(self): mgr = create_mgr('a: sparse-1; b: sparse-2') # what to test here? self.assertEqual(mgr.as_matrix().dtype, np.float64) def test_sparse_mixed(self): mgr = create_mgr('a: sparse-1; b: sparse-2; c: f8') self.assertEqual(len(mgr.blocks), 3) self.assertIsInstance(mgr, BlockManager) # what to test here? def test_as_matrix_float(self): mgr = create_mgr('c: f4; d: f2; e: f8') self.assertEqual(mgr.as_matrix().dtype, np.float64) mgr = create_mgr('c: f4; d: f2') self.assertEqual(mgr.as_matrix().dtype, np.float32) def test_as_matrix_int_bool(self): mgr = create_mgr('a: bool-1; b: bool-2') self.assertEqual(mgr.as_matrix().dtype, np.bool_) mgr = create_mgr('a: i8-1; b: i8-2; c: i4; d: i2; e: u1') self.assertEqual(mgr.as_matrix().dtype, np.int64) mgr = create_mgr('c: i4; d: i2; e: u1') self.assertEqual(mgr.as_matrix().dtype, np.int32) def test_as_matrix_datetime(self): mgr = create_mgr('h: datetime-1; g: datetime-2') self.assertEqual(mgr.as_matrix().dtype, 'M8[ns]') def test_as_matrix_datetime_tz(self): mgr = create_mgr('h: M8[ns, US/Eastern]; g: M8[ns, CET]') self.assertEqual(mgr.get('h').dtype, 'datetime64[ns, US/Eastern]') self.assertEqual(mgr.get('g').dtype, 'datetime64[ns, CET]') self.assertEqual(mgr.as_matrix().dtype, 'object') def test_astype(self): # coerce all mgr = create_mgr('c: f4; d: f2; e: f8') for t in ['float16', 'float32', 'float64', 'int32', 'int64']: t = np.dtype(t) tmgr = mgr.astype(t) self.assertEqual(tmgr.get('c').dtype.type, t) self.assertEqual(tmgr.get('d').dtype.type, t) self.assertEqual(tmgr.get('e').dtype.type, t) # mixed mgr = create_mgr('a,b: object; c: bool; d: datetime;' 'e: f4; f: f2; g: f8') for t in ['float16', 'float32', 'float64', 'int32', 'int64']: t = np.dtype(t) tmgr = mgr.astype(t, raise_on_error=False) self.assertEqual(tmgr.get('c').dtype.type, t) self.assertEqual(tmgr.get('e').dtype.type, t) self.assertEqual(tmgr.get('f').dtype.type, t) self.assertEqual(tmgr.get('g').dtype.type, t) self.assertEqual(tmgr.get('a').dtype.type, np.object_) self.assertEqual(tmgr.get('b').dtype.type, np.object_) if t != np.int64: self.assertEqual(tmgr.get('d').dtype.type, np.datetime64) else: self.assertEqual(tmgr.get('d').dtype.type, t) def test_convert(self): def _compare(old_mgr, new_mgr): """ compare the blocks, numeric compare ==, object don't """ old_blocks = set(old_mgr.blocks) new_blocks = set(new_mgr.blocks) self.assertEqual(len(old_blocks), len(new_blocks)) # compare non-numeric for b in old_blocks: found = False for nb in new_blocks: if (b.values == nb.values).all(): found = True break self.assertTrue(found) for b in new_blocks: found = False for ob in old_blocks: if (b.values == ob.values).all(): found = True break self.assertTrue(found) # noops mgr = create_mgr('f: i8; g: f8') new_mgr = mgr.convert() _compare(mgr, new_mgr) mgr = create_mgr('a, b: object; f: i8; g: f8') new_mgr = mgr.convert() _compare(mgr, new_mgr) # convert mgr = create_mgr('a,b,foo: object; f: i8; g: f8') mgr.set('a', np.array(['1'] * N, dtype=np.object_)) mgr.set('b', np.array(['2.'] * N, dtype=np.object_)) mgr.set('foo', np.array(['foo.'] * N, dtype=np.object_)) new_mgr = mgr.convert(numeric=True) self.assertEqual(new_mgr.get('a').dtype, np.int64) self.assertEqual(new_mgr.get('b').dtype, np.float64) self.assertEqual(new_mgr.get('foo').dtype, np.object_) self.assertEqual(new_mgr.get('f').dtype, np.int64) self.assertEqual(new_mgr.get('g').dtype, np.float64) mgr = create_mgr('a,b,foo: object; f: i4; bool: bool; dt: datetime;' 'i: i8; g: f8; h: f2') mgr.set('a', np.array(['1'] * N, dtype=np.object_)) mgr.set('b', np.array(['2.'] * N, dtype=np.object_)) mgr.set('foo', np.array(['foo.'] * N, dtype=np.object_)) new_mgr = mgr.convert(numeric=True) self.assertEqual(new_mgr.get('a').dtype, np.int64) self.assertEqual(new_mgr.get('b').dtype, np.float64) self.assertEqual(new_mgr.get('foo').dtype, np.object_) self.assertEqual(new_mgr.get('f').dtype, np.int32) self.assertEqual(new_mgr.get('bool').dtype, np.bool_) self.assertEqual(new_mgr.get('dt').dtype.type, np.datetime64) self.assertEqual(new_mgr.get('i').dtype, np.int64) self.assertEqual(new_mgr.get('g').dtype, np.float64) self.assertEqual(new_mgr.get('h').dtype, np.float16) def test_interleave(self): # self for dtype in ['f8', 'i8', 'object', 'bool', 'complex', 'M8[ns]', 'm8[ns]']: mgr = create_mgr('a: {0}'.format(dtype)) self.assertEqual(mgr.as_matrix().dtype, dtype) mgr = create_mgr('a: {0}; b: {0}'.format(dtype)) self.assertEqual(mgr.as_matrix().dtype, dtype) # will be converted according the actual dtype of the underlying mgr = create_mgr('a: category') self.assertEqual(mgr.as_matrix().dtype, 'i8') mgr = create_mgr('a: category; b: category') self.assertEqual(mgr.as_matrix().dtype, 'i8'), mgr = create_mgr('a: category; b: category2') self.assertEqual(mgr.as_matrix().dtype, 'object') mgr = create_mgr('a: category2') self.assertEqual(mgr.as_matrix().dtype, 'object') mgr = create_mgr('a: category2; b: category2') self.assertEqual(mgr.as_matrix().dtype, 'object') # combinations mgr = create_mgr('a: f8') self.assertEqual(mgr.as_matrix().dtype, 'f8') mgr = create_mgr('a: f8; b: i8') self.assertEqual(mgr.as_matrix().dtype, 'f8') mgr = create_mgr('a: f4; b: i8') self.assertEqual(mgr.as_matrix().dtype, 'f4') mgr = create_mgr('a: f4; b: i8; d: object') self.assertEqual(mgr.as_matrix().dtype, 'object') mgr = create_mgr('a: bool; b: i8') self.assertEqual(mgr.as_matrix().dtype, 'object') mgr = create_mgr('a: complex') self.assertEqual(mgr.as_matrix().dtype, 'complex') mgr = create_mgr('a: f8; b: category') self.assertEqual(mgr.as_matrix().dtype, 'object') mgr = create_mgr('a: M8[ns]; b: category') self.assertEqual(mgr.as_matrix().dtype, 'object') mgr = create_mgr('a: M8[ns]; b: bool') self.assertEqual(mgr.as_matrix().dtype, 'object') mgr = create_mgr('a: M8[ns]; b: i8') self.assertEqual(mgr.as_matrix().dtype, 'object') mgr = create_mgr('a: m8[ns]; b: bool') self.assertEqual(mgr.as_matrix().dtype, 'object') mgr = create_mgr('a: m8[ns]; b: i8') self.assertEqual(mgr.as_matrix().dtype, 'object') mgr = create_mgr('a: M8[ns]; b: m8[ns]') self.assertEqual(mgr.as_matrix().dtype, 'object') def test_interleave_non_unique_cols(self): df = DataFrame([ [pd.Timestamp('20130101'), 3.5], [pd.Timestamp('20130102'), 4.5]], columns=['x', 'x'], index=[1, 2]) df_unique = df.copy() df_unique.columns = ['x', 'y'] self.assertEqual(df_unique.values.shape, df.values.shape) tm.assert_numpy_array_equal(df_unique.values[0], df.values[0]) tm.assert_numpy_array_equal(df_unique.values[1], df.values[1]) def test_consolidate(self): pass def test_consolidate_ordering_issues(self): self.mgr.set('f', randn(N)) self.mgr.set('d', randn(N)) self.mgr.set('b', randn(N)) self.mgr.set('g', randn(N)) self.mgr.set('h', randn(N)) # we have datetime/tz blocks in self.mgr cons = self.mgr.consolidate() self.assertEqual(cons.nblocks, 4) cons = self.mgr.consolidate().get_numeric_data() self.assertEqual(cons.nblocks, 1) tm.assertIsInstance(cons.blocks[0].mgr_locs, lib.BlockPlacement) tm.assert_numpy_array_equal(cons.blocks[0].mgr_locs.as_array, np.arange(len(cons.items), dtype=np.int64)) def test_reindex_index(self): pass def test_reindex_items(self): # mgr is not consolidated, f8 & f8-2 blocks mgr = create_mgr('a: f8; b: i8; c: f8; d: i8; e: f8;' 'f: bool; g: f8-2') reindexed = mgr.reindex_axis(['g', 'c', 'a', 'd'], axis=0) self.assertEqual(reindexed.nblocks, 2) tm.assert_index_equal(reindexed.items, pd.Index(['g', 'c', 'a', 'd'])) assert_almost_equal( mgr.get('g', fastpath=False), reindexed.get('g', fastpath=False)) assert_almost_equal( mgr.get('c', fastpath=False), reindexed.get('c', fastpath=False)) assert_almost_equal( mgr.get('a', fastpath=False), reindexed.get('a', fastpath=False)) assert_almost_equal( mgr.get('d', fastpath=False), reindexed.get('d', fastpath=False)) assert_almost_equal( mgr.get('g').internal_values(), reindexed.get('g').internal_values()) assert_almost_equal( mgr.get('c').internal_values(), reindexed.get('c').internal_values()) assert_almost_equal( mgr.get('a').internal_values(), reindexed.get('a').internal_values()) assert_almost_equal( mgr.get('d').internal_values(), reindexed.get('d').internal_values()) def test_multiindex_xs(self): mgr = create_mgr('a,b,c: f8; d,e,f: i8') index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) mgr.set_axis(1, index) result = mgr.xs('bar', axis=1) self.assertEqual(result.shape, (6, 2)) self.assertEqual(result.axes[1][0], ('bar', 'one')) self.assertEqual(result.axes[1][1], ('bar', 'two')) def test_get_numeric_data(self): mgr = create_mgr('int: int; float: float; complex: complex;' 'str: object; bool: bool; obj: object; dt: datetime', item_shape=(3, )) mgr.set('obj', np.array([1, 2, 3], dtype=np.object_)) numeric = mgr.get_numeric_data() tm.assert_index_equal(numeric.items, pd.Index(['int', 'float', 'complex', 'bool'])) assert_almost_equal( mgr.get('float', fastpath=False), numeric.get('float', fastpath=False)) assert_almost_equal( mgr.get('float').internal_values(), numeric.get('float').internal_values()) # Check sharing numeric.set('float', np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float', fastpath=False), np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float').internal_values(), np.array([100., 200., 300.])) numeric2 = mgr.get_numeric_data(copy=True) tm.assert_index_equal(numeric.items, pd.Index(['int', 'float', 'complex', 'bool'])) numeric2.set('float', np.array([1000., 2000., 3000.])) assert_almost_equal( mgr.get('float', fastpath=False), np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float').internal_values(), np.array([100., 200., 300.])) def test_get_bool_data(self): mgr = create_mgr('int: int; float: float; complex: complex;' 'str: object; bool: bool; obj: object; dt: datetime', item_shape=(3, )) mgr.set('obj', np.array([True, False, True], dtype=np.object_)) bools = mgr.get_bool_data() tm.assert_index_equal(bools.items, pd.Index(['bool'])) assert_almost_equal(mgr.get('bool', fastpath=False), bools.get('bool', fastpath=False)) assert_almost_equal( mgr.get('bool').internal_values(), bools.get('bool').internal_values()) bools.set('bool', np.array([True, False, True])) tm.assert_numpy_array_equal(mgr.get('bool', fastpath=False), np.array([True, False, True])) tm.assert_numpy_array_equal(mgr.get('bool').internal_values(), np.array([True, False, True])) # Check sharing bools2 = mgr.get_bool_data(copy=True) bools2.set('bool', np.array([False, True, False])) tm.assert_numpy_array_equal(mgr.get('bool', fastpath=False), np.array([True, False, True])) tm.assert_numpy_array_equal(mgr.get('bool').internal_values(), np.array([True, False, True])) def test_unicode_repr_doesnt_raise(self): repr(create_mgr(u('b,\u05d0: object'))) def test_missing_unicode_key(self): df = DataFrame({"a": [1]}) try: df.ix[:, u("\u05d0")] # should not raise UnicodeEncodeError except KeyError: pass # this is the expected exception def test_equals(self): # unique items bm1 = create_mgr('a,b,c: i8-1; d,e,f: i8-2') bm2 = BlockManager(bm1.blocks[::-1], bm1.axes) self.assertTrue(bm1.equals(bm2)) bm1 = create_mgr('a,a,a: i8-1; b,b,b: i8-2') bm2 = BlockManager(bm1.blocks[::-1], bm1.axes) self.assertTrue(bm1.equals(bm2)) def test_equals_block_order_different_dtypes(self): # GH 9330 mgr_strings = [ "a:i8;b:f8", # basic case "a:i8;b:f8;c:c8;d:b", # many types "a:i8;e:dt;f:td;g:string", # more types "a:i8;b:category;c:category2;d:category2", # categories "c:sparse;d:sparse_na;b:f8", # sparse ] for mgr_string in mgr_strings: bm = create_mgr(mgr_string) block_perms = itertools.permutations(bm.blocks) for bm_perm in block_perms: bm_this = BlockManager(bm_perm, bm.axes) self.assertTrue(bm.equals(bm_this)) self.assertTrue(bm_this.equals(bm)) def test_single_mgr_ctor(self): mgr = create_single_mgr('f8', num_rows=5) self.assertEqual(mgr.as_matrix().tolist(), [0., 1., 2., 3., 4.]) class TestIndexing(object): # Nosetests-style data-driven tests. # # This test applies different indexing routines to block managers and # compares the outcome to the result of same operations on np.ndarray. # # NOTE: sparse (SparseBlock with fill_value != np.nan) fail a lot of tests # and are disabled. MANAGERS = [ create_single_mgr('f8', N), create_single_mgr('i8', N), # create_single_mgr('sparse', N), create_single_mgr('sparse_na', N), # 2-dim create_mgr('a,b,c,d,e,f: f8', item_shape=(N,)), create_mgr('a,b,c,d,e,f: i8', item_shape=(N,)), create_mgr('a,b: f8; c,d: i8; e,f: string', item_shape=(N,)), create_mgr('a,b: f8; c,d: i8; e,f: f8', item_shape=(N,)), # create_mgr('a: sparse', item_shape=(N,)), create_mgr('a: sparse_na', item_shape=(N,)), # 3-dim create_mgr('a,b,c,d,e,f: f8', item_shape=(N, N)), create_mgr('a,b,c,d,e,f: i8', item_shape=(N, N)), create_mgr('a,b: f8; c,d: i8; e,f: string', item_shape=(N, N)), create_mgr('a,b: f8; c,d: i8; e,f: f8', item_shape=(N, N)), # create_mgr('a: sparse', item_shape=(1, N)), ] # MANAGERS = [MANAGERS[6]] def test_get_slice(self): def assert_slice_ok(mgr, axis, slobj): # import pudb; pudb.set_trace() mat = mgr.as_matrix() # we maybe using an ndarray to test slicing and # might not be the full length of the axis if isinstance(slobj, np.ndarray): ax = mgr.axes[axis] if len(ax) and len(slobj) and len(slobj) != len(ax): slobj = np.concatenate([slobj, np.zeros( len(ax) - len(slobj), dtype=bool)]) sliced = mgr.get_slice(slobj, axis=axis) mat_slobj = (slice(None), ) * axis + (slobj, ) tm.assert_numpy_array_equal(mat[mat_slobj], sliced.as_matrix(), check_dtype=False) tm.assert_index_equal(mgr.axes[axis][slobj], sliced.axes[axis]) for mgr in self.MANAGERS: for ax in range(mgr.ndim): # slice yield assert_slice_ok, mgr, ax, slice(None) yield assert_slice_ok, mgr, ax, slice(3) yield assert_slice_ok, mgr, ax, slice(100) yield assert_slice_ok, mgr, ax, slice(1, 4) yield assert_slice_ok, mgr, ax, slice(3, 0, -2) # boolean mask yield assert_slice_ok, mgr, ax, np.array([], dtype=np.bool_) yield (assert_slice_ok, mgr, ax, np.ones(mgr.shape[ax], dtype=np.bool_)) yield (assert_slice_ok, mgr, ax, np.zeros(mgr.shape[ax], dtype=np.bool_)) if mgr.shape[ax] >= 3: yield (assert_slice_ok, mgr, ax, np.arange(mgr.shape[ax]) % 3 == 0) yield (assert_slice_ok, mgr, ax, np.array( [True, True, False], dtype=np.bool_)) # fancy indexer yield assert_slice_ok, mgr, ax, [] yield assert_slice_ok, mgr, ax, lrange(mgr.shape[ax]) if mgr.shape[ax] >= 3: yield assert_slice_ok, mgr, ax, [0, 1, 2] yield assert_slice_ok, mgr, ax, [-1, -2, -3] def test_take(self): def assert_take_ok(mgr, axis, indexer): mat = mgr.as_matrix() taken = mgr.take(indexer, axis) tm.assert_numpy_array_equal(np.take(mat, indexer, axis), taken.as_matrix(), check_dtype=False) tm.assert_index_equal(mgr.axes[axis].take(indexer), taken.axes[axis]) for mgr in self.MANAGERS: for ax in range(mgr.ndim): # take/fancy indexer yield assert_take_ok, mgr, ax, [] yield assert_take_ok, mgr, ax, [0, 0, 0] yield assert_take_ok, mgr, ax, lrange(mgr.shape[ax]) if mgr.shape[ax] >= 3: yield assert_take_ok, mgr, ax, [0, 1, 2] yield assert_take_ok, mgr, ax, [-1, -2, -3] def test_reindex_axis(self): def assert_reindex_axis_is_ok(mgr, axis, new_labels, fill_value): mat = mgr.as_matrix() indexer = mgr.axes[axis].get_indexer_for(new_labels) reindexed = mgr.reindex_axis(new_labels, axis, fill_value=fill_value) tm.assert_numpy_array_equal(algos.take_nd(mat, indexer, axis, fill_value=fill_value), reindexed.as_matrix(), check_dtype=False) tm.assert_index_equal(reindexed.axes[axis], new_labels) for mgr in self.MANAGERS: for ax in range(mgr.ndim): for fill_value in (None, np.nan, 100.): yield (assert_reindex_axis_is_ok, mgr, ax, pd.Index([]), fill_value) yield (assert_reindex_axis_is_ok, mgr, ax, mgr.axes[ax], fill_value) yield (assert_reindex_axis_is_ok, mgr, ax, mgr.axes[ax][[0, 0, 0]], fill_value) yield (assert_reindex_axis_is_ok, mgr, ax, pd.Index(['foo', 'bar', 'baz']), fill_value) yield (assert_reindex_axis_is_ok, mgr, ax, pd.Index(['foo', mgr.axes[ax][0], 'baz']), fill_value) if mgr.shape[ax] >= 3: yield (assert_reindex_axis_is_ok, mgr, ax, mgr.axes[ax][:-3], fill_value) yield (assert_reindex_axis_is_ok, mgr, ax, mgr.axes[ax][-3::-1], fill_value) yield (assert_reindex_axis_is_ok, mgr, ax, mgr.axes[ax][[0, 1, 2, 0, 1, 2]], fill_value) def test_reindex_indexer(self): def assert_reindex_indexer_is_ok(mgr, axis, new_labels, indexer, fill_value): mat = mgr.as_matrix() reindexed_mat = algos.take_nd(mat, indexer, axis, fill_value=fill_value) reindexed = mgr.reindex_indexer(new_labels, indexer, axis, fill_value=fill_value) tm.assert_numpy_array_equal(reindexed_mat, reindexed.as_matrix(), check_dtype=False) tm.assert_index_equal(reindexed.axes[axis], new_labels) for mgr in self.MANAGERS: for ax in range(mgr.ndim): for fill_value in (None, np.nan, 100.): yield (assert_reindex_indexer_is_ok, mgr, ax, pd.Index([]), [], fill_value) yield (assert_reindex_indexer_is_ok, mgr, ax, mgr.axes[ax], np.arange(mgr.shape[ax]), fill_value) yield (assert_reindex_indexer_is_ok, mgr, ax, pd.Index(['foo'] * mgr.shape[ax]), np.arange(mgr.shape[ax]), fill_value) yield (assert_reindex_indexer_is_ok, mgr, ax, mgr.axes[ax][::-1], np.arange(mgr.shape[ax]), fill_value) yield (assert_reindex_indexer_is_ok, mgr, ax, mgr.axes[ax], np.arange(mgr.shape[ax])[::-1], fill_value) yield (assert_reindex_indexer_is_ok, mgr, ax, pd.Index(['foo', 'bar', 'baz']), [0, 0, 0], fill_value) yield (assert_reindex_indexer_is_ok, mgr, ax, pd.Index(['foo', 'bar', 'baz']), [-1, 0, -1], fill_value) yield (assert_reindex_indexer_is_ok, mgr, ax, pd.Index(['foo', mgr.axes[ax][0], 'baz']), [-1, -1, -1], fill_value) if mgr.shape[ax] >= 3: yield (assert_reindex_indexer_is_ok, mgr, ax, pd.Index(['foo', 'bar', 'baz']), [0, 1, 2], fill_value) # test_get_slice(slice_like, axis) # take(indexer, axis) # reindex_axis(new_labels, axis) # reindex_indexer(new_labels, indexer, axis) class TestBlockPlacement(tm.TestCase): _multiprocess_can_split_ = True def test_slice_len(self): self.assertEqual(len(BlockPlacement(slice(0, 4))), 4) self.assertEqual(len(BlockPlacement(slice(0, 4, 2))), 2) self.assertEqual(len(BlockPlacement(slice(0, 3, 2))), 2) self.assertEqual(len(BlockPlacement(slice(0, 1, 2))), 1) self.assertEqual(len(BlockPlacement(slice(1, 0, -1))), 1) def test_zero_step_raises(self): self.assertRaises(ValueError, BlockPlacement, slice(1, 1, 0)) self.assertRaises(ValueError, BlockPlacement, slice(1, 2, 0)) def test_unbounded_slice_raises(self): def assert_unbounded_slice_error(slc): self.assertRaisesRegexp(ValueError, "unbounded slice", lambda: BlockPlacement(slc)) assert_unbounded_slice_error(slice(None, None)) assert_unbounded_slice_error(slice(10, None)) assert_unbounded_slice_error(slice(None, None, -1)) assert_unbounded_slice_error(slice(None, 10, -1)) # These are "unbounded" because negative index will change depending on # container shape. assert_unbounded_slice_error(slice(-1, None)) assert_unbounded_slice_error(slice(None, -1)) assert_unbounded_slice_error(slice(-1, -1)) assert_unbounded_slice_error(slice(-1, None, -1)) assert_unbounded_slice_error(slice(None, -1, -1)) assert_unbounded_slice_error(slice(-1, -1, -1)) def test_not_slice_like_slices(self): def assert_not_slice_like(slc): self.assertTrue(not BlockPlacement(slc).is_slice_like) assert_not_slice_like(slice(0, 0)) assert_not_slice_like(slice(100, 0)) assert_not_slice_like(slice(100, 100, -1)) assert_not_slice_like(slice(0, 100, -1)) self.assertTrue(not BlockPlacement(slice(0, 0)).is_slice_like) self.assertTrue(not BlockPlacement(slice(100, 100)).is_slice_like) def test_array_to_slice_conversion(self): def assert_as_slice_equals(arr, slc): self.assertEqual(BlockPlacement(arr).as_slice, slc) assert_as_slice_equals([0], slice(0, 1, 1)) assert_as_slice_equals([100], slice(100, 101, 1)) assert_as_slice_equals([0, 1, 2], slice(0, 3, 1)) assert_as_slice_equals([0, 5, 10], slice(0, 15, 5)) assert_as_slice_equals([0, 100], slice(0, 200, 100)) assert_as_slice_equals([2, 1], slice(2, 0, -1)) assert_as_slice_equals([2, 1, 0], slice(2, None, -1)) assert_as_slice_equals([100, 0], slice(100, None, -100)) def test_not_slice_like_arrays(self): def assert_not_slice_like(arr): self.assertTrue(not BlockPlacement(arr).is_slice_like) assert_not_slice_like([]) assert_not_slice_like([-1]) assert_not_slice_like([-1, -2, -3]) assert_not_slice_like([-10]) assert_not_slice_like([-1]) assert_not_slice_like([-1, 0, 1, 2]) assert_not_slice_like([-2, 0, 2, 4]) assert_not_slice_like([1, 0, -1]) assert_not_slice_like([1, 1, 1]) def test_slice_iter(self): self.assertEqual(list(BlockPlacement(slice(0, 3))), [0, 1, 2]) self.assertEqual(list(BlockPlacement(slice(0, 0))), []) self.assertEqual(list(BlockPlacement(slice(3, 0))), []) self.assertEqual(list(BlockPlacement(slice(3, 0, -1))), [3, 2, 1]) self.assertEqual(list(BlockPlacement(slice(3, None, -1))), [3, 2, 1, 0]) def test_slice_to_array_conversion(self): def assert_as_array_equals(slc, asarray): tm.assert_numpy_array_equal( BlockPlacement(slc).as_array, np.asarray(asarray, dtype=np.int64)) assert_as_array_equals(slice(0, 3), [0, 1, 2]) assert_as_array_equals(slice(0, 0), []) assert_as_array_equals(slice(3, 0), []) assert_as_array_equals(slice(3, 0, -1), [3, 2, 1]) assert_as_array_equals(slice(3, None, -1), [3, 2, 1, 0]) assert_as_array_equals(slice(31, None, -10), [31, 21, 11, 1]) def test_blockplacement_add(self): bpl = BlockPlacement(slice(0, 5)) self.assertEqual(bpl.add(1).as_slice, slice(1, 6, 1)) self.assertEqual(bpl.add(np.arange(5)).as_slice, slice(0, 10, 2)) self.assertEqual(list(bpl.add(np.arange(5, 0, -1))), [5, 5, 5, 5, 5]) def test_blockplacement_add_int(self): def assert_add_equals(val, inc, result): self.assertEqual(list(BlockPlacement(val).add(inc)), result) assert_add_equals(slice(0, 0), 0, []) assert_add_equals(slice(1, 4), 0, [1, 2, 3]) assert_add_equals(slice(3, 0, -1), 0, [3, 2, 1]) assert_add_equals(slice(2, None, -1), 0, [2, 1, 0]) assert_add_equals([1, 2, 4], 0, [1, 2, 4]) assert_add_equals(slice(0, 0), 10, []) assert_add_equals(slice(1, 4), 10, [11, 12, 13]) assert_add_equals(slice(3, 0, -1), 10, [13, 12, 11]) assert_add_equals(slice(2, None, -1), 10, [12, 11, 10]) assert_add_equals([1, 2, 4], 10, [11, 12, 14]) assert_add_equals(slice(0, 0), -1, []) assert_add_equals(slice(1, 4), -1, [0, 1, 2]) assert_add_equals(slice(3, 0, -1), -1, [2, 1, 0]) assert_add_equals([1, 2, 4], -1, [0, 1, 3]) self.assertRaises(ValueError, lambda: BlockPlacement(slice(1, 4)).add(-10)) self.assertRaises(ValueError, lambda: BlockPlacement([1, 2, 4]).add(-10)) self.assertRaises(ValueError, lambda: BlockPlacement(slice(2, None, -1)).add(-1)) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
apache-2.0
fivejjs/copperhead
samples/laplace.py
5
1287
from copperhead import * from numpy import zeros @cu def initialize(N): nx, ny = N def el(i): y = i / nx if y==0: return 1.0 else: return 0.0 return map(el, range(nx * ny)) @cu def solve(u, N, D2, it): nx, ny = N dx2, dy2 = D2 def el(i): x = i % nx y = i / nx if x == 0 or x == nx-1 or y == 0 or y == ny-1: return u[i] else: return ((u[i-1]+u[i+1])*dy2 + \ (u[i-nx]+u[i+nx])*dx2)/(2*(dx2+dy2)) if it > 0: u = map(el, indices(u)) return solve(u, N, D2, it-1) else: return u dx = 0.1 dy = 0.1 dx2 = dx*dx dy2 = dy*dy N = (100,100) D2 = (dx2, dy2) p = runtime.places.default_place with p: u = initialize(N) print("starting timer") import time start = time.time() #Solve u = solve(u, N, D2, 8000) #Force result to be finalized at execution place #Otherwise, timing loop may not account for all computation u = force(u, p) end = time.time() print("Computation time: %s seconds" %(end - start)) result = np.reshape(to_numpy(u), N) try: import matplotlib.pyplot as plt plt.imshow(result) plt.show() except: pass
apache-2.0
gcanasherrera/Weak-Lensing
WL_Script.py
1
23947
# Name: WL_Script.py # # Weak-Lensing "Study of Systematics and Classification of Compact Objects" Program I # # Type: python script # # Description: Central script that develops the whole process of reading images, filtering into galaxies and stars, correcting sizes and shapes, correcting PSF annisotropies, and re-classify compact objects into galaxies to obtain a final catalogue # # Returns: FITS image - mass-density map # Catalogs # Plots # FITS image - trial from Source Extractor # __author__ = "Guadalupe Canas Herrera" __copyright__ = "Copyright (C) 2015 G. Canas Herrera" __license__ = "Public Domain" __version__ = "4.0.0" __maintainer__ = "Guadalupe Canas" __email__ = "[email protected]" # Improvements: more automatic ---> only needs the name of the picture, the catalogue (in case you have it) and the BAND you want to analize # Old CatalogPlotter3.py has been splitted in two: WL_Script.py and WL_Utils.py # Also call: WL_utils.py, WL_filter_mag_gal.py - WL_ellip_fitter.py (written by Guadalupe Canas Herrera) # Also call 2: Source Extractor (by Emmanuel Bertin V2.3.2), sex2fiat (by DAVID WITTMAN v1.2), fiatfilter (by DAVID WITTMAN v1.2), ellipto (by DAVID WITTMAN v1.2), dlscombine (by DAVID WITTMAN v1.2 and modified by GUADALUPE CANAS) # # DLSCOMBINE CORRECTS PSF: it has a dependence in fiat.c, fiat.h, dlscombine_utils.c, dlscombine.c, dlscombine.h # Guadalupe Canas Herrera modified fiat.c, dlscombine_utils.c, dlscombine.h # import matplotlib.pyplot as plt #Works for making python behave like matlab #import sextutils as sex #Program used to read the original catalog import numpy as np #Maths arrays and more import numpy.ma as ma #Masking arrays import sys #Strings inputs import math #mathematical functions import subprocess #calling to the terminal from astropy.modeling import models, fitting #Package for fitting Legendre Polynomials import warnings #Advices from mpl_toolkits.mplot3d import Axes3D #Plotting in 3D import WL_ellip_fitter as ellip_fit #Ellipticity fitting from WL_Utils import sex_caller, sex_caller_corrected, ellipto_caller, dlscombine_pol_caller, dlscombine_leg_caller, ds9_caller, plotter, ellipticity, specfile, stars_maker, galaxies_maker, specfile_r, specfile_z from WL_filter_mag_gal import filter_mag #Filtering final catalog of galaxies a function of magnitudes and call fiatmap import seaborn as sns import matplotlib.pylab as P #histograms from Class_CrossMatching import CrossMatching from Class_CatalogReader import CatalogReader ############################### BEGIN SCRIPT ############################### # (1): We define the ending of the input/output files type_fits = ".fits" type_cat = ".cat" type_fcat = ".fcat" type_good = "_good.fcat" type_galaxies = "_galaxies.fcat" type_stars = "_stars.fcat" type_ellipto_galaxies = "_ellipto_galaxies.fcat" type_ellipto_stars = "_ellipto_stars.fcat" type_shapes_galaxies = "_shapes_galaxies.fcat" type_shapes_stars = "_shapes_stars.fcat" type_match = "_match.fcat" def main(): sns.set(style="white", palette="muted", color_codes=True) print("Welcome to the Weak-Lensing Script, here to help you analizing Subaru images in search of galaxy clusters") print("") array_file_name = [] # (1): Ask the number of image that did the cross-matching process. question = int(raw_input("Please, tell me how many pictures did the cross-matching: ")) cont = 0 BEFORE_NAME = '' FILE_NAME = '' #print FILE_NAME FILE_NAME_CORRECTED= '' while cont < question: # (2): We need to read the image and band. We ask in screen the image of the region of the sky. filter =raw_input("Introduce the name of the filter: ") fits = raw_input("Please, introduce the name of the fits image you want to read or directly the catalogue: ") #Save the name of the .fits and .cat in a string: BEFORE_NAME = fits.find('.') FILE_NAME = fits[:BEFORE_NAME] #print FILE_NAME FILE_NAME_CORRECTED='{}_corrected'.format(FILE_NAME) if fits.endswith(type_fits): #(3) STEP: Call Source Extractor print("Let me call Source Extractor (called sex by friends). It will obtain the celestial objects. When it finishes I will show you the trial image") print("") catalog_name = sex_caller(fits, FILE_NAME) #Show results of trial.fits #subprocess.call('./ds9 {}_trial.fits'.format(FILE_NAME), shell=True) #(4): Transform Source Extractor catalog into FIAT FORMAT print("I'm transforming the catalog into a FIAT 1.0 format") print("") catalog_name_fiat= '{}.fcat'.format(FILE_NAME) transform_into_fiat='perl sex2fiat.pl {}>{}'.format(catalog_name, catalog_name_fiat) subprocess.call(transform_into_fiat, shell=True) if fits.endswith(type_fcat): catalog_name_fiat = fits fits = raw_input("Please, introduce the name of the fits image: ") #(5): Read the FIAT Catalog FWHM_max_stars=0 names = ["number", "flux_iso", "fluxerr_iso", "mag_iso", "magger_iso", "mag_aper_1", "magerr_aper_1", "mag", "magger", "flux_max", "isoarea", "x", "y", "ra", "dec", "ixx", "iyy", "ixy", "ixxWIN", "iyyWIN", "ixyWIN", "A", "B", "theta", "enlogation", "ellipticity", "FWHM", "flags", "class_star"] fcat = np.genfromtxt(catalog_name_fiat, names=names) P.figure() P.hist(fcat['class_star'], 50, normed=1, histtype='stepfilled') P.show() #Let's fix the ellipcity + and - for all celestial objects #(6): plot FWHM vs mag_iso print("I'm ploting MAG_ISO vs. FWHM") magnitude1='mag_iso' magnitude2='FWHM' plotter(fcat, magnitude1, magnitude2, 2, '$mag(iso)$', '$FWHM/pixels$') plt.show() print("Do you want to fix axis limits? Please answer with y or n") answer=raw_input() if answer== "y": xmin=float(raw_input("X min: ")) xmax=float(raw_input("X max: ")) ymin=float(raw_input("Y min: ")) ymax=float(raw_input("Y max: ")) #Fix limits plotter(catalog_name, magnitude1, magnitude2, 3) plt.xlim(xmin,xmax) plt.ylim(ymin,ymax) plt.show(block=False) elif answer == "n": plt.show(block=False) else: plt.show(block=False) # (7): Obtaining a GOOD CATALOG without blank spaces and filter saturate objects print("This catalog is not the good one. I'll show you why") print("") magnitude_x="x" magnitude_y="y" plotter(fcat, magnitude_x, magnitude_y, 4, '$x/pixels$', '$y/pixels$') plt.show(block=False) print("Please, introduce the values you prefer to bound x and y") xmin_good=float(raw_input("X min: ")) xmax_good=float(raw_input("X max: ")) ymin_good=float(raw_input("Y min: ")) ymax_good=float(raw_input("Y max: ")) catalog_name_good= '{}{}'.format(FILE_NAME, type_good) terminal_good= 'perl fiatfilter.pl "x>{} && x<{} && y>{} && y<{} && FLUX_ISO<3000000" {}>{}'.format(xmin_good, xmax_good, ymin_good, ymax_good, catalog_name_fiat, catalog_name_good) subprocess.call(terminal_good, shell=True) print("Wait a moment, I'm showing you the results in a sec") fcat_good = np.genfromtxt(catalog_name_good, names=names) print np.amax(fcat_good['flux_iso']) plotter(fcat_good, 'x', 'y', 5, '$x/pixels$', '$y/pixels$') plt.show(block=False) ellipticity(fcat_good, 1) plt.show(block=False) plotter(fcat_good, magnitude1, magnitude2, 2, '$mag(iso)$', '$FWHM/pixels$') plt.show(block=False) #(8.1.): Creating STARS CATALOG print("Let's obtain only a FIAT catalog that contains stars. We need to bound. Have a look to the FWHM vs Mag_ISO plot") mag_iso_min_stars=float(raw_input("Enter the minimum value for mag_iso: ")) mag_iso_max_stars=float(raw_input("Enter the maximum value for mag_iso: ")) FWHM_min_stars=float(raw_input("Enter the minimum value for FWHM: ")) FWHM_max_stars=float(raw_input("Enter the maximum value for FWHM: ")) catalog_name_stars= '{}{}'.format(FILE_NAME, type_stars) #Creamos un string para que lo ponga en la terminal terminal_stars= 'perl fiatfilter.pl "MAG_ISO>{} && MAG_ISO<{} && FWHM>{} && FWHM<{} && CLASS_STAR>0.9 && FLUX_ISO<3000000" {}>{}'.format(mag_iso_min_stars, mag_iso_max_stars, FWHM_min_stars, FWHM_max_stars, catalog_name_good, catalog_name_stars) subprocess.call(terminal_stars, shell=True) fcat_stars=np.genfromtxt(catalog_name_stars, names=names) ellipticity(fcat_stars, 6) plt.show(block=False) #(8.2.): Checking STARS CATALOG with Source Extractor Neural Network Output P.figure() P.hist(fcat_stars['class_star'], 50, normed=1, histtype='stepfilled') P.show(block=False) #(9.1.): Creating GALAXIES CATALOG print("Let's obtain only a FIAT catalog that contains galaxies. We need to bound. Have a look to the FWHM vs Mag_ISO plot") print("") print("First, I'm going to perform a linear fit. Tell me the values of mag_iso") mag_iso_min_galaxies=float(raw_input("Enter the minimum value for mag_iso: ")) mag_iso_max_galaxies=float(raw_input("Enter the maximum value for mag_iso: ")) catalog_name_fit='{}_fit{}'.format(FILE_NAME, type_galaxies) #Creamos un string para que lo ponga en la terminal terminal_fit= 'perl fiatfilter.pl -v "MAG_ISO>{} && MAG_ISO<{}" {}>{}'.format(mag_iso_min_galaxies, mag_iso_max_galaxies, catalog_name_good, catalog_name_fit) subprocess.call(terminal_fit, shell=True) fcat_fit = np.genfromtxt(catalog_name_fit, names=names) fit=np.polyfit(fcat_fit['mag_iso'], fcat_fit['FWHM'], 1) #Save in variables the values of the fitting m=fit[0] n=fit[1] print 'The value of the y-intercep n={} and the value of the slope m={}'.format(n,m) # Once you have the values of the fitting we can obtain the catalog of galaxies catalog_name_galaxies= '{}{}'.format(FILE_NAME, type_galaxies) #terminal_galaxies= 'perl fiatfilter.pl -v "FWHM>{}*MAG_ISO+{} && FWHM>{} && CLASS_STAR<0.1 && FLUX_ISO<3000000" {}>{}'.format(m, n, FWHM_max_stars, catalog_name_good, catalog_name_galaxies) terminal_galaxies= 'perl fiatfilter.pl -v "FWHM>{}*MAG_ISO+{} && FWHM>{} && FLUX_ISO<3000000" {}>{}'.format(m, n, FWHM_max_stars, catalog_name_good, catalog_name_galaxies) subprocess.call(terminal_galaxies, shell=True) fcat_galaxies=np.genfromtxt(catalog_name_galaxies, names=names) #subprocess.call('./fiatreview {} {}'.format(fits, catalog_name_galaxies), shell=True) magnitude1='mag_iso' magnitude2='FWHM' plotter(fcat_good, magnitude1, magnitude2, 2, '$mag(iso)$', '$FWHM/pixels$') mag_th= np.linspace(1, 30, 1000) p = np.poly1d(fit) plt.plot(mag_th, p(mag_th), 'b-') plt.show() ellipticity(fcat_galaxies, 9) plt.show() #(9.2.): Checking GALAXIES CATALOG with Source Extractor Neural Network Output P.figure() P.hist(fcat_galaxies['class_star'], 50, normed=1, histtype='stepfilled') P.show(block=False) # (***) CHECKING FOR STARS // GALAXIES DIVISION weights_stars=np.ones_like(fcat_stars['class_star'])/len(fcat_stars['class_star']) weights_galaxies=np.ones_like(fcat_galaxies['class_star'])/len(fcat_galaxies['class_star']) weights_all = np.ones_like(fcat_good['class_star'])/len(fcat_good['class_star']) plt.figure() plt.hist(fcat_stars['class_star'], weights = weights_stars, bins= 5, histtype='stepfilled', label ='stars') plt.hist(fcat_galaxies['class_star'], weights = weights_galaxies, bins= 5, histtype='stepfilled', label ='galaxies') plt.legend(loc='upper right') plt.xlabel('$class_{star}$', labelpad=20, fontsize=20) plt.ylabel('$Frequency$', fontsize=20) plt.ylim(0,0.6) plt.show() plt.hist(fcat_good['class_star'], color= 'r', weights = weights_all, bins=50, histtype='stepfilled', label ='all') plt.legend(loc='upper right') plt.xlabel('$class_{star}$', labelpad=20, fontsize=20) plt.ylabel('$Frequency$', fontsize=20) plt.ylim(0,0.6) plt.show() plt.show() #(10): Calling Ellipto to recalculate shapes and ellipticities: ELLIPTO CATALOG print("") print("Now it is necessary to call ellipto in order to obtain in a proper way sizes and shapes both for galaxies and stars") print("") print("STARS") print("") catalog_name_ellipto_stars='{}{}'.format(FILE_NAME, type_ellipto_stars) ellipto_caller(catalog_name_stars, fits, catalog_name_ellipto_stars) print("GALAXIES") catalog_name_ellipto_galaxies='{}{}'.format(FILE_NAME, type_ellipto_galaxies) ellipto_caller(catalog_name_galaxies, fits, catalog_name_ellipto_galaxies) print("DONE") print("") #(11): Now we clasify the catalogs obtained with ellipto forcing fiat filter: SHAPES CATALOG print("Filtering good obtained celestial object from ellipto using fiatfilter...") print("") print("STARS") catalog_name_shapes_stars='{}{}'.format(FILE_NAME, type_shapes_stars) fiatfilter_errcode_stars='perl fiatfilter.pl -v "errcode<2" {}>{}'.format(catalog_name_ellipto_stars, catalog_name_shapes_stars) subprocess.call(fiatfilter_errcode_stars, shell=True) print("") print("GALAXIES") print("") catalog_name_shapes_galaxies='{}{}'.format(FILE_NAME, type_shapes_galaxies) fiatfilter_errcode_galaxies='perl fiatfilter.pl -v "errcode<2" {}>{}'.format(catalog_name_ellipto_galaxies, catalog_name_shapes_galaxies) subprocess.call(fiatfilter_errcode_galaxies, shell=True) print("DONE") print("") #(12): Recalculating ellipticities for stars print("I'm recalculating ellipticities of the new star set after being corrected by ellipto") names_ellipto = ["x", "y", "mag_iso", "median", "ixx", "iyy", "ixy", "a_input", "b_input", "theta", "ellipticity", "errcode", "sigsky", "size", "flux", "mean_rho_4th", "sigma_e", "wander"] fiat_shapes_stars= np.genfromtxt(catalog_name_shapes_stars, names=names_ellipto) ellipticity(fiat_shapes_stars, 15) plt.show() print "Show ellipticy as a function of x and y" plotter(fiat_shapes_stars, 'x', 'ellipticity', 2, '$x/pixels$', '$\epsilon$') plt.show() plotter(fiat_shapes_stars, 'y', 'ellipticity', 2, '$y/pixels$', '$\epsilon$') plt.show() fiat_shapes_galaxies= np.genfromtxt(catalog_name_shapes_galaxies, names=names_ellipto) ellipticity(fiat_shapes_galaxies, 15) plt.show(block=False) #(13): STARS--> you obtain two fitting both for ellip_1 and ellip_2 print("") print("I'm performing a fitting of those ellipticities e_1 and e_2: both a simple 2D polynomial fitting and a 2D Legendre Polynomial fitting") print("") dlscombine_file_pol='' dlscombine_file_leg='' #Let's call the function fit_Polynomial from ellip_fitting3.py fitting_file_ellip_pol=ellip_fit.fit_Polynomial(FILE_NAME, fiat_shapes_stars) #Create file read by dlscombine dlscombine_file_pol=specfile(fits, fitting_file_ellip_pol, FILE_NAME) print("") #Let's call the function fit_Legendre from ellip_fitting3.py fitting_file_ellip_leg=ellip_fit.fit_Legendre(FILE_NAME, fiat_shapes_stars) #Create file read by dlscombine if filter=='r': dlscombine_file_leg=specfile_r(fits, fitting_file_ellip_leg, FILE_NAME) if filter=='z': dlscombine_file_leg=specfile_z(fits, fitting_file_ellip_leg, FILE_NAME) #(14): Let's call DLSCOMBINE to correct PSF anisotropies print("I'm correcting PSF anisotropies using dlscombine: BOTH FOR POL AND LEG FITTING") print("") fits_pol='{}_corrected_pol.fits'.format(FILE_NAME, FILE_NAME) dlscombine_call_pol='./dlscombine_pol {} {}'.format(dlscombine_file_pol, fits_pol) subprocess.call(dlscombine_call_pol, shell=True) fits_leg='{}_corrected_leg.fits'.format(FILE_NAME, FILE_NAME) dlscombine_call_leg='./dlscombine_leg {} {}'.format(dlscombine_file_leg, fits_leg) subprocess.call(dlscombine_call_leg, shell=True) #(15): Call again Source Extractor only for the Legendre Polynomial fitting print("I'm calling again SExtractor to obtain a new catalog from the corrected picture (only from the leg fitting)") print("") catalog_name_corrected=sex_caller_corrected(fits_leg, FILE_NAME) #(16): Transform .cat into .fcat (FIAT) for the corrected catalog catalog_name_fiat_corrected='{}_corrected.fcat'.format(FILE_NAME) transform_into_fiat_corrected='perl sex2fiat.pl {}>{}'.format(catalog_name_corrected, catalog_name_fiat_corrected) subprocess.call(transform_into_fiat_corrected, shell=True) print("") array_file_name.append(catalog_name_fiat_corrected) cont = cont + 1 NAME_1= array_file_name[0] NAME_2= array_file_name[1] BEFORE_NAME_1 = NAME_1.find('.') FILE_NAME_1 = NAME_1[:BEFORE_NAME] BEFORE_NAME_2 = NAME_2.find('.') FILE_NAME_2 = NAME_2[:BEFORE_NAME] #CROSS-MATCHING catag_r = CatalogReader(array_file_name[0]) catag_r.read() catag_z = CatalogReader(array_file_name[1]) catag_z.read() crossmatching = CrossMatching(catag_r.fcat, catag_z.fcat) crossmatching.kdtree(n=1*1e-06) crossmatching.catalog_writter('2CM_{}'.format(FILE_NAME_1), compare = '1to2') print '\n' crossmatching.catalog_writter('2CM_{}'.format(FILE_NAME_2), compare = '2to1') FILE_NAME_FINAL = raw_input("Please, tell me the FINAL name: ") if crossmatching.cont1to2<crossmatching.cont2to1: catag_final_1 = CatalogReader('2CM_{}{}'.format(FILE_NAME_1, type_fcat)) catag_final_1.read() catag_final_2 = CatalogReader('2CM_{}{}'.format(FILE_NAME_2, type_fcat)) catag_final_2.read() crossmatching_final = CrossMatching(catag_final_1.fcat, catag_final_2.fcat) crossmatching_final.kdtree(n=1*1e-06) crossmatching.catalog_writter('{}'.format(FILE_NAME_FINAL), compare = '1to2') if crossmatching.cont1to2>crossmatching.cont2to1: catag_final_1 = CatalogReader('2CM_{}{}'.format(FILE_NAME_1, type_fcat)) catag_final_1.read() catag_final_2 = CatalogReader('2CM_{}{}'.format(FILE_NAME_2, type_fcat)) catag_final_2.read() crossmatching_final = CrossMatching(catag_final_1.fcat, catag_final_2.fcat) crossmatching_final.kdtree(n=1*1e-06) crossmatching.catalog_writter('{}'.format(FILE_NAME_FINAL), compare = '2to1') if crossmatching.cont1to2==crossmatching.cont2to1: catag_final_1 = CatalogReader('2CM_{}{}'.format(FILE_NAME_1, type_fcat)) catag_final_1.read() catag_final_2 = CatalogReader('2CM_{}{}'.format(FILE_NAME_2, type_fcat)) catag_final_2.read() crossmatching_final = CrossMatching(catag_final_1.fcat, catag_final_2.fcat) crossmatching_final.kdtree(n=1*1e-06) crossmatching.catalog_writter('{}'.format(FILE_NAME_FINAL), compare = '1to2') catalog_name_fiat_corrected_final = '{}{}'.format(FILE_NAME_FINAL, fcat) #(17): Transform again tshe corrected catalog into a GOOD catalog catalog_name_corrected_good= '{}{}'.format(FILE_NAME_FINAL, type_good) terminal_corrected_good= 'perl fiatfilter.pl "x>{} && x<{} && y>{} && y<{}" {}>{}'.format(xmin_good, xmax_good, ymin_good, ymax_good, catalog_name_fiat_corrected_final, catalog_name_corrected_good) subprocess.call(terminal_corrected_good, shell=True) FILE_NAME_CORRECTED='{}_corrected'.format(FILE_NAME_FINAL) #(18): STARS CATALOG again... print("Now we need to repeat the classification to obtain only galaxies and stars as we did before") print("") print("Let me show you again the FWHM vs MAG plot \n") print("") fcat_corrected=np.genfromtxt(catalog_name_corrected_good, names=names) plotter(fcat_corrected, 'mag_iso', 'FWHM', 3, '$mag(iso)$', '$FWHM$') plt.show(block=False) print("First stars...") print("") catalog_name_fiat_corrected_stars='' catalog_name_fiat_corrected_stars, FWHM_max_stars=stars_maker(catalog_name_corrected_good, FILE_NAME_CORRECTED) fcat_stars_corrected=np.genfromtxt(catalog_name_fiat_corrected_stars, names=names) ellipticity(fcat_stars_corrected, 20) plt.show(block=False) #(19): GALAXIES CATALOG again... print("") print("Second galaxies...") print("") catalog_name_fiat_corrected_galaxies=galaxies_maker(catalog_name_corrected_good, FILE_NAME_CORRECTED, FWHM_max_stars) fcat_galaxies_corrected=np.genfromtxt(catalog_name_fiat_corrected_galaxies, names=names) # (***) CHECKING FOR STARS // GALAXIES DIVISION weights_stars=np.ones_like(fcat_stars_corrected['class_star'])/len(fcat_stars_corrected['class_star']) weights_galaxies=np.ones_like(fcat_galaxies_corrected['class_star'])/len(fcat_galaxies_corrected['class_star']) weights_all = np.ones_like(fcat_corrected['class_star'])/len(fcat_corrected['class_star']) plt.figure() plt.hist(fcat_stars_corrected['class_star'], weights = weights_stars, bins= 10, histtype='stepfilled', label ='stars') plt.hist(fcat_galaxies_corrected['class_star'], weights = weights_galaxies, bins= 15, histtype='stepfilled', label ='galaxies') plt.legend(loc='upper right') plt.xlabel('$class_{star}$', labelpad=20, fontsize=20) plt.ylabel('$Frequency$', fontsize=20) plt.show() plt.hist(fcat_corrected['class_star'], color= 'r', weights = weights_all, bins=50, histtype='stepfilled', label ='all') plt.legend(loc='upper right') plt.xlabel('$class_{star}$', labelpad=20, fontsize=20) plt.ylabel('$Frequency$', fontsize=20) plt.show() #(20): ELLIPTO CATALOG and SHAPES CATALOG (only galaxies) again... catalog_name_ellipto_stars_corrected='{}{}'.format(FILE_NAME_CORRECTED, type_ellipto_stars) ellipto_caller(catalog_name_fiat_corrected_stars, fits, catalog_name_ellipto_stars_corrected) catalog_name_ellipto_galaxies_corrected='{}{}'.format(FILE_NAME_CORRECTED, type_ellipto_galaxies) ellipto_caller(catalog_name_fiat_corrected_galaxies, fits, catalog_name_ellipto_galaxies_corrected) catalog_name_shapes_galaxies_corrected='{}{}'.format(FILE_NAME_CORRECTED, type_shapes_galaxies) fiatfilter_errcode_galaxies_corrected='perl fiatfilter.pl -v "errcode<2" {}>{}'.format(catalog_name_ellipto_galaxies_corrected, catalog_name_shapes_galaxies_corrected) subprocess.call(fiatfilter_errcode_galaxies_corrected, shell=True) catalog_name_shapes_stars_corrected='{}{}'.format(FILE_NAME_CORRECTED, type_shapes_stars) fiatfilter_errcode_stars_corrected='perl fiatfilter.pl -v "errcode<2" {}>{}'.format(catalog_name_ellipto_stars_corrected, catalog_name_shapes_stars_corrected) subprocess.call(fiatfilter_errcode_stars_corrected, shell=True) if __name__ == "__main__": main()
gpl-3.0
NP-Omix/BioCompass
BioCompass/table_1_extender.py
2
4650
from sys import argv from Bio import SeqIO import pandas as pd import re import itertools import os.path script, strain_name, cluster_number = argv table1_df = pd.read_csv('../outputs/tables/%s_%s_table1.csv'%(strain_name,cluster_number), sep='\t') def find_boarders(file_name): with open(file_name).xreadlines() as f: for num, line in enumerate(f): header = re.search(r'^(\d*). (\S*)_(\S*)$',line) if header != None and num not in numbers: numbers.append(num) headers.append(header.group()) temp_dict = dict(zip(numbers, headers)) return temp_dict def itinerate_temp_file(file_name,temp_dict): """ Extract from file_name a section defined by i into temp.txt""" with open(file_name) as fp: temp_file = open("temp.txt", "w") for num, line in enumerate(fp): # Is not the last one if i[0] != sorted(temp_dict)[-1]: if num >= i[0] and num < j[0]: temp_file.writelines(line) else: if num >= i[0]: temp_file.writelines(line) temp_file.close() def find_best_hits(table1_df): """ For each ctg1_* @ table1_df['locus_tag'], get """ for item in table1_df['locus_tag']: with open("temp.txt", "r").xreadlines() as tf: for line in tf: # query gene, subject gene, %identity, blast score, %coverage, e-value # e.g line <- 'ctg1_160\tSCATT_35940\t69\t169\t100.0\t2.3e-40\t\n' best_hit = re.search(r'^%s\t(\S*)\t(\d*)\t(\d*)\t(\d*)'%item,line) if best_hit and item not in col7: # e.g. ctg1_160 col7.append(item) # e.g i[1] <- '1. CP003219_c13' hit = re.search(r'^(\d*). (\S*)_(\S*)',i[1]) # e.g. 'CP003219' col8.append(hit.group(2)) # e.g. 'SCATT_35940' col9.append(best_hit.group(1)) # e.g. '69' col10.append(best_hit.group(2)) # e.g. '100' col11.append(best_hit.group(4)) #find boarders for temp_file short_cluster_number = re.search(r'0*([0-9]*)',cluster_number).group(1) file_name = '../antiSMASH_input/%s/clusterblast/cluster%s.txt' % (strain_name,short_cluster_number) numbers = [] headers = [] temp_dict = [] if os.path.isfile(file_name): temp_dict = find_boarders(file_name) col7 = [] col8 = [] col9 = [] col10 = [] col11 = [] it = iter(sorted(temp_dict.iteritems())) i = it.next() # e.g. i <- (139, '1. CP003219_c13') if len(temp_dict) > 1: j = it.next() while True: if i[0] == sorted(temp_dict)[-1]: itinerate_temp_file(file_name,temp_dict) find_best_hits(table1_df) break else: itinerate_temp_file(file_name,temp_dict) find_best_hits(table1_df) i = j if j[0] != sorted(temp_dict)[-1]: j = it.next() """ ctg1_160 SCATT_35940 69 169 100.0 2.3e-40 hence: best_hit_loc -> SCATT_35940 AEW95965 3878018 3878386 + 50S_ribosomal_protein_L14 """ col12 = [] for item in col9: with open(file_name, "r").xreadlines() as tf: seen = [] for line in tf: best_hit_loc = re.search(r'^%s\t(\S*)\t(.*)'%item,line) if best_hit_loc and item not in seen: col12.append(best_hit_loc.group(1)) seen.append(item) frames = {'locus_tag':col7,'best_hit_BGC':col8,'best_hit_gene':col9,'best_hit_%id':col10,'best_hit_%cov':col11,'best_hit_gene_loc':col12} new_cols_df = pd.DataFrame(frames, index=None) table1_df = pd.merge(table1_df, new_cols_df, on='locus_tag', how='outer') table1_df.fillna('None', inplace=True) else: col7 = [] col8 = [] for item in table1_df['locus_tag']: col7.append(item) col8.append('None') frames = {'locus_tag':col7,'best_hit_BGC':col8} new_cols_df = pd.DataFrame(frames, index=None) table1_df = pd.merge(table1_df, new_cols_df, on='locus_tag', how='outer') table1_handle = pd.HDFStore('../outputs/tables/table1.h5') table1_handle['%s_%s' % (strain_name,cluster_number)] = table1_df table1_handle.close() table1_handle = open('../outputs/tables/%s_%s_table1.csv'%(strain_name,cluster_number), "w") table1_df.to_csv(table1_handle, sep='\t', index=False) table1_handle.close()
bsd-3-clause
quasiben/bokeh
bokeh/charts/builders/step_builder.py
9
4531
"""This is the Bokeh charts interface. It gives you a high level API to build complex plot is a simple way. This is the Step class which lets you build your Step charts just passing the arguments to the Chart class and calling the proper functions. """ # ----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- from __future__ import absolute_import from ..builder import create_and_build from .line_builder import LineBuilder from ..glyphs import StepGlyph # ----------------------------------------------------------------------------- # Classes and functions # ----------------------------------------------------------------------------- def Step(data=None, x=None, y=None, **kws): """ Create a step chart using :class:`StepBuilder <bokeh.charts.builder.step_builder.StepBuilder>` to render the geometry from the inputs. .. note:: Only the x or y axis can display multiple variables, while the other is used as an index. Args: data (list(list), numpy.ndarray, pandas.DataFrame, list(pd.Series)): a 2d data source with columns of data for each stepped line. x (str or list(str), optional): specifies variable(s) to use for x axis y (str or list(str), optional): specifies variable(s) to use for y axis In addition to the parameters specific to this chart, :ref:`userguide_charts_defaults` are also accepted as keyword parameters. .. note:: This chart type differs on input types as compared to other charts, due to the way that series-type charts typically are plotting labeled series. For example, a column for AAPL stock prices over time. Another way this could be plotted is to have a DataFrame with a column of `stock_label` and columns of `price`, which is the stacked format. Both should be supported, but the former is the expected one. Internally, the latter format is being derived. Returns: :class:`Chart`: includes glyph renderers that generate the stepped lines Examples: .. bokeh-plot:: :source-position: above from bokeh.charts import Step, show, output_file # build a dataset where multiple columns measure the same thing data = dict( stamp=[.33, .33, .34, .37, .37, .37, .37, .39, .41, .42, .44, .44, .44, .45, .46, .49, .49], postcard=[.20, .20, .21, .23, .23, .23, .23, .24, .26, .27, .28, .28, .29, .32, .33, .34, .35] ) # create a step chart where each column of measures receives a unique color and dash style step = Step(data, y=['stamp', 'postcard'], dash=['stamp', 'postcard'], color=['stamp', 'postcard'], title="U.S. Postage Rates (1999-2015)", ylabel='Rate per ounce', legend=True) output_file("steps.html") show(step) """ kws['x'] = x kws['y'] = y return create_and_build(StepBuilder, data, **kws) class StepBuilder(LineBuilder): """This is the Step builder and it is in charge of plotting Step charts in an easy and intuitive way. Essentially, we provide a way to ingest the data, make the proper calculations and push the references into a source object. We additionally make calculations for the ranges, and finally add the needed stepped lines taking the references from the source. """ def yield_renderers(self): for group in self._data.groupby(**self.attributes): glyph = StepGlyph(x=group.get_values(self.x.selection), y=group.get_values(self.y.selection), line_color=group['color'], dash=group['dash']) # save reference to composite glyph self.add_glyph(group, glyph) # yield each renderer produced by composite glyph for renderer in glyph.renderers: yield renderer
bsd-3-clause
huzq/scikit-learn
examples/applications/plot_species_distribution_modeling.py
17
7971
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the :class:`~sklearn.svm.OneClassSVM` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <https://matplotlib.org/basemap/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.utils import Bunch from sklearn.datasets import fetch_species_distributions from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std) Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std) scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
IndraVikas/scikit-learn
sklearn/mixture/gmm.py
128
31069
""" Gaussian Mixture Models. This implementation corresponds to frequentist (non-Bayesian) formulation of Gaussian Mixture Models. """ # Author: Ron Weiss <[email protected]> # Fabian Pedregosa <[email protected]> # Bertrand Thirion <[email protected]> import warnings import numpy as np from scipy import linalg from time import time from ..base import BaseEstimator from ..utils import check_random_state, check_array from ..utils.extmath import logsumexp from ..utils.validation import check_is_fitted from .. import cluster from sklearn.externals.six.moves import zip EPS = np.finfo(float).eps def log_multivariate_normal_density(X, means, covars, covariance_type='diag'): """Compute the log probability under a multivariate Gaussian distribution. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. means : array_like, shape (n_components, n_features) List of n_features-dimensional mean vectors for n_components Gaussians. Each row corresponds to a single mean vector. covars : array_like List of n_components covariance parameters for each Gaussian. The shape depends on `covariance_type`: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' covariance_type : string Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. Returns ------- lpr : array_like, shape (n_samples, n_components) Array containing the log probabilities of each data point in X under each of the n_components multivariate Gaussian distributions. """ log_multivariate_normal_density_dict = { 'spherical': _log_multivariate_normal_density_spherical, 'tied': _log_multivariate_normal_density_tied, 'diag': _log_multivariate_normal_density_diag, 'full': _log_multivariate_normal_density_full} return log_multivariate_normal_density_dict[covariance_type]( X, means, covars) def sample_gaussian(mean, covar, covariance_type='diag', n_samples=1, random_state=None): """Generate random samples from a Gaussian distribution. Parameters ---------- mean : array_like, shape (n_features,) Mean of the distribution. covar : array_like, optional Covariance of the distribution. The shape depends on `covariance_type`: scalar if 'spherical', (n_features) if 'diag', (n_features, n_features) if 'tied', or 'full' covariance_type : string, optional Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array, shape (n_features, n_samples) Randomly generated sample """ rng = check_random_state(random_state) n_dim = len(mean) rand = rng.randn(n_dim, n_samples) if n_samples == 1: rand.shape = (n_dim,) if covariance_type == 'spherical': rand *= np.sqrt(covar) elif covariance_type == 'diag': rand = np.dot(np.diag(np.sqrt(covar)), rand) else: s, U = linalg.eigh(covar) s.clip(0, out=s) # get rid of tiny negatives np.sqrt(s, out=s) U *= s rand = np.dot(U, rand) return (rand.T + mean).T class GMM(BaseEstimator): """Gaussian Mixture Model Representation of a Gaussian mixture model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a GMM distribution. Initializes parameters such that every mixture component has zero mean and identity covariance. Read more in the :ref:`User Guide <gmm>`. Parameters ---------- n_components : int, optional Number of mixture components. Defaults to 1. covariance_type : string, optional String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. random_state: RandomState or an int seed (None by default) A random number generator instance min_covar : float, optional Floor on the diagonal of the covariance matrix to prevent overfitting. Defaults to 1e-3. tol : float, optional Convergence threshold. EM iterations will stop when average gain in log-likelihood is below this threshold. Defaults to 1e-3. n_iter : int, optional Number of EM iterations to perform. n_init : int, optional Number of initializations to perform. the best results is kept params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. init_params : string, optional Controls which parameters are updated in the initialization process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. verbose : int, default: 0 Enable verbose output. If 1 then it always prints the current initialization and iteration step. If greater than 1 then it prints additionally the change and time needed for each step. Attributes ---------- weights_ : array, shape (`n_components`,) This attribute stores the mixing weights for each mixture component. means_ : array, shape (`n_components`, `n_features`) Mean parameters for each mixture component. covars_ : array Covariance parameters for each mixture component. The shape depends on `covariance_type`:: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' converged_ : bool True when convergence was reached in fit(), False otherwise. See Also -------- DPGMM : Infinite gaussian mixture model, using the dirichlet process, fit with a variational algorithm VBGMM : Finite gaussian mixture model fit with a variational algorithm, better for situations where there might be too little data to get a good estimate of the covariance matrix. Examples -------- >>> import numpy as np >>> from sklearn import mixture >>> np.random.seed(1) >>> g = mixture.GMM(n_components=2) >>> # Generate random observations with two modes centered on 0 >>> # and 10 to use for training. >>> obs = np.concatenate((np.random.randn(100, 1), ... 10 + np.random.randn(300, 1))) >>> g.fit(obs) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, thresh=None, tol=0.001, verbose=0) >>> np.round(g.weights_, 2) array([ 0.75, 0.25]) >>> np.round(g.means_, 2) array([[ 10.05], [ 0.06]]) >>> np.round(g.covars_, 2) #doctest: +SKIP array([[[ 1.02]], [[ 0.96]]]) >>> g.predict([[0], [2], [9], [10]]) #doctest: +ELLIPSIS array([1, 1, 0, 0]...) >>> np.round(g.score([[0], [2], [9], [10]]), 2) array([-2.19, -4.58, -1.75, -1.21]) >>> # Refit the model on new data (initial parameters remain the >>> # same), this time with an even split between the two modes. >>> g.fit(20 * [[0]] + 20 * [[10]]) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, thresh=None, tol=0.001, verbose=0) >>> np.round(g.weights_, 2) array([ 0.5, 0.5]) """ def __init__(self, n_components=1, covariance_type='diag', random_state=None, thresh=None, tol=1e-3, min_covar=1e-3, n_iter=100, n_init=1, params='wmc', init_params='wmc', verbose=0): if thresh is not None: warnings.warn("'thresh' has been replaced by 'tol' in 0.16 " " and will be removed in 0.18.", DeprecationWarning) self.n_components = n_components self.covariance_type = covariance_type self.thresh = thresh self.tol = tol self.min_covar = min_covar self.random_state = random_state self.n_iter = n_iter self.n_init = n_init self.params = params self.init_params = init_params self.verbose = verbose if covariance_type not in ['spherical', 'tied', 'diag', 'full']: raise ValueError('Invalid value for covariance_type: %s' % covariance_type) if n_init < 1: raise ValueError('GMM estimation requires at least one run') self.weights_ = np.ones(self.n_components) / self.n_components # flag to indicate exit status of fit() method: converged (True) or # n_iter reached (False) self.converged_ = False def _get_covars(self): """Covariance parameters for each mixture component. The shape depends on ``cvtype``:: (n_states, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_states, n_features) if 'diag', (n_states, n_features, n_features) if 'full' """ if self.covariance_type == 'full': return self.covars_ elif self.covariance_type == 'diag': return [np.diag(cov) for cov in self.covars_] elif self.covariance_type == 'tied': return [self.covars_] * self.n_components elif self.covariance_type == 'spherical': return [np.diag(cov) for cov in self.covars_] def _set_covars(self, covars): """Provide values for covariance""" covars = np.asarray(covars) _validate_covars(covars, self.covariance_type, self.n_components) self.covars_ = covars def score_samples(self, X): """Return the per-sample likelihood of the data under the model. Compute the log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. Parameters ---------- X: array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X. responsibilities : array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ check_is_fitted(self, 'means_') X = check_array(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]), np.empty((0, self.n_components)) if X.shape[1] != self.means_.shape[1]: raise ValueError('The shape of X is not compatible with self') lpr = (log_multivariate_normal_density(X, self.means_, self.covars_, self.covariance_type) + np.log(self.weights_)) logprob = logsumexp(lpr, axis=1) responsibilities = np.exp(lpr - logprob[:, np.newaxis]) return logprob, responsibilities def score(self, X, y=None): """Compute the log probability under the model. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X """ logprob, _ = self.score_samples(X) return logprob def predict(self, X): """Predict label for data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) component memberships """ logprob, responsibilities = self.score_samples(X) return responsibilities.argmax(axis=1) def predict_proba(self, X): """Predict posterior probability of data under each Gaussian in the model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- responsibilities : array-like, shape = (n_samples, n_components) Returns the probability of the sample for each Gaussian (state) in the model. """ logprob, responsibilities = self.score_samples(X) return responsibilities def sample(self, n_samples=1, random_state=None): """Generate random samples from the model. Parameters ---------- n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array_like, shape (n_samples, n_features) List of samples """ check_is_fitted(self, 'means_') if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) weight_cdf = np.cumsum(self.weights_) X = np.empty((n_samples, self.means_.shape[1])) rand = random_state.rand(n_samples) # decide which component to use for each sample comps = weight_cdf.searchsorted(rand) # for each component, generate all needed samples for comp in range(self.n_components): # occurrences of current component in X comp_in_X = (comp == comps) # number of those occurrences num_comp_in_X = comp_in_X.sum() if num_comp_in_X > 0: if self.covariance_type == 'tied': cv = self.covars_ elif self.covariance_type == 'spherical': cv = self.covars_[comp][0] else: cv = self.covars_[comp] X[comp_in_X] = sample_gaussian( self.means_[comp], cv, self.covariance_type, num_comp_in_X, random_state=random_state).T return X def fit_predict(self, X, y=None): """Fit and then predict labels for data. Warning: due to the final maximization step in the EM algorithm, with low iterations the prediction may not be 100% accurate Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) component memberships """ return self._fit(X, y).argmax(axis=1) def _fit(self, X, y=None, do_prediction=False): """Estimate model parameters with the EM algorithm. A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- responsibilities : array, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation. """ # initialization step X = check_array(X, dtype=np.float64) if X.shape[0] < self.n_components: raise ValueError( 'GMM estimation with %s components, but got only %s samples' % (self.n_components, X.shape[0])) max_log_prob = -np.infty if self.verbose > 0: print('Expectation-maximization algorithm started.') for init in range(self.n_init): if self.verbose > 0: print('Initialization ' + str(init + 1)) start_init_time = time() if 'm' in self.init_params or not hasattr(self, 'means_'): self.means_ = cluster.KMeans( n_clusters=self.n_components, random_state=self.random_state).fit(X).cluster_centers_ if self.verbose > 1: print('\tMeans have been initialized.') if 'w' in self.init_params or not hasattr(self, 'weights_'): self.weights_ = np.tile(1.0 / self.n_components, self.n_components) if self.verbose > 1: print('\tWeights have been initialized.') if 'c' in self.init_params or not hasattr(self, 'covars_'): cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1]) if not cv.shape: cv.shape = (1, 1) self.covars_ = \ distribute_covar_matrix_to_match_covariance_type( cv, self.covariance_type, self.n_components) if self.verbose > 1: print('\tCovariance matrices have been initialized.') # EM algorithms current_log_likelihood = None # reset self.converged_ to False self.converged_ = False # this line should be removed when 'thresh' is removed in v0.18 tol = (self.tol if self.thresh is None else self.thresh / float(X.shape[0])) for i in range(self.n_iter): if self.verbose > 0: print('\tEM iteration ' + str(i + 1)) start_iter_time = time() prev_log_likelihood = current_log_likelihood # Expectation step log_likelihoods, responsibilities = self.score_samples(X) current_log_likelihood = log_likelihoods.mean() # Check for convergence. # (should compare to self.tol when deprecated 'thresh' is # removed in v0.18) if prev_log_likelihood is not None: change = abs(current_log_likelihood - prev_log_likelihood) if self.verbose > 1: print('\t\tChange: ' + str(change)) if change < tol: self.converged_ = True if self.verbose > 0: print('\t\tEM algorithm converged.') break # Maximization step self._do_mstep(X, responsibilities, self.params, self.min_covar) if self.verbose > 1: print('\t\tEM iteration ' + str(i + 1) + ' took {0:.5f}s'.format( time() - start_iter_time)) # if the results are better, keep it if self.n_iter: if current_log_likelihood > max_log_prob: max_log_prob = current_log_likelihood best_params = {'weights': self.weights_, 'means': self.means_, 'covars': self.covars_} if self.verbose > 1: print('\tBetter parameters were found.') if self.verbose > 1: print('\tInitialization ' + str(init + 1) + ' took {0:.5f}s'.format( time() - start_init_time)) # check the existence of an init param that was not subject to # likelihood computation issue. if np.isneginf(max_log_prob) and self.n_iter: raise RuntimeError( "EM algorithm was never able to compute a valid likelihood " + "given initial parameters. Try different init parameters " + "(or increasing n_init) or check for degenerate data.") if self.n_iter: self.covars_ = best_params['covars'] self.means_ = best_params['means'] self.weights_ = best_params['weights'] else: # self.n_iter == 0 occurs when using GMM within HMM # Need to make sure that there are responsibilities to output # Output zeros because it was just a quick initialization responsibilities = np.zeros((X.shape[0], self.n_components)) return responsibilities def fit(self, X, y=None): """Estimate model parameters with the EM algorithm. A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self """ self._fit(X, y) return self def _do_mstep(self, X, responsibilities, params, min_covar=0): """ Perform the Mstep of the EM algorithm and return the class weights """ weights = responsibilities.sum(axis=0) weighted_X_sum = np.dot(responsibilities.T, X) inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS) if 'w' in params: self.weights_ = (weights / (weights.sum() + 10 * EPS) + EPS) if 'm' in params: self.means_ = weighted_X_sum * inverse_weights if 'c' in params: covar_mstep_func = _covar_mstep_funcs[self.covariance_type] self.covars_ = covar_mstep_func( self, X, responsibilities, weighted_X_sum, inverse_weights, min_covar) return weights def _n_parameters(self): """Return the number of free parameters in the model.""" ndim = self.means_.shape[1] if self.covariance_type == 'full': cov_params = self.n_components * ndim * (ndim + 1) / 2. elif self.covariance_type == 'diag': cov_params = self.n_components * ndim elif self.covariance_type == 'tied': cov_params = ndim * (ndim + 1) / 2. elif self.covariance_type == 'spherical': cov_params = self.n_components mean_params = ndim * self.n_components return int(cov_params + mean_params + self.n_components - 1) def bic(self, X): """Bayesian information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- bic: float (the lower the better) """ return (-2 * self.score(X).sum() + self._n_parameters() * np.log(X.shape[0])) def aic(self, X): """Akaike information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- aic: float (the lower the better) """ return - 2 * self.score(X).sum() + 2 * self._n_parameters() ######################################################################### # some helper routines ######################################################################### def _log_multivariate_normal_density_diag(X, means, covars): """Compute Gaussian log-density at X for a diagonal model""" n_samples, n_dim = X.shape lpr = -0.5 * (n_dim * np.log(2 * np.pi) + np.sum(np.log(covars), 1) + np.sum((means ** 2) / covars, 1) - 2 * np.dot(X, (means / covars).T) + np.dot(X ** 2, (1.0 / covars).T)) return lpr def _log_multivariate_normal_density_spherical(X, means, covars): """Compute Gaussian log-density at X for a spherical model""" cv = covars.copy() if covars.ndim == 1: cv = cv[:, np.newaxis] if covars.shape[1] == 1: cv = np.tile(cv, (1, X.shape[-1])) return _log_multivariate_normal_density_diag(X, means, cv) def _log_multivariate_normal_density_tied(X, means, covars): """Compute Gaussian log-density at X for a tied model""" cv = np.tile(covars, (means.shape[0], 1, 1)) return _log_multivariate_normal_density_full(X, means, cv) def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7): """Log probability for full covariance matrices.""" n_samples, n_dim = X.shape nmix = len(means) log_prob = np.empty((n_samples, nmix)) for c, (mu, cv) in enumerate(zip(means, covars)): try: cv_chol = linalg.cholesky(cv, lower=True) except linalg.LinAlgError: # The model is most probably stuck in a component with too # few observations, we need to reinitialize this components try: cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim), lower=True) except linalg.LinAlgError: raise ValueError("'covars' must be symmetric, " "positive-definite") cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol))) cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + n_dim * np.log(2 * np.pi) + cv_log_det) return log_prob def _validate_covars(covars, covariance_type, n_components): """Do basic checks on matrix covariance sizes and values """ from scipy import linalg if covariance_type == 'spherical': if len(covars) != n_components: raise ValueError("'spherical' covars have length n_components") elif np.any(covars <= 0): raise ValueError("'spherical' covars must be non-negative") elif covariance_type == 'tied': if covars.shape[0] != covars.shape[1]: raise ValueError("'tied' covars must have shape (n_dim, n_dim)") elif (not np.allclose(covars, covars.T) or np.any(linalg.eigvalsh(covars) <= 0)): raise ValueError("'tied' covars must be symmetric, " "positive-definite") elif covariance_type == 'diag': if len(covars.shape) != 2: raise ValueError("'diag' covars must have shape " "(n_components, n_dim)") elif np.any(covars <= 0): raise ValueError("'diag' covars must be non-negative") elif covariance_type == 'full': if len(covars.shape) != 3: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") elif covars.shape[1] != covars.shape[2]: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") for n, cv in enumerate(covars): if (not np.allclose(cv, cv.T) or np.any(linalg.eigvalsh(cv) <= 0)): raise ValueError("component %d of 'full' covars must be " "symmetric, positive-definite" % n) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") def distribute_covar_matrix_to_match_covariance_type( tied_cv, covariance_type, n_components): """Create all the covariance matrices from a given template""" if covariance_type == 'spherical': cv = np.tile(tied_cv.mean() * np.ones(tied_cv.shape[1]), (n_components, 1)) elif covariance_type == 'tied': cv = tied_cv elif covariance_type == 'diag': cv = np.tile(np.diag(tied_cv), (n_components, 1)) elif covariance_type == 'full': cv = np.tile(tied_cv, (n_components, 1, 1)) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") return cv def _covar_mstep_diag(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for diagonal cases""" avg_X2 = np.dot(responsibilities.T, X * X) * norm avg_means2 = gmm.means_ ** 2 avg_X_means = gmm.means_ * weighted_X_sum * norm return avg_X2 - 2 * avg_X_means + avg_means2 + min_covar def _covar_mstep_spherical(*args): """Performing the covariance M step for spherical cases""" cv = _covar_mstep_diag(*args) return np.tile(cv.mean(axis=1)[:, np.newaxis], (1, cv.shape[1])) def _covar_mstep_full(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for full cases""" # Eq. 12 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" n_features = X.shape[1] cv = np.empty((gmm.n_components, n_features, n_features)) for c in range(gmm.n_components): post = responsibilities[:, c] mu = gmm.means_[c] diff = X - mu with np.errstate(under='ignore'): # Underflow Errors in doing post * X.T are not important avg_cv = np.dot(post * diff.T, diff) / (post.sum() + 10 * EPS) cv[c] = avg_cv + min_covar * np.eye(n_features) return cv def _covar_mstep_tied(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): # Eq. 15 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" avg_X2 = np.dot(X.T, X) avg_means2 = np.dot(gmm.means_.T, weighted_X_sum) out = avg_X2 - avg_means2 out *= 1. / X.shape[0] out.flat[::len(out) + 1] += min_covar return out _covar_mstep_funcs = {'spherical': _covar_mstep_spherical, 'diag': _covar_mstep_diag, 'tied': _covar_mstep_tied, 'full': _covar_mstep_full, }
bsd-3-clause
yanlend/scikit-learn
sklearn/neighbors/tests/test_nearest_centroid.py
305
4121
""" Testing for the nearest centroid module. """ import numpy as np from scipy import sparse as sp from numpy.testing import assert_array_equal from numpy.testing import assert_equal from sklearn.neighbors import NearestCentroid from sklearn import datasets from sklearn.metrics.pairwise import pairwise_distances # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] X_csr = sp.csr_matrix(X) # Sparse matrix y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] T_csr = sp.csr_matrix(T) true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset, including sparse versions. clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # Same test, but with a sparse matrix to fit and test. clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit with sparse, test with non-sparse clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T), true_result) # Fit with non-sparse, test with sparse clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit and predict with non-CSR sparse matrices clf = NearestCentroid() clf.fit(X_csr.tocoo(), y) assert_array_equal(clf.predict(T_csr.tolil()), true_result) def test_precomputed(): clf = NearestCentroid(metric="precomputed") clf.fit(X, y) S = pairwise_distances(T, clf.centroids_) assert_array_equal(clf.predict(S), true_result) def test_iris(): # Check consistency on dataset iris. for metric in ('euclidean', 'cosine'): clf = NearestCentroid(metric=metric).fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.9, "Failed with score = " + str(score) def test_iris_shrinkage(): # Check consistency on dataset iris, when using shrinkage. for metric in ('euclidean', 'cosine'): for shrink_threshold in [None, 0.1, 0.5]: clf = NearestCentroid(metric=metric, shrink_threshold=shrink_threshold) clf = clf.fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.8, "Failed with score = " + str(score) def test_pickle(): import pickle # classification obj = NearestCentroid() obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_array_equal(score, score2, "Failed to generate same score" " after pickling (classification).") def test_shrinkage_threshold_decoded_y(): clf = NearestCentroid(shrink_threshold=0.01) y_ind = np.asarray(y) y_ind[y_ind == -1] = 0 clf.fit(X, y_ind) centroid_encoded = clf.centroids_ clf.fit(X, y) assert_array_equal(centroid_encoded, clf.centroids_) def test_predict_translated_data(): # Test that NearestCentroid gives same results on translated data rng = np.random.RandomState(0) X = rng.rand(50, 50) y = rng.randint(0, 3, 50) noise = rng.rand(50) clf = NearestCentroid(shrink_threshold=0.1) clf.fit(X, y) y_init = clf.predict(X) clf = NearestCentroid(shrink_threshold=0.1) X_noise = X + noise clf.fit(X_noise, y) y_translate = clf.predict(X_noise) assert_array_equal(y_init, y_translate) def test_manhattan_metric(): # Test the manhattan metric. clf = NearestCentroid(metric='manhattan') clf.fit(X, y) dense_centroid = clf.centroids_ clf.fit(X_csr, y) assert_array_equal(clf.centroids_, dense_centroid) assert_array_equal(dense_centroid, [[-1, -1], [1, 1]])
bsd-3-clause
RachitKansal/scikit-learn
examples/cluster/plot_ward_structured_vs_unstructured.py
320
3369
""" =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. """ # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets.samples_generator import make_swiss_roll ############################################################################### # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise) # Make it thinner X[:, 1] *= .5 ############################################################################### # Compute clustering print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(np.float(l) / np.max(label + 1))) plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) ############################################################################### # Define the structure A of the data. Here a 10 nearest neighbors from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) ############################################################################### # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(float(l) / np.max(label + 1))) plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show()
bsd-3-clause
mattgiguere/scikit-learn
sklearn/cross_validation.py
3
57208
""" The :mod:`sklearn.cross_validation` module includes utilities for cross- validation and performance evaluation. """ # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]>, # Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings from itertools import chain, combinations from math import ceil, floor, factorial import numbers import time from abc import ABCMeta, abstractmethod import numpy as np import scipy.sparse as sp from .base import is_classifier, clone from .utils import indexable, check_random_state, safe_indexing from .utils.validation import (_is_arraylike, _num_samples, check_array, column_or_1d) from .utils.multiclass import type_of_target from .externals.joblib import Parallel, delayed, logger from .externals.six import with_metaclass from .externals.six.moves import zip from .metrics.scorer import check_scoring from .utils.fixes import bincount __all__ = ['KFold', 'LeaveOneLabelOut', 'LeaveOneOut', 'LeavePLabelOut', 'LeavePOut', 'ShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'check_cv', 'cross_val_score', 'cross_val_predict', 'permutation_test_score', 'train_test_split'] class _PartitionIterator(with_metaclass(ABCMeta)): """Base class for CV iterators where train_mask = ~test_mask Implementations must define `_iter_test_masks` or `_iter_test_indices`. Parameters ---------- n : int Total number of elements in dataset. """ def __init__(self, n): if abs(n - int(n)) >= np.finfo('f').eps: raise ValueError("n must be an integer") self.n = int(n) def __iter__(self): ind = np.arange(self.n) for test_index in self._iter_test_masks(): train_index = np.logical_not(test_index) train_index = ind[train_index] test_index = ind[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices() """ for test_index in self._iter_test_indices(): test_mask = self._empty_mask() test_mask[test_index] = True yield test_mask def _iter_test_indices(self): """Generates integer indices corresponding to test sets.""" raise NotImplementedError def _empty_mask(self): return np.zeros(self.n, dtype=np.bool) class LeaveOneOut(_PartitionIterator): """Leave-One-Out cross validation iterator. Provides train/test indices to split data in train test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut(n)`` is equivalent to ``KFold(n, n_folds=n)`` and ``LeavePOut(n, p=1)``. Due to the high number of test sets (which is the same as the number of samples) this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Parameters ---------- n : int Total number of elements in dataset. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = cross_validation.LeaveOneOut(2) >>> len(loo) 2 >>> print(loo) sklearn.cross_validation.LeaveOneOut(n=2) >>> for train_index, test_index in loo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneLabelOut for splitting the data according to explicit, domain-specific stratification of the dataset. """ def _iter_test_indices(self): return range(self.n) def __repr__(self): return '%s.%s(n=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, ) def __len__(self): return self.n class LeavePOut(_PartitionIterator): """Leave-P-Out cross validation iterator Provides train/test indices to split data in train test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(n, p)`` is NOT equivalent to ``KFold(n, n_folds=n // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Parameters ---------- n : int Total number of elements in dataset. p : int Size of the test sets. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = cross_validation.LeavePOut(4, 2) >>> len(lpo) 6 >>> print(lpo) sklearn.cross_validation.LeavePOut(n=4, p=2) >>> for train_index, test_index in lpo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, n, p): super(LeavePOut, self).__init__(n) self.p = p def _iter_test_indices(self): for comb in combinations(range(self.n), self.p): yield np.array(comb) def __repr__(self): return '%s.%s(n=%i, p=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.p, ) def __len__(self): return int(factorial(self.n) / factorial(self.n - self.p) / factorial(self.p)) class _BaseKFold(with_metaclass(ABCMeta, _PartitionIterator)): """Base class to validate KFold approaches""" @abstractmethod def __init__(self, n, n_folds, shuffle, random_state): super(_BaseKFold, self).__init__(n) if abs(n_folds - int(n_folds)) >= np.finfo('f').eps: raise ValueError("n_folds must be an integer") self.n_folds = n_folds = int(n_folds) if n_folds <= 1: raise ValueError( "k-fold cross validation requires at least one" " train / test split by setting n_folds=2 or more," " got n_folds={0}.".format(n_folds)) if n_folds > self.n: raise ValueError( ("Cannot have number of folds n_folds={0} greater" " than the number of samples: {1}.").format(n_folds, n)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.shuffle = shuffle self.random_state = random_state class KFold(_BaseKFold): """K-Folds cross validation iterator. Provides train/test indices to split data in train test sets. Split dataset into k consecutive folds (without shuffling). Each fold is then used a validation set once while the k - 1 remaining fold form the training set. Parameters ---------- n : int Total number of elements. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState Pseudo-random number generator state used for random sampling. If None, use default numpy RNG for shuffling Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = cross_validation.KFold(4, n_folds=2) >>> len(kf) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in kf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first n % n_folds folds have size n // n_folds + 1, other folds have size n // n_folds. See also -------- StratifiedKFold: take label information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). """ def __init__(self, n, n_folds=3, shuffle=False, random_state=None): super(KFold, self).__init__(n, n_folds, shuffle, random_state) self.idxs = np.arange(n) if shuffle: rng = check_random_state(self.random_state) rng.shuffle(self.idxs) def _iter_test_indices(self): n = self.n n_folds = self.n_folds fold_sizes = (n // n_folds) * np.ones(n_folds, dtype=np.int) fold_sizes[:n % n_folds] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield self.idxs[start:stop] current = stop def __repr__(self): return '%s.%s(n=%i, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Parameters ---------- y : array-like, [n_samples] Samples to split in K folds. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : None, int or RandomState Pseudo-random number generator state used for random sampling. If None, use default numpy RNG for shuffling Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = cross_validation.StratifiedKFold(y, n_folds=2) >>> len(skf) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in skf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size trunc(n_samples / n_folds), the last one has the complementary. """ def __init__(self, y, n_folds=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__( len(y), n_folds, shuffle, random_state) y = np.asarray(y) n_samples = y.shape[0] unique_labels, y_inversed = np.unique(y, return_inverse=True) label_counts = bincount(y_inversed) min_labels = np.min(label_counts) if self.n_folds > min_labels: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of labels for any class cannot" " be less than n_folds=%d." % (min_labels, self.n_folds)), Warning) # don't want to use the same seed in each label's shuffle if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each label so as to respect the # balance of labels per_label_cvs = [ KFold(max(c, self.n_folds), self.n_folds, shuffle=self.shuffle, random_state=rng) for c in label_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)): for label, (_, test_split) in zip(unique_labels, per_label_splits): label_test_folds = test_folds[y == label] # the test split can be too big because we used # KFold(max(c, self.n_folds), self.n_folds) instead of # KFold(c, self.n_folds) to make it possible to not crash even # if the data is not 100% stratifiable for all the labels # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(label_test_folds)] label_test_folds[test_split] = test_fold_idx test_folds[y == label] = label_test_folds self.test_folds = test_folds self.y = y def _iter_test_masks(self): for i in range(self.n_folds): yield self.test_folds == i def __repr__(self): return '%s.%s(labels=%s, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.y, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class LeaveOneLabelOut(_PartitionIterator): """Leave-One-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> labels = np.array([1, 1, 2, 2]) >>> lol = cross_validation.LeaveOneLabelOut(labels) >>> len(lol) 2 >>> print(lol) sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2]) >>> for train_index, test_index in lol: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] """ def __init__(self, labels): super(LeaveOneLabelOut, self).__init__(len(labels)) # We make a copy of labels to avoid side-effects during iteration self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) def _iter_test_masks(self): for i in self.unique_labels: yield self.labels == i def __repr__(self): return '%s.%s(labels=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, ) def __len__(self): return self.n_unique_labels class LeavePLabelOut(_PartitionIterator): """Leave-P-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the labels while the latter uses samples all assigned the same labels. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. p : int Number of samples to leave out in the test split. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = cross_validation.LeavePLabelOut(labels, p=2) >>> len(lpl) 3 >>> print(lpl) sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2) >>> for train_index, test_index in lpl: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] """ def __init__(self, labels, p): # We make a copy of labels to avoid side-effects during iteration super(LeavePLabelOut, self).__init__(len(labels)) self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) self.p = p def _iter_test_masks(self): comb = combinations(range(self.n_unique_labels), self.p) for idx in comb: test_index = self._empty_mask() idx = np.array(idx) for l in self.unique_labels[idx]: test_index[self.labels == l] = True yield test_index def __repr__(self): return '%s.%s(labels=%s, p=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, self.p, ) def __len__(self): return int(factorial(self.n_unique_labels) / factorial(self.n_unique_labels - self.p) / factorial(self.p)) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n, n_iter=10, test_size=0.1, train_size=None, random_state=None): self.n = n self.n_iter = n_iter self.test_size = test_size self.train_size = train_size self.random_state = random_state self.n_train, self.n_test = _validate_shuffle_split(n, test_size, train_size) def __iter__(self): for train, test in self._iter_indices(): yield train, test return @abstractmethod def _iter_indices(self): """Generate (train, test) indices""" class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validation iterator. Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Parameters ---------- n : int Total number of elements in the dataset. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn import cross_validation >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... test_size=.25, random_state=0) >>> len(rs) 3 >>> print(rs) ... # doctest: +ELLIPSIS ShuffleSplit(4, n_iter=3, test_size=0.25, ...) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... train_size=0.5, test_size=.25, random_state=0) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self): rng = check_random_state(self.random_state) for i in range(self.n_iter): # random partition permutation = rng.permutation(self.n) ind_test = permutation[:self.n_test] ind_train = permutation[self.n_test:self.n_test + self.n_train] yield ind_train, ind_test def __repr__(self): return ('%s(%d, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.n, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter def _validate_shuffle_split(n, test_size, train_size): if test_size is None and train_size is None: raise ValueError( 'test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind == 'i': if test_size >= n: raise ValueError( 'test_size=%d should be smaller ' 'than the number of samples %d' % (test_size, n)) else: raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif np.asarray(test_size).dtype.kind == 'f' and \ train_size + test_size > 1.: raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind == 'i': if train_size >= n: raise ValueError("train_size=%d should be smaller " "than the number of samples %d" % (train_size, n)) else: raise ValueError("Invalid value for train_size: %r" % train_size) if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n - n_test else: if np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n) else: n_train = float(train_size) if test_size is None: n_test = n - n_train if n_train + n_test > n: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n)) return int(n_train), int(n_test) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Parameters ---------- y : array, [n_samples] Labels of samples. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.cross_validation import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0) >>> len(sss) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...) >>> for train_index, test_index in sss: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, y, n_iter=10, test_size=0.1, train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( len(y), n_iter, test_size, train_size, random_state) self.y = np.array(y) self.classes, self.y_indices = np.unique(y, return_inverse=True) n_cls = self.classes.shape[0] if np.min(bincount(self.y_indices)) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of labels for any class cannot" " be less than 2.") if self.n_train < n_cls: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_train, n_cls)) if self.n_test < n_cls: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_test, n_cls)) def _iter_indices(self): rng = check_random_state(self.random_state) cls_count = bincount(self.y_indices) p_i = cls_count / float(self.n) n_i = np.round(self.n_train * p_i).astype(int) t_i = np.minimum(cls_count - n_i, np.round(self.n_test * p_i).astype(int)) for n in range(self.n_iter): train = [] test = [] for i, cls in enumerate(self.classes): permutation = rng.permutation(cls_count[i]) cls_i = np.where((self.y == cls))[0][permutation] train.extend(cls_i[:n_i[i]]) test.extend(cls_i[n_i[i]:n_i[i] + t_i[i]]) # Because of rounding issues (as n_train and n_test are not # dividers of the number of elements per class), we may end # up here with less samples in train and test than asked for. if len(train) < self.n_train or len(test) < self.n_test: # We complete by affecting randomly the missing indexes missing_idx = np.where(bincount(train + test, minlength=len(self.y)) == 0, )[0] missing_idx = rng.permutation(missing_idx) train.extend(missing_idx[:(self.n_train - len(train))]) test.extend(missing_idx[-(self.n_test - len(test)):]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def __repr__(self): return ('%s(labels=%s, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.y, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter class PredefinedSplit(_PartitionIterator): """Predefined split cross validation iterator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Parameters ---------- test_fold : "array-like, shape (n_samples,) test_fold[i] gives the test set fold of sample i. A value of -1 indicates that the corresponding sample is not part of any test set folds, but will instead always be put into the training fold. Examples -------- >>> from sklearn.cross_validation import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> ps = PredefinedSplit(test_fold=[0, 1, -1, 1]) >>> len(ps) 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS sklearn.cross_validation.PredefinedSplit(test_fold=[ 0 1 -1 1]) >>> for train_index, test_index in ps: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): super(PredefinedSplit, self).__init__(len(test_fold)) self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def _iter_test_indices(self): for f in self.unique_folds: yield np.where(self.test_fold == f)[0] def __repr__(self): return '%s.%s(test_fold=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.test_fold) def __len__(self): return len(self.unique_folds) ############################################################################## def _index_param_value(X, v, indices): """Private helper function for parameter value indexing.""" if not _is_arraylike(v) or _num_samples(v) != _num_samples(X): # pass through: skip indexing return v if sp.issparse(v): v = v.tocsr() return safe_indexing(v, indices) def cross_val_predict(estimator, X, y=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Generate cross-validated estimates for each input data point Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. cv : cross-validation generator or int, optional, default: None A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if y is binary or multiclass and estimator is a classifier, or the number of folds in KFold otherwise. If None, it is equivalent to cv=3. This generator must include all elements in the test set exactly once. Otherwise, a ValueError is raised. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- preds : ndarray This is the result of calling 'predict' """ X, y = indexable(X, y) cv = _check_cv(cv, X, y, classifier=is_classifier(estimator)) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) preds_blocks = parallel(delayed(_fit_and_predict)(clone(estimator), X, y, train, test, verbose, fit_params) for train, test in cv) p = np.concatenate([p for p, _ in preds_blocks]) locs = np.concatenate([loc for _, loc in preds_blocks]) if not _check_is_partition(locs, X.shape[0]): raise ValueError('cross_val_predict only works for partitions') preds = p.copy() preds[locs] = p return preds def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params): """Fit estimator and predict values for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. Returns ------- preds : sequence Result of calling 'estimator.predict' test : array-like This is the value of the test parameter """ # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) X_train, y_train = _safe_split(estimator, X, y, train) X_test, _ = _safe_split(estimator, X, y, test, train) if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) preds = estimator.predict(X_test) return preds, test def _check_is_partition(locs, n): """Check whether locs is a reordering of the array np.arange(n) Parameters ---------- locs : ndarray integer array to test n : int number of expected elements Returns ------- is_partition : bool True iff sorted(locs) is range(n) """ if len(locs) != n: return False hit = np.zeros(n, bool) hit[locs] = True if not np.all(hit): return False return True def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Evaluate a score by cross-validation Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : cross-validation generator or int, optional, default: None A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if y is binary or multiclass and estimator is a classifier, or the number of folds in KFold otherwise. If None, it is equivalent to cv=3. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- scores : array of float, shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation. """ X, y = indexable(X, y) cv = _check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer, train, test, verbose, None, fit_params) for train, test in cv) return np.array(scores)[:, 0] class FitFailedWarning(RuntimeWarning): pass def _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score=False, return_parameters=False, error_score='raise'): """Fit estimator and compute scores for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scorer : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. return_train_score : boolean, optional, default: False Compute and return score on training set. return_parameters : boolean, optional, default: False Return parameters that has been used for the estimator. Returns ------- train_score : float, optional Score on training set, returned only if `return_train_score` is `True`. test_score : float Score on test set. n_test_samples : int Number of test samples. scoring_time : float Time spent for fitting and scoring in seconds. parameters : dict or None, optional The parameters that have been evaluated. """ if verbose > 1: if parameters is None: msg = "no parameters to be set" else: msg = '%s' % (', '.join('%s=%s' % (k, v) for k, v in parameters.items())) print("[CV] %s %s" % (msg, (64 - len(msg)) * '.')) # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) if parameters is not None: estimator.set_params(**parameters) start_time = time.time() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) try: if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) except Exception as e: if error_score == 'raise': raise elif isinstance(error_score, numbers.Number): test_score = error_score if return_train_score: train_score = error_score warnings.warn("Classifier fit failed. The score on this train-test" " partition for these parameters will be set to %f. " "Details: \n%r" % (error_score, e), FitFailedWarning) else: raise ValueError("error_score must be the string 'raise' or a" " numeric value. (Hint: if using 'raise', please" " make sure that it has been spelled correctly.)" ) else: test_score = _score(estimator, X_test, y_test, scorer) if return_train_score: train_score = _score(estimator, X_train, y_train, scorer) scoring_time = time.time() - start_time if verbose > 2: msg += ", score=%f" % test_score if verbose > 1: end_msg = "%s -%s" % (msg, logger.short_format_time(scoring_time)) print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg)) ret = [train_score] if return_train_score else [] ret.extend([test_score, _num_samples(X_test), scoring_time]) if return_parameters: ret.append(parameters) return ret def _safe_split(estimator, X, y, indices, train_indices=None): """Create subset of dataset and properly handle kernels.""" if hasattr(estimator, 'kernel') and callable(estimator.kernel): # cannot compute the kernel values with custom function raise ValueError("Cannot use a custom kernel function. " "Precompute the kernel matrix instead.") if not hasattr(X, "shape"): if getattr(estimator, "_pairwise", False): raise ValueError("Precomputed kernels or affinity matrices have " "to be passed as arrays or sparse matrices.") X_subset = [X[idx] for idx in indices] else: if getattr(estimator, "_pairwise", False): # X is a precomputed square kernel matrix if X.shape[0] != X.shape[1]: raise ValueError("X should be a square kernel matrix") if train_indices is None: X_subset = X[np.ix_(indices, indices)] else: X_subset = X[np.ix_(indices, train_indices)] else: X_subset = safe_indexing(X, indices) if y is not None: y_subset = safe_indexing(y, indices) else: y_subset = None return X_subset, y_subset def _score(estimator, X_test, y_test, scorer): """Compute the score of an estimator on a given test set.""" if y_test is None: score = scorer(estimator, X_test) else: score = scorer(estimator, X_test, y_test) if not isinstance(score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s) instead." % (str(score), type(score))) return score def _permutation_test_score(estimator, X, y, cv, scorer): """Auxiliary function for permutation_test_score""" avg_score = [] for train, test in cv: estimator.fit(X[train], y[train]) avg_score.append(scorer(estimator, X[test], y[test])) return np.mean(avg_score) def _shuffle(y, labels, random_state): """Return a shuffled copy of y eventually shuffle among same labels.""" if labels is None: ind = random_state.permutation(len(y)) else: ind = np.arange(len(labels)) for label in np.unique(labels): this_mask = (labels == label) ind[this_mask] = random_state.permutation(ind[this_mask]) return y[ind] def check_cv(cv, X=None, y=None, classifier=False): """Input checker utility for building a CV in a user friendly way. Parameters ---------- cv : int, a cv generator instance, or None The input specifying which cv generator to use. It can be an integer, in which case it is the number of folds in a KFold, None, in which case 3 fold is used, or another object, that will then be used as a cv generator. X : array-like The data the cross-val object will be applied on. y : array-like The target variable for a supervised learning problem. classifier : boolean optional Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv: a cross-validation generator instance. The return value is guaranteed to be a cv generator instance, whatever the input type. """ return _check_cv(cv, X=X, y=y, classifier=classifier) def _check_cv(cv, X=None, y=None, classifier=False): # This exists for internal use while indices is being deprecated. is_sparse = sp.issparse(X) if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if classifier: if type_of_target(y) in ['binary', 'multiclass']: cv = StratifiedKFold(y, cv) else: cv = KFold(_num_samples(y), cv) else: if not is_sparse: n_samples = len(X) else: n_samples = X.shape[0] cv = KFold(n_samples, cv) return cv def permutation_test_score(estimator, X, y, cv=None, n_permutations=100, n_jobs=1, labels=None, random_state=0, verbose=0, scoring=None): """Evaluate the significance of a cross-validated score with permutations Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. n_permutations : integer, optional Number of times to permute ``y``. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. labels : array-like of shape [n_samples] (optional) Labels constrain the permutation among groups of samples with a same label. random_state : RandomState or an int seed (0 by default) A random number generator instance to define the state of the random permutations generator. verbose : integer, optional The verbosity level. Returns ------- score : float The true score without permuting targets. permutation_scores : array, shape (n_permutations,) The scores obtained for each permutations. pvalue : float The returned value equals p-value if `scoring` returns bigger numbers for better scores (e.g., accuracy_score). If `scoring` is rather a loss function (i.e. when lower is better such as with `mean_squared_error`) then this is actually the complement of the p-value: 1 - p-value. Notes ----- This function implements Test 1 in: Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine Learning Research (2010) vol. 11 """ X, y = indexable(X, y) cv = _check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) random_state = check_random_state(random_state) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. score = _permutation_test_score(clone(estimator), X, y, cv, scorer) permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_permutation_test_score)( clone(estimator), X, _shuffle(y, labels, random_state), cv, scorer) for _ in range(n_permutations)) permutation_scores = np.array(permutation_scores) pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1) return score, permutation_scores, pvalue permutation_test_score.__test__ = False # to avoid a pb with nosetests def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(iter(ShuffleSplit(n_samples)))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Parameters ---------- *arrays : sequence of arrays or scipy.sparse matrices with same shape[0] Python lists or tuples occurring in arrays are converted to 1D numpy arrays. test_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Returns ------- splitting : list of arrays, length=2 * len(arrays) List containing train-test split of input array. Examples -------- >>> import numpy as np >>> from sklearn.cross_validation import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) dtype = options.pop('dtype', None) if dtype is not None: warnings.warn("dtype option is ignored and will be removed in 0.18.", DeprecationWarning) allow_nd = options.pop('allow_nd', None) allow_lists = options.pop('allow_lists', None) if allow_lists is not None: warnings.warn("The allow_lists option is deprecated and will be " "assumed True in 0.18 and removed.", DeprecationWarning) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if allow_nd is not None: warnings.warn("The allow_nd option is deprecated and will be " "assumed True in 0.18 and removed.", DeprecationWarning) if allow_lists is False or allow_nd is False: arrays = [check_array(x, 'csr', allow_nd=allow_nd, force_all_finite=False, ensure_2d=False) if x is not None else x for x in arrays] if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) n_samples = _num_samples(arrays[0]) cv = ShuffleSplit(n_samples, test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(iter(cv)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests
bsd-3-clause
NelisVerhoef/scikit-learn
sklearn/metrics/tests/test_classification.py
83
49782
from __future__ import division, print_function import numpy as np from scipy import linalg from functools import partial from itertools import product import warnings from sklearn import datasets from sklearn import svm from sklearn.datasets import make_multilabel_classification from sklearn.preprocessing import label_binarize from sklearn.utils.fixes import np_version from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import ignore_warnings from sklearn.metrics import accuracy_score from sklearn.metrics import average_precision_score from sklearn.metrics import classification_report from sklearn.metrics import cohen_kappa_score from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.metrics import fbeta_score from sklearn.metrics import hamming_loss from sklearn.metrics import hinge_loss from sklearn.metrics import jaccard_similarity_score from sklearn.metrics import log_loss from sklearn.metrics import matthews_corrcoef from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import zero_one_loss from sklearn.metrics import brier_score_loss from sklearn.metrics.classification import _check_targets from sklearn.metrics.base import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def test_multilabel_accuracy_score_subset_accuracy(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) assert_equal(accuracy_score(y1, y2), 0.5) assert_equal(accuracy_score(y1, y1), 1) assert_equal(accuracy_score(y2, y2), 1) assert_equal(accuracy_score(y2, np.logical_not(y2)), 0) assert_equal(accuracy_score(y1, np.logical_not(y1)), 0) assert_equal(accuracy_score(y1, np.zeros(y1.shape)), 0) assert_equal(accuracy_score(y2, np.zeros(y1.shape)), 0) def test_precision_recall_f1_score_binary(): # Test Precision Recall and F1 Score for binary classification task y_true, y_pred, _ = make_prediction(binary=True) # detailed measures for each class p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.73, 0.85], 2) assert_array_almost_equal(r, [0.88, 0.68], 2) assert_array_almost_equal(f, [0.80, 0.76], 2) assert_array_equal(s, [25, 25]) # individual scoring function that can be used for grid search: in the # binary class case the score is the value of the measure for the positive # class (e.g. label == 1). This is deprecated for average != 'binary'. assert_dep_warning = partial(assert_warns, DeprecationWarning) for kwargs, my_assert in [({}, assert_no_warnings), ({'average': 'binary'}, assert_no_warnings), ({'average': 'micro'}, assert_dep_warning)]: ps = my_assert(precision_score, y_true, y_pred, **kwargs) assert_array_almost_equal(ps, 0.85, 2) rs = my_assert(recall_score, y_true, y_pred, **kwargs) assert_array_almost_equal(rs, 0.68, 2) fs = my_assert(f1_score, y_true, y_pred, **kwargs) assert_array_almost_equal(fs, 0.76, 2) assert_almost_equal(my_assert(fbeta_score, y_true, y_pred, beta=2, **kwargs), (1 + 2 ** 2) * ps * rs / (2 ** 2 * ps + rs), 2) def test_precision_recall_f_binary_single_class(): # Test precision, recall and F1 score behave with a single positive or # negative class # Such a case may occur with non-stratified cross-validation assert_equal(1., precision_score([1, 1], [1, 1])) assert_equal(1., recall_score([1, 1], [1, 1])) assert_equal(1., f1_score([1, 1], [1, 1])) assert_equal(0., precision_score([-1, -1], [-1, -1])) assert_equal(0., recall_score([-1, -1], [-1, -1])) assert_equal(0., f1_score([-1, -1], [-1, -1])) @ignore_warnings def test_precision_recall_f_extra_labels(): """Test handling of explicit additional (not in input) labels to PRF """ y_true = [1, 3, 3, 2] y_pred = [1, 1, 3, 2] y_true_bin = label_binarize(y_true, classes=np.arange(5)) y_pred_bin = label_binarize(y_pred, classes=np.arange(5)) data = [(y_true, y_pred), (y_true_bin, y_pred_bin)] for i, (y_true, y_pred) in enumerate(data): # No average: zeros in array actual = recall_score(y_true, y_pred, labels=[0, 1, 2, 3, 4], average=None) assert_array_almost_equal([0., 1., 1., .5, 0.], actual) # Macro average is changed actual = recall_score(y_true, y_pred, labels=[0, 1, 2, 3, 4], average='macro') assert_array_almost_equal(np.mean([0., 1., 1., .5, 0.]), actual) # No effect otheriwse for average in ['micro', 'weighted', 'samples']: if average == 'samples' and i == 0: continue assert_almost_equal(recall_score(y_true, y_pred, labels=[0, 1, 2, 3, 4], average=average), recall_score(y_true, y_pred, labels=None, average=average)) # Error when introducing invalid label in multilabel case # (although it would only affect performance if average='macro'/None) for average in [None, 'macro', 'micro', 'samples']: assert_raises(ValueError, recall_score, y_true_bin, y_pred_bin, labels=np.arange(6), average=average) assert_raises(ValueError, recall_score, y_true_bin, y_pred_bin, labels=np.arange(-1, 4), average=average) @ignore_warnings def test_precision_recall_f_ignored_labels(): """Test a subset of labels may be requested for PRF""" y_true = [1, 1, 2, 3] y_pred = [1, 3, 3, 3] y_true_bin = label_binarize(y_true, classes=np.arange(5)) y_pred_bin = label_binarize(y_pred, classes=np.arange(5)) data = [(y_true, y_pred), (y_true_bin, y_pred_bin)] for i, (y_true, y_pred) in enumerate(data): recall_13 = partial(recall_score, y_true, y_pred, labels=[1, 3]) recall_all = partial(recall_score, y_true, y_pred, labels=None) assert_array_almost_equal([.5, 1.], recall_13(average=None)) assert_almost_equal((.5 + 1.) / 2, recall_13(average='macro')) assert_almost_equal((.5 * 2 + 1. * 1) / 3, recall_13(average='weighted')) assert_almost_equal(2. / 3, recall_13(average='micro')) # ensure the above were meaningful tests: for average in ['macro', 'weighted', 'micro']: assert_not_equal(recall_13(average=average), recall_all(average=average)) def test_average_precision_score_score_non_binary_class(): # Test that average_precision_score function returns an error when trying # to compute average_precision_score for multiclass task. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", average_precision_score, y_true, y_pred) def test_average_precision_score_duplicate_values(): # Duplicate values with precision-recall require a different # processing than when computing the AUC of a ROC, because the # precision-recall curve is a decreasing curve # The following situtation corresponds to a perfect # test statistic, the average_precision_score should be 1 y_true = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1] y_score = [0, .1, .1, .4, .5, .6, .6, .9, .9, 1, 1] assert_equal(average_precision_score(y_true, y_score), 1) def test_average_precision_score_tied_values(): # Here if we go from left to right in y_true, the 0 values are # are separated from the 1 values, so it appears that we've # Correctly sorted our classifications. But in fact the first two # values have the same score (0.5) and so the first two values # could be swapped around, creating an imperfect sorting. This # imperfection should come through in the end score, making it less # than one. y_true = [0, 1, 1] y_score = [.5, .5, .6] assert_not_equal(average_precision_score(y_true, y_score), 1.) @ignore_warnings def test_precision_recall_fscore_support_errors(): y_true, y_pred, _ = make_prediction(binary=True) # Bad beta assert_raises(ValueError, precision_recall_fscore_support, y_true, y_pred, beta=0.0) # Bad pos_label assert_raises(ValueError, precision_recall_fscore_support, y_true, y_pred, pos_label=2, average='macro') # Bad average option assert_raises(ValueError, precision_recall_fscore_support, [0, 1, 2], [1, 2, 0], average='mega') def test_confusion_matrix_binary(): # Test confusion matrix - binary classification case y_true, y_pred, _ = make_prediction(binary=True) def test(y_true, y_pred): cm = confusion_matrix(y_true, y_pred) assert_array_equal(cm, [[22, 3], [8, 17]]) tp, fp, fn, tn = cm.flatten() num = (tp * tn - fp * fn) den = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) true_mcc = 0 if den == 0 else num / den mcc = matthews_corrcoef(y_true, y_pred) assert_array_almost_equal(mcc, true_mcc, decimal=2) assert_array_almost_equal(mcc, 0.57, decimal=2) test(y_true, y_pred) test([str(y) for y in y_true], [str(y) for y in y_pred]) def test_cohen_kappa(): # These label vectors reproduce the contingency matrix from Artstein and # Poesio (2008), Table 1: np.array([[20, 20], [10, 50]]). y1 = np.array([0] * 40 + [1] * 60) y2 = np.array([0] * 20 + [1] * 20 + [0] * 10 + [1] * 50) kappa = cohen_kappa_score(y1, y2) assert_almost_equal(kappa, .348, decimal=3) assert_equal(kappa, cohen_kappa_score(y2, y1)) # Add spurious labels and ignore them. y1 = np.append(y1, [2] * 4) y2 = np.append(y2, [2] * 4) assert_equal(cohen_kappa_score(y1, y2, labels=[0, 1]), kappa) assert_almost_equal(cohen_kappa_score(y1, y1), 1.) # Multiclass example: Artstein and Poesio, Table 4. y1 = np.array([0] * 46 + [1] * 44 + [2] * 10) y2 = np.array([0] * 52 + [1] * 32 + [2] * 16) assert_almost_equal(cohen_kappa_score(y1, y2), .8013, decimal=4) def test_matthews_corrcoef_nan(): assert_equal(matthews_corrcoef([0], [1]), 0.0) assert_equal(matthews_corrcoef([0, 0], [0, 1]), 0.0) def test_precision_recall_f1_score_multiclass(): # Test Precision Recall and F1 Score for multiclass classification task y_true, y_pred, _ = make_prediction(binary=False) # compute scores with default labels introspection p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.83, 0.33, 0.42], 2) assert_array_almost_equal(r, [0.79, 0.09, 0.90], 2) assert_array_almost_equal(f, [0.81, 0.15, 0.57], 2) assert_array_equal(s, [24, 31, 20]) # averaging tests ps = precision_score(y_true, y_pred, pos_label=1, average='micro') assert_array_almost_equal(ps, 0.53, 2) rs = recall_score(y_true, y_pred, average='micro') assert_array_almost_equal(rs, 0.53, 2) fs = f1_score(y_true, y_pred, average='micro') assert_array_almost_equal(fs, 0.53, 2) ps = precision_score(y_true, y_pred, average='macro') assert_array_almost_equal(ps, 0.53, 2) rs = recall_score(y_true, y_pred, average='macro') assert_array_almost_equal(rs, 0.60, 2) fs = f1_score(y_true, y_pred, average='macro') assert_array_almost_equal(fs, 0.51, 2) ps = precision_score(y_true, y_pred, average='weighted') assert_array_almost_equal(ps, 0.51, 2) rs = recall_score(y_true, y_pred, average='weighted') assert_array_almost_equal(rs, 0.53, 2) fs = f1_score(y_true, y_pred, average='weighted') assert_array_almost_equal(fs, 0.47, 2) assert_raises(ValueError, precision_score, y_true, y_pred, average="samples") assert_raises(ValueError, recall_score, y_true, y_pred, average="samples") assert_raises(ValueError, f1_score, y_true, y_pred, average="samples") assert_raises(ValueError, fbeta_score, y_true, y_pred, average="samples", beta=0.5) # same prediction but with and explicit label ordering p, r, f, s = precision_recall_fscore_support( y_true, y_pred, labels=[0, 2, 1], average=None) assert_array_almost_equal(p, [0.83, 0.41, 0.33], 2) assert_array_almost_equal(r, [0.79, 0.90, 0.10], 2) assert_array_almost_equal(f, [0.81, 0.57, 0.15], 2) assert_array_equal(s, [24, 20, 31]) def test_precision_refcall_f1_score_multilabel_unordered_labels(): # test that labels need not be sorted in the multilabel case y_true = np.array([[1, 1, 0, 0]]) y_pred = np.array([[0, 0, 1, 1]]) for average in ['samples', 'micro', 'macro', 'weighted', None]: p, r, f, s = precision_recall_fscore_support( y_true, y_pred, labels=[3, 0, 1, 2], warn_for=[], average=average) assert_array_equal(p, 0) assert_array_equal(r, 0) assert_array_equal(f, 0) if average is None: assert_array_equal(s, [0, 1, 1, 0]) def test_precision_recall_f1_score_multiclass_pos_label_none(): # Test Precision Recall and F1 Score for multiclass classification task # GH Issue #1296 # initialize data y_true = np.array([0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1]) y_pred = np.array([1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1]) # compute scores with default labels introspection p, r, f, s = precision_recall_fscore_support(y_true, y_pred, pos_label=None, average='weighted') def test_zero_precision_recall(): # Check that pathological cases do not bring NaNs old_error_settings = np.seterr(all='raise') try: y_true = np.array([0, 1, 2, 0, 1, 2]) y_pred = np.array([2, 0, 1, 1, 2, 0]) assert_almost_equal(precision_score(y_true, y_pred, average='weighted'), 0.0, 2) assert_almost_equal(recall_score(y_true, y_pred, average='weighted'), 0.0, 2) assert_almost_equal(f1_score(y_true, y_pred, average='weighted'), 0.0, 2) finally: np.seterr(**old_error_settings) def test_confusion_matrix_multiclass(): # Test confusion matrix - multi-class case y_true, y_pred, _ = make_prediction(binary=False) def test(y_true, y_pred, string_type=False): # compute confusion matrix with default labels introspection cm = confusion_matrix(y_true, y_pred) assert_array_equal(cm, [[19, 4, 1], [4, 3, 24], [0, 2, 18]]) # compute confusion matrix with explicit label ordering labels = ['0', '2', '1'] if string_type else [0, 2, 1] cm = confusion_matrix(y_true, y_pred, labels=labels) assert_array_equal(cm, [[19, 1, 4], [0, 18, 2], [4, 24, 3]]) test(y_true, y_pred) test(list(str(y) for y in y_true), list(str(y) for y in y_pred), string_type=True) def test_confusion_matrix_multiclass_subset_labels(): # Test confusion matrix - multi-class case with subset of labels y_true, y_pred, _ = make_prediction(binary=False) # compute confusion matrix with only first two labels considered cm = confusion_matrix(y_true, y_pred, labels=[0, 1]) assert_array_equal(cm, [[19, 4], [4, 3]]) # compute confusion matrix with explicit label ordering for only subset # of labels cm = confusion_matrix(y_true, y_pred, labels=[2, 1]) assert_array_equal(cm, [[18, 2], [24, 3]]) def test_classification_report_multiclass(): # Test performance report iris = datasets.load_iris() y_true, y_pred, _ = make_prediction(dataset=iris, binary=False) # print classification report with class names expected_report = """\ precision recall f1-score support setosa 0.83 0.79 0.81 24 versicolor 0.33 0.10 0.15 31 virginica 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report( y_true, y_pred, labels=np.arange(len(iris.target_names)), target_names=iris.target_names) assert_equal(report, expected_report) # print classification report with label detection expected_report = """\ precision recall f1-score support 0 0.83 0.79 0.81 24 1 0.33 0.10 0.15 31 2 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_classification_report_multiclass_with_digits(): # Test performance report with added digits in floating point values iris = datasets.load_iris() y_true, y_pred, _ = make_prediction(dataset=iris, binary=False) # print classification report with class names expected_report = """\ precision recall f1-score support setosa 0.82609 0.79167 0.80851 24 versicolor 0.33333 0.09677 0.15000 31 virginica 0.41860 0.90000 0.57143 20 avg / total 0.51375 0.53333 0.47310 75 """ report = classification_report( y_true, y_pred, labels=np.arange(len(iris.target_names)), target_names=iris.target_names, digits=5) assert_equal(report, expected_report) # print classification report with label detection expected_report = """\ precision recall f1-score support 0 0.83 0.79 0.81 24 1 0.33 0.10 0.15 31 2 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_classification_report_multiclass_with_string_label(): y_true, y_pred, _ = make_prediction(binary=False) y_true = np.array(["blue", "green", "red"])[y_true] y_pred = np.array(["blue", "green", "red"])[y_pred] expected_report = """\ precision recall f1-score support blue 0.83 0.79 0.81 24 green 0.33 0.10 0.15 31 red 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) expected_report = """\ precision recall f1-score support a 0.83 0.79 0.81 24 b 0.33 0.10 0.15 31 c 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred, target_names=["a", "b", "c"]) assert_equal(report, expected_report) def test_classification_report_multiclass_with_unicode_label(): y_true, y_pred, _ = make_prediction(binary=False) labels = np.array([u"blue\xa2", u"green\xa2", u"red\xa2"]) y_true = labels[y_true] y_pred = labels[y_pred] expected_report = u"""\ precision recall f1-score support blue\xa2 0.83 0.79 0.81 24 green\xa2 0.33 0.10 0.15 31 red\xa2 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ if np_version[:3] < (1, 7, 0): expected_message = ("NumPy < 1.7.0 does not implement" " searchsorted on unicode data correctly.") assert_raise_message(RuntimeError, expected_message, classification_report, y_true, y_pred) else: report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_multilabel_classification_report(): n_classes = 4 n_samples = 50 _, y_true = make_multilabel_classification(n_features=1, n_samples=n_samples, n_classes=n_classes, random_state=0) _, y_pred = make_multilabel_classification(n_features=1, n_samples=n_samples, n_classes=n_classes, random_state=1) expected_report = """\ precision recall f1-score support 0 0.50 0.67 0.57 24 1 0.51 0.74 0.61 27 2 0.29 0.08 0.12 26 3 0.52 0.56 0.54 27 avg / total 0.45 0.51 0.46 104 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_multilabel_zero_one_loss_subset(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) assert_equal(zero_one_loss(y1, y2), 0.5) assert_equal(zero_one_loss(y1, y1), 0) assert_equal(zero_one_loss(y2, y2), 0) assert_equal(zero_one_loss(y2, np.logical_not(y2)), 1) assert_equal(zero_one_loss(y1, np.logical_not(y1)), 1) assert_equal(zero_one_loss(y1, np.zeros(y1.shape)), 1) assert_equal(zero_one_loss(y2, np.zeros(y1.shape)), 1) def test_multilabel_hamming_loss(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) assert_equal(hamming_loss(y1, y2), 1 / 6) assert_equal(hamming_loss(y1, y1), 0) assert_equal(hamming_loss(y2, y2), 0) assert_equal(hamming_loss(y2, np.logical_not(y2)), 1) assert_equal(hamming_loss(y1, np.logical_not(y1)), 1) assert_equal(hamming_loss(y1, np.zeros(y1.shape)), 4 / 6) assert_equal(hamming_loss(y2, np.zeros(y1.shape)), 0.5) def test_multilabel_jaccard_similarity_score(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) # size(y1 \inter y2) = [1, 2] # size(y1 \union y2) = [2, 2] assert_equal(jaccard_similarity_score(y1, y2), 0.75) assert_equal(jaccard_similarity_score(y1, y1), 1) assert_equal(jaccard_similarity_score(y2, y2), 1) assert_equal(jaccard_similarity_score(y2, np.logical_not(y2)), 0) assert_equal(jaccard_similarity_score(y1, np.logical_not(y1)), 0) assert_equal(jaccard_similarity_score(y1, np.zeros(y1.shape)), 0) assert_equal(jaccard_similarity_score(y2, np.zeros(y1.shape)), 0) @ignore_warnings def test_precision_recall_f1_score_multilabel_1(): # Test precision_recall_f1_score on a crafted multilabel example # First crafted example y_true = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 1]]) y_pred = np.array([[0, 1, 0, 0], [0, 1, 0, 0], [1, 0, 1, 0]]) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) # tp = [0, 1, 1, 0] # fn = [1, 0, 0, 1] # fp = [1, 1, 0, 0] # Check per class assert_array_almost_equal(p, [0.0, 0.5, 1.0, 0.0], 2) assert_array_almost_equal(r, [0.0, 1.0, 1.0, 0.0], 2) assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2) assert_array_almost_equal(s, [1, 1, 1, 1], 2) f2 = fbeta_score(y_true, y_pred, beta=2, average=None) support = s assert_array_almost_equal(f2, [0, 0.83, 1, 0], 2) # Check macro p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="macro") assert_almost_equal(p, 1.5 / 4) assert_almost_equal(r, 0.5) assert_almost_equal(f, 2.5 / 1.5 * 0.25) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="macro"), np.mean(f2)) # Check micro p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="micro") assert_almost_equal(p, 0.5) assert_almost_equal(r, 0.5) assert_almost_equal(f, 0.5) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="micro"), (1 + 4) * p * r / (4 * p + r)) # Check weighted p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="weighted") assert_almost_equal(p, 1.5 / 4) assert_almost_equal(r, 0.5) assert_almost_equal(f, 2.5 / 1.5 * 0.25) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="weighted"), np.average(f2, weights=support)) # Check samples # |h(x_i) inter y_i | = [0, 1, 1] # |y_i| = [1, 1, 2] # |h(x_i)| = [1, 1, 2] p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="samples") assert_almost_equal(p, 0.5) assert_almost_equal(r, 0.5) assert_almost_equal(f, 0.5) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="samples"), 0.5) @ignore_warnings def test_precision_recall_f1_score_multilabel_2(): # Test precision_recall_f1_score on a crafted multilabel example 2 # Second crafted example y_true = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0]]) y_pred = np.array([[0, 0, 0, 1], [0, 0, 0, 1], [1, 1, 0, 0]]) # tp = [ 0. 1. 0. 0.] # fp = [ 1. 0. 0. 2.] # fn = [ 1. 1. 1. 0.] p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.0, 1.0, 0.0, 0.0], 2) assert_array_almost_equal(r, [0.0, 0.5, 0.0, 0.0], 2) assert_array_almost_equal(f, [0.0, 0.66, 0.0, 0.0], 2) assert_array_almost_equal(s, [1, 2, 1, 0], 2) f2 = fbeta_score(y_true, y_pred, beta=2, average=None) support = s assert_array_almost_equal(f2, [0, 0.55, 0, 0], 2) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="micro") assert_almost_equal(p, 0.25) assert_almost_equal(r, 0.25) assert_almost_equal(f, 2 * 0.25 * 0.25 / 0.5) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="micro"), (1 + 4) * p * r / (4 * p + r)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="macro") assert_almost_equal(p, 0.25) assert_almost_equal(r, 0.125) assert_almost_equal(f, 2 / 12) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="macro"), np.mean(f2)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="weighted") assert_almost_equal(p, 2 / 4) assert_almost_equal(r, 1 / 4) assert_almost_equal(f, 2 / 3 * 2 / 4) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="weighted"), np.average(f2, weights=support)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="samples") # Check samples # |h(x_i) inter y_i | = [0, 0, 1] # |y_i| = [1, 1, 2] # |h(x_i)| = [1, 1, 2] assert_almost_equal(p, 1 / 6) assert_almost_equal(r, 1 / 6) assert_almost_equal(f, 2 / 4 * 1 / 3) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="samples"), 0.1666, 2) def test_precision_recall_f1_score_with_an_empty_prediction(): y_true = np.array([[0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 1, 0]]) y_pred = np.array([[0, 0, 0, 0], [0, 0, 0, 1], [0, 1, 1, 0]]) # true_pos = [ 0. 1. 1. 0.] # false_pos = [ 0. 0. 0. 1.] # false_neg = [ 1. 1. 0. 0.] p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.0, 1.0, 1.0, 0.0], 2) assert_array_almost_equal(r, [0.0, 0.5, 1.0, 0.0], 2) assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2) assert_array_almost_equal(s, [1, 2, 1, 0], 2) f2 = fbeta_score(y_true, y_pred, beta=2, average=None) support = s assert_array_almost_equal(f2, [0, 0.55, 1, 0], 2) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="macro") assert_almost_equal(p, 0.5) assert_almost_equal(r, 1.5 / 4) assert_almost_equal(f, 2.5 / (4 * 1.5)) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="macro"), np.mean(f2)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="micro") assert_almost_equal(p, 2 / 3) assert_almost_equal(r, 0.5) assert_almost_equal(f, 2 / 3 / (2 / 3 + 0.5)) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="micro"), (1 + 4) * p * r / (4 * p + r)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="weighted") assert_almost_equal(p, 3 / 4) assert_almost_equal(r, 0.5) assert_almost_equal(f, (2 / 1.5 + 1) / 4) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="weighted"), np.average(f2, weights=support)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="samples") # |h(x_i) inter y_i | = [0, 0, 2] # |y_i| = [1, 1, 2] # |h(x_i)| = [0, 1, 2] assert_almost_equal(p, 1 / 3) assert_almost_equal(r, 1 / 3) assert_almost_equal(f, 1 / 3) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="samples"), 0.333, 2) def test_precision_recall_f1_no_labels(): y_true = np.zeros((20, 3)) y_pred = np.zeros_like(y_true) # tp = [0, 0, 0] # fn = [0, 0, 0] # fp = [0, 0, 0] # support = [0, 0, 0] # |y_hat_i inter y_i | = [0, 0, 0] # |y_i| = [0, 0, 0] # |y_hat_i| = [0, 0, 0] for beta in [1]: p, r, f, s = assert_warns(UndefinedMetricWarning, precision_recall_fscore_support, y_true, y_pred, average=None, beta=beta) assert_array_almost_equal(p, [0, 0, 0], 2) assert_array_almost_equal(r, [0, 0, 0], 2) assert_array_almost_equal(f, [0, 0, 0], 2) assert_array_almost_equal(s, [0, 0, 0], 2) fbeta = assert_warns(UndefinedMetricWarning, fbeta_score, y_true, y_pred, beta=beta, average=None) assert_array_almost_equal(fbeta, [0, 0, 0], 2) for average in ["macro", "micro", "weighted", "samples"]: p, r, f, s = assert_warns(UndefinedMetricWarning, precision_recall_fscore_support, y_true, y_pred, average=average, beta=beta) assert_almost_equal(p, 0) assert_almost_equal(r, 0) assert_almost_equal(f, 0) assert_equal(s, None) fbeta = assert_warns(UndefinedMetricWarning, fbeta_score, y_true, y_pred, beta=beta, average=average) assert_almost_equal(fbeta, 0) def test_prf_warnings(): # average of per-label scores f, w = precision_recall_fscore_support, UndefinedMetricWarning my_assert = assert_warns_message for average in [None, 'weighted', 'macro']: msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 in labels with no predicted samples.') my_assert(w, msg, f, [0, 1, 2], [1, 1, 2], average=average) msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 in labels with no true samples.') my_assert(w, msg, f, [1, 1, 2], [0, 1, 2], average=average) # average of per-sample scores msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 in samples with no predicted labels.') my_assert(w, msg, f, np.array([[1, 0], [1, 0]]), np.array([[1, 0], [0, 0]]), average='samples') msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 in samples with no true labels.') my_assert(w, msg, f, np.array([[1, 0], [0, 0]]), np.array([[1, 0], [1, 0]]), average='samples') # single score: micro-average msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 due to no predicted samples.') my_assert(w, msg, f, np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 due to no true samples.') my_assert(w, msg, f, np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') # single postive label msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 due to no predicted samples.') my_assert(w, msg, f, [1, 1], [-1, -1], average='macro') msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 due to no true samples.') my_assert(w, msg, f, [-1, -1], [1, 1], average='macro') def test_recall_warnings(): assert_no_warnings(recall_score, np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') clean_warning_registry() with warnings.catch_warnings(record=True) as record: warnings.simplefilter('always') recall_score(np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') assert_equal(str(record.pop().message), 'Recall is ill-defined and ' 'being set to 0.0 due to no true samples.') def test_precision_warnings(): clean_warning_registry() with warnings.catch_warnings(record=True) as record: warnings.simplefilter('always') precision_score(np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') assert_equal(str(record.pop().message), 'Precision is ill-defined and ' 'being set to 0.0 due to no predicted samples.') assert_no_warnings(precision_score, np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') def test_fscore_warnings(): clean_warning_registry() with warnings.catch_warnings(record=True) as record: warnings.simplefilter('always') for score in [f1_score, partial(fbeta_score, beta=2)]: score(np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') assert_equal(str(record.pop().message), 'F-score is ill-defined and ' 'being set to 0.0 due to no predicted samples.') score(np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') assert_equal(str(record.pop().message), 'F-score is ill-defined and ' 'being set to 0.0 due to no true samples.') def test_prf_average_compat(): # Ensure warning if f1_score et al.'s average is implicit for multiclass y_true = [1, 2, 3, 3] y_pred = [1, 2, 3, 1] y_true_bin = [0, 1, 1] y_pred_bin = [0, 1, 0] for metric in [precision_score, recall_score, f1_score, partial(fbeta_score, beta=2)]: score = assert_warns(DeprecationWarning, metric, y_true, y_pred) score_weighted = assert_no_warnings(metric, y_true, y_pred, average='weighted') assert_equal(score, score_weighted, 'average does not act like "weighted" by default') # check binary passes without warning assert_no_warnings(metric, y_true_bin, y_pred_bin) # but binary with pos_label=None should behave like multiclass score = assert_warns(DeprecationWarning, metric, y_true_bin, y_pred_bin, pos_label=None) score_weighted = assert_no_warnings(metric, y_true_bin, y_pred_bin, pos_label=None, average='weighted') assert_equal(score, score_weighted, 'average does not act like "weighted" by default with ' 'binary data and pos_label=None') def test__check_targets(): # Check that _check_targets correctly merges target types, squeezes # output and fails if input lengths differ. IND = 'multilabel-indicator' MC = 'multiclass' BIN = 'binary' CNT = 'continuous' MMC = 'multiclass-multioutput' MCN = 'continuous-multioutput' # all of length 3 EXAMPLES = [ (IND, np.array([[0, 1, 1], [1, 0, 0], [0, 0, 1]])), # must not be considered binary (IND, np.array([[0, 1], [1, 0], [1, 1]])), (MC, [2, 3, 1]), (BIN, [0, 1, 1]), (CNT, [0., 1.5, 1.]), (MC, np.array([[2], [3], [1]])), (BIN, np.array([[0], [1], [1]])), (CNT, np.array([[0.], [1.5], [1.]])), (MMC, np.array([[0, 2], [1, 3], [2, 3]])), (MCN, np.array([[0.5, 2.], [1.1, 3.], [2., 3.]])), ] # expected type given input types, or None for error # (types will be tried in either order) EXPECTED = { (IND, IND): IND, (MC, MC): MC, (BIN, BIN): BIN, (MC, IND): None, (BIN, IND): None, (BIN, MC): MC, # Disallowed types (CNT, CNT): None, (MMC, MMC): None, (MCN, MCN): None, (IND, CNT): None, (MC, CNT): None, (BIN, CNT): None, (MMC, CNT): None, (MCN, CNT): None, (IND, MMC): None, (MC, MMC): None, (BIN, MMC): None, (MCN, MMC): None, (IND, MCN): None, (MC, MCN): None, (BIN, MCN): None, } for (type1, y1), (type2, y2) in product(EXAMPLES, repeat=2): try: expected = EXPECTED[type1, type2] except KeyError: expected = EXPECTED[type2, type1] if expected is None: assert_raises(ValueError, _check_targets, y1, y2) if type1 != type2: assert_raise_message( ValueError, "Can't handle mix of {0} and {1}".format(type1, type2), _check_targets, y1, y2) else: if type1 not in (BIN, MC, IND): assert_raise_message(ValueError, "{0} is not supported".format(type1), _check_targets, y1, y2) else: merged_type, y1out, y2out = _check_targets(y1, y2) assert_equal(merged_type, expected) if merged_type.startswith('multilabel'): assert_equal(y1out.format, 'csr') assert_equal(y2out.format, 'csr') else: assert_array_equal(y1out, np.squeeze(y1)) assert_array_equal(y2out, np.squeeze(y2)) assert_raises(ValueError, _check_targets, y1[:-1], y2) # Make sure seq of seq is not supported y1 = [(1, 2,), (0, 2, 3)] y2 = [(2,), (0, 2,)] msg = ('You appear to be using a legacy multi-label data representation. ' 'Sequence of sequences are no longer supported; use a binary array' ' or sparse matrix instead.') assert_raise_message(ValueError, msg, _check_targets, y1, y2) def test_hinge_loss_binary(): y_true = np.array([-1, 1, 1, -1]) pred_decision = np.array([-8.5, 0.5, 1.5, -0.3]) assert_equal(hinge_loss(y_true, pred_decision), 1.2 / 4) y_true = np.array([0, 2, 2, 0]) pred_decision = np.array([-8.5, 0.5, 1.5, -0.3]) assert_equal(hinge_loss(y_true, pred_decision), 1.2 / 4) def test_hinge_loss_multiclass(): pred_decision = np.array([ [0.36, -0.17, -0.58, -0.99], [-0.54, -0.37, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17], [-0.54, -0.38, -0.48, -0.58], [-2.36, -0.79, -0.27, 0.24], [-1.45, -0.58, -0.38, -0.17] ]) y_true = np.array([0, 1, 2, 1, 3, 2]) dummy_losses = np.array([ 1 - pred_decision[0][0] + pred_decision[0][1], 1 - pred_decision[1][1] + pred_decision[1][2], 1 - pred_decision[2][2] + pred_decision[2][3], 1 - pred_decision[3][1] + pred_decision[3][2], 1 - pred_decision[4][3] + pred_decision[4][2], 1 - pred_decision[5][2] + pred_decision[5][3] ]) dummy_losses[dummy_losses <= 0] = 0 dummy_hinge_loss = np.mean(dummy_losses) assert_equal(hinge_loss(y_true, pred_decision), dummy_hinge_loss) def test_hinge_loss_multiclass_missing_labels_with_labels_none(): y_true = np.array([0, 1, 2, 2]) pred_decision = np.array([ [1.27, 0.034, -0.68, -1.40], [-1.45, -0.58, -0.38, -0.17], [-2.36, -0.79, -0.27, 0.24], [-2.36, -0.79, -0.27, 0.24] ]) error_message = ("Please include all labels in y_true " "or pass labels as third argument") assert_raise_message(ValueError, error_message, hinge_loss, y_true, pred_decision) def test_hinge_loss_multiclass_with_missing_labels(): pred_decision = np.array([ [0.36, -0.17, -0.58, -0.99], [-0.55, -0.38, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17], [-0.55, -0.38, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17] ]) y_true = np.array([0, 1, 2, 1, 2]) labels = np.array([0, 1, 2, 3]) dummy_losses = np.array([ 1 - pred_decision[0][0] + pred_decision[0][1], 1 - pred_decision[1][1] + pred_decision[1][2], 1 - pred_decision[2][2] + pred_decision[2][3], 1 - pred_decision[3][1] + pred_decision[3][2], 1 - pred_decision[4][2] + pred_decision[4][3] ]) dummy_losses[dummy_losses <= 0] = 0 dummy_hinge_loss = np.mean(dummy_losses) assert_equal(hinge_loss(y_true, pred_decision, labels=labels), dummy_hinge_loss) def test_hinge_loss_multiclass_invariance_lists(): # Currently, invariance of string and integer labels cannot be tested # in common invariance tests because invariance tests for multiclass # decision functions is not implemented yet. y_true = ['blue', 'green', 'red', 'green', 'white', 'red'] pred_decision = [ [0.36, -0.17, -0.58, -0.99], [-0.55, -0.38, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17], [-0.55, -0.38, -0.48, -0.58], [-2.36, -0.79, -0.27, 0.24], [-1.45, -0.58, -0.38, -0.17]] dummy_losses = np.array([ 1 - pred_decision[0][0] + pred_decision[0][1], 1 - pred_decision[1][1] + pred_decision[1][2], 1 - pred_decision[2][2] + pred_decision[2][3], 1 - pred_decision[3][1] + pred_decision[3][2], 1 - pred_decision[4][3] + pred_decision[4][2], 1 - pred_decision[5][2] + pred_decision[5][3] ]) dummy_losses[dummy_losses <= 0] = 0 dummy_hinge_loss = np.mean(dummy_losses) assert_equal(hinge_loss(y_true, pred_decision), dummy_hinge_loss) def test_log_loss(): # binary case with symbolic labels ("no" < "yes") y_true = ["no", "no", "no", "yes", "yes", "yes"] y_pred = np.array([[0.5, 0.5], [0.1, 0.9], [0.01, 0.99], [0.9, 0.1], [0.75, 0.25], [0.001, 0.999]]) loss = log_loss(y_true, y_pred) assert_almost_equal(loss, 1.8817971) # multiclass case; adapted from http://bit.ly/RJJHWA y_true = [1, 0, 2] y_pred = [[0.2, 0.7, 0.1], [0.6, 0.2, 0.2], [0.6, 0.1, 0.3]] loss = log_loss(y_true, y_pred, normalize=True) assert_almost_equal(loss, 0.6904911) # check that we got all the shapes and axes right # by doubling the length of y_true and y_pred y_true *= 2 y_pred *= 2 loss = log_loss(y_true, y_pred, normalize=False) assert_almost_equal(loss, 0.6904911 * 6, decimal=6) # check eps and handling of absolute zero and one probabilities y_pred = np.asarray(y_pred) > .5 loss = log_loss(y_true, y_pred, normalize=True, eps=.1) assert_almost_equal(loss, log_loss(y_true, np.clip(y_pred, .1, .9))) # raise error if number of classes are not equal. y_true = [1, 0, 2] y_pred = [[0.2, 0.7], [0.6, 0.5], [0.4, 0.1]] assert_raises(ValueError, log_loss, y_true, y_pred) # case when y_true is a string array object y_true = ["ham", "spam", "spam", "ham"] y_pred = [[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]] loss = log_loss(y_true, y_pred) assert_almost_equal(loss, 1.0383217, decimal=6) def test_brier_score_loss(): # Check brier_score_loss function y_true = np.array([0, 1, 1, 0, 1, 1]) y_pred = np.array([0.1, 0.8, 0.9, 0.3, 1., 0.95]) true_score = linalg.norm(y_true - y_pred) ** 2 / len(y_true) assert_almost_equal(brier_score_loss(y_true, y_true), 0.0) assert_almost_equal(brier_score_loss(y_true, y_pred), true_score) assert_almost_equal(brier_score_loss(1. + y_true, y_pred), true_score) assert_almost_equal(brier_score_loss(2 * y_true - 1, y_pred), true_score) assert_raises(ValueError, brier_score_loss, y_true, y_pred[1:]) assert_raises(ValueError, brier_score_loss, y_true, y_pred + 1.) assert_raises(ValueError, brier_score_loss, y_true, y_pred - 1.)
bsd-3-clause
jimsrc/seatos
shared_lib/shared_funcs_ii.py
1
31654
from numpy import * from pylab import * from datetime import datetime, time, timedelta import numpy as np import console_colors as ccl from scipy.io.netcdf import netcdf_file from ShiftTimes import * import os import matplotlib.patches as patches import matplotlib.transforms as transforms #from read_NewTable import tshck, tini_icme, tend_icme, tini_mc, tend_mc, n_icmes, MCsig #from z_expansion_gulisano import z as z_exp def flags2nan(VAR, FLAG): cond = VAR < FLAG VAR = np.array(VAR) VAR[~cond] = np.nan return VAR def date_to_utc(fecha): utc = datetime(1970, 1, 1, 0, 0, 0, 0) time = (fecha - utc).total_seconds() return time def dates_from_omni(t): time = [] n = len(t) for i in range(n): yyyy = t[i][0] mm = t[i][1] dd = t[i][2] HH = t[i][3] MM = t[i][4] SS = t[i][5] uSS = t[i][6] time += [datetime(yyyy, mm, dd, HH, MM, SS, uSS)] return time def utc_from_omni(file): t = np.array(file.variables['time'].data) dates = dates_from_omni(t) n = len(dates) time = np.zeros(n) for i in range(n): time[i] = date_to_utc(dates[i]) return time def selecc_data(data, tshk): time = data[0] #[s] utc sec rate = data[1] day = 86400. # [seg] utc = datetime(1970, 1, 1, 0, 0, 0, 0) tshk_utc = (tshk - utc).total_seconds() ti = tshk_utc - 10.*day # [seg] utc tf = tshk_utc + 30.*day cond = (time > ti) & (time < tf) time = (time[cond] - tshk_utc) / day # [days] since shock rate = rate[cond] return (time, rate) def selecc_window(data, tini, tend): time = data[0] #[s] utc sec y = data[1] day = 86400. # [seg] utc = datetime(1970, 1, 1, 0, 0, 0, 0) tini_utc = (tini - utc).total_seconds() # [s] utc sec tend_utc = (tend - utc).total_seconds() # [s] utc sec ti = tini_utc # [seg] utc tf = tend_utc cond = (time > ti) & (time < tf) time = (time[cond] - tini_utc) / day # [days] since 'ti' y = y[cond] return (time, y) def enoughdata(var, fgap): n = len(var) ngood = len(find(~isnan(var))) fdata = 1.*ngood/n # fraccion de data sin gaps if fdata>=(1.-fgap): return True else: return False def averages_and_std(n_icmes, t_shck, ti_icme, dTday, nbin, t_utc, VAR, fgap): day = 86400. nok=0; nbad=0 adap = [] for i in range(n_icmes): dT = (ti_icme[i] - t_shck[i]).total_seconds()/day # [day] if dT>dTday: dt = dT/nbin t, var = selecc_window( [t_utc, VAR], t_shck[i], ti_icme[i] ) if enoughdata(var, fgap): # pido q haya mas del 80% NO sean gaps adap += [adaptar(nbin, dt, t, var)] nok +=1 else: continue else: print " i:%d ---> Este evento es muy chico!, dT/day:%g" % (i, dT) nbad +=1 VAR_adap = zeros(nbin*nok).reshape(nok, nbin) for i in range(nok): VAR_adap[i,:] = adap[i][1] VAR_avrg = zeros(nbin) VAR_std = zeros(nbin) ndata = zeros(nbin) for i in range(nbin): cond = ~isnan(VAR_adap.T[i,:]) ndata[i] = len(find(cond)) # nro de datos != flag VAR_avrg[i] = mean(VAR_adap.T[i,cond]) # promedio entre los valores q no tienen flag VAR_std[i] = std(VAR_adap.T[i,cond]) # std del mismo conjunto de datos tnorm = adap[0][0] return [nok, nbad, tnorm, VAR_avrg, VAR_std, ndata] def adaptar(n, dt, t, r): #n = int(5./dt) # nro de puntos en todo el intervalo de ploteo tt = zeros(n) rr = zeros(n) for i in range(n): tmin = i*dt tmax = (i+1.)*dt cond = (t>tmin) & (t<tmax) tt[i] = mean(t[cond]) rr[i] = mean(r[cond]) return [tt/(n*dt), rr] def adaptar(nwndw, dT, n, dt, t, r): #n = int(5./dt) # nro de puntos en todo el intervalo de ploteo tt = zeros(n) rr = zeros(n) _nbin_ = n/(1+nwndw[0]+nwndw[1]) # nro de bins en la sheath for i in range(n): tmin = (i-nwndw[0]*_nbin_)*dt tmax = tmin + dt cond = (t>tmin) & (t<tmax) tt[i] = mean(t[cond])#; print "tt:", t[i]; pause(1) rr[i] = mean(r[cond]) return [tt/dT, rr] # tiempo normalizado x la duracion de la sheath def adaptar_ii(nwndw, dT, n, dt, t, r, fgap): #n = int(5./dt) # nro de puntos en todo el intervalo de ploteo tt = zeros(n) rr = zeros(n) _nbin_ = n/(1+nwndw[0]+nwndw[1]) # nro de bins en la sheath/mc cc = (t>0.) & (t<dT) # intervalo de la sheath/mc enough = enoughdata(r[cc], fgap) # [bool] True si hay mas del 80% de data buena. if not(enough): rr = nan*ones(n) # si no hay suficiente data, este evento no aporta for i in range(n): tmin = (i-nwndw[0]*_nbin_)*dt tmax = tmin + dt cond = (t>tmin) & (t<tmax) tt[i] = mean(t[cond])#; print "tt:", t[i]; pause(1) if enough: cc = ~isnan(r[cond]) # no olvidemos filtrar los gaps rr[i] = mean(r[cond][cc]) return enough, [tt/dT, rr] # tiempo normalizado x la duracion de la sheath/mc/etc def selecc_window_ii(nwndw, data, tini, tend): time = data[0] #[s] utc sec y = data[1] day = 86400. # [seg] utc = datetime(1970, 1, 1, 0, 0, 0, 0) tini_utc = (tini - utc).total_seconds() # [s] utc sec tend_utc = (tend - utc).total_seconds() # [s] utc sec dt = tend_utc - tini_utc ti = tini_utc - nwndw[0]*dt # [seg] utc tf = tend_utc + nwndw[1]*dt cond = (time > ti) & (time < tf) time = (time[cond] - tini_utc) / day # [days] since 'ti' y = y[cond] return (time, y) def averages_and_std_ii(nwndw, SELECC, #MCsig, MCwant, n_icmes, tini, tend, dTday, nbin, t_utc, VAR): day = 86400. nok=0; nbad=0 adap = [] for i in range(n_icmes): dT = (tend[i] - tini[i]).total_seconds()/day # [day] if ((dT>dTday) & SELECC[i]):# (MCsig[i]>=MCwant)): dt = dT*(1+nwndw[0]+nwndw[1])/nbin t, var = selecc_window_ii( nwndw, # nro de veces hacia atras y adelante [t_utc, VAR], tini[i], tend[i] ) adap += [adaptar(nwndw, dT, nbin, dt, t, var)] # rebinea usando 'dt' como el ancho de nuevo bineo nok +=1 else: print " i:%d ---> Filtramos este evento!, dT/day:%g" % (i, dT) nbad +=1 VAR_adap = zeros(nbin*nok).reshape(nok, nbin) for i in range(nok): VAR_adap[i,:] = adap[i][1] VAR_avrg = zeros(nbin) VAR_medi = zeros(nbin) VAR_std = zeros(nbin) ndata = zeros(nbin) for i in range(nbin): cond = ~isnan(VAR_adap.T[i,:]) ndata[i] = len(find(cond)) # nro de datos != flag VAR_avrg[i] = mean(VAR_adap.T[i,cond]) # promedio entre los valores q no tienen flag VAR_medi[i] = median(VAR_adap.T[i,cond])# mediana entre los valores q no tienen flag VAR_std[i] = std(VAR_adap.T[i,cond]) # std del mismo conjunto de datos tnorm = adap[0][0] return [nok, nbad, tnorm, VAR_avrg, VAR_medi, VAR_std, ndata] def mvs_for_each_event(VAR_adap, nbin, nwndw, Enough): nok = size(VAR_adap, axis=0) mvs = np.zeros(nok) # valores medios por cada evento binsPerTimeUnit = nbin/(1+nwndw[0]+nwndw[1]) # nro de bines por u. de tiempo start = nwndw[0]*binsPerTimeUnit # en este bin empieza la MC #print " ----> binsPerTimeUnit: ", binsPerTimeUnit #print " ----> nok: ", nok #print " ----> VAR_adap.shape: ", VAR_adap.shape #print " ----> VAR_adap: \n", VAR_adap #raw_input() for i in range(nok): aux = VAR_adap[i, start:start+binsPerTimeUnit] # (*) cc = ~isnan(aux) # pick good-data only #if len(find(cc))>1: if Enough[i]: # solo imprimo los q tienen *suficiente data* print ccl.G print "id %d/%d: "%(i+1, nok), aux[cc] print ccl.W mvs[i] = np.mean(aux[cc]) else: mvs[i] = np.nan #(*): esta es la serie temporal (de esta variable) para el evento "i" pause(1) return mvs def diff_dates(tend, tini): n = len(tend) diffs = np.nan*np.ones(n) for i in range(n): ok = type(tend[i]) == type(tini[i]) == datetime # ambos deben ser fechas! if ok: diffs[i] = (tend[i] - tini[i]).total_seconds() else: diffs[i] = np.nan return diffs #[sec] def write_variable(fout, varname, dims, var, datatype, comments): dummy = fout.createVariable(varname, datatype, dims) dummy[:] = var dummy.units = comments def calc_beta(Temp, Pcc, B): # Agarramos la definicion de OMNI, de: # http://pamela.roma2.infn.it/index.php # Beta = [(4.16*10**-5 * Tp) + 5.34] * Np/B**2 (B in nT) # beta = ((4.16*10**-5 * Temp) + 5.34) * Pcc/B**2 return beta def thetacond(ThetaThres, ThetaSh): if ThetaThres<=0.: print ccl.Rn + ' ----> BAD WANG FILTER!!: ThetaThres<=0.' print ' ----> Saliendo...' + ccl.Rn raise SystemExit #return ones(len(ThetaSh), dtype=bool) else: return (ThetaSh > ThetaThres) def wangflag(ThetaThres): if ThetaThres<0: return 'NaN' else: return str(ThetaThres) def makefig(medVAR, avrVAR, stdVAR, nVAR, tnorm, SUBTITLE, YLIMS, YLAB, fname_fig): fig = figure(1, figsize=(13, 6)) ax = fig.add_subplot(111) ax.plot(tnorm, avrVAR, 'o-', color='black', markersize=5, label='mean') ax.plot(tnorm, medVAR, 'o-', color='red', alpha=.5, markersize=5, markeredgecolor='none', label='median') inf = avrVAR + stdVAR/np.sqrt(nVAR) sup = avrVAR - stdVAR/np.sqrt(nVAR) ax.fill_between(tnorm, inf, sup, facecolor='gray', alpha=0.5) trans = transforms.blended_transform_factory( ax.transData, ax.transAxes) rect1 = patches.Rectangle((0., 0.), width=1.0, height=1, transform=trans, color='blue', alpha=0.3) ax.add_patch(rect1) ax.legend(loc='upper right') ax.grid() ax.set_ylim(YLIMS) TITLE = SUBTITLE ax.set_title(TITLE) ax.set_xlabel('time normalized to MC passage time [1]', fontsize=14) ax.set_ylabel(YLAB, fontsize=20) savefig(fname_fig, format='png', dpi=180, bbox_inches='tight') close() class general: def __init__(self): name='name' class events_mgr: def __init__(self, gral, FILTER, CUTS, bd, nBin, fgap, tb, z_exp): #self.fnames = fnames self.data_name = gral.data_name self.FILTER = FILTER self.CUTS = CUTS self.bd = bd self.nBin = nBin self.fgap = fgap self.tb = tb self.z_exp = z_exp self.dir_plots = gral.dirs['dir_plots'] self.dir_ascii = gral.dirs['dir_ascii'] self.f_sc = netcdf_file(gral.fnames['ACE'], 'r') self.f_events = netcdf_file(gral.fnames['table_richardson'], 'r') print " -------> archivos input leidos!" def run_all(self): #----- seleccion de eventos self.filter_events() print "\n ---> filtrado de eventos (n:%d): OK\n" % (self.n_SELECC) #----- load data y los shiftimes "omni" self.load_data_and_timeshift() #----- rebineo y promedios self.rebine_and_avr() #----- hacer ploteos self.make_plots() #----- archivos "stuff" self.build_params_file() def rebine_and_avr(self): """def avrs_and_stds(nwndw, SELECC, #MCsig, MCwant, n_icmes, tini, tend, dTday, nbin, t_utc, VARS, fgap):""" nvars = self.nvars #len(VARS) n_icmes = self.tb.n_icmes bd = self.bd VARS = self.VARS nbin = self.nBin['total'] nwndw = [self.nBin['before'], self.nBin['after']] day = 86400. """print " ---> nbin: ", nbin print " ---> t_utc[0]: ", self.t_utc[0] print " ---> t_utc[-1]: ", self.t_utc[-1] print " ---> fgap: ", self.fgap print " ---> VARS[-1][1]: ", self.VARS[-1][1] print " ---> nwndw: ", nwndw print " ---> dTday: ", self.CUTS['dTday'] print " ---> tini[0]: ", bd.tini[0] print " ---> tend[-110]: ", bd.tend[-110]""" #raw_input() ADAP = [] # conjunto de varios 'adap' (uno x c/variable) # recorremos los eventos: nok=0; nbad=0; nEnough = np.zeros(nvars) Enough = np.zeros(n_icmes*nvars, dtype=bool).reshape(n_icmes, nvars) Enough = [] nnn = 0 # nro de evento q pasan el filtro a-priori #---- quiero una lista de los eventos-id q van a incluirse en c/promedio :-) IDs = {} for j in range(nvars): varname = VARS[j][1] IDs[varname] = [] for i in range(n_icmes): #nok=0; nbad=0; ok=False try: #no todos los elementos de 'tend' son fechas (algunos eventos no tienen fecha definida) dT = (bd.tend[i] - bd.tini[i]).total_seconds()/day # [day] ok = True except: continue # saltar al sgte evento 'i' #np.set_printoptions(4) # nro de digitos a imprimir cuando use numpy.arrays if (ok & self.SELECC[i]):# (MCsig[i]>=MCwant)): ---FILTRO--- (*1) nnn += 1 print ccl.Gn + " id:%d ---> dT/day:%g" % (i, dT) + ccl.W nok +=1 Enough += [ np.zeros(nvars, dtype=bool) ] # todo False por defecto # recorremos las variables: for j in range(nvars): varname = VARS[j][1] dt = dT*(1+nwndw[0]+nwndw[1])/nbin t, var = selecc_window_ii( nwndw, #rango ploteo [self.t_utc, VARS[j][0]], bd.tini[i], bd.tend[i] ) # rebinea usando 'dt' como el ancho de nuevo bineo out = adaptar_ii(nwndw, dT, nbin, dt, t, var, self.fgap) enough = out[0] # True: data con menos de 100*'fgap'% de gap Enough[nok-1][j] = enough ADAP += [ out[1] ] #print " out01: ", out[1]; raw_input() if enough: IDs[varname] += [i] nEnough[j] += 1 else: print ccl.Rn + " id:%d ---> dT/day:%g" % (i, dT) + ccl.W nbad +=1 print " ----> len.ADAP: %d" % len(ADAP) Enough = np.array(Enough) stuff = [] #nok = len(ADAP)/nvars # (*) # (*) la dim de 'ADAP' es 'nvars' por el nro de eventos q pasaro el filtro en (*1) for j in range(nvars): print ccl.On + " -------> procesando: %s" % VARS[j][3] + " (%d/%d)" % (j+1,nvars) print " nEnough/nok/(nok+nbad): %d/%d/%d " % (nEnough[j], nok, nok+nbad) + ccl.W VAR_adap = np.zeros((nok, nbin)) # perfiles rebineados (*) # (*): uno de estos por variable # recorro los 'nok' eventos q pasaron el filtro de arriba: for i in range(nok): VAR_adap[i,:] = ADAP[i*nvars+j][1] # valores rebineados de la variable "j" para el evento "i" # valores medios de esta variable para c/evento avrVAR_adap = mvs_for_each_event(VAR_adap, nbin, nwndw, Enough.T[j]) print " ---> (%d/%d) avrVAR_adap[]: \n" % (j+1,nvars), avrVAR_adap VAR_avrg = np.zeros(nbin) VAR_avrgNorm = np.zeros(nbin) VAR_medi = np.zeros(nbin) VAR_std = np.zeros(nbin) ndata = np.zeros(nbin) for i in range(nbin): cond = ~np.isnan(VAR_adap.T[i,:]) # filtro eventos q no aportan data en este bin ndata[i] = len(find(cond)) # nro de datos != nan VAR_avrg[i] = np.mean(VAR_adap.T[i,cond]) # promedio entre los valores q no tienen flag VAR_avrgNorm[i] = np.mean(VAR_adap.T[i,cond]/avrVAR_adap[cond]) VAR_medi[i] = np.median(VAR_adap.T[i,cond])# mediana entre los valores q no tienen flag VAR_std[i] = np.std(VAR_adap.T[i,cond]) # std del mismo conjunto de datos #--- calculo perfil normalizado por c/variable #ii = nwndw[0]*binsPerTimeUnit #AvrInWndw = mean(VAR_avrg[ii:ii+binsPerTimeUnit]) tnorm = ADAP[0][0] stuff += [[nok, nbad, tnorm, VAR_avrg, VAR_medi, VAR_std, ndata, avrVAR_adap]] #return stuff, nEnough, Enough, IDs self.out = OUT = {} OUT['dVARS'] = stuff OUT['nEnough'] = nEnough OUT['Enough'] = Enough OUT['IDs'] = IDs OUT['tnorm'] = OUT['dVARS'][0][2] def load_data_and_timeshift(self): if self.data_name=='ACE': self.load_data_ACE() elif self.data_name=='McMurdo': self.load_data_McMurdo() else: print " --------> BAD 'self.data_name'!!!" print " exiting.... " raise SystemExit def load_data_McMurdo(self): tb = self.tb nBin = self.nBin bd = self.bd day = 86400. def load_data_ACE(self): tb = self.tb nBin = self.nBin bd = self.bd day = 86400. #---------------------------------------------------------- print " leyendo tiempo..." t_utc = utc_from_omni(self.f_sc) print " Ready." #++++++++++++++++++++ CORRECCION DE BORDES +++++++++++++++++++++++++++++ # IMPORTANTE: # Solo valido para los "63 eventos" (MCflag='2', y visibles en ACE) # NOTA: dan saltos de shock mas marcados con True. if self.FILTER['CorrShift']: ShiftCorrection(ShiftDts, tb.tshck) ShiftCorrection(ShiftDts, tb.tini_icme) ShiftCorrection(ShiftDts, tb.tend_icme) ShiftCorrection(ShiftDts, tb.tini_mc) ShiftCorrection(ShiftDts, tb.tend_mc) #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ B = np.array(self.f_sc.variables['Bmag'].data) Vsw = np.array(self.f_sc.variables['Vp'].data) Temp = np.array(self.f_sc.variables['Tp'].data) Pcc = np.array(self.f_sc.variables['Np'].data) rmsB = np.array(self.f_sc.variables['dBrms'].data) alphar = np.array(self.f_sc.variables['Alpha_ratio'].data) beta = calc_beta(Temp, Pcc, B) rmsBoB = rmsB/B print " -------> variables leidas!" #------------------------------------ VARIABLES self.t_utc = t_utc self.VARS = VARS = [] # variable, nombre archivo, limite vertical, ylabel VARS += [[B, 'B', [5., 18.], 'B [nT]']] VARS += [[Vsw, 'V', [380., 650.], 'Vsw [km/s]']] VARS += [[rmsBoB, 'rmsBoB', [0.01, 0.2], 'rms($\hat B$/|B|) [1]']] VARS += [[beta, 'beta', [0.001, 5.], '$\\beta$ [1]']] VARS += [[Pcc, 'Pcc', [2, 17.], 'proton density [#/cc]']] VARS += [[Temp, 'Temp', [1e4, 4e5], 'Temp [K]']] VARS += [[alphar, 'AlphaRatio', [1e-3, 0.1], 'alpha ratio [1]']] self.nvars = len(VARS) #--------- #nbin = (1+nBin['before']+nBin['after'])*nBin['bins_per_utime'] # [1] nro de bines q quiero en mi perfil promedio #fgap = 0.2 # fraccion de gap que tolero # nEnough: nmbr of events aporting good data in 80% of the window self.aux = aux = {} aux['SELECC'] = self.SELECC """aux['BETW1998_2006'] = BETW1998_2006 aux['DURATION'] = DURATION if wang_filter: aux['ThetaCond'] = ThetaCond if vsw_filter: aux['SpeedCond'] = SpeedCond if z_filter_on: aux['z_cond'] = z_cond aux['dt_mc'] = dt_mc aux['dt_sh'] = dt_sh""" #---- SALIDA: #self.VARS = VARS #self.out = out #self.aux = aux #---- generar figuras y asciis de los perfiles promedio/mediana def make_plots(self): nBin = self.nBin fgap = self.fgap MCwant = self.FILTER['MCwant'] #dt_mc = self.aux['dt_mc'] #dt_sh = self.aux['dt_sh'] ThetaThres = self.CUTS['ThetaThres'] v_lo = self.CUTS['v_lo'] v_hi = self.CUTS['v_hi'] z_lo = self.CUTS['z_lo'] z_hi = self.CUTS['z_hi'] nbin = (1+nBin['before']+nBin['after'])*nBin['bins_per_utime'] # [1] nro de bines q quiero en mi perfil promedio #-------------------- prefijos: # prefijo para filtro Wang: #WangFlag = wangflag(ThetaThres) #'NaN' #wangflag(ThetaThres) if self.FILTER['wang']: WangFlag = str(ThetaThres) else: WangFlag = 'NaN' # prefijo gral para los nombres de los graficos: if self.FILTER['CorrShift']: prexShift = 'wShiftCorr' else: prexShift = 'woShiftCorr' # filtro z-expansion if not(self.FILTER['z_filter_on']): z_lo = z_hi = 0.0 # estos valores significan q no hay filtro por z # filtro por Vmc (veloc del MC) if not(self.FILTER['vsw_filter']): v_lo = v_hi = 0.0 # estos valores significan q no hay filtro por Vmc #------------------------------- # nombres genericos... DIR_FIGS = '%s/MCflag%s/%s' % (self.dir_plots, MCwant['alias'], prexShift) DIR_ASCII = '%s/MCflag%s/%s' % (self.dir_ascii, MCwant['alias'], prexShift) os.system('mkdir -p %s' % DIR_FIGS) os.system('mkdir -p %s' % DIR_ASCII) print ccl.On + " -------> creando: %s" % DIR_FIGS + ccl.W print ccl.On + " -------> creando: %s" % DIR_ASCII + ccl.W FNAMEs = 'MCflag%s_%dbefore.%dafter_fgap%1.1f' % (MCwant['alias'], nBin['before'], nBin['after'], fgap) FNAMEs += '_Wang%s' % (WangFlag) FNAMEs += '_vlo.%03.1f.vhi.%04.1f' % (v_lo, v_hi) FNAMEs += '_zlo.%2.2f.zhi.%2.2f' % (z_lo, z_hi) FNAME_ASCII = '%s/%s' % (DIR_ASCII, FNAMEs) FNAME_FIGS = '%s/%s' % (DIR_FIGS, FNAMEs) fname_nro = DIR_ASCII+'/'+'n.events_'+FNAMEs+'.txt' fnro = open(fname_nro, 'w') #-------------------------------------------------------------------------------- nvars = len(self.VARS) for i in range(nvars): fname_fig = '%s_%s.png' % (FNAME_FIGS, self.VARS[i][1]) print ccl.Rn+ " ------> %s" % fname_fig varname = self.VARS[i][1] ylims = self.VARS[i][2] ylabel = self.VARS[i][3] mediana = self.out['dVARS'][i][4] average = self.out['dVARS'][i][3] std_err = self.out['dVARS'][i][5] nValues = self.out['dVARS'][i][6] # nmbr of good values aporting data #binsPerTimeUnit = nbin #nbin/(1+nbefore+nafter) N_selec = self.out['dVARS'][i][0] N_final = self.out['nEnough'][i] #nEnough[i] SUBTITLE = '# of selected events: %d \n\ events w/80%% of data: %d \n\ bins per time unit: %d \n\ MCflag: %s \n\ WangFlag: %s' % (N_selec, N_final, nBin['bins_per_utime'], MCwant['alias'], WangFlag) makefig(mediana, average, std_err, nValues, self.out['tnorm'], SUBTITLE, ylims, ylabel, fname_fig) fdataout = '%s_%s.txt' % (FNAME_ASCII, self.VARS[i][1]) dataout = np.array([self.out['tnorm'] , mediana, average, std_err, nValues]) print " ------> %s\n" % fdataout + ccl.W np.savetxt(fdataout, dataout.T, fmt='%12.5f') #-------- grabamos nro de eventos selecc para esta variable line = '%s %d %d\n' % (varname, N_final, N_selec) fnro.write(line) print ccl.Rn + " --> nro de eventos seleccionados: " + fname_nro + ccl.W fnro.close() #--- salidas (a parte de los .png) self.DIR_ASCII = DIR_ASCII self.FNAMEs = FNAMEs #---- construye archivo q contiene cosas de los eventos seleccionados: # - valores medios de los observables (B, Vsw, Temp, beta, etc) # - los IDs de los eventos # - duracion de los MCs y las sheaths def build_params_file(self): DIR_ASCII = self.DIR_ASCII FNAMEs = self.FNAMEs #---------------------------------------------- begin: NC_FILE print "\n**************************************** begin: NC_FILE" #------- generamos registro de id's de los # eventos q entraron en los promedios. # Nota: un registro por variable. fname_out = DIR_ASCII+'/'+'_stuff_'+FNAMEs+'.nc' #'./test.nc' fout = netcdf_file(fname_out, 'w') print "\n ----> generando: %s\n" % fname_out IDs = self.out['IDs'] for i in range(len(self.VARS)): varname = self.VARS[i][1] print " ----> " + varname n_events = len(IDs[varname]) dimname = 'nevents_'+varname fout.createDimension(dimname, n_events) prom = self.out['dVARS'][i][7] cc = np.isnan(prom) prom = prom[~cc] dims = (dimname,) write_variable(fout, varname, dims, prom, 'd', 'average_values per event') #---------- IDs de esta variable ids = map(int, IDs[varname]) vname = 'IDs_'+varname write_variable(fout, vname, dims, ids, 'i', 'event IDs that enter in this parameter average') #---------- duracion de la estructura dtsh = np.zeros(len(ids)) dtmc = np.zeros(len(ids)) for i in range(len(ids)): id = ids[i] dtsh[i] = self.dt_sh[id] dtmc[i] = self.dt_mc[id] vname = 'dt_sheath_'+varname write_variable(fout, vname, dims, dtsh, 'd', '[days]') vname = 'dt_mc_'+varname write_variable(fout, vname, dims, dtmc, 'd', '[days]') fout.close() print "**************************************** end: NC_FILE" #---------------------------------------------- end: NC_FILE def filter_events(self): tb = self.tb FILTER = self.FILTER ThetaThres = self.CUTS['ThetaThres'] dTday = self.CUTS['dTday'] v_lo = self.CUTS['v_lo'] v_hi = self.CUTS['v_hi'] z_lo = self.CUTS['z_lo'] z_hi = self.CUTS['z_hi'] day = 86400. #------------------------------------ EVENTS's PARAMETERS #MCsig = array(f_events.variables['MC_sig'].data) # 2,1,0: MC, rotation, irregular #Vnsh = array(f_events.variables['wang_Vsh'].data) # veloc normal del shock ThetaSh = np.array(self.f_events.variables['wang_theta_shock'].data) # orientacion de la normal del shock i_V = np.array(self.f_events.variables['i_V'].data) # velocidad de icme #------------------------------------ #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #++++++++++++++++++ begin: SELECCION DE EVENTOS ++++++++++++++++++++++ #------- fechas BETW1998_2006 = np.ones(tb.n_icmes, dtype=bool) for i in range(307, tb.n_icmes)+range(0, 26): BETW1998_2006[i]=False # 'False' para excluir eventos #------- seleccionamos MCs con label-de-catalogo (lepping=2, etc) MC_FLAG = np.ones(tb.n_icmes, dtype=bool) for i in range(tb.n_icmes): MC_FLAG[i] = tb.MCsig[i] in FILTER['MCwant']['flags'] #------- excluimos eventos de 2MCs EVENTS_with_2MCs= (26, 148, 259, 295) MCmultiple = FILTER['Mcmultiple'] #False #True para incluir eventos multi-MC MCmulti = np.ones(tb.n_icmes, dtype=bool) # False para eventos multi-MC (SI, escribi bien) if(~FILTER['Mcmultiple']): for i in EVENTS_with_2MCs: MCmulti[i] &= False #------- orientacion del shock (catalogo Wang) if FILTER['wang']: ThetaCond = thetacond(ThetaThres, ThetaSh) #------- duration of sheaths self.dt_mc = diff_dates(tb.tend_mc, tb.tini_mc)/day # [day] self.dt_sh = diff_dates(tb.tini_mc, tb.tshck)/day # [day] dt = diff_dates(self.bd.tend, self.bd.tini)/day DURATION = dt > dTday # sheaths>0 #------- speed of icmes if (FILTER['vsw_filter']) & (v_lo<v_hi): SpeedCond = (i_V>=v_lo) & (i_V<v_hi) #------- z expansion (a. gulisano) z_exp = self.z_exp if (FILTER['z_filter_on']) & (z_lo<z_hi): z_cond = (z_exp>=z_lo) & (z_exp<z_hi) #------- filtro total SELECC = np.ones(tb.n_icmes, dtype=bool) SELECC &= BETW1998_2006 # nos mantenemos en este periodo de anios SELECC &= MCmulti # nubes multiples SELECC &= MC_FLAG # catalogo de nubes SELECC &= DURATION # no queremos sheaths q duran 1hr xq solo aportan ruido if FILTER['wang']: SELECC &= ThetaCond # cerca a 180 es nariz del shock if FILTER['vsw_filter']: SELECC &= SpeedCond if FILTER['z_filter_on']: SELECC &= z_cond # para desactivar este filtro, comentar esta linea """print "+++ eventos +++++++++++++++++++++++++++++++++++++++" for i in range(tb.n_icmes): if SELECC[i]: print i raw_input()""" self.SELECC = SELECC self.n_SELECC = len(find(SELECC)) #+++++++++++++++++ end: SELECCION DE EVENTOS +++++++++++++++++++++++++ #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if self.n_SELECC<=0: print " --------> FATAL ERROR!!!: self.n_SELECC=<0" print " exiting....... \n" raise SystemExit ##
mit
treycausey/scikit-learn
examples/exercises/plot_iris_exercise.py
8
1577
""" ================================ SVM Exercise ================================ A tutorial exercise for using different SVM kernels. This exercise is used in the :ref:`using_kernels_tut` part of the :ref:`supervised_learning_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np import pylab as pl from sklearn import datasets, svm iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 0, :2] y = y[y != 0] n_sample = len(X) np.random.seed(0) order = np.random.permutation(n_sample) X = X[order] y = y[order].astype(np.float) X_train = X[:.9 * n_sample] y_train = y[:.9 * n_sample] X_test = X[.9 * n_sample:] y_test = y[.9 * n_sample:] # fit the model for fig_num, kernel in enumerate(('linear', 'rbf', 'poly')): clf = svm.SVC(kernel=kernel, gamma=10) clf.fit(X_train, y_train) pl.figure(fig_num) pl.clf() pl.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=pl.cm.Paired) # Circle out the test data pl.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none', zorder=10) pl.axis('tight') x_min = X[:, 0].min() x_max = X[:, 0].max() y_min = X[:, 1].min() y_max = X[:, 1].max() XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) pl.pcolormesh(XX, YY, Z > 0, cmap=pl.cm.Paired) pl.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) pl.title(kernel) pl.show()
bsd-3-clause
wasade/qiime
qiime/make_otu_heatmap.py
1
7171
from __future__ import division __author__ = "Dan Knights" __copyright__ = "Copyright 2011, The QIIME project" __credits__ = ["Dan Knights", "Greg Caporaso", "Jai Ram Rideout"] __license__ = "GPL" __version__ = "1.8.0-dev" __maintainer__ = "Dan Knights" __email__ = "[email protected]" import numpy as np import matplotlib matplotlib.use('Agg', warn=False) import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.cluster.hierarchy import linkage from skbio.tree import TreeNode from skbio.diversity.beta import pw_distances from qiime.parse import parse_newick, PhyloNode from qiime.filter import filter_samples_from_otu_table def get_overlapping_samples(map_rows, otu_table): """Extracts only samples contained in otu table and mapping file. Returns: new_map_rows, new_otu_table """ map_sample_ids = zip(*map_rows)[0] shared_ids = set(map_sample_ids) & set(otu_table.ids()) otu_table = filter_samples_from_otu_table(otu_table, shared_ids, -np.inf, np.inf) new_map = [] for sam_id in map_sample_ids: if sam_id in shared_ids: ix = map_sample_ids.index(sam_id) new_map.append(map_rows[ix]) return new_map, otu_table def extract_metadata_column(sample_ids, metadata, category): """Extracts values from the given metadata column""" col_ix = metadata[1].index(category) map_sample_ids = zip(*metadata[0])[0] category_labels = [] for i, sample_id in enumerate(sample_ids): if sample_id in map_sample_ids: row_ix = map_sample_ids.index(sample_id) entry = metadata[0][row_ix][col_ix] category_labels.append(entry) return category_labels def get_order_from_categories(otu_table, category_labels): """Groups samples by category values; clusters within each group""" category_labels = np.array(category_labels) sample_order = [] for label in np.unique(category_labels): label_ix = category_labels == label selected = [s for (i, s) in zip(label_ix, otu_table.ids()) if i] sub_otu_table = filter_samples_from_otu_table(otu_table, selected, -np.inf, np.inf) data = np.asarray(list(sub_otu_table.iter_data(axis='observation'))) label_ix_ix = get_clusters(data, axis='column') sample_order += list(np.nonzero(label_ix)[0][np.array(label_ix_ix)]) return np.array(sample_order) def get_order_from_tree(ids, tree_text): """Returns the indices that would sort ids by tree tip order""" tree = parse_newick(tree_text, PhyloNode) ordered_ids = [] for tip in tree.iterTips(): if tip.Name in ids: ordered_ids.append(tip.Name) return names_to_indices(ids, ordered_ids) def make_otu_labels(otu_ids, lineages, n_levels=1): """Returns 'pretty' OTU labels: 'Lineage substring (OTU ID)' Lineage substring includes the last n_levels lineage levels """ if len(lineages[0]) > 0: otu_labels = [] for i, lineage in enumerate(lineages): if n_levels > len(lineage): otu_label = '%s (%s)' % (';'.join(lineage), otu_ids[i]) else: otu_label = '%s (%s)' \ % (';'.join(lineage[-n_levels:]), otu_ids[i]) otu_labels.append(otu_label) otu_labels = [lab.replace('"', '') for lab in otu_labels] else: otu_labels = otu_ids return otu_labels def names_to_indices(names, ordered_names): """Returns the indices that would sort 'names' like 'ordered_names' """ indices = [] names_list = list(names) for ordered_name in ordered_names: if ordered_name in names_list: indices.append(names_list.index(ordered_name)) return np.array(indices) def get_log_transform(otu_table): """Returns log10 of the data""" if otu_table.nnz == 0: raise ValueError('All values in the OTU table are zero!') # take log of all values def h(s_v, s_id, s_md): return np.log10(s_v) return otu_table.transform(h, axis='sample', inplace=False) def get_clusters(x_original, axis='row'): """Performs UPGMA clustering using euclidean distances""" x = x_original.copy() if axis == 'column': x = x.T nr = x.shape[0] row_dissims = pw_distances(x, ids=map(str, range(nr)), metric='euclidean') # do upgma - rows # Average in SciPy's cluster.hierarchy.linkage is UPGMA linkage_matrix = linkage(row_dissims.condensed_form(), method='average') tree = TreeNode.from_linkage_matrix(linkage_matrix, row_dissims.ids) return [int(tip.name) for tip in tree.tips()] def get_fontsize(numrows): """Returns the fontsize needed to make text fit within each row. """ thresholds = [25, 50, 75, 100, 125] sizes = [5, 4, 3, 2, 1.5, 1] i = 0 while numrows > thresholds[i]: i += 1 if i == len(thresholds): break return sizes[i] def plot_heatmap(otu_table, row_labels, col_labels, filename, imagetype='pdf', width=5, height=5, dpi=None, textborder=.25, color_scheme='YlGn'): """Create a heatmap plot, save as a pdf by default. 'width', 'height' are in inches 'textborder' is the fraction of the figure allocated for the tick labels on the x and y axes color_scheme: choices can be found at http://matplotlib.org/examples/color/colormaps_reference.html """ nrow = otu_table.length(axis='observation') ncol = otu_table.length(axis='sample') # determine appropriate font sizes for tick labels row_fontsize = get_fontsize(nrow) col_fontsize = get_fontsize(ncol) # create figure and plot heatmap fig, ax = plt.subplots(figsize=(width, height)) data = list(otu_table.iter_data(axis='observation')) im = plt.imshow(np.fliplr(data), interpolation='nearest', aspect='auto', cmap=color_scheme) # imshow is offset by .5 for some reason plt.xlim(-.5, ncol - .5) plt.ylim(-.5, nrow - .5) # add ticklabels to axes plt.xticks(np.arange(ncol), col_labels[::-1], fontsize=col_fontsize, rotation=90) plt.yticks(np.arange(nrow), row_labels, fontsize=row_fontsize) # turn off tick marks ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('none') # add space for tick labels fig.subplots_adjust(left=textborder, bottom=textborder) # create colorbar (legend) in its own axes so that tight_layout will # respect both the heatmap and colorbar when it makes room for everything. # code based on example in: # http://matplotlib.org/users/tight_layout_guide.html divider = make_axes_locatable(ax) cax = divider.append_axes("right", "5%", pad="3%") cb = plt.colorbar(im, cax=cax) # set colorbar tick labels to a reasonable value (normal is large) for t in cb.ax.get_yticklabels(): t.set_fontsize(5) plt.tight_layout() fig.savefig(filename, format=imagetype, dpi=dpi)
gpl-2.0
18padx08/PPTex
PPTexEnv_x86_64/lib/python2.7/site-packages/matplotlib/cm.py
11
11669
""" This module provides a large set of colormaps, functions for registering new colormaps and for getting a colormap by name, and a mixin class for adding color mapping functionality. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.colors as colors import matplotlib.cbook as cbook from matplotlib._cm import datad from matplotlib._cm import cubehelix cmap_d = dict() # reverse all the colormaps. # reversed colormaps have '_r' appended to the name. def _reverser(f): def freversed(x): return f(1 - x) return freversed def revcmap(data): """Can only handle specification *data* in dictionary format.""" data_r = {} for key, val in six.iteritems(data): if six.callable(val): valnew = _reverser(val) # This doesn't work: lambda x: val(1-x) # The same "val" (the first one) is used # each time, so the colors are identical # and the result is shades of gray. else: # Flip x and exchange the y values facing x = 0 and x = 1. valnew = [(1.0 - x, y1, y0) for x, y0, y1 in reversed(val)] data_r[key] = valnew return data_r def _reverse_cmap_spec(spec): """Reverses cmap specification *spec*, can handle both dict and tuple type specs.""" if 'red' in spec: return revcmap(spec) else: revspec = list(reversed(spec)) if len(revspec[0]) == 2: # e.g., (1, (1.0, 0.0, 1.0)) revspec = [(1.0 - a, b) for a, b in revspec] return revspec def _generate_cmap(name, lutsize): """Generates the requested cmap from it's name *name*. The lut size is *lutsize*.""" spec = datad[name] # Generate the colormap object. if 'red' in spec: return colors.LinearSegmentedColormap(name, spec, lutsize) else: return colors.LinearSegmentedColormap.from_list(name, spec, lutsize) LUTSIZE = mpl.rcParams['image.lut'] # Generate the reversed specifications ... for cmapname in list(six.iterkeys(datad)): spec = datad[cmapname] spec_reversed = _reverse_cmap_spec(spec) datad[cmapname + '_r'] = spec_reversed # Precache the cmaps with ``lutsize = LUTSIZE`` ... # Use datad.keys() to also add the reversed ones added in the section above: for cmapname in six.iterkeys(datad): cmap_d[cmapname] = _generate_cmap(cmapname, LUTSIZE) locals().update(cmap_d) # Continue with definitions ... def register_cmap(name=None, cmap=None, data=None, lut=None): """ Add a colormap to the set recognized by :func:`get_cmap`. It can be used in two ways:: register_cmap(name='swirly', cmap=swirly_cmap) register_cmap(name='choppy', data=choppydata, lut=128) In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap` instance. The *name* is optional; if absent, the name will be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*. In the second case, the three arguments are passed to the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer, and the resulting colormap is registered. """ if name is None: try: name = cmap.name except AttributeError: raise ValueError("Arguments must include a name or a Colormap") if not cbook.is_string_like(name): raise ValueError("Colormap name must be a string") if isinstance(cmap, colors.Colormap): cmap_d[name] = cmap return # For the remainder, let exceptions propagate. if lut is None: lut = mpl.rcParams['image.lut'] cmap = colors.LinearSegmentedColormap(name, data, lut) cmap_d[name] = cmap def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None. Colormaps added with :func:`register_cmap` take precedence over built-in colormaps. If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be returned. If *lut* is not None it must be an integer giving the number of entries desired in the lookup table, and *name* must be a standard mpl colormap name with a corresponding data dictionary in *datad*. """ if name is None: name = mpl.rcParams['image.cmap'] if isinstance(name, colors.Colormap): return name if name in cmap_d: if lut is None: return cmap_d[name] elif name in datad: return _generate_cmap(name, lut) else: raise ValueError( "Colormap %s is not recognized. Possible values are: %s" % (name, ', '.join(cmap_d.keys()))) class ScalarMappable: """ This is a mixin class to support scalar data to RGBA mapping. The ScalarMappable makes use of data normalization before returning RGBA colors from the given colormap. """ def __init__(self, norm=None, cmap=None): r""" Parameters ---------- norm : :class:`matplotlib.colors.Normalize` instance The normalizing object which scales data, typically into the interval ``[0, 1]``. cmap : str or :class:`~matplotlib.colors.Colormap` instance The colormap used to map normalized data values to RGBA colors. """ self.callbacksSM = cbook.CallbackRegistry() if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None #: The Normalization instance of this ScalarMappable. self.norm = norm #: The Colormap instance of this ScalarMappable. self.cmap = get_cmap(cmap) #: The last colorbar associated with this ScalarMappable. May be None. self.colorbar = None self.update_dict = {'array': False} @cbook.deprecated('1.3', alternative='the colorbar attribute') def set_colorbar(self, im, ax): """set the colorbar and axes instances associated with mappable""" self.colorbar = im def to_rgba(self, x, alpha=None, bytes=False): """ Return a normalized rgba array corresponding to *x*. In the normal case, *x* is a 1-D or 2-D sequence of scalars, and the corresponding ndarray of rgba values will be returned, based on the norm and colormap set for this ScalarMappable. There is one special case, for handling images that are already rgb or rgba, such as might have been read from an image file. If *x* is an ndarray with 3 dimensions, and the last dimension is either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. If the last dimension is 3, the *alpha* kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the *alpha* kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if the third dimension is other than 3 or 4. In either case, if *bytes* is *False* (default), the rgba array will be floats in the 0-1 range; if it is *True*, the returned rgba array will be uint8 in the 0 to 255 range. Note: this method assumes the input is well-behaved; it does not check for anomalies such as *x* being a masked rgba array, or being an integer type other than uint8, or being a floating point rgba array with values outside the 0-1 range. """ # First check for special case, image input: try: if x.ndim == 3: if x.shape[2] == 3: if alpha is None: alpha = 1 if x.dtype == np.uint8: alpha = np.uint8(alpha * 255) m, n = x.shape[:2] xx = np.empty(shape=(m, n, 4), dtype=x.dtype) xx[:, :, :3] = x xx[:, :, 3] = alpha elif x.shape[2] == 4: xx = x else: raise ValueError("third dimension must be 3 or 4") if bytes and xx.dtype != np.uint8: xx = (xx * 255).astype(np.uint8) if not bytes and xx.dtype == np.uint8: xx = xx.astype(float) / 255 return xx except AttributeError: # e.g., x is not an ndarray; so try mapping it pass # This is the normal case, mapping a scalar array: x = ma.asarray(x) x = self.norm(x) x = self.cmap(x, alpha=alpha, bytes=bytes) return x def set_array(self, A): 'Set the image array from numpy array *A*' self._A = A self.update_dict['array'] = True def get_array(self): 'Return the array' return self._A def get_cmap(self): 'return the colormap' return self.cmap def get_clim(self): 'return the min, max of the color limits for image scaling' return self.norm.vmin, self.norm.vmax def set_clim(self, vmin=None, vmax=None): """ set the norm limits for image scaling; if *vmin* is a length2 sequence, interpret it as ``(vmin, vmax)`` which is used to support setp ACCEPTS: a length 2 sequence of floats """ if (vmin is not None and vmax is None and cbook.iterable(vmin) and len(vmin) == 2): vmin, vmax = vmin if vmin is not None: self.norm.vmin = vmin if vmax is not None: self.norm.vmax = vmax self.changed() def set_cmap(self, cmap): """ set the colormap for luminance data ACCEPTS: a colormap or registered colormap name """ cmap = get_cmap(cmap) self.cmap = cmap self.changed() def set_norm(self, norm): 'set the normalization instance' if norm is None: norm = colors.Normalize() self.norm = norm self.changed() def autoscale(self): """ Autoscale the scalar limits on the norm instance using the current array """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale(self._A) self.changed() def autoscale_None(self): """ Autoscale the scalar limits on the norm instance using the current array, changing only limits that are None """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale_None(self._A) self.changed() def add_checker(self, checker): """ Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed. """ self.update_dict[checker] = False def check_update(self, checker): """ If mappable has changed since the last check, return True; else return False """ if self.update_dict[checker]: self.update_dict[checker] = False return True return False def changed(self): """ Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed' signal """ self.callbacksSM.process('changed', self) for key in self.update_dict: self.update_dict[key] = True
mit
mikewiebe-ansible/ansible
hacking/cgroup_perf_recap_graph.py
54
4384
#!/usr/bin/env python # -*- coding: utf-8 -*- # (c) 2018, Matt Martz <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os import argparse import csv from collections import namedtuple try: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import matplotlib.dates as mdates except ImportError: raise SystemExit('matplotlib is required for this script to work') Data = namedtuple('Data', ['axis_name', 'dates', 'names', 'values']) def task_start_ticks(dates, names): item = None ret = [] for i, name in enumerate(names): if name == item: continue item = name ret.append((dates[i], name)) return ret def create_axis_data(filename, relative=False): x_base = None if relative else 0 axis_name, dummy = os.path.splitext(os.path.basename(filename)) dates = [] names = [] values = [] with open(filename) as f: reader = csv.reader(f) for row in reader: if x_base is None: x_base = float(row[0]) dates.append(mdates.epoch2num(float(row[0]) - x_base)) names.append(row[1]) values.append(float(row[3])) return Data(axis_name, dates, names, values) def create_graph(data1, data2, width=11.0, height=8.0, filename='out.png', title=None): fig, ax1 = plt.subplots(figsize=(width, height), dpi=300) task_ticks = task_start_ticks(data1.dates, data1.names) ax1.grid(linestyle='dashed', color='lightgray') ax1.xaxis.set_major_formatter(mdates.DateFormatter('%X')) ax1.plot(data1.dates, data1.values, 'b-') if title: ax1.set_title(title) ax1.set_xlabel('Time') ax1.set_ylabel(data1.axis_name, color='b') for item in ax1.get_xticklabels(): item.set_rotation(60) ax2 = ax1.twiny() ax2.set_xticks([x[0] for x in task_ticks]) ax2.set_xticklabels([x[1] for x in task_ticks]) ax2.grid(axis='x', linestyle='dashed', color='lightgray') ax2.xaxis.set_ticks_position('bottom') ax2.xaxis.set_label_position('bottom') ax2.spines['bottom'].set_position(('outward', 86)) ax2.set_xlabel('Task') ax2.set_xlim(ax1.get_xlim()) for item in ax2.get_xticklabels(): item.set_rotation(60) ax3 = ax1.twinx() ax3.plot(data2.dates, data2.values, 'g-') ax3.set_ylabel(data2.axis_name, color='g') fig.tight_layout() fig.savefig(filename, format='png') def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('files', nargs=2, help='2 CSV files produced by cgroup_perf_recap to graph together') parser.add_argument('--relative', default=False, action='store_true', help='Use relative dates instead of absolute') parser.add_argument('--output', default='out.png', help='output path of PNG file: Default %s(default)s') parser.add_argument('--width', type=float, default=11.0, help='Width of output image in inches. Default %(default)s') parser.add_argument('--height', type=float, default=8.0, help='Height of output image in inches. Default %(default)s') parser.add_argument('--title', help='Title for graph') return parser.parse_args() def main(): args = parse_args() data1 = create_axis_data(args.files[0], relative=args.relative) data2 = create_axis_data(args.files[1], relative=args.relative) create_graph(data1, data2, width=args.width, height=args.height, filename=args.output, title=args.title) print('Graph written to %s' % os.path.abspath(args.output)) if __name__ == '__main__': main()
gpl-3.0
cgre-aachen/gempy
gempy/plot/_plot.py
1
14507
""" This file is part of gempy. gempy is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. gempy is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with gempy. If not, see <http://www.gnu.org/licenses/>. Module with classes and methods to perform implicit regional modelling based on the potential field method. Tested on Ubuntu 16 Created on 10/04/2018 @author: Elisa Heim, Miguel de la Varga """ # This is for sphenix to find the packages # sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) ) ) from typing import Set, Tuple, Dict, Union import gempy as _gempy from ._visualization_2d import PlotData2D, PlotSolution from .visualization_3d import GemPyvtkInteract def plot_data_3D(geo_data, ve=1, **kwargs): """ Plot in vtk all the input data of a model Args: geo_data (gempy.DataManagement.InputData): Input data of the model Returns: None """ vv = GemPyvtkInteract(geo_data, ve=ve, **kwargs) # vv.restart() vv.set_surface_points() vv.set_orientations() vv.render_model(**kwargs) return vv def plot_3D(geo_model, render_surfaces=True, render_data=True, render_topography=True, real_time=False, **kwargs): """ Plot in vtk all the input data of a model Args: geo_model (gempy.DataManagement.InputData): Input data of the model Returns: None """ vv = GemPyvtkInteract(geo_model, real_time=real_time, **kwargs) # vv.restart() if render_data is True: vv.set_surface_points() vv.set_orientations() if render_surfaces is True: vv.set_surfaces(geo_model._surfaces) if render_topography is True and geo_model._grid.topography is not None: vv.set_topography() vv.render_model(**kwargs) return vv def export_to_vtk(geo_data, path=None, name=None, voxels=True, block=None, surfaces=True): """ Export data to a vtk file for posterior visualizations Args: geo_data(:class:`Model`) path(str): path to the location of the vtk name(str): Name of the files. Default name: Default voxels(bool): if True export lith_block block(Optional[np.array]): One of the solutions of the regular grid. This can be used if for example you want to export an scalar field or an specific series block. If None is passed, lith_block will be exported. surfaces(bool): If True, export the polydata surfaces. Returns: None """ if voxels is True: GemPyvtkInteract.export_vtk_lith_block(geo_data, lith_block=block, path=path) if surfaces is True: geo_data.solutions.compute_all_surfaces() ver, sim = _gempy.get_surfaces(geo_data) GemPyvtkInteract.export_vtk_surfaces(geo_data, ver, sim, path=path, name=name) return True def plot_data(geo_data, direction="y", data_type='all', series="all", show_legend=True, **kwargs): """ Plot the projection of the raw data (surface_points and orientations) in 2D following a specific directions Args: direction(str): xyz. Caartesian direction to be plotted series(str): series to plot ve(float): Vertical exageration **kwargs: seaborn lmplot key arguments. (TODO: adding the link to them) Returns: None """ plot = PlotData2D(geo_data) p = plot.plot_data(direction=direction, data_type=data_type, series=series, show_legend=show_legend, **kwargs) # TODO saving options return plot def plot_stereonet(geo_data, litho=None, planes=True, poles=True, single_plots=False, show_density=False): ''' Plot an equal-area projection of the orientations dataframe using mplstereonet. Args: geo_model (gempy.DataManagement.InputData): Input data of the model series_only: To select whether a stereonet is plotted perries or per formation litho: selection of formation or series names, as list. If None, all are plotted planes: If True, azimuth and dip are plotted as great circles poles: If True, pole points (plane normal vectors) of azimuth and dip are plotted single_plots: If True, each formation is plotted in a single stereonet show_density: If True, density contour plot around the pole points is shown Returns: None ''' plot = PlotData2D(geo_data) plot.plot_stereonet(litho=litho, planes=planes, poles=poles, single_plots=single_plots, show_density=show_density) def plot_map(model, contour_lines=True, show_data=True, show_hillshades: bool = False, figsize=(12, 12), **kwargs): """ Args: figsize: show_hillshades: model: contour_lines: show_faults: show_data: **kwargs Returns: """ plot = PlotSolution(model) plot.plot_map(contour_lines=contour_lines, show_data=show_data, show_hillshades=show_hillshades, figsize=figsize, **kwargs) def plot_section_traces(model, section_names=None, contour_lines=False, show_data=True, show_all_data=False): """ Args: model: show_data: section_names: contour_lines: Returns: """ plot = PlotSolution(model) if plot.model.solutions.geological_map is not None: plot.plot_map(contour_lines=contour_lines, show_data=show_data, show_all_data=show_all_data) # else: # fig = plt.figure() # plt.title('Section traces, z direction') plot.plot_section_traces(show_data=show_data, section_names=section_names, contour_lines=contour_lines, show_all_data=show_all_data) """ def plot_predef_sections(model, show_traces=True, show_data=False, section_names=None, show_faults=True, show_topo=True, figsize=(12, 12)): Args: model: show_traces: show_data: section_names: show_faults: show_topo: figsize: Returns: plot = PlotSolution(model) plot.plot_sections(show_traces=show_traces, show_data=show_data, section_names=section_names, show_faults=show_faults, show_topo=show_topo, figsize=figsize) """ def plot_section_by_name(model, section_name, show_faults=True, show_topo=True, show_data=True, show_all_data=False, radius='default', contourplot=True): # Todo needs more keywords: ### if show_data: radius, data_type plot = PlotSolution(model) plot.plot_section_by_name(section_name=section_name, show_topo=show_topo, show_faults=show_faults, show_data=show_data, show_all_data=show_all_data, radius=radius, contourplot=contourplot) def plot_all_sections(model, show_data=False, section_names=None, show_topo=True, figsize=(12, 12)): plot = PlotSolution(model) plot.plot_all_sections(show_data=show_data, section_names=section_names, show_topo=show_topo, figsize=figsize) def plot_section(model, cell_number=13, block=None, direction="y", interpolation='none', show_data=True, show_faults=True, show_topo=False, block_type=None, ve=1, show_all_data=False, show_legend=True, **kwargs): """ Plot a section of the block model Args: cell_number(int): position of the array to plot direction(str): xyz. Caartesian direction to be plotted interpolation(str): Type of interpolation of plt.imshow. Default 'none'. Acceptable values are 'none' ,'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos' ve(float): Vertical exageration **kwargs: imshow keywargs Returns: None """ plot = PlotSolution(model) plot.fig = plot.plot_block_section(model.solutions, cell_number, block, direction, interpolation, show_data, show_faults, show_topo, block_type, ve, show_all_data=show_all_data, show_legend=show_legend, **kwargs) return plot def plot_scalar_field(model, cell_number, N=20, direction="y", block=None, alpha=0.6, show_data=True, show_all_data=False, series=0, *args, **kwargs): """ Plot a potential field in a given direction. Args: cell_number(int): position of the array to plot potential_field(str): name of the potential field (or series) to plot n_pf(int): number of the potential field (or series) to plot direction(str): xyz. Caartesian direction to be plotted serie: *Deprecated* **kwargs: plt.contour kwargs Returns: None """ plot = PlotSolution(model) if block is not None: block = block else: block = model.solutions plot.plot_scalar_field(block, cell_number, N=N, direction=direction, show_data=show_data, series=series, alpha=alpha, show_all_data=show_all_data, *args, **kwargs) def plot_section_scalarfield(model, section_name, sn, levels=50, show_faults=True, show_topo=True, lithback=True): """ Plot the potential field in the predefined sections. Args: model: section_name: name of the section sn: scalar field number, order like in model.series levels: number of isolines you want to plot show_faults: whether or not faults should be plotted show_topo: whether or not the topography should be plotted lithback: lithology background Returns: None """ plot = PlotSolution(model) plot.plot_section_scalarfield(section_name=section_name, sn=sn, levels=levels, show_faults=show_faults, show_topo=show_topo, lithback=lithback) def plot_gradient(geo_data, scalar_field, gx, gy, gz, cell_number, q_stepsize=5, direction="y", plot_scalar=True, **kwargs): """ Plot the gradient of the scalar field in a given direction. Args: geo_data (gempy.DataManagement.InputData): Input data of the model scalar_field(numpy.array): scalar field to plot with the gradient gx(numpy.array): gradient in x-direction gy(numpy.array): gradient in y-direction gz(numpy.array): gradient in z-direction cell_number(int): position of the array to plot q_stepsize(int): step size between arrows to indicate gradient direction(str): xyz. Caartesian direction to be plotted plot_scalar(bool): boolean to plot scalar field **kwargs: plt.contour kwargs Returns: None """ plot = PlotSolution(geo_data) plot.plot_gradient(scalar_field, gx, gy, gz, cell_number, q_stepsize=q_stepsize, direction=direction, plot_scalar=plot_scalar, **kwargs) def plot_topology( geo_model, edges: Set[Tuple[int, int]], centroids: Dict, direction: Union["x", "y", "z"] = "y", scale: bool = True, label_kwargs: dict = None, edge_kwargs: dict = None ): """Plot the topology adjacency graph in 2-D. Args: geo_model ([type]): GemPy geomodel instance. edges (Set[Tuple[int, int]]): Set of topology edges. centroids (Dict[int, Array[int, 3]]): Dictionary of topology id's and their centroids. direction (Union["x", "y", "z", optional): Section direction. Defaults to "y". label_kwargs (dict, optional): Keyword arguments for topology labels. Defaults to None. edge_kwargs (dict, optional): Keyword arguments for topology edges. Defaults to None. """ PlotSolution.plot_topo_g( geo_model, edges, centroids, direction=direction, scale=scale, label_kwargs=label_kwargs, edge_kwargs=edge_kwargs ) def plot_ar(geo_model, path=None, project_name=None, api_token=None, secret=None): """ Create, upload and retrieve tag to visualize the model in AR in rexview https://www.rexos.org/getting-started/ Args: geo_model (gempy.Model): path: Location for rex files. Default cwd project_name: Name of the project in rexos api_token: rexos api token secret: rexos secret Returns: gempy.addons.rex_api.Rextag """ from gempy.addons.rex_api import upload_to_rexcloud from gempy.addons.gempy_to_rexfile import write_rex, geomodel_to_rex if project_name is None: project_name = geo_model.meta.project_name if path is None: path = './' rex_bytes = geomodel_to_rex(geo_model) files_path = write_rex(rex_bytes, path) project_name_ = project_name for i in range(40): try: tag = upload_to_rexcloud(files_path, project_name=project_name_, api_token=api_token, secret=secret) break except ConnectionError: project_name_ = project_name + str(i) pass return tag
lgpl-3.0
espenhgn/nest-simulator
pynest/examples/twoneurons.py
3
1260
# -*- coding: utf-8 -*- # # twoneurons.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """Two neuron example ---------------------------- See Also ~~~~~~~~~~ :doc:`one_neuron` """ import nest import nest.voltage_trace import matplotlib.pyplot as plt weight = 20.0 delay = 1.0 stim = 1000.0 neuron1 = nest.Create("iaf_psc_alpha") neuron2 = nest.Create("iaf_psc_alpha") voltmeter = nest.Create("voltmeter") neuron1.I_e = stim nest.Connect(neuron1, neuron2, syn_spec={'weight': weight, 'delay': delay}) nest.Connect(voltmeter, neuron2) nest.Simulate(100.0) nest.voltage_trace.from_device(voltmeter) plt.show()
gpl-2.0
mickele77/FreeCAD
src/Mod/Plot/InitGui.py
18
2920
#*************************************************************************** #* * #* Copyright (c) 2011, 2012 * #* Jose Luis Cercos Pita <[email protected]> * #* * #* This program is free software; you can redistribute it and/or modify * #* it under the terms of the GNU Lesser General Public License (LGPL) * #* as published by the Free Software Foundation; either version 2 of * #* the License, or (at your option) any later version. * #* for detail see the LICENCE text file. * #* * #* This program is distributed in the hope that it will be useful, * #* but WITHOUT ANY WARRANTY; without even the implied warranty of * #* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * #* GNU Library General Public License for more details. * #* * #* You should have received a copy of the GNU Library General Public * #* License along with this program; if not, write to the Free Software * #* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * #* USA * #* * #*************************************************************************** class PlotWorkbench(Workbench): """Workbench of Plot module.""" from plotUtils import Paths import PlotGui Icon = 'Icon.svg' MenuText = "Plot" ToolTip = ("The Plot module is used to edit/save output plots performed " "by other tools") def Initialize(self): from PySide import QtCore, QtGui cmdlst = ["Plot_SaveFig", "Plot_Axes", "Plot_Series", "Plot_Grid", "Plot_Legend", "Plot_Labels", "Plot_Positions"] self.appendToolbar(str(QtCore.QT_TRANSLATE_NOOP( "Plot", "Plot edition tools")), cmdlst) self.appendMenu(str(QtCore.QT_TRANSLATE_NOOP( "Plot", "Plot")), cmdlst) try: import matplotlib except ImportError: from PySide import QtCore, QtGui msg = QtGui.QApplication.translate( "plot_console", "matplotlib not found, Plot module will be disabled", None, QtGui.QApplication.UnicodeUTF8) FreeCAD.Console.PrintMessage(msg + '\n') Gui.addWorkbench(PlotWorkbench())
lgpl-2.1
bigdataelephants/scikit-learn
examples/applications/topics_extraction_with_nmf.py
106
2313
""" ======================================================== Topics extraction with Non-Negative Matrix Factorization ======================================================== This is a proof of concept application of Non Negative Matrix Factorization of the term frequency matrix of a corpus of documents so as to extract an additive model of the topic structure of the corpus. The output is a list of topics, each represented as a list of terms (weights are not shown). The default parameters (n_samples / n_features / n_topics) should make the example runnable in a couple of tens of seconds. You can try to increase the dimensions of the problem, but be aware than the time complexity is polynomial. """ # Author: Olivier Grisel <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from time import time from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import NMF from sklearn.datasets import fetch_20newsgroups n_samples = 2000 n_features = 1000 n_topics = 10 n_top_words = 20 # Load the 20 newsgroups dataset and vectorize it. We use a few heuristics # to filter out useless terms early on: the posts are stripped of headers, # footers and quoted replies, and common English words, words occurring in # only one document or in at least 95% of the documents are removed. t0 = time() print("Loading dataset and extracting TF-IDF features...") dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes')) vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') tfidf = vectorizer.fit_transform(dataset.data[:n_samples]) print("done in %0.3fs." % (time() - t0)) # Fit the NMF model print("Fitting the NMF model with n_samples=%d and n_features=%d..." % (n_samples, n_features)) nmf = NMF(n_components=n_topics, random_state=1).fit(tfidf) print("done in %0.3fs." % (time() - t0)) feature_names = vectorizer.get_feature_names() for topic_idx, topic in enumerate(nmf.components_): print("Topic #%d:" % topic_idx) print(" ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) print()
bsd-3-clause
migueldvb/george
document/code/exo_demo_1/results.py
4
1288
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function __all__ = ["results"] import os import triangle import numpy as np import cPickle as pickle import matplotlib.pyplot as pl def results(fn): model, sampler = pickle.load(open(fn, "rb")) mu = np.median(model.f) ppm = lambda f: (f / mu - 1) * 1e6 # Plot the data. fig = pl.figure(figsize=(6, 6)) ax = fig.add_subplot(111) ax.plot(model.t, ppm(model.f), ".k") ax.set_xlim(np.min(model.t), np.max(model.t)) ax.set_xlabel("time since transit [days]") ax.set_ylabel("relative flux [ppm]") fig.subplots_adjust(left=0.2, bottom=0.2, top=0.9, right=0.9) # Plot the predictions. samples = sampler.flatchain t = np.linspace(model.t.min(), model.t.max(), 1000) for i in np.random.randint(len(samples), size=10): model.vector = samples[i] ax.plot(t, ppm(model.predict(t)), color="#4682b4", alpha=0.5) fig.savefig(os.path.splitext(fn)[0] + "-results.pdf") # Plot the corner plot. fig = triangle.corner(samples, labels=model.labels, truths=model.true_vector) fig.savefig(os.path.splitext(fn)[0] + "-triangle.png") if __name__ == "__main__": import sys results(sys.argv[1])
mit
ndingwall/scikit-learn
examples/multioutput/plot_classifier_chain_yeast.py
23
4637
""" ============================ Classifier Chain ============================ Example of using classifier chain on a multilabel dataset. For this example we will use the `yeast <https://www.openml.org/d/40597>`_ dataset which contains 2417 datapoints each with 103 features and 14 possible labels. Each data point has at least one label. As a baseline we first train a logistic regression classifier for each of the 14 labels. To evaluate the performance of these classifiers we predict on a held-out test set and calculate the :ref:`jaccard score <jaccard_similarity_score>` for each sample. Next we create 10 classifier chains. Each classifier chain contains a logistic regression model for each of the 14 labels. The models in each chain are ordered randomly. In addition to the 103 features in the dataset, each model gets the predictions of the preceding models in the chain as features (note that by default at training time each model gets the true labels as features). These additional features allow each chain to exploit correlations among the classes. The Jaccard similarity score for each chain tends to be greater than that of the set independent logistic models. Because the models in each chain are arranged randomly there is significant variation in performance among the chains. Presumably there is an optimal ordering of the classes in a chain that will yield the best performance. However we do not know that ordering a priori. Instead we can construct an voting ensemble of classifier chains by averaging the binary predictions of the chains and apply a threshold of 0.5. The Jaccard similarity score of the ensemble is greater than that of the independent models and tends to exceed the score of each chain in the ensemble (although this is not guaranteed with randomly ordered chains). """ # Author: Adam Kleczewski # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml from sklearn.multioutput import ClassifierChain from sklearn.model_selection import train_test_split from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import jaccard_score from sklearn.linear_model import LogisticRegression print(__doc__) # Load a multi-label dataset from https://www.openml.org/d/40597 X, Y = fetch_openml('yeast', version=4, return_X_y=True) Y = Y == 'TRUE' X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.2, random_state=0) # Fit an independent logistic regression model for each class using the # OneVsRestClassifier wrapper. base_lr = LogisticRegression() ovr = OneVsRestClassifier(base_lr) ovr.fit(X_train, Y_train) Y_pred_ovr = ovr.predict(X_test) ovr_jaccard_score = jaccard_score(Y_test, Y_pred_ovr, average='samples') # Fit an ensemble of logistic regression classifier chains and take the # take the average prediction of all the chains. chains = [ClassifierChain(base_lr, order='random', random_state=i) for i in range(10)] for chain in chains: chain.fit(X_train, Y_train) Y_pred_chains = np.array([chain.predict(X_test) for chain in chains]) chain_jaccard_scores = [jaccard_score(Y_test, Y_pred_chain >= .5, average='samples') for Y_pred_chain in Y_pred_chains] Y_pred_ensemble = Y_pred_chains.mean(axis=0) ensemble_jaccard_score = jaccard_score(Y_test, Y_pred_ensemble >= .5, average='samples') model_scores = [ovr_jaccard_score] + chain_jaccard_scores model_scores.append(ensemble_jaccard_score) model_names = ('Independent', 'Chain 1', 'Chain 2', 'Chain 3', 'Chain 4', 'Chain 5', 'Chain 6', 'Chain 7', 'Chain 8', 'Chain 9', 'Chain 10', 'Ensemble') x_pos = np.arange(len(model_names)) # Plot the Jaccard similarity scores for the independent model, each of the # chains, and the ensemble (note that the vertical axis on this plot does # not begin at 0). fig, ax = plt.subplots(figsize=(7, 4)) ax.grid(True) ax.set_title('Classifier Chain Ensemble Performance Comparison') ax.set_xticks(x_pos) ax.set_xticklabels(model_names, rotation='vertical') ax.set_ylabel('Jaccard Similarity Score') ax.set_ylim([min(model_scores) * .9, max(model_scores) * 1.1]) colors = ['r'] + ['b'] * len(chain_jaccard_scores) + ['g'] ax.bar(x_pos, model_scores, alpha=0.5, color=colors) plt.tight_layout() plt.show()
bsd-3-clause
larsmans/scikit-learn
examples/applications/plot_prediction_latency.py
25
11317
""" ================== Prediction Latency ================== This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode. The plots represent the distribution of the prediction latency as a boxplot. """ # Authors: Eustache Diemert <[email protected]> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import time import gc import numpy as np import matplotlib.pyplot as plt from scipy.stats import scoreatpercentile from sklearn.datasets.samples_generator import make_regression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.svm.classes import SVR def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() def atomic_benchmark_estimator(estimator, X_test, verbose=False): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_instances, dtype=np.float) for i in range(n_instances): instance = X_test[i, :] start = time.time() estimator.predict(instance) runtimes[i] = time.time() - start if verbose: print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose): """Measure runtime prediction of the whole input.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_bulk_repeats, dtype=np.float) for i in range(n_bulk_repeats): start = time.time() estimator.predict(X_test) runtimes[i] = time.time() - start runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes))) if verbose: print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False): """ Measure runtimes of prediction in both atomic and bulk mode. Parameters ---------- estimator : already trained estimator supporting `predict()` X_test : test input n_bulk_repeats : how many times to repeat when evaluating bulk mode Returns ------- atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the runtimes in seconds. """ atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose) bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose) return atomic_runtimes, bulk_runtimes def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False): """Generate a regression dataset with the given parameters.""" if verbose: print("generating dataset...") X, y, coef = make_regression(n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() if verbose: print("ok") return X_train, y_train, X_test, y_test def boxplot_runtimes(runtimes, pred_type, configuration): """ Plot a new `Figure` with boxplots of prediction runtimes. Parameters ---------- runtimes : list of `np.array` of latencies in micro-seconds cls_names : list of estimator class names that generated the runtimes pred_type : 'bulk' or 'atomic' """ fig, ax1 = plt.subplots(figsize=(10, 6)) bp = plt.boxplot(runtimes, ) cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] xtick_names = plt.setp(ax1, xticklabels=cls_infos) plt.setp(xtick_names) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Prediction Time per Instance - %s, %d feats.' % ( pred_type.capitalize(), configuration['n_features'])) ax1.set_ylabel('Prediction Time (us)') plt.show() def benchmark(configuration): """Run the whole benchmark.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) stats = {} for estimator_conf in configuration['estimators']: print("Benchmarking", estimator_conf['instance']) estimator_conf['instance'].fit(X_train, y_train) gc.collect() a, b = benchmark_estimator(estimator_conf['instance'], X_test) stats[estimator_conf['name']] = {'atomic': a, 'bulk': b} cls_names = [estimator_conf['name'] for estimator_conf in configuration[ 'estimators']] runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'atomic', configuration) runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'], configuration) def n_feature_influence(estimators, n_train, n_test, n_features, percentile): """ Estimate influence of the number of features on prediction time. Parameters ---------- estimators : dict of (name (str), estimator) to benchmark n_train : nber of training instances (int) n_test : nber of testing instances (int) n_features : list of feature-space dimensionality to test (int) percentile : percentile at which to measure the speed (int [0-100]) Returns: -------- percentiles : dict(estimator_name, dict(n_features, percentile_perf_in_us)) """ percentiles = defaultdict(defaultdict) for n in n_features: print("benchmarking with %d features" % n) X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n) for cls_name, estimator in estimators.items(): estimator.fit(X_train, y_train) gc.collect() runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False) percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes, percentile) return percentiles def plot_n_features_influence(percentiles, percentile): fig, ax1 = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] for i, cls_name in enumerate(percentiles.keys()): x = np.array(sorted([n for n in percentiles[cls_name].keys()])) y = np.array([percentiles[cls_name][n] for n in x]) plt.plot(x, y, color=colors[i], ) ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Evolution of Prediction Time with #Features') ax1.set_xlabel('#Features') ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile) plt.show() def benchmark_throughputs(configuration, duration_secs=0.1): """benchmark throughput for different estimators.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) throughputs = dict() for estimator_config in configuration['estimators']: estimator_config['instance'].fit(X_train, y_train) start_time = time.time() n_predictions = 0 while (time.time() - start_time) < duration_secs: estimator_config['instance'].predict(X_test[0]) n_predictions += 1 throughputs[estimator_config['name']] = n_predictions / duration_secs return throughputs def plot_benchmark_throughput(throughputs, configuration): fig, ax = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] cls_values = [throughputs[estimator_conf['name']] for estimator_conf in configuration['estimators']] plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors) ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs))) ax.set_xticklabels(cls_infos, fontsize=10) ymax = max(cls_values) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('Throughput (predictions/sec)') ax.set_title('Prediction Throughput for different estimators (%d ' 'features)' % configuration['n_features']) plt.show() ############################################################################### # main code start_time = time.time() # benchmark bulk/atomic prediction speed for various regressors configuration = { 'n_train': int(1e3), 'n_test': int(1e2), 'n_features': int(1e2), 'estimators': [ {'name': 'Linear Model', 'instance': SGDRegressor(penalty='elasticnet', alpha=0.01, l1_ratio=0.25, fit_intercept=True), 'complexity_label': 'non-zero coefficients', 'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)}, {'name': 'RandomForest', 'instance': RandomForestRegressor(), 'complexity_label': 'estimators', 'complexity_computer': lambda clf: clf.n_estimators}, {'name': 'SVR', 'instance': SVR(kernel='rbf'), 'complexity_label': 'support vectors', 'complexity_computer': lambda clf: len(clf.support_vectors_)}, ] } benchmark(configuration) # benchmark n_features influence on prediction speed percentile = 90 percentiles = n_feature_influence({'ridge': Ridge()}, configuration['n_train'], configuration['n_test'], [100, 250, 500], percentile) plot_n_features_influence(percentiles, percentile) # benchmark throughput throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) stop_time = time.time() print("example run in %.2fs" % (stop_time - start_time))
bsd-3-clause
mellorjc/partition_kernel_gp
part_kernel.py
1
8507
import inspect from numpy import ones, zeros, where, argmin, unique, array from numpy import logical_and, logical_or, arange, sqrt from numpy import maximum, pi, log from numpy.random import choice from numpy.linalg import norm, det from scipy.stats import binom, uniform from sklearn.metrics.pairwise import pairwise_distances from scipy.spatial.distance import euclidean from scipy.sparse.linalg import LinearOperator, cg from random import randint from numpy.random import randint as nrandint from multiprocessing import Pool, Array import ctypes from numpy.ctypeslib import as_array from sklearn.neighbors import KNeighborsClassifier as KClass import pickle import sys _sharedX = None _sharedX2 = None def para_func(arg): num, shape, metric, cnum = arg X = _sharedX centers = choice(X.shape[0], cnum, False) mod = KClass(1, metric=metric) mod.fit(X[centers, :], range(centers.size)) dist, m = mod.kneighbors(X, return_distance=True) return m def para_func2(arg): num, shape, shape2, metric, cnum = arg X = _sharedX X2 = _sharedX2 centers = choice(X.shape[0], cnum, False) mod = KClass(1, metric=metric) mod.fit(X[centers, :], range(centers.size)) dista1, ma1 = mod.kneighbors(X, return_distance=True) distb1, mb1 = mod.kneighbors(X2, return_distance=True) mall = ma1 mall2 = mb1 return mall2, mall def initShared(X): global _sharedX _sharedX = X def initShared2(X, X2): global _sharedX global _sharedX2 _sharedX = X _sharedX2 = X2 def load_model(model_folder): model = FastKernel(None, None, None) with open(model_folder + "/model.cfg", 'r') as f: model.X = load() return model class FastKernel: def __init__(self, X, y, m=200, h=8, distance='euclidean', sigma=0.01, eps=0.05, num_proc=8): self.cnum = 3*X.shape[0]//4 self.d = distance self.X = X self.y = y self.num_proc = num_proc self.v = None self.m = m self.h = h self.sigma = sigma self.eps = eps self.cs = None self.selected = False # the number of centers for each m if len(X.shape) == 1: yt = 1 else: x, yt = X.shape if yt is None: yt = 1 def _select_centers(self, X): if self.selected: return if len(X.shape) == 1: X = X.reshape((X.shape[0], 1)) self.selected = True def K(self, X): # the cluster class assigned to each example use self._select_centers(X) if len(X.shape) == 1: X = X.reshape((X.shape[0], 1)) c = zeros((X.shape[0], self.m)) share_base = Array(ctypes.c_double, X.shape[0]*X.shape[1], lock=False) share = as_array(share_base) share = share.reshape(X.shape) share[:, :] = X if self.cs is None: pool = Pool(self.num_proc, maxtasksperchild=50, initializer=initShared, initargs=[share]) cs = pool.imap(para_func, ((i, X.shape, self.d, self.cnum) for i in xrange(self.m)), 10) self.cs = list(cs) pool.close() pool.join() for i, cv in enumerate(self.cs): c[:, i] = cv.flatten() return c def K2y(self, X, X2, y): res = zeros(X.shape[0]) if len(X.shape) == 1: X = X.reshape((X.shape[0], 1)) if len(X2.shape) == 1: X2 = X2.reshape((X2.shape[0], 1)) share_base = Array(ctypes.c_double, X.shape[0]*X.shape[1], lock=False) share = as_array(share_base) share = share.reshape(X.shape) share[:, :] = X share2_base = Array(ctypes.c_double, X2.shape[0]*X2.shape[1], lock=False) share2 = as_array(share2_base) share2 = share2.reshape(X2.shape) share2[:, :] = X2 pool = Pool(self.num_proc, maxtasksperchild=50, initializer=initShared2, initargs=[share2, share]) cs = pool.imap(para_func2, ((i, X2.shape, X.shape, self.d, self.cnum) for i in xrange(self.m)), 10) for c, c2 in cs: for cls in unique(c): if cls > -1: res[c.flatten() == cls] += y[c2.flatten() == cls].sum() res /= self.m pool.close() pool.join() return res def K2(self, X, X2): #if X.ndim == 0: # X = X.reshape((1, 1)) #if X2.ndim == 0: # X2 = X2.reshape((1, 1)) if X.ndim == 1: X = X.reshape((X.shape[0], 1)) if X2.ndim == 1: X2 = X2.reshape((X2.shape[0], 1)) if X.ndim == 0: Xsh = 1 Xsh2 = 1 else: Xsh = X.shape[0] Xsh2 = X.shape[1] if X2.ndim == 0: X2sh = 1 X2sh2 = 1 else: X2sh = X2.shape[0] X2sh2 = X2.shape[1] res = zeros((Xsh, X2sh)) share_base = Array(ctypes.c_double, Xsh*Xsh2, lock=False) share = as_array(share_base) share = share.reshape((Xsh, Xsh2)) share[:, :] = X share2_base = Array(ctypes.c_double, X2sh*X2sh2, lock=False) share2 = as_array(share2_base) share2 = share2.reshape(X2.shape) share2[:, :] = X2 pool = Pool(self.num_proc, maxtasksperchild=50, initializer=initShared2, initargs=[share2, share]) cs = pool.imap(para_func2, ((i, X2.shape, X.shape, self.d, self.cnum) for i in xrange(self.m)), 10) for c, c2 in cs: for i, c_v in enumerate(c): for j, c_v2 in enumerate(c2): if c_v == c_v2 and c_v != -1: res[i, j] += 1. res /= self.m pool.close() pool.join() if X.ndim == 0: res = res.flatten() return res def Ky(self, X, y): if len(X.shape) == 1: X = X.reshape((X.shape[0], 1)) res = zeros(X.shape[0]) c = self.K(X) a = 1.0 #a = 0.95 for i in range(self.m): for j in unique(c[:, i]): if j < 0: continue ind = where(c[:, i] == j)[0] for k in ind: res[k] += (1.-a)*y[k] + a*y[ind].sum() if (c[:, i] == -1).any(): res[c[:, i] == -1] += y[c[:, i] == -1] # JOE remove if not doing semi res /= float(self.m) return res def B(self, X, y): if len(X.shape) == 1: X = X.reshape((X.shape[0], 1)) res = zeros(X.shape[0]) c = self.K(X) for i in range(self.m): for j in unique(c[:, i]): ind = c[:, i] == j if j < 0: res[ind] += (1./(1. + self.sigma))*y[ind] continue res[ind] += (1./(float(where(ind)[0].size) + self.sigma))*y[ind].sum() res /= self.m res = (1./self.sigma)*y - res return res def train(self, X, y): if self.v is None: A = LinearOperator((X.shape[0], X.shape[0]), lambda x: self.Ky(X, x) + self.sigma*x) M = LinearOperator((X.shape[0], X.shape[0]), lambda x: self.B(X, x)) self.v, info = cg(A, y, M=M, maxiter=40, tol=self.eps, callback=resid_callback) def predict_mean(self, X2, X, y): self.train(X, y) self.cs = None res = self.K2y(X2, X, self.v) return res def predict_var(self, X2, X, y): vs = zeros(X2.shape[0]) for i in range(X2.shape[0]): self.cs = None # v = self.K2(X2[i, :], X2[i, :]) v = 1. # by definition of partition kernel K(x, x) = 1 A = LinearOperator((X.shape[0], X.shape[0]), lambda x: self.Ky(X, x) + self.sigma*x) M = LinearOperator((X.shape[0], X.shape[0]), lambda x: self.B(X, x)) self.cs = None if X2.ndim == 1: k_star = self.K2(X2[i], X) else: k_star = self.K2(X2[i, :], X) tmp, info = cg(A, k_star.T, M=M, maxiter=40, tol=self.eps) vs[i] = v - k_star.dot(tmp) return vs def likelihood(self, X, y): self.train(X, y) A = self.K2(X, X) res = -.5*y.dot(self.v)-y.shape[0]*log(2.*pi)-.5*log(det(A)) return res def resid_callback(xk): res = inspect.currentframe().f_back.f_locals['resid'] with open('residuals.dat', 'a') as f: f.write('%s\n' % res)
mit
jayfans3/pu-learning
src/tests/breastCancer.py
2
4863
""" Created on Dec 22, 2012 @author: Alexandre The goal of this test is to verifiy that the PUAdapter really allows a regular estimator to achieve better accuracy in the case where the \"negative\" examples are contaminated with a number of positive examples. Here we use the breast cancer dataset from UCI. We purposely take a few malignant examples and assign them the bening label and consider the bening examples as being \"unlabled\". We then compare the performance of the estimator while using the PUAdapter and without using the PUAdapter. To asses the performance, we use the F1 score, precision and recall. Results show that PUAdapter greatly increases the performance of an estimator in the case where the negative examples are contaminated with positive examples. We call this situation positive and unlabled learning. """ import numpy as np import matplotlib.pyplot as plt from puLearning.puAdapter import PUAdapter from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import precision_recall_fscore_support def load_breast_cancer(path): f = open(path) lines = f.readlines() f.close() examples = [] labels = [] for l in lines: spt = l.split(',') label = float(spt[-1]) feat = spt[:-1] if '?' not in spt: examples.append(feat) labels.append(label) return np.array(examples), np.array(labels) if __name__ == '__main__': np.random.seed(42) print "Loading dataset" print X,y = load_breast_cancer('../datasets/breast-cancer-wisconsin.data') #Shuffle dataset print "Shuffling dataset" print permut = np.random.permutation(len(y)) X = X[permut] y = y[permut] #make the labels -1.,+1. I don't like 2 and 4 (: y[np.where(y == 2)[0]] = -1. y[np.where(y == 4)[0]] = +1. print "Loaded ", len(y), " examples" print len(np.where(y == -1.)[0])," are bening" print len(np.where(y == +1.)[0])," are malignant" print #Split test/train print "Splitting dataset in test/train sets" print split = 2*len(y)/3 X_train = X[:split] y_train = y[:split] X_test = X[split:] y_test = y[split:] print "Training set contains ", len(y_train), " examples" print len(np.where(y_train == -1.)[0])," are bening" print len(np.where(y_train == +1.)[0])," are malignant" print pu_f1_scores = [] reg_f1_scores = [] n_sacrifice_iter = range(0, len(np.where(y_train == +1.)[0])-21, 5) for n_sacrifice in n_sacrifice_iter: #send some positives to the negative class! :) print "PU transformation in progress." print "Making ", n_sacrifice, " malignant examples bening." print y_train_pu = np.copy(y_train) pos = np.where(y_train == +1.)[0] np.random.shuffle(pos) sacrifice = pos[:n_sacrifice] y_train_pu[sacrifice] = -1. print "PU transformation applied. We now have:" print len(np.where(y_train_pu == -1.)[0])," are bening" print len(np.where(y_train_pu == +1.)[0])," are malignant" print #Get f1 score with pu_learning print "PU learning in progress..." estimator = RandomForestClassifier(n_estimators=100, criterion='gini', bootstrap=True, n_jobs=1) pu_estimator = PUAdapter(estimator) pu_estimator.fit(X_train,y_train_pu) y_pred = pu_estimator.predict(X_test) precision, recall, f1_score, _ = precision_recall_fscore_support(y_test, y_pred) pu_f1_scores.append(f1_score[1]) print "F1 score: ", f1_score[1] print "Precision: ", precision[1] print "Recall: ", recall[1] print #Get f1 score without pu_learning print "Regular learning in progress..." estimator = RandomForestClassifier(n_estimators=100, bootstrap=True, n_jobs=1) estimator.fit(X_train,y_train_pu) y_pred = estimator.predict(X_test) precision, recall, f1_score, _ = precision_recall_fscore_support(y_test, y_pred) reg_f1_scores.append(f1_score[1]) print "F1 score: ", f1_score[1] print "Precision: ", precision[1] print "Recall: ", recall[1] print print plt.title("Random forest with/without PU learning") plt.plot(n_sacrifice_iter, pu_f1_scores, label='PU Adapted Random Forest') plt.plot(n_sacrifice_iter, reg_f1_scores, label='Random Forest') plt.xlabel('Number of positive examples hidden in the unlabled set') plt.ylabel('F1 Score') plt.legend() plt.show()
bsd-3-clause
morrisonwudi/zipline
zipline/utils/data.py
31
12761
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import numpy as np import pandas as pd from copy import deepcopy def _ensure_index(x): if not isinstance(x, pd.Index): x = pd.Index(sorted(x)) return x class RollingPanel(object): """ Preallocation strategies for rolling window over expanding data set Restrictions: major_axis can only be a DatetimeIndex for now """ def __init__(self, window, items, sids, cap_multiple=2, dtype=np.float64, initial_dates=None): self._pos = window self._window = window self.items = _ensure_index(items) self.minor_axis = _ensure_index(sids) self.cap_multiple = cap_multiple self.dtype = dtype if initial_dates is None: self.date_buf = np.empty(self.cap, dtype='M8[ns]') * pd.NaT elif len(initial_dates) != window: raise ValueError('initial_dates must be of length window') else: self.date_buf = np.hstack( ( initial_dates, np.empty( window * (cap_multiple - 1), dtype='datetime64[ns]', ), ), ) self.buffer = self._create_buffer() @property def cap(self): return self.cap_multiple * self._window @property def _start_index(self): return self._pos - self._window @property def start_date(self): return self.date_buf[self._start_index] def oldest_frame(self, raw=False): """ Get the oldest frame in the panel. """ if raw: return self.buffer.values[:, self._start_index, :] return self.buffer.iloc[:, self._start_index, :] def set_minor_axis(self, minor_axis): self.minor_axis = _ensure_index(minor_axis) self.buffer = self.buffer.reindex(minor_axis=self.minor_axis) def set_items(self, items): self.items = _ensure_index(items) self.buffer = self.buffer.reindex(items=self.items) def _create_buffer(self): panel = pd.Panel( items=self.items, minor_axis=self.minor_axis, major_axis=range(self.cap), dtype=self.dtype, ) return panel def extend_back(self, missing_dts): """ Resizes the buffer to hold a new window with a new cap_multiple. If cap_multiple is None, then the old cap_multiple is used. """ delta = len(missing_dts) if not delta: raise ValueError( 'missing_dts must be a non-empty index', ) self._window += delta self._pos += delta self.date_buf = self.date_buf.copy() self.date_buf.resize(self.cap) self.date_buf = np.roll(self.date_buf, delta) old_vals = self.buffer.values shape = old_vals.shape nan_arr = np.empty((shape[0], delta, shape[2])) nan_arr.fill(np.nan) new_vals = np.column_stack( (nan_arr, old_vals, np.empty((shape[0], delta * (self.cap_multiple - 1), shape[2]))), ) self.buffer = pd.Panel( data=new_vals, items=self.items, minor_axis=self.minor_axis, major_axis=np.arange(self.cap), dtype=self.dtype, ) # Fill the delta with the dates we calculated. where = slice(self._start_index, self._start_index + delta) self.date_buf[where] = missing_dts def add_frame(self, tick, frame, minor_axis=None, items=None): """ """ if self._pos == self.cap: self._roll_data() values = frame if isinstance(frame, pd.DataFrame): values = frame.values self.buffer.values[:, self._pos, :] = values.astype(self.dtype) self.date_buf[self._pos] = tick self._pos += 1 def get_current(self, item=None, raw=False, start=None, end=None): """ Get a Panel that is the current data in view. It is not safe to persist these objects because internal data might change """ item_indexer = slice(None) if item: item_indexer = self.items.get_loc(item) start_index = self._start_index end_index = self._pos # get inital date window where = slice(start_index, end_index) current_dates = self.date_buf[where] def convert_datelike_to_long(dt): if isinstance(dt, pd.Timestamp): return dt.asm8 if isinstance(dt, datetime.datetime): return np.datetime64(dt) return dt # constrict further by date if start: start = convert_datelike_to_long(start) start_index += current_dates.searchsorted(start) if end: end = convert_datelike_to_long(end) _end = current_dates.searchsorted(end, 'right') end_index -= len(current_dates) - _end where = slice(start_index, end_index) values = self.buffer.values[item_indexer, where, :] current_dates = self.date_buf[where] if raw: # return copy so we can change it without side effects here return values.copy() major_axis = pd.DatetimeIndex(deepcopy(current_dates), tz='utc') if values.ndim == 3: return pd.Panel(values, self.items, major_axis, self.minor_axis, dtype=self.dtype) elif values.ndim == 2: return pd.DataFrame(values, major_axis, self.minor_axis, dtype=self.dtype) def set_current(self, panel): """ Set the values stored in our current in-view data to be values of the passed panel. The passed panel must have the same indices as the panel that would be returned by self.get_current. """ where = slice(self._start_index, self._pos) self.buffer.values[:, where, :] = panel.values def current_dates(self): where = slice(self._start_index, self._pos) return pd.DatetimeIndex(deepcopy(self.date_buf[where]), tz='utc') def _roll_data(self): """ Roll window worth of data up to position zero. Save the effort of having to expensively roll at each iteration """ self.buffer.values[:, :self._window, :] = \ self.buffer.values[:, -self._window:, :] self.date_buf[:self._window] = self.date_buf[-self._window:] self._pos = self._window @property def window_length(self): return self._window class MutableIndexRollingPanel(object): """ A version of RollingPanel that exists for backwards compatibility with batch_transform. This is a copy to allow behavior of RollingPanel to drift away from this without breaking this class. This code should be considered frozen, and should not be used in the future. Instead, see RollingPanel. """ def __init__(self, window, items, sids, cap_multiple=2, dtype=np.float64): self._pos = 0 self._window = window self.items = _ensure_index(items) self.minor_axis = _ensure_index(sids) self.cap_multiple = cap_multiple self.cap = cap_multiple * window self.dtype = dtype self.date_buf = np.empty(self.cap, dtype='M8[ns]') self.buffer = self._create_buffer() def _oldest_frame_idx(self): return max(self._pos - self._window, 0) def oldest_frame(self, raw=False): """ Get the oldest frame in the panel. """ if raw: return self.buffer.values[:, self._oldest_frame_idx(), :] return self.buffer.iloc[:, self._oldest_frame_idx(), :] def set_sids(self, sids): self.minor_axis = _ensure_index(sids) self.buffer = self.buffer.reindex(minor_axis=self.minor_axis) def _create_buffer(self): panel = pd.Panel( items=self.items, minor_axis=self.minor_axis, major_axis=range(self.cap), dtype=self.dtype, ) return panel def get_current(self): """ Get a Panel that is the current data in view. It is not safe to persist these objects because internal data might change """ where = slice(self._oldest_frame_idx(), self._pos) major_axis = pd.DatetimeIndex(deepcopy(self.date_buf[where]), tz='utc') return pd.Panel(self.buffer.values[:, where, :], self.items, major_axis, self.minor_axis, dtype=self.dtype) def set_current(self, panel): """ Set the values stored in our current in-view data to be values of the passed panel. The passed panel must have the same indices as the panel that would be returned by self.get_current. """ where = slice(self._oldest_frame_idx(), self._pos) self.buffer.values[:, where, :] = panel.values def current_dates(self): where = slice(self._oldest_frame_idx(), self._pos) return pd.DatetimeIndex(deepcopy(self.date_buf[where]), tz='utc') def _roll_data(self): """ Roll window worth of data up to position zero. Save the effort of having to expensively roll at each iteration """ self.buffer.values[:, :self._window, :] = \ self.buffer.values[:, -self._window:, :] self.date_buf[:self._window] = self.date_buf[-self._window:] self._pos = self._window def add_frame(self, tick, frame, minor_axis=None, items=None): """ """ if self._pos == self.cap: self._roll_data() if isinstance(frame, pd.DataFrame): minor_axis = frame.columns items = frame.index if set(minor_axis).difference(set(self.minor_axis)) or \ set(items).difference(set(self.items)): self._update_buffer(frame) vals = frame.T.astype(self.dtype) self.buffer.loc[:, self._pos, :] = vals self.date_buf[self._pos] = tick self._pos += 1 def _update_buffer(self, frame): # Get current frame as we only need to care about the data that is in # the active window old_buffer = self.get_current() if self._pos >= self._window: # Don't count the last major_axis entry if we're past our window, # since it's about to roll off the end of the panel. old_buffer = old_buffer.iloc[:, 1:, :] nans = pd.isnull(old_buffer) # Find minor_axes that have only nans # Note that minor is axis 2 non_nan_cols = set(old_buffer.minor_axis[~np.all(nans, axis=(0, 1))]) # Determine new columns to be added new_cols = set(frame.columns).difference(non_nan_cols) # Update internal minor axis self.minor_axis = _ensure_index(new_cols.union(non_nan_cols)) # Same for items (fields) # Find items axes that have only nans # Note that items is axis 0 non_nan_items = set(old_buffer.items[~np.all(nans, axis=(1, 2))]) new_items = set(frame.index).difference(non_nan_items) self.items = _ensure_index(new_items.union(non_nan_items)) # :NOTE: # There is a simpler and 10x faster way to do this: # # Reindex buffer to update axes (automatically adds nans) # self.buffer = self.buffer.reindex(items=self.items, # major_axis=np.arange(self.cap), # minor_axis=self.minor_axis) # # However, pandas==0.12.0, for which we remain backwards compatible, # has a bug in .reindex() that this triggers. Using .update() as before # seems to work fine. new_buffer = self._create_buffer() new_buffer.update( self.buffer.loc[non_nan_items, :, non_nan_cols]) self.buffer = new_buffer
apache-2.0
chenyyx/scikit-learn-doc-zh
examples/zh/cluster/plot_color_quantization.py
61
3444
# -*- coding: utf-8 -*- """ ================================== Color Quantization using K-Means ================================== Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality. In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file format, for example, uses such a palette. For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown. """ # Authors: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin from sklearn.datasets import load_sample_image from sklearn.utils import shuffle from time import time n_colors = 64 # Load the Summer Palace photo china = load_sample_image("china.jpg") # Convert to floats instead of the default 8 bits integer coding. Dividing by # 255 is important so that plt.imshow behaves works well on float data (need to # be in the range [0-1]) china = np.array(china, dtype=np.float64) / 255 # Load Image and transform to a 2D numpy array. w, h, d = original_shape = tuple(china.shape) assert d == 3 image_array = np.reshape(china, (w * h, d)) print("Fitting model on a small sub-sample of the data") t0 = time() image_array_sample = shuffle(image_array, random_state=0)[:1000] kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample) print("done in %0.3fs." % (time() - t0)) # Get labels for all points print("Predicting color indices on the full image (k-means)") t0 = time() labels = kmeans.predict(image_array) print("done in %0.3fs." % (time() - t0)) codebook_random = shuffle(image_array, random_state=0)[:n_colors + 1] print("Predicting color indices on the full image (random)") t0 = time() labels_random = pairwise_distances_argmin(codebook_random, image_array, axis=0) print("done in %0.3fs." % (time() - t0)) def recreate_image(codebook, labels, w, h): """Recreate the (compressed) image from the code book & labels""" d = codebook.shape[1] image = np.zeros((w, h, d)) label_idx = 0 for i in range(w): for j in range(h): image[i][j] = codebook[labels[label_idx]] label_idx += 1 return image # Display all results, alongside original image plt.figure(1) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Original image (96,615 colors)') plt.imshow(china) plt.figure(2) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, K-Means)') plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h)) plt.figure(3) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, Random)') plt.imshow(recreate_image(codebook_random, labels_random, w, h)) plt.show()
gpl-3.0
moserand/crosswater
crosswater/routing_model/convert_hdf_tributaries.py
1
3005
"""Convert the HDF5 from one group with one table per timestep into a table with one group with one table per catchment. This converter is for the aggregation per tribuary. """ import numpy as np import tables import fnmatch from crosswater.read_config import read_config from crosswater.tools.time_helper import ProgressDisplay class Convert(object): """Convert table per timestep to table per catchment """ def __init__(self, config_file): config = read_config(config_file) self.input_file_name = config['routing_model']['input_steps_path'] self.output_file_name = config['routing_model']['output_catchments_path'] ### missing in current config file def _open_files(self): """Open HDF5 input and output files. """ self.hdf_input = tables.open_file(self.input_file_name, mode = 'r') self.hdf_output = tables.open_file(self.output_file_name, mode = 'w', title='Crosswater aggregated results per catchment') def _close_files(self): """Close HDF5 input and output files. """ self.hdf_input.close() self.hdf_output.close() def count_steps(self, input_file): """Count timesteps """ node = self.hdf_input.get_node('/') node_names = [i._v_name for i in node._f_list_nodes()] steps = fnmatch.filter(node_names,'step_*') return len(steps) def get_ids(self, input_file): """Get catchment ids """ node_0 = self.hdf_input.get_node('/', 'step_0/values') ids = node_0.col('catchment_outlet') return ids def _get_values(self,id_): """Get values for one catchment and all timesteps """ values = np.empty(shape=(self.steps,1), dtype=[('discharge', '<f8'), ('load_aggregated', '<f8')]) for step in range(self.steps): in_table = self.hdf_input.get_node('/', 'step_{}/values'.format(step)) row = in_table.read_where('catchment_outlet==id_')[['discharge', 'load_aggregated']] values[step] = row in_table.flush() return values def convert(self): """Write values to output table """ filters = tables.Filters(complevel=5, complib='zlib') for id_ in self.ids: #out_table = pandas.DataFrame(index=range(self.steps), columns=['discharge', 'load']) values = self._get_values(id_) group = self.hdf_output.create_group('/', 'catch_{}'.format(int(id_))) self.hdf_output.create_table(group, 'values', values, filters=filters) def run(self): """Run thread. """ self._open_files() self.steps = self.count_steps(self.hdf_input) self.ids = self.get_ids(self.hdf_input) self.convert() self._close_files()
gpl-3.0
SDK/metadatachecker
sacm/utils.py
1
14423
__author__ = 'sdk' from time import strftime, gmtime, mktime import datetime from xml.dom import minidom import numpy as np import cx_Oracle from password import databaseSCO as database import pandas as pd pd.options.mode.chained_assignment = None tables = {"ASDM": "XML_ASDM_ENTITIES", "Main": "XML_MAINTABLE_ENTITIES", "AlmaRadiometer": "XML_ALMARADIOMETERTAB_ENTITIES", "Antenna": "XML_ANTENNATABLE_ENTITIES", "CalAmpli": "XML_CALAMPLITABLE_ENTITIES", "CalAtmosphere": "XML_CALATMOSPHERETABL_ENTITIES", "CalCurve": "XML_CALCURVETABLE_ENTITIES", "CalSeeing": "XML_CALSEEINGTABLE_ENTITIES", "CalWVR": "XML_CALWVRTABLE_ENTITIES", "CalData": "XML_CALDATATABLE_ENTITIES", "CalDelay": "XML_CALDELAYTABLE_ENTITIES", "CalDevice": "XML_CALDEVICETABLE_ENTITIES", "CalFlux": "XML_CALFLUXTABLE_ENTITIES", "CalPhase": "XML_CALPHASETABLE_ENTITIES", "CalReduction": "XML_CALREDUCTIONTABLE_ENTITIES", "ConfigDescription": "XML_CONFIGDESCRIPTION_ENTITIES", "CorrelatorMode": "XML_CORRELATORMODETAB_ENTITIES", "DataDescription": "XML_DATADESCRIPTIONTA_ENTITIES", "ExecBlock": "XML_EXECBLOCKTABLE_ENTITIES", "Feed": "XML_FEEDTABLE_ENTITIES", "Annotation": "XML_ANNOTATIONTABLE_ENTITIES", "Ephemeris": "XML_EPHEMERISTABLE_ENTITIES", "Anotation": "XML_ANNOTATIONTABLE_ENTITIES", "CalBandpass": "XML_CALBANDPASSTABLE_ENTITIES", "CalPointing": "XML_CALPOINTINGTABLE_ENTITIES", "Field": "XML_FIELDTABLE_ENTITIES", "Flag": "XML_FLAGTABLE_ENTITIES", "Focus": "XML_FOCUSTABLE_ENTITIES", "FocusModel": "XML_FOCUSMODELTABLE_ENTITIES", "Pointing": "XML_POINTINGTABLE_ENTITIES", "PointingModel": "XML_POINTINGMODELTABL_ENTITIES", "Polarization": "XML_POLARIZATIONTABLE_ENTITIES", "Processor": "XML_PROCESSORTABLE_ENTITIES", "Receiver": "XML_RECEIVERTABLE_ENTITIES", "SBSummary": "XML_SBSUMMARYTABLE_ENTITIES", "Scan": "XML_SCANTABLE_ENTITIES", "Source": "XML_SOURCETABLE_ENTITIES", "SpectralWindow": "XML_SPECTRALWINDOWTAB_ENTITIES", "State": "XML_STATETABLE_ENTITIES", "Station": "XML_STATIONTABLE_ENTITIES", "Subscan": "XML_SUBSCANTABLE_ENTITIES", "SquareLawDetector": "XML_SQUARELAWDETECTOR_ENTITIES", "SwitchCycle": "XML_SWITCHCYCLETABLE_ENTITIES", "SysCal": "XML_SYSCALTABLE_ENTITIES", "Weather": "XML_WEATHERTABLE_ENTITIES", "SchedBlock":"XML_SCHEDBLOCK_ENTITIES", "ObsProject":"XML_OBSPROJECT_ENTITIES"} def sdmTimeString(number=None): """ Convert a time value (as used by ASDM, i.e. MJD in nanoseconds) into a FITS type string. :param number: """ st = number/1000000000L # decimal microseconds ... number = (number-st*1000000000L)/1000 # number of seconds since 1970-01-01T00:00:00 st = st-3506716800L return strftime("%Y-%m-%dT%H:%M:%S", gmtime(st))+(".%6.6d" % number) def gtm(t=None): """ Convert a time value (as used by ASDM, i.e. MJD in nanoseconds) into a FITS type string. :param t: """ st = t-3506716800000000000L return st/1000000000L def gtm2(number=None): """ Convert a time value (as used by ASDM, i.e. MJD in nanoseconds) into a FITS type string. :param number: """ st = number/1000000000L # decimal microseconds ... number = (number-st*1000000000L)/1000 # number of seconds since 1970-01-01T00:00:00 st = st-3506716800L return datetime.datetime.fromtimestamp(mktime(gmtime(st))).replace(microsecond=(number)) def returnMAXPWVC(pwv=None): if pwv <= 0.472: return 0.472 elif pwv <= 0.658: return 0.658 elif pwv <= 0.913: return 0.913 elif pwv <= 1.262: return 1.262 elif pwv <= 1.796: return 1.796 elif pwv <= 2.748: return 2.748 else: return 5.186 def findChannel(start=None, width=None, repFreq=None, nchan=None): channel = 0 if width < 0: for i in xrange(nchan): if start > repFreq: start = start + width else: channel = -1.*i break else: for i in xrange(nchan): if start < repFreq: start = start + width else: channel = i break return channel def RadianTo(num=None, unit=None): """ :param num: :param unit: :return: """ Deg = float(num)*180.0/np.pi if unit == 'dms': if Deg < 0: Deg = -Deg sign = '-' else: sign = '+' g = int(Deg) m = int((Deg-g)*60.) s = (Deg-g-m/60.)*3600. return sign+str(g)+":"+str(m)+":"+str('%5.5f' % s) if unit == 'hms': h = int(Deg/15.) m = int((Deg/15.-h)*60.) s = (Deg/15.-h-m/60.)*3600. return str(h)+":"+str(m)+":"+str('%5.5f' % s) def arrayParser(line=None, dimensions=None, castFloat=False): """ :param line: String to be formated :param dimensions: dimensions of the array :return: a list, or a list of list 1D o 2D arrays, no support for 3D arrays yet """ result = list() line = line.strip() if dimensions == 1: elements = line.split(' ')[1] splits = line.split(' ')[2:] for i in splits: result.append(float(i)) if castFloat else result.append(i) if int(elements) == len(result): return result else: return False if dimensions == 2: rows = int(line.split(' ')[1]) columns = int(line.split(' ')[2]) splits = line.split(' ')[3:] for j in range(0, rows): temp = list() for i in range(0, columns): temp.append(float(splits[i+(j*columns)])) if castFloat else temp.append(splits[i+(j*columns)]) result.append(temp) return result def GetXML(archiveUID=None,table=None): """ :param archiveUID: Archive UID :param table: Table :return: XML String """ sqlXML = "select XMLType.GetClobVal(xml) from ALMA.XXXXYYY where archive_uid='ZZZZCCCC' " sqlXML = sqlXML.replace('XXXXYYY',tables[table]).replace('ZZZZCCCC',archiveUID) try: orcl = cx_Oracle.connect(database) cursorXML = orcl.cursor() cursorXML.execute(sqlXML) XMLTable = cursorXML.fetchone() return XMLTable[0].read() except Exception as e: print e return False return False def getProjectUID(projectCode=None): """ :param projectCode: :return: """ sql = "select prj_archive_uid from ALMA.BMMV_OBSPROJECT where prj_code = 'XXXYYY'" sql = sql.replace('XXXYYY',projectCode) try: orcl = cx_Oracle.connect(database) cursor = orcl.cursor() cursor.execute(sql) data = cursor.fetchall() orcl.close() return data[0][0] except Exception as e: print e def getSBMOUS(): sql = "select DOMAIN_ENTITY_ID, PARENT_OBS_UNIT_SET_STATUS_ID from ALMA.SCHED_BLOCK_STATUS" try: orcl = cx_Oracle.connect(database) cursor = orcl.cursor() cursor.execute(sql) data = cursor.fetchall() status = list() for i in data: status.append((i[0],i[1])) orcl.close() return status except Exception as e: print e def getSBNames(): sql = "select archive_uid, sb_name from ALMA.BMMV_SCHEDBLOCK" try: orcl = cx_Oracle.connect(database) cursor = orcl.cursor() cursor.execute(sql) data = cursor.fetchall() sbnames = list() for i in data: sbnames.append((i[0],i[1])) orcl.close() return sbnames except Exception as e: print e def getProjectCodes(cycle=2): cycle_code = dict() cycle_code[0] = '2011._.%._' cycle_code[1] = '2012._.%._' cycle_code[2] = '2013._.%._' cycle_code[3] = '2015._.%._' sql = '''select al2.PRJ_ARCHIVE_UID, al2.code from ALMA.OBS_PROJECT_STATUS al1, ALMA.BMMV_OBSPROJECT al2 where al1.obs_project_id in (select prj_archive_uid from ALMA.BMMV_OBSPROJECT where prj_code like 'XXXYYYZZZ') and al1.domain_entity_state in ('Ready', 'Canceled', 'InProgress', 'Broken','Completed', 'Repaired','Phase2Submitted') and al1.OBS_PROJECT_ID = al2.PRJ_ARCHIVE_UID ''' sql = sql.replace('XXXYYYZZZ',cycle_code[int(cycle)]) try: orcl = cx_Oracle.connect(database) cursor = orcl.cursor() cursor.execute(sql) data = cursor.fetchall() codes = list() for i in data: codes.append((i[0],i[1])) orcl.close() return codes except Exception as e: print e def getSBs(prj_uid=None): sql = '''with t1 as ( select status_entity_id as seid1 from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'PPPRRRJJJ' and PARENT_OBS_UNIT_SET_STATUS_ID is null ), t2 as ( select status_entity_id as seid2, PARENT_OBS_UNIT_SET_STATUS_ID as paid2, domain_entity_id from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'PPPRRRJJJ' ), t3 as ( select status_entity_id as seid3, PARENT_OBS_UNIT_SET_STATUS_ID as paid3 from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'PPPRRRJJJ' ), t4 as ( select status_entity_id as seid4, PARENT_OBS_UNIT_SET_STATUS_ID as paid4 from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'PPPRRRJJJ' ), t5 as ( select domain_entity_id as scheckblock_uid, PARENT_OBS_UNIT_SET_STATUS_ID as paid5 from ALMA.SCHED_BLOCK_STATUS where OBS_PROJECT_ID = 'PPPRRRJJJ' ) SELECT t2.domain_entity_id, t5.scheckblock_uid FROM t1, t2, t3, t4, t5 WHERE t1.seid1 = t2.paid2 AND t2.seid2 = t3.paid3 AND t3.seid3 = t4.paid4 AND t4.seid4 = t5.paid5 ORDER BY 1 ASC''' sql = sql.replace('PPPRRRJJJ', prj_uid) try: orcl = cx_Oracle.connect(database) cursor = orcl.cursor() cursor.execute(sql) sb = cursor.fetchall() orcl.close() return sb except Exception as e: orcl.close() print e def spectrals_sb(prj_uid=None, partid=None): sql = '''with t1 as ( select status_entity_id as seid1 from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'PPPRRRJJJ' and PARENT_OBS_UNIT_SET_STATUS_ID is null ), t2 as ( select status_entity_id as seid2, PARENT_OBS_UNIT_SET_STATUS_ID as paid2, domain_entity_id from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'PPPRRRJJJ' ), t3 as ( select status_entity_id as seid3, PARENT_OBS_UNIT_SET_STATUS_ID as paid3 from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'PPPRRRJJJ' ), t4 as ( select status_entity_id as seid4, PARENT_OBS_UNIT_SET_STATUS_ID as paid4 from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'PPPRRRJJJ' ), t5 as ( select domain_entity_id as scheckblock_uid, PARENT_OBS_UNIT_SET_STATUS_ID as paid5 from ALMA.SCHED_BLOCK_STATUS where OBS_PROJECT_ID = 'PPPRRRJJJ' ) SELECT t2.domain_entity_id, t5.scheckblock_uid FROM t1, t2, t3, t4, t5 WHERE t1.seid1 = t2.paid2 AND t2.seid2 = t3.paid3 AND t3.seid3 = t4.paid4 AND t4.seid4 = t5.paid5 AND t2.domain_entity_id = 'ZZZXXXYYY' ORDER BY 1 ASC''' sql = sql.replace('PPPRRRJJJ', prj_uid).replace('ZZZXXXYYY', partid) try: orcl = cx_Oracle.connect(database) cursor = orcl.cursor() cursor.execute(sql) sb = cursor.fetchall() specscan = list() for i in sb: specscan.append((prj_uid,i[1],'SpectralScan')) return specscan except Exception as e: print e def is_spectralscan(prj_uid=None): sql = '''select al1.archive_uid, x.* from ALMA.XML_OBSPROJECT_ENTITIES al1, XMLTable('for $first in /*:ObsProject/*:ObsProgram/*:ScienceGoal return element i { element pol { data($first/*:SpectralSetupParameters/@polarisation)}, element type { data($first/*:SpectralSetupParameters/@type)}, element partid { data($first/*:ObsUnitSetRef/@partId)} }' PASSING al1.XML COLUMNS pol varchar2(50) PATH 'pol', type varchar2(32) PATH 'type', partid varchar2(20) PATH 'partid' ) x where al1. archive_uid = 'XXXXYYYY' order by al1.timestamp desc''' sql = sql.replace('XXXXYYYY', prj_uid) try: orcl = cx_Oracle.connect(database) cursor = orcl.cursor() cursor.execute(sql) science_goals = cursor.fetchall() cursor.close() return science_goals except Exception as e: print e def is_band89(prj_uid=None): sql = '''with t1 as ( select status_entity_id as seid1 from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'XXXXYYYYZZZZ' and PARENT_OBS_UNIT_SET_STATUS_ID is null ), t2 as ( select status_entity_id as seid2, PARENT_OBS_UNIT_SET_STATUS_ID as paid2, domain_entity_id from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'XXXXYYYYZZZZ' ), t3 as ( select status_entity_id as seid3, PARENT_OBS_UNIT_SET_STATUS_ID as paid3 from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'XXXXYYYYZZZZ' ), t4 as ( select status_entity_id as seid4, PARENT_OBS_UNIT_SET_STATUS_ID as paid4 from ALMA.OBS_UNIT_SET_STATUS where OBS_PROJECT_ID = 'XXXXYYYYZZZZ' ), t5 as ( select domain_entity_id as schedblock_uid, PARENT_OBS_UNIT_SET_STATUS_ID as paid5 from ALMA.SCHED_BLOCK_STATUS where OBS_PROJECT_ID = 'XXXXYYYYZZZZ' ), t6 as ( select archive_uid as sb_uid, receiver_band as band from ALMA.BMMV_SCHEDBLOCK where prj_ref = 'XXXXYYYYZZZZ' ) SELECT t2.domain_entity_id, t5.schedblock_uid,t6.band FROM t1, t2, t3, t4, t5, t6 WHERE t1.seid1 = t2.paid2 AND t2.seid2 = t3.paid3 AND t3.seid3 = t4.paid4 AND t4.seid4 = t5.paid5 and t6.sb_uid = t5.schedblock_uid ORDER BY 1 ASC''' sql = sql.replace('XXXXYYYYZZZZ',prj_uid) try: orcl = cx_Oracle.connect(database) cursor = orcl.cursor() cursor.execute(sql) sb = cursor.fetchall() cursor.close() return sb except Exception as e: print e
mit
HolgerPeters/scikit-learn
sklearn/decomposition/__init__.py
66
1433
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, non_negative_factorization from .pca import PCA, RandomizedPCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd from .online_lda import LatentDirichletAllocation __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'RandomizedPCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'non_negative_factorization', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD', 'LatentDirichletAllocation']
bsd-3-clause
mmottahedi/neuralnilm_prototype
scripts/e191.py
2
6647
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer from neuralnilm.updates import nesterov_momentum from functools import partial import os from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e103 Discovered that bottom layer is hardly changing. So will try just a single lstm layer e104 standard init lower learning rate e106 lower learning rate to 0.001 e108 is e107 but with batch size of 5 e109 Normal(1) for BLSTM e110 * Back to Uniform(5) for BLSTM * Using nntools eb17bd923ef9ff2cacde2e92d7323b4e51bb5f1f RESULTS: Seems to run fine again! e111 * Try with nntools head * peepholes=False RESULTS: appears to be working well. Haven't seen a NaN, even with training rate of 0.1 e112 * n_seq_per_batch = 50 e114 * Trying looking at layer by layer training again. * Start with single BLSTM layer e115 * Learning rate = 1 e116 * Standard inits e117 * Uniform(1) init e119 * Learning rate 10 # Result: didn't work well! e120 * init: Normal(1) * not as good as Uniform(5) e121 * Uniform(25) e122 * Just 10 cells * Uniform(5) e125 * Pre-train lower layers e128 * Add back all 5 appliances * Seq length 1500 * skip_prob = 0.7 e129 * max_input_power = None * 2nd layer has Uniform(5) * pre-train bottom layer for 2000 epochs * add third layer at 4000 epochs e131 e138 * Trying to replicate e82 and then break it ;) e140 diff e141 conv1D layer has Uniform(1), as does 2nd BLSTM layer e142 diff AND power e144 diff and power and max power is 5900 e145 Uniform(25) for first layer e146 gradient clip and use peepholes e147 * try again with new code e148 * learning rate 0.1 e150 * Same as e149 but without peepholes and using BLSTM not BBLSTM e151 * Max pooling 171 lower learning rate 172 even lower learning rate 173 slightly higher learning rate! 175 same as 174 but with skip prob = 0, and LSTM not BLSTM, and only 4000 epochs 176 new cost function 177 another new cost func (this one avoids NaNs) skip prob 0.7 10x higher learning rate 178 refactored cost func (functionally equiv to 177) 0.1x learning rate e180 * mse e181 * back to scaled cost * different architecture: - convd1 at input (2x) - then 3 LSTM layers, each with a 2x conv in between - no diff input e189 * divide dominant appliance power * mse """ # def scaled_cost(x, t): # raw_cost = (x - t) ** 2 # energy_per_seq = t.sum(axis=1) # energy_per_batch = energy_per_seq.sum(axis=1) # energy_per_batch = energy_per_batch.reshape((-1, 1)) # normaliser = energy_per_seq / energy_per_batch # cost = raw_cost.mean(axis=1) * (1 - normaliser) # return cost.mean() from theano.ifelse import ifelse import theano.tensor as T THRESHOLD = 0 def scaled_cost(x, t): sq_error = (x - t) ** 2 def mask_and_mean_sq_error(mask): masked_sq_error = sq_error[mask.nonzero()] mean = masked_sq_error.mean() mean = ifelse(T.isnan(mean), 0.0, mean) return mean above_thresh_mean = mask_and_mean_sq_error(t > THRESHOLD) below_thresh_mean = mask_and_mean_sq_error(t <= THRESHOLD) return (above_thresh_mean + below_thresh_mean) / 2.0 def exp_a(name): source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[0.5, 0.5, 2, 20, 20], on_power_thresholds=[5, 5, 5, 5, 5], max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=1520, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.7, n_seq_per_batch=25, input_padding=1, include_diff=False, clip_appliance_power=False ) net = Net( experiment_name=name, source=source, save_plot_interval=1000, loss_function=mse, updates=partial(nesterov_momentum, learning_rate=.00001, clip_range=(-1, 1)), layers_config=[ { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 10, 'filter_length': 2, 'stride': 1, 'nonlinearity': sigmoid }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': rectify }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Uniform(1) } ] ) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('a'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=None) except KeyboardInterrupt: break except TrainingError as exception: print("EXCEPTION:", exception) except Exception as exception: raise print("EXCEPTION:", exception) import ipdb; ipdb.set_trace() if __name__ == "__main__": main()
mit
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/matplotlib/backends/backend_gtk.py
10
37753
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os, sys, warnings def fn_name(): return sys._getframe(1).f_code.co_name if six.PY3: warnings.warn( "The gtk* backends have not been tested with Python 3.x", ImportWarning) try: import gobject import gtk; gdk = gtk.gdk import pango except ImportError: raise ImportError("Gtk* backend requires pygtk to be installed.") pygtk_version_required = (2,4,0) if gtk.pygtk_version < pygtk_version_required: raise ImportError ("PyGTK %d.%d.%d is installed\n" "PyGTK %d.%d.%d or later is required" % (gtk.pygtk_version + pygtk_version_required)) del pygtk_version_required _new_tooltip_api = (gtk.pygtk_version[1] >= 12) import matplotlib from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import RendererBase, GraphicsContextBase, \ FigureManagerBase, FigureCanvasBase, NavigationToolbar2, cursors, TimerBase from matplotlib.backend_bases import ShowBase from matplotlib.backends.backend_gdk import RendererGDK, FigureCanvasGDK from matplotlib.cbook import is_string_like, is_writable_file_like from matplotlib.figure import Figure from matplotlib.widgets import SubplotTool from matplotlib.cbook import warn_deprecated from matplotlib import ( cbook, colors as mcolors, lines, markers, rcParams, verbose) backend_version = "%d.%d.%d" % gtk.pygtk_version _debug = False #_debug = True # the true dots per inch on the screen; should be display dependent # see http://groups.google.com/groups?q=screen+dpi+x11&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=7077.26e81ad5%40swift.cs.tcd.ie&rnum=5 for some info about screen dpi PIXELS_PER_INCH = 96 # Hide the benign warning that it can't stat a file that doesn't warnings.filterwarnings('ignore', '.*Unable to retrieve the file info for.*', gtk.Warning) cursord = { cursors.MOVE : gdk.Cursor(gdk.FLEUR), cursors.HAND : gdk.Cursor(gdk.HAND2), cursors.POINTER : gdk.Cursor(gdk.LEFT_PTR), cursors.SELECT_REGION : gdk.Cursor(gdk.TCROSS), } # ref gtk+/gtk/gtkwidget.h def GTK_WIDGET_DRAWABLE(w): flags = w.flags(); return flags & gtk.VISIBLE != 0 and flags & gtk.MAPPED != 0 def draw_if_interactive(): """ Is called after every pylab drawing command """ if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.canvas.draw_idle() class Show(ShowBase): def mainloop(self): if gtk.main_level() == 0: gtk.main() show = Show() def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasGTK(figure) manager = FigureManagerGTK(canvas, num) return manager class TimerGTK(TimerBase): ''' Subclass of :class:`backend_bases.TimerBase` that uses GTK for timer events. Attributes: * interval: The time between timer events in milliseconds. Default is 1000 ms. * single_shot: Boolean flag indicating whether this timer should operate as single shot (run once and then stop). Defaults to False. * callbacks: Stores list of (func, args) tuples that will be called upon timer events. This list can be manipulated directly, or the functions add_callback and remove_callback can be used. ''' def _timer_start(self): # Need to stop it, otherwise we potentially leak a timer id that will # never be stopped. self._timer_stop() self._timer = gobject.timeout_add(self._interval, self._on_timer) def _timer_stop(self): if self._timer is not None: gobject.source_remove(self._timer) self._timer = None def _timer_set_interval(self): # Only stop and restart it if the timer has already been started if self._timer is not None: self._timer_stop() self._timer_start() def _on_timer(self): TimerBase._on_timer(self) # Gtk timeout_add() requires that the callback returns True if it # is to be called again. if len(self.callbacks) > 0 and not self._single: return True else: self._timer = None return False class FigureCanvasGTK (gtk.DrawingArea, FigureCanvasBase): keyvald = {65507 : 'control', 65505 : 'shift', 65513 : 'alt', 65508 : 'control', 65506 : 'shift', 65514 : 'alt', 65361 : 'left', 65362 : 'up', 65363 : 'right', 65364 : 'down', 65307 : 'escape', 65470 : 'f1', 65471 : 'f2', 65472 : 'f3', 65473 : 'f4', 65474 : 'f5', 65475 : 'f6', 65476 : 'f7', 65477 : 'f8', 65478 : 'f9', 65479 : 'f10', 65480 : 'f11', 65481 : 'f12', 65300 : 'scroll_lock', 65299 : 'break', 65288 : 'backspace', 65293 : 'enter', 65379 : 'insert', 65535 : 'delete', 65360 : 'home', 65367 : 'end', 65365 : 'pageup', 65366 : 'pagedown', 65438 : '0', 65436 : '1', 65433 : '2', 65435 : '3', 65430 : '4', 65437 : '5', 65432 : '6', 65429 : '7', 65431 : '8', 65434 : '9', 65451 : '+', 65453 : '-', 65450 : '*', 65455 : '/', 65439 : 'dec', 65421 : 'enter', 65511 : 'super', 65512 : 'super', 65406 : 'alt', 65289 : 'tab', } # Setting this as a static constant prevents # this resulting expression from leaking event_mask = (gdk.BUTTON_PRESS_MASK | gdk.BUTTON_RELEASE_MASK | gdk.EXPOSURE_MASK | gdk.KEY_PRESS_MASK | gdk.KEY_RELEASE_MASK | gdk.ENTER_NOTIFY_MASK | gdk.LEAVE_NOTIFY_MASK | gdk.POINTER_MOTION_MASK | gdk.POINTER_MOTION_HINT_MASK) def __init__(self, figure): if self.__class__ == matplotlib.backends.backend_gtk.FigureCanvasGTK: warn_deprecated('2.0', message="The GTK backend is " "deprecated. It is untested, known to be " "broken and will be removed in Matplotlib 2.2. " "Use the GTKAgg backend instead. " "See Matplotlib usage FAQ for" " more info on backends.", alternative="GTKAgg") if _debug: print('FigureCanvasGTK.%s' % fn_name()) FigureCanvasBase.__init__(self, figure) gtk.DrawingArea.__init__(self) self._idle_draw_id = 0 self._need_redraw = True self._pixmap_width = -1 self._pixmap_height = -1 self._lastCursor = None self.connect('scroll_event', self.scroll_event) self.connect('button_press_event', self.button_press_event) self.connect('button_release_event', self.button_release_event) self.connect('configure_event', self.configure_event) self.connect('expose_event', self.expose_event) self.connect('key_press_event', self.key_press_event) self.connect('key_release_event', self.key_release_event) self.connect('motion_notify_event', self.motion_notify_event) self.connect('leave_notify_event', self.leave_notify_event) self.connect('enter_notify_event', self.enter_notify_event) self.set_events(self.__class__.event_mask) self.set_double_buffered(False) self.set_flags(gtk.CAN_FOCUS) self._renderer_init() self.last_downclick = {} def destroy(self): #gtk.DrawingArea.destroy(self) self.close_event() if self._idle_draw_id != 0: gobject.source_remove(self._idle_draw_id) def scroll_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) x = event.x # flipy so y=0 is bottom of canvas y = self.allocation.height - event.y if event.direction==gdk.SCROLL_UP: step = 1 else: step = -1 FigureCanvasBase.scroll_event(self, x, y, step, guiEvent=event) return False # finish event propagation? def button_press_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) x = event.x # flipy so y=0 is bottom of canvas y = self.allocation.height - event.y dblclick = (event.type == gdk._2BUTTON_PRESS) if not dblclick: # GTK is the only backend that generates a DOWN-UP-DOWN-DBLCLICK-UP event # sequence for a double click. All other backends have a DOWN-UP-DBLCLICK-UP # sequence. In order to provide consistency to matplotlib users, we will # eat the extra DOWN event in the case that we detect it is part of a double # click. # first, get the double click time in milliseconds. current_time = event.get_time() last_time = self.last_downclick.get(event.button,0) dblclick_time = gtk.settings_get_for_screen(gdk.screen_get_default()).get_property('gtk-double-click-time') delta_time = current_time-last_time if delta_time < dblclick_time: del self.last_downclick[event.button] # we do not want to eat more than one event. return False # eat. self.last_downclick[event.button] = current_time FigureCanvasBase.button_press_event(self, x, y, event.button, dblclick=dblclick, guiEvent=event) return False # finish event propagation? def button_release_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) x = event.x # flipy so y=0 is bottom of canvas y = self.allocation.height - event.y FigureCanvasBase.button_release_event(self, x, y, event.button, guiEvent=event) return False # finish event propagation? def key_press_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) key = self._get_key(event) if _debug: print("hit", key) FigureCanvasBase.key_press_event(self, key, guiEvent=event) return True # stop event propagation def key_release_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) key = self._get_key(event) if _debug: print("release", key) FigureCanvasBase.key_release_event(self, key, guiEvent=event) return True # stop event propagation def motion_notify_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) if event.is_hint: x, y, state = event.window.get_pointer() else: x, y, state = event.x, event.y, event.state # flipy so y=0 is bottom of canvas y = self.allocation.height - y FigureCanvasBase.motion_notify_event(self, x, y, guiEvent=event) return False # finish event propagation? def leave_notify_event(self, widget, event): FigureCanvasBase.leave_notify_event(self, event) def enter_notify_event(self, widget, event): x, y, state = event.window.get_pointer() FigureCanvasBase.enter_notify_event(self, event, xy=(x, y)) def _get_key(self, event): if event.keyval in self.keyvald: key = self.keyvald[event.keyval] elif event.keyval < 256: key = chr(event.keyval) else: key = None for key_mask, prefix in ( [gdk.MOD4_MASK, 'super'], [gdk.MOD1_MASK, 'alt'], [gdk.CONTROL_MASK, 'ctrl'], ): if event.state & key_mask: key = '{0}+{1}'.format(prefix, key) return key def configure_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) if widget.window is None: return w, h = event.width, event.height if w < 3 or h < 3: return # empty fig # resize the figure (in inches) dpi = self.figure.dpi self.figure.set_size_inches(w/dpi, h/dpi, forward=False) self._need_redraw = True return False # finish event propagation? def draw(self): # Note: FigureCanvasBase.draw() is inconveniently named as it clashes # with the deprecated gtk.Widget.draw() self._need_redraw = True if GTK_WIDGET_DRAWABLE(self): self.queue_draw() # do a synchronous draw (its less efficient than an async draw, # but is required if/when animation is used) self.window.process_updates (False) def draw_idle(self): if self._idle_draw_id != 0: return def idle_draw(*args): try: self.draw() finally: self._idle_draw_id = 0 return False self._idle_draw_id = gobject.idle_add(idle_draw) def _renderer_init(self): """Override by GTK backends to select a different renderer Renderer should provide the methods: set_pixmap () set_width_height () that are used by _render_figure() / _pixmap_prepare() """ self._renderer = RendererGDK (self, self.figure.dpi) def _pixmap_prepare(self, width, height): """ Make sure _._pixmap is at least width, height, create new pixmap if necessary """ if _debug: print('FigureCanvasGTK.%s' % fn_name()) create_pixmap = False if width > self._pixmap_width: # increase the pixmap in 10%+ (rather than 1 pixel) steps self._pixmap_width = max (int (self._pixmap_width * 1.1), width) create_pixmap = True if height > self._pixmap_height: self._pixmap_height = max (int (self._pixmap_height * 1.1), height) create_pixmap = True if create_pixmap: self._pixmap = gdk.Pixmap (self.window, self._pixmap_width, self._pixmap_height) self._renderer.set_pixmap (self._pixmap) def _render_figure(self, pixmap, width, height): """used by GTK and GTKcairo. GTKAgg overrides """ self._renderer.set_width_height (width, height) self.figure.draw (self._renderer) def expose_event(self, widget, event): """Expose_event for all GTK backends. Should not be overridden. """ if _debug: print('FigureCanvasGTK.%s' % fn_name()) if GTK_WIDGET_DRAWABLE(self): if self._need_redraw: x, y, w, h = self.allocation self._pixmap_prepare (w, h) self._render_figure(self._pixmap, w, h) self._need_redraw = False x, y, w, h = event.area self.window.draw_drawable (self.style.fg_gc[self.state], self._pixmap, x, y, x, y, w, h) return False # finish event propagation? filetypes = FigureCanvasBase.filetypes.copy() filetypes['jpg'] = 'JPEG' filetypes['jpeg'] = 'JPEG' filetypes['png'] = 'Portable Network Graphics' def print_jpeg(self, filename, *args, **kwargs): return self._print_image(filename, 'jpeg') print_jpg = print_jpeg def print_png(self, filename, *args, **kwargs): return self._print_image(filename, 'png') def _print_image(self, filename, format, *args, **kwargs): if self.flags() & gtk.REALIZED == 0: # for self.window(for pixmap) and has a side effect of altering # figure width,height (via configure-event?) gtk.DrawingArea.realize(self) width, height = self.get_width_height() pixmap = gdk.Pixmap (self.window, width, height) self._renderer.set_pixmap (pixmap) self._render_figure(pixmap, width, height) # jpg colors don't match the display very well, png colors match # better pixbuf = gdk.Pixbuf(gdk.COLORSPACE_RGB, 0, 8, width, height) pixbuf.get_from_drawable(pixmap, pixmap.get_colormap(), 0, 0, 0, 0, width, height) # set the default quality, if we are writing a JPEG. # http://www.pygtk.org/docs/pygtk/class-gdkpixbuf.html#method-gdkpixbuf--save options = cbook.restrict_dict(kwargs, ['quality']) if format in ['jpg','jpeg']: if 'quality' not in options: options['quality'] = rcParams['savefig.jpeg_quality'] options['quality'] = str(options['quality']) if is_string_like(filename): try: pixbuf.save(filename, format, options=options) except gobject.GError as exc: error_msg_gtk('Save figure failure:\n%s' % (exc,), parent=self) elif is_writable_file_like(filename): if hasattr(pixbuf, 'save_to_callback'): def save_callback(buf, data=None): data.write(buf) try: pixbuf.save_to_callback(save_callback, format, user_data=filename, options=options) except gobject.GError as exc: error_msg_gtk('Save figure failure:\n%s' % (exc,), parent=self) else: raise ValueError("Saving to a Python file-like object is only supported by PyGTK >= 2.8") else: raise ValueError("filename must be a path or a file-like object") def new_timer(self, *args, **kwargs): """ Creates a new backend-specific subclass of :class:`backend_bases.Timer`. This is useful for getting periodic events through the backend's native event loop. Implemented only for backends with GUIs. optional arguments: *interval* Timer interval in milliseconds *callbacks* Sequence of (func, args, kwargs) where func(*args, **kwargs) will be executed by the timer every *interval*. """ return TimerGTK(*args, **kwargs) def flush_events(self): gtk.gdk.threads_enter() while gtk.events_pending(): gtk.main_iteration(True) gtk.gdk.flush() gtk.gdk.threads_leave() def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ class FigureManagerGTK(FigureManagerBase): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The gtk.Toolbar (gtk only) vbox : The gtk.VBox containing the canvas and toolbar (gtk only) window : The gtk.Window (gtk only) """ def __init__(self, canvas, num): if _debug: print('FigureManagerGTK.%s' % fn_name()) FigureManagerBase.__init__(self, canvas, num) self.window = gtk.Window() self.set_window_title("Figure %d" % num) if (window_icon): try: self.window.set_icon_from_file(window_icon) except: # some versions of gtk throw a glib.GError but not # all, so I am not sure how to catch it. I am unhappy # diong a blanket catch here, but an not sure what a # better way is - JDH verbose.report('Could not load matplotlib icon: %s' % sys.exc_info()[1]) self.vbox = gtk.VBox() self.window.add(self.vbox) self.vbox.show() self.canvas.show() self.vbox.pack_start(self.canvas, True, True) self.toolbar = self._get_toolbar(canvas) # calculate size for window w = int (self.canvas.figure.bbox.width) h = int (self.canvas.figure.bbox.height) if self.toolbar is not None: self.toolbar.show() self.vbox.pack_end(self.toolbar, False, False) tb_w, tb_h = self.toolbar.size_request() h += tb_h self.window.set_default_size (w, h) def destroy(*args): Gcf.destroy(num) self.window.connect("destroy", destroy) self.window.connect("delete_event", destroy) if matplotlib.is_interactive(): self.window.show() self.canvas.draw_idle() def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar is not None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) self.canvas.grab_focus() def destroy(self, *args): if _debug: print('FigureManagerGTK.%s' % fn_name()) if hasattr(self, 'toolbar') and self.toolbar is not None: self.toolbar.destroy() if hasattr(self, 'vbox'): self.vbox.destroy() if hasattr(self, 'window'): self.window.destroy() if hasattr(self, 'canvas'): self.canvas.destroy() self.__dict__.clear() #Is this needed? Other backends don't have it. if Gcf.get_num_fig_managers()==0 and \ not matplotlib.is_interactive() and \ gtk.main_level() >= 1: gtk.main_quit() def show(self): # show the figure window self.window.show() def full_screen_toggle(self): self._full_screen_flag = not self._full_screen_flag if self._full_screen_flag: self.window.fullscreen() else: self.window.unfullscreen() _full_screen_flag = False def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if rcParams['toolbar'] == 'toolbar2': toolbar = NavigationToolbar2GTK (canvas, self.window) else: toolbar = None return toolbar def get_window_title(self): return self.window.get_title() def set_window_title(self, title): self.window.set_title(title) def resize(self, width, height): 'set the canvas size in pixels' #_, _, cw, ch = self.canvas.allocation #_, _, ww, wh = self.window.allocation #self.window.resize (width-cw+ww, height-ch+wh) self.window.resize(width, height) class NavigationToolbar2GTK(NavigationToolbar2, gtk.Toolbar): def __init__(self, canvas, window): self.win = window gtk.Toolbar.__init__(self) NavigationToolbar2.__init__(self, canvas) def set_message(self, s): self.message.set_label(s) def set_cursor(self, cursor): self.canvas.window.set_cursor(cursord[cursor]) def release(self, event): try: del self._pixmapBack except AttributeError: pass def dynamic_update(self): # legacy method; new method is canvas.draw_idle self.canvas.draw_idle() def draw_rubberband(self, event, x0, y0, x1, y1): 'adapted from http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/189744' drawable = self.canvas.window if drawable is None: return gc = drawable.new_gc() height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 w = abs(x1 - x0) h = abs(y1 - y0) rect = [int(val)for val in (min(x0,x1), min(y0, y1), w, h)] try: lastrect, pixmapBack = self._pixmapBack except AttributeError: #snap image back if event.inaxes is None: return ax = event.inaxes l,b,w,h = [int(val) for val in ax.bbox.bounds] b = int(height)-(b+h) axrect = l,b,w,h self._pixmapBack = axrect, gtk.gdk.Pixmap(drawable, w, h) self._pixmapBack[1].draw_drawable(gc, drawable, l, b, 0, 0, w, h) else: drawable.draw_drawable(gc, pixmapBack, 0, 0, *lastrect) drawable.draw_rectangle(gc, False, *rect) def _init_toolbar(self): self.set_style(gtk.TOOLBAR_ICONS) self._init_toolbar2_4() def _init_toolbar2_4(self): basedir = os.path.join(rcParams['datapath'],'images') if not _new_tooltip_api: self.tooltips = gtk.Tooltips() for text, tooltip_text, image_file, callback in self.toolitems: if text is None: self.insert( gtk.SeparatorToolItem(), -1 ) continue fname = os.path.join(basedir, image_file + '.png') image = gtk.Image() image.set_from_file(fname) tbutton = gtk.ToolButton(image, text) self.insert(tbutton, -1) tbutton.connect('clicked', getattr(self, callback)) if _new_tooltip_api: tbutton.set_tooltip_text(tooltip_text) else: tbutton.set_tooltip(self.tooltips, tooltip_text, 'Private') toolitem = gtk.SeparatorToolItem() self.insert(toolitem, -1) # set_draw() not making separator invisible, # bug #143692 fixed Jun 06 2004, will be in GTK+ 2.6 toolitem.set_draw(False) toolitem.set_expand(True) toolitem = gtk.ToolItem() self.insert(toolitem, -1) self.message = gtk.Label() toolitem.add(self.message) self.show_all() def get_filechooser(self): fc = FileChooserDialog( title='Save the figure', parent=self.win, path=os.path.expanduser(rcParams.get('savefig.directory', '')), filetypes=self.canvas.get_supported_filetypes(), default_filetype=self.canvas.get_default_filetype()) fc.set_current_name(self.canvas.get_default_filename()) return fc def save_figure(self, *args): chooser = self.get_filechooser() fname, format = chooser.get_filename_from_user() chooser.destroy() if fname: startpath = os.path.expanduser(rcParams.get('savefig.directory', '')) if startpath == '': # explicitly missing key or empty str signals to use cwd rcParams['savefig.directory'] = startpath else: # save dir for next time rcParams['savefig.directory'] = os.path.dirname(six.text_type(fname)) try: self.canvas.print_figure(fname, format=format) except Exception as e: error_msg_gtk(str(e), parent=self) def configure_subplots(self, button): toolfig = Figure(figsize=(6,3)) canvas = self._get_canvas(toolfig) toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) w = int (toolfig.bbox.width) h = int (toolfig.bbox.height) window = gtk.Window() if (window_icon): try: window.set_icon_from_file(window_icon) except: # we presumably already logged a message on the # failure of the main plot, don't keep reporting pass window.set_title("Subplot Configuration Tool") window.set_default_size(w, h) vbox = gtk.VBox() window.add(vbox) vbox.show() canvas.show() vbox.pack_start(canvas, True, True) window.show() def _get_canvas(self, fig): return FigureCanvasGTK(fig) class FileChooserDialog(gtk.FileChooserDialog): """GTK+ 2.4 file selector which presents the user with a menu of supported image formats """ def __init__ (self, title = 'Save file', parent = None, action = gtk.FILE_CHOOSER_ACTION_SAVE, buttons = (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL, gtk.STOCK_SAVE, gtk.RESPONSE_OK), path = None, filetypes = [], default_filetype = None ): super(FileChooserDialog, self).__init__ (title, parent, action, buttons) super(FileChooserDialog, self).set_do_overwrite_confirmation(True) self.set_default_response (gtk.RESPONSE_OK) if not path: path = os.getcwd() + os.sep # create an extra widget to list supported image formats self.set_current_folder (path) self.set_current_name ('image.' + default_filetype) hbox = gtk.HBox (spacing=10) hbox.pack_start (gtk.Label ("File Format:"), expand=False) liststore = gtk.ListStore(gobject.TYPE_STRING) cbox = gtk.ComboBox(liststore) cell = gtk.CellRendererText() cbox.pack_start(cell, True) cbox.add_attribute(cell, 'text', 0) hbox.pack_start (cbox) self.filetypes = filetypes self.sorted_filetypes = list(six.iteritems(filetypes)) self.sorted_filetypes.sort() default = 0 for i, (ext, name) in enumerate(self.sorted_filetypes): cbox.append_text ("%s (*.%s)" % (name, ext)) if ext == default_filetype: default = i cbox.set_active(default) self.ext = default_filetype def cb_cbox_changed (cbox, data=None): """File extension changed""" head, filename = os.path.split(self.get_filename()) root, ext = os.path.splitext(filename) ext = ext[1:] new_ext = self.sorted_filetypes[cbox.get_active()][0] self.ext = new_ext if ext in self.filetypes: filename = root + '.' + new_ext elif ext == '': filename = filename.rstrip('.') + '.' + new_ext self.set_current_name (filename) cbox.connect ("changed", cb_cbox_changed) hbox.show_all() self.set_extra_widget(hbox) def get_filename_from_user (self): while True: filename = None if self.run() != int(gtk.RESPONSE_OK): break filename = self.get_filename() break return filename, self.ext class DialogLineprops(object): """ A GUI dialog for controlling lineprops """ signals = ( 'on_combobox_lineprops_changed', 'on_combobox_linestyle_changed', 'on_combobox_marker_changed', 'on_colorbutton_linestyle_color_set', 'on_colorbutton_markerface_color_set', 'on_dialog_lineprops_okbutton_clicked', 'on_dialog_lineprops_cancelbutton_clicked', ) linestyles = [ls for ls in lines.Line2D.lineStyles if ls.strip()] linestyled = dict([ (s,i) for i,s in enumerate(linestyles)]) markers = [m for m in markers.MarkerStyle.markers if cbook.is_string_like(m)] markerd = dict([(s,i) for i,s in enumerate(markers)]) def __init__(self, lines): import gtk.glade datadir = matplotlib.get_data_path() gladefile = os.path.join(datadir, 'lineprops.glade') if not os.path.exists(gladefile): raise IOError('Could not find gladefile lineprops.glade in %s'%datadir) self._inited = False self._updateson = True # suppress updates when setting widgets manually self.wtree = gtk.glade.XML(gladefile, 'dialog_lineprops') self.wtree.signal_autoconnect(dict([(s, getattr(self, s)) for s in self.signals])) self.dlg = self.wtree.get_widget('dialog_lineprops') self.lines = lines cbox = self.wtree.get_widget('combobox_lineprops') cbox.set_active(0) self.cbox_lineprops = cbox cbox = self.wtree.get_widget('combobox_linestyles') for ls in self.linestyles: cbox.append_text(ls) cbox.set_active(0) self.cbox_linestyles = cbox cbox = self.wtree.get_widget('combobox_markers') for m in self.markers: cbox.append_text(m) cbox.set_active(0) self.cbox_markers = cbox self._lastcnt = 0 self._inited = True def show(self): 'populate the combo box' self._updateson = False # flush the old cbox = self.cbox_lineprops for i in range(self._lastcnt-1,-1,-1): cbox.remove_text(i) # add the new for line in self.lines: cbox.append_text(line.get_label()) cbox.set_active(0) self._updateson = True self._lastcnt = len(self.lines) self.dlg.show() def get_active_line(self): 'get the active line' ind = self.cbox_lineprops.get_active() line = self.lines[ind] return line def get_active_linestyle(self): 'get the active lineinestyle' ind = self.cbox_linestyles.get_active() ls = self.linestyles[ind] return ls def get_active_marker(self): 'get the active lineinestyle' ind = self.cbox_markers.get_active() m = self.markers[ind] return m def _update(self): 'update the active line props from the widgets' if not self._inited or not self._updateson: return line = self.get_active_line() ls = self.get_active_linestyle() marker = self.get_active_marker() line.set_linestyle(ls) line.set_marker(marker) button = self.wtree.get_widget('colorbutton_linestyle') color = button.get_color() r, g, b = [val/65535. for val in (color.red, color.green, color.blue)] line.set_color((r,g,b)) button = self.wtree.get_widget('colorbutton_markerface') color = button.get_color() r, g, b = [val/65535. for val in (color.red, color.green, color.blue)] line.set_markerfacecolor((r,g,b)) line.figure.canvas.draw() def on_combobox_lineprops_changed(self, item): 'update the widgets from the active line' if not self._inited: return self._updateson = False line = self.get_active_line() ls = line.get_linestyle() if ls is None: ls = 'None' self.cbox_linestyles.set_active(self.linestyled[ls]) marker = line.get_marker() if marker is None: marker = 'None' self.cbox_markers.set_active(self.markerd[marker]) rgba = mcolors.to_rgba(line.get_color()) color = gtk.gdk.Color(*[int(val*65535) for val in rgba[:3]]) button = self.wtree.get_widget('colorbutton_linestyle') button.set_color(color) rgba = mcolors.to_rgba(line.get_markerfacecolor()) color = gtk.gdk.Color(*[int(val*65535) for val in rgba[:3]]) button = self.wtree.get_widget('colorbutton_markerface') button.set_color(color) self._updateson = True def on_combobox_linestyle_changed(self, item): self._update() def on_combobox_marker_changed(self, item): self._update() def on_colorbutton_linestyle_color_set(self, button): self._update() def on_colorbutton_markerface_color_set(self, button): 'called colorbutton marker clicked' self._update() def on_dialog_lineprops_okbutton_clicked(self, button): self._update() self.dlg.hide() def on_dialog_lineprops_cancelbutton_clicked(self, button): self.dlg.hide() # set icon used when windows are minimized # Unfortunately, the SVG renderer (rsvg) leaks memory under earlier # versions of pygtk, so we have to use a PNG file instead. try: if gtk.pygtk_version < (2, 8, 0) or sys.platform == 'win32': icon_filename = 'matplotlib.png' else: icon_filename = 'matplotlib.svg' window_icon = os.path.join(rcParams['datapath'], 'images', icon_filename) except: window_icon = None verbose.report('Could not load matplotlib icon: %s' % sys.exc_info()[1]) def error_msg_gtk(msg, parent=None): if parent is not None: # find the toplevel gtk.Window parent = parent.get_toplevel() if parent.flags() & gtk.TOPLEVEL == 0: parent = None if not is_string_like(msg): msg = ','.join(map(str,msg)) dialog = gtk.MessageDialog( parent = parent, type = gtk.MESSAGE_ERROR, buttons = gtk.BUTTONS_OK, message_format = msg) dialog.run() dialog.destroy() FigureCanvas = FigureCanvasGTK FigureManager = FigureManagerGTK
apache-2.0
larsmans/scikit-learn
examples/decomposition/plot_ica_vs_pca.py
43
3343
""" ========================== FastICA on 2D point clouds ========================== This example illustrates visually in the feature space a comparison by results using two different component analysis techniques. :ref:`ICA` vs :ref:`PCA`. Representing ICA in the feature space gives the view of 'geometric ICA': ICA is an algorithm that finds directions in the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to the same variance. PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting for maximum variance. Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space, directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a rotation in this space to identify the directions of largest non-Gaussianity (lower right). """ print(__doc__) # Authors: Alexandre Gramfort, Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, FastICA ############################################################################### # Generate sample data rng = np.random.RandomState(42) S = rng.standard_t(1.5, size=(20000, 2)) S[:, 0] *= 2. # Mix data A = np.array([[1, 1], [0, 2]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations pca = PCA() S_pca_ = pca.fit(X).transform(X) ica = FastICA(random_state=rng) S_ica_ = ica.fit(X).transform(X) # Estimate the sources S_ica_ /= S_ica_.std(axis=0) ############################################################################### # Plot results def plot_samples(S, axis_list=None): plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', linewidths=0, zorder=10, color='steelblue', alpha=0.5) if axis_list is not None: colors = ['orange', 'red'] for color, axis in zip(colors, axis_list): axis /= axis.std() x_axis, y_axis = axis # Trick to get legend to work plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color) plt.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6, color=color) plt.hlines(0, -3, 3) plt.vlines(0, -3, 3) plt.xlim(-3, 3) plt.ylim(-3, 3) plt.xlabel('x') plt.ylabel('y') plt.figure() plt.subplot(2, 2, 1) plot_samples(S / S.std()) plt.title('True Independent Sources') axis_list = [pca.components_.T, ica.mixing_] plt.subplot(2, 2, 2) plot_samples(X / np.std(X), axis_list=axis_list) legend = plt.legend(['PCA', 'ICA'], loc='upper right') legend.set_zorder(100) plt.title('Observations') plt.subplot(2, 2, 3) plot_samples(S_pca_ / np.std(S_pca_, axis=0)) plt.title('PCA recovered signals') plt.subplot(2, 2, 4) plot_samples(S_ica_ / np.std(S_ica_)) plt.title('ICA recovered signals') plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36) plt.show()
bsd-3-clause
gaurav-kaushik/BostonBikr
app/reTrip.py
1
10980
""" reTrip will take text files of TripAdvisor data and turn them into Geocoded locations to transpose onto the map. This uses a rather hacky text-based method because of time constraints. A full-featured web crawler that could be used for many pages or other sites at once would be much better. But since we only collect data once, this works OK for now. Created on Wed Jul 22 09:47:51 2015 @author: gaurav """ import os import re import pickle from math import sin, cos, sqrt, atan2, radians import networkx as nx import numpy as np import matplotlib.pyplot as plt from scipy.cluster.vq import kmeans, vq from pylab import plot from BostonBikr import findNearestNodeNX, distanceCal, distanceCal4par # Import your TripAdvisor data try: txt = open('bostontext.txt') boston = txt.read() except: os.chdir('./anaconda/BostonBikr/') txt = open('bostontext.txt') boston = txt.read() # Run that through regex try: reBoston = pickle.load(open("reBoston.p","rb")) except: # reBoston has the strings for each location reBoston = re.findall("\n(.*?)\n#", boston) print reBoston reBoston = list(set(reBoston)) reBoston_original = reBoston pickle.dump(reBoston, open("reBoston.p","wb")) def GeoCode(address): # take 'address' <type string> and get geocoordinates import json from urllib2 import urlopen from urllib import quote # encode address query into URL url = 'https://maps.googleapis.com/maps/api/geocode/json?address={}&sensor=false&key={}'.format(quote(address, gAPI_key)) # call API and extract json print 'Calling Google for the following address: ' + address jData = urlopen(url).read() jData = json.loads(jData.decode('utf-8')) # THIS MIGHT THROW AN ERROR # extract coordinates (latitude, longitude) if jData.get('status') == 'ZERO_RESULTS': latitude, longitude = None, None print 'The following address was not found: ' + address else: try: latitude, longitude = (value for _, value in sorted(jData.get('results')[0].get('geometry').get('location').items())) print 'Your location is at the following coordinates: {:f}, {:f}'.format(longitude, latitude) except IndexError: latitude, longitude = None, None return (longitude, latitude) # Define map boundary bounds = [[42.33289, -71.173794], [42.420644, -71.040413]] # Put it down flip it and reverse it bounds = [[y,x] for [x,y] in bounds] minLong = bounds[0][0] maxLong = bounds[1][0] minLat = bounds[1][0] maxLat = bounds[1][1] # Get our variables (or generate if not found) try: reBostonGeoBound = pickle.load(open("reBostonGeoBound.p","rb")) reBostonGeoLoc = pickle.load(open("reBostonLoc.p","rb")) except: # Use Geocode to transform into coordinates reBostonGeo = [] reBostonLoc = [] for location in reBoston: reBostonGeo.append(GeoCode(location)) reBostonGeo_original = reBostonGeo # Use the boundaries to discard locations outside your matrix reBostonGeoBound = [] for index, location in enumerate(reBostonGeo): if (minLong <= location[0] < maxLong) and (minLat <= location[1] <= maxLat): reBostonGeoBound.append(location) reBostonLoc.append(reBoston[index]) # Call our giant Boston map and the nodes bostonGraphNX = pickle.load(open("/home/gaurav/anaconda/BostonBikr/app/static/bostonMetroArea.p", "rb")) bostonGraphNXPos = pickle.load(open("/home/gaurav/anaconda/BostonBikr/app/static/bostonMetroArea_pos.p", "rb")) ## Reassign nodes to proximal node in bostonGraphNX for idx, node in enumerate(reBostonGeoBound): _, newNode = findNearestNodeNX(bostonGraphNX, node) reBostonGeoBound[idx] = newNode # Dump these pickles once you have them transposed onto your graph pickle.dump(reBostonGeoBound, open("reBostonGeoBound.p","wb")) pickle.dump(reBostonLoc, open("reBostonLoc.p","wb")) # Let's take these nodes and create a 2D Gaussian function def bostonGauss(node, sigma=2355.0): xNode, yNode = node[0], node[1] metersPerLat = 82190.6 metersPerLng = 111230.0 # Transform your sigma into Lat and Long Space (m --> deg lat or lng) # Note that sigmaX != sigmaY because real planets have curves sigmaX = sigma/metersPerLng sigmaY = sigma/metersPerLat bounds = [[-71.173794, 42.33289], [-71.040413, 42.420644]] xSpace = np.linspace(bounds[0][0], bounds[1][0], 1000) ySpace = np.linspace(bounds[0][1], bounds[1][1], 1000) x, y = np.meshgrid(xSpace, ySpace) Z = (100/(2*np.pi*sigmaX*sigmaY)) * np.exp(-((x-xNode)**2/(2*sigmaX**2) + (y-yNode)**2/(2*sigmaY**2))) Z = Z/np.max(Z) return x, y, Z try: Z_master = pickle.load(open("Z_master_final.p","rb")) Z_centr = pickle.load(open("Z_centr_final.p","rb")) centroids = pickle.load(open("centroids6_final.p","rb")) except: # Let's make that Gaussian map -- no bias for node clusters yet sig = 1500.0 x, y, Z = bostonGauss(reBostonGeoBound[0], sigma=sig) for locale in reBostonGeoBound[1:]: Z = np.add(Z, bostonGauss(locale, sigma=sig)[2]) bostonLocaleGraph = nx.Graph() bostonLocales = dict(zip(reBostonGeoBound,reBostonGeoBound)) bostonLocaleGraph.add_nodes_from(reBostonGeoBound) fig = plt.figure(figsize=(24,24)) plt.contour(x,y,Z) nx.draw(bostonLocaleGraph, pos=bostonLocales, node_size=100, node_color='g') nx.draw(bostonGraphNX, pos=bostonGraphNXPos, node_size=1, node_color='g') # K-means clustering! ### K = 6! data = np.array(reBostonGeoBound) centroids,_ = kmeans(data,6) # assign each sample to a cluster # WRAP THIS INTO ITS OWN FUNCTION idx,_ = vq(data,centroids) fig = plt.figure(figsize=(24,24)) ax = fig.add_subplot(111) plot(data[idx==0,0],data[idx==0,1],'ob', data[idx==1,0],data[idx==1,1],'or', data[idx==2,0],data[idx==2,1],'og', data[idx==3,0],data[idx==3,1],'oy', data[idx==4,0],data[idx==4,1],'om', data[idx==5,0],data[idx==5,1],'oc', markersize=20) nx.draw(bostonGraphNX, pos=bostonGraphNXPos, node_size=1, node_color='k') plot(centroids[:,0],centroids[:,1],'8k',markersize=30) ax.plot() # We can do TWO THINGS: # 1. We can normalize each Gaussian by the cluster # You get a more oblong Gaussian with possibility of local optima # 2. Feed the Centroids into a Gaussian and convolve 6 # with Sigma scaled by # of nodes in cluster # APPROACH 1 -- normalize per cluster and then add them all up # First, let's get our data points per centroid # These are all lists of tuples. Good job! c0 = (zip(data[idx==0,0], data[idx==0,1])) c1 = (zip(data[idx==1,0], data[idx==1,1])) c2 = (zip(data[idx==2,0], data[idx==2,1])) c3 = (zip(data[idx==3,0], data[idx==3,1])) c4 = (zip(data[idx==4,0], data[idx==4,1])) c5 = (zip(data[idx==5,0], data[idx==5,1])) #c6 = (zip(data[idx==5,0], data[idx==5,1])) c_list = [c0, c1, c2, c3, c4, c5] # Now we find the Z values for each cluster # Z_list[kcluster_index] will have len(k) Z_list = [] x, y, _ = bostonGauss(c_list[0][0], sigma=sig) for tup in c_list: x, y, Z = bostonGauss(tup[0], sigma=sig) Z = Z/np.max(Z) for locale in tup[1:]: # Z = np.divide(np.add(Z, bostonGauss(locale)[2], sigma=sig),len(tup)) Z = np.add(Z, bostonGauss(locale, sigma=sig)[2]) Z_list.append(Z/np.max(Z)) Z_list_normal = [] for item in Z_list: item = item/np.max(item) Z_list_normal.append(item) Z_master = Z_list_normal[0] for arr in Z_list_normal: Z_master = np.add(Z_master, arr) # APPROACH 2 -- fit our centroids # 1. Feed the Centroids into a Gaussian and convolve 6 # with Sigma scaled by # of nodes in cluster centroids_orig = centroids centroids = list(tuple(map(tuple, centroids))) x, y, Z_centr = bostonGauss(centroids[0], sigma=sig) for locale in centroids[1:]: newZ = bostonGauss(locale, sigma=sig)[2] Z_centr = np.add(Z_centr, newZ) plot_opt = 0 if plot_opt == 1: #Plot this shizz if you want x, y, _ = bostonGauss(reBostonGeoBound[0]) fig = plt.figure(1,figsize=(24,24)) ax1 = fig.add_subplot(111) nx.draw(bostonGraphNX, pos=bostonGraphNXPos, node_size=1, node_color='k') plot(centroids_orig[:,0],centroids_orig[:,1],'8k',markersize=30) plt.contour(x,y,Z_master, linewidths=3) ax1.plot() fig2 = plt.figure(2,figsize=(24,24)) ax2 = fig2.add_subplot(111) nx.draw(bostonGraphNX, pos=bostonGraphNXPos, node_size=1, node_color='k') plot(centroids_orig[:,0],centroids_orig[:,1],'8k',markersize=30) plt.contour(x,y,Z_centr, linewidths=3) ax2.plot() print "You're done processing!" # NEATO! The plots are done and you have your topography map # Now, you just need to assign a weight to each node # in your original map "bostonGraphNX" # To do this: iterate through bostonGraphNX.nodes # Find the point in Z_master that minimizes delta(x,y) # Make a dict of dicts where: {node: {weight=number} # where number is actually your weight number x, y, _ = bostonGauss(reBostonGeoBound[0]) def findNearestIndex(node, x_vec = x[0], y_vec = y[0]): # find the nearest (x,y) to get Z for a node x_val = node[0] y_val = node[1] (k_x, v_x) = min(enumerate(x_vec), key=lambda x: abs(x[1]-x_val)) (k_y, v_y) = min(enumerate(y_vec), key=lambda x: abs(x[1]-y_val)) return (k_x, k_y) def harmonicWeight(node1, node2, Z=Z_master): x1, y1 = findNearestIndex(node1)[0], findNearestIndex(node1)[1] x2, y2 = findNearestIndex(node2)[0], findNearestIndex(node2)[1] Z1 = Z[x1, y1] Z2 = Z[x2, y2] # A = Z1 + Z2 # return A H = 2*Z1*Z2/(Z1+Z2) if H > 0: return H else: return 0.0001 # You will now create a new NetworkX Graph with the following: # Each edge has a distance and weight # The distance is distance (in m) between u and v # The weight is the score given by your gaussian function above # You can also add a 'location' tag to nodes so the user # can see where they're going to be near on your route. newNX = nx.Graph() for edge in bostonGraphNX.edges(data=True): # Get existing edge properties u = edge[0] v = edge[1] if u in reBostonGeoBound: nodeIndex = reBostonGeoBound.index(u) nodeLoc = reBostonGeoLoc[nodeIndex] elif v in reBostonGeoBound: nodeIndex = reBostonGeoBound.index(v) nodeLoc = reBostonGeoLoc[nodeIndex] else: nodeLoc = None dist = edge[2]['weight'] newNX.add_edge(u,v, distance=dist, weight=harmonicWeight(u,v), location=nodeLoc) ## Save your weighted graph of Boston! try: pickle.dump(newNX, open("/home/gaurav/anaconda/BostonBikr/app/static/bostonMetroArea_Weighted_Locs.p", "wb")) except: print "This file already exists. Try saving as a different filename."
mit
ogeniz/programming
Python/dsp/thinkdsp/thinkdsp.py
2
37046
"""This file contains code used in "Think DSP", by Allen B. Downey, available from greenteapress.com Copyright 2013 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import array import copy import math import numpy import random import scipy import scipy.stats import scipy.fftpack import struct import subprocess import thinkplot import warnings from fractions import gcd from wave import open as open_wave import matplotlib.pyplot as pyplot try: from IPython.display import Audio except: warnings.warn("Can't import Audio from IPython.display; " "Wave.make_audio() will not work.") PI2 = math.pi * 2 def random_seed(x): """Initialize the random and numpy.random generators. x: int seed """ random.seed(x) numpy.random.seed(x) class UnimplementedMethodException(Exception): """Exception if someone calls a method that should be overridden.""" class WavFileWriter(object): """Writes wav files.""" def __init__(self, filename='sound.wav', framerate=11025): """Opens the file and sets parameters. filename: string framerate: samples per second """ self.filename = filename self.framerate = framerate self.nchannels = 1 self.sampwidth = 2 self.bits = self.sampwidth * 8 self.bound = 2**(self.bits-1) - 1 self.fmt = 'h' self.dtype = numpy.int16 self.fp = open_wave(self.filename, 'w') self.fp.setnchannels(self.nchannels) self.fp.setsampwidth(self.sampwidth) self.fp.setframerate(self.framerate) def write(self, wave): """Writes a wave. wave: Wave """ zs = wave.quantize(self.bound, self.dtype) self.fp.writeframes(zs.tostring()) def close(self, duration=0): """Closes the file. duration: how many seconds of silence to append """ if duration: self.write(rest(duration)) self.fp.close() def read_wave(filename='sound.wav'): """Reads a wave file. filename: string returns: Wave """ fp = open_wave(filename, 'r') nchannels = fp.getnchannels() nframes = fp.getnframes() sampwidth = fp.getsampwidth() framerate = fp.getframerate() z_str = fp.readframes(nframes) fp.close() dtype_map = {1:numpy.int8, 2:numpy.int16, 3:'special', 4:numpy.int32} if sampwidth not in dtype_map: raise ValueError('sampwidth %d unknown' % sampwidth) if sampwidth == 3: xs = numpy.fromstring(z_str, dtype=numpy.int8).astype(numpy.int32) ys = (xs[2::3] * 256 + xs[1::3]) * 256 + xs[0::3] else: ys = numpy.fromstring(z_str, dtype=dtype_map[sampwidth]) # if it's in stereo, just pull out the first channel if nchannels == 2: ys = ys[::2] wave = Wave(ys, framerate) return wave def play_wave(filename='sound.wav', player='aplay'): """Plays a wave file. filename: string player: string name of executable that plays wav files """ cmd = '%s %s' % (player, filename) popen = subprocess.Popen(cmd, shell=True) popen.communicate() class _SpectrumParent(object): """Contains code common to Spectrum and DCT. """ def copy(self): """Makes a copy. Returns: new Spectrum """ return copy.deepcopy(self) @property def max_freq(self): return self.framerate / 2.0 @property def freq_res(self): return self.max_freq / (len(self.fs) - 1) def plot(self, low=0, high=None, **options): """Plots amplitude vs frequency. low: int index to start at high: int index to end at """ thinkplot.plot(self.fs[low:high], self.amps[low:high], **options) def plot_power(self, low=0, high=None, **options): """Plots power vs frequency. low: int index to start at high: int index to end at """ thinkplot.plot(self.fs[low:high], self.power[low:high], **options) def estimate_slope(self): """Runs linear regression on log power vs log frequency. returns: slope, inter, r2, p, stderr """ x = numpy.log(self.fs[1:]) y = numpy.log(self.power[1:]) t = scipy.stats.linregress(x,y) return t def peaks(self): """Finds the highest peaks and their frequencies. returns: sorted list of (amplitude, frequency) pairs """ t = zip(self.amps, self.fs) t.sort(reverse=True) return t class Spectrum(_SpectrumParent): """Represents the spectrum of a signal.""" def __init__(self, hs, framerate): """Initializes a spectrum. hs: NumPy array of complex framerate: frames per second """ self.hs = hs self.framerate = framerate # the frequency for each component of the spectrum depends # on whether the length of the wave is even or odd. # see http://docs.scipy.org/doc/numpy/reference/generated/ # numpy.fft.rfft.html n = len(hs) if n%2 == 0: max_freq = self.max_freq else: max_freq = self.max_freq * (n-1) / n self.fs = numpy.linspace(0, max_freq, n) def __len__(self): """Length of the spectrum.""" return len(self.hs) def __add__(self, other): """Adds two spectrums elementwise. other: Spectrum returns: new Spectrum """ if other == 0: return self assert self.framerate == other.framerate hs = self.hs + other.hs return Spectrum(hs, self.framerate) __radd__ = __add__ def __mul__(self, other): """Multiplies two spectrums. other: Spectrum returns: new Spectrum """ # the spectrums have to have the same framerate and duration assert self.framerate == other.framerate assert len(self) == len(other) hs = self.hs * other.hs return Spectrum(hs, self.framerate) @property def real(self): """Returns the real part of the hs (read-only property).""" return numpy.real(self.hs) @property def imag(self): """Returns the imaginary part of the hs (read-only property).""" return numpy.imag(self.hs) @property def amps(self): """Returns a sequence of amplitudes (read-only property).""" return numpy.absolute(self.hs) @property def power(self): """Returns a sequence of powers (read-only property).""" return self.amps ** 2 def low_pass(self, cutoff, factor=0): """Attenuate frequencies above the cutoff. cutoff: frequency in Hz factor: what to multiply the magnitude by """ for i in xrange(len(self.hs)): if self.fs[i] > cutoff: self.hs[i] *= factor def high_pass(self, cutoff, factor=0): """Attenuate frequencies below the cutoff. cutoff: frequency in Hz factor: what to multiply the magnitude by """ for i in xrange(len(self.hs)): if self.fs[i] < cutoff: self.hs[i] *= factor def band_stop(self, low_cutoff, high_cutoff, factor=0): """Attenuate frequencies between the cutoffs. low_cutoff: frequency in Hz high_cutoff: frequency in Hz factor: what to multiply the magnitude by """ for i in xrange(len(self.hs)): if low_cutoff < self.fs[i] < high_cutoff: self.hs[i] *= factor def pink_filter(self, beta=1): """Apply a filter that would make white noise pink. beta: exponent of the pink noise """ denom = self.fs ** (beta/2.0) denom[0] = 1 self.hs /= denom def differentiate(self): """Apply the differentiation filter. """ i = complex(0, 1) filtr = PI2 * i * self.fs self.hs *= filtr def angles(self): """Computes phase angles in radians. returns: list of phase angles """ return numpy.angle(self.hs) def make_integrated_spectrum(self): """Makes an integrated spectrum. """ cs = numpy.cumsum(self.power) cs /= cs[-1] return IntegratedSpectrum(cs, self.fs) def make_wave(self): """Transforms to the time domain. returns: Wave """ ys = numpy.fft.irfft(self.hs) return Wave(ys, self.framerate) class IntegratedSpectrum(object): """Represents the integral of a spectrum.""" def __init__(self, cs, fs): """Initializes an integrated spectrum: cs: sequence of cumulative amplitudes fs: sequence of frequences """ self.cs = cs self.fs = fs def plot_power(self, low=0, high=None, expo=False, **options): """Plots the integrated spectrum. low: int index to start at high: int index to end at """ cs = self.cs[low:high] fs = self.fs[low:high] if expo: cs = numpy.exp(cs) thinkplot.plot(fs, cs, **options) def estimate_slope(self, low=1, high=-12000): """Runs linear regression on log cumulative power vs log frequency. returns: slope, inter, r2, p, stderr """ #print self.fs[low:high] #print self.cs[low:high] x = numpy.log(self.fs[low:high]) y = numpy.log(self.cs[low:high]) t = scipy.stats.linregress(x,y) return t class Dct(_SpectrumParent): """Represents the spectrum of a signal using discrete cosine transform.""" def __init__(self, amps, framerate): self.amps = amps self.framerate = framerate n = len(amps) self.fs = numpy.arange(n) / float(n) * self.max_freq def __add__(self, other): """Adds two DCTs elementwise. other: DCT returns: new DCT """ if other == 0: return self assert self.framerate == other.framerate amps = self.amps + other.amps return Dct(amps, self.framerate) __radd__ = __add__ def make_wave(self): """Transforms to the time domain. returns: Wave """ ys = scipy.fftpack.dct(self.amps, type=3) / 2 return Wave(ys, self.framerate) class Spectrogram(object): """Represents the spectrum of a signal.""" def __init__(self, spec_map, seg_length=512, window_func=None): """Initialize the spectrogram. spec_map: map from float time to Spectrum seg_length: number of samples in each segment window_func: function that computes the window """ self.spec_map = spec_map self.seg_length = seg_length self.window_func = window_func def any_spectrum(self): """Returns an arbitrary spectrum from the spectrogram.""" return self.spec_map.itervalues().next() @property def time_res(self): """Time resolution in seconds.""" spectrum = self.any_spectrum() return float(self.seg_length) / spectrum.framerate @property def freq_res(self): """Frequency resolution in Hz.""" return self.any_spectrum().freq_res def times(self): """Sorted sequence of times. returns: sequence of float times in seconds """ ts = sorted(self.spec_map.iterkeys()) return ts def frequencies(self): """Sequence of frequencies. returns: sequence of float freqencies in Hz. """ fs = self.any_spectrum().fs return fs def plot(self, low=0, high=None, **options): """Make a pseudocolor plot. low: index of the lowest frequency component to plot high: index of the highest frequency component to plot """ ts = self.times() fs = self.frequencies()[low:high] # make the array size = len(fs), len(ts) array = numpy.zeros(size, dtype=numpy.float) # copy amplitude from each spectrum into a column of the array for i, t in enumerate(ts): spectrum = self.spec_map[t] array[:,i] = spectrum.amps[low:high] thinkplot.pcolor(ts, fs, array, **options) def make_wave(self): """Inverts the spectrogram and returns a Wave. returns: Wave """ res = [] for t, spectrum in sorted(self.spec_map.iteritems()): wave = spectrum.make_wave() n = len(wave) if self.window_func: window = 1 / self.window_func(n) wave.window(window) i = int(round(t * wave.framerate)) start = i - n / 2 end = start + n res.append((start, end, wave)) starts, ends, waves = zip(*res) low = min(starts) high = max(ends) ys = numpy.zeros(high-low, numpy.float) for start, end, wave in res: ys[start:end] = wave.ys return Wave(ys, wave.framerate) class Wave(object): """Represents a discrete-time waveform. Note: the ys attribute is a "wave array" which is a numpy array of floats. """ def __init__(self, ys, framerate, start=0): """Initializes the wave. ys: wave array framerate: samples per second """ self.ys = ys self.framerate = framerate self.start = start def copy(self): """Makes a copy. Returns: new Wave """ return copy.deepcopy(self) def __len__(self): return len(self.ys) @property def ts(self): """Times (property). returns: NumPy array of times """ n = len(self.ys) return numpy.linspace(0, self.duration, n) @property def duration(self): """Duration (property). returns: float duration in seconds """ return len(self.ys) / float(self.framerate) def __add__(self, other): """Adds two waves elementwise. other: Wave returns: new Wave """ if other == 0: return self assert self.framerate == other.framerate n1, n2 = len(self), len(other) if n1 > n2: ys = self.ys.copy() ys[:n2] += other.ys else: ys = other.ys.copy() ys[:n1] += self.ys return Wave(ys, self.framerate) __radd__ = __add__ def __or__(self, other): """Concatenates two waves. other: Wave returns: Wave """ if self.framerate != other.framerate: raise ValueError('Wave.__or__: framerates do not agree') ys = numpy.concatenate((self.ys, other.ys)) return Wave(ys, self.framerate) def __mul__(self, other): """Convolves two waves. other: Wave returns: Wave """ if self.framerate != other.framerate: raise ValueError('Wave convolution: framerates do not agree') ys = numpy.convolve(self.ys, other.ys, mode='full') ys = ys[:len(self.ys)] return Wave(ys, self.framerate) def quantize(self, bound, dtype): """Maps the waveform to quanta. bound: maximum amplitude dtype: numpy data type or string returns: quantized signal """ return quantize(self.ys, bound, dtype) def apodize(self, denom=20, duration=0.1): """Tapers the amplitude at the beginning and end of the signal. Tapers either the given duration of time or the given fraction of the total duration, whichever is less. denom: float fraction of the segment to taper duration: float duration of the taper in seconds """ self.ys = apodize(self.ys, self.framerate, denom, duration) def hamming(self): """Apply a Hamming window to the wave. """ self.ys *= numpy.hamming(len(self.ys)) def window(self, window): """Apply a window to the wave. window: sequence of multipliers, same length as self.ys """ self.ys *= window def scale(self, factor): """Multplies the wave by a factor. factor: scale factor """ self.ys *= factor def shift(self, shift): """Shifts the wave left or right by index shift. shift: integer number of places to shift """ if shift < 0: self.ys = shift_left(self.ys, shift) if shift > 0: self.ys = shift_right(self.ys, shift) def truncate(self, n): """Trims this wave to the given length. """ self.ys = truncate(self.ys, n) def normalize(self, amp=1.0): """Normalizes the signal to the given amplitude. amp: float amplitude """ self.ys = normalize(self.ys, amp=amp) def unbias(self): """Unbiases the signal. """ self.ys = unbias(self.ys) def segment(self, start=0, duration=None): """Extracts a segment. start: float start time in seconds duration: float duration in seconds returns: Wave """ i = round(start * self.framerate) if duration is None: j = None else: j = i + round(duration * self.framerate) ys = self.ys[i:j] return Wave(ys, self.framerate) def make_spectrum(self): """Computes the spectrum using FFT. returns: Spectrum """ hs = numpy.fft.rfft(self.ys) return Spectrum(hs, self.framerate) def make_dct(self): amps = scipy.fftpack.dct(self.ys, type=2) return Dct(amps, self.framerate) def make_spectrogram(self, seg_length, window_func=numpy.hamming): """Computes the spectrogram of the wave. seg_length: number of samples in each segment window_func: function used to compute the window returns: Spectrogram """ n = len(self.ys) window = window_func(seg_length) start, end, step = 0, seg_length, seg_length / 2 spec_map = {} while end < n: ys = self.ys[start:end] * window hs = numpy.fft.rfft(ys) t = (start + end) / 2.0 / self.framerate spec_map[t] = Spectrum(hs, self.framerate) start += step end += step return Spectrogram(spec_map, seg_length, window_func) def plot(self, **options): """Plots the wave. """ thinkplot.plot(self.ts, self.ys, **options) def corr(self, other): """Correlation coefficient two waves. other: Wave returns: float coefficient of correlation """ corr = numpy.corrcoef(self.ys, other.ys)[0, 1] return corr def cov_mat(self, other): """Covariance matrix of two waves. other: Wave returns: 2x2 covariance matrix """ return numpy.cov(self.ys, other.ys) def cov(self, other): """Covariance of two unbiased waves. other: Wave returns: float """ total = sum(self.ys * other.ys) / len(self.ys) return total def cos_cov(self, k): """Covariance with a cosine signal. freq: freq of the cosine signal in Hz returns: float covariance """ n = len(self.ys) factor = math.pi * k / n ys = [math.cos(factor * (i+0.5)) for i in range(n)] total = 2 * sum(self.ys * ys) return total def cos_transform(self): """Discrete cosine transform. returns: list of frequency, cov pairs """ n = len(self.ys) res = [] for k in range(n): cov = self.cos_cov(k) res.append((k, cov)) return res def write(self, filename='sound.wav'): """Write a wave file. filename: string """ print('Writing', filename) wfile = WavFileWriter(filename, self.framerate) wfile.write(self) wfile.close() def play(self, filename='sound.wav'): """Plays a wave file. filename: string """ self.write(filename) play_wave(filename) def make_audio(self): """Makes an IPython Audio object. """ audio = Audio(data=self.ys, rate=self.framerate) return audio def unbias(ys): """Shifts a wave array so it has mean 0. ys: wave array returns: wave array """ return ys - ys.mean() def normalize(ys, amp=1.0): """Normalizes a wave array so the maximum amplitude is +amp or -amp. ys: wave array amp: max amplitude (pos or neg) in result returns: wave array """ high, low = abs(max(ys)), abs(min(ys)) return amp * ys / max(high, low) def shift_right(ys, shift): """Shifts a wave array to the right and zero pads. ys: wave array shift: integer shift returns: wave array """ res = numpy.zeros(len(ys) + shift) res[shift:] = ys return res def shift_left(ys, shift): """Shifts a wave array to the left. ys: wave array shift: integer shift returns: wave array """ return ys[shift:] def truncate(ys, n): """Trims a wave array to the given length. ys: wave array n: integer length returns: wave array """ return ys[:n] def quantize(ys, bound, dtype): """Maps the waveform to quanta. ys: wave array bound: maximum amplitude dtype: numpy data type of the result returns: quantized signal """ if max(ys) > 1 or min(ys) < -1: warnings.warn('Warning: normalizing before quantizing.') ys = normalize(ys) zs = (ys * bound).astype(dtype) return zs def apodize(ys, framerate, denom=20, duration=0.1): """Tapers the amplitude at the beginning and end of the signal. Tapers either the given duration of time or the given fraction of the total duration, whichever is less. ys: wave array framerate: int frames per second denom: float fraction of the segment to taper duration: float duration of the taper in seconds returns: wave array """ # a fixed fraction of the segment n = len(ys) k1 = n // denom # a fixed duration of time k2 = int(duration * framerate) k = min(k1, k2) w1 = numpy.linspace(0, 1, k) w2 = numpy.ones(n - 2*k) w3 = numpy.linspace(1, 0, k) window = numpy.concatenate((w1, w2, w3)) return ys * window class Signal(object): """Represents a time-varying signal.""" def __add__(self, other): """Adds two signals. other: Signal returns: Signal """ if other == 0: return self return SumSignal(self, other) __radd__ = __add__ @property def period(self): """Period of the signal in seconds (property). For non-periodic signals, use the default, 0.1 seconds returns: float seconds """ return 0.1 def plot(self, framerate=11025): """Plots the signal. framerate: samples per second """ duration = self.period * 3 wave = self.make_wave(duration, start=0, framerate=framerate) wave.plot() def make_wave(self, duration=1, start=0, framerate=11025): """Makes a Wave object. duration: float seconds start: float seconds framerate: int frames per second returns: Wave """ dt = 1.0 / framerate ts = numpy.arange(start, duration, dt) ys = self.evaluate(ts) return Wave(ys, framerate=framerate, start=start) def infer_framerate(ts): """Given ts, find the framerate. Assumes that the ts are equally spaced. ts: sequence of times in seconds returns: frames per second """ dt = ts[1] - ts[0] framerate = 1.0 / dt return framerate class SumSignal(Signal): """Represents the sum of signals.""" def __init__(self, *args): """Initializes the sum. args: tuple of signals """ self.signals = args @property def period(self): """Period of the signal in seconds. Note: this is not correct; it's mostly a placekeeper. But it is correct for a harmonic sequence where all component frequencies are multiples of the fundamental. returns: float seconds """ return max(sig.period for sig in self.signals) def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ return sum(sig.evaluate(ts) for sig in self.signals) class Sinusoid(Signal): """Represents a sinusoidal signal.""" def __init__(self, freq=440, amp=1.0, offset=0, func=numpy.sin): """Initializes a sinusoidal signal. freq: float frequency in Hz amp: float amplitude, 1.0 is nominal max offset: float phase offset in radians func: function that maps phase to amplitude """ self.freq = freq self.amp = amp self.offset = offset self.func = func @property def period(self): """Period of the signal in seconds. returns: float seconds """ return 1.0 / self.freq def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ phases = PI2 * self.freq * ts + self.offset ys = self.amp * self.func(phases) return ys def CosSignal(freq=440, amp=1.0, offset=0): """Makes a cosine Sinusoid. freq: float frequency in Hz amp: float amplitude, 1.0 is nominal max offset: float phase offset in radians returns: Sinusoid object """ return Sinusoid(freq, amp, offset, func=numpy.cos) def SinSignal(freq=440, amp=1.0, offset=0): """Makes a sine Sinusoid. freq: float frequency in Hz amp: float amplitude, 1.0 is nominal max offset: float phase offset in radians returns: Sinusoid object """ return Sinusoid(freq, amp, offset, func=numpy.sin) class ComplexSinusoid(Sinusoid): """Represents a complex exponential signal.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ i = complex(0, 1) phases = PI2 * self.freq * ts + self.offset ys = self.amp * numpy.exp(i * phases) return ys class SquareSignal(Sinusoid): """Represents a square signal.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ cycles = self.freq * ts + self.offset / PI2 frac, _ = numpy.modf(cycles) ys = self.amp * numpy.sign(unbias(frac)) return ys class SawtoothSignal(Sinusoid): """Represents a sawtooth signal.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ cycles = self.freq * ts + self.offset / PI2 frac, _ = numpy.modf(cycles) ys = normalize(unbias(frac), self.amp) return ys class ParabolicSignal(Sinusoid): """Represents a parabolic signal.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ cycles = self.freq * ts + self.offset / PI2 frac, _ = numpy.modf(cycles) ys = (frac - 0.5)**2 ys = normalize(unbias(ys), self.amp) return ys class GlottalSignal(Sinusoid): """Represents a periodic signal that resembles a glottal signal.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ cycles = self.freq * ts + self.offset / PI2 frac, _ = numpy.modf(cycles) ys = frac**4 * (1-frac) ys = normalize(unbias(ys), self.amp) return ys class TriangleSignal(Sinusoid): """Represents a triangle signal.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ cycles = self.freq * ts + self.offset / PI2 frac, _ = numpy.modf(cycles) ys = numpy.abs(frac - 0.5) ys = normalize(unbias(ys), self.amp) return ys class Chirp(Signal): """Represents a signal with variable frequency.""" def __init__(self, start=440, end=880, amp=1.0): """Initializes a linear chirp. start: float frequency in Hz end: float frequency in Hz amp: float amplitude, 1.0 is nominal max """ self.start = start self.end = end self.amp = amp @property def period(self): """Period of the signal in seconds. returns: float seconds """ return ValueError('Non-periodic signal.') def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ freqs = numpy.linspace(self.start, self.end, len(ts)-1) return self._evaluate(ts, freqs) def _evaluate(self, ts, freqs): """Helper function that evaluates the signal. ts: float array of times freqs: float array of frequencies during each interval """ dts = numpy.diff(ts) dps = PI2 * freqs * dts phases = numpy.cumsum(dps) phases = numpy.insert(phases, 0, 0) ys = self.amp * numpy.cos(phases) return ys class ExpoChirp(Chirp): """Represents a signal with varying frequency.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ start, end = math.log10(self.start), math.log10(self.end) freqs = numpy.logspace(start, end, len(ts)-1) return self._evaluate(ts, freqs) class SilentSignal(Signal): """Represents silence.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ return numpy.zeros(len(ts)) class _Noise(Signal): """Represents a noise signal (abstract parent class).""" def __init__(self, amp=1.0): """Initializes a white noise signal. amp: float amplitude, 1.0 is nominal max """ self.amp = amp @property def period(self): """Period of the signal in seconds. returns: float seconds """ return ValueError('Non-periodic signal.') class UncorrelatedUniformNoise(_Noise): """Represents uncorrelated uniform noise.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ ys = numpy.random.uniform(-self.amp, self.amp, len(ts)) return ys class UncorrelatedGaussianNoise(_Noise): """Represents uncorrelated gaussian noise.""" def evaluate(self, ts): """Evaluates the signal at the given times. ts: float array of times returns: float wave array """ ys = numpy.random.normal(0, self.amp, len(ts)) return ys class BrownianNoise(_Noise): """Represents Brownian noise, aka red noise.""" def evaluate(self, ts): """Evaluates the signal at the given times. Computes Brownian noise by taking the cumulative sum of a uniform random series. ts: float array of times returns: float wave array """ dys = numpy.random.uniform(-1, 1, len(ts)) #ys = scipy.integrate.cumtrapz(dys, ts) ys = numpy.cumsum(dys) ys = normalize(unbias(ys), self.amp) return ys class PinkNoise(_Noise): """Represents Brownian noise, aka red noise.""" def __init__(self, amp=1.0, beta=1.0): """Initializes a pink noise signal. amp: float amplitude, 1.0 is nominal max """ self.amp = amp self.beta = beta def make_wave(self, duration=1, start=0, framerate=11025): """Makes a Wave object. duration: float seconds start: float seconds framerate: int frames per second returns: Wave """ signal = UncorrelatedUniformNoise() wave = signal.make_wave(duration, start, framerate) spectrum = wave.make_spectrum() spectrum.pink_filter(beta=self.beta) wave2 = spectrum.make_wave() wave2.unbias() wave2.normalize(self.amp) return wave2 def rest(duration): """Makes a rest of the given duration. duration: float seconds returns: Wave """ signal = SilentSignal() wave = signal.make_wave(duration) return wave def make_note(midi_num, duration, sig_cons=CosSignal, framerate=11025): """Make a MIDI note with the given duration. midi_num: int MIDI note number duration: float seconds sig_cons: Signal constructor function framerate: int frames per second returns: Wave """ freq = midi_to_freq(midi_num) signal = sig_cons(freq) wave = signal.make_wave(duration, framerate=framerate) wave.apodize() return wave def make_chord(midi_nums, duration, sig_cons=CosSignal, framerate=11025): """Make a chord with the given duration. midi_nums: sequence of int MIDI note numbers duration: float seconds sig_cons: Signal constructor function framerate: int frames per second returns: Wave """ freqs = [midi_to_freq(num) for num in midi_nums] signal = sum(sig_cons(freq) for freq in freqs) wave = signal.make_wave(duration, framerate=framerate) wave.apodize() return wave def midi_to_freq(midi_num): """Converts MIDI note number to frequency. midi_num: int MIDI note number returns: float frequency in Hz """ x = (midi_num - 69) / 12.0 freq = 440.0 * 2**x return freq def sin_wave(freq, duration=1, offset=0): """Makes a sine wave with the given parameters. freq: float cycles per second duration: float seconds offset: float radians returns: Wave """ signal = SinSignal(freq, offset=offset) wave = signal.make_wave(duration) return wave def cos_wave(freq, duration=1, offset=0): """Makes a cosine wave with the given parameters. freq: float cycles per second duration: float seconds offset: float radians returns: Wave """ signal = CosSignal(freq, offset=offset) wave = signal.make_wave(duration) return wave def mag(a): """Computes the magnitude of a numpy array. a: numpy array returns: float """ return numpy.sqrt(numpy.dot(a, a)) def main(): cos_basis = cos_wave(440) sin_basis = sin_wave(440) wave = cos_wave(440, offset=math.pi/2) cos_cov = cos_basis.cov(wave) sin_cov = sin_basis.cov(wave) print(cos_cov, sin_cov, mag((cos_cov, sin_cov))) return wfile = WavFileWriter() for sig_cons in [SinSignal, TriangleSignal, SawtoothSignal, GlottalSignal, ParabolicSignal, SquareSignal]: print(sig_cons) sig = sig_cons(440) wave = sig.make_wave(1) wave.apodize() wfile.write(wave) wfile.close() return signal = GlottalSignal(440) signal.plot() pyplot.show() return wfile = WavFileWriter() for m in range(60, 0, -1): wfile.write(make_note(m, 0.25)) wfile.close() return wave1 = make_note(69, 1) wave2 = make_chord([69, 72, 76], 1) wave = wave1 | wave2 wfile = WavFileWriter() wfile.write(wave) wfile.close() return sig1 = CosSignal(freq=440) sig2 = CosSignal(freq=523.25) sig3 = CosSignal(freq=660) sig4 = CosSignal(freq=880) sig5 = CosSignal(freq=987) sig = sig1 + sig2 + sig3 + sig4 #wave = Wave(sig, duration=0.02) #wave.plot() wave = sig.make_wave(duration=1) #wave.normalize() wfile = WavFileWriter(wave) wfile.write() wfile.close() if __name__ == '__main__': main()
gpl-2.0
rs2/pandas
pandas/tests/series/indexing/test_alter_index.py
2
9723
import numpy as np import pytest import pandas as pd from pandas import Categorical, Series, date_range, isna import pandas._testing as tm def test_reindex(datetime_series, string_series): identity = string_series.reindex(string_series.index) # __array_interface__ is not defined for older numpies # and on some pythons try: assert np.may_share_memory(string_series.index, identity.index) except AttributeError: pass assert identity.index.is_(string_series.index) assert identity.index.identical(string_series.index) subIndex = string_series.index[10:20] subSeries = string_series.reindex(subIndex) for idx, val in subSeries.items(): assert val == string_series[idx] subIndex2 = datetime_series.index[10:20] subTS = datetime_series.reindex(subIndex2) for idx, val in subTS.items(): assert val == datetime_series[idx] stuffSeries = datetime_series.reindex(subIndex) assert np.isnan(stuffSeries).all() # This is extremely important for the Cython code to not screw up nonContigIndex = datetime_series.index[::2] subNonContig = datetime_series.reindex(nonContigIndex) for idx, val in subNonContig.items(): assert val == datetime_series[idx] # return a copy the same index here result = datetime_series.reindex() assert not (result is datetime_series) def test_reindex_nan(): ts = Series([2, 3, 5, 7], index=[1, 4, np.nan, 8]) i, j = [np.nan, 1, np.nan, 8, 4, np.nan], [2, 0, 2, 3, 1, 2] tm.assert_series_equal(ts.reindex(i), ts.iloc[j]) ts.index = ts.index.astype("object") # reindex coerces index.dtype to float, loc/iloc doesn't tm.assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False) def test_reindex_series_add_nat(): rng = date_range("1/1/2000 00:00:00", periods=10, freq="10s") series = Series(rng) result = series.reindex(range(15)) assert np.issubdtype(result.dtype, np.dtype("M8[ns]")) mask = result.isna() assert mask[-5:].all() assert not mask[:-5].any() def test_reindex_with_datetimes(): rng = date_range("1/1/2000", periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] expected.index = expected.index._with_freq(None) tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_reindex_corner(datetime_series): # (don't forget to fix this) I think it's fixed empty = Series(dtype=object) empty.reindex(datetime_series.index, method="pad") # it works # corner case: pad empty series reindexed = empty.reindex(datetime_series.index, method="pad") # pass non-Index reindexed = datetime_series.reindex(list(datetime_series.index)) datetime_series.index = datetime_series.index._with_freq(None) tm.assert_series_equal(datetime_series, reindexed) # bad fill method ts = datetime_series[::2] msg = ( r"Invalid fill method\. Expecting pad \(ffill\), backfill " r"\(bfill\) or nearest\. Got foo" ) with pytest.raises(ValueError, match=msg): ts.reindex(datetime_series.index, method="foo") def test_reindex_pad(): s = Series(np.arange(10), dtype="int64") s2 = s[::2] reindexed = s2.reindex(s.index, method="pad") reindexed2 = s2.reindex(s.index, method="ffill") tm.assert_series_equal(reindexed, reindexed2) expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10)) tm.assert_series_equal(reindexed, expected) # GH4604 s = Series([1, 2, 3, 4, 5], index=["a", "b", "c", "d", "e"]) new_index = ["a", "g", "c", "f"] expected = Series([1, 1, 3, 3], index=new_index) # this changes dtype because the ffill happens after result = s.reindex(new_index).ffill() tm.assert_series_equal(result, expected.astype("float64")) result = s.reindex(new_index).ffill(downcast="infer") tm.assert_series_equal(result, expected) expected = Series([1, 5, 3, 5], index=new_index) result = s.reindex(new_index, method="ffill") tm.assert_series_equal(result, expected) # inference of new dtype s = Series([True, False, False, True], index=list("abcd")) new_index = "agc" result = s.reindex(list(new_index)).ffill() expected = Series([True, True, False], index=list(new_index)) tm.assert_series_equal(result, expected) # GH4618 shifted series downcasting s = Series(False, index=range(0, 5)) result = s.shift(1).fillna(method="bfill") expected = Series(False, index=range(0, 5)) tm.assert_series_equal(result, expected) def test_reindex_nearest(): s = Series(np.arange(10, dtype="int64")) target = [0.1, 0.9, 1.5, 2.0] result = s.reindex(target, method="nearest") expected = Series(np.around(target).astype("int64"), target) tm.assert_series_equal(expected, result) result = s.reindex(target, method="nearest", tolerance=0.2) expected = Series([0, 1, np.nan, 2], target) tm.assert_series_equal(expected, result) result = s.reindex(target, method="nearest", tolerance=[0.3, 0.01, 0.4, 3]) expected = Series([0, np.nan, np.nan, 2], target) tm.assert_series_equal(expected, result) def test_reindex_backfill(): pass def test_reindex_int(datetime_series): ts = datetime_series[::2] int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index) # this should work fine reindexed_int = int_ts.reindex(datetime_series.index) # if NaNs introduced assert reindexed_int.dtype == np.float_ # NO NaNs introduced reindexed_int = int_ts.reindex(int_ts.index[::2]) assert reindexed_int.dtype == np.int_ def test_reindex_bool(datetime_series): # A series other than float, int, string, or object ts = datetime_series[::2] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) # this should work fine reindexed_bool = bool_ts.reindex(datetime_series.index) # if NaNs introduced assert reindexed_bool.dtype == np.object_ # NO NaNs introduced reindexed_bool = bool_ts.reindex(bool_ts.index[::2]) assert reindexed_bool.dtype == np.bool_ def test_reindex_bool_pad(datetime_series): # fail ts = datetime_series[5:] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) filled_bool = bool_ts.reindex(datetime_series.index, method="pad") assert isna(filled_bool[:5]).all() def test_reindex_categorical(): index = date_range("20000101", periods=3) # reindexing to an invalid Categorical s = Series(["a", "b", "c"], dtype="category") result = s.reindex(index) expected = Series( Categorical(values=[np.nan, np.nan, np.nan], categories=["a", "b", "c"]) ) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=["b", "c"], categories=["a", "b", "c"])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical(values=["c", np.nan], categories=["a", "b", "c"])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_reindex_fill_value(): # ----------------------------------------------------------- # floats floats = Series([1.0, 2.0, 3.0]) result = floats.reindex([1, 2, 3]) expected = Series([2.0, 3.0, np.nan], index=[1, 2, 3]) tm.assert_series_equal(result, expected) result = floats.reindex([1, 2, 3], fill_value=0) expected = Series([2.0, 3.0, 0], index=[1, 2, 3]) tm.assert_series_equal(result, expected) # ----------------------------------------------------------- # ints ints = Series([1, 2, 3]) result = ints.reindex([1, 2, 3]) expected = Series([2.0, 3.0, np.nan], index=[1, 2, 3]) tm.assert_series_equal(result, expected) # don't upcast result = ints.reindex([1, 2, 3], fill_value=0) expected = Series([2, 3, 0], index=[1, 2, 3]) assert issubclass(result.dtype.type, np.integer) tm.assert_series_equal(result, expected) # ----------------------------------------------------------- # objects objects = Series([1, 2, 3], dtype=object) result = objects.reindex([1, 2, 3]) expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object) tm.assert_series_equal(result, expected) result = objects.reindex([1, 2, 3], fill_value="foo") expected = Series([2, 3, "foo"], index=[1, 2, 3], dtype=object) tm.assert_series_equal(result, expected) # ------------------------------------------------------------ # bools bools = Series([True, False, True]) result = bools.reindex([1, 2, 3]) expected = Series([False, True, np.nan], index=[1, 2, 3], dtype=object) tm.assert_series_equal(result, expected) result = bools.reindex([1, 2, 3], fill_value=False) expected = Series([False, True, False], index=[1, 2, 3]) tm.assert_series_equal(result, expected) def test_reindex_datetimeindexes_tz_naive_and_aware(): # GH 8306 idx = date_range("20131101", tz="America/Chicago", periods=7) newidx = date_range("20131103", periods=10, freq="H") s = Series(range(7), index=idx) msg = "Cannot compare tz-naive and tz-aware timestamps" with pytest.raises(TypeError, match=msg): s.reindex(newidx, method="ffill") def test_reindex_empty_series_tz_dtype(): # GH 20869 result = Series(dtype="datetime64[ns, UTC]").reindex([0, 1]) expected = Series([pd.NaT] * 2, dtype="datetime64[ns, UTC]") tm.assert_equal(result, expected)
bsd-3-clause
AkademieOlympia/sympy
sympy/external/tests/test_importtools.py
91
1215
from sympy.external import import_module # fixes issue that arose in addressing issue 6533 def test_no_stdlib_collections(): ''' make sure we get the right collections when it is not part of a larger list ''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['cm', 'collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: assert collections != matplotlib.collections def test_no_stdlib_collections2(): ''' make sure we get the right collections when it is not part of a larger list ''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: assert collections != matplotlib.collections def test_no_stdlib_collections3(): '''make sure we get the right collections with no catch''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['cm', 'collections']}, min_module_version='1.1.0') if matplotlib: assert collections != matplotlib.collections
bsd-3-clause
ChristianTremblay/ddcmath
tests/test_temperature.py
1
1644
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2015 by Christian Tremblay, P.Eng <[email protected]> # # Licensed under GPLv3, see file LICENSE in this source tree. from __future__ import division from ddcmath.temperature import f2c, c2f, delta_c2f, delta_f2c, oat_percent, mkt from ddcmath.tolerance import abs_relative_error from ddcmath.exceptions import InaccuracyException import pytest try: import numpy as np import pandas as pd PERM_MKT = True except ImportError: PERM_MKT = False def test_f2c(): """ Error must be lower than 0.001% """ assert abs_relative_error(f2c(32), 0) < 0.001 assert abs_relative_error(f2c(-40), -40) < 0.001 def test_c2f(): """ Error must be lower than 0.001% """ assert abs_relative_error(c2f(0), 32) < 0.001 assert abs_relative_error(c2f(-40), -40) < 0.001 def test_delta_c2f(): assert delta_c2f(1) == 9 / 5 def test_delta_f2c(): assert delta_f2c(1) == 5 / 9 def test_oa_proportion(): assert oat_percent(0, 20, 10) == 0.5 def test_inaccuracy_of_oa_prop(): with pytest.raises(InaccuracyException): oat_percent(20.000001, 20, 10) == 0.5 def test_mkt(): if not PERM_MKT: return True records = [19.8, 20.2, 20.6, 21, 21.3, 21.5] start = pd.datetime(2018, 9, 11, 0, 0) end = pd.datetime(2018, 9, 11, 0, 5) index = pd.date_range(start, end, freq="1Min") rec = pd.Series(records, index=index) rec2 = pd.Series(records) assert abs_relative_error(mkt(rec), 20.752780387897474) < 0.001 assert abs_relative_error(mkt(rec2), 20.752780387897474) < 0.001
gpl-3.0
ericlin-ICT/mysite
src/clouddesktop/core/query.py
1
7926
#-*- encoding: utf-8 -*- ''' Created on 2014年2月14日 @author: ericlin ''' import logging import ldap.resiter from pandas.core.frame import DataFrame import re class Query(ldap.resiter.ResultProcessor): ''' Description: -------------------------------------------------------- perform ad query operation -------------------------------------------------------- ''' def __init__(self, server, user_email, password, dc, port = 389 ): ''' Description: -------------------------------------------------------- Constructor -------------------------------------------------------- Args: -------------------------------------------------------- dc string domain control string(like 'DC=testlxh,DC=com') handle SimpleLDAPObject connection handle, default null --------------------------------------------------------- Exception: --------------------------------------------------------- throw QueryException --------------------------------------------------------- ''' self.dc = dc self.server = server self.port = port self.user_email = user_email self.pwd = password self.logger = logging.getLogger("ADQueryLogger") self.conn = ldap.initialize('ldap://128.192.214.251:389') self.conn.simple_bind(user_email, pwd) def get_group(self, sAMAccountName=''): ''' Description: -------------------------------------------------------- Use aAMAccountName as condition to search user's group info -------------------------------------------------------- Args: -------------------------------------------------------- sAMAccountName string user name in ccb(like linxianghui.zh) --------------------------------------------------------- Return: --------------------------------------------------------- json string with "username:memberof", None if failed --------------------------------------------------------- ''' # construct search condition option = ldap.SCOPE_SUBTREE condition = 'sAMAccountName=%s' % (sAMAccountName) attrs = ['sAMAccountName','memberOf'] res = None #try: # Asynchronous search method # do search #s = conn.search_s(self.dc, option, condition, attrs) msg_id = self.conn.search(self.dc, option, condition, attrs) for item in self.allresults(msg_id): print item def get_dn(self, sAMAccountName=''): ''' Description: -------------------------------------------------------- get distinguished name by sAMAccountName -------------------------------------------------------- Args: ---------------------------------------------------------- sAMAccountName string Object's flpm id ---------------------------------------------------------- Return: ---------------------------------------------------------- distinguished name of the obj, None if failed ---------------------------------------------------------- ''' # construct search condition option = ldap.SCOPE_SUBTREE condition = 'sAMAccountName=%s' % (sAMAccountName) attrs = ['distinguishedName'] # do search try: # search AD res = self.handle.search_s(self.dc, option, condition, attrs) except ldap.error, e : res = None self.logger.debug(e) self.logger.error("查询 %s 失败" % sAMAccountName) except Exception, e: res = None self.logger.debug(e) self.logger.error("查询 %s 失败" % sAMAccountName) finally: return res class InnerLDAPObject(ldap.ldapobject.LDAPObject,ldap.resiter.ResultProcessor): pass class AsyncQuery(object): def __init__(self, server, user_email, password, dc, port = 389): self.dc = dc self.server = server self.port = port self.user_email = user_email self.pwd = password self.logger = logging.getLogger("ADQueryLogger") self.uri = 'ldap://' + self.server + ':' + str(self.port) def __connect(self): self.ldap_obj = InnerLDAPObject(self.uri) self.ldap_obj.protocol_version = ldap.VERSION3 self.ldap_obj.set_option(ldap.OPT_REFERRALS,0) self.ldap_obj.simple_bind_s(self.user_email, self.pwd) def __disconnect(self): self.ldap_obj.unbind_ext_s() #print 'disconnect' def async_get_dn(self, sAMAccountName): self.__connect() option = ldap.SCOPE_SUBTREE condition = 'sAMAccountName=%s' % (sAMAccountName) attrs = ['distinguishedName'] try: msg_id = self.ldap_obj.search(self.dc, option, condition, attrs) s = '' res = None for i in self.ldap_obj.allresults(msg_id, 10): s = i[1] break #print 's:', s # not find user, return None if str(s).find('distinguishedName') == -1: return None df_tmp = DataFrame(s, columns=['user', 'attrs']) # get first record attrs dict attrs = df_tmp['attrs'][0] #print 'attr:', attrs # find memberOf attr if 'distinguishedName' in attrs.keys(): dn = attrs['distinguishedName'] #print str(dn) res = dn[0] print 'res', res print 'typs', type(res) except Exception, e: print e finally: self.__disconnect() return res def async_get_group(self, sAMAccountName): # Asynchronous search method self.__connect() option = ldap.SCOPE_SUBTREE condition = 'sAMAccountName=%s' % (sAMAccountName) attrs = ['sAMAccountName', 'memberOf',] res = None try: msg_id = self.ldap_obj.search(self.dc, option, condition, attrs) s = '' for i in self.ldap_obj.allresults(msg_id, 10): s = i[1] break # not find user, return None if str(s).find('sAMAccountName') == -1: return None if str(s).find('memberOf') == -1: res = '' #print s df_tmp = DataFrame(s, columns=['user', 'attrs']) # get first record attrs dict attrs = df_tmp['attrs'][0] # find memberOf attr if 'memberOf' in attrs.keys(): memberof = attrs['memberOf'] res = (sAMAccountName, memberof) return res except Exception,e: print e finally: self.__disconnect() if __name__=='__main__': server = '128.192.214.251' port = 389 user_email = '[email protected]' pwd = '123' dc = 'dc=lxhtest,dc=com' #q = query(server,user_email,pwd,dc = dc, port=ldap.PORT ) sAMAccountName= 'lxhadmin' #res = q.find_gourp_by_aAMAccountName(sAMAccountName) #print res #conn = ldap.initialize('ldap://128.192.214.251:389') #conn.simple_bind(user_email, pwd) # do search option = ldap.SCOPE_SUBTREE condition = 'sAMAccountName=%s' % (sAMAccountName) attrs = ['sAMAccountName','memberOf'] #s = conn.search_s(dc, option, condition, attrs) #print s aQuery = AsyncQuery(server,user_email,pwd,dc = dc, port=ldap.PORT ) print aQuery.async_get_group(sAMAccountName) #print aQuery.async_get_dn(sAMAccountName) ''' # Asynchronous search method msg_id = conn.search(dc, option, condition) ldap.ldapobject.LDAPObject for item in conn.allresults(msg_id): print item ''' #for res_type,res_data,res_msgid,res_controls in conn.allresults(msg_id):
apache-2.0
jmargeta/scikit-learn
examples/plot_multilabel.py
4
4168
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.pls import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] pl.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": # Convert list of tuples to a class indicator matrix first Y_indicator = LabelBinarizer().fit(Y).transform(Y) X = CCA(n_components=2).fit(X, Y_indicator).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) pl.subplot(2, 2, subplot) pl.title(title) zero_class = np.where([0 in y for y in Y]) one_class = np.where([1 in y for y in Y]) pl.scatter(X[:, 0], X[:, 1], s=40, c='gray') pl.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') pl.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') pl.axis('tight') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') pl.xticks(()) pl.yticks(()) if subplot == 2: pl.xlim(min_x - 5, max_x) pl.xlabel('First principal component') pl.ylabel('Second principal component') pl.legend(loc="upper left") pl.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") pl.subplots_adjust(.04, .02, .97, .94, .09, .2) pl.show()
bsd-3-clause
nomadcube/scikit-learn
examples/applications/plot_prediction_latency.py
234
11277
""" ================== Prediction Latency ================== This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode. The plots represent the distribution of the prediction latency as a boxplot. """ # Authors: Eustache Diemert <[email protected]> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import time import gc import numpy as np import matplotlib.pyplot as plt from scipy.stats import scoreatpercentile from sklearn.datasets.samples_generator import make_regression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.svm.classes import SVR def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() def atomic_benchmark_estimator(estimator, X_test, verbose=False): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_instances, dtype=np.float) for i in range(n_instances): instance = X_test[i, :] start = time.time() estimator.predict(instance) runtimes[i] = time.time() - start if verbose: print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose): """Measure runtime prediction of the whole input.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_bulk_repeats, dtype=np.float) for i in range(n_bulk_repeats): start = time.time() estimator.predict(X_test) runtimes[i] = time.time() - start runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes))) if verbose: print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False): """ Measure runtimes of prediction in both atomic and bulk mode. Parameters ---------- estimator : already trained estimator supporting `predict()` X_test : test input n_bulk_repeats : how many times to repeat when evaluating bulk mode Returns ------- atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the runtimes in seconds. """ atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose) bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose) return atomic_runtimes, bulk_runtimes def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False): """Generate a regression dataset with the given parameters.""" if verbose: print("generating dataset...") X, y, coef = make_regression(n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() if verbose: print("ok") return X_train, y_train, X_test, y_test def boxplot_runtimes(runtimes, pred_type, configuration): """ Plot a new `Figure` with boxplots of prediction runtimes. Parameters ---------- runtimes : list of `np.array` of latencies in micro-seconds cls_names : list of estimator class names that generated the runtimes pred_type : 'bulk' or 'atomic' """ fig, ax1 = plt.subplots(figsize=(10, 6)) bp = plt.boxplot(runtimes, ) cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] plt.setp(ax1, xticklabels=cls_infos) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Prediction Time per Instance - %s, %d feats.' % ( pred_type.capitalize(), configuration['n_features'])) ax1.set_ylabel('Prediction Time (us)') plt.show() def benchmark(configuration): """Run the whole benchmark.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) stats = {} for estimator_conf in configuration['estimators']: print("Benchmarking", estimator_conf['instance']) estimator_conf['instance'].fit(X_train, y_train) gc.collect() a, b = benchmark_estimator(estimator_conf['instance'], X_test) stats[estimator_conf['name']] = {'atomic': a, 'bulk': b} cls_names = [estimator_conf['name'] for estimator_conf in configuration[ 'estimators']] runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'atomic', configuration) runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'], configuration) def n_feature_influence(estimators, n_train, n_test, n_features, percentile): """ Estimate influence of the number of features on prediction time. Parameters ---------- estimators : dict of (name (str), estimator) to benchmark n_train : nber of training instances (int) n_test : nber of testing instances (int) n_features : list of feature-space dimensionality to test (int) percentile : percentile at which to measure the speed (int [0-100]) Returns: -------- percentiles : dict(estimator_name, dict(n_features, percentile_perf_in_us)) """ percentiles = defaultdict(defaultdict) for n in n_features: print("benchmarking with %d features" % n) X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n) for cls_name, estimator in estimators.items(): estimator.fit(X_train, y_train) gc.collect() runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False) percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes, percentile) return percentiles def plot_n_features_influence(percentiles, percentile): fig, ax1 = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] for i, cls_name in enumerate(percentiles.keys()): x = np.array(sorted([n for n in percentiles[cls_name].keys()])) y = np.array([percentiles[cls_name][n] for n in x]) plt.plot(x, y, color=colors[i], ) ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Evolution of Prediction Time with #Features') ax1.set_xlabel('#Features') ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile) plt.show() def benchmark_throughputs(configuration, duration_secs=0.1): """benchmark throughput for different estimators.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) throughputs = dict() for estimator_config in configuration['estimators']: estimator_config['instance'].fit(X_train, y_train) start_time = time.time() n_predictions = 0 while (time.time() - start_time) < duration_secs: estimator_config['instance'].predict(X_test[0]) n_predictions += 1 throughputs[estimator_config['name']] = n_predictions / duration_secs return throughputs def plot_benchmark_throughput(throughputs, configuration): fig, ax = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] cls_values = [throughputs[estimator_conf['name']] for estimator_conf in configuration['estimators']] plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors) ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs))) ax.set_xticklabels(cls_infos, fontsize=10) ymax = max(cls_values) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('Throughput (predictions/sec)') ax.set_title('Prediction Throughput for different estimators (%d ' 'features)' % configuration['n_features']) plt.show() ############################################################################### # main code start_time = time.time() # benchmark bulk/atomic prediction speed for various regressors configuration = { 'n_train': int(1e3), 'n_test': int(1e2), 'n_features': int(1e2), 'estimators': [ {'name': 'Linear Model', 'instance': SGDRegressor(penalty='elasticnet', alpha=0.01, l1_ratio=0.25, fit_intercept=True), 'complexity_label': 'non-zero coefficients', 'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)}, {'name': 'RandomForest', 'instance': RandomForestRegressor(), 'complexity_label': 'estimators', 'complexity_computer': lambda clf: clf.n_estimators}, {'name': 'SVR', 'instance': SVR(kernel='rbf'), 'complexity_label': 'support vectors', 'complexity_computer': lambda clf: len(clf.support_vectors_)}, ] } benchmark(configuration) # benchmark n_features influence on prediction speed percentile = 90 percentiles = n_feature_influence({'ridge': Ridge()}, configuration['n_train'], configuration['n_test'], [100, 250, 500], percentile) plot_n_features_influence(percentiles, percentile) # benchmark throughput throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) stop_time = time.time() print("example run in %.2fs" % (stop_time - start_time))
bsd-3-clause
wholmgren/pvlib-python
pvlib/solarposition.py
1
48876
""" Calculate the solar position using a variety of methods/packages. """ # Contributors: # Rob Andrews (@Calama-Consulting), Calama Consulting, 2014 # Will Holmgren (@wholmgren), University of Arizona, 2014 # Tony Lorenzo (@alorenzo175), University of Arizona, 2015 # Cliff hansen (@cwhanse), Sandia National Laboratories, 2018 from __future__ import division import os import datetime as dt try: from importlib import reload except ImportError: try: from imp import reload except ImportError: pass import numpy as np import pandas as pd import warnings from pvlib import atmosphere from pvlib.tools import datetime_to_djd, djd_to_datetime from pvlib._deprecation import deprecated NS_PER_HR = 1.e9 * 3600. # nanoseconds per hour def get_solarposition(time, latitude, longitude, altitude=None, pressure=None, method='nrel_numpy', temperature=12, **kwargs): """ A convenience wrapper for the solar position calculators. Parameters ---------- time : pandas.DatetimeIndex latitude : float longitude : float altitude : None or float, default None If None, computed from pressure. Assumed to be 0 m if pressure is also None. pressure : None or float, default None If None, computed from altitude. Assumed to be 101325 Pa if altitude is also None. method : string, default 'nrel_numpy' 'nrel_numpy' uses an implementation of the NREL SPA algorithm described in [1] (default, recommended): :py:func:`spa_python` 'nrel_numba' uses an implementation of the NREL SPA algorithm described in [1], but also compiles the code first: :py:func:`spa_python` 'pyephem' uses the PyEphem package: :py:func:`pyephem` 'ephemeris' uses the pvlib ephemeris code: :py:func:`ephemeris` 'nrel_c' uses the NREL SPA C code [3]: :py:func:`spa_c` temperature : float, default 12 Degrees C. Other keywords are passed to the underlying solar position function. References ---------- [1] I. Reda and A. Andreas, Solar position algorithm for solar radiation applications. Solar Energy, vol. 76, no. 5, pp. 577-589, 2004. [2] I. Reda and A. Andreas, Corrigendum to Solar position algorithm for solar radiation applications. Solar Energy, vol. 81, no. 6, p. 838, 2007. [3] NREL SPA code: http://rredc.nrel.gov/solar/codesandalgorithms/spa/ """ if altitude is None and pressure is None: altitude = 0. pressure = 101325. elif altitude is None: altitude = atmosphere.pres2alt(pressure) elif pressure is None: pressure = atmosphere.alt2pres(altitude) method = method.lower() if isinstance(time, dt.datetime): time = pd.DatetimeIndex([time, ]) if method == 'nrel_c': ephem_df = spa_c(time, latitude, longitude, pressure, temperature, **kwargs) elif method == 'nrel_numba': ephem_df = spa_python(time, latitude, longitude, altitude, pressure, temperature, how='numba', **kwargs) elif method == 'nrel_numpy': ephem_df = spa_python(time, latitude, longitude, altitude, pressure, temperature, how='numpy', **kwargs) elif method == 'pyephem': ephem_df = pyephem(time, latitude, longitude, altitude=altitude, pressure=pressure, temperature=temperature, **kwargs) elif method == 'ephemeris': ephem_df = ephemeris(time, latitude, longitude, pressure, temperature, **kwargs) else: raise ValueError('Invalid solar position method') return ephem_df def spa_c(time, latitude, longitude, pressure=101325, altitude=0, temperature=12, delta_t=67.0, raw_spa_output=False): """ Calculate the solar position using the C implementation of the NREL SPA code. The source files for this code are located in './spa_c_files/', along with a README file which describes how the C code is wrapped in Python. Due to license restrictions, the C code must be downloaded seperately and used in accordance with it's license. This function is slower and no more accurate than :py:func:`spa_python`. Parameters ---------- time : pandas.DatetimeIndex Localized or UTC. latitude : float longitude : float pressure : float, default 101325 Pressure in Pascals altitude : float, default 0 Elevation above sea level. temperature : float, default 12 Temperature in C delta_t : float, default 67.0 Difference between terrestrial time and UT1. USNO has previous values and predictions. raw_spa_output : bool, default False If true, returns the raw SPA output. Returns ------- DataFrame The DataFrame will have the following columns: elevation, azimuth, zenith, apparent_elevation, apparent_zenith. References ---------- NREL SPA reference: http://rredc.nrel.gov/solar/codesandalgorithms/spa/ NREL SPA C files: https://midcdmz.nrel.gov/spa/ Note: The ``timezone`` field in the SPA C files is replaced with ``time_zone`` to avoid a nameclash with the function ``__timezone`` that is redefined by Python>=3.5. This issue is `Python bug 24643 <https://bugs.python.org/issue24643>`_. USNO delta T: http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term See also -------- pyephem, spa_python, ephemeris """ # Added by Rob Andrews (@Calama-Consulting), Calama Consulting, 2014 # Edited by Will Holmgren (@wholmgren), University of Arizona, 2014 # Edited by Tony Lorenzo (@alorenzo175), University of Arizona, 2015 try: from pvlib.spa_c_files.spa_py import spa_calc except ImportError: raise ImportError('Could not import built-in SPA calculator. ' + 'You may need to recompile the SPA code.') # if localized, convert to UTC. otherwise, assume UTC. try: time_utc = time.tz_convert('UTC') except TypeError: time_utc = time spa_out = [] for date in time_utc: spa_out.append(spa_calc(year=date.year, month=date.month, day=date.day, hour=date.hour, minute=date.minute, second=date.second, time_zone=0, # date uses utc time latitude=latitude, longitude=longitude, elevation=altitude, pressure=pressure / 100, temperature=temperature, delta_t=delta_t )) spa_df = pd.DataFrame(spa_out, index=time) if raw_spa_output: # rename "time_zone" from raw output from spa_c_files.spa_py.spa_calc() # to "timezone" to match the API of pvlib.solarposition.spa_c() return spa_df.rename(columns={'time_zone': 'timezone'}) else: dfout = pd.DataFrame({'azimuth': spa_df['azimuth'], 'apparent_zenith': spa_df['zenith'], 'apparent_elevation': spa_df['e'], 'elevation': spa_df['e0'], 'zenith': 90 - spa_df['e0']}) return dfout def _spa_python_import(how): """Compile spa.py appropriately""" from pvlib import spa # check to see if the spa module was compiled with numba using_numba = spa.USE_NUMBA if how == 'numpy' and using_numba: # the spa module was compiled to numba code, so we need to # reload the module without compiling # the PVLIB_USE_NUMBA env variable is used to tell the module # to not compile with numba warnings.warn('Reloading spa to use numpy') os.environ['PVLIB_USE_NUMBA'] = '0' spa = reload(spa) del os.environ['PVLIB_USE_NUMBA'] elif how == 'numba' and not using_numba: # The spa module was not compiled to numba code, so set # PVLIB_USE_NUMBA so it does compile to numba on reload. warnings.warn('Reloading spa to use numba') os.environ['PVLIB_USE_NUMBA'] = '1' spa = reload(spa) del os.environ['PVLIB_USE_NUMBA'] elif how != 'numba' and how != 'numpy': raise ValueError("how must be either 'numba' or 'numpy'") return spa def spa_python(time, latitude, longitude, altitude=0, pressure=101325, temperature=12, delta_t=67.0, atmos_refract=None, how='numpy', numthreads=4, **kwargs): """ Calculate the solar position using a python implementation of the NREL SPA algorithm described in [1]. If numba is installed, the functions can be compiled to machine code and the function can be multithreaded. Without numba, the function evaluates via numpy with a slight performance hit. Parameters ---------- time : pandas.DatetimeIndex Localized or UTC. latitude : float longitude : float altitude : float, default 0 pressure : int or float, optional, default 101325 avg. yearly air pressure in Pascals. temperature : int or float, optional, default 12 avg. yearly air temperature in degrees C. delta_t : float, optional, default 67.0 If delta_t is None, uses spa.calculate_deltat using time.year and time.month from pandas.DatetimeIndex. For most simulations specifing delta_t is sufficient. Difference between terrestrial time and UT1. *Note: delta_t = None will break code using nrel_numba, this will be fixed in a future version.* The USNO has historical and forecasted delta_t [3]. atmos_refrac : None or float, optional, default None The approximate atmospheric refraction (in degrees) at sunrise and sunset. how : str, optional, default 'numpy' Options are 'numpy' or 'numba'. If numba >= 0.17.0 is installed, how='numba' will compile the spa functions to machine code and run them multithreaded. numthreads : int, optional, default 4 Number of threads to use if how == 'numba'. Returns ------- DataFrame The DataFrame will have the following columns: apparent_zenith (degrees), zenith (degrees), apparent_elevation (degrees), elevation (degrees), azimuth (degrees), equation_of_time (minutes). References ---------- [1] I. Reda and A. Andreas, Solar position algorithm for solar radiation applications. Solar Energy, vol. 76, no. 5, pp. 577-589, 2004. [2] I. Reda and A. Andreas, Corrigendum to Solar position algorithm for solar radiation applications. Solar Energy, vol. 81, no. 6, p. 838, 2007. [3] USNO delta T: http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term See also -------- pyephem, spa_c, ephemeris """ # Added by Tony Lorenzo (@alorenzo175), University of Arizona, 2015 lat = latitude lon = longitude elev = altitude pressure = pressure / 100 # pressure must be in millibars for calculation atmos_refract = atmos_refract or 0.5667 if not isinstance(time, pd.DatetimeIndex): try: time = pd.DatetimeIndex(time) except (TypeError, ValueError): time = pd.DatetimeIndex([time, ]) unixtime = np.array(time.astype(np.int64)/10**9) spa = _spa_python_import(how) delta_t = delta_t or spa.calculate_deltat(time.year, time.month) app_zenith, zenith, app_elevation, elevation, azimuth, eot = \ spa.solar_position(unixtime, lat, lon, elev, pressure, temperature, delta_t, atmos_refract, numthreads) result = pd.DataFrame({'apparent_zenith': app_zenith, 'zenith': zenith, 'apparent_elevation': app_elevation, 'elevation': elevation, 'azimuth': azimuth, 'equation_of_time': eot}, index=time) return result def sun_rise_set_transit_spa(times, latitude, longitude, how='numpy', delta_t=67.0, numthreads=4): """ Calculate the sunrise, sunset, and sun transit times using the NREL SPA algorithm described in [1]. If numba is installed, the functions can be compiled to machine code and the function can be multithreaded. Without numba, the function evaluates via numpy with a slight performance hit. Parameters ---------- times : pandas.DatetimeIndex Must be localized to the timezone for ``latitude`` and ``longitude``. latitude : float Latitude in degrees, positive north of equator, negative to south longitude : float Longitude in degrees, positive east of prime meridian, negative to west delta_t : float, optional If delta_t is None, uses spa.calculate_deltat using times.year and times.month from pandas.DatetimeIndex. For most simulations specifing delta_t is sufficient. Difference between terrestrial time and UT1. delta_t = None will break code using nrel_numba, this will be fixed in a future version. By default, use USNO historical data and predictions how : str, optional, default 'numpy' Options are 'numpy' or 'numba'. If numba >= 0.17.0 is installed, how='numba' will compile the spa functions to machine code and run them multithreaded. numthreads : int, optional, default 4 Number of threads to use if how == 'numba'. Returns ------- pandas.DataFrame index is the same as input `times` argument columns are 'sunrise', 'sunset', and 'transit' References ---------- [1] Reda, I., Andreas, A., 2003. Solar position algorithm for solar radiation applications. Technical report: NREL/TP-560- 34302. Golden, USA, http://www.nrel.gov. """ # Added by Tony Lorenzo (@alorenzo175), University of Arizona, 2015 lat = latitude lon = longitude # times must be localized if times.tz: tzinfo = times.tz else: raise ValueError('times must be localized') # must convert to midnight UTC on day of interest utcday = pd.DatetimeIndex(times.date).tz_localize('UTC') unixtime = np.array(utcday.astype(np.int64)/10**9) spa = _spa_python_import(how) delta_t = delta_t or spa.calculate_deltat(times.year, times.month) transit, sunrise, sunset = spa.transit_sunrise_sunset( unixtime, lat, lon, delta_t, numthreads) # arrays are in seconds since epoch format, need to conver to timestamps transit = pd.to_datetime(transit*1e9, unit='ns', utc=True).tz_convert( tzinfo).tolist() sunrise = pd.to_datetime(sunrise*1e9, unit='ns', utc=True).tz_convert( tzinfo).tolist() sunset = pd.to_datetime(sunset*1e9, unit='ns', utc=True).tz_convert( tzinfo).tolist() return pd.DataFrame(index=times, data={'sunrise': sunrise, 'sunset': sunset, 'transit': transit}) get_sun_rise_set_transit = deprecated('0.6.1', alternative='sun_rise_set_transit_spa', name='get_sun_rise_set_transit', removal='0.7')(sun_rise_set_transit_spa) def _ephem_convert_to_seconds_and_microseconds(date): # utility from unreleased PyEphem 3.6.7.1 """Converts a PyEphem date into seconds""" microseconds = int(round(24 * 60 * 60 * 1000000 * date)) seconds, microseconds = divmod(microseconds, 1000000) seconds -= 2209032000 # difference between epoch 1900 and epoch 1970 return seconds, microseconds def _ephem_to_timezone(date, tzinfo): # utility from unreleased PyEphem 3.6.7.1 """"Convert a PyEphem Date into a timezone aware python datetime""" seconds, microseconds = _ephem_convert_to_seconds_and_microseconds(date) date = dt.datetime.fromtimestamp(seconds, tzinfo) date = date.replace(microsecond=microseconds) return date def _ephem_setup(latitude, longitude, altitude, pressure, temperature, horizon): import ephem # initialize a PyEphem observer obs = ephem.Observer() obs.lat = str(latitude) obs.lon = str(longitude) obs.elevation = altitude obs.pressure = pressure / 100. # convert to mBar obs.temp = temperature obs.horizon = horizon # the PyEphem sun sun = ephem.Sun() return obs, sun def sun_rise_set_transit_ephem(times, latitude, longitude, next_or_previous='next', altitude=0, pressure=101325, temperature=12, horizon='0:00'): """ Calculate the next sunrise and sunset times using the PyEphem package. Parameters ---------- time : pandas.DatetimeIndex Must be localized latitude : float Latitude in degrees, positive north of equator, negative to south longitude : float Longitude in degrees, positive east of prime meridian, negative to west next_or_previous : str 'next' or 'previous' sunrise and sunset relative to time altitude : float, default 0 distance above sea level in meters. pressure : int or float, optional, default 101325 air pressure in Pascals. temperature : int or float, optional, default 12 air temperature in degrees C. horizon : string, format +/-X:YY arc degrees:arc minutes from geometrical horizon for sunrise and sunset, e.g., horizon='+0:00' to use sun center crossing the geometrical horizon to define sunrise and sunset, horizon='-0:34' for when the sun's upper edge crosses the geometrical horizon Returns ------- pandas.DataFrame index is the same as input `time` argument columns are 'sunrise', 'sunset', and 'transit' See also -------- pyephem """ try: import ephem except ImportError: raise ImportError('PyEphem must be installed') # times must be localized if times.tz: tzinfo = times.tz else: raise ValueError('times must be localized') obs, sun = _ephem_setup(latitude, longitude, altitude, pressure, temperature, horizon) # create lists of sunrise and sunset time localized to time.tz if next_or_previous.lower() == 'next': rising = obs.next_rising setting = obs.next_setting transit = obs.next_transit elif next_or_previous.lower() == 'previous': rising = obs.previous_rising setting = obs.previous_setting transit = obs.previous_transit else: raise ValueError("next_or_previous must be either 'next' or" + " 'previous'") sunrise = [] sunset = [] trans = [] for thetime in times: thetime = thetime.to_pydatetime() # pyephem drops timezone when converting to its internal datetime # format, so handle timezone explicitly here obs.date = ephem.Date(thetime - thetime.utcoffset()) sunrise.append(_ephem_to_timezone(rising(sun), tzinfo)) sunset.append(_ephem_to_timezone(setting(sun), tzinfo)) trans.append(_ephem_to_timezone(transit(sun), tzinfo)) return pd.DataFrame(index=times, data={'sunrise': sunrise, 'sunset': sunset, 'transit': trans}) def pyephem(time, latitude, longitude, altitude=0, pressure=101325, temperature=12, horizon='+0:00'): """ Calculate the solar position using the PyEphem package. Parameters ---------- time : pandas.DatetimeIndex Localized or UTC. latitude : float positive is north of 0 longitude : float positive is east of 0 altitude : float, default 0 distance above sea level in meters. pressure : int or float, optional, default 101325 air pressure in Pascals. temperature : int or float, optional, default 12 air temperature in degrees C. horizon : string, optional, default '+0:00' arc degrees:arc minutes from geometrical horizon for sunrise and sunset, e.g., horizon='+0:00' to use sun center crossing the geometrical horizon to define sunrise and sunset, horizon='-0:34' for when the sun's upper edge crosses the geometrical horizon Returns ------- pandas.DataFrame index is the same as input `time` argument The DataFrame will have the following columns: apparent_elevation, elevation, apparent_azimuth, azimuth, apparent_zenith, zenith. See also -------- spa_python, spa_c, ephemeris """ # Written by Will Holmgren (@wholmgren), University of Arizona, 2014 try: import ephem except ImportError: raise ImportError('PyEphem must be installed') # if localized, convert to UTC. otherwise, assume UTC. try: time_utc = time.tz_convert('UTC') except TypeError: time_utc = time sun_coords = pd.DataFrame(index=time) obs, sun = _ephem_setup(latitude, longitude, altitude, pressure, temperature, horizon) # make and fill lists of the sun's altitude and azimuth # this is the pressure and temperature corrected apparent alt/az. alts = [] azis = [] for thetime in time_utc: obs.date = ephem.Date(thetime) sun.compute(obs) alts.append(sun.alt) azis.append(sun.az) sun_coords['apparent_elevation'] = alts sun_coords['apparent_azimuth'] = azis # redo it for p=0 to get no atmosphere alt/az obs.pressure = 0 alts = [] azis = [] for thetime in time_utc: obs.date = ephem.Date(thetime) sun.compute(obs) alts.append(sun.alt) azis.append(sun.az) sun_coords['elevation'] = alts sun_coords['azimuth'] = azis # convert to degrees. add zenith sun_coords = np.rad2deg(sun_coords) sun_coords['apparent_zenith'] = 90 - sun_coords['apparent_elevation'] sun_coords['zenith'] = 90 - sun_coords['elevation'] return sun_coords def ephemeris(time, latitude, longitude, pressure=101325, temperature=12): """ Python-native solar position calculator. The accuracy of this code is not guaranteed. Consider using the built-in spa_c code or the PyEphem library. Parameters ---------- time : pandas.DatetimeIndex latitude : float longitude : float pressure : float or Series, default 101325 Ambient pressure (Pascals) temperature : float or Series, default 12 Ambient temperature (C) Returns ------- DataFrame with the following columns: * apparent_elevation : apparent sun elevation accounting for atmospheric refraction. * elevation : actual elevation (not accounting for refraction) of the sun in decimal degrees, 0 = on horizon. The complement of the zenith angle. * azimuth : Azimuth of the sun in decimal degrees East of North. This is the complement of the apparent zenith angle. * apparent_zenith : apparent sun zenith accounting for atmospheric refraction. * zenith : Solar zenith angle * solar_time : Solar time in decimal hours (solar noon is 12.00). References ----------- Grover Hughes' class and related class materials on Engineering Astronomy at Sandia National Laboratories, 1985. See also -------- pyephem, spa_c, spa_python """ # Added by Rob Andrews (@Calama-Consulting), Calama Consulting, 2014 # Edited by Will Holmgren (@wholmgren), University of Arizona, 2014 # Most comments in this function are from PVLIB_MATLAB or from # pvlib-python's attempt to understand and fix problems with the # algorithm. The comments are *not* based on the reference material. # This helps a little bit: # http://www.cv.nrao.edu/~rfisher/Ephemerides/times.html # the inversion of longitude is due to the fact that this code was # originally written for the convention that positive longitude were for # locations west of the prime meridian. However, the correct convention (as # of 2009) is to use negative longitudes for locations west of the prime # meridian. Therefore, the user should input longitude values under the # correct convention (e.g. Albuquerque is at -106 longitude), but it needs # to be inverted for use in the code. Latitude = latitude Longitude = -1 * longitude Abber = 20 / 3600. LatR = np.radians(Latitude) # the SPA algorithm needs time to be expressed in terms of # decimal UTC hours of the day of the year. # if localized, convert to UTC. otherwise, assume UTC. try: time_utc = time.tz_convert('UTC') except TypeError: time_utc = time # strip out the day of the year and calculate the decimal hour DayOfYear = time_utc.dayofyear DecHours = (time_utc.hour + time_utc.minute/60. + time_utc.second/3600. + time_utc.microsecond/3600.e6) # np.array needed for pandas > 0.20 UnivDate = np.array(DayOfYear) UnivHr = np.array(DecHours) Yr = np.array(time_utc.year) - 1900 YrBegin = 365 * Yr + np.floor((Yr - 1) / 4.) - 0.5 Ezero = YrBegin + UnivDate T = Ezero / 36525. # Calculate Greenwich Mean Sidereal Time (GMST) GMST0 = 6 / 24. + 38 / 1440. + ( 45.836 + 8640184.542 * T + 0.0929 * T ** 2) / 86400. GMST0 = 360 * (GMST0 - np.floor(GMST0)) GMSTi = np.mod(GMST0 + 360 * (1.0027379093 * UnivHr / 24.), 360) # Local apparent sidereal time LocAST = np.mod((360 + GMSTi - Longitude), 360) EpochDate = Ezero + UnivHr / 24. T1 = EpochDate / 36525. ObliquityR = np.radians( 23.452294 - 0.0130125 * T1 - 1.64e-06 * T1 ** 2 + 5.03e-07 * T1 ** 3) MlPerigee = 281.22083 + 4.70684e-05 * EpochDate + 0.000453 * T1 ** 2 + ( 3e-06 * T1 ** 3) MeanAnom = np.mod((358.47583 + 0.985600267 * EpochDate - 0.00015 * T1 ** 2 - 3e-06 * T1 ** 3), 360) Eccen = 0.01675104 - 4.18e-05 * T1 - 1.26e-07 * T1 ** 2 EccenAnom = MeanAnom E = 0 while np.max(abs(EccenAnom - E)) > 0.0001: E = EccenAnom EccenAnom = MeanAnom + np.degrees(Eccen)*np.sin(np.radians(E)) TrueAnom = ( 2 * np.mod(np.degrees(np.arctan2(((1 + Eccen) / (1 - Eccen)) ** 0.5 * np.tan(np.radians(EccenAnom) / 2.), 1)), 360)) EcLon = np.mod(MlPerigee + TrueAnom, 360) - Abber EcLonR = np.radians(EcLon) DecR = np.arcsin(np.sin(ObliquityR)*np.sin(EcLonR)) RtAscen = np.degrees(np.arctan2(np.cos(ObliquityR)*np.sin(EcLonR), np.cos(EcLonR))) HrAngle = LocAST - RtAscen HrAngleR = np.radians(HrAngle) HrAngle = HrAngle - (360 * ((abs(HrAngle) > 180))) SunAz = np.degrees(np.arctan2(-np.sin(HrAngleR), np.cos(LatR)*np.tan(DecR) - np.sin(LatR)*np.cos(HrAngleR))) SunAz[SunAz < 0] += 360 SunEl = np.degrees(np.arcsin( np.cos(LatR) * np.cos(DecR) * np.cos(HrAngleR) + np.sin(LatR) * np.sin(DecR))) SolarTime = (180 + HrAngle) / 15. # Calculate refraction correction Elevation = SunEl TanEl = pd.Series(np.tan(np.radians(Elevation)), index=time_utc) Refract = pd.Series(0, index=time_utc) Refract[(Elevation > 5) & (Elevation <= 85)] = ( 58.1/TanEl - 0.07/(TanEl**3) + 8.6e-05/(TanEl**5)) Refract[(Elevation > -0.575) & (Elevation <= 5)] = ( Elevation * (-518.2 + Elevation*(103.4 + Elevation*(-12.79 + Elevation*0.711))) + 1735) Refract[(Elevation > -1) & (Elevation <= -0.575)] = -20.774 / TanEl Refract *= (283/(273. + temperature)) * (pressure/101325.) / 3600. ApparentSunEl = SunEl + Refract # make output DataFrame DFOut = pd.DataFrame(index=time_utc) DFOut['apparent_elevation'] = ApparentSunEl DFOut['elevation'] = SunEl DFOut['azimuth'] = SunAz DFOut['apparent_zenith'] = 90 - ApparentSunEl DFOut['zenith'] = 90 - SunEl DFOut['solar_time'] = SolarTime DFOut.index = time return DFOut def calc_time(lower_bound, upper_bound, latitude, longitude, attribute, value, altitude=0, pressure=101325, temperature=12, horizon='+0:00', xtol=1.0e-12): """ Calculate the time between lower_bound and upper_bound where the attribute is equal to value. Uses PyEphem for solar position calculations. Parameters ---------- lower_bound : datetime.datetime upper_bound : datetime.datetime latitude : float longitude : float attribute : str The attribute of a pyephem.Sun object that you want to solve for. Likely options are 'alt' and 'az' (which must be given in radians). value : int or float The value of the attribute to solve for altitude : float, default 0 Distance above sea level. pressure : int or float, optional, default 101325 Air pressure in Pascals. Set to 0 for no atmospheric correction. temperature : int or float, optional, default 12 Air temperature in degrees C. horizon : string, optional, default '+0:00' arc degrees:arc minutes from geometrical horizon for sunrise and sunset, e.g., horizon='+0:00' to use sun center crossing the geometrical horizon to define sunrise and sunset, horizon='-0:34' for when the sun's upper edge crosses the geometrical horizon xtol : float, optional, default 1.0e-12 The allowed error in the result from value Returns ------- datetime.datetime Raises ------ ValueError If the value is not contained between the bounds. AttributeError If the given attribute is not an attribute of a PyEphem.Sun object. """ try: import scipy.optimize as so except ImportError: raise ImportError('The calc_time function requires scipy') obs, sun = _ephem_setup(latitude, longitude, altitude, pressure, temperature, horizon) def compute_attr(thetime, target, attr): obs.date = thetime sun.compute(obs) return getattr(sun, attr) - target lb = datetime_to_djd(lower_bound) ub = datetime_to_djd(upper_bound) djd_root = so.brentq(compute_attr, lb, ub, (value, attribute), xtol=xtol) return djd_to_datetime(djd_root) def pyephem_earthsun_distance(time): """ Calculates the distance from the earth to the sun using pyephem. Parameters ---------- time : pd.DatetimeIndex Returns ------- pd.Series. Earth-sun distance in AU. """ import ephem sun = ephem.Sun() earthsun = [] for thetime in time: sun.compute(ephem.Date(thetime)) earthsun.append(sun.earth_distance) return pd.Series(earthsun, index=time) def nrel_earthsun_distance(time, how='numpy', delta_t=67.0, numthreads=4): """ Calculates the distance from the earth to the sun using the NREL SPA algorithm described in [1]_. Parameters ---------- time : pd.DatetimeIndex how : str, optional, default 'numpy' Options are 'numpy' or 'numba'. If numba >= 0.17.0 is installed, how='numba' will compile the spa functions to machine code and run them multithreaded. delta_t : float, optional, default 67.0 If delta_t is None, uses spa.calculate_deltat using time.year and time.month from pandas.DatetimeIndex. For most simulations specifing delta_t is sufficient. Difference between terrestrial time and UT1. *Note: delta_t = None will break code using nrel_numba, this will be fixed in a future version.* By default, use USNO historical data and predictions numthreads : int, optional, default 4 Number of threads to use if how == 'numba'. Returns ------- dist : pd.Series Earth-sun distance in AU. References ---------- .. [1] Reda, I., Andreas, A., 2003. Solar position algorithm for solar radiation applications. Technical report: NREL/TP-560- 34302. Golden, USA, http://www.nrel.gov. """ if not isinstance(time, pd.DatetimeIndex): try: time = pd.DatetimeIndex(time) except (TypeError, ValueError): time = pd.DatetimeIndex([time, ]) unixtime = np.array(time.astype(np.int64)/10**9) spa = _spa_python_import(how) delta_t = delta_t or spa.calculate_deltat(time.year, time.month) dist = spa.earthsun_distance(unixtime, delta_t, numthreads) dist = pd.Series(dist, index=time) return dist def _calculate_simple_day_angle(dayofyear, offset=1): """ Calculates the day angle for the Earth's orbit around the Sun. Parameters ---------- dayofyear : numeric offset : int, default 1 For the Spencer method, offset=1; for the ASCE method, offset=0 Returns ------- day_angle : numeric """ return (2. * np.pi / 365.) * (dayofyear - offset) def equation_of_time_spencer71(dayofyear): """ Equation of time from Duffie & Beckman and attributed to Spencer (1971) and Iqbal (1983). The coefficients correspond to the online copy of the `Fourier paper`_ [1]_ in the Sundial Mailing list that was posted in 1998 by Mac Oglesby from his correspondence with Macquarie University Prof. John Pickard who added the following note. In the early 1970s, I contacted Dr Spencer about this method because I was trying to use a hand calculator for calculating solar positions, etc. He was extremely helpful and gave me a reprint of this paper. He also pointed out an error in the original: in the series for E, the constant was printed as 0.000075 rather than 0.0000075. I have corrected the error in this version. There appears to be another error in formula as printed in both Duffie & Beckman's [2]_ and Frank Vignola's [3]_ books in which the coefficient 0.04089 is printed instead of 0.040849, corresponding to the value used in the Bird Clear Sky model implemented by Daryl Myers [4]_ and printed in both the Fourier paper from the Sundial Mailing List and R. Hulstrom's [5]_ book. .. _Fourier paper: http://www.mail-archive.com/[email protected]/msg01050.html Parameters ---------- dayofyear : numeric Returns ------- equation_of_time : numeric Difference in time between solar time and mean solar time in minutes. References ---------- .. [1] J. W. Spencer, "Fourier series representation of the position of the sun" in Search 2 (5), p. 172 (1971) .. [2] J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes, 3rd Edition" pp. 9-11, J. Wiley and Sons, New York (2006) .. [3] Frank Vignola et al., "Solar And Infrared Radiation Measurements", p. 13, CRC Press (2012) .. [5] Daryl R. Myers, "Solar Radiation: Practical Modeling for Renewable Energy Applications", p. 5 CRC Press (2013) .. [4] Roland Hulstrom, "Solar Resources" p. 66, MIT Press (1989) See Also -------- equation_of_time_pvcdrom """ day_angle = _calculate_simple_day_angle(dayofyear) # convert from radians to minutes per day = 24[h/day] * 60[min/h] / 2 / pi eot = (1440.0 / 2 / np.pi) * ( 0.0000075 + 0.001868 * np.cos(day_angle) - 0.032077 * np.sin(day_angle) - 0.014615 * np.cos(2.0 * day_angle) - 0.040849 * np.sin(2.0 * day_angle) ) return eot def equation_of_time_pvcdrom(dayofyear): """ Equation of time from PVCDROM. `PVCDROM`_ is a website by Solar Power Lab at Arizona State University (ASU) .. _PVCDROM: http://www.pveducation.org/pvcdrom/2-properties-sunlight/solar-time Parameters ---------- dayofyear : numeric Returns ------- equation_of_time : numeric Difference in time between solar time and mean solar time in minutes. References ---------- [1] Soteris A. Kalogirou, "Solar Energy Engineering Processes and Systems, 2nd Edition" Elselvier/Academic Press (2009). See Also -------- equation_of_time_Spencer71 """ # day angle relative to Vernal Equinox, typically March 22 (day number 81) bday = \ _calculate_simple_day_angle(dayofyear) - (2.0 * np.pi / 365.0) * 80.0 # same value but about 2x faster than Spencer (1971) return 9.87 * np.sin(2.0 * bday) - 7.53 * np.cos(bday) - 1.5 * np.sin(bday) def declination_spencer71(dayofyear): """ Solar declination from Duffie & Beckman [1] and attributed to Spencer (1971) and Iqbal (1983). .. warning:: Return units are radians, not degrees. Parameters ---------- dayofyear : numeric Returns ------- declination (radians) : numeric Angular position of the sun at solar noon relative to the plane of the equator, approximately between +/-23.45 (degrees). References ---------- [1] J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes, 3rd Edition" pp. 13-14, J. Wiley and Sons, New York (2006) [2] J. W. Spencer, "Fourier series representation of the position of the sun" in Search 2 (5), p. 172 (1971) [3] Daryl R. Myers, "Solar Radiation: Practical Modeling for Renewable Energy Applications", p. 4 CRC Press (2013) See Also -------- declination_cooper69 """ day_angle = _calculate_simple_day_angle(dayofyear) return ( 0.006918 - 0.399912 * np.cos(day_angle) + 0.070257 * np.sin(day_angle) - 0.006758 * np.cos(2. * day_angle) + 0.000907 * np.sin(2. * day_angle) - 0.002697 * np.cos(3. * day_angle) + 0.00148 * np.sin(3. * day_angle) ) def declination_cooper69(dayofyear): """ Solar declination from Duffie & Beckman [1] and attributed to Cooper (1969) .. warning:: Return units are radians, not degrees. Declination can be expressed using either sine or cosine: .. math:: \\delta = 23.45 \\sin \\left( \\frac{2 \\pi}{365} \\left(n_{day} + 284 \\right) \\right) = -23.45 \\cos \\left( \\frac{2 \\pi}{365} \\left(n_{day} + 10 \\right) \\right) Parameters ---------- dayofyear : numeric Returns ------- declination (radians) : numeric Angular position of the sun at solar noon relative to the plane of the equator, approximately between +/-23.45 (degrees). References ---------- [1] J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes, 3rd Edition" pp. 13-14, J. Wiley and Sons, New York (2006) [2] J. H. Seinfeld and S. N. Pandis, "Atmospheric Chemistry and Physics" p. 129, J. Wiley (1998) [3] Daryl R. Myers, "Solar Radiation: Practical Modeling for Renewable Energy Applications", p. 4 CRC Press (2013) See Also -------- declination_spencer71 """ day_angle = _calculate_simple_day_angle(dayofyear) dec = np.deg2rad(23.45 * np.sin(day_angle + (2.0 * np.pi / 365.0) * 285.0)) return dec def solar_azimuth_analytical(latitude, hourangle, declination, zenith): """ Analytical expression of solar azimuth angle based on spherical trigonometry. Parameters ---------- latitude : numeric Latitude of location in radians. hourangle : numeric Hour angle in the local solar time in radians. declination : numeric Declination of the sun in radians. zenith : numeric Solar zenith angle in radians. Returns ------- azimuth : numeric Solar azimuth angle in radians. References ---------- [1] J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes, 3rd Edition" pp. 14, J. Wiley and Sons, New York (2006) [2] J. H. Seinfeld and S. N. Pandis, "Atmospheric Chemistry and Physics" p. 132, J. Wiley (1998) [3] `Wikipedia: Solar Azimuth Angle <https://en.wikipedia.org/wiki/Solar_azimuth_angle>`_ [4] `PVCDROM: Azimuth Angle <http://www.pveducation.org/pvcdrom/2- properties-sunlight/azimuth-angle>`_ See Also -------- declination_spencer71 declination_cooper69 hour_angle solar_zenith_analytical """ numer = (np.cos(zenith) * np.sin(latitude) - np.sin(declination)) denom = (np.sin(zenith) * np.cos(latitude)) # cases that would generate new NaN values are safely ignored here # since they are dealt with further below with np.errstate(invalid='ignore', divide='ignore'): cos_azi = numer / denom # when zero division occurs, use the limit value of the analytical # expression cos_azi = \ np.where(np.isclose(denom, 0.0, rtol=0.0, atol=1e-8), 1.0, cos_azi) # when too many round-ups in floating point math take cos_azi beyond # 1.0, use 1.0 cos_azi = \ np.where(np.isclose(cos_azi, 1.0, rtol=0.0, atol=1e-8), 1.0, cos_azi) cos_azi = \ np.where(np.isclose(cos_azi, -1.0, rtol=0.0, atol=1e-8), -1.0, cos_azi) # when NaN values occur in input, ignore and pass to output with np.errstate(invalid='ignore'): sign_ha = np.sign(hourangle) return sign_ha * np.arccos(cos_azi) + np.pi def solar_zenith_analytical(latitude, hourangle, declination): """ Analytical expression of solar zenith angle based on spherical trigonometry. .. warning:: The analytic form neglects the effect of atmospheric refraction. Parameters ---------- latitude : numeric Latitude of location in radians. hourangle : numeric Hour angle in the local solar time in radians. declination : numeric Declination of the sun in radians. Returns ------- zenith : numeric Solar zenith angle in radians. References ---------- [1] J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes, 3rd Edition" pp. 14, J. Wiley and Sons, New York (2006) [2] J. H. Seinfeld and S. N. Pandis, "Atmospheric Chemistry and Physics" p. 132, J. Wiley (1998) [3] Daryl R. Myers, "Solar Radiation: Practical Modeling for Renewable Energy Applications", p. 5 CRC Press (2013) `Wikipedia: Solar Zenith Angle <https://en.wikipedia.org/wiki/Solar_zenith_angle>`_ `PVCDROM: Sun's Position <http://www.pveducation.org/pvcdrom/2-properties-sunlight/suns-position>`_ See Also -------- declination_spencer71 declination_cooper69 hour_angle """ return np.arccos( np.cos(declination) * np.cos(latitude) * np.cos(hourangle) + np.sin(declination) * np.sin(latitude) ) def hour_angle(times, longitude, equation_of_time): """ Hour angle in local solar time. Zero at local solar noon. Parameters ---------- times : :class:`pandas.DatetimeIndex` Corresponding timestamps, must be localized to the timezone for the ``longitude``. longitude : numeric Longitude in degrees equation_of_time : numeric Equation of time in minutes. Returns ------- hour_angle : numeric Hour angle in local solar time in degrees. References ---------- [1] J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes, 3rd Edition" pp. 13, J. Wiley and Sons, New York (2006) [2] J. H. Seinfeld and S. N. Pandis, "Atmospheric Chemistry and Physics" p. 132, J. Wiley (1998) [3] Daryl R. Myers, "Solar Radiation: Practical Modeling for Renewable Energy Applications", p. 5 CRC Press (2013) See Also -------- equation_of_time_Spencer71 equation_of_time_pvcdrom """ naive_times = times.tz_localize(None) # naive but still localized # hours - timezone = (times - normalized_times) - (naive_times - times) hrs_minus_tzs = 1 / NS_PER_HR * ( 2 * times.astype(np.int64) - times.normalize().astype(np.int64) - naive_times.astype(np.int64)) # ensure array return instead of a version-dependent pandas <T>Index return np.asarray( 15. * (hrs_minus_tzs - 12.) + longitude + equation_of_time / 4.) def _hour_angle_to_hours(times, hourangle, longitude, equation_of_time): """converts hour angles in degrees to hours as a numpy array""" naive_times = times.tz_localize(None) # naive but still localized tzs = 1 / NS_PER_HR * ( naive_times.astype(np.int64) - times.astype(np.int64)) hours = (hourangle - longitude - equation_of_time / 4.) / 15. + 12. + tzs return np.asarray(hours) def _local_times_from_hours_since_midnight(times, hours): """ converts hours since midnight from an array of floats to localized times """ tz_info = times.tz # pytz timezone info naive_times = times.tz_localize(None) # naive but still localized # normalize local, naive times to previous midnight and add the hours until # sunrise, sunset, and transit return pd.DatetimeIndex( (naive_times.normalize().astype(np.int64) + (hours * NS_PER_HR).astype(np.int64)).astype('datetime64[ns]'), tz=tz_info) def _times_to_hours_after_local_midnight(times): """convert local pandas datetime indices to array of hours as floats""" times = times.tz_localize(None) hrs = 1 / NS_PER_HR * ( times.astype(np.int64) - times.normalize().astype(np.int64)) return np.array(hrs) def sun_rise_set_transit_geometric(times, latitude, longitude, declination, equation_of_time): """ Geometric calculation of solar sunrise, sunset, and transit. .. warning:: The geometric calculation assumes a circular earth orbit with the sun as a point source at its center, and neglects the effect of atmospheric refraction on zenith. The error depends on location and time of year but is of order 10 minutes. Parameters ---------- times : pandas.DatetimeIndex Corresponding timestamps, must be localized to the timezone for the ``latitude`` and ``longitude``. latitude : float Latitude in degrees, positive north of equator, negative to south longitude : float Longitude in degrees, positive east of prime meridian, negative to west declination : numeric declination angle in radians at ``times`` equation_of_time : numeric difference in time between solar time and mean solar time in minutes Returns ------- sunrise : datetime localized sunrise time sunset : datetime localized sunset time transit : datetime localized sun transit time References ---------- [1] J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes, 3rd Edition," J. Wiley and Sons, New York (2006) [2] Frank Vignola et al., "Solar And Infrared Radiation Measurements," CRC Press (2012) """ latitude_rad = np.radians(latitude) # radians sunset_angle_rad = np.arccos(-np.tan(declination) * np.tan(latitude_rad)) sunset_angle = np.degrees(sunset_angle_rad) # degrees # solar noon is at hour angle zero # so sunrise is just negative of sunset sunrise_angle = -sunset_angle sunrise_hour = _hour_angle_to_hours( times, sunrise_angle, longitude, equation_of_time) sunset_hour = _hour_angle_to_hours( times, sunset_angle, longitude, equation_of_time) transit_hour = _hour_angle_to_hours(times, 0, longitude, equation_of_time) sunrise = _local_times_from_hours_since_midnight(times, sunrise_hour) sunset = _local_times_from_hours_since_midnight(times, sunset_hour) transit = _local_times_from_hours_since_midnight(times, transit_hour) return sunrise, sunset, transit
bsd-3-clause
zfrenchee/pandas
pandas/io/json/normalize.py
1
9164
# --------------------------------------------------------------------- # JSON normalization routines import copy from collections import defaultdict import numpy as np from pandas._libs.lib import convert_json_to_lines from pandas import compat, DataFrame def _convert_to_line_delimits(s): """Helper function that converts json lists to line delimited json.""" # Determine we have a JSON list to turn to lines otherwise just return the # json object, only lists can if not s[0] == '[' and s[-1] == ']': return s s = s[1:-1] return convert_json_to_lines(s) def nested_to_record(ds, prefix="", sep=".", level=0): """a simplified json_normalize converts a nested dict into a flat dict ("record"), unlike json_normalize, it does not attempt to extract a subset of the data. Parameters ---------- ds : dict or list of dicts prefix: the prefix, optional, default: "" sep : string, default '.' Nested records will generate names separated by sep, e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar .. versionadded:: 0.20.0 level: the number of levels in the jason string, optional, default: 0 Returns ------- d - dict or list of dicts, matching `ds` Examples -------- IN[52]: nested_to_record(dict(flat1=1,dict1=dict(c=1,d=2), nested=dict(e=dict(c=1,d=2),d=2))) Out[52]: {'dict1.c': 1, 'dict1.d': 2, 'flat1': 1, 'nested.d': 2, 'nested.e.c': 1, 'nested.e.d': 2} """ singleton = False if isinstance(ds, dict): ds = [ds] singleton = True new_ds = [] for d in ds: new_d = copy.deepcopy(d) for k, v in d.items(): # each key gets renamed with prefix if not isinstance(k, compat.string_types): k = str(k) if level == 0: newkey = k else: newkey = prefix + sep + k # only dicts gets recurse-flattend # only at level>1 do we rename the rest of the keys if not isinstance(v, dict): if level != 0: # so we skip copying for top level, common case v = new_d.pop(k) new_d[newkey] = v continue else: v = new_d.pop(k) new_d.update(nested_to_record(v, newkey, sep, level + 1)) new_ds.append(new_d) if singleton: return new_ds[0] return new_ds def json_normalize(data, record_path=None, meta=None, meta_prefix=None, record_prefix=None, errors='raise', sep='.'): """ "Normalize" semi-structured JSON data into a flat table Parameters ---------- data : dict or list of dicts Unserialized JSON objects record_path : string or list of strings, default None Path in each object to list of records. If not passed, data will be assumed to be an array of records meta : list of paths (string or list of strings), default None Fields to use as metadata for each record in resulting table record_prefix : string, default None If True, prefix records with dotted (?) path, e.g. foo.bar.field if path to records is ['foo', 'bar'] meta_prefix : string, default None errors : {'raise', 'ignore'}, default 'raise' * 'ignore' : will ignore KeyError if keys listed in meta are not always present * 'raise' : will raise KeyError if keys listed in meta are not always present .. versionadded:: 0.20.0 sep : string, default '.' Nested records will generate names separated by sep, e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar .. versionadded:: 0.20.0 Returns ------- frame : DataFrame Examples -------- >>> from pandas.io.json import json_normalize >>> data = [{'id': 1, 'name': {'first': 'Coleen', 'last': 'Volk'}}, ... {'name': {'given': 'Mose', 'family': 'Regner'}}, ... {'id': 2, 'name': 'Faye Raker'}] >>> json_normalize(data) id name name.family name.first name.given name.last 0 1.0 NaN NaN Coleen NaN Volk 1 NaN NaN Regner NaN Mose NaN 2 2.0 Faye Raker NaN NaN NaN NaN >>> data = [{'state': 'Florida', ... 'shortname': 'FL', ... 'info': { ... 'governor': 'Rick Scott' ... }, ... 'counties': [{'name': 'Dade', 'population': 12345}, ... {'name': 'Broward', 'population': 40000}, ... {'name': 'Palm Beach', 'population': 60000}]}, ... {'state': 'Ohio', ... 'shortname': 'OH', ... 'info': { ... 'governor': 'John Kasich' ... }, ... 'counties': [{'name': 'Summit', 'population': 1234}, ... {'name': 'Cuyahoga', 'population': 1337}]}] >>> result = json_normalize(data, 'counties', ['state', 'shortname', ... ['info', 'governor']]) >>> result name population info.governor state shortname 0 Dade 12345 Rick Scott Florida FL 1 Broward 40000 Rick Scott Florida FL 2 Palm Beach 60000 Rick Scott Florida FL 3 Summit 1234 John Kasich Ohio OH 4 Cuyahoga 1337 John Kasich Ohio OH """ def _pull_field(js, spec): result = js if isinstance(spec, list): for field in spec: result = result[field] else: result = result[spec] return result if isinstance(data, list) and not data: return DataFrame() # A bit of a hackjob if isinstance(data, dict): data = [data] if record_path is None: if any(isinstance(x, dict) for x in compat.itervalues(data[0])): # naive normalization, this is idempotent for flat records # and potentially will inflate the data considerably for # deeply nested structures: # {VeryLong: { b: 1,c:2}} -> {VeryLong.b:1 ,VeryLong.c:@} # # TODO: handle record value which are lists, at least error # reasonably data = nested_to_record(data, sep=sep) return DataFrame(data) elif not isinstance(record_path, list): record_path = [record_path] if meta is None: meta = [] elif not isinstance(meta, list): meta = [meta] meta = [m if isinstance(m, list) else [m] for m in meta] # Disastrously inefficient for now records = [] lengths = [] meta_vals = defaultdict(list) if not isinstance(sep, compat.string_types): sep = str(sep) meta_keys = [sep.join(val) for val in meta] def _recursive_extract(data, path, seen_meta, level=0): if len(path) > 1: for obj in data: for val, key in zip(meta, meta_keys): if level + 1 == len(val): seen_meta[key] = _pull_field(obj, val[-1]) _recursive_extract(obj[path[0]], path[1:], seen_meta, level=level + 1) else: for obj in data: recs = _pull_field(obj, path[0]) # For repeating the metadata later lengths.append(len(recs)) for val, key in zip(meta, meta_keys): if level + 1 > len(val): meta_val = seen_meta[key] else: try: meta_val = _pull_field(obj, val[level:]) except KeyError as e: if errors == 'ignore': meta_val = np.nan else: raise \ KeyError("Try running with " "errors='ignore' as key " "{err} is not always present" .format(err=e)) meta_vals[key].append(meta_val) records.extend(recs) _recursive_extract(data, record_path, {}, level=0) result = DataFrame(records) if record_prefix is not None: result.rename(columns=lambda x: record_prefix + x, inplace=True) # Data types, a problem for k, v in compat.iteritems(meta_vals): if meta_prefix is not None: k = meta_prefix + k if k in result: raise ValueError('Conflicting metadata name {name}, ' 'need distinguishing prefix '.format(name=k)) result[k] = np.array(v).repeat(lengths) return result
bsd-3-clause
soulmachine/scikit-learn
sklearn/manifold/tests/test_locally_linear.py
41
4827
from itertools import product from nose.tools import assert_true import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from scipy import linalg from sklearn import neighbors, manifold from sklearn.manifold.locally_linear import barycenter_kneighbors_graph from sklearn.utils.testing import assert_less from sklearn.utils.testing import ignore_warnings eigen_solvers = ['dense', 'arpack'] #---------------------------------------------------------------------- # Test utility routines def test_barycenter_kneighbors_graph(): X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = barycenter_kneighbors_graph(X, 1) assert_array_almost_equal( A.toarray(), [[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]]) A = barycenter_kneighbors_graph(X, 2) # check that columns sum to one assert_array_almost_equal(np.sum(A.toarray(), 1), np.ones(3)) pred = np.dot(A.toarray(), X) assert_less(linalg.norm(pred - X) / X.shape[0], 1) #---------------------------------------------------------------------- # Test LLE by computing the reconstruction error on some manifolds. def test_lle_simple_grid(): # note: ARPACK is numerically unstable, so this test will fail for # some random seeds. We choose 2 because the tests pass. rng = np.random.RandomState(2) tol = 0.1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(5), repeat=2))) X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 clf = manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=n_components, random_state=rng) tol = 0.1 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X, 'fro') assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 assert_less(reconstruction_error, tol) assert_almost_equal(clf.reconstruction_error_, reconstruction_error, decimal=1) # re-embed a noisy version of X using the transform method noise = rng.randn(*X.shape) / 100 X_reembedded = clf.transform(X + noise) assert_less(linalg.norm(X_reembedded - clf.embedding_), tol) def test_lle_manifold(): rng = np.random.RandomState(0) # similar test on a slightly more complex manifold X = np.array(list(product(np.arange(18), repeat=2))) X = np.c_[X, X[:, 0] ** 2 / 18] X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 for method in ["standard", "hessian", "modified", "ltsa"]: clf = manifold.LocallyLinearEmbedding(n_neighbors=6, n_components=n_components, method=method, random_state=0) tol = 1.5 if method == "standard" else 3 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X) assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 details = ("solver: %s, method: %s" % (solver, method)) assert_less(reconstruction_error, tol, msg=details) assert_less(np.abs(clf.reconstruction_error_ - reconstruction_error), tol * reconstruction_error, msg=details) def test_pipeline(): # check that LocallyLinearEmbedding works fine as a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful from sklearn import pipeline, datasets X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('filter', manifold.LocallyLinearEmbedding(random_state=0)), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y)) # Test the error raised when the weight matrix is singular def test_singular_matrix(): from nose.tools import assert_raises M = np.ones((10, 3)) f = ignore_warnings assert_raises(ValueError, f(manifold.locally_linear_embedding), M, 2, 1, method='standard', eigen_solver='arpack') if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
derekjchow/models
research/tcn/dataset/webcam.py
5
16225
# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Collect images from multiple simultaneous webcams. Usage: 1. Define some environment variables that describe what you're collecting. dataset=your_dataset_name mode=train num_views=2 viddir=/tmp/tcn/videos tmp_imagedir=/tmp/tcn/tmp_images debug_vids=1 2. Run the script. export DISPLAY=:0.0 && \ root=learning/brain/research/tcn && \ bazel build -c opt --copt=-mavx tcn/webcam && \ bazel-bin/tcn/webcam \ --dataset $dataset \ --mode $mode \ --num_views $num_views \ --tmp_imagedir $tmp_imagedir \ --viddir $viddir \ --debug_vids 1 \ --logtostderr 3. Hit Ctrl-C when done collecting, upon which the script will compile videos for each view and optionally a debug video concatenating multiple simultaneous views. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import multiprocessing from multiprocessing import Process import os import subprocess import sys import time import cv2 import matplotlib matplotlib.use('TkAgg') from matplotlib import animation # pylint: disable=g-import-not-at-top import matplotlib.pyplot as plt import numpy as np from six.moves import input import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) tf.flags.DEFINE_string('dataset', '', 'Name of the dataset we`re collecting.') tf.flags.DEFINE_string('mode', '', 'What type of data we`re collecting. E.g.:' '`train`,`valid`,`test`, or `demo`') tf.flags.DEFINE_string('seqname', '', 'Name of this sequence. If empty, the script will use' 'the name seq_N+1 where seq_N is the latest' 'integer-named sequence in the videos directory.') tf.flags.DEFINE_integer('num_views', 2, 'Number of webcams.') tf.flags.DEFINE_string('tmp_imagedir', '/tmp/tcn/data', 'Temporary outdir to write images.') tf.flags.DEFINE_string('viddir', '/tmp/tcn/videos', 'Base directory to write debug videos.') tf.flags.DEFINE_boolean('debug_vids', True, 'Whether to generate debug vids with multiple' 'concatenated views.') tf.flags.DEFINE_string('debug_lhs_view', '0', 'Which viewpoint to use for the lhs video.') tf.flags.DEFINE_string('debug_rhs_view', '1', 'Which viewpoint to use for the rhs video.') tf.flags.DEFINE_integer('height', 1080, 'Raw input height.') tf.flags.DEFINE_integer('width', 1920, 'Raw input width.') tf.flags.DEFINE_string('webcam_ports', None, 'Comma-separated list of each webcam usb port.') FLAGS = tf.app.flags.FLAGS class ImageQueue(object): """An image queue holding each stream's most recent image. Basically implements a process-safe collections.deque(maxlen=1). """ def __init__(self): self.lock = multiprocessing.Lock() self._queue = multiprocessing.Queue(maxsize=1) def append(self, data): with self.lock: if self._queue.full(): # Pop the first element. _ = self._queue.get() self._queue.put(data) def get(self): with self.lock: return self._queue.get() def empty(self): return self._queue.empty() def close(self): return self._queue.close() class WebcamViewer(object): """A class which displays a live stream from the webcams.""" def __init__(self, display_queues): """Create a WebcamViewer instance.""" self.height = FLAGS.height self.width = FLAGS.width self.queues = display_queues def _get_next_images(self): """Gets the next image to display.""" # Wait for one image per view. not_found = True while not_found: if True in [q.empty() for q in self.queues]: # At least one image queue is empty; wait. continue else: # Retrieve the images. latest = [q.get() for q in self.queues] combined = np.concatenate(latest, axis=1) not_found = False return combined def run(self): """Displays the Kcam live stream in a window. This function blocks until the window is closed. """ fig, rgb_axis = plt.subplots() image_rows = self.height image_cols = self.width * FLAGS.num_views initial_image = np.zeros((image_rows, image_cols, 3)) rgb_image = rgb_axis.imshow(initial_image, interpolation='nearest') def update_figure(frame_index): """Animation function for matplotlib FuncAnimation. Updates the image. Args: frame_index: The frame number. Returns: An iterable of matplotlib drawables to clear. """ _ = frame_index images = self._get_next_images() images = images[..., [2, 1, 0]] rgb_image.set_array(images) return rgb_image, # We must keep a reference to this animation in order for it to work. unused_animation = animation.FuncAnimation( fig, update_figure, interval=50, blit=True) mng = plt.get_current_fig_manager() mng.resize(*mng.window.maxsize()) plt.show() def reconcile(queues, write_queue): """Gets a list of concurrent images from each view queue. This waits for latest images to be available in all view queues, then continuously: - Creates a list of current images for each view. - Writes the list to a queue of image lists to write to disk. Args: queues: A list of `ImageQueues`, holding the latest image from each webcam. write_queue: A multiprocessing.Queue holding lists of concurrent images. """ # Loop forever. while True: # Wait till all queues have an image. if True in [q.empty() for q in queues]: continue else: # Retrieve all views' images. latest = [q.get() for q in queues] # Copy the list of all concurrent images to the write queue. write_queue.put(latest) def persist(write_queue, view_dirs): """Pulls lists of concurrent images off a write queue, writes them to disk. Args: write_queue: A multiprocessing.Queue holding lists of concurrent images; one image per view. view_dirs: A list of strings, holding the output image directories for each view. """ timestep = 0 while True: # Wait till there is work in the queue. if write_queue.empty(): continue # Get a list of concurrent images to write to disk. view_ims = write_queue.get() for view_idx, image in enumerate(view_ims): view_base = view_dirs[view_idx] # Assign all concurrent view images the same sequence timestep. fname = os.path.join(view_base, '%s.png' % str(timestep).zfill(10)) cv2.imwrite(fname, image) # Move to the next timestep. timestep += 1 def get_image(camera): """Captures a single image from the camera and returns it in PIL format.""" data = camera.read() _, im = data return im def capture_webcam(camera, display_queue, reconcile_queue): """Captures images from simultaneous webcams, writes them to queues. Args: camera: A cv2.VideoCapture object representing an open webcam stream. display_queue: An ImageQueue. reconcile_queue: An ImageQueue. """ # Take some ramp images to allow cams to adjust for brightness etc. for i in range(60): tf.logging.info('Taking ramp image %d.' % i) get_image(camera) cnt = 0 start = time.time() while True: # Get images for all cameras. im = get_image(camera) # Replace the current image in the display and reconcile queues. display_queue.append(im) reconcile_queue.append(im) cnt += 1 current = time.time() if cnt % 100 == 0: tf.logging.info('Collected %s of video, %d frames at ~%.2f fps.' % ( timer(start, current), cnt, cnt/(current-start))) def timer(start, end): """Returns a formatted time elapsed.""" hours, rem = divmod(end-start, 3600) minutes, seconds = divmod(rem, 60) return '{:0>2}:{:0>2}:{:05.2f}'.format(int(hours), int(minutes), seconds) def display_webcams(display_queues): """Builds an WebcamViewer to animate incoming images, runs it.""" viewer = WebcamViewer(display_queues) viewer.run() def create_vids(view_dirs, seqname): """Creates one video per view per sequence.""" vidbase = os.path.join(FLAGS.viddir, FLAGS.dataset, FLAGS.mode) if not os.path.exists(vidbase): os.makedirs(vidbase) vidpaths = [] for idx, view_dir in enumerate(view_dirs): vidname = os.path.join(vidbase, '%s_view%d.mp4' % (seqname, idx)) encode_vid_cmd = r'mencoder mf://%s/*.png \ -mf fps=29:type=png \ -ovc lavc -lavcopts vcodec=mpeg4:mbd=2:trell \ -oac copy -o %s' % (view_dir, vidname) os.system(encode_vid_cmd) vidpaths.append(vidname) debugpath = None if FLAGS.debug_vids: lhs = vidpaths[FLAGS.debug_lhs_view] rhs = vidpaths[FLAGS.debug_rhs_view] debug_base = os.path.join('%s_debug' % FLAGS.viddir, FLAGS.dataset, FLAGS.mode) if not os.path.exists(debug_base): os.makedirs(debug_base) debugpath = '%s/%s.mp4' % (debug_base, seqname) os.system(r"avconv \ -i %s \ -i %s \ -filter_complex '[0:v]pad=iw*2:ih[int];[int][1:v]overlay=W/2:0[vid]' \ -map [vid] \ -c:v libx264 \ -crf 23 \ -preset veryfast \ %s" % (lhs, rhs, debugpath)) return vidpaths, debugpath def setup_paths(): """Sets up the necessary paths to collect videos.""" assert FLAGS.dataset assert FLAGS.mode assert FLAGS.num_views # Setup directory for final images used to create videos for this sequence. tmp_imagedir = os.path.join(FLAGS.tmp_imagedir, FLAGS.dataset, FLAGS.mode) if not os.path.exists(tmp_imagedir): os.makedirs(tmp_imagedir) # Create a base directory to hold all sequence videos if it doesn't exist. vidbase = os.path.join(FLAGS.viddir, FLAGS.dataset, FLAGS.mode) if not os.path.exists(vidbase): os.makedirs(vidbase) # Get one directory per concurrent view and a sequence name. view_dirs, seqname = get_view_dirs(vidbase, tmp_imagedir) # Get an output path to each view's video. vid_paths = [] for idx, _ in enumerate(view_dirs): vid_path = os.path.join(vidbase, '%s_view%d.mp4' % (seqname, idx)) vid_paths.append(vid_path) # Optionally build paths to debug_videos. debug_path = None if FLAGS.debug_vids: debug_base = os.path.join('%s_debug' % FLAGS.viddir, FLAGS.dataset, FLAGS.mode) if not os.path.exists(debug_base): os.makedirs(debug_base) debug_path = '%s/%s.mp4' % (debug_base, seqname) return view_dirs, vid_paths, debug_path def get_view_dirs(vidbase, tmp_imagedir): """Creates and returns one view directory per webcam.""" # Create and append a sequence name. if FLAGS.seqname: seqname = FLAGS.seqname else: # If there's no video directory, this is the first sequence. if not os.listdir(vidbase): seqname = '0' else: # Otherwise, get the latest sequence name and increment it. seq_names = [i.split('_')[0] for i in os.listdir(vidbase)] latest_seq = sorted(map(int, seq_names), reverse=True)[0] seqname = str(latest_seq+1) tf.logging.info('No seqname specified, using: %s' % seqname) view_dirs = [os.path.join( tmp_imagedir, '%s_view%d' % (seqname, v)) for v in range(FLAGS.num_views)] for d in view_dirs: if not os.path.exists(d): os.makedirs(d) return view_dirs, seqname def get_cameras(): """Opens cameras using cv2, ensures they can take images.""" # Try to get free webcam ports. if FLAGS.webcam_ports: ports = map(int, FLAGS.webcam_ports.split(',')) else: ports = range(FLAGS.num_views) cameras = [cv2.VideoCapture(i) for i in ports] if not all([i.isOpened() for i in cameras]): try: # Try to find and kill hanging cv2 process_ids. output = subprocess.check_output(['lsof -t /dev/video*'], shell=True) tf.logging.info('Found hanging cv2 process_ids: \n') tf.logging.info(output) tf.logging.info('Killing hanging processes...') for process_id in output.split('\n')[:-1]: subprocess.call(['kill %s' % process_id], shell=True) time.sleep(3) # Recapture webcams. cameras = [cv2.VideoCapture(i) for i in ports] except subprocess.CalledProcessError: raise ValueError( 'Cannot connect to cameras. Try running: \n' 'ls -ltrh /dev/video* \n ' 'to see which ports your webcams are connected to. Then hand those ' 'ports as a comma-separated list to --webcam_ports, e.g. ' '--webcam_ports 0,1') # Verify each camera is able to capture images. ims = map(get_image, cameras) assert False not in [i is not None for i in ims] return cameras def launch_images_to_videos(view_dirs, vid_paths, debug_path): """Launch job in separate process to convert images to videos.""" f = 'learning/brain/research/tcn/dataset/images_to_videos.py' cmd = ['python %s ' % f] cmd += ['--view_dirs %s ' % ','.join(i for i in view_dirs)] cmd += ['--vid_paths %s ' % ','.join(i for i in vid_paths)] cmd += ['--debug_path %s ' % debug_path] cmd += ['--debug_lhs_view %s ' % FLAGS.debug_lhs_view] cmd += ['--debug_rhs_view %s ' % FLAGS.debug_rhs_view] cmd += [' & '] cmd = ''.join(i for i in cmd) # Call images_to_videos asynchronously. fnull = open(os.devnull, 'w') subprocess.Popen([cmd], stdout=fnull, stderr=subprocess.STDOUT, shell=True) for p in vid_paths: tf.logging.info('Writing final video to: %s' % p) if debug_path: tf.logging.info('Writing debug video to: %s' % debug_path) def main(_): # Initialize the camera capture objects. cameras = get_cameras() # Get one output directory per view. view_dirs, vid_paths, debug_path = setup_paths() try: # Wait for user input. try: tf.logging.info('About to write to:') for v in view_dirs: tf.logging.info(v) input('Press Enter to continue...') except SyntaxError: pass # Create a queue per view for displaying and saving images. display_queues = [ImageQueue() for _ in range(FLAGS.num_views)] reconcile_queues = [ImageQueue() for _ in range(FLAGS.num_views)] # Create a queue for collecting all tuples of multi-view images to write to # disk. write_queue = multiprocessing.Queue() processes = [] # Create a process to display collected images in real time. processes.append(Process(target=display_webcams, args=(display_queues,))) # Create a process to collect the latest simultaneous images from each view. processes.append(Process( target=reconcile, args=(reconcile_queues, write_queue,))) # Create a process to collect the latest simultaneous images from each view. processes.append(Process( target=persist, args=(write_queue, view_dirs,))) for (cam, dq, rq) in zip(cameras, display_queues, reconcile_queues): processes.append(Process( target=capture_webcam, args=(cam, dq, rq,))) for p in processes: p.start() for p in processes: p.join() except KeyboardInterrupt: # Close the queues. for q in display_queues + reconcile_queues: q.close() # Release the cameras. for cam in cameras: cam.release() # Launch images_to_videos script asynchronously. launch_images_to_videos(view_dirs, vid_paths, debug_path) try: sys.exit(0) except SystemExit: os._exit(0) # pylint: disable=protected-access if __name__ == '__main__': tf.app.run()
apache-2.0
jason-neal/companion_simulations
simulators/bhm_module.py
1
7262
import logging import os import numpy as np import pandas as pd from logutils import BraceMessage as __ from tqdm import tqdm import simulators from mingle.models.broadcasted_models import one_comp_model from mingle.utilities.chisqr import chi_squared from mingle.utilities.phoenix_utils import generate_bhm_config_params from mingle.utilities.phoenix_utils import load_starfish_spectrum, closest_model_params, generate_close_params from mingle.utilities.xcorr import xcorr_peak from simulators.common_setup import setup_dirs, sim_helper_function from simulators.iam_module import arbitrary_minimums, arbitrary_rescale from simulators.iam_module import renormalization from numpy import float64, int64, ndarray from typing import Dict, List, Optional, Tuple, Union def setup_bhm_dirs(star: str) -> None: setup_dirs(star, mode="bhm") return None def bhm_analysis(obs_spec, model_pars, gammas=None, errors=None, prefix=None, verbose=False, chip=None, norm=False, wav_scale=True, norm_method="scalar"): """Run one component model over all parameter combinations in model_pars.""" # Gammas if gammas is None: gammas = np.array([0]) elif isinstance(gammas, (float, int)): gammas = np.asarray(gammas, dtype=np.float32) if isinstance(model_pars, list): logging.debug(__("Number of close model_pars returned {0}", len(model_pars))) # Solution Grids to return model_chisqr_vals = np.empty(len(model_pars)) model_xcorr_vals = np.empty(len(model_pars)) model_xcorr_rv_vals = np.empty(len(model_pars)) bhm_grid_chisqr_vals = np.empty(len(model_pars)) bhm_grid_gamma = np.empty(len(model_pars)) full_bhm_grid_chisquare = np.empty((len(model_pars), len(gammas))) normalization_limits = [2105, 2185] # small as possible? for ii, params in enumerate(tqdm(model_pars)): if prefix is None: save_name = os.path.join( simulators.paths["output_dir"], obs_spec.header["OBJECT"].upper(), "bhm", "bhm_{0}_{1}_{3}_part{2}.csv".format( obs_spec.header["OBJECT"].upper(), obs_spec.header["MJD-OBS"], ii, chip)) else: save_name = os.path.join("{0}_part{1}.csv".format(prefix, ii)) if verbose: print("Starting iteration with parameter:s\n{}".format(params)) mod_spec = load_starfish_spectrum(params, limits=normalization_limits, hdr=True, normalize=True, wav_scale=wav_scale) # Wavelength selection mod_spec.wav_select(np.min(obs_spec.xaxis) - 5, np.max(obs_spec.xaxis) + 5) # +- 5nm of obs obs_spec = obs_spec.remove_nans() # One component model with broadcasting over gammas bhm_grid_func = one_comp_model(mod_spec.xaxis, mod_spec.flux, gammas=gammas) bhm_grid_values = bhm_grid_func(obs_spec.xaxis) assert ~np.any(np.isnan(obs_spec.flux)), "Observation is nan" # RENORMALIZATION if chip == 4: # Quadratically renormalize anyway obs_spec = renormalization(obs_spec, bhm_grid_values, normalize=True, method="quadratic") obs_flux = renormalization(obs_spec, bhm_grid_values, normalize=norm, method=norm_method) # Simple chi2 bhm_grid_chisquare_old = chi_squared(obs_flux, bhm_grid_values, error=errors) # Applying arbitrary scalar normalization to continuum bhm_norm_grid_values, arb_norm = arbitrary_rescale(bhm_grid_values, *simulators.sim_grid["arb_norm"]) # Calculate Chi-squared obs_flux = np.expand_dims(obs_flux, -1) # expand on last axis to match rescale bhm_norm_grid_chisquare = chi_squared(obs_flux, bhm_norm_grid_values, error=errors) # Take minimum chi-squared value along Arbitrary normalization axis bhm_grid_chisquare, arbitrary_norms = arbitrary_minimums(bhm_norm_grid_chisquare, arb_norm) assert np.any( bhm_grid_chisquare_old >= bhm_grid_chisquare), "All chi2 values are not better or same with arbitrary scaling" # Interpolate to obs mod_spec.spline_interpolate_to(obs_spec) org_model_chi_val = chi_squared(obs_spec.flux, mod_spec.flux) model_chisqr_vals[ii] = org_model_chi_val # This is gamma = 0 version # New parameters to explore bhm_grid_chisqr_vals[ii] = bhm_grid_chisquare[np.argmin(bhm_grid_chisquare)] bhm_grid_gamma[ii] = gammas[np.argmin(bhm_grid_chisquare)] full_bhm_grid_chisquare[ii, :] = bhm_grid_chisquare ################ # Find cross correlation RV # Should run though all models and find best rv to apply uniformly rvoffset, cc_max = xcorr_peak(obs_spec, mod_spec, plot=False) if verbose: print("Cross correlation RV = {}".format(rvoffset)) print("Cross correlation max = {}".format(cc_max)) model_xcorr_vals[ii] = cc_max model_xcorr_rv_vals[ii] = rvoffset ################### npix = obs_flux.shape[0] # print("bhm shape", bhm_grid_chisquare.shape) save_full_bhm_chisqr(save_name, params, gammas, bhm_grid_chisquare, arbitrary_norms, npix, rvoffset) return (model_chisqr_vals, model_xcorr_vals, model_xcorr_rv_vals, bhm_grid_chisqr_vals, bhm_grid_gamma, full_bhm_grid_chisquare) def save_full_bhm_chisqr(name: str, params1: List[Union[int, float]], gammas: ndarray, bhm_grid_chisquare: ndarray, arbitrary_norms: ndarray, npix: int, xcorr_value: Optional[int] = None) -> None: """Save the bhm chisqr values to a cvs.""" assert gammas.shape == bhm_grid_chisquare.shape data = {"gamma": gammas, "chi2": bhm_grid_chisquare.ravel(), "arbnorm": arbitrary_norms.ravel()} df = pd.DataFrame(data=data) df["teff_1"] = params1[0] df["logg_1"] = params1[1] df["feh_1"] = params1[2] df["npix"] = npix if xcorr_value is None: xcorr_value = -9999999 df["xcorr"] = xcorr_value columns = ["teff_1", "logg_1", "feh_1", "gamma", "npix", "chi2", "arbnorm", "xcorr"] df[columns].to_csv(name, sep=',', index=False, mode="a") # Append to values cvs return None def bhm_helper_function(star: str, obsnum: Union[int, str], chip: int, skip_params: bool = False) -> Tuple[ str, Dict[str, Union[str, float, List[Union[str, float]]]], str]: return sim_helper_function(star, obsnum, chip, skip_params=skip_params, mode="bhm") def get_bhm_model_pars(params: Dict[str, Union[int, float]], method: str = "close") -> List[ List[Union[int64, float64]]]: method = method.lower() host_params = [params["temp"], params["logg"], params["fe_h"]] closest_host_model = closest_model_params(*host_params) if method == "config": model_pars = list(generate_bhm_config_params(closest_host_model)) elif method == "close": # Model parameters to try iterate over. model_pars = list(generate_close_params(closest_host_model, small=True)) else: raise ValueError("The method '{0}' is not valid".format(method)) return model_pars
mit
TariqAHassan/BioVida
tests/images/biovida_images_tests.py
1
2865
""" BioVida-Images Subpackage Unit Testing ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ # Note: 'medpix.png' is simply a blank images of same correct size. # To test the OpeniImageProcessing() class, it will need to be replaced # with an actual MedPix image. import os import sys import unittest import pandas as pd from os.path import join as os_join # Allow access to modules sys.path.insert(0, os.path.abspath(".")) sys.path.insert(0, os.path.abspath("../")) from biovida import images from biovida.support_tools.support_tools import items_null from biovida.images._interface_support.openi.openi_text_processing import openi_raw_extract_and_clean data_path = os_join(str(os.getcwd()).split("/tests")[0], "tests/images/data") raw_openi_data_df = pd.read_pickle(os_join(data_path, "sample_records_raw.p")) class OpeniInterfaceTests(unittest.TestCase): """ Unit Tests for the Images Subpackage. """ def test_cleaning_raw(self): """Test Extracting Features From Raw Open-i Data & Cleaning it.""" cleaned_df = openi_raw_extract_and_clean(raw_openi_data_df, clinical_cases_only=False, verbose=False, cache_path=data_path) # Tests for the newly generate columns expected_new_columns = ('diagnosis', 'imaging_modality_from_text', 'sex', 'illness_duration_years', 'modality_full', 'image_problems_from_text', 'parsed_abstract', 'image_id_short', 'age', 'ethnicity', 'image_plane') new_columns = set(cleaned_df.columns) - set(raw_openi_data_df.columns) # - Number of new columns self.assertEqual(len(new_columns) >= 11, True) # - Checks that least all `expected_new_columns` columns are in `new_columns`, # However, this will not fail if additional columns are added. self.assertEqual(all(e in new_columns for e in expected_new_columns), True) # Test for only floats for c in ('illness_duration_years', 'age'): float_test = all(isinstance(i, float) for i in cleaned_df[c]) self.assertEqual(float_test, True) # Test for only strings for c in ('diagnosis', 'imaging_modality_from_text', 'sex', 'modality_full', 'image_plane', 'image_id_short'): string_test = all(isinstance(i, str) or items_null(i) for i in cleaned_df[c]) self.assertEqual(string_test, True) # Test for only dictionaries dict_test = all(isinstance(i, dict) or items_null(i) for i in cleaned_df['parsed_abstract']) self.assertEqual(dict_test, True) # Test for tuples tuple_test = all(isinstance(i, tuple) or items_null(i) for i in cleaned_df['image_problems_from_text']) self.assertEqual(tuple_test, True) unittest.main()
bsd-3-clause
mikebenfield/scikit-learn
examples/linear_model/plot_logistic_multinomial.py
50
2480
""" ==================================================== Plot multinomial and One-vs-Rest Logistic Regression ==================================================== Plot decision surface of multinomial and One-vs-Rest Logistic Regression. The hyperplanes corresponding to the three One-vs-Rest (OVR) classifiers are represented by the dashed lines. """ print(__doc__) # Authors: Tom Dupre la Tour <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.linear_model import LogisticRegression # make 3-class dataset for classification centers = [[-5, 0], [0, 1.5], [5, -1]] X, y = make_blobs(n_samples=1000, centers=centers, random_state=40) transformation = [[0.4, 0.2], [-0.4, 1.2]] X = np.dot(X, transformation) for multi_class in ('multinomial', 'ovr'): clf = LogisticRegression(solver='sag', max_iter=100, random_state=42, multi_class=multi_class).fit(X, y) # print the training scores print("training score : %.3f (%s)" % (clf.score(X, y), multi_class)) # create a mesh to plot in h = .02 # step size in the mesh x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.title("Decision surface of LogisticRegression (%s)" % multi_class) plt.axis('tight') # Plot also the training points colors = "bry" for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, cmap=plt.cm.Paired) # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.show()
bsd-3-clause
ilo10/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting.py
127
37672
""" Testing for the gradient boosting module (sklearn.ensemble.gradient_boosting). """ import warnings import numpy as np from sklearn import datasets from sklearn.base import clone from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.gradient_boosting import ZeroEstimator from sklearn.metrics import mean_squared_error from sklearn.utils import check_random_state, tosequence from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.validation import DataConversionWarning from sklearn.utils.validation import NotFittedError # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] rng = np.random.RandomState(0) # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset. for loss in ('deviance', 'exponential'): clf = GradientBoostingClassifier(loss=loss, n_estimators=10, random_state=1) assert_raises(ValueError, clf.predict, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf.estimators_)) deviance_decrease = (clf.train_score_[:-1] - clf.train_score_[1:]) assert np.any(deviance_decrease >= 0.0), \ "Train deviance does not monotonically decrease." def test_parameter_checks(): # Check input parameter validation. assert_raises(ValueError, GradientBoostingClassifier(n_estimators=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(n_estimators=-1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='foobar').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=0.6).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=1.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(init={}).fit, X, y) # test fit before feature importance assert_raises(ValueError, lambda: GradientBoostingClassifier().feature_importances_) # deviance requires ``n_classes >= 2``. assert_raises(ValueError, lambda X, y: GradientBoostingClassifier( loss='deviance').fit(X, y), X, [0, 0, 0, 0]) def test_loss_function(): assert_raises(ValueError, GradientBoostingClassifier(loss='ls').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='lad').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='quantile').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='huber').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='deviance').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='exponential').fit, X, y) def test_classification_synthetic(): # Test GradientBoostingClassifier on synthetic dataset used by # Hastie et al. in ESLII Example 12.7. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] for loss in ('deviance', 'exponential'): gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=1, max_depth=1, loss=loss, learning_rate=1.0, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert error_rate < 0.09, \ "GB(loss={}) failed with error {}".format(loss, error_rate) gbrt = GradientBoostingClassifier(n_estimators=200, min_samples_split=1, max_depth=1, learning_rate=1.0, subsample=0.5, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert error_rate < 0.08, ("Stochastic GradientBoostingClassifier(loss={}) " "failed with error {}".format(loss, error_rate)) def test_boston(): # Check consistency on dataset boston house prices with least squares # and least absolute deviation. for loss in ("ls", "lad", "huber"): for subsample in (1.0, 0.5): last_y_pred = None for i, sample_weight in enumerate( (None, np.ones(len(boston.target)), 2 * np.ones(len(boston.target)))): clf = GradientBoostingRegressor(n_estimators=100, loss=loss, max_depth=4, subsample=subsample, min_samples_split=1, random_state=1) assert_raises(ValueError, clf.predict, boston.data) clf.fit(boston.data, boston.target, sample_weight=sample_weight) y_pred = clf.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert mse < 6.0, "Failed with loss %s and " \ "mse = %.4f" % (loss, mse) if last_y_pred is not None: np.testing.assert_array_almost_equal( last_y_pred, y_pred, err_msg='pred_%d doesnt match last pred_%d for loss %r and subsample %r. ' % (i, i - 1, loss, subsample)) last_y_pred = y_pred def test_iris(): # Check consistency on dataset iris. for subsample in (1.0, 0.5): for sample_weight in (None, np.ones(len(iris.target))): clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=subsample) clf.fit(iris.data, iris.target, sample_weight=sample_weight) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with subsample %.1f " \ "and score = %f" % (subsample, score) def test_regression_synthetic(): # Test on synthetic regression datasets used in Leo Breiman, # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). random_state = check_random_state(1) regression_params = {'n_estimators': 100, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.1, 'loss': 'ls'} # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=random_state, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor() clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 5.0, "Failed on Friedman1 with mse = %.4f" % mse # Friedman2 X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 1700.0, "Failed on Friedman2 with mse = %.4f" % mse # Friedman3 X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 0.015, "Failed on Friedman3 with mse = %.4f" % mse def test_feature_importances(): X = np.array(boston.data, dtype=np.float32) y = np.array(boston.target, dtype=np.float32) clf = GradientBoostingRegressor(n_estimators=100, max_depth=5, min_samples_split=1, random_state=1) clf.fit(X, y) #feature_importances = clf.feature_importances_ assert_true(hasattr(clf, 'feature_importances_')) X_new = clf.transform(X, threshold="mean") assert_less(X_new.shape[1], X.shape[1]) feature_mask = clf.feature_importances_ > clf.feature_importances_.mean() assert_array_almost_equal(X_new, X[:, feature_mask]) # true feature importance ranking # true_ranking = np.array([3, 1, 8, 2, 10, 9, 4, 11, 0, 6, 7, 5, 12]) # assert_array_equal(true_ranking, feature_importances.argsort()) def test_probability_log(): # Predict probabilities. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert np.all(y_proba >= 0.0) assert np.all(y_proba <= 1.0) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_check_inputs(): # Test input checks (shape and type of X and y). clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y + [0, 1]) from scipy import sparse X_sparse = sparse.csr_matrix(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(TypeError, clf.fit, X_sparse, y) clf = GradientBoostingClassifier().fit(X, y) assert_raises(TypeError, clf.predict, X_sparse) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y, sample_weight=([1] * len(y)) + [0, 1]) def test_check_inputs_predict(): # X has wrong shape clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, rng.rand(len(X))) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) def test_check_max_features(): # test if max_features is valid. clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=0) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=(len(X[0]) + 1)) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=-0.1) assert_raises(ValueError, clf.fit, X, y) def test_max_feature_regression(): # Test to make sure random state is set properly. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=5, max_depth=2, learning_rate=.1, max_features=2, random_state=1) gbrt.fit(X_train, y_train) deviance = gbrt.loss_(y_test, gbrt.decision_function(X_test)) assert_true(deviance < 0.5, "GB failed with deviance %.4f" % deviance) def test_max_feature_auto(): # Test if max features is set properly for floats and str. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) _, n_features = X.shape X_train = X[:2000] y_train = y[:2000] gbrt = GradientBoostingClassifier(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, n_features) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.3) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(n_features * 0.3)) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='sqrt') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='log2') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.log2(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.01 / X.shape[1]) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, 1) def test_staged_predict(): # Test whether staged decision function eventually gives # the same prediction. X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test = X[200:] clf = GradientBoostingRegressor() # test raise ValueError if not fitted assert_raises(ValueError, lambda X: np.fromiter( clf.staged_predict(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # test if prediction for last stage equals ``predict`` for y in clf.staged_predict(X_test): assert_equal(y.shape, y_pred.shape) assert_array_equal(y_pred, y) def test_staged_predict_proba(): # Test whether staged predict proba eventually gives # the same prediction. X, y = datasets.make_hastie_10_2(n_samples=1200, random_state=1) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingClassifier(n_estimators=20) # test raise NotFittedError if not fitted assert_raises(NotFittedError, lambda X: np.fromiter( clf.staged_predict_proba(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) # test if prediction for last stage equals ``predict`` for y_pred in clf.staged_predict(X_test): assert_equal(y_test.shape, y_pred.shape) assert_array_equal(clf.predict(X_test), y_pred) # test if prediction for last stage equals ``predict_proba`` for staged_proba in clf.staged_predict_proba(X_test): assert_equal(y_test.shape[0], staged_proba.shape[0]) assert_equal(2, staged_proba.shape[1]) assert_array_equal(clf.predict_proba(X_test), staged_proba) def test_staged_functions_defensive(): # test that staged_functions make defensive copies rng = np.random.RandomState(0) X = rng.uniform(size=(10, 3)) y = (4 * X[:, 0]).astype(np.int) + 1 # don't predict zeros for estimator in [GradientBoostingRegressor(), GradientBoostingClassifier()]: estimator.fit(X, y) for func in ['predict', 'decision_function', 'predict_proba']: staged_func = getattr(estimator, "staged_" + func, None) if staged_func is None: # regressor has no staged_predict_proba continue with warnings.catch_warnings(record=True): staged_result = list(staged_func(X)) staged_result[1][:] = 0 assert_true(np.all(staged_result[0] != 0)) def test_serialization(): # Check model serialization. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) try: import cPickle as pickle except ImportError: import pickle serialized_clf = pickle.dumps(clf, protocol=pickle.HIGHEST_PROTOCOL) clf = None clf = pickle.loads(serialized_clf) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_degenerate_targets(): # Check if we can fit even though all targets are equal. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) # classifier should raise exception assert_raises(ValueError, clf.fit, X, np.ones(len(X))) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, np.ones(len(X))) clf.predict(rng.rand(2)) assert_array_equal(np.ones((1,), dtype=np.float64), clf.predict(rng.rand(2))) def test_quantile_loss(): # Check if quantile loss with alpha=0.5 equals lad. clf_quantile = GradientBoostingRegressor(n_estimators=100, loss='quantile', max_depth=4, alpha=0.5, random_state=7) clf_quantile.fit(boston.data, boston.target) y_quantile = clf_quantile.predict(boston.data) clf_lad = GradientBoostingRegressor(n_estimators=100, loss='lad', max_depth=4, random_state=7) clf_lad.fit(boston.data, boston.target) y_lad = clf_lad.predict(boston.data) assert_array_almost_equal(y_quantile, y_lad, decimal=4) def test_symbol_labels(): # Test with non-integer class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) symbol_y = tosequence(map(str, y)) clf.fit(X, symbol_y) assert_array_equal(clf.predict(T), tosequence(map(str, true_result))) assert_equal(100, len(clf.estimators_)) def test_float_class_labels(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) float_y = np.asarray(y, dtype=np.float32) clf.fit(X, float_y) assert_array_equal(clf.predict(T), np.asarray(true_result, dtype=np.float32)) assert_equal(100, len(clf.estimators_)) def test_shape_y(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) y_ = np.asarray(y, dtype=np.int32) y_ = y_[:, np.newaxis] # This will raise a DataConversionWarning that we want to # "always" raise, elsewhere the warnings gets ignored in the # later tests, and the tests that check for this warning fail assert_warns(DataConversionWarning, clf.fit, X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_mem_layout(): # Test with different memory layouts of X and y X_ = np.asfortranarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) X_ = np.ascontiguousarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.ascontiguousarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.asfortranarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_oob_improvement(): # Test if oob improvement has correct shape and regression test. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=0.5) clf.fit(X, y) assert clf.oob_improvement_.shape[0] == 100 # hard-coded regression test - change if modification in OOB computation assert_array_almost_equal(clf.oob_improvement_[:5], np.array([0.19, 0.15, 0.12, -0.12, -0.11]), decimal=2) def test_oob_improvement_raise(): # Test if oob improvement has correct shape. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=1.0) clf.fit(X, y) assert_raises(AttributeError, lambda: clf.oob_improvement_) def test_oob_multilcass_iris(): # Check OOB improvement on multi-class dataset. clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=0.5) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with subsample %.1f " \ "and score = %f" % (0.5, score) assert clf.oob_improvement_.shape[0] == clf.n_estimators # hard-coded regression test - change if modification in OOB computation # FIXME: the following snippet does not yield the same results on 32 bits # assert_array_almost_equal(clf.oob_improvement_[:5], # np.array([12.68, 10.45, 8.18, 6.43, 5.13]), # decimal=2) def test_verbose_output(): # Check verbose=1 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=1, subsample=0.8) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # with OOB true_header = ' '.join(['%10s'] + ['%16s'] * 3) % ( 'Iter', 'Train Loss', 'OOB Improve', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # one for 1-10 and then 9 for 20-100 assert_equal(10 + 9, n_lines) def test_more_verbose_output(): # Check verbose=2 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=2) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # no OOB true_header = ' '.join(['%10s'] + ['%16s'] * 2) % ( 'Iter', 'Train Loss', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # 100 lines for n_estimators==100 assert_equal(100, n_lines) def test_warm_start(): # Test if warm start equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_n_estimators(): # Test if warm start equals fit - set n_estimators. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=300, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=300) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_max_depth(): # Test if possible to fit trees of different depth in ensemble. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, max_depth=2) est.fit(X, y) # last 10 trees have different depth assert est.estimators_[0, 0].max_depth == 1 for i in range(1, 11): assert est.estimators_[-i, 0].max_depth == 2 def test_warm_start_clear(): # Test if fit clears state. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est_2 = Cls(n_estimators=100, max_depth=1, warm_start=True) est_2.fit(X, y) # inits state est_2.set_params(warm_start=False) est_2.fit(X, y) # clears old state and equals est assert_array_almost_equal(est_2.predict(X), est.predict(X)) def test_warm_start_zero_n_estimators(): # Test if warm start with zero n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=0) assert_raises(ValueError, est.fit, X, y) def test_warm_start_smaller_n_estimators(): # Test if warm start with smaller n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=99) assert_raises(ValueError, est.fit, X, y) def test_warm_start_equal_n_estimators(): # Test if warm start with equal n_estimators does nothing X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est2 = clone(est) est2.set_params(n_estimators=est.n_estimators, warm_start=True) est2.fit(X, y) assert_array_almost_equal(est2.predict(X), est.predict(X)) def test_warm_start_oob_switch(): # Test if oob can be turned on during warm start. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, subsample=0.5) est.fit(X, y) assert_array_equal(est.oob_improvement_[:100], np.zeros(100)) # the last 10 are not zeros assert_array_equal(est.oob_improvement_[-10:] == 0.0, np.zeros(10, dtype=np.bool)) def test_warm_start_oob(): # Test if warm start OOB equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1, subsample=0.5, random_state=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, subsample=0.5, random_state=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.oob_improvement_[:100], est.oob_improvement_[:100]) def early_stopping_monitor(i, est, locals): """Returns True on the 10th iteration. """ if i == 9: return True else: return False def test_monitor_early_stopping(): # Test if monitor return value works. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) # this is not altered assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.train_score_.shape[0], 30) est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5, warm_start=True) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30, warm_start=False) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.train_score_.shape[0], 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.oob_improvement_.shape[0], 30) def test_complete_classification(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 est = GradientBoostingClassifier(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, k) assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_complete_regression(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF k = 4 est = GradientBoostingRegressor(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(boston.data, boston.target) tree = est.estimators_[-1, 0].tree_ assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_zero_estimator_reg(): # Test if ZeroEstimator works for regression. est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, boston.data, boston.target) def test_zero_estimator_clf(): # Test if ZeroEstimator works for classification. X = iris.data y = np.array(iris.target) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(X, y) assert est.score(X, y) > 0.96 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert est.score(X, y) > 0.96 # binary clf mask = y != 0 y[mask] = 1 y[~mask] = 0 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert est.score(X, y) > 0.96 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test preceedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [GradientBoostingRegressor, GradientBoostingClassifier] k = 4 for GBEstimator in all_estimators: est = GBEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_greater(tree.max_depth, 1) est = GBEstimator(max_depth=1).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, 1) def test_warm_start_wo_nestimators_change(): # Test if warm_start does nothing if n_estimators is not changed. # Regression test for #3513. clf = GradientBoostingClassifier(n_estimators=10, warm_start=True) clf.fit([[0, 1], [2, 3]], [0, 1]) assert clf.estimators_.shape[0] == 10 clf.fit([[0, 1], [2, 3]], [0, 1]) assert clf.estimators_.shape[0] == 10 def test_probability_exponential(): # Predict probabilities. clf = GradientBoostingClassifier(loss='exponential', n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert np.all(y_proba >= 0.0) assert np.all(y_proba <= 1.0) score = clf.decision_function(T).ravel() assert_array_almost_equal(y_proba[:, 1], 1.0 / (1.0 + np.exp(-2 * score))) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_non_uniform_weights_toy_edge_case_reg(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('huber', 'ls', 'lad', 'quantile'): gb = GradientBoostingRegressor(learning_rate=1.0, n_estimators=2, loss=loss) gb.fit(X, y, sample_weight=sample_weight) assert_greater(gb.predict([[1, 0]])[0], 0.5) def test_non_uniform_weights_toy_min_weight_leaf(): # Regression test for issue #4447 X = [[1, 0], [1, 0], [1, 0], [0, 1], ] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] gb = GradientBoostingRegressor(n_estimators=5, min_weight_fraction_leaf=0.1) gb.fit(X, y, sample_weight=sample_weight) assert_true(gb.predict([[1, 0]])[0] > 0.5) assert_almost_equal(gb.estimators_[0, 0].splitter.min_weight_leaf, 0.2) def test_non_uniform_weights_toy_edge_case_clf(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('deviance', 'exponential'): gb = GradientBoostingClassifier(n_estimators=5) gb.fit(X, y, sample_weight=sample_weight) assert_array_equal(gb.predict([[1, 0]]), [1])
bsd-3-clause
victor-prado/broker-manager
environment/lib/python3.5/site-packages/pandas/tests/frame/test_alter_axes.py
7
26538
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import numpy as np from pandas.compat import lrange from pandas import (DataFrame, Series, Index, MultiIndex, RangeIndex) import pandas as pd from pandas.util.testing import (assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameAlterAxes(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_set_index(self): idx = Index(np.arange(len(self.mixed_frame))) # cache it _ = self.mixed_frame['foo'] # noqa self.mixed_frame.index = idx self.assertIs(self.mixed_frame['foo'].index, idx) with assertRaisesRegexp(ValueError, 'Length mismatch'): self.mixed_frame.index = idx[::2] def test_set_index_cast(self): # issue casting an index then set_index df = DataFrame({'A': [1.1, 2.2, 3.3], 'B': [5.0, 6.1, 7.2]}, index=[2010, 2011, 2012]) expected = df.ix[2010] new_index = df.index.astype(np.int32) df.index = new_index result = df.ix[2010] assert_series_equal(result, expected) def test_set_index2(self): df = DataFrame({'A': ['foo', 'foo', 'foo', 'bar', 'bar'], 'B': ['one', 'two', 'three', 'one', 'two'], 'C': ['a', 'b', 'c', 'd', 'e'], 'D': np.random.randn(5), 'E': np.random.randn(5)}) # new object, single-column result = df.set_index('C') result_nodrop = df.set_index('C', drop=False) index = Index(df['C'], name='C') expected = df.ix[:, ['A', 'B', 'D', 'E']] expected.index = index expected_nodrop = df.copy() expected_nodrop.index = index assert_frame_equal(result, expected) assert_frame_equal(result_nodrop, expected_nodrop) self.assertEqual(result.index.name, index.name) # inplace, single df2 = df.copy() df2.set_index('C', inplace=True) assert_frame_equal(df2, expected) df3 = df.copy() df3.set_index('C', drop=False, inplace=True) assert_frame_equal(df3, expected_nodrop) # create new object, multi-column result = df.set_index(['A', 'B']) result_nodrop = df.set_index(['A', 'B'], drop=False) index = MultiIndex.from_arrays([df['A'], df['B']], names=['A', 'B']) expected = df.ix[:, ['C', 'D', 'E']] expected.index = index expected_nodrop = df.copy() expected_nodrop.index = index assert_frame_equal(result, expected) assert_frame_equal(result_nodrop, expected_nodrop) self.assertEqual(result.index.names, index.names) # inplace df2 = df.copy() df2.set_index(['A', 'B'], inplace=True) assert_frame_equal(df2, expected) df3 = df.copy() df3.set_index(['A', 'B'], drop=False, inplace=True) assert_frame_equal(df3, expected_nodrop) # corner case with assertRaisesRegexp(ValueError, 'Index has duplicate keys'): df.set_index('A', verify_integrity=True) # append result = df.set_index(['A', 'B'], append=True) xp = df.reset_index().set_index(['index', 'A', 'B']) xp.index.names = [None, 'A', 'B'] assert_frame_equal(result, xp) # append to existing multiindex rdf = df.set_index(['A'], append=True) rdf = rdf.set_index(['B', 'C'], append=True) expected = df.set_index(['A', 'B', 'C'], append=True) assert_frame_equal(rdf, expected) # Series result = df.set_index(df.C) self.assertEqual(result.index.name, 'C') def test_set_index_nonuniq(self): df = DataFrame({'A': ['foo', 'foo', 'foo', 'bar', 'bar'], 'B': ['one', 'two', 'three', 'one', 'two'], 'C': ['a', 'b', 'c', 'd', 'e'], 'D': np.random.randn(5), 'E': np.random.randn(5)}) with assertRaisesRegexp(ValueError, 'Index has duplicate keys'): df.set_index('A', verify_integrity=True, inplace=True) self.assertIn('A', df) def test_set_index_bug(self): # GH1590 df = DataFrame({'val': [0, 1, 2], 'key': ['a', 'b', 'c']}) df2 = df.select(lambda indx: indx >= 1) rs = df2.set_index('key') xp = DataFrame({'val': [1, 2]}, Index(['b', 'c'], name='key')) assert_frame_equal(rs, xp) def test_set_index_pass_arrays(self): df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) # multiple columns result = df.set_index(['A', df['B'].values], drop=False) expected = df.set_index(['A', 'B'], drop=False) # TODO should set_index check_names ? assert_frame_equal(result, expected, check_names=False) def test_construction_with_categorical_index(self): ci = tm.makeCategoricalIndex(10) # with Categorical df = DataFrame({'A': np.random.randn(10), 'B': ci.values}) idf = df.set_index('B') str(idf) tm.assert_index_equal(idf.index, ci, check_names=False) self.assertEqual(idf.index.name, 'B') # from a CategoricalIndex df = DataFrame({'A': np.random.randn(10), 'B': ci}) idf = df.set_index('B') str(idf) tm.assert_index_equal(idf.index, ci, check_names=False) self.assertEqual(idf.index.name, 'B') idf = df.set_index('B').reset_index().set_index('B') str(idf) tm.assert_index_equal(idf.index, ci, check_names=False) self.assertEqual(idf.index.name, 'B') new_df = idf.reset_index() new_df.index = df.B tm.assert_index_equal(new_df.index, ci, check_names=False) self.assertEqual(idf.index.name, 'B') def test_set_index_cast_datetimeindex(self): df = DataFrame({'A': [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], 'B': np.random.randn(1000)}) idf = df.set_index('A') tm.assertIsInstance(idf.index, pd.DatetimeIndex) # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 i = (pd.DatetimeIndex( pd.tseries.tools.to_datetime(['2013-1-1 13:00', '2013-1-2 14:00'], errors="raise")) .tz_localize('US/Pacific')) df = DataFrame(np.random.randn(2, 1), columns=['A']) expected = Series(np.array([pd.Timestamp('2013-01-01 13:00:00-0800', tz='US/Pacific'), pd.Timestamp('2013-01-02 14:00:00-0800', tz='US/Pacific')], dtype="object")) # convert index to series result = Series(i) assert_series_equal(result, expected) # assignt to frame df['B'] = i result = df['B'] assert_series_equal(result, expected, check_names=False) self.assertEqual(result.name, 'B') # keep the timezone result = i.to_series(keep_tz=True) assert_series_equal(result.reset_index(drop=True), expected) # convert to utc df['C'] = i.to_series().reset_index(drop=True) result = df['C'] comp = pd.DatetimeIndex(expected.values).copy() comp.tz = None self.assert_numpy_array_equal(result.values, comp.values) # list of datetimes with a tz df['D'] = i.to_pydatetime() result = df['D'] assert_series_equal(result, expected, check_names=False) self.assertEqual(result.name, 'D') # GH 6785 # set the index manually import pytz df = DataFrame( [{'ts': datetime(2014, 4, 1, tzinfo=pytz.utc), 'foo': 1}]) expected = df.set_index('ts') df.index = df['ts'] df.pop('ts') assert_frame_equal(df, expected) # GH 3950 # reset_index with single level for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern']: idx = pd.date_range('1/1/2011', periods=5, freq='D', tz=tz, name='idx') df = pd.DataFrame( {'a': range(5), 'b': ['A', 'B', 'C', 'D', 'E']}, index=idx) expected = pd.DataFrame({'idx': [datetime(2011, 1, 1), datetime(2011, 1, 2), datetime(2011, 1, 3), datetime(2011, 1, 4), datetime(2011, 1, 5)], 'a': range(5), 'b': ['A', 'B', 'C', 'D', 'E']}, columns=['idx', 'a', 'b']) expected['idx'] = expected['idx'].apply( lambda d: pd.Timestamp(d, tz=tz)) assert_frame_equal(df.reset_index(), expected) def test_set_index_timezone(self): # GH 12358 # tz-aware Series should retain the tz i = pd.to_datetime(["2014-01-01 10:10:10"], utc=True).tz_convert('Europe/Rome') df = DataFrame({'i': i}) self.assertEqual(df.set_index(i).index[0].hour, 11) self.assertEqual(pd.DatetimeIndex(pd.Series(df.i))[0].hour, 11) self.assertEqual(df.set_index(df.i).index[0].hour, 11) def test_set_index_dst(self): di = pd.date_range('2006-10-29 00:00:00', periods=3, req='H', tz='US/Pacific') df = pd.DataFrame(data={'a': [0, 1, 2], 'b': [3, 4, 5]}, index=di).reset_index() # single level res = df.set_index('index') exp = pd.DataFrame(data={'a': [0, 1, 2], 'b': [3, 4, 5]}, index=pd.Index(di, name='index')) tm.assert_frame_equal(res, exp) # GH 12920 res = df.set_index(['index', 'a']) exp_index = pd.MultiIndex.from_arrays([di, [0, 1, 2]], names=['index', 'a']) exp = pd.DataFrame({'b': [3, 4, 5]}, index=exp_index) tm.assert_frame_equal(res, exp) def test_set_index_multiindexcolumns(self): columns = MultiIndex.from_tuples([('foo', 1), ('foo', 2), ('bar', 1)]) df = DataFrame(np.random.randn(3, 3), columns=columns) rs = df.set_index(df.columns[0]) xp = df.ix[:, 1:] xp.index = df.ix[:, 0].values xp.index.names = [df.columns[0]] assert_frame_equal(rs, xp) def test_set_index_empty_column(self): # #1971 df = DataFrame([ dict(a=1, p=0), dict(a=2, m=10), dict(a=3, m=11, p=20), dict(a=4, m=12, p=21) ], columns=('a', 'm', 'p', 'x')) # it works! result = df.set_index(['a', 'x']) repr(result) def test_set_columns(self): cols = Index(np.arange(len(self.mixed_frame.columns))) self.mixed_frame.columns = cols with assertRaisesRegexp(ValueError, 'Length mismatch'): self.mixed_frame.columns = cols[::2] # Renaming def test_rename(self): mapping = { 'A': 'a', 'B': 'b', 'C': 'c', 'D': 'd' } renamed = self.frame.rename(columns=mapping) renamed2 = self.frame.rename(columns=str.lower) assert_frame_equal(renamed, renamed2) assert_frame_equal(renamed2.rename(columns=str.upper), self.frame, check_names=False) # index data = { 'A': {'foo': 0, 'bar': 1} } # gets sorted alphabetical df = DataFrame(data) renamed = df.rename(index={'foo': 'bar', 'bar': 'foo'}) tm.assert_index_equal(renamed.index, pd.Index(['foo', 'bar'])) renamed = df.rename(index=str.upper) tm.assert_index_equal(renamed.index, pd.Index(['BAR', 'FOO'])) # have to pass something self.assertRaises(TypeError, self.frame.rename) # partial columns renamed = self.frame.rename(columns={'C': 'foo', 'D': 'bar'}) tm.assert_index_equal(renamed.columns, pd.Index(['A', 'B', 'foo', 'bar'])) # other axis renamed = self.frame.T.rename(index={'C': 'foo', 'D': 'bar'}) tm.assert_index_equal(renamed.index, pd.Index(['A', 'B', 'foo', 'bar'])) # index with name index = Index(['foo', 'bar'], name='name') renamer = DataFrame(data, index=index) renamed = renamer.rename(index={'foo': 'bar', 'bar': 'foo'}) tm.assert_index_equal(renamed.index, pd.Index(['bar', 'foo'], name='name')) self.assertEqual(renamed.index.name, renamer.index.name) # MultiIndex tuples_index = [('foo1', 'bar1'), ('foo2', 'bar2')] tuples_columns = [('fizz1', 'buzz1'), ('fizz2', 'buzz2')] index = MultiIndex.from_tuples(tuples_index, names=['foo', 'bar']) columns = MultiIndex.from_tuples( tuples_columns, names=['fizz', 'buzz']) renamer = DataFrame([(0, 0), (1, 1)], index=index, columns=columns) renamed = renamer.rename(index={'foo1': 'foo3', 'bar2': 'bar3'}, columns={'fizz1': 'fizz3', 'buzz2': 'buzz3'}) new_index = MultiIndex.from_tuples([('foo3', 'bar1'), ('foo2', 'bar3')], names=['foo', 'bar']) new_columns = MultiIndex.from_tuples([('fizz3', 'buzz1'), ('fizz2', 'buzz3')], names=['fizz', 'buzz']) self.assert_index_equal(renamed.index, new_index) self.assert_index_equal(renamed.columns, new_columns) self.assertEqual(renamed.index.names, renamer.index.names) self.assertEqual(renamed.columns.names, renamer.columns.names) def test_rename_nocopy(self): renamed = self.frame.rename(columns={'C': 'foo'}, copy=False) renamed['foo'] = 1. self.assertTrue((self.frame['C'] == 1.).all()) def test_rename_inplace(self): self.frame.rename(columns={'C': 'foo'}) self.assertIn('C', self.frame) self.assertNotIn('foo', self.frame) c_id = id(self.frame['C']) frame = self.frame.copy() frame.rename(columns={'C': 'foo'}, inplace=True) self.assertNotIn('C', frame) self.assertIn('foo', frame) self.assertNotEqual(id(frame['foo']), c_id) def test_rename_bug(self): # GH 5344 # rename set ref_locs, and set_index was not resetting df = DataFrame({0: ['foo', 'bar'], 1: ['bah', 'bas'], 2: [1, 2]}) df = df.rename(columns={0: 'a'}) df = df.rename(columns={1: 'b'}) df = df.set_index(['a', 'b']) df.columns = ['2001-01-01'] expected = DataFrame([[1], [2]], index=MultiIndex.from_tuples( [('foo', 'bah'), ('bar', 'bas')], names=['a', 'b']), columns=['2001-01-01']) assert_frame_equal(df, expected) def test_reorder_levels(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], names=['L0', 'L1', 'L2']) df = DataFrame({'A': np.arange(6), 'B': np.arange(6)}, index=index) # no change, position result = df.reorder_levels([0, 1, 2]) assert_frame_equal(df, result) # no change, labels result = df.reorder_levels(['L0', 'L1', 'L2']) assert_frame_equal(df, result) # rotate, position result = df.reorder_levels([1, 2, 0]) e_idx = MultiIndex(levels=[['one', 'two', 'three'], [0, 1], ['bar']], labels=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0]], names=['L1', 'L2', 'L0']) expected = DataFrame({'A': np.arange(6), 'B': np.arange(6)}, index=e_idx) assert_frame_equal(result, expected) result = df.reorder_levels([0, 0, 0]) e_idx = MultiIndex(levels=[['bar'], ['bar'], ['bar']], labels=[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], names=['L0', 'L0', 'L0']) expected = DataFrame({'A': np.arange(6), 'B': np.arange(6)}, index=e_idx) assert_frame_equal(result, expected) result = df.reorder_levels(['L0', 'L0', 'L0']) assert_frame_equal(result, expected) def test_reset_index(self): stacked = self.frame.stack()[::2] stacked = DataFrame({'foo': stacked, 'bar': stacked}) names = ['first', 'second'] stacked.index.names = names deleveled = stacked.reset_index() for i, (lev, lab) in enumerate(zip(stacked.index.levels, stacked.index.labels)): values = lev.take(lab) name = names[i] tm.assert_index_equal(values, Index(deleveled[name])) stacked.index.names = [None, None] deleveled2 = stacked.reset_index() tm.assert_series_equal(deleveled['first'], deleveled2['level_0'], check_names=False) tm.assert_series_equal(deleveled['second'], deleveled2['level_1'], check_names=False) # default name assigned rdf = self.frame.reset_index() exp = pd.Series(self.frame.index.values, name='index') self.assert_series_equal(rdf['index'], exp) # default name assigned, corner case df = self.frame.copy() df['index'] = 'foo' rdf = df.reset_index() exp = pd.Series(self.frame.index.values, name='level_0') self.assert_series_equal(rdf['level_0'], exp) # but this is ok self.frame.index.name = 'index' deleveled = self.frame.reset_index() self.assert_series_equal(deleveled['index'], pd.Series(self.frame.index)) self.assert_index_equal(deleveled.index, pd.Index(np.arange(len(deleveled)))) # preserve column names self.frame.columns.name = 'columns' resetted = self.frame.reset_index() self.assertEqual(resetted.columns.name, 'columns') # only remove certain columns frame = self.frame.reset_index().set_index(['index', 'A', 'B']) rs = frame.reset_index(['A', 'B']) # TODO should reset_index check_names ? assert_frame_equal(rs, self.frame, check_names=False) rs = frame.reset_index(['index', 'A', 'B']) assert_frame_equal(rs, self.frame.reset_index(), check_names=False) rs = frame.reset_index(['index', 'A', 'B']) assert_frame_equal(rs, self.frame.reset_index(), check_names=False) rs = frame.reset_index('A') xp = self.frame.reset_index().set_index(['index', 'B']) assert_frame_equal(rs, xp, check_names=False) # test resetting in place df = self.frame.copy() resetted = self.frame.reset_index() df.reset_index(inplace=True) assert_frame_equal(df, resetted, check_names=False) frame = self.frame.reset_index().set_index(['index', 'A', 'B']) rs = frame.reset_index('A', drop=True) xp = self.frame.copy() del xp['A'] xp = xp.set_index(['B'], append=True) assert_frame_equal(rs, xp, check_names=False) def test_reset_index_right_dtype(self): time = np.arange(0.0, 10, np.sqrt(2) / 2) s1 = Series((9.81 * time ** 2) / 2, index=Index(time, name='time'), name='speed') df = DataFrame(s1) resetted = s1.reset_index() self.assertEqual(resetted['time'].dtype, np.float64) resetted = df.reset_index() self.assertEqual(resetted['time'].dtype, np.float64) def test_reset_index_multiindex_col(self): vals = np.random.randn(3, 3).astype(object) idx = ['x', 'y', 'z'] full = np.hstack(([[x] for x in idx], vals)) df = DataFrame(vals, Index(idx, name='a'), columns=[['b', 'b', 'c'], ['mean', 'median', 'mean']]) rs = df.reset_index() xp = DataFrame(full, columns=[['a', 'b', 'b', 'c'], ['', 'mean', 'median', 'mean']]) assert_frame_equal(rs, xp) rs = df.reset_index(col_fill=None) xp = DataFrame(full, columns=[['a', 'b', 'b', 'c'], ['a', 'mean', 'median', 'mean']]) assert_frame_equal(rs, xp) rs = df.reset_index(col_level=1, col_fill='blah') xp = DataFrame(full, columns=[['blah', 'b', 'b', 'c'], ['a', 'mean', 'median', 'mean']]) assert_frame_equal(rs, xp) df = DataFrame(vals, MultiIndex.from_arrays([[0, 1, 2], ['x', 'y', 'z']], names=['d', 'a']), columns=[['b', 'b', 'c'], ['mean', 'median', 'mean']]) rs = df.reset_index('a', ) xp = DataFrame(full, Index([0, 1, 2], name='d'), columns=[['a', 'b', 'b', 'c'], ['', 'mean', 'median', 'mean']]) assert_frame_equal(rs, xp) rs = df.reset_index('a', col_fill=None) xp = DataFrame(full, Index(lrange(3), name='d'), columns=[['a', 'b', 'b', 'c'], ['a', 'mean', 'median', 'mean']]) assert_frame_equal(rs, xp) rs = df.reset_index('a', col_fill='blah', col_level=1) xp = DataFrame(full, Index(lrange(3), name='d'), columns=[['blah', 'b', 'b', 'c'], ['a', 'mean', 'median', 'mean']]) assert_frame_equal(rs, xp) def test_reset_index_with_datetimeindex_cols(self): # GH5818 # df = pd.DataFrame([[1, 2], [3, 4]], columns=pd.date_range('1/1/2013', '1/2/2013'), index=['A', 'B']) result = df.reset_index() expected = pd.DataFrame([['A', 1, 2], ['B', 3, 4]], columns=['index', datetime(2013, 1, 1), datetime(2013, 1, 2)]) assert_frame_equal(result, expected) def test_reset_index_range(self): # GH 12071 df = pd.DataFrame([[0, 0], [1, 1]], columns=['A', 'B'], index=RangeIndex(stop=2)) result = df.reset_index() tm.assertIsInstance(result.index, RangeIndex) expected = pd.DataFrame([[0, 0, 0], [1, 1, 1]], columns=['index', 'A', 'B'], index=RangeIndex(stop=2)) assert_frame_equal(result, expected) def test_set_index_names(self): df = pd.util.testing.makeDataFrame() df.index.name = 'name' self.assertEqual(df.set_index(df.index).index.names, ['name']) mi = MultiIndex.from_arrays(df[['A', 'B']].T.values, names=['A', 'B']) mi2 = MultiIndex.from_arrays(df[['A', 'B', 'A', 'B']].T.values, names=['A', 'B', 'A', 'B']) df = df.set_index(['A', 'B']) self.assertEqual(df.set_index(df.index).index.names, ['A', 'B']) # Check that set_index isn't converting a MultiIndex into an Index self.assertTrue(isinstance(df.set_index(df.index).index, MultiIndex)) # Check actual equality tm.assert_index_equal(df.set_index(df.index).index, mi) # Check that [MultiIndex, MultiIndex] yields a MultiIndex rather # than a pair of tuples self.assertTrue(isinstance(df.set_index( [df.index, df.index]).index, MultiIndex)) # Check equality tm.assert_index_equal(df.set_index([df.index, df.index]).index, mi2) def test_rename_objects(self): renamed = self.mixed_frame.rename(columns=str.upper) self.assertIn('FOO', renamed) self.assertNotIn('foo', renamed) def test_assign_columns(self): self.frame['hi'] = 'there' frame = self.frame.copy() frame.columns = ['foo', 'bar', 'baz', 'quux', 'foo2'] assert_series_equal(self.frame['C'], frame['baz'], check_names=False) assert_series_equal(self.frame['hi'], frame['foo2'], check_names=False) def test_set_index_preserve_categorical_dtype(self): # GH13743, GH13854 df = DataFrame({'A': [1, 2, 1, 1, 2], 'B': [10, 16, 22, 28, 34], 'C1': pd.Categorical(list("abaab"), categories=list("bac"), ordered=False), 'C2': pd.Categorical(list("abaab"), categories=list("bac"), ordered=True)}) for cols in ['C1', 'C2', ['A', 'C1'], ['A', 'C2'], ['C1', 'C2']]: result = df.set_index(cols).reset_index() result = result.reindex(columns=df.columns) tm.assert_frame_equal(result, df)
mit
cod3monk/kerncraft
kerncraft/roofline-plot.py
2
2490
#!/usr/bin/env python3 from pprint import pprint import matplotlib.pyplot as plt from ruamel import yaml from .prefixedunit import PrefixedUnit def frange(start, stop, step=1.0): f = start while f < stop: f += step yield f # Input (usually from ECM model) result = { 'min performance': 11175000000.0, 'bottleneck level': 2, 'mem bottlenecks': [{'performance': PrefixedUnit(24474545454.545452, '', 'FLOP/s'), 'bandwidth': PrefixedUnit(89.74, u'G', u'B/s'), 'arithmetic intensity': 0.2727272727272727, 'bw kernel': 'triad', 'level': 'L1-L2'}, {'performance': PrefixedUnit(12957000000.0, '', 'FLOP/s'), 'bandwidth': PrefixedUnit(43.19, u'G', u'B/s'), 'arithmetic intensity': 0.3, 'bw kernel': 'triad', 'level': 'L2-L3'}, {'performance': PrefixedUnit(11175000000.0, '', 'FLOP/s'), 'bandwidth': PrefixedUnit(22.35, u'G', u'B/s'), 'arithmetic intensity': 0.5, 'bw kernel': 'triad', 'level': 'L3-MEM'}]} machine = yaml.load(open('machine-files/emmy.yaml')) max_flops = machine['clock']*sum(machine['FLOPs per cycle']['DP'].values()) max_flops.unit = "FLOP/s" pprint(result) pprint(max_flops) # Plot configuration height = 0.8 fig = plt.figure(frameon=False) ax = fig.add_subplot(1, 1, 1) yticks_labels = [] yticks = [] xticks_labels = [] xticks = [2.**i for i in range(-4, 4)] ax.set_xlabel('arithmetic intensity [FLOP/byte]') ax.set_ylabel('performance [FLOP/s]') # Upper bound x = list(frange(min(xticks), max(xticks), 0.01)) bw = float(result['mem bottlenecks'][result['bottleneck level']]['bandwidth']) ax.plot(x, [min(bw*x, float(max_flops)) for x in x]) # Code location perf = min( float(max_flops), float(result['mem bottlenecks'][result['bottleneck level']]['performance'])) arith_intensity = result['mem bottlenecks'][result['bottleneck level']]['arithmetic intensity'] ax.plot(arith_intensity, perf, 'r+', markersize=12, markeredgewidth=4) # ax.tick_params(axis='y', which='both', left='off', right='off') # ax.tick_params(axis='x', which='both', top='off') ax.set_xscale('log', basex=2) ax.set_yscale('log') ax.set_xlim(min(xticks), max(xticks)) # ax.set_yticks([perf, float(max_flops)]) ax.set_xticks(xticks+[arith_intensity]) ax.grid(axis='x', alpha=0.7, linestyle='--') # fig.savefig('out.pdf') plt.show()
agpl-3.0
CentralLabFacilities/m3meka
python/scripts/tools/m3qa_preisach.py
2
7452
#! /usr/bin/python import time import m3.toolbox as m3t import Numeric as nu import math import yaml import m3.rt_proxy as m3p import m3.toolbox as m3t import m3.component_factory as mcf #Image stuff from PIL import Image from PIL import ImageDraw import sys import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import os, sys import Tkinter import Image, ImageTk import random from m3qa.calibrate_actuator_ec_r3 import dpm3_thread # #################################################### #L+1: number of levels in grid dimension L=50 #drawing width dw=10 # #################################################### import pygame import Image from pygame.locals import * import sys pygame.init() window = pygame.display.set_mode((L*dw,L*dw)) screen = pygame.display.get_surface() events = pygame.event.get() im = Image.new("RGB", (L*dw,L*dw), (0,0,0)) draw = ImageDraw.Draw(im) def draw_plane(u): for i in range(L,0,-1): for j in range(1,i+1): draw_cell(i,j,u) pg_img = pygame.image.frombuffer(im.tostring(), im.size, im.mode) screen.blit(pg_img, (0,0)) pygame.display.flip() def in_cell(i,j,u): k=cell_to_idx(i,j) return(u>a[k]-cw and u<a[k]) and (u>b[k] and u<b[k]+cw) def draw_cell(i,j,u): cy=L*dw-i*dw-dw/2.0 cx=j*dw-dw/2.0 k=cell_to_idx(i,j) if in_cell(i,j,u): draw.rectangle(((cx-dw/2.0)+1,(cy-dw/2.0)+1,(cx+dw/2.0)-1,(cy+dw/2.0)-1),fill=(0,0,255),outline=(255,255,0)) elif g[k]>0: draw.rectangle(((cx-dw/2.0)+1,(cy-dw/2.0)+1,(cx+dw/2.0)-1,(cy+dw/2.0)-1),fill=(0,0,0),outline=(255,255,0)) else: draw.rectangle((cx-dw/2.0,cy-dw/2.0,cx+dw/2.0,cy+dw/2.0),fill=(0,0,0),outline=(255,0,0)) # #################################################### #u : input variable #v: output variable #a>b by definition #mu(b,a)=0 if b<bo or a>ao (outer bounds of Preisach plane) #w(t): Preisach operator (omega): integral over plane = sum(g(a,b)==1)-sum(g(a,b)==-1) #K: number of elements in column vector representation K=int(L*(L+1)/2.0) #a: upper bound (alpha) a=nu.array([0.0]*K) #b: lower bound (beta) b=nu.array([0.0]*K) #mu: density function mu(b,a) mu=nu.array([0.0]*K) #g: Preisach hysteron (gamma): v=g_op(b,a,u)=+1 if u>a, -1 if u<b, g if b<=u<=a #Start in full negative state: u(t<0)<b0 g=nu.array([-1.0]*K) #a0: maximum input value #a0=9 #b0: minimum input value #b0=1 u_max=10000 u_min=-10000 #Cell width cw=(u_max-u_min)/L print 'Cell width is',cw,'mNm' #un: input sequence of n discretized inputs #n=? def build(): for i in range(L,0,-1): for j in range(1,i+1): k=cell_to_idx(i,j) alpha=u_min+i*cw beta=u_min+(j-1)*cw a[k]=alpha b[k]=beta #print 'i',i,'j',j,'a',alpha,'b',beta def discretize(u): if u<=u_min: return 1 if u>=u_max: return L return math.ceil((u-u_min)/cw) def print_plane(): for i in range(L,0,-1): for j in range(1,i+1): v=g[cell_to_idx(i,j)] k=cell_to_idx(i,j) print '(',v,')', #print '(',b[k],a[k],')', #print '(',i,',',j,')', #row, col print def cell_to_idx(i,j): return int(i*(i+1)/2-(i-j+1)) #Hysteron function: input, beta, alpha, and current #Made inclusive of boundaries. Does'nt follow convention #But otherwise plane borders are ignored. What is the correct way to handle this? def g_op(u,bb,aa,cc): if u>u_max or u<u_min: return 0.0 if u>=aa: return 1.0 if u<=bb: return -1.0 return cc def step_input(u): for k in range(K): y=g_op(u,b[k],a[k],g[k]) g[k]=y slew=m3t.M3Slew() def ramp_to_torque(des,scope): act.set_mode_torque() if slew.val==0: slew.val=act.get_torque_mNm() rate=500.0#100mNm/step, ~30steps/s, 3Nm/s, ~7s full range x=slew.step(des,rate) ut=[] wt=[] gt=[] while True: act.set_torque_mNm(x) proxy.step() time.sleep(0.03) ut.append(act.get_torque_mNm()) wt.append(dpm3.get_load_mNm()) step_input(ut[-1]) draw_plane(u) #gt.append(list(g)) scope.plot(ut[-1],x) x=slew.step(des,rate) if x==des: #Wait to settle for i in range(20): proxy.step() time.sleep(0.1) x=slew.step(des,rate) ut.append(act.get_torque_mNm()) wt.append(dpm3.get_load_mNm()) step_input(ut[-1]) draw_plane(u) #gt.append(list(g)) scope.plot(ut[-1],x) break #print x,des,ut[-1] #act.set_mode_off() proxy.step() return ut,wt,gt def triangle_wave(): scope=m3t.M3Scope2(xwidth=100,yrange=None) des=[] cc=1.0 scale=5000 for i in range(10): des.append(cc) cc=cc*-1.0 print 'Enable power. Hit enter to continue' raw_input() for ii in range(len(des)): print ii,'Des: ',des[ii] ramp_to_torque(des[ii]*scale,scope) def fill_cells_random(): scope=m3t.M3Scope2(xwidth=100,yrange=None) ns=30#5#K*2 #Build desired vector log={'ns':ns,'type':'fill_cells_random', 'actuator':'MA12J1','L':L,'K':K,'CW':cw,'a':list(a),'b':list(b),'u_max':u_max,'u_min':u_min,'ut':[],'wt':[],'gt':[],'des':[]} des=[u_min] for nn in range(ns): while True: x=u_min+(u_max-u_min)*(random.random()) #randomly in range if abs(des[-1]-x)>5*cw: #make excursion at least 5 cells des.append(x) break log['des']=des print 'Des',des print 'Enable power. Hit enter to continue' raw_input() for ii in range(len(des)): print ii,'Des: ',des[ii] uu,ww,gg=ramp_to_torque(des[ii],scope) print len(uu),len(ww),len(gg) log['ut'].append(list(uu)) #input log['wt'].append(list(ww)) #output log['gt'].append(list(gg)) #hysteron states print 'Save data [y]?' if m3t.get_yes_no('y'): fn=m3t.get_m3_config_path()+'data/preisach_data_random_ma12j1_'+m3t.time_string()+'.yml' print 'Enter annotation string [None]' note=m3t.get_string('None') log['note']=note f=file(fn,'w') print 'Saving...',fn f.write(yaml.safe_dump(log, default_flow_style=False,width=200)) f.close() return log def fill_cells_methodical(): #fill by row, for each row-alpha, starting at u_max #reduce torque to u_min, then increase to row-alpha #then reduce to column-beta, from alpha down to u_min #this will fill an entire row. reduce the row index and repeat for i in range(L,0,-1): #row ramp_to_torque(u_min) alpha=a[cell_to_idx[i,0]] for j in range(L,0,-1): beta=b[cell_to_idx[i,j]] des=beta+cw/2.0 #servo to center of cell ramp_to_torque(des) u=act.get_torque_mNm() w=dpm3.get_load_mNm() ut.append(u) wt.append(w) gt.append(list(g)) build() #print_plane() draw_plane(0) dpm3=dpm3_thread() dpm3.start() proxy = m3p.M3RtProxy() proxy.start() proxy.make_operational_all() act=mcf.create_component('m3joint_ma12_j1') pwr=mcf.create_component('m3pwr_pwr015') proxy.publish_command(pwr) proxy.subscribe_status(act) proxy.publish_command(act) proxy.publish_param(act) proxy.step() pwr.set_motor_power_on() dd=100.0 u=u_min fill_cells_random() #triangle_wave() #try: #while True: #print '---------------------' #print 'f: free-run' #print 'c: collect-data' #c=m3t.get_keystroke() #if c=='f': #pass #if c=='c': #pass #u=act.get_torque_mNm() #lmNm=dpm3.get_load_mNm() #print 'tq: ',u #proxy.step() #step_input(u) #draw_plane(u) #time.sleep(0.03) #except (KeyboardInterrupt,EOFError): #pass pwr.set_motor_power_off() dpm3.stop() proxy.step() proxy.stop()
mit
emmatoday/PyClimateGraphs
SeaIce_Combined.py
1
19763
#!/usr/bin/env python3 """ Global Sea Ice Extent Graph for 1979-Current Website : https://github.com/emmatoday/PyClimateGraphs Author : Emma M - GitHub: @emmatoday Date : 15 February 2017 This code will download and render a current graph of the global sea ice extent. Beginning in 1979 until yesterday (based on availability of the data from the NSIDC). Requisite data files (in case you need to manually download them): ftp://sidads.colorado.edu:21/DATASETS/NOAA/G02135/south/daily/data/S_seaice_extent_daily_v2.1.csv ftp://sidads.colorado.edu:21/DATASETS/NOAA/G02135/north/daily/data/N_seaice_extent_daily_v2.1.csv """ # Load all needed libraries from __future__ import unicode_literals import pandas as pd import numpy as np import seaborn as sns import matplotlib.dates as mdates import matplotlib.colors as c import matplotlib.pyplot as plt import matplotlib.ticker as ticker from scipy import stats import datetime as dt import os import math import calendar import urllib import shutil import sys import logging from pprint import pprint # Set up some constants DATA_PATH = './data' # Path to data directory OUTPUT_PATH = './output' # Path to output plot images OUTDATED_DAYS = 3 # Days after which data is considered outdated PRE_YEAR = 2010 # Year before which the "pre" data is taken ROLLING_WINDOW = 7 # URLs where we can fetch the data files DATA_URLS = { 's': 'ftp://sidads.colorado.edu:21/DATASETS/NOAA/G02135/south/daily/data/' 'S_seaice_extent_daily_v2.1.csv', 'n': 'ftp://sidads.colorado.edu:21/DATASETS/NOAA/G02135/north/daily/data/' 'N_seaice_extent_daily_v2.1.csv' } def mkdir_if_necessary(dir): """ Check if necessary directories exist, creating them if necesary. """ try: os.stat(dir) except OSError: os.mkdir(dir) def data_files_exist(): """ Check if our data files exist already. """ for key, url in DATA_URLS.items(): filename = os.path.split(urllib.parse.urlsplit(url).path)[-1] if os.path.isfile(os.path.join(DATA_PATH, filename)): return True else: return False def load_data_files(): """ Load the data from disk and return the dataframes. """ sea_ice_indexes = {} for key, url in DATA_URLS.items(): filename = os.path.split(urllib.parse.urlsplit(url).path)[-1] sea_ice_indexes[key] = \ pd.read_csv(os.path.join(DATA_PATH, filename), skiprows=[1]) for key in sea_ice_indexes.keys(): sea_ice_indexes[key].rename(columns=lambda x: x.strip(), inplace=True) sea_ice_indexes[key]['Date'] = sea_ice_indexes[key]\ .apply(lambda row: dt.date(row['Year'], row['Month'], row['Day']), axis=1) sea_ice_indexes[key]['Date'] = \ pd.to_datetime(sea_ice_indexes[key]['Date']) minday = np.min(sea_ice_indexes[key]['Date']) maxday = np.max(sea_ice_indexes[key]['Date']) newframe = {'Date': pd.Series(pd.date_range(minday, maxday).tolist())} date_df = pd.DataFrame(newframe) sea_ice_indexes[key] = pd.merge(left=date_df, right=sea_ice_indexes[key], on='Date', how='left') sea_ice_indexes[key]['Day of Year'] = \ sea_ice_indexes[key] \ .apply(lambda row: row['Date'].timetuple().tm_yday, axis=1) sea_ice_indexes[key]['Year'] = \ sea_ice_indexes[key] \ .apply(lambda row: row['Date'].year, axis=1) sea_ice_indexes[key]['Month'] = \ sea_ice_indexes[key] \ .apply(lambda row: row['Date'].month, axis=1) sea_ice_indexes[key]['Day'] = \ sea_ice_indexes[key] \ .apply(lambda row: row['Date'].day, axis=1) sea_ice_indexes[key]['Extent'] = \ sea_ice_indexes[key]['Extent'].rolling(window=ROLLING_WINDOW, center=False).mean() sea_ice_indexes['s'].rename(columns={'Extent': 'S Extent'}, inplace=True) sea_ice_indexes['n'].rename(columns={'Extent': 'N Extent'}, inplace=True) return sea_ice_indexes def data_is_fresh(sea_ice_indexes, outdated_days=OUTDATED_DAYS): """ Check if our data appears to be out of date. """ for key, sea_ice_index in sea_ice_indexes.items(): today = dt.date.today() print('Data is {0} day(s) old' .format((dt.datetime.now() - sea_ice_index['Date'].iloc[-1]).days)) if (dt.datetime.now() - sea_ice_index['Date'].iloc[-1]).days >= outdated_days: return False else: return True def refresh_data_files(): """ Update datafiles to the latest available from the data URLs. """ for key, url in DATA_URLS.items(): url_path = urllib.parse.urlsplit(url).path url_filename = os.path.split(url_path)[-1] filename = os.path.join(DATA_PATH, url_filename) with urllib.request.urlopen(url) as response: with open(filename, 'wb') as out_file: shutil.copyfileobj(response, out_file) def prep_data_files(): """ Prepare and load the data files downloading and updating as necessary. """ mkdir_if_necessary(DATA_PATH) mkdir_if_necessary(OUTPUT_PATH) if data_files_exist(): print('Data files exist') sea_ice_indexes = load_data_files() if data_is_fresh(sea_ice_indexes): print('Data files are up to date') else: print('Data files are outdated') refresh_data_files() sea_ice_indexes = load_data_files() print('Data files have been updated') else: print('No data files found') refresh_data_files() sea_ice_indexes = load_data_files() print('Data files have been downloaded') return sea_ice_indexes def running_mean(x, N=2): return np.convolve(x, np.ones((N,))/N)[(N-1):] def plot(gbl_seaice, column, suptitle, light_style=False, infotext='bottom', filebase='global_sea_ice', ymin=14, ymax=30, pdf=True, png=True, legend_loc='lower right'): """ Plots graph of a given light_style and creates PDF and PNG outputs. """ # Set up foreground background colors based on light_style if light_style: FG_COLOR = [0, 0, 0] BG_COLOR = [1, 1, 1] else: FG_COLOR = [1, 1, 1] BG_COLOR = [0, 0, 0] now = dt.datetime.now() cur_mon = str(now.month - 1) cur_day = str(now.day) cur_year = str(now.year) iso_date = dt.date.today().isoformat() # Get all pre-2010 data grouped by day of year pre_x = gbl_seaice[(gbl_seaice['Year'] < PRE_YEAR) & (gbl_seaice['Year'] >= 1978)].groupby(['Day of Year']) # Calculate average extent for each day of the year in the pre-2010 data mean = pre_x[column].mean() sigma = pre_x[column].std() # Get all the data grouped by each year for plotting year_groups = gbl_seaice.groupby(['Year']) # Make plot plt.rc('savefig', facecolor=BG_COLOR) plt.rc('axes', edgecolor=FG_COLOR) plt.rc('xtick', color=FG_COLOR) plt.rc('ytick', color=FG_COLOR) plt.rc('axes', labelcolor=FG_COLOR) plt.rc('axes', facecolor=BG_COLOR) plt.rc('text', usetex=True) plt.rc('font', **{'family': 'sans-serif', 'sans-serif': ['Avant Garde']}) # Create figure to plot fig = plt.figure() ax = plt.subplot(111) # Add some extra space at the bottom of the plot plt.subplots_adjust(bottom=0.14) ax.tick_params('both', length=7.5, width=2, which='major') # Adjust spines spines = ['left', 'bottom'] for loc, spine in ax.spines.items(): if loc in spines: spine.set_position(('outward', 6)) else: spine.set_color('none') if 'left' in spines: ax.yaxis.set_ticks_position('left') else: ax.yaxis.set_ticks([]) if 'bottom' in spines: ax.xaxis.set_ticks_position('bottom') else: ax.xaxis.set_ticks([]) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') gridlines = ax.get_xgridlines() + ax.get_ygridlines() # Set grid line style for line in gridlines: line.set_linestyle('dotted') line.set_linewidth(0.3) line.set_color(FG_COLOR) line.set_alpha(0.2) line.set_zorder(-5) minday = np.min(gbl_seaice['Day of Year']) maxday = np.max(gbl_seaice['Day of Year']) doy = np.arange(minday, maxday+1) # import pdb # pdb.set_trace() pl = [] def plot_sigma(plt, doy, sigma, n, color=FG_COLOR, alpha=1, lw=0): """ Plots the the standard deviations. """ label = u'{0}$\sigma$ (pre-{1})'.format(n, PRE_YEAR) return plt.fill_between(doy, mean+sigma*n, mean-sigma*n, facecolor=color, alpha=alpha, linewidth=lw, label=label, zorder=-10) def mod_color(rgb_color, multiplier=0.15, light_style=light_style): """ Takes an RGB color (three float list) and adjusts the colors by the multiplier values. """ hsv_color = c.rgb_to_hsv(rgb_color) logging.debug('Input color value: {0}'.format(hsv_color[2])) if light_style: hsv_color[1] = hsv_color[1] * multiplier else: hsv_color[2] = hsv_color[2] * multiplier logging.debug('Output color value: {0}'.format(hsv_color[2])) return c.hsv_to_rgb(hsv_color) pl.append(plot_sigma(plt, doy, sigma, 5, color=mod_color([1, 0, 0.2], 0.225))) pl.append(plot_sigma(plt, doy, sigma, 4, color=mod_color([1, 0, 0.2], 0.125))) pl.append(plot_sigma(plt, doy, sigma, 3, color=mod_color([1, 0.7, 0]))) pl.append(plot_sigma(plt, doy, sigma, 2, color=mod_color([0, 1, 0]))) pl.append(plot_sigma(plt, doy, sigma, 1, color=BG_COLOR)) # Line width for mean and recent years lw = 2.5 # Plot mean (with outline of BG_COLOR) plt.plot(doy, mean, color=BG_COLOR, linewidth=lw+1.5, zorder=2, linestyle='-')[0] pl.append(plt.plot(doy, mean, color=FG_COLOR, linewidth=lw, label='Mean (pre-{0})'.format(PRE_YEAR), zorder=2, linestyle='-')[0]) # Get count of years of data year_count = gbl_seaice['Year'].max() - gbl_seaice['Year'].min() # Number of manually configured years manual_years = 2 # Set colormap value depending on light/dark if light_style: color_map_end = 0.1 else: color_map_end = 0.35 # Use colormap for each year (avoiding the darkest 35% of magma colors) color = iter(plt.cm.magma(np.linspace(1, color_map_end, year_count - manual_years))) # Plot every year's specific data, some with manually set formatting for key, grp in year_groups: if (key >= 1979 and key <= 2018) or key >= 2016: if key == 2017: pl.append(plt.plot(grp[column], c='#ff00bb', zorder=3, linewidth=lw, label=key)[0]) elif key == 2016: pl.append(plt.plot(grp[column], c='#bb00ff', zorder=3, linewidth=lw, label=key)[0]) # elif key == 2015: # pl.append(plt.plot(grp['Total Extent'], c='red', # zorder=2, linewidth=lw, label=key)[0]) # elif key == 2014: # pl.append(plt.plot(grp['Total Extent'], c='orange', # zorder=2, linewidth=lw, label=key)[0]) # elif key == 2013: # pl.append(plt.plot(grp['Total Extent'], c='yellow', # zorder=2, linewidth=lw, label=key)[0]) # elif key == 2012: # pl.append(plt.plot(grp['Total Extent'], c='#00ff00', # zorder=2, linewidth=lw, label=key)[0]) else: # Plot all non-manually configured years plt.plot(grp[column], c=next(color), zorder=1, linewidth=0.7, alpha=0.5) # Adjust legend and axes and plot them le = plt.legend(shadow=False, fontsize=9, loc=legend_loc, fancybox=True, ncol=2, handles=pl) for text in le.get_texts(): text.set_color(FG_COLOR) # Move ylabel a bit to the left for pretty, then plot the label ax.yaxis.labelpad = 11 plt.ylabel(r'\textbf{Sea Ice Extent [$\times$10$^{6}$ sq. km, ' '%d day rolling avg.]}' % (ROLLING_WINDOW), fontsize=13) # Setup x-ticks and plot them xlabels = calendar.month_abbr[1:13] xlocations = list(map(lambda x: x+15, np.linspace(1, 366, 13))) plt.xticks(np.linspace(1, 366, 13)) plt.setp(ax.get_xmajorticklabels(), visible=False) ax.xaxis.set_minor_locator(ticker.FixedLocator(xlocations)) ax.xaxis.set_minor_formatter(ticker.FixedFormatter(xlabels)) plt.xlim([1, 366]) # Setup y-ticks and plot them plt.yticks(np.arange(ymin, ymax + 2, 2), map(str, np.arange(ymin, ymax + 2, 2)), fontsize=13) plt.ylim([ymin, ymax]) # Adjust ytick label position for tick in ax.yaxis.get_major_ticks(): tick.set_pad(4) # Adjust xtick label position for tick in ax.xaxis.get_minor_ticks(): tick.set_pad(0) # Add all the misc info text to the figure def it_annotate(text, infotext, it_offset_num): it_xpos = 0 it_ypos = 0 it_offset_xbase = 1 it_offset_ybase = 1.25 it_offset_ysep = 7 it_pos_unit = 'axes fraction' it_textcoords = 'offset points' if infotext == 'top': it_ypos = 1 it_offset_ybase = it_offset_ybase * -1 - 5.25 it_offset_ysep = it_offset_ysep * -1 it_xy = (it_xpos, it_ypos) xytext = (it_offset_xbase, it_offset_ybase + it_offset_num * it_offset_ysep) ax.annotate(text, fontsize=7.0, color=FG_COLOR, xy=it_xy, xytext=xytext, xycoords=it_pos_unit, textcoords=it_textcoords, ha='left') it_annotate(r'\textbf{DATA:} NSIDC Sea Ice Index, Version 2 (G02135)', infotext=infotext, it_offset_num=2) it_annotate(r'\textbf{CSV:} ' 'ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/', infotext=infotext, it_offset_num=1) it_annotate(r'\textbf{GRAPHIC:} Emma M (GitHub: @emmatoday)', infotext=infotext, it_offset_num=0) ax.annotate(r'(For non-bold years, more recent years are more purple)', fontsize=9, color=FG_COLOR, backgroundcolor=BG_COLOR, xy=(0.5, 0.065), xycoords='figure fraction', ha='center') ax.annotate(r'Updated %s' % (iso_date), fontsize=9, color=FG_COLOR, backgroundcolor=BG_COLOR, xy=(0.5, 0.03), xycoords='figure fraction', ha='center') fig.suptitle(suptitle, fontsize=24, color=FG_COLOR, y=0.965) if light_style: output_filebase = '{0}_{1}_light'.format(filebase, iso_date) else: output_filebase = '{0}_{1}_dark'.format(filebase, iso_date) if pdf: pdf_filename = output_filebase + '.pdf' plt.savefig(os.path.join(OUTPUT_PATH, pdf_filename), dpi=900) print('\n' 'PDF Figure ({0}) plotted!'.format(pdf_filename)) if png: png_filename = output_filebase + '.png' plt.savefig(os.path.join(OUTPUT_PATH, png_filename), dpi=900) print('\n' 'PNG Figure ({0}) plotted!'.format(png_filename)) def main(): """ Main function that is called when script is executed from the CLI. """ now = dt.datetime.now() cur_year = str(now.year) # Prepare and load the data files downloading and updating as necessary sea_ice_indexes = prep_data_files() sea_ice_indexes['n'] = sea_ice_indexes['n'][['N Extent', 'Date']] gbl_seaice = pd.merge(left=sea_ice_indexes['s'], right=sea_ice_indexes['n'], on='Date') gbl_seaice.drop(['Missing', 'Source Data'], axis=1, inplace=True) # Interpolate to fill in missing data in older years gbl_seaice.interpolate(inplace=True) # Add N and S to get global total ice extent gbl_seaice['Total Extent'] = \ gbl_seaice['S Extent'] + gbl_seaice['N Extent'] # Set the index of the data to be the day of year gbl_seaice.index = gbl_seaice['Day of Year'] # Set the index type to a a datetime gbl_seaice.index = gbl_seaice.index.astype(dt.datetime) n_seaice = gbl_seaice.drop(['Day', 'Date', 'Month', 'Total Extent', 'S Extent'], axis=1) s_seaice = gbl_seaice.drop(['Day', 'Date', 'Month', 'Total Extent', 'N Extent'], axis=1) # Drop columns we don't need anymore gbl_seaice.drop(['Day', 'Date', 'Month', 'S Extent', 'N Extent'], axis=1, inplace=True) # Set titles gt = r'\textbf{NSIDC Global Sea Ice Extent (1979-%s)}' % cur_year nt = r'\textbf{NSIDC Arctic Sea Ice Extent (1979-%s)}' % cur_year st = r'\textbf{NSIDC Antarctic Sea Ice Extent (1979-%s)}' % cur_year # Set column names gc = 'Total Extent' nc = 'N Extent' sc = 'S Extent' # Set filename bases gf = 'global_sea_ice' nf = 'arctic_sea_ice' sf = 'antarctic_sea_ice' # Plot both the dark and light versions of the graphs plot(gbl_seaice, column=gc, suptitle=gt, filebase=gf, light_style=True, png=True, infotext='top') plot(gbl_seaice, column=gc, suptitle=gt, filebase=gf, light_style=False, png=True, infotext='top') plot(n_seaice, column=nc, suptitle=nt, filebase=nf, light_style=True, png=True, ymin=0, ymax=18, legend_loc='upper right') plot(n_seaice, column=nc, suptitle=nt, filebase=nf, light_style=False, png=True, ymin=0, ymax=18, legend_loc='upper right') plot(s_seaice, column=sc, suptitle=st, filebase=sf, light_style=True, png=True, ymin=0, ymax=22, infotext='top') plot(s_seaice, column=sc, suptitle=st, filebase=sf, light_style=False, png=True, ymin=0, ymax=22, infotext='top') # Gets CLI arguments and sets up logging to stderr if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('-v', '--verbose', action="count", dest="verbose", default=2, help="Increase the verbosity. " "Use twice for extra effect") parser.add_argument('-q', '--quiet', action="count", dest="quiet", default=0, help="Decrease the verbosity. " "Use twice for extra effect") args = parser.parse_args() # Set up clean logging to stderr log_levels = [logging.CRITICAL, logging.ERROR, logging.WARNING, logging.INFO, logging.DEBUG] args.verbose = min(args.verbose - args.quiet, len(log_levels) - 1) args.verbose = max(args.verbose, 0) logging.basicConfig(level=log_levels[args.verbose], format='%(levelname)s: %(message)s') # Call main function main()
mit
dennissergeev/classcode
lib/cloudsat/cloudsat_tool.py
1
14059
""" modified 2012/11/24 to add cast for LayerTop modified 2014/11/07 temporally remove "__main__" add I/O for radar file add I/O for lidar file combine readrain.py combine read_ecmwf.py modified 2014/11/08 rename as cloudsat_tool add monotonic option in get_geo fix bugs """ import datetime import dateutil.tz as tz import numpy as np import h5py ## used only in __main__ # import matplotlib.pyplot as plt Tc=273.15 Pa2hPa=1.e2 m2km=1.e3 def convert_field(void_field): """ convert a numpy array of tuples into a regular numpy array of the same shape and dtype """ save_shape=void_field.shape flat_test=void_field.flat out_flat=np.empty(len(flat_test),dtype=flat_test[0][0].dtype) for index,item in enumerate(flat_test): out_flat[index]=item[0] out=out_flat.reshape(save_shape) return out def get_geo(hdfname, monotonic_id=1): """given the name of any hdf file from the Cloudsat data archive return lat,lon,time_vals,prof_times,dem_elevation for the cloudsat orbital swath usage: lat,lon,height,time_vals,prof_times,dem_elevation=get_geo(hdffile) parameters: input: hdfname: string with name of hdf file from http://www.cloudsat.cira.colostate.edu/dataSpecs.php monotonic_id: make the longitude monotonic (=1) or not (~=1) output: lat -- profile latitude in degrees east (1-D vector) lon -- profile longitude in degrees north (1-D vector) time_vals -- profile times in UTC (1D vector) prof_times -- profile times in seconds since beginning of orbit (1D vector) dem_elevation -- surface elevation in meters """ with h5py.File(hdfname,'r') as f: root_name=f.keys()[0] variable_names=['Longitude','Latitude','Profile_time','DEM_elevation'] var_dict={} for var_name in variable_names: var_dict[var_name]=convert_field(f[root_name]['Geolocation Fields'][var_name][...]) tai_start=f[root_name]['Geolocation Fields']['TAI_start'][0][0] # # <-------- Added on 2014/11/08 # # ===================================================================== # if monotonic_id==1: lon=var_dict['Longitude'][:]; for id in range(0, len(lon)-1): if lon[id+1] > lon[id]: lon[id+1] = lon[id+1]-360 lonmin=np.amin(lon) # # basemap requires lons in the range -360 - 720 degrees # if lonmin < -360.: lon[:]=lon[:] + 360. var_dict['Longitude']=lon # ===================================================================== # # #tai_start is the number of seconds since Jan 1, 1993 that the orbit #began taiDelta=datetime.timedelta(seconds=tai_start) taiDayOne=datetime.datetime(1993,1,1,tzinfo=tz.tzutc()) #this is the start time of the orbit in seconds since Jan 1, 1993 orbitStart=taiDayOne + taiDelta time_vals=[] #now loop throught he radar profile times and convert them to #python datetime objects in utc for the_time in var_dict['Profile_time']: date_time=orbitStart + datetime.timedelta(seconds=float(the_time)) time_vals.append(date_time) var_dict['date_day']=np.array(time_vals) neg_values=var_dict['DEM_elevation'] < 0 var_dict['DEM_elevation'][neg_values]=0 # # return a list with the five variables # variable_names=['Latitude','Longitude','date_day','Profile_time','DEM_elevation'] out_list=[var_dict[varname] for varname in variable_names] return out_list def read_radar(hdfname, maskid=1,minmax=None): """ ====================================================================== I/O functions for CloudSat. 2B-GEOPROF radar file ---------------------------------------------------------------------- height, reflect = read_radar(hdfname) ---------------------------------------------------------------------- Input: hdfname: filename maskid: do not mask (=0), mask as np.nan (=1), mask as np.mask class (=2) for bad values. Output: reflect: radar reflectance, dbZ height: height, km ====================================================================== """ with h5py.File(hdfname, 'r') as obj: height=obj['2B-GEOPROF/Geolocation Fields/Height'].value.astype(np.float) height=height/m2km reflect=obj['2B-GEOPROF/Data Fields/Radar_Reflectivity'].value.astype(np.float) ref_scale=obj['2B-GEOPROF/Data Fields/Radar_Reflectivity'].attrs['factor'] ref_offset=obj['2B-GEOPROF/Data Fields/Radar_Reflectivity'].attrs['offset'] reflect=(reflect-ref_offset)/ref_scale if minmax is None: minmax=[-5,20] ref_id=np.logical_or(reflect < minmax[0], reflect > minmax[1]) if maskid==1: reflect[ref_id]=np.nan if maskid==2: reflect=np.ma.masked_where(ref_id, reflect) return height, reflect def read_lidar(hdfname, maskid=1): """ ====================================================================== I/O functions for CloudSat. 2B-GEOPROF-LIDAR_GRANULE lidar file ---------------------------------------------------------------------- CFrac, LayerTop, LayerBase = read_lidar(hdfname) ---------------------------------------------------------------------- Input: hdfname: filename maskid: do not mask (=0), mask as np.nan (=1), mask as np.mask class (=2) for bad values. Output: CFrac: cloud fraction, % LayerTop: lider cloud top height, km LayerBase: lider cloud base height, km ====================================================================== """ with h5py.File(hdfname, 'r') as obj: layerTop=obj['2B-GEOPROF-LIDAR/Data Fields/LayerTop'].value.astype(np.float) layerBase=obj['2B-GEOPROF-LIDAR/Data Fields/LayerBase'].value.astype(np.float) CFrac=obj['2B-GEOPROF-LIDAR/Data Fields/CloudFraction'].value.astype(np.float) layerTop=layerTop/m2km layerBase=layerBase/m2km if maskid == 1: layerTop[layerTop < 0]=np.nan layerTop[layerBase < 0]=np.nan CFrac[CFrac < 0]=np.nan if maskid == 2: layerTop=np.ma.masked_where(layerTop == 0, layerTop) layerBase=np.ma.masked_where(layerBase < 0, layerBase) CFrac=np.ma.masked_where(CFrac < 0, CFrac) return CFrac, layerTop, layerBase def read_ecmwf(hdfname, maskid=1): """ ====================================================================== I/O functions for CloudSat. ECMWF-AUX file ---------------------------------------------------------------------- P, SLP, T, T2m, SKT, q, O3 = read_ecmwf(hdfname) ---------------------------------------------------------------------- Input: hdfname: filename maskid: do not mask (=0), mask as np.nan (=1), mask as np.mask class (=2) for bad values. Output: P: Pressure, hPa, 2-D array SLP: Sea level pressure, T: Temperature, degC, 2-D array T2m: Temperature on 2m above surface, degC, 1-D array SKT: Surface Skin Temperature, degC, 1-D array q: Specific Humidity, kg/kg, 2-D array O3: Ozone mixing ratio, kg/kg, 2-D array ====================================================================== """ with h5py.File(hdfname, 'r') as obj: P=obj['ECMWF-AUX/Data Fields/Pressure'] SLP=obj['ECMWF-AUX/Data Fields/Surface_pressure'] T=obj['ECMWF-AUX/Data Fields/Temperature'] T2m=obj['ECMWF-AUX/Data Fields/Temperature_2m'] SKT=obj['ECMWF-AUX/Data Fields/Skin_temperature'] q=obj['ECMWF-AUX/Data Fields/Specific_humidity'] O3=obj['ECMWF-AUX/Data Fields/Ozone'] var_list=[P,SLP,T,T2m,SKT,q,O3] missing_vals=[item.attrs['missing'] for item in var_list] var_list=[item.value for item in var_list] mask_plus_var=zip(missing_vals,var_list) def nan_mask(mask_val,var): var[var == mask_val] = np.nan return var def ma_mask(mask_val,var): var=np.ma.masked_where(var == mask_val, var) return var if maskid == 1: out_vars=[nan_mask(mask_val,var) for mask_val,var in mask_plus_var] if maskid == 2: out_vars=[ma_mask(mask_val,var) for mask_val,var in mask_plus_var] var_list=[item.astype(np.float) for item in out_vars] P,SLP,T,T2m,SKT,q,O3=var_list P=P/Pa2hPa SLP=SLP/Pa2hPa T=T- Tc T2m=T2m- Tc SKT=SKT- Tc return P,SLP,T,T2m,SKT,q,O3 def read_rain(hdfname, maskid=1): """ ====================================================================== I/O functions for CloudSat. CS_2C-RAIN-PROFILE file ---------------------------------------------------------------------- rain, precli, precice, clw = read_ecmwf(hdfname) ---------------------------------------------------------------------- Input: hdfname: filename maskid: do not mask (=0), mask as np.nan (=1), mask as np.mask class (=2) for bad values. Output: rain: Rain rate, mm/hr, 2-D array precli: Liquid precipitation water content, g/m^3, 2-D array precice: Ice precipitation water content, g/m^3, 2-D array clw: Cloud liquid water content, degC, g/m^3 2-D array ====================================================================== """ with h5py.File(hdfname, 'r') as obj: rainRAW=obj['2C-RAIN-PROFILE/Data Fields/rain_rate'].value.astype(np.float) rain_factor=obj['2C-RAIN-PROFILE/Data Fields/rain_rate'].attrs['factor'] rain_missing=obj['2C-RAIN-PROFILE/Data Fields/rain_rate'].attrs['missing'] rain=rainRAW*rain_factor precliRAW=obj['2C-RAIN-PROFILE/Data Fields/precip_liquid_water'].value.astype(np.float) precli_factor=obj['2C-RAIN-PROFILE/Data Fields/precip_liquid_water'].attrs['factor'] precli_missing=obj['2C-RAIN-PROFILE/Data Fields/precip_liquid_water'].attrs['missing'] precli=precliRAW*precli_factor preciceRAW=obj['2C-RAIN-PROFILE/Data Fields/precip_ice_water'].value.astype(np.float) precice_factor=obj['2C-RAIN-PROFILE/Data Fields/precip_ice_water'].attrs['factor'] precice_missing=obj['2C-RAIN-PROFILE/Data Fields/precip_ice_water'].attrs['missing'] precice=precliRAW*precli_factor clwRAW=obj['2C-RAIN-PROFILE/Data Fields/cloud_liquid_water'].value.astype(np.float) clw_factor=obj['2C-RAIN-PROFILE/Data Fields/cloud_liquid_water'].attrs['factor'] clw_missing=obj['2C-RAIN-PROFILE/Data Fields/cloud_liquid_water'].attrs['missing'] clw=clwRAW*clw_factor if maskid == 1: rain[rainRAW == rain_missing]=np.nan precli[precliRAW == precli_missing]=np.nan precice[preciceRAW == precice_missing]=np.nan clw[clwRAW == clw_missing]=np.nan if maskid == 2: rain=np.ma.masked_where(rainRAW == rain_missing, rain) precli=np.ma.masked_where(precliRAW == precli_missing, precli) precice=np.ma.masked_where(preciceRAW == precice_missing, precice) clw=np.ma.masked_where(clwRAW == clw_missing, clw) return rain, precli, precice, clw #if __name__=="__main__": #this flag makes sure the data file can't be overwritten #radar reflectivity data see #http://www.cloudsat.cira.colostate.edu/dataSpecs.php?prodid=9 # radar_file='2010247105814_23156_CS_2B-GEOPROF_GRANULE_P_R04_E03.h5' # lat,lon,date_day,prof_seconds,dem_elevation=get_geo(radar_file) # lidar_file='2010247105814_23156_CS_2B-GEOPROF-LIDAR_GRANULE_P2_R04_E03.h5' ## # ## # height values stored as an SD dataset ## # # with h5py.File(radar_file,'r') as f: # height=f['2B-GEOPROF']['Geolocation Fields']['Height'].value # height=height.astype(np.float) # refl_vals=f['2B-GEOPROF']['Data Fields']['Radar_Reflectivity'].value # refl_vals=refl_vals.astype(np.float) # refl_scale=(f['2B-GEOPROF']['Swath Attributes']['Radar_Reflectivity.factor'].value)[0][0] # refl_vals=refl_vals/refl_scale # with h5py.File(lidar_file,'r') as f: # layerTop=f['2B-GEOPROF-LIDAR/Data Fields/LayerTop'].value # layerTop=layerTop.astype(np.float) # layerTop[layerTop < 0]=np.nan # plt.close('all') # fig1=plt.figure(1) # fig1.clf() # axis1=fig1.add_subplot(1,1,1) # start=21000 # stop=22000 # start=5000 # stop=6000 # # subset the array # # part_refl=refl_vals[start:stop,:] # # mask out the uninteresting reflectivities # # hit=np.logical_or(part_refl < -5.,part_refl > 20) # refl_masked=np.ma.masked_where(part_refl,hit) # # convert height to km # # im=axis1.pcolormesh(prof_seconds[start:stop],height[0,:]/1.e3,refl_masked.T) # axis1.set_xlabel('time after orbit start (seconds)') # axis1.set_ylabel('height (km)') # start,stop=[item.strftime('%Y-%m-%d %H:%M:%S') for item in (date_day[start],date_day[stop])] # axis1.set_title('{} to {}'.format(start,stop)) # axis1.set_ylim([0,10]) # cb=fig1.colorbar(im) # cb.set_label('reflectivity (dbZ)') # fig1.savefig('reflectivity.png') # fig2=plt.figure(2) # axis2=fig2.add_subplot(1,1,1) # axis2.plot(prof_seconds,layerTop[:,0]/1.e3,'b') # axis2.plot(prof_seconds,dem_elevation/1.e3,'r') # axis2.set_xlabel('time after orbit start (seconds)') # axis2.set_ylabel('height (km)') # axis2.set_title('lidar cloud top (blue) and dem surface elevation (red)') # fig2.savefig('lidar_height.png') # plt.show()
cc0-1.0
spallavolu/scikit-learn
examples/ensemble/plot_adaboost_regression.py
311
1529
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) regr_1.fit(X, y) regr_2.fit(X, y) # Predict y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
gfyoung/pandas
pandas/tests/frame/methods/test_reindex_like.py
8
1187
import numpy as np import pytest from pandas import DataFrame import pandas._testing as tm class TestDataFrameReindexLike: def test_reindex_like(self, float_frame): other = float_frame.reindex(index=float_frame.index[:10], columns=["C", "B"]) tm.assert_frame_equal(other, float_frame.reindex_like(other)) @pytest.mark.parametrize( "method,expected_values", [ ("nearest", [0, 1, 1, 2]), ("pad", [np.nan, 0, 1, 1]), ("backfill", [0, 1, 2, 2]), ], ) def test_reindex_like_methods(self, method, expected_values): df = DataFrame({"x": list(range(5))}) result = df.reindex_like(df, method=method, tolerance=0) tm.assert_frame_equal(df, result) result = df.reindex_like(df, method=method, tolerance=[0, 0, 0, 0]) tm.assert_frame_equal(df, result) def test_reindex_like_subclass(self): # https://github.com/pandas-dev/pandas/issues/31925 class MyDataFrame(DataFrame): pass expected = DataFrame() df = MyDataFrame() result = df.reindex_like(expected) tm.assert_frame_equal(result, expected)
bsd-3-clause
chrisjsewell/PyGauss
pygauss/molecule.py
1
78698
# -*- coding: utf-8 -*- """ Created on Fri May 01 21:24:31 2015 @author: chris """ import os from io import BytesIO import PIL from PIL import Image, ImageChops import copy import warnings from math import degrees, atan2, sqrt, acos import numpy as np from scipy.signal import argrelextrema import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import ColorConverter from matplotlib.offsetbox import OffsetImage, AnnotationBbox with warnings.catch_warnings(): warnings.simplefilter("ignore") from mpl_toolkits.mplot3d import Axes3D import pandas as pd from IPython.display import Image as ipy_Image from .chemlab_patch.io.handlers._cclib import Handler from chemlab.graphics.qtviewer import QtViewer #have to add method to instances of chemlab.graphics.camera.Camera #from chemlab.graphics.transformations import rotation_matrix from .transformations import rotation_matrix def orbit_z(self, angle): # Subtract pivot point self.position -= self.pivot # Rotate rot = rotation_matrix(-angle, self.c)[:3,:3] self.position = np.dot(rot, self.position) # Add again the pivot point self.position += self.pivot self.a = np.dot(rot, self.a) self.b = np.dot(rot, self.b) self.c = np.dot(rot, self.c) from chemlab.graphics.camera import Camera Camera.orbit_z = orbit_z from .chemlab_patch.graphics.renderers.atom import AtomRenderer from .chemlab_patch.graphics.renderers.ballandstick import BallAndStickRenderer from .chemlab_patch.graphics.renderers.line import LineRenderer from .chemlab_patch.graphics.renderers.triangles import TriangleRenderer from chemlab.graphics.renderers.wireframe import WireframeRenderer #from chemlab.graphics.postprocessing import SSAOEffect # Screen Space Ambient Occlusion from chemlab.utils import cartesian from cclib.parser.utils import convertor from chemlab.graphics.colors import get as str_to_colour from chemlab.qc import molecular_orbital #improvement to function #TODO not making this a depedency until it works from chemlab.qc.pgbf import pgbf try: import numexpr as ne def __call__(self,x,y,z): "Compute the amplitude of the PGBF at point x,y,z" I,J,K = self.powers dx,dy,dz = x-self.origin[0],y-self.origin[1],z-self.origin[2] n = self.norm e = self.exponent return ne.evaluate( 'n*(dx**I)*(dy**J)*(dz**K) * exp(-e*(dx*dx + dy*dy + dz*dz))') pgbf.__call__ = __call__ except ImportError: pass #instead of chemview MolecularViewer to add defined colouring #also ignore; 'FutureWarning: IPython widgets are experimental and may change in the future.' with warnings.catch_warnings(): warnings.simplefilter("ignore") from .chemview_patch.viewer import MolecularViewer from .utils import circumcenter from .file_io import Folder from .isosurface import get_isosurface class Molecule(object): def __init__(self, folderpath='', init_fname=False, opt_fname=False, freq_fname=False, nbo_fname=False, pes_fname=False, fail_silently=False, atom_groups={}, alignto=[], server=None, username=None, passwrd=None, folder_obj=None): """a class to analyse gaussian input/output of a single molecular geometry Parameters ---------- folderpath : str the folder path init_fname : str the intial geometry (.com) file opt_fname : str or list of str the optimisation log file freq_fname : str the frequency analysis log file nbo_fname : str the population analysis logfile pes_fname : str the potential energy scan logfile fail_silently : bool whether to raise an error if a file read fails (if True can use get_init_read_errors to see errors) atom_groups: {str:[int, ...]} groups of atoms that can be selected as a subset alignto: [int, int, int] the atom numbers to align the geometry to Notes ----- any of the file names can have wildcards (e.g. 'filename*.log) in them, as long as this resolves to a single path in the directory NB: nbo population analysis must be run with the GFInput flag to ensure data is output to the log file """ if folder_obj: self._folder = folder_obj else: self._folder = Folder(folderpath, server, username, passwrd) self._init_data = None self._prev_opt_data = [] self._opt_data = None self._freq_data = None self._nbo_data = None self._pes_data = [] self._alignment_atom_indxs = () self._t_matrix = None if alignto: self.set_alignment_atoms(*alignto) self._atom_groups = atom_groups parts=[['init', init_fname, self.add_initialgeom], ['opt', opt_fname, self.add_optimisation], ['freq', freq_fname, self.add_frequency], ['nbo', nbo_fname, self.add_nbo_analysis], ['pes', pes_fname, self.add_pes_analysis]] self._init_read_errors = [] for typ, fname, method in parts: if fname: if fail_silently: try: method(fname) except Exception, e: self._init_read_errors.append([typ, fname, str(e)]) else: method(fname) def get_folder(self): """ return the Folder instance """ return self._folder def get_atom_group(self, group): """return list of atoms in group """ if group is None: return group if type(group) is str: if not self._atom_groups.has_key(group): raise ValueError('the molecule does not have an; {0}, atom group'.format(group)) return self._atom_groups[group] atoms = [] for i in group: if type(i) is str: if not self._atom_groups.has_key(i): raise ValueError('the molecule does not have an; {0}, atom group'.format(i)) atoms.extend(self._atom_groups[i]) elif type(i) is int: atoms.append(i) else: raise ValueError('atom must be an integer') return list(set(atoms)) def get_init_read_errors(self): """ get read errors, recorded if fail_silently was set to True on initialise """ return self._init_read_errors[:] def __repr__(self): return '<PyGauss Molecule>' def __deepcopy__(self, memo): if not self._folder.islocal(): warnings.warn('Cannot deepcopy non-local folder object (reverting to user home path)') self._folder = Folder(os.path.expanduser('~')) cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k, v in self.__dict__.items(): setattr(result, k, copy.deepcopy(v, memo)) return result def _get_data(self, file_name, ftype='gaussian'): if not self._folder.active(): with self._folder as folder: with folder.read_file(file_name) as fd: data = Handler(fd, ftype) else: with self._folder.read_file(file_name) as fd: data = Handler(fd, ftype) return data def add_initialgeom(self, file_name): self._init_data = self._get_data(file_name, ftype='gausscom') def add_optimisation(self, file_name): if type(file_name) is list or type(file_name) is tuple: self._opt_data = self._get_data(file_name[-1]) self._prev_opt_data = [] for f in file_name[:-1]: self._prev_opt_data.append(self._get_data(f)) else: self._opt_data = self._get_data(file_name) def add_frequency(self, file_name): self._freq_data = self._get_data(file_name) def add_nbo_analysis(self, file_name): self._nbo_data = self._get_data(file_name) def add_pes_analysis(self, file_names): if type(file_names) is str: file_names = [file_names] self._pes_data = [self._get_data(fname) for fname in file_names] def _read_data(self, ftype, dtype): """ read data """ if not getattr(self, ftype): raise ValueError( '{0} has not been set for this molecule'.format(ftype)) return getattr(self, ftype).read(dtype) def get_basis_descript(self): return self._read_data('_opt_data', 'basis_descript') def get_basis_funcs(self): return self._read_data('_opt_data', 'nbasis') def get_run_error(self, rtype='opt'): """True if there were errors in the computation, else False """ return getattr(self, '_{0}_data'.format(rtype)).read('run_error') def is_optimised(self): """ was the geometry optimised """ return self._read_data('_opt_data', 'optdone') def get_opt_energy(self, units='eV', final=True, zpe_correct=False): """ return the SCF optimisation energy(s) Parameters ---------- units : str the unit type of the energy final : bool return only the final optimised energy if True, else for all steps zpe_correct : bool apply zero-point energy correction (found in frequency log) to final optimised energy Returns ------- energy : float or list of floats dependant on final """ if not self._opt_data: return np.nan energies = self._read_data('_opt_data', 'scfenergies') if energies.shape[0] == 0: return np.nan if final else energies if not units == 'eV': energies = convertor(energies, 'eV', units) if zpe_correct: energies[-1] += self.get_zeropt_energy(units=units) return energies[-1] if final else energies def get_zeropt_energy(self, units='eV'): """ return the zero-point energy correction Parameters ---------- units : str the unit type of the energy Returns ------- energy : float zero-point energy correction """ if not self._freq_data: return np.nan energy = self._read_data('_freq_data', 'zeropt_energy') if not units == 'eV': energy = convertor(energy, 'eV', units) return energy def plot_opt_energy(self, units='eV', linecolor='blue', ax=None): """ plot SCF optimisation energy Returns ------- data : matplotlib.axes.Axes plotted optimisation data """ energies = self._read_data('_opt_data', 'scfenergies') ylabel = 'Energy ({0})'.format(units) xlabel = 'Optimisation Step' for data in reversed(self._prev_opt_data): energies = np.concatenate([data.read('scfenergies'), energies]) if not units == 'eV': energies = convertor(energies, 'eV', units) if not ax: f, ax = plt.subplots() ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.grid(True) ax.plot(energies, color=linecolor) return ax def is_conformer(self, cutoff=0.): """False if any frequencies in the frequency analysis were negative""" imgaginary_freqs = self._read_data('_freq_data', 'vibfreqs') < cutoff return not imgaginary_freqs.any() def get_freq_analysis(self): """return frequency analysis Returns ------- data : pandas.DataFrame frequency data """ frequencies = self._read_data('_freq_data', 'vibfreqs') irs = self._read_data('_freq_data', 'vibirs') return pd.DataFrame(zip(frequencies, irs), columns=['Frequency ($cm^{-1}$)', 'IR Intensity ($km/mol$)']) def plot_freq_analysis(self, color='blue', alpha=1, marker_size=20, ax=None): """plot frequency analysis Returns ------- data : matplotlib.axes.Axes plotted frequency data """ df = self.get_freq_analysis() if not ax: fig, ax = plt.subplots() ax.grid(True) ax.set_xlabel('Frequency ($cm^{-1}$)') ax.set_ylabel('IR Intensity ($km/mol$)') ax.bar(df['Frequency ($cm^{-1}$)'], df['IR Intensity ($km/mol$)'], align='center', width=30, linewidth=0, alpha=alpha,color=color) ax.scatter(df['Frequency ($cm^{-1}$)'], df['IR Intensity ($km/mol$)'] , marker='o',alpha=alpha,color=color, s=marker_size) ax.set_ybound(-10) return ax def set_alignment_atoms(self, idx1, idx2, idx3): assert type(idx1) is int and type(idx2) is int and type(idx3) is int self._alignment_atom_indxs = (idx1, idx2, idx3) def remove_alignment_atoms(self): self._alignment_atom_indxs = () def _midpoint_coordinates(self, coord_list): return np.mean(np.array(coord_list), axis=0) def _midpoint_atoms(self, molecule, atom_ids): return np.mean(molecule.r_array[atom_ids], axis=0) def _create_transform_matrix(self, c1, c2, c3): """ A function to take three coordinates and creates a transformation matrix that aligns their plane with the standard axes there centre point will be at (0, 0, 0) c1 will be aligned to the x-axis the normal to the plane will be aligned to the z-axis """ # find midpoint of coords c0 = circumcenter([c1, c2, c3]) #c0 = self._midpoint_coordinates([c1, c2, c3]) #translate c0 to the origin [0,0,0] and pick two vectors v1=c1-c0; v2=c2-c0; v3=c3-c0 #now find the orthonormal basis set # a plane is a*x+b*y+c*z+d=0 where[a,b,c] is the normal and d is 0 # (since the origin now intercepts the plane). Thus, we calculate; normal = np.cross(v2,v3) #a, b, c = normal vf3 = normal/np.linalg.norm(normal) vf1 = v1/np.linalg.norm(v1) vf2 = np.cross(vf3, vf1) vf2 = vf2/np.linalg.norm(vf2) #create the translation matrix that moves the new basis to the origin ident=np.vstack((np.identity(3), np.zeros(3))) translate_matrix = np.hstack((ident, np.array(np.append(-c0, 1))[np.newaxis].T)) #create the rotation matrix that rotates the new basis onto the standard basis rotation_matrix = np.hstack((np.array([vf1, vf2, vf3, np.zeros(3)]), np.array(np.append([0, 0, 0], 1))[np.newaxis].T)) # translate before rotating transform_matrix = np.dot(rotation_matrix, translate_matrix) return transform_matrix def _apply_transfom_matrix(self, transform_matrix, coords): """apply transform matrix calculated in _create_transform_matrix """ if transform_matrix is None: return coords t_coords = [np.dot(transform_matrix, np.array(np.append(coord, 1))[np.newaxis].T)[:-1].flatten() for coord in coords] return np.array(t_coords) def _create_molecule(self, optimised=True, opt_step=False, scan_step=False, gbonds=True, data=None, alignment_atoms=None): """create molecule """ if not optimised: molecule = self._read_data('_init_data', 'molecule') else: indata = data if data else self._opt_data if not type(opt_step) is bool: molecule = indata.read('molecule', step=opt_step) elif not type(scan_step) is bool: molecule = indata.read('molecule', scan=scan_step) else: molecule = indata.read('molecule') if gbonds: molecule.guess_bonds() t_matrix = None if alignment_atoms: a, b, c = alignment_atoms a0, b0, c0 = molecule.r_array[[a-1,b-1,c-1]] t_matrix = self._create_transform_matrix(a0,b0,c0) elif self._alignment_atom_indxs: a, b, c = self._alignment_atom_indxs a0, b0, c0 = molecule.r_array[[a-1,b-1,c-1]] t_matrix = self._create_transform_matrix(a0,b0,c0) molecule.r_array = self._apply_transfom_matrix(t_matrix, molecule.r_array) self._t_matrix = t_matrix return molecule #instead of from chemlab.notebook import display_molecule to add ball_stick def _view_molecule(self, molecule, represent='vdw', colorlist=[]): """active representationion of molecule using chemview """ allowed_rep = ['none', 'wire', 'vdw', 'ball_stick'] if represent not in allowed_rep: raise ValueError( 'unknown molecule representation: {0}, must be in {1}'.format( represent, allowed_rep)) topology = { 'atom_types': molecule.type_array, 'bonds': molecule.bonds } mv = MolecularViewer(molecule.r_array, topology) if molecule.n_bonds != 0: if represent=='ball_stick': mv.ball_and_sticks(colorlist=colorlist) elif represent=='wire': mv.points(size=0.15, colorlist=colorlist) mv.lines(colorlist=colorlist) else: raise NotImplementedError('none and vdw not implemented in active view') else: mv.points() return mv def _trim_image(self, im): """ a simple solution to trim whitespace on the image 1. It gets the border colour from the top left pixel, using getpixel, so you don't need to pass the colour. 2. Subtracts a scalar from the differenced image, this is a quick way of saturating all values under 100, 100, 100 to zero. So is a neat way to remove any 'wobble' resulting from compression. """ bg = Image.new(im.mode, im.size, im.getpixel((0,0))) diff = ImageChops.difference(im, bg) diff = ImageChops.add(diff, diff, 2.0, -100) bbox = diff.getbbox() if bbox: return im.crop(bbox) def _image_molecule(self, molecule, represent='vdw', background='white', colorlist=[], transparent=False, rotation=[0., 0., 0.], width=300, height=300, zoom=1., lines=[], linestyle='impostors', surfaces=[]): """create image of molecule Parameters ---------- molecule : chemlab.core.molecule.Molecule the molecule to image represent : str representation of molecule ('none', 'wire', 'vdw' or 'ball_stick') background : matplotlib.colors background color colorlist : list color override for each of the atoms (if empty colored by atom type) transparent=True : whether atoms should be transparent (based on alpha value) zoom : float zoom level of images width : int width of original images height : int height of original images (although width takes precedent) lines : list lines to add to the image in the form; [start_coord, end_coord, start_color, end_color, width, dashed] surfaces : list surfaces to add to the image in the format; [vertices, normals, colors, transparent, wireframe] Returns ------- image : PIL.Image an image of the system """ allowed_rep = ['none', 'wire', 'vdw', 'ball_stick'] if represent not in allowed_rep: raise ValueError( 'unknown molecule representation: {0}, must be in {1}'.format( represent, allowed_rep)) v = QtViewer() w = v.widget w.background_color = tuple([int(i*255) for i in ColorConverter().to_rgba(background)]) w.initializeGL() if represent=='ball_stick': r = v.add_renderer(BallAndStickRenderer, molecule.r_array, molecule.type_array, molecule.bonds, rgba_array=colorlist, linestyle=linestyle, transparent=transparent) elif represent=='vdw': r = v.add_renderer(AtomRenderer, molecule.r_array, molecule.type_array, rgba_array=colorlist, transparent=transparent) elif represent=='wire': r = v.add_renderer(WireframeRenderer, molecule.r_array, molecule.type_array, molecule.bonds) elif represent=='none': r = None for line in lines: #line = [start_coord, end_coord, start_color, end_color, width, dashed] #for some reason it didn't like unpacking them to named variables v.add_renderer(LineRenderer, [line[0], line[1]], [[str_to_colour(line[2]), str_to_colour(line[3])]], width=line[4], dashed=line[5]) for surface in surfaces: vertices, normals, colors, transparent, wireframe = surface v.add_renderer(TriangleRenderer, vertices, normals, colors, transparent=transparent, wireframe=wireframe) #v.add_post_processing(SSAOEffect) w.camera.autozoom(molecule.r_array*1./zoom) w.camera.orbit_x(rotation[0]*np.pi/180.) w.camera.orbit_y(rotation[1]*np.pi/180.) w.camera.orbit_z(rotation[2]*np.pi/180.) image = w.toimage(width, height) # Cleanup v.clear() del v del w del r return self._trim_image(image) def _concat_images_horizontal(self, images, gap=10, background='white'): """ concatentate one or more PIL images horizontally Parameters ---------- images : PIL.Image list the images to concatenate gap : int the pixel gap between images background : PIL.ImageColor background color (as supported by PIL.ImageColor) """ if len(images) == 1: return images[0] total_width = sum([img.size[0] for img in images]) + len(images)*gap max_height = max([img.size[1] for img in images]) final_img = PIL.Image.new("RGBA", (total_width, max_height), color=background) horizontal_position = 0 for img in images: final_img.paste(img, (horizontal_position, 0)) horizontal_position += img.size[0] + gap return final_img def _concat_images_vertical(self, images, gap=10): """ concatentate one or more PIL images vertically Parameters ---------- images : PIL.Image list the images to concatenate gap : int the pixel gap between images """ if len(images) == 1: return images[0] total_width = sum([img.size[0] for img in images]) max_height = max([img.size[1] for img in images]) + len(images)*gap final_img = PIL.Image.new("RGBA", (total_width, max_height), color='white') vertical_position = 0 for img in images: final_img.paste(img, (0, vertical_position)) vertical_position += img.size[1] + gap return final_img def _color_to_transparent(self, image, color=(255, 255, 255)): """ sets alpha to 0 for specific colour in PIL image Parameters ---------- image : PIL.Image the images to process color : (int, int, int) the RGB (0 to 255) color to set alpha to 0 """ datas = image.getdata() newData = [] for item in datas: if item[0] == color[0] and item[1] == color[1] and item[2] == color[2]: newData.append((color[0], color[1], color[2], 0)) else: newData.append(item) image.putdata(newData) return image def _show_molecule(self, molecule, active=False, represent='vdw', rotations=[[0., 0., 0.]], background='white', colorlist=[], transparent=False, axis_length=0, lines=[], linestyle='impostors', surfaces=[], zoom=1., width=300, height=300, ipyimg=True): """show the molecule Parameters ---------- molecule : chemlab.core.molecule.Molecule the molecule to image active : bool whether the molecule representation should be interactive (ipython notebook only) represent : str representation of molecule ('none', 'wire', 'vdw' or 'ball_stick') background : matplotlib.colors background color colorlist : list color override for each of the atoms (if empty colored by atom type) transparent=True : whether atoms should be transparent (based on alpha value) axis_length :float if non-zero lines will be drawn along each axis to +/- axis_length lines : list lines to add to the image in the form; [start_coord, end_coord, start_color, end_color, width, dashed] surfaces : list surfaces to add to the image in the format; [vertices, normals, colors, transparent, wireframe] zoom : float zoom level of images width : int width of original images height : int height of original images (although width takes precedent) ipyimg : bool whether to return an IPython image, PIL image otherwise Returns ------- mol : IPython.display.Image or PIL.Image an image of the molecule in the format specified by ipyimg or an active representation """ if active: return self._view_molecule(molecule, represent=represent, colorlist=colorlist) else: drawlines=lines[:] if axis_length: if type(axis_length) is list or type(axis_length) is tuple: neg_length, pos_length = axis_length else: neg_length = pos_length = axis_length drawlines.append([(-1*neg_length,0,0), (pos_length,0,0), 'red', 'dark_red', 3, True]) drawlines.append([(0,-1*neg_length,0), (0,pos_length,0), 'light_green', 'dark_green', 3, True]) drawlines.append([(0,0,-1*neg_length), (0,0,pos_length), 'light_blue', 'dark_blue', 3, True]) images = [] for rotation in rotations: images.append(self._image_molecule(molecule, represent=represent, background=background, colorlist=colorlist, rotation=rotation, zoom=zoom, width=width, height=width, lines=drawlines, linestyle=linestyle, transparent=transparent, surfaces=surfaces)) image = self._concat_images_horizontal(images, background=background) del images if ipyimg: b = BytesIO() image.save(b, format='png') return ipy_Image(data=b.getvalue()) else: return image def show_initial(self, gbonds=True, active=False, represent='vdw', rotations=[[0., 0., 0.]], zoom=1., width=300, height=300, axis_length=0, lines=[], background='white', ipyimg=True): """show initial geometry (before optimisation) of molecule coloured by atom type """ molecule = self._create_molecule(optimised=False, gbonds=gbonds) return self._show_molecule(molecule, active=active, background=background, represent=represent, rotations=rotations, zoom=zoom, lines=lines, axis_length=axis_length, ipyimg=ipyimg) def show_optimisation(self, opt_step=False, gbonds=True, active=False, represent='vdw', rotations=[[0., 0., 0.]], zoom=1., width=300, height=300, axis_length=0, lines=[], background='white', ipyimg=True): """show optimised geometry of molecule coloured by atom type """ molecule = self._create_molecule(optimised=True, opt_step=opt_step, gbonds=gbonds) return self._show_molecule(molecule, active=active, background=background, represent=represent, rotations=rotations, zoom=zoom, lines=lines, axis_length=axis_length, width=width, height=height, ipyimg=ipyimg) def _rgb_to_hex(self, rgb): """convert RGB color to hex format""" return int('0x%02x%02x%02x' % rgb[:3], 16) def _get_highlight_colors(self, natoms, atomlists, active=False, alpha=0.7): norm = mpl.colors.Normalize(vmin=1, vmax=len(atomlists)) cmap = cm.jet_r m = cm.ScalarMappable(norm=norm, cmap=cmap) colorlist = [(211, 211, 211, int(255*alpha)) for n in range(natoms)] for n in range(natoms): for group, atomlist in enumerate(atomlists): if n+1 in atomlist: colorlist[n] = m.to_rgba(group+1, bytes=True) break if active: colorlist = [self._rgb_to_hex(col) for col in colorlist] return colorlist def show_highlight_atoms(self, atomlists, transparent=False, alpha=0.7, gbonds=True, active=False, optimised=True, background='white', represent='vdw', rotations=[[0., 0., 0.]], zoom=1., width=300, height=300, axis_length=0, lines=[], ipyimg=True): """show optimised geometry of molecule with certain atoms highlighted """ if optimised: natoms = self._read_data('_opt_data', 'natom') else: natoms = self._read_data('_init_data', 'natom') atomlists=[self.get_atom_group(grp) for grp in atomlists] colorlist = self._get_highlight_colors(natoms, atomlists, active, alpha=alpha) molecule = self._create_molecule(optimised=optimised, gbonds=gbonds) if transparent: linestyle='lines' else: linestyle='impostors' return self._show_molecule(molecule, active=active, transparent=transparent, represent=represent, background=background, rotations=rotations, zoom=zoom, colorlist=colorlist, linestyle=linestyle, lines=lines, axis_length=axis_length, width=width, height=height, ipyimg=ipyimg) def _write_init_file(self, molecule, file_name, descript='', overwrite=False, decimals=8, charge=0, multiplicity=1, folder_obj=None): """ write a template gaussian input file to folder """ if not type(charge) is int or not type(multiplicity) is int: raise ValueError('charge and multiplicity of molecule must be defined') if not folder_obj: folder_obj = self._folder with folder_obj as folder: with folder.write_file(file_name+'_init.com', overwrite) as f: f.write('%chk={0}_init.chk \n'.format(file_name)) f.write('# opt b3lyp/3-21g \n') f.write('\n') f.write('{0} \n'.format(descript)) f.write('\n') f.write('{0} {1} \n'.format(charge, multiplicity)) for t, c in zip(molecule.type_array, molecule.r_array*10.): # nanometers to angstrom x, y, z = c.round(decimals) f.write(' {0}\t{1}\t{2}\t{3} \n'.format(t, x, y, z)) f.write('\n') return True def _array_transformation(self, array, rotations, transpose=[0,0,0]): """ 3D rotation around x-axis, then y-axis, then z-axis, then transposition """ if rotations == [0,0,0]: new = array else: x, y, z = rotations rot_x = rotation_matrix(x*np.pi/180., [1, 0, 0])[:3,:3] rot_y = rotation_matrix(y*np.pi/180., [0, 1, 0])[:3,:3] rot_z = rotation_matrix(z*np.pi/180., [0, 0, 1])[:3,:3] rot = np.dot(rot_z, np.dot(rot_y, rot_x)) new = np.array([np.dot(rot, coord) for coord in array]) new[:,0] += transpose[0] new[:,1] += transpose[1] new[:,2] += transpose[2] return new def combine_molecules(self, other_mol, self_atoms=False, other_atoms=False, self_rotation=[0,0,0], other_rotation=[0,0,0], self_transpose=[0,0,0], other_transpose=[0,0,0], self_opt=True, other_opt=True, charge=None, multiplicity=None, out_name=False, descript='', overwrite=False, active=False, background='white', represent='ball_stick', rotations=[[0., 0., 0.]], zoom=1., width=300, height=300, axis_length=0, ipyimg=True, folder_obj=None): """ transpose in nanometers """ mol = self._create_molecule(optimised=self_opt) if self_atoms: self_atoms = self.get_atom_group(self_atoms) self_indxs = np.array(self_atoms) - 1 mol.r_array = mol.r_array[self_indxs] mol.type_array = mol.type_array[self_indxs] mol.r_array = self._array_transformation(mol.r_array, self_rotation, self_transpose) mol_atoms = [i+1 for i in range(len(mol.type_array))] other = other_mol._create_molecule(optimised=other_opt) if other_atoms: other_atoms = other_mol.get_atom_group(other_atoms) other_indxs = np.array(other_atoms) - 1 other.r_array = other.r_array[other_indxs] other.type_array = other.type_array[other_indxs] other.r_array = self._array_transformation(other.r_array, other_rotation, other_transpose) other_atoms = [i+1+len(mol.type_array) for i in range(len(other.type_array))] mol.r_array = np.concatenate([mol.r_array, other.r_array]) mol.type_array = np.concatenate([mol.type_array, other.type_array]) mol.guess_bonds() if out_name: self._write_init_file(mol, out_name, descript, overwrite, charge=charge, multiplicity=multiplicity, folder_obj=folder_obj) colorlist = self._get_highlight_colors(len(mol.type_array), [mol_atoms, other_atoms], active) return self._show_molecule(mol, active=active, represent=represent, rotations=rotations, zoom=zoom, background=background, colorlist=colorlist, axis_length=axis_length, width=width, height=height, ipyimg=ipyimg, ) def _get_charge_colors(self, relative=False, minval=-1, maxval=1, alpha=None): charges = self._read_data('_nbo_data', 'atomcharges')['natural'] if relative: minval, maxval = (min(charges), max(charges)) norm = mpl.colors.Normalize(vmin=minval, vmax=maxval) cmap = cm.bwr m = cm.ScalarMappable(norm=norm, cmap=cmap) colors=m.to_rgba(charges, alpha=alpha, bytes=True) return colors def show_nbo_charges(self, gbonds=True, active=False, background='white', relative=False, minval=-1, maxval=1, represent='vdw', rotations=[[0., 0., 0.]], zoom=1., width=300, height=300, axis_length=0, lines=[], ipyimg=True): """ show optimised geometry coloured by charge from nbo analysis """ colorlist = self._get_charge_colors(relative, minval, maxval) molecule = self._create_molecule(optimised=True, gbonds=gbonds) return self._show_molecule(molecule, active=active, represent=represent, rotations=rotations, zoom=zoom, background=background, colorlist=colorlist, lines=lines, axis_length=axis_length, width=width, height=height, ipyimg=ipyimg) def get_orbital_count(self): """return number of orbitals """ moenergies = self._read_data('_nbo_data', "moenergies")[0] return int(moenergies.shape[0]) def _find_nearest_above(self, my_array, target): diff = my_array - target mask = np.ma.less_equal(diff, 0) # We need to mask the negative differences and zero # since we are looking for values above if np.all(mask): return None # returns None if target is greater than any value masked_diff = np.ma.masked_array(diff, mask) return masked_diff.argmin() def _find_nearest_below(self, my_array, target): diff = my_array - target mask = np.ma.greater_equal(diff, 0) # We need to mask the positive differences and zero # since we are looking for values above if np.all(mask): return None # returns None if target is lower than any value masked_diff = np.ma.masked_array(diff, mask) return masked_diff.argmax() def get_orbital_homo_lumo(self): """return orbital numbers of homo and lumo """ homo = self._read_data('_nbo_data', 'homos')[-1]+1 lumo = homo + 1 #moenergies = self._read_data('_nbo_data', "moenergies")[0] #homo = self._find_nearest_below(moenergies, 0.) + 1 #lumo = self._find_nearest_above(moenergies, 0.) + 1 return homo, lumo def get_orbital_energies(self, orbitals, eunits='eV'): """the orbital energies for listed orbitals Parameters ---------- orbitals : int or iterable of ints the orbital(s) to return energies for (starting at 1) eunits : str the units of energy Returns ------- moenergies : numpy.array energy for each orbital """ orbitals = np.array(orbitals, ndmin=1, dtype=int) assert np.all(orbitals>0) and np.all(orbitals<=self.get_orbital_count()), ( 'orbitals must be in range 1 to number of orbitals') moenergies = self._read_data('_nbo_data', "moenergies")[0] if not eunits=='eV': moenergies = convertor(moenergies, 'eV', eunits) return moenergies[orbitals-1] def yield_orbital_images(self, orbitals, iso_value=0.02, extents=(2,2,2), transparent=True, alpha=0.5, wireframe=True, background='white', bond_color=(255, 0, 0), antibond_color=(0, 255, 0), resolution=100, gbonds=True, represent='ball_stick', rotations=[[0., 0., 0.]], zoom=1., width=300, height=300, axis_length=0, lines=[], ipyimg=True): """yield orbital images Parameters ---------- orbitals : int or list of ints the orbitals to show (in range 1 to number of orbitals) iso_value : float The value for which the function should be constant. extents : (float, float, float) +/- x,y,z to extend the molecule geometrty when constructing the surface transparent : bool whether iso-surface should be transparent (based on alpha value) alpha : alpha value of iso-surface wireframe : whether iso-surface should be wireframe (or solid) background : matplotlib.colors background color bond_color : color of bonding orbital surface in RGB format antibond_color : color of anti-bonding orbital surface in RGB format resolution : int The number of grid point to use for the surface. An high value will give better quality but lower performance. gbonds : bool guess bonds between atoms (via distance) represent : str representation of molecule ('none', 'wire', 'vdw' or 'ball_stick') zoom : float zoom level of images width : int width of original images height : int height of original images (although width takes precedent) axis_length : float length of x,y,z axes in negative and positive directions lines : [start_coord, end_coord, start_color, end_color, width, dashed] lines to add to image ipyimg : bool whether to return an IPython image, PIL image otherwise Returns ------- mol : IPython.display.Image or PIL.Image an image of the molecule in the format specified by ipyimg """ warnings.warn('Orbitals are currently an experimental feature') orbitals = np.array(orbitals, ndmin=1, dtype=int) assert np.all(orbitals>0) and np.all(orbitals<=self.get_orbital_count()), ( 'orbitals must be in range 1 to number of orbitals') r, g, b = bond_color bond_rgba = (r, g, b, int(255*alpha)) r, g, b = antibond_color antibond_rgba = (r, g, b, int(255*alpha)) #To fix issue with rotations #TODO could probably do this better (no self._t_matrix) alignto = self._alignment_atom_indxs[:] self._alignment_atom_indxs = None r_array = self._create_molecule(optimised=True).r_array self._alignment_atom_indxs = alignto molecule = self._create_molecule(optimised=True, gbonds=gbonds) mocoeffs = self._read_data('_nbo_data', "mocoeffs") gbasis = self._read_data('_nbo_data', "gbasis") for orbital in orbitals: coefficients = mocoeffs[0][orbital-1] f = molecular_orbital(r_array.astype('float32'), coefficients.astype('float32'), gbasis) surfaces = [] b_iso = get_isosurface(r_array, f, iso_value, bond_rgba, resolution=resolution) if b_iso: verts, normals, colors = b_iso verts = self._apply_transfom_matrix(self._t_matrix, verts) normals = self._apply_transfom_matrix(self._t_matrix, normals) surfaces.append([verts, normals, colors, transparent, wireframe]) a_iso = get_isosurface(molecule.r_array, f, -iso_value, antibond_rgba, resolution=resolution) if a_iso: averts, anormals, acolors = a_iso averts = self._apply_transfom_matrix(self._t_matrix, averts) anormals = self._apply_transfom_matrix(self._t_matrix, anormals) surfaces.append([averts, anormals, acolors, transparent,wireframe]) yield self._show_molecule(molecule, represent=represent, background=background, rotations=rotations, zoom=zoom, surfaces=surfaces, transparent=False, lines=lines, axis_length=axis_length, width=width, height=height, ipyimg=ipyimg) def show_active_orbital(self, orbital, iso_value=0.03, alpha=0.5, bond_color=(255, 0, 0), antibond_color=(0, 255, 0), gbonds=True): """get interactive representation of orbital Parameters ---------- orbital : int the orbital to show (in range 1 to number of orbitals) iso_value : float The value for which the function should be constant. alpha : alpha value of iso-surface bond_color : color of bonding orbital surface in RGB format antibond_color : color of anti-bonding orbital surface in RGB format gbonds : bool guess bonds between atoms (via distance) """ orbital = np.array(orbital, ndmin=1, dtype=int) assert np.all(orbital>0) and np.all(orbital<=self.get_orbital_count()), ( 'orbital must be in range 1 to number of orbitals') orbital = orbital[0] r, g, b = bond_color bond_rgba = (r, g, b, int(255*alpha)) r, g, b = antibond_color antibond_rgba = (r, g, b, int(255*alpha)) molecule = self._create_molecule(optimised=True, gbonds=gbonds) mocoeffs = self._read_data('_nbo_data', "mocoeffs") gbasis = self._read_data('_nbo_data', "gbasis") coefficients = mocoeffs[0][orbital-1] f = molecular_orbital(molecule.r_array.astype('float32'), coefficients.astype('float32'), gbasis) mv = MolecularViewer(molecule.r_array, { 'atom_types': molecule.type_array, 'bonds': molecule.bonds }) mv.wireframe() mv.add_isosurface(f, isolevel=iso_value, color=self._rgb_to_hex(bond_rgba)) mv.add_isosurface(f, isolevel=-iso_value, color=self._rgb_to_hex(antibond_rgba)) return mv def _converter(self, val, unit1, unit2): multiple = {('nm', 'nm') : 1., ('nm', 'Angstrom') : 10.} return val * multiple[(unit1, unit2)] def calc_min_dist(self, idx_list1, idx_list2, optimisation=True, units='nm', ignore_missing=True): """ indexes start at 1 """ if optimisation: molecule = self._read_data('_opt_data', 'molecule') else: molecule = self._read_data('_init_data', 'molecule') idx_list1 = self.get_atom_group(idx_list1) idx_list2 = self.get_atom_group(idx_list2) # remove atoms not in molecule if ignore_missing: idx_list1 = [idx for idx in idx_list1[:] if idx <= molecule.n_atoms] idx_list2 = [idx for idx in idx_list2[:] if idx <= molecule.n_atoms] if not idx_list1 or not idx_list2: return np.nan indx_combis = cartesian([idx_list1, idx_list2]) c1 = molecule.r_array[indx_combis[:, 0]-1] c2 = molecule.r_array[indx_combis[:, 1]-1] dist = np.min(np.linalg.norm(c1-c2, axis=1)) return self._converter(dist, 'nm', units) def calc_bond_angle(self, indxs, optimisation=True, mol=None): """ Returns the angle in degrees between three points """ if mol: molecule = mol elif optimisation: molecule = self._read_data('_opt_data', 'molecule') else: molecule = self._read_data('_init_data', 'molecule') v1 = molecule.r_array[indxs[0]-1] - molecule.r_array[indxs[1]-1] v2 = molecule.r_array[indxs[2]-1] - molecule.r_array[indxs[1]-1] cosang = np.dot(v1, v2) sinang = np.linalg.norm(np.cross(v1, v2)) return np.degrees(np.arctan2(sinang, cosang)) def calc_dihedral_angle(self, indxs, optimisation=True, mol=None): """ Returns the angle in degrees between four points """ if mol: molecule = mol elif optimisation: molecule = self._read_data('_opt_data', 'molecule') else: molecule = self._read_data('_init_data', 'molecule') p = np.array([molecule.r_array[indxs[0]-1], molecule.r_array[indxs[1]-1], molecule.r_array[indxs[2]-1], molecule.r_array[indxs[3]-1]]) b = p[:-1] - p[1:] b[0] *= -1 v = np.array( [ v - (v.dot(b[1])/b[1].dot(b[1])) * b[1] for v in [b[0], b[2]] ] ) # Normalize vectors v /= np.sqrt(np.einsum('...i,...i', v, v)).reshape(-1,1) b1 = b[1] / np.linalg.norm(b[1]) x = np.dot(v[0], v[1]) m = np.cross(v[0], b1) y = np.dot(m, v[1]) angle = np.degrees(np.arctan2( y, x )) return angle #np.mod(angle, 360) def calc_polar_coords_from_plane(self, p1, p2, p3, c, optimisation=True, units='nm'): """ returns the distance r and angles theta, phi of atom c to the circumcenter of the plane formed by [p1, p2, p3] the plane formed will have; x-axis along p1, y-axis anticlock-wise towards p2, z-axis normal to the plane theta (azimuth) is the in-plane angle from the x-axis towards the y-axis phi (inclination) is the out-of-plane angle from the x-axis towards the z-axis """ alignto = self._alignment_atom_indxs[:] self._alignment_atom_indxs = (p1, p2, p3) if optimisation: molecule = self._create_molecule(optimised=True) else: molecule = self._create_molecule(optimised=False) if len(molecule.r_array)<c: self._alignment_atom_indxs = alignto return np.nan, np.nan, np.nan x, y, z = molecule.r_array[c-1] r = self._converter(sqrt(x*x+y*y+z*z), 'nm', units) theta = degrees(atan2(y, x)) phi = degrees(atan2(z, x)) self._alignment_atom_indxs = alignto return r, theta, phi def calc_2plane_angle(self, p1, p2, optimisation=True): """return angle of planes """ a1, a2, a3 = self.get_atom_group(p1) b1, b2, b3 = self.get_atom_group(p2) if optimisation: molecule = self._read_data('_opt_data', 'molecule') else: molecule = self._read_data('_init_data', 'molecule') v1a = molecule.r_array[a2-1] - molecule.r_array[a1-1] v2a = molecule.r_array[a3-1] - molecule.r_array[a1-1] v1b = molecule.r_array[b2-1] - molecule.r_array[b1-1] v2b = molecule.r_array[b3-1] - molecule.r_array[b1-1] vnormala = np.cross(v1a,v2a) vnormalb = np.cross(v1b,v2b) cos_theta = np.dot(vnormala, vnormalb)/( np.linalg.norm(vnormala)*np.linalg.norm(vnormalb)) #account for rounding errors if cos_theta > 1.: cos_theta = 1. if cos_theta < -1.: cos_theta = -1. return degrees(acos(cos_theta)) def calc_opt_trajectory(self, atom, plane=[]): """ calculate the trajectory of an atom as it is optimised, relative to a plane of three atoms """ alignto = self._alignment_atom_indxs[:] self._alignment_atom_indxs = plane #get coord from init mol = self._create_molecule(optimised=False) init = mol.r_array[atom-1] #get coords from opt opts=[] for data in self._prev_opt_data + [self._opt_data]: run = [] for n in range(len(data.read('atomcoords'))): mol = self._create_molecule(data=data, opt_step=n) run.append(mol.r_array[atom-1]) opts.append(np.array(run)) self._alignment_atom_indxs = alignto return init, opts _SUFFIXES = {1: 'st', 2: 'nd', 3: 'rd'} def _ordinal(self, num): # I'm checking for 10-20 because those are the digits that # don't follow the normal counting scheme. if 10 <= num % 100 <= 20: suffix = 'th' else: # the second parameter is a default. suffix = self._SUFFIXES.get(num % 10, 'th') return str(num) + suffix def plot_opt_trajectory(self, atom, plane=[], ax_lims=None, ax_labels=False): """plot the trajectory of an atom as it is optimised, relative to a plane of three atoms """ init, opts = self.calc_opt_trajectory(atom, plane) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(init[0], init[1], init[2], c='r', s=30, label='Initial Position') ax.scatter(opts[-1][-1,0], opts[-1][-1,1], opts[-1][-1,2], c=['g'], s=30, label='Optimised Position') for i, opt in enumerate(opts): ax.plot(opt[:,0], opt[:,1], opt[:,2], label='{0} optimisation'.format(self._ordinal(i+1))) mol = self._create_molecule().r_array a,b,c=plane ax.scatter(*mol[a-1], c='k', marker='^', s=30, label='Atom {0}'.format(a)) ax.scatter(*mol[b-1], c='k', marker='o', s=30, label='Atom {0}'.format(b)) ax.scatter(*mol[c-1], c='k', marker='s', s=30, label='Atom {0}'.format(c)) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) if ax_lims: x, y, z = ax_lims ax.set_xlim3d(-x, x) ax.set_ylim3d(-y, y) ax.set_zlim3d(-z, z) if ax_labels: ax.set_xlabel('x (nm)') ax.set_ylabel('y (nm)') ax.set_zlabel('z (nm)') return ax def calc_nbo_charge(self, atoms=[]): """ returns total charge of the atoms """ charges = self._read_data('_nbo_data', 'atomcharges')['natural'] if atoms==[]: return np.sum(charges) atoms = self.get_atom_group(atoms) atoms = np.array(atoms) -1 # 1->0 base try: subcharges = charges[atoms] except IndexError: return np.nan return np.sum(subcharges) def calc_nbo_charge_center(self, p1, p2, p3, positive=True, units='nm', atoms=[]): """ returns the distance r amd angles theta, phi of the positive/negative charge center to the circumcenter of the plane formed by [p1, p2, p3] the plane formed will have; x-axis along p1, y-axis anticlock-wise towards p2, z-axis normal to the plane theta (azimuth) is the in-plane angle from the x-axis towards the y-axis phi (inclination) is the out-of-plane angle from the x-axis towards the z-axis """ molecule = self._create_molecule(alignment_atoms=(p1, p2, p3)) charges = self._read_data('_nbo_data', 'atomcharges')['natural'] coords = molecule.r_array atoms = self.get_atom_group(atoms) if atoms: atoms = np.array(atoms) -1 # 1->0 base charges = charges[atoms] coords = coords[atoms] if positive: weighted_coords = charges[charges>0] * coords[charges>0].T else: weighted_coords = -1*charges[charges<0] * coords[charges<0].T charge_center = np.mean(weighted_coords.T, axis=0) x, y, z = charge_center r = self._converter(sqrt(x*x+y*y+z*z), 'nm', units) theta = degrees(atan2(y, x)) phi = degrees(atan2(z, x)) return r, theta, phi def get_sopt_analysis(self, eunits='kJmol-1', atom_groups=[], charge_info=False): """interactions between "filled" (donor) Lewis-type Natural Bonding Orbitals (NBOs) and "empty" (acceptor) non-Lewis NBOs, using Second Order Perturbation Theory (SOPT) Parameters ---------- eunits : str the units of energy to return atom_groups : [list or str, list or str] restrict interactions to between two lists (or identifiers) of atom indexes charge_info : bool include charge info for atoms (under headings 'A_Charges' and 'D_Charges') Returns ------- analysis : pandas.DataFrame a table of interactions """ #sopt = copy.deepcopy(self._read_data('_nbo_data', 'sopt')) sopt = self._read_data('_nbo_data', 'sopt') df = pd.DataFrame(sopt, columns=['Dtype', 'Donors', 'Atype', 'Acceptors', 'E2']) if atom_groups: group1, group2 = atom_groups group1 = self.get_atom_group(group1) group2 = self.get_atom_group(group2) match_rows=[] for indx, rw in df.iterrows(): if set(group1).issuperset(rw.Acceptors) and set(group2).issuperset(rw.Donors): match_rows.append(rw) elif set(group2).issuperset(rw.Acceptors) and set(group1).issuperset(rw.Donors): match_rows.append(rw) df = pd.DataFrame(match_rows) if not eunits=='kcal': df.E2 = convertor(df.E2, 'kcal', eunits) typ = self._read_data('_nbo_data', 'molecule').type_array df['D_Symbols'] = df.Donors.apply(lambda x: [typ[i-1] for i in x]) df['A_Symbols'] = df.Acceptors.apply(lambda x: [typ[i-1] for i in x]) if charge_info: chrg= self._read_data('_nbo_data', 'atomcharges')['natural'] df['D_Charges'] = df.Donors.apply(lambda x: [chrg[i-1] for i in x]) df['A_Charges'] = df.Acceptors.apply(lambda x: [chrg[i-1] for i in x]) return df[['Dtype', 'Donors', 'D_Symbols', 'D_Charges', 'Atype', 'Acceptors', 'A_Symbols', 'A_Charges', 'E2']] else: return df[['Dtype', 'Donors', 'D_Symbols', 'Atype', 'Acceptors', 'A_Symbols', 'E2']] def get_hbond_analysis(self, min_energy=0., atom_groups=[], eunits='kJmol-1'): """EXPERIMENTAL! hydrogen bond analysis (DH---A), using Second Order Bond Perturbation Theiry Parameters ---------- min_energy : float the minimum interaction energy to report eunits : str the units of energy to return atom_groups : [list or str, list or str] restrict interactions to between two lists (or identifiers) of atom indexes Returns ------- analysis : pandas.DataFrame a table of interactions Notes ----- uses a strict definition of a hydrogen bond as: interactions between "filled" (donor) Lewis-type Lone Pair (LP) NBOs and "empty" (acceptor) non-Lewis Bonding (BD) NBOs """ df = self.get_sopt_analysis(atom_groups=atom_groups, eunits=eunits) df = df[df.E2 >= min_energy] df = df[df.A_Symbols.apply(lambda x: 'H' in x) & df.Dtype.str.contains('LP') & df.Atype.str.contains('BD*')] return df def calc_sopt_energy(self, atom_groups=[], eunits='kJmol-1', no_hbonds=False): """calculate total energy of interactions between "filled" (donor) Lewis-type Natural Bonding Orbitals (NBOs) and "empty" (acceptor) non-Lewis NBOs, using Second Order Perturbation Theory Parameters ---------- eunits : str the units of energy to return atom_groups : [list or str, list or str] restrict interactions to between two lists (or identifiers) of atom indexes no_hbonds : bool whether to ignore H-Bonds in the calculation Returns ------- analysis : pandas.DataFrame a table of interactions """ df = self.get_sopt_analysis(atom_groups=atom_groups, eunits=eunits) if no_hbonds: dfh = df[df.A_Symbols.apply(lambda x: 'H' in x) & df.Dtype.str.contains('LP') & df.Atype.str.contains('BD*')] df = df.loc[set(df.index).difference(dfh.index)] return df.E2.sum() def show_sopt_bonds(self, min_energy=20., cutoff_energy=0., atom_groups=[], bondwidth=5, eunits='kJmol-1', no_hbonds=False, gbonds=True, active=False, represent='ball_stick', rotations=[[0., 0., 0.]], zoom=1., width=300, height=300, axis_length=0, lines=[], relative=False, minval=-1, maxval=1, alpha=0.5, transparent=True, background='white', ipyimg=True): """visualisation of interactions between "filled" (donor) Lewis-type Natural Bonding Orbitals (NBOs) and "empty" (acceptor) non-Lewis NBOs, using Second Order Perturbation Theory """ df = self.get_sopt_analysis(atom_groups=atom_groups, eunits=eunits) df = df[df.E2 >= min_energy] if no_hbonds: dfh = self.get_hbond_analysis(min_energy=min_energy, eunits=eunits, atom_groups=atom_groups) df = df.loc[set(df.index).difference(dfh.index)] molecule = self._create_molecule(gbonds=gbonds) drawlines = lines[:] for i, rw in df.iterrows(): d_coord = np.mean([molecule.r_array[d-1] for d in rw.Donors], axis=0) a_coord = np.mean([molecule.r_array[a-1] for a in rw.Acceptors], axis=0) dashed = rw.E2 < cutoff_energy drawlines.append([d_coord, a_coord, 'blue', 'red', max([1, bondwidth-1]), dashed]) colorlist = self._get_charge_colors(relative, minval, maxval, alpha=alpha) return self._show_molecule(molecule, active=active, represent=represent, rotations=rotations, zoom=zoom, colorlist=colorlist, lines=drawlines, axis_length=axis_length, width=width, height=height, linestyle='lines', transparent=transparent, background=background, ipyimg=ipyimg) def calc_hbond_energy(self, atom_groups=[], eunits='kJmol-1'): df = self.get_hbond_analysis(atom_groups=atom_groups, eunits=eunits) return df.E2.sum() def show_hbond_analysis(self, min_energy=0., atom_groups=[], cutoff_energy=0., eunits='kJmol-1', bondwidth=5, gbonds=True, active=False, represent='ball_stick', rotations=[[0., 0., 0.]], zoom=1., width=300, height=300, axis_length=0, lines=[], relative=False, minval=-1, maxval=1, alpha=0.5, transparent=True, background='white',ipyimg=True): """EXPERIMENTAL! hydrogen bond analysis DH---A For a hydrogen bond to occur there must be both a hydrogen donor and an acceptor present. The donor in a hydrogen bond is the atom to which the hydrogen atom participating in the hydrogen bond is covalently bonded, and is usually a strongly electronegative atom such as N, O, or F. The hydrogen acceptor is the neighboring electronegative ion or molecule, and must posses a lone electron pair in order to form a hydrogen bond. Since the hydrogen donor is strongly electronegative, it pulls the covalently bonded electron pair closer to its nucleus, and away from the hydrogen atom. The hydrogen atom is then left with a partial positive charge, creating a dipole-dipole attraction between the hydrogen atom bonded to the donor, and the lone electron pair on the acceptor. """ df = self.get_hbond_analysis(min_energy=min_energy, eunits=eunits, atom_groups=atom_groups) molecule = self._create_molecule(gbonds=gbonds) drawlines = lines[:] for i, rw in df.iterrows(): d_coord = np.mean([molecule.r_array[d-1] for d in rw.Donors], axis=0) h_indx = rw.A_Symbols.index('H') a_coord = molecule.r_array[rw.Acceptors[h_indx]-1] dashed = rw.E2 < cutoff_energy drawlines.append([d_coord, a_coord, 'blue', 'red', max([1, bondwidth-1]), dashed]) colorlist = self._get_charge_colors(relative, minval, maxval, alpha=alpha) return self._show_molecule(molecule, active=active, represent=represent, background=background, rotations=rotations, zoom=zoom, colorlist=colorlist, lines=drawlines, axis_length=axis_length, width=width, height=height, linestyle='lines', transparent=transparent, ipyimg=ipyimg) def _get_dos(self, mol, atoms=[], dos_type='all', eunits='eV', per_energy=1., lbound=None, ubound=None): num_mo = mol.get_orbital_count() if not lbound: lbound = mol.get_orbital_energies(1, eunits=eunits) if not ubound: ubound = mol.get_orbital_energies(mol.get_orbital_count(), eunits=eunits) #round down/up to nearest multiple of per_energy lenergy_bound = lbound - (lbound % per_energy) uenergy_bound = ubound + (per_energy - ubound % per_energy) num_bins = int((uenergy_bound-lenergy_bound) / per_energy) if atoms: df_occupancy = pd.DataFrame(mol._read_data('_nbo_data', 'nbo_occupancy'), columns=['NBO', 'Atom', 'Occ']) sub_df = df_occupancy[df_occupancy.Atom.isin(atoms)].groupby('NBO').sum() sub_df = sub_df.reindex(range(1, num_mo+1)) weights = sub_df.Occ.fillna(0)/100. else: weights=None freq, e_edges = np.histogram( mol.get_orbital_energies(np.arange(1, num_mo+1), eunits=eunits), bins=num_bins, range=(lenergy_bound, uenergy_bound), density=False, weights=weights) #energy = bin_edges[:-1] + 0.5*(bin_edges[1:]-bin_edges[:-1]) df = pd.DataFrame(zip(e_edges[:-1], e_edges[1:], freq), columns=['MinEnergy', 'MaxEnergy', 'Freq']) homo, lumo = mol.get_orbital_homo_lumo() if dos_type == 'all': pass elif dos_type == 'homo': df = df[df.MinEnergy <= mol.get_orbital_energies(homo, eunits=eunits)[0]] elif dos_type == 'lumo': df = df[df.MaxEnergy >= mol.get_orbital_energies(lumo, eunits=eunits)[0]] else: raise ValueError('dos_type must be; all, homo or lumo') return df def _plot_single_dos(self, mol, atoms=[], dos_type='all', eunits='eV', per_energy=1., lbound=None, ubound=None, ax=None, color='g', label='', line=True, linestyle='-', linewidth=2, linealpha = 1, fill=True, fillalpha = 1, df=None): if df is None: df = self._get_dos(mol, atoms=atoms, dos_type=dos_type, per_energy=per_energy, eunits=eunits, lbound=lbound, ubound=ubound) energy = df.set_index('Freq').stack().values freq = df.set_index('Freq').stack().index.droplevel(level=1).values if not ax: fig, ax = plt.subplots() if line: ax.plot(freq, energy, label=label, color=color, alpha=linealpha, linestyle=linestyle, linewidth=linewidth) #drawstyle='steps-mid') else: ax.plot([], [], label=label, color=color, linewidth=linewidth) if fill: ax.fill_betweenx(energy, freq, color=color, alpha=fillalpha) return ax def plot_dos(self, eunits='eV', per_energy=1., lbound=None, ubound=None, color_homo='g', color_lumo='r', homo_lumo_lines=True,homo_lumo_values=True,band_gap_value=True, legend_size=10, ax=None): """plot Density of States and HOMO/LUMO gap Parameters ---------- eunits : str unit of energy per_energy : float energy interval to group states by lbound : float lower bound energy ubound : float upper bound energy color_homo : matplotlib.colors color of homo in matplotlib format color_lumo : matplotlib.colors color of lumo in matplotlib format homo_lumo_lines : bool draw lines at HOMO and LUMO energies homo_lumo_values : bool annotate HOMO and LUMO lines with exact energy values band_gap_value : bool annotate inbetween HOMO and LUMO lines with band gap value legend_size : int the font size (in pts) for the legend ax : matplotlib.Axes an existing axes to plot the data on Returns ------- plot : matplotlib.axes.Axes plotted optimisation data """ if not ax: fig, ax = plt.subplots() ax.set_xlabel('Density of States (per {0} {1})'.format(per_energy, eunits)) ax.set_ylabel('Energy ({})'.format(eunits)) mol = self self._plot_single_dos(mol, ax=ax, label='HOMO', dos_type='homo', color=color_homo, line=False, fillalpha=0.3, per_energy=per_energy, eunits=eunits, lbound=lbound, ubound=ubound) self._plot_single_dos(mol, ax=ax, label='LUMO', dos_type='lumo', color=color_lumo, fillalpha=0.3, line=False, per_energy=per_energy, eunits=eunits, lbound=lbound, ubound=ubound) homo, lumo = mol.get_orbital_energies(mol.get_orbital_homo_lumo()) xlower, xupper = ax.get_xbound() if homo_lumo_lines: ax.plot([xlower, xupper], [homo,homo], 'g-', linewidth=2) ax.plot([xlower, xupper], [lumo,lumo], 'r-', linewidth=2) if homo_lumo_values: ax.annotate('{0}{1}'.format(homo.round(1), eunits), xy=(xupper, homo), xytext=(-5, -10), ha='right', textcoords='offset points') ax.annotate('{0}{1}'.format(lumo.round(1), eunits), xy=(xupper, lumo), xytext=(-5, 5), ha='right', textcoords='offset points') if band_gap_value: gap = lumo-homo ax.annotate('{0}{1}'.format(gap.round(1), eunits), xy=(xupper, homo+0.5*gap), xytext=(-5, -4), ha='right', textcoords='offset points') ax.set_ybound(lbound, ubound) if legend_size: ax.legend(framealpha=0.5, prop={'size':legend_size}) ax.grid(True) return ax def _img_to_plot(self, x, y, image, ax=None, zoom=1): """add image to matplotlib axes at (x,y) """ if ax is None: ax = plt.gca() im = OffsetImage(image, zoom=zoom) artists = [] ab = AnnotationBbox(im, (x, y), xycoords='data', frameon=False) artists.append(ax.add_artist(ab)) #ax.update_datalim(np.column_stack([x, y])) ax.autoscale(tight=False) return artists # TODO get fixed atoms from scan file def plot_pes_scans(self, fixed_atoms, eunits='kJmol-1', img_pos='', rotation=[0., 0., 0.], zoom=1, order=1): """plot Potential Energy Scan Parameters ---------- img_pos : <'','local_mins','local_maxs','global_min','global_max'> position image(s) of molecule conformation(s) on plot rotation : [float, float, float] rotation of molecule image(s) """ scan_datas = self._pes_data if len(fixed_atoms) == 4: xlabel = 'Dihedral Angle' func = self.calc_dihedral_angle elif len(fixed_atoms)==3: xlabel = 'Valence Angle' func = self.calc_bond_angle else: raise Exception('not 3 or 4 fixed atoms') angles = [] energies = [] mols = [] for scan in scan_datas: for i in range(scan.read('nscans')): mol = scan.read('molecule', scan=i) mols.append(self._create_molecule(data=scan, scan_step=i)) angles.append(func(fixed_atoms, mol=mol)) energies.extend(scan.read('scanenergies')) # remove duplicate angles and sort by angle # so that the local max are found correctly df = pd.DataFrame({'energy':convertor(np.array(energies), 'eV', eunits), 'angle':angles, 'mol':mols}) df['rounded'] = df.angle.round(2) #rounding errors? df.drop_duplicates('rounded', inplace=True) df.sort('angle', inplace=True) angles = np.array(df.angle.tolist()) energies = np.array(df.energy.tolist()) fig, ax = plt.subplots() ax.plot(angles, energies-energies.min()) ax.scatter(angles, energies-energies.min()) ax.set_ylabel('Relative Energy ({0})'.format(eunits)) ax.set_xlabel(xlabel) ax.grid(True) feature_dict = { '':[], 'local_maxs' : df.index[argrelextrema(energies, np.greater, mode='wrap', order=order)[0]], 'local_mins' : df.index[argrelextrema(energies, np.less, mode='wrap', order=order)[0]], 'global_min' : [df.energy.idxmin()], 'global_max' : [df.energy.idxmax()]} for indx in feature_dict[img_pos]: img = self._image_molecule(df.mol.loc[indx], rotation=rotation, represent='ball_stick') img = self._color_to_transparent(img) self._img_to_plot(df.angle.loc[indx], df.energy.loc[indx]-energies.min(), img, zoom=zoom, ax=ax) return ax, df
gpl-3.0
grcanosa/code-playground
scrum/wekan/wekanplot.py
1
4859
#!/usr/bin/python3 import sys import json import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib.ticker import FixedLocator import datetime import numpy as np import optparse def extract_string(text,tag): textspli = text.split(); for t in textspli: if tag in t: textspli2 = t.split(":"); return textspli2[1]; def extract_strings(text,tag): vstr = []; textspli = text.split(); for t in textspli: if tag in t: textspli2 = t.split(":"); vstr.append(textspli2[1]); return vstr; def extract_number(text,tag): return float(extract_string(text,tag)); def str2date(datestr): #print(datestr,datestr[0:4],datestr[4:6],datestr[6:8]) return datetime.date(int(datestr[0:4]), int(datestr[4:6]), int(datestr[6:8])) def get_sprint_dates(wej): if "description" not in wej: print("Field description must be set for the board!!!!") print("Assumming 2 week sprint with current week as first"); no = datetime.datetime.now().date(); desc = ""; desc += "START:"+(no-datetime.timedelta(days=no.weekday())).strftime("%Y%m%d"); desc += " " desc += "END:"+(no-datetime.timedelta(days=no.weekday())+datetime.timedelta(days=13)).strftime("%Y%m%d"); wej["description"]= desc description = wej["description"] start = extract_string(description, "START"); end = extract_string(description,"END"); festivos = extract_strings(description, "FESTIVO") print("Sprint goes from "+start+" to "+end) dates=[]; startd = str2date(start) endd = str2date(end) festd = [str2date(d) for d in festivos]; auxd = startd; while auxd <= endd: if auxd not in festd and auxd.weekday() < 5: dates.append(auxd); auxd = auxd + datetime.timedelta(days=1); return dates; def get_card_hours(a): horas = 0; if "HORAS:" in a["title"]: horas = extract_number(a["title"],"HORAS"); if "description" in a and "HORAS:" in a["description"]: horas = extract_number(a["description"],"HORAS"); if horas == 0: print("CARD "+a["title"]+" HAS NOT HOURS SET!!!") return horas; def get_hours(wej): total_h = 0; fin_h = 0; finListId = 0 for l in wej["lists"]: if "DONE" in l["title"]: finListId = l["_id"]; break; for a in wej["cards"]: h = get_card_hours(a); total_h += h; if a["listId"] == finListId: fin_h += h; return total_h,fin_h; def plot_values(dates,totalh,finh,now,title="Sprint"): today_in = -1; for d in dates: today_in +=1; if d == now.date(): break; #print(today_in); hinc = totalh/(len(dates)); ptotalh = [totalh - d*hinc for d in range(0,len(dates)+1)]; #print(len(dates),ptotalh) hincfin = finh / today_in; #print(hinc,hincfin) pfinh = [totalh - d*hincfin for d in range(0,today_in+1)]; #print(hincfin,pfinh) fig, ax = plt.subplots() # plot 'ABC' column, using red (r) line and label 'ABC' which is used in the legend ax.plot(ptotalh,'k-',label="Target (%d h)"% int(ptotalh[today_in])) ax.plot(pfinh,'b-',label="Current (%d h)"% int(pfinh[today_in])) ax.set_xticks(range(0,len(dates)+1)) #ax.set_xticklabels(["0"]+[d.strftime("%d %b") for d in dates]) # set the ticklabels to the list of datetimes ax.set_xticklabels([d.strftime("%a %d") for d in dates]+["END"]) # set the ticklabels to the list of datetimes #plt.xticks(rotation=30) # rotate the xticklabels by 30 deg plt.axvline(today_in,0,1,color="gray",dashes=[1,1]) if(pfinh[today_in] > ptotalh[today_in]): plt.plot((today_in, today_in), (ptotalh[today_in], pfinh[today_in]), 'r-',linewidth=4,solid_capstyle="butt",label="Difference (%dh)" % round(pfinh[today_in]-ptotalh[today_in])); else: plt.plot((today_in, today_in), (pfinh[today_in], ptotalh[today_in]), 'g-',linewidth=4,solid_capstyle="butt",label="We are awesome!!"); ax.legend(loc=1, fontsize=10) # make a legend and place in bottom-right (loc=4) plt.xlabel("Sprint Days"); plt.ylabel("Hours"); ax.set_ylim(0,max(pfinh)*1.1) plt.title(title+" (Total %dh)"%totalh) plt.show() # plt.plot(ptotald,ptotalh,pfind,pfinh); # #plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%d')) # plt.gca().xaxis.set_major_locator(FixedLocator()) # plt.show() def main(wekan_file): f = open(wekan_file) wej = json.load(f); f.close() dates = get_sprint_dates(wej) totalh,finh = get_hours(wej); plot_values(dates,totalh,finh,datetime.datetime.now(),title=wej["title"]) def parse_arguments(argv): parser = optparse.OptionParser(); parser.add_option("-f","--f",help="Location of wekan file",default=None); options,args = parser.parse_args(argv); if options.f is None: print("Please provide wekan json file"); parser.print_help(); exit(1); return options.f; if __name__ == "__main__": wekan_file = parse_arguments(sys.argv); sys.exit(main(wekan_file))
mit
andyh616/mne-python
examples/visualization/plot_topo_channel_epochs_image.py
22
1861
""" ============================================================ Visualize channel over epochs as images in sensor topography ============================================================ This will produce what is sometimes called event related potential / field (ERP/ERF) images. One sensor topography plot is produced with the evoked field images from the selected channels. """ # Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' event_id, tmin, tmax = 1, -0.2, 0.5 # Setup for reading the raw data raw = io.Raw(raw_fname) events = mne.read_events(event_fname) # Set up pick list: EEG + MEG - bad channels (modify to your needs) raw.info['bads'] = ['MEG 2443', 'EEG 053'] picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=True, eog=True, exclude='bads') # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, eog=150e-6)) ############################################################################### # Show event related fields images layout = mne.find_layout(epochs.info, 'meg') # use full layout title = 'ERF images - MNE sample data' mne.viz.plot_topo_image_epochs(epochs, layout, sigma=0.5, vmin=-200, vmax=200, colorbar=True, title=title) plt.show()
bsd-3-clause
mrawls/BF-simulator
BF_pythonTYC.py
1
12707
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator from astropy.io import fits from astropy.time import Time from PyAstronomy import pyasl from scipy import ndimage import pandas as pd import gaussfitter as gf import BF_functions as bff ''' Program to extract radial velocities from a double-lined binary star spectrum. Uses the Broadening Function technique. Meredith Rawls 2014-2015 This version is especially for TYC 3559! Based loosely on Rucinski's BFall_IDL.pro, and uses the PyAstronomy tools. http://www.astro.utoronto.ca/~rucinski/BFdescription.html http://www.hs.uni-hamburg.de/DE/Ins/Per/Czesla/PyA/PyA/pyaslDoc/aslDoc/svd.html In practice, you will run this twice: once to do the initial BF, and then again to properly fit the peaks of each BF with a Gaussian. INPUT infiles: single-column file with one FITS or TXT filename (w/ full path) per line 1st entry must be for the template star (e.g., arcturus or phoenix model) (the same template is used to find RVs for both stars) NO comments are allowed in this file FUN FACT: unless APOGEE, these should be continuum-normalized to 1 !!! bjdinfile: columns 0,1,2 must be filename, BJD, BCV (e.g., from IRAF bcvcorr) top row must be for the template star (e.g., arcturus) (the 0th column is never used, but typically looks like infiles_BF.txt) one line per observation comments are allowed in this file using # gausspars: your best initial guesses for fitting gaussians to the BF peaks the parameters are [amp1, offset1, width1, amp2, offset2, width2] the top line is ignored (template), but must have six values one line per observation comments are allowed in this file using # OUTPUT outfile: a file that will be created with 8 columns: BJD midpoint, orbital phase, Kepler BJD, RV1, RV1 error, RV2, RV2 error bfoutfile: a file that contains all the BF function data (raw RV, BF, gaussian model) ''' # (for KIC 8848288, ie TYC 3559) #infiles = 'infiles.txt' #bjdinfile = 'bjdfile.txt' #gausspars = 'gaussfit.txt' #outfile = 'rvs_revisited3_BF.txt' #bfoutfile = 'bfoutfile3.txt' # same as above, but for APOGEE infiles = 'infiles_apogee.txt' bjdinfile = 'bjdfile_apogee.txt' gausspars = 'gaussfit_apogee.txt' outfile = 'rvs_apogee.txt' bfoutfile = 'bfoutfile_apogee.txt' isAPOGEE = True # toggle to use near-IR stuff, or not SpecPlot = True # toggle to plot spectra before BFs, or not bjdoffset = 2454833. # difference between real BJDs and 'bjdfunny' (truncated BJDs) amplimits = [0.8,1, 0,0.2] # limits for gaussian normalized amplitude [min1,max1,min2,max2] threshold = 10 # margin for gaussian position (raw RV in km/s) widlimits = [0,15, 0,40] # limits for gaussian width (km/s) [min1,max1,min2,max2] period = 5.56648; BJD0 = 2454904.8038 # 8848288 orbital parameters rvstd = 0; bcvstd = 0 # model template RV is 0 smoothstd = 1.0 #1.5 # stdev of Gaussian to smooth BFs by (~slit width in pixels) m = 171 # length of the BF (must be longer if RVs are far from 0) #w00 = 4485; n = 53000; stepV = 1.5 #w00 = 4485; n = 80000; stepV = 1.5 # testing larger, redder wavelength range w00 = 15145; n = 15000; stepV = 1.5 # APOGEE rvneg = -74; rvpos = 34; ymin = -0.05; ymax = 1.05 # plot limits ########## print('Welcome to the Broadening Function party!') print('') print('MAKE SURE THIS IS WHAT YOU WANT:') print('You set Porb = {0} days, BJD0 = {1} days'.format(period, BJD0)) # CREATE NEW SPECTRUM IN LOG SPACE # This uses w00, n, and stepV, defined above. The new wavelength grid is w1. # The BF will be evenly spaced in velocity with length m. # The velocity steps are r (km/s/pix). w1, m, r = bff.logify_spec(isAPOGEE, w00, n, stepV, m) # READ IN ALL THE THINGS specdata = bff.read_specfiles(infiles, bjdinfile, isAPOGEE) nspec = specdata[0]; filenamelist = specdata[1] datetimelist = specdata[2]; wavelist = specdata[3]; speclist = specdata[4] # INTERPOLATE THE TEMPLATE AND OBJECT SPECTRA ONTO THE NEW LOG-WAVELENGTH GRID # OPTION TO PLOT THIS (commented out for now) ##plt.figure(1) newspeclist = [] yoffset = 0 if SpecPlot == True: plt.axis([w1[0], w1[-1], 0, nspec+3]) plt.xlabel(r'Wavelength ({\AA})') for i in range (0, nspec): newspec = np.interp(w1, wavelist[i], speclist[i]) newspeclist.append(newspec) if SpecPlot == True: plt.plot(w1, newspec+yoffset, label=datetimelist[i].iso[0:10])#, color='b') yoffset = yoffset + 1 if SpecPlot == True: ##plt.legend() plt.show() # BROADENING FUNCTION TIME svd = pyasl.SVD() # Single Value Decomposition svd.decompose(newspeclist[0], m) singularvals = svd.getSingularValues() bflist = [] bfsmoothlist = [] for i in range (0, nspec): # Obtain the broadening function bf = svd.getBroadeningFunction(newspeclist[i]) # this is a full matrix bfarray = svd.getBroadeningFunction(newspeclist[i], asarray=True) # Smooth the array-like broadening function # 1ST LINE - python 2.7 with old version of pandas; 2ND LINE - python 3.5 with new version of pandas #bfsmooth = pd.rolling_window(bfarray, window=5, win_type='gaussian', std=smoothstd, center=True) bfsmooth = pd.Series(bfarray).rolling(window=5, win_type='gaussian', center=True).mean(std=smoothstd) # The rolling window makes nans at the start because it's a punk. for j in range(0,len(bfsmooth)): if np.isnan(bfsmooth[j]) == True: bfsmooth[j] = 0 else: bfsmooth[j] = bfsmooth[j] bflist.append(bf) bfsmoothlist.append(bfsmooth) bfnormlist = [] for a in bfsmoothlist: bfnormlist.append((a-np.min(a))/(np.max(a)-np.min(a))) # Obtain the indices in RV space that correspond to the BF bf_ind = svd.getRVAxis(r, 1) + rvstd - bcvstd # OPTION TO PLOT THE SINGULAR VALUES TO SEE WHERE THEY AREN'T A MESS # this probably isn't important, because instead of choosing which values to throw out, # we use "Route #2" as described by Rucinski and just use the final row of the BF array # and smooth it with a Gaussian to get rid of noise problems. # for more info, seriously, read http://www.astro.utoronto.ca/~rucinski/SVDcookbook.html ##plt.figure(2) #plt.semilogy(singularvals, 'b-') #plt.xlabel('BF Index') #plt.ylabel('Singular Values') #plt.show() # OPTION TO PLOT THE SMOOTHED BFs ##plt.figure(3) plt.axis([rvneg, rvpos, -0.2, float(nspec)/2.5]) plt.xlabel('Radial Velocity (km s$^{-1}$)') plt.ylabel('Broadening Function (arbitrary amplitude)') yoffset = 0.0 for i in range(1, nspec): plt.plot(bf_ind, bfsmoothlist[i]+yoffset, color='b') yoffset = yoffset + 0.4 plt.show() # FIT THE SMOOTHED BF PEAKS WITH TWO GAUSSIANS # you have to have pretty decent guesses in the gausspars file for this to work. #bffitlist = bff.gaussparty(gausspars, nspec, filenamelist, bfsmoothlist, bf_ind, threshold) bffitlist = bff.gaussparty(gausspars, nspec, filenamelist, bfnormlist, bf_ind, amplimits, threshold, widlimits) rvraw1 = []; rvraw2 = []; rvraw1_err = []; rvraw2_err = [] rvraw1.append(0), rvraw2.append(0), rvraw1_err.append(0), rvraw2_err.append(0) for i in range(1, len(bffitlist)): rvraw1.append(bffitlist[i][0][1]) # [0,1,2] is amp,rv,width for star 1; [4,5,6] is same for star2 rvraw2.append(bffitlist[i][0][4]) rvraw1_err.append(bffitlist[i][2][1]) rvraw2_err.append(bffitlist[i][2][4]) # CALCULATE ORBITAL PHASES AND FINAL RV CURVE rvdata = bff.rvphasecalc(bjdinfile, bjdoffset, nspec, period, BJD0, rvraw1, rvraw1_err, rvraw2, rvraw2_err, rvstd, bcvstd) phase = rvdata[0]; bjdfunny = rvdata[1] rv1 = rvdata[2]; rv2 = rvdata[3] rv1_err = rvdata[4]; rv2_err = rvdata[5] g2 = open(outfile, 'w') print('# RVs calculated with BF_python.py', file=g2) print('#', file=g2) print('# Porb = {0} days, BJD0 = {1} days'.format(period, BJD0), file=g2) print('# Wavelength axis = [{0} - {1}] Angstroms'.format(w1[0], w1[-1]), file=g2) print('#', file=g2) print('# Template spectrum (line 0 of infiles): {0}'.format(filenamelist[0]), file=g2) print('# RV of template, BCV of template (km/s): {0}, {1}'.format(rvstd, bcvstd), file=g2) print('#', file=g2) print('# List of all input spectra (infiles): {0}'.format(infiles), file=g2) print('# Target BJD and BCV info (bjdinfile): {0}'.format(bjdinfile), file=g2) print('# Gaussian fit guesses (gausspars): {0}'.format(gausspars), file=g2) print('#', file=g2) print('# BF parameters: w00 = {0}; n = {1}; stepV = {2}'.format(w00, n, stepV), file=g2) print('# BF parameters: smoothstd = {0}; m = {1}'.format(smoothstd, m), file=g2) print('# gaussfit: amplimits = {0}; threshold = {1}, widlimits = {2}'.format(amplimits, threshold, widlimits), file=g2) print('#', file=g2) print('# time, phase, adjusted_time, RV1 [km/s], error1 [km/s], RV2 [km/s], error2 [km/s]', file=g2) print('#', file=g2) for i in range(1, nspec): print ('%.9f %.9f %.9f %.5f %.5f %.5f %.5f' % (bjdfunny[i] + bjdoffset, phase[i], bjdfunny[i], rv1[i], rv1_err[i], rv2[i], rv2_err[i]), file=g2) g2.close() print('BJD, phase, and RVs written to %s.' % outfile) print('Use rvplotmaker.py to plot the RV curve.') try: bfout = open(bfoutfile, 'w') for idx in range(1, nspec): print('###', file=bfout) print('# timestamp: {0}'.format(datetimelist[idx]), file=bfout) print('# Gaussian 1 [amp, RV +/- err, wid]: [{0:.2f}, {1:.2f} +/- {2:.2f}, {3:.2f}]'.format(bffitlist[i][0][0], rvraw1[i], rvraw1_err[i], bffitlist[i][0][2]), file=bfout) print('# Gaussian 2 [amp, RV +/- err, wid]: [{0:.2f}, {1:.2f} +/- {2:.2f}, {3:.2f}]'.format(bffitlist[i][0][3], rvraw2[i], rvraw2_err[i], bffitlist[i][0][5]), file=bfout) print('# Uncorrected_RV, BF_amp, Gaussian_fit', file=bfout) print('###', file=bfout) for vel, amp, modamp in zip(bf_ind, bfsmoothlist[idx], bffitlist[idx][1]): print(vel, amp, modamp, file=bfout) bfout.close() except: print('No BF outfile specified, not saving BF data to file') # handy little gaussian function maker def gaussian(x, amp, mu, sig): # i.e., (xarray, amp, rv, width) return amp * np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.))) # PLOT THE FINAL SMOOTHED BFS + GAUSSIAN FITS IN INDIVIDUAL PANELS # manually adjust this multi-panel plot based on how many spectra you have #plt.figure(4) windowcols = 3 #4 # how many window columns there should be #windowrows = 6 windowrows = int([np.rint((nspec-1)/windowcols) if (np.float(nspec-1)/windowcols)%windowcols == 0 else np.rint((nspec-1)/windowcols)+1][0]) xmin = rvneg xmax = rvpos #gaussxs = np.arange(-200, 200, 0.1) fig = plt.figure(1, figsize=(15,10)) fig.text(0.5, 0.04, 'Uncorrected Radial Velocity (km s$^{-1}$)', ha='center', va='center', size=26) fig.text(0.07, 0.5, 'Broadening Function', ha='center', va='center', size=26, rotation='vertical') for i in range (1,nspec): ax = fig.add_subplot(windowrows, windowcols,i) # out of range if windowcols x windowrows < nspec ax.yaxis.set_major_locator(MultipleLocator(0.2)) if i!=1 and i!=5 and i!=9 and i!=13 and i!=17 and i!=21 and i!=25: ax.set_yticklabels(()) #if i!=20 and i!=21 and i!=22 and i!=23 and i!=24 and i!=25: if i < nspec-windowrows: #if i!=13 and i!=14 and i!=15 and i!=16: ax.set_xticklabels(()) plt.subplots_adjust(wspace=0, hspace=0) plt.axis([xmin, xmax, ymin, ymax]) plt.tick_params(axis='both', which='major', labelsize=14) plt.text(xmax - 0.25*(np.abs(xmax-xmin)), 0.8*ymax, '%.3f $\phi$' % (phase[i]), size=12) plt.text(xmax - 0.35*(np.abs(xmax-xmin)), 0.6*ymax, '%s' % (datetimelist[i].iso[0:10]), size=12) #plt.plot(bf_ind, bfsmoothlist[i], color='k', lw=1.5, ls='-', label='Smoothed BF') plt.plot(bf_ind, bfnormlist[i], color='k', lw=1.5, ls='-', label='Normalized Smoothed BF') plt.plot(bf_ind, bffitlist[i][1], color='b', lw=2, ls='--', label='Two Gaussian fit') gauss1 = gaussian(bf_ind, bffitlist[i][0][0], bffitlist[i][0][1], bffitlist[i][0][2]) gauss2 = gaussian(bf_ind, bffitlist[i][0][3], bffitlist[i][0][4], bffitlist[i][0][5]) plt.plot(bf_ind, gauss1, color='#e34a33', lw=2, ls='--')#, label='Gaussian fit 1') plt.plot(bf_ind, gauss2, color='#fdbb84', lw=2, ls='--')#, label='Gaussian fit 2') # OPTION TO PLOT VERTICAL LINE AT ZERO plt.axvline(x=0, color='0.75') # print legend if i==nspec-1: ax.legend(bbox_to_anchor=(2.6,0.7), loc=1, borderaxespad=0., frameon=False, handlelength=3, prop={'size':20}) plt.show()
mit
smrjan/seldon-server
python/build/lib/seldon/sklearn_estimator.py
3
2924
from sklearn.feature_extraction import DictVectorizer from seldon.pipeline.pandas_pipelines import BasePandasEstimator from collections import OrderedDict import io from sklearn.utils import check_X_y from sklearn.utils import check_array from sklearn.base import BaseEstimator,ClassifierMixin import pandas as pd class SKLearnClassifier(BasePandasEstimator,BaseEstimator,ClassifierMixin): """ Wrapper for XGBoost classifier with pandas support XGBoost specific arguments follow https://github.com/dmlc/xgboost/blob/master/python-package/xgboost/sklearn.py clf : sklearn estimator sklearn estimator to run target : str Target column target_readable : str More descriptive version of target variable included : list str, optional columns to include excluded : list str, optional columns to exclude id_map : dict (int,str), optional map of class ids to high level names sk_args : str, optional extra args for sklearn classifier """ def __init__(self, clf=None,target=None, target_readable=None,included=None,excluded=None,id_map={},vectorizer=None,**sk_args): super(SKLearnClassifier, self).__init__(target,target_readable,included,excluded,id_map) self.vectorizer = vectorizer self.clf = clf self.sk_args = sk_args def fit(self,X,y=None): """ Fit an sklearn classifier to data Parameters ---------- X : pandas dataframe or array-like training samples y : array like, required for array-like X and not used presently for pandas dataframe class labels Returns ------- self: object """ if isinstance(X,pd.DataFrame): df = X (X,y,self.vectorizer) = self.convert_numpy(df) else: check_X_y(X,y) self.clf.fit(X,y) return self def predict_proba(self,X): """ Returns class probability estimates for the given test data. X : pandas dataframe or array-like Test samples Returns ------- proba : array-like, shape = (n_samples, n_outputs) Class probability estimates. """ if isinstance(X,pd.DataFrame): df = X (X,_,_) = self.convert_numpy(df) else: check_array(X) return self.clf.predict_proba(X) def predict(self,X): """ Returns class predictions X : pandas dataframe or array-like Test samples Returns ------- proba : array-like, shape = (n_samples, n_outputs) Class predictions """ if isinstance(X,pd.DataFrame): df = X (X,_,_) = self.convert_numpy(df) else: check_array(X) return self.clf.predict(X)
apache-2.0
webmasterraj/GaSiProMo
flask/lib/python2.7/site-packages/pandas/io/excel.py
4
49188
""" Module parse to/from Excel """ #---------------------------------------------------------------------- # ExcelFile class import os import datetime import abc import numpy as np from pandas.io.parsers import TextParser from pandas.io.common import _is_url, _urlopen from pandas.tseries.period import Period from pandas import json from pandas.compat import map, zip, reduce, range, lrange, u, add_metaclass from pandas.core import config from pandas.core.common import pprint_thing import pandas.compat as compat import pandas.compat.openpyxl_compat as openpyxl_compat import pandas.core.common as com from warnings import warn from distutils.version import LooseVersion __all__ = ["read_excel", "ExcelWriter", "ExcelFile"] _writer_extensions = ["xlsx", "xls", "xlsm"] _writers = {} def register_writer(klass): """Adds engine to the excel writer registry. You must use this method to integrate with ``to_excel``. Also adds config options for any new ``supported_extensions`` defined on the writer.""" if not compat.callable(klass): raise ValueError("Can only register callables as engines") engine_name = klass.engine _writers[engine_name] = klass for ext in klass.supported_extensions: if ext.startswith('.'): ext = ext[1:] if ext not in _writer_extensions: config.register_option("io.excel.%s.writer" % ext, engine_name, validator=str) _writer_extensions.append(ext) def get_writer(engine_name): if engine_name == 'openpyxl': try: import openpyxl # with version-less openpyxl engine # make sure we make the intelligent choice for the user if LooseVersion(openpyxl.__version__) < '2.0.0': return _writers['openpyxl1'] else: return _writers['openpyxl2'] except ImportError: # fall through to normal exception handling below pass try: return _writers[engine_name] except KeyError: raise ValueError("No Excel writer '%s'" % engine_name) def read_excel(io, sheetname=0, **kwds): """Read an Excel table into a pandas DataFrame Parameters ---------- io : string, file-like object, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx sheetname : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets. Available Cases * Defaults to 0 -> 1st sheet as a DataFrame * 1 -> 2nd sheet as a DataFrame * "Sheet1" -> 1st sheet as a DataFrame * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames * None -> All sheets as a dictionary of DataFrames header : int, default 0 Row to use for the column labels of the parsed DataFrame skiprows : list-like Rows to skip at the beginning (0-indexed) skip_footer : int, default 0 Rows at the end to skip (0-indexed) converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. index_col : int, default None Column to use as the row labels of the DataFrame. Pass None if there is no such column parse_cols : int or list, default None * If None then parse all columns, * If int then indicates last column to be parsed * If list of ints then indicates list of column numbers to be parsed * If string then indicates comma separated list of column names and column ranges (e.g. "A:E" or "A,C,E:F") na_values : list-like, default None List of additional strings to recognize as NA/NaN keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to verbose : boolean, default False Indicate number of NA values placed in non-numeric columns engine: string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd convert_float : boolean, default True convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally has_index_names : boolean, default False True if the cols defined in index_col have an index name and are not in the header. Index name will be placed on a separate line below the header. Returns ------- parsed : DataFrame or Dict of DataFrames DataFrame from the passed in Excel file. See notes in sheetname argument for more information on when a Dict of Dataframes is returned. """ if 'kind' in kwds: kwds.pop('kind') warn("kind keyword is no longer supported in read_excel and may be " "removed in a future version", FutureWarning) engine = kwds.pop('engine', None) return ExcelFile(io, engine=engine).parse(sheetname=sheetname, **kwds) class ExcelFile(object): """ Class for parsing tabular excel sheets into DataFrame objects. Uses xlrd. See ExcelFile.parse for more documentation Parameters ---------- io : string, file-like object or xlrd workbook If a string, expected to be a path to xls or xlsx file engine: string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd """ def __init__(self, io, **kwds): import xlrd # throw an ImportError if we need to ver = tuple(map(int, xlrd.__VERSION__.split(".")[:2])) if ver < (0, 9): # pragma: no cover raise ImportError("pandas requires xlrd >= 0.9.0 for excel " "support, current version " + xlrd.__VERSION__) self.io = io engine = kwds.pop('engine', None) if engine is not None and engine != 'xlrd': raise ValueError("Unknown engine: %s" % engine) if isinstance(io, compat.string_types): if _is_url(io): data = _urlopen(io).read() self.book = xlrd.open_workbook(file_contents=data) else: self.book = xlrd.open_workbook(io) elif engine == 'xlrd' and isinstance(io, xlrd.Book): self.book = io elif not isinstance(io, xlrd.Book) and hasattr(io, "read"): # N.B. xlrd.Book has a read attribute too data = io.read() self.book = xlrd.open_workbook(file_contents=data) else: raise ValueError('Must explicitly set engine if not passing in' ' buffer or path for io.') def parse(self, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, chunksize=None, convert_float=True, has_index_names=False, converters=None, **kwds): """Read an Excel table into DataFrame Parameters ---------- sheetname : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets. Available Cases * Defaults to 0 -> 1st sheet as a DataFrame * 1 -> 2nd sheet as a DataFrame * "Sheet1" -> 1st sheet as a DataFrame * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames * None -> All sheets as a dictionary of DataFrames header : int, default 0 Row to use for the column labels of the parsed DataFrame skiprows : list-like Rows to skip at the beginning (0-indexed) skip_footer : int, default 0 Rows at the end to skip (0-indexed) converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels index_col : int, default None Column to use as the row labels of the DataFrame. Pass None if there is no such column parse_cols : int or list, default None * If None then parse all columns * If int then indicates last column to be parsed * If list of ints then indicates list of column numbers to be parsed * If string then indicates comma separated list of column names and column ranges (e.g. "A:E" or "A,C,E:F") parse_dates : boolean, default False Parse date Excel values, date_parser : function default None Date parsing function na_values : list-like, default None List of additional strings to recognize as NA/NaN thousands : str, default None Thousands separator chunksize : int, default None Size of file chunk to read for lazy evaluation. convert_float : boolean, default True convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally. has_index_names : boolean, default False True if the cols defined in index_col have an index name and are not in the header verbose : boolean, default False Set to True to print a single statement when reading each excel sheet. Returns ------- parsed : DataFrame or Dict of DataFrames DataFrame from the passed in Excel file. See notes in sheetname argument for more information on when a Dict of Dataframes is returned. """ skipfooter = kwds.pop('skipfooter', None) if skipfooter is not None: skip_footer = skipfooter return self._parse_excel(sheetname=sheetname, header=header, skiprows=skiprows, index_col=index_col, has_index_names=has_index_names, parse_cols=parse_cols, parse_dates=parse_dates, date_parser=date_parser, na_values=na_values, thousands=thousands, chunksize=chunksize, skip_footer=skip_footer, convert_float=convert_float, converters=converters, **kwds) def _should_parse(self, i, parse_cols): def _range2cols(areas): """ Convert comma separated list of column names and column ranges to a list of 0-based column indexes. >>> _range2cols('A:E') [0, 1, 2, 3, 4] >>> _range2cols('A,C,Z:AB') [0, 2, 25, 26, 27] """ def _excel2num(x): "Convert Excel column name like 'AB' to 0-based column index" return reduce(lambda s, a: s * 26 + ord(a) - ord('A') + 1, x.upper().strip(), 0) - 1 cols = [] for rng in areas.split(','): if ':' in rng: rng = rng.split(':') cols += lrange(_excel2num(rng[0]), _excel2num(rng[1]) + 1) else: cols.append(_excel2num(rng)) return cols if isinstance(parse_cols, int): return i <= parse_cols elif isinstance(parse_cols, compat.string_types): return i in _range2cols(parse_cols) else: return i in parse_cols def _parse_excel(self, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, has_index_names=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, chunksize=None, convert_float=True, verbose=False, **kwds): import xlrd from xlrd import (xldate, XL_CELL_DATE, XL_CELL_ERROR, XL_CELL_BOOLEAN, XL_CELL_NUMBER) epoch1904 = self.book.datemode def _parse_cell(cell_contents,cell_typ): """converts the contents of the cell into a pandas appropriate object""" if cell_typ == XL_CELL_DATE: if xlrd_0_9_3: # Use the newer xlrd datetime handling. cell_contents = xldate.xldate_as_datetime(cell_contents, epoch1904) # Excel doesn't distinguish between dates and time, # so we treat dates on the epoch as times only. # Also, Excel supports 1900 and 1904 epochs. year = (cell_contents.timetuple())[0:3] if ((not epoch1904 and year == (1899, 12, 31)) or (epoch1904 and year == (1904, 1, 1))): cell_contents = datetime.time(cell_contents.hour, cell_contents.minute, cell_contents.second, cell_contents.microsecond) else: # Use the xlrd <= 0.9.2 date handling. dt = xldate.xldate_as_tuple(cell_contents, epoch1904) if dt[0] < datetime.MINYEAR: cell_contents = datetime.time(*dt[3:]) else: cell_contents = datetime.datetime(*dt) elif cell_typ == XL_CELL_ERROR: cell_contents = np.nan elif cell_typ == XL_CELL_BOOLEAN: cell_contents = bool(cell_contents) elif convert_float and cell_typ == XL_CELL_NUMBER: # GH5394 - Excel 'numbers' are always floats # it's a minimal perf hit and less suprising val = int(cell_contents) if val == cell_contents: cell_contents = val return cell_contents # xlrd >= 0.9.3 can return datetime objects directly. if LooseVersion(xlrd.__VERSION__) >= LooseVersion("0.9.3"): xlrd_0_9_3 = True else: xlrd_0_9_3 = False ret_dict = False #Keep sheetname to maintain backwards compatibility. if isinstance(sheetname, list): sheets = sheetname ret_dict = True elif sheetname is None: sheets = self.sheet_names ret_dict = True else: sheets = [sheetname] #handle same-type duplicates. sheets = list(set(sheets)) output = {} for asheetname in sheets: if verbose: print("Reading sheet %s" % asheetname) if isinstance(asheetname, compat.string_types): sheet = self.book.sheet_by_name(asheetname) else: # assume an integer if not a string sheet = self.book.sheet_by_index(asheetname) data = [] should_parse = {} for i in range(sheet.nrows): row = [] for j, (value, typ) in enumerate(zip(sheet.row_values(i), sheet.row_types(i))): if parse_cols is not None and j not in should_parse: should_parse[j] = self._should_parse(j, parse_cols) if parse_cols is None or should_parse[j]: row.append(_parse_cell(value,typ)) data.append(row) if header is not None: data[header] = _trim_excel_header(data[header]) parser = TextParser(data, header=header, index_col=index_col, has_index_names=has_index_names, na_values=na_values, thousands=thousands, parse_dates=parse_dates, date_parser=date_parser, skiprows=skiprows, skip_footer=skip_footer, chunksize=chunksize, **kwds) output[asheetname] = parser.read() if ret_dict: return output else: return output[asheetname] @property def sheet_names(self): return self.book.sheet_names() def close(self): """close io if necessary""" if hasattr(self.io, 'close'): self.io.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def _trim_excel_header(row): # trim header row so auto-index inference works # xlrd uses '' , openpyxl None while len(row) > 0 and (row[0] == '' or row[0] is None): row = row[1:] return row def _conv_value(val): # Convert numpy types to Python types for the Excel writers. if com.is_integer(val): val = int(val) elif com.is_float(val): val = float(val) elif com.is_bool(val): val = bool(val) elif isinstance(val, Period): val = "%s" % val return val @add_metaclass(abc.ABCMeta) class ExcelWriter(object): """ Class for writing DataFrame objects into excel sheets, default is to use xlwt for xls, openpyxl for xlsx. See DataFrame.to_excel for typical usage. Parameters ---------- path : string Path to xls or xlsx file. engine : string (optional) Engine to use for writing. If None, defaults to ``io.excel.<extension>.writer``. NOTE: can only be passed as a keyword argument. date_format : string, default None Format string for dates written into Excel files (e.g. 'YYYY-MM-DD') datetime_format : string, default None Format string for datetime objects written into Excel files (e.g. 'YYYY-MM-DD HH:MM:SS') """ # Defining an ExcelWriter implementation (see abstract methods for more...) # - Mandatory # - ``write_cells(self, cells, sheet_name=None, startrow=0, startcol=0)`` # --> called to write additional DataFrames to disk # - ``supported_extensions`` (tuple of supported extensions), used to # check that engine supports the given extension. # - ``engine`` - string that gives the engine name. Necessary to # instantiate class directly and bypass ``ExcelWriterMeta`` engine # lookup. # - ``save(self)`` --> called to save file to disk # - Mostly mandatory (i.e. should at least exist) # - book, cur_sheet, path # - Optional: # - ``__init__(self, path, engine=None, **kwargs)`` --> always called # with path as first argument. # You also need to register the class with ``register_writer()``. # Technically, ExcelWriter implementations don't need to subclass # ExcelWriter. def __new__(cls, path, engine=None, **kwargs): # only switch class if generic(ExcelWriter) if cls == ExcelWriter: if engine is None: ext = os.path.splitext(path)[-1][1:] try: engine = config.get_option('io.excel.%s.writer' % ext) except KeyError: error = ValueError("No engine for filetype: '%s'" % ext) raise error cls = get_writer(engine) return object.__new__(cls) # declare external properties you can count on book = None curr_sheet = None path = None @abc.abstractproperty def supported_extensions(self): "extensions that writer engine supports" pass @abc.abstractproperty def engine(self): "name of engine" pass @abc.abstractmethod def write_cells(self, cells, sheet_name=None, startrow=0, startcol=0): """ Write given formated cells into Excel an excel sheet Parameters ---------- cells : generator cell of formated data to save to Excel sheet sheet_name : string, default None Name of Excel sheet, if None, then use self.cur_sheet startrow: upper left cell row to dump data frame startcol: upper left cell column to dump data frame """ pass @abc.abstractmethod def save(self): """ Save workbook to disk. """ pass def __init__(self, path, engine=None, date_format=None, datetime_format=None, **engine_kwargs): # validate that this engine can handle the extension ext = os.path.splitext(path)[-1] self.check_extension(ext) self.path = path self.sheets = {} self.cur_sheet = None if date_format is None: self.date_format = 'YYYY-MM-DD' else: self.date_format = date_format if datetime_format is None: self.datetime_format = 'YYYY-MM-DD HH:MM:SS' else: self.datetime_format = datetime_format def _get_sheet_name(self, sheet_name): if sheet_name is None: sheet_name = self.cur_sheet if sheet_name is None: # pragma: no cover raise ValueError('Must pass explicit sheet_name or set ' 'cur_sheet property') return sheet_name @classmethod def check_extension(cls, ext): """checks that path's extension against the Writer's supported extensions. If it isn't supported, raises UnsupportedFiletypeError.""" if ext.startswith('.'): ext = ext[1:] if not any(ext in extension for extension in cls.supported_extensions): msg = (u("Invalid extension for engine '%s': '%s'") % (pprint_thing(cls.engine), pprint_thing(ext))) raise ValueError(msg) else: return True # Allow use as a contextmanager def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """synonym for save, to make it more file-like""" return self.save() class _Openpyxl1Writer(ExcelWriter): engine = 'openpyxl1' supported_extensions = ('.xlsx', '.xlsm') openpyxl_majorver = 1 def __init__(self, path, engine=None, **engine_kwargs): if not openpyxl_compat.is_compat(major_ver=self.openpyxl_majorver): raise ValueError('Installed openpyxl is not supported at this ' 'time. Use {0}.x.y.' .format(self.openpyxl_majorver)) # Use the openpyxl module as the Excel writer. from openpyxl.workbook import Workbook super(_Openpyxl1Writer, self).__init__(path, **engine_kwargs) # Create workbook object with default optimized_write=True. self.book = Workbook() # Openpyxl 1.6.1 adds a dummy sheet. We remove it. if self.book.worksheets: self.book.remove_sheet(self.book.worksheets[0]) def save(self): """ Save workbook to disk. """ return self.book.save(self.path) def write_cells(self, cells, sheet_name=None, startrow=0, startcol=0): # Write the frame cells using openpyxl. from openpyxl.cell import get_column_letter sheet_name = self._get_sheet_name(sheet_name) if sheet_name in self.sheets: wks = self.sheets[sheet_name] else: wks = self.book.create_sheet() wks.title = sheet_name self.sheets[sheet_name] = wks for cell in cells: colletter = get_column_letter(startcol + cell.col + 1) xcell = wks.cell("%s%s" % (colletter, startrow + cell.row + 1)) xcell.value = _conv_value(cell.val) style = None if cell.style: style = self._convert_to_style(cell.style) for field in style.__fields__: xcell.style.__setattr__(field, style.__getattribute__(field)) if isinstance(cell.val, datetime.datetime): xcell.style.number_format.format_code = self.datetime_format elif isinstance(cell.val, datetime.date): xcell.style.number_format.format_code = self.date_format if cell.mergestart is not None and cell.mergeend is not None: cletterstart = get_column_letter(startcol + cell.col + 1) cletterend = get_column_letter(startcol + cell.mergeend + 1) wks.merge_cells('%s%s:%s%s' % (cletterstart, startrow + cell.row + 1, cletterend, startrow + cell.mergestart + 1)) # Excel requires that the format of the first cell in a merged # range is repeated in the rest of the merged range. if style: first_row = startrow + cell.row + 1 last_row = startrow + cell.mergestart + 1 first_col = startcol + cell.col + 1 last_col = startcol + cell.mergeend + 1 for row in range(first_row, last_row + 1): for col in range(first_col, last_col + 1): if row == first_row and col == first_col: # Ignore first cell. It is already handled. continue colletter = get_column_letter(col) xcell = wks.cell("%s%s" % (colletter, row)) for field in style.__fields__: xcell.style.__setattr__( field, style.__getattribute__(field)) @classmethod def _convert_to_style(cls, style_dict): """ converts a style_dict to an openpyxl style object Parameters ---------- style_dict: style dictionary to convert """ from openpyxl.style import Style xls_style = Style() for key, value in style_dict.items(): for nk, nv in value.items(): if key == "borders": (xls_style.borders.__getattribute__(nk) .__setattr__('border_style', nv)) else: xls_style.__getattribute__(key).__setattr__(nk, nv) return xls_style register_writer(_Openpyxl1Writer) class _OpenpyxlWriter(_Openpyxl1Writer): engine = 'openpyxl' register_writer(_OpenpyxlWriter) class _Openpyxl2Writer(_Openpyxl1Writer): """ Note: Support for OpenPyxl v2 is currently EXPERIMENTAL (GH7565). """ engine = 'openpyxl2' openpyxl_majorver = 2 def write_cells(self, cells, sheet_name=None, startrow=0, startcol=0): # Write the frame cells using openpyxl. from openpyxl.cell import get_column_letter sheet_name = self._get_sheet_name(sheet_name) if sheet_name in self.sheets: wks = self.sheets[sheet_name] else: wks = self.book.create_sheet() wks.title = sheet_name self.sheets[sheet_name] = wks for cell in cells: colletter = get_column_letter(startcol + cell.col + 1) xcell = wks.cell("%s%s" % (colletter, startrow + cell.row + 1)) xcell.value = _conv_value(cell.val) style_kwargs = {} # Apply format codes before cell.style to allow override if isinstance(cell.val, datetime.datetime): style_kwargs.update(self._convert_to_style_kwargs({ 'number_format':{'format_code': self.datetime_format}})) elif isinstance(cell.val, datetime.date): style_kwargs.update(self._convert_to_style_kwargs({ 'number_format':{'format_code': self.date_format}})) if cell.style: style_kwargs.update(self._convert_to_style_kwargs(cell.style)) if style_kwargs: xcell.style = xcell.style.copy(**style_kwargs) if cell.mergestart is not None and cell.mergeend is not None: cletterstart = get_column_letter(startcol + cell.col + 1) cletterend = get_column_letter(startcol + cell.mergeend + 1) wks.merge_cells('%s%s:%s%s' % (cletterstart, startrow + cell.row + 1, cletterend, startrow + cell.mergestart + 1)) # Excel requires that the format of the first cell in a merged # range is repeated in the rest of the merged range. if style_kwargs: first_row = startrow + cell.row + 1 last_row = startrow + cell.mergestart + 1 first_col = startcol + cell.col + 1 last_col = startcol + cell.mergeend + 1 for row in range(first_row, last_row + 1): for col in range(first_col, last_col + 1): if row == first_row and col == first_col: # Ignore first cell. It is already handled. continue colletter = get_column_letter(col) xcell = wks.cell("%s%s" % (colletter, row)) xcell.style = xcell.style.copy(**style_kwargs) @classmethod def _convert_to_style_kwargs(cls, style_dict): """ Convert a style_dict to a set of kwargs suitable for initializing or updating-on-copy an openpyxl v2 style object Parameters ---------- style_dict : dict A dict with zero or more of the following keys (or their synonyms). 'font' 'fill' 'border' ('borders') 'alignment' 'number_format' 'protection' Returns ------- style_kwargs : dict A dict with the same, normalized keys as ``style_dict`` but each value has been replaced with a native openpyxl style object of the appropriate class. """ _style_key_map = { 'borders': 'border', } style_kwargs = {} for k, v in style_dict.items(): if k in _style_key_map: k = _style_key_map[k] _conv_to_x = getattr(cls, '_convert_to_{0}'.format(k), lambda x: None) new_v = _conv_to_x(v) if new_v: style_kwargs[k] = new_v return style_kwargs @classmethod def _convert_to_color(cls, color_spec): """ Convert ``color_spec`` to an openpyxl v2 Color object Parameters ---------- color_spec : str, dict A 32-bit ARGB hex string, or a dict with zero or more of the following keys. 'rgb' 'indexed' 'auto' 'theme' 'tint' 'index' 'type' Returns ------- color : openpyxl.styles.Color """ from openpyxl.styles import Color if isinstance(color_spec, str): return Color(color_spec) else: return Color(**color_spec) @classmethod def _convert_to_font(cls, font_dict): """ Convert ``font_dict`` to an openpyxl v2 Font object Parameters ---------- font_dict : dict A dict with zero or more of the following keys (or their synonyms). 'name' 'size' ('sz') 'bold' ('b') 'italic' ('i') 'underline' ('u') 'strikethrough' ('strike') 'color' 'vertAlign' ('vertalign') 'charset' 'scheme' 'family' 'outline' 'shadow' 'condense' Returns ------- font : openpyxl.styles.Font """ from openpyxl.styles import Font _font_key_map = { 'sz': 'size', 'b': 'bold', 'i': 'italic', 'u': 'underline', 'strike': 'strikethrough', 'vertalign': 'vertAlign', } font_kwargs = {} for k, v in font_dict.items(): if k in _font_key_map: k = _font_key_map[k] if k == 'color': v = cls._convert_to_color(v) font_kwargs[k] = v return Font(**font_kwargs) @classmethod def _convert_to_stop(cls, stop_seq): """ Convert ``stop_seq`` to a list of openpyxl v2 Color objects, suitable for initializing the ``GradientFill`` ``stop`` parameter. Parameters ---------- stop_seq : iterable An iterable that yields objects suitable for consumption by ``_convert_to_color``. Returns ------- stop : list of openpyxl.styles.Color """ return map(cls._convert_to_color, stop_seq) @classmethod def _convert_to_fill(cls, fill_dict): """ Convert ``fill_dict`` to an openpyxl v2 Fill object Parameters ---------- fill_dict : dict A dict with one or more of the following keys (or their synonyms), 'fill_type' ('patternType', 'patterntype') 'start_color' ('fgColor', 'fgcolor') 'end_color' ('bgColor', 'bgcolor') or one or more of the following keys (or their synonyms). 'type' ('fill_type') 'degree' 'left' 'right' 'top' 'bottom' 'stop' Returns ------- fill : openpyxl.styles.Fill """ from openpyxl.styles import PatternFill, GradientFill _pattern_fill_key_map = { 'patternType': 'fill_type', 'patterntype': 'fill_type', 'fgColor': 'start_color', 'fgcolor': 'start_color', 'bgColor': 'end_color', 'bgcolor': 'end_color', } _gradient_fill_key_map = { 'fill_type': 'type', } pfill_kwargs = {} gfill_kwargs = {} for k, v in fill_dict.items(): pk = gk = None if k in _pattern_fill_key_map: pk = _pattern_fill_key_map[k] if k in _gradient_fill_key_map: gk = _gradient_fill_key_map[k] if pk in ['start_color', 'end_color']: v = cls._convert_to_color(v) if gk == 'stop': v = cls._convert_to_stop(v) if pk: pfill_kwargs[pk] = v elif gk: gfill_kwargs[gk] = v else: pfill_kwargs[k] = v gfill_kwargs[k] = v try: return PatternFill(**pfill_kwargs) except TypeError: return GradientFill(**gfill_kwargs) @classmethod def _convert_to_side(cls, side_spec): """ Convert ``side_spec`` to an openpyxl v2 Side object Parameters ---------- side_spec : str, dict A string specifying the border style, or a dict with zero or more of the following keys (or their synonyms). 'style' ('border_style') 'color' Returns ------- side : openpyxl.styles.Side """ from openpyxl.styles import Side _side_key_map = { 'border_style': 'style', } if isinstance(side_spec, str): return Side(style=side_spec) side_kwargs = {} for k, v in side_spec.items(): if k in _side_key_map: k = _side_key_map[k] if k == 'color': v = cls._convert_to_color(v) side_kwargs[k] = v return Side(**side_kwargs) @classmethod def _convert_to_border(cls, border_dict): """ Convert ``border_dict`` to an openpyxl v2 Border object Parameters ---------- border_dict : dict A dict with zero or more of the following keys (or their synonyms). 'left' 'right' 'top' 'bottom' 'diagonal' 'diagonal_direction' 'vertical' 'horizontal' 'diagonalUp' ('diagonalup') 'diagonalDown' ('diagonaldown') 'outline' Returns ------- border : openpyxl.styles.Border """ from openpyxl.styles import Border _border_key_map = { 'diagonalup': 'diagonalUp', 'diagonaldown': 'diagonalDown', } border_kwargs = {} for k, v in border_dict.items(): if k in _border_key_map: k = _border_key_map[k] if k == 'color': v = cls._convert_to_color(v) if k in ['left', 'right', 'top', 'bottom', 'diagonal']: v = cls._convert_to_side(v) border_kwargs[k] = v return Border(**border_kwargs) @classmethod def _convert_to_alignment(cls, alignment_dict): """ Convert ``alignment_dict`` to an openpyxl v2 Alignment object Parameters ---------- alignment_dict : dict A dict with zero or more of the following keys (or their synonyms). 'horizontal' 'vertical' 'text_rotation' 'wrap_text' 'shrink_to_fit' 'indent' Returns ------- alignment : openpyxl.styles.Alignment """ from openpyxl.styles import Alignment return Alignment(**alignment_dict) @classmethod def _convert_to_number_format(cls, number_format_dict): """ Convert ``number_format_dict`` to an openpyxl v2.1.0 number format initializer. Parameters ---------- number_format_dict : dict A dict with zero or more of the following keys. 'format_code' : str Returns ------- number_format : str """ try: # >= 2.0.0 < 2.1.0 from openpyxl.styles import NumberFormat return NumberFormat(**number_format_dict) except: # >= 2.1.0 return number_format_dict['format_code'] @classmethod def _convert_to_protection(cls, protection_dict): """ Convert ``protection_dict`` to an openpyxl v2 Protection object. Parameters ---------- protection_dict : dict A dict with zero or more of the following keys. 'locked' 'hidden' Returns ------- """ from openpyxl.styles import Protection return Protection(**protection_dict) register_writer(_Openpyxl2Writer) class _XlwtWriter(ExcelWriter): engine = 'xlwt' supported_extensions = ('.xls',) def __init__(self, path, engine=None, encoding=None, **engine_kwargs): # Use the xlwt module as the Excel writer. import xlwt super(_XlwtWriter, self).__init__(path, **engine_kwargs) if encoding is None: encoding = 'ascii' self.book = xlwt.Workbook(encoding=encoding) self.fm_datetime = xlwt.easyxf(num_format_str=self.datetime_format) self.fm_date = xlwt.easyxf(num_format_str=self.date_format) def save(self): """ Save workbook to disk. """ return self.book.save(self.path) def write_cells(self, cells, sheet_name=None, startrow=0, startcol=0): # Write the frame cells using xlwt. sheet_name = self._get_sheet_name(sheet_name) if sheet_name in self.sheets: wks = self.sheets[sheet_name] else: wks = self.book.add_sheet(sheet_name) self.sheets[sheet_name] = wks style_dict = {} for cell in cells: val = _conv_value(cell.val) num_format_str = None if isinstance(cell.val, datetime.datetime): num_format_str = self.datetime_format elif isinstance(cell.val, datetime.date): num_format_str = self.date_format stylekey = json.dumps(cell.style) if num_format_str: stylekey += num_format_str if stylekey in style_dict: style = style_dict[stylekey] else: style = self._convert_to_style(cell.style, num_format_str) style_dict[stylekey] = style if cell.mergestart is not None and cell.mergeend is not None: wks.write_merge(startrow + cell.row, startrow + cell.mergestart, startcol + cell.col, startcol + cell.mergeend, val, style) else: wks.write(startrow + cell.row, startcol + cell.col, val, style) @classmethod def _style_to_xlwt(cls, item, firstlevel=True, field_sep=',', line_sep=';'): """helper which recursively generate an xlwt easy style string for example: hstyle = {"font": {"bold": True}, "border": {"top": "thin", "right": "thin", "bottom": "thin", "left": "thin"}, "align": {"horiz": "center"}} will be converted to font: bold on; \ border: top thin, right thin, bottom thin, left thin; \ align: horiz center; """ if hasattr(item, 'items'): if firstlevel: it = ["%s: %s" % (key, cls._style_to_xlwt(value, False)) for key, value in item.items()] out = "%s " % (line_sep).join(it) return out else: it = ["%s %s" % (key, cls._style_to_xlwt(value, False)) for key, value in item.items()] out = "%s " % (field_sep).join(it) return out else: item = "%s" % item item = item.replace("True", "on") item = item.replace("False", "off") return item @classmethod def _convert_to_style(cls, style_dict, num_format_str=None): """ converts a style_dict to an xlwt style object Parameters ---------- style_dict: style dictionary to convert num_format_str: optional number format string """ import xlwt if style_dict: xlwt_stylestr = cls._style_to_xlwt(style_dict) style = xlwt.easyxf(xlwt_stylestr, field_sep=',', line_sep=';') else: style = xlwt.XFStyle() if num_format_str is not None: style.num_format_str = num_format_str return style register_writer(_XlwtWriter) class _XlsxWriter(ExcelWriter): engine = 'xlsxwriter' supported_extensions = ('.xlsx',) def __init__(self, path, engine=None, date_format=None, datetime_format=None, **engine_kwargs): # Use the xlsxwriter module as the Excel writer. import xlsxwriter super(_XlsxWriter, self).__init__(path, engine=engine, date_format=date_format, datetime_format=datetime_format, **engine_kwargs) self.book = xlsxwriter.Workbook(path, **engine_kwargs) def save(self): """ Save workbook to disk. """ return self.book.close() def write_cells(self, cells, sheet_name=None, startrow=0, startcol=0): # Write the frame cells using xlsxwriter. sheet_name = self._get_sheet_name(sheet_name) if sheet_name in self.sheets: wks = self.sheets[sheet_name] else: wks = self.book.add_worksheet(sheet_name) self.sheets[sheet_name] = wks style_dict = {} for cell in cells: num_format_str = None if isinstance(cell.val, datetime.datetime): num_format_str = self.datetime_format elif isinstance(cell.val, datetime.date): num_format_str = self.date_format stylekey = json.dumps(cell.style) if num_format_str: stylekey += num_format_str if stylekey in style_dict: style = style_dict[stylekey] else: style = self._convert_to_style(cell.style, num_format_str) style_dict[stylekey] = style if cell.mergestart is not None and cell.mergeend is not None: wks.merge_range(startrow + cell.row, startcol + cell.col, startrow + cell.mergestart, startcol + cell.mergeend, cell.val, style) else: wks.write(startrow + cell.row, startcol + cell.col, cell.val, style) def _convert_to_style(self, style_dict, num_format_str=None): """ converts a style_dict to an xlsxwriter format object Parameters ---------- style_dict: style dictionary to convert num_format_str: optional number format string """ # If there is no formatting we don't create a format object. if num_format_str is None and style_dict is None: return None # Create a XlsxWriter format object. xl_format = self.book.add_format() if num_format_str is not None: xl_format.set_num_format(num_format_str) if style_dict is None: return xl_format # Map the cell font to XlsxWriter font properties. if style_dict.get('font'): font = style_dict['font'] if font.get('bold'): xl_format.set_bold() # Map the alignment to XlsxWriter alignment properties. alignment = style_dict.get('alignment') if alignment: if (alignment.get('horizontal') and alignment['horizontal'] == 'center'): xl_format.set_align('center') if (alignment.get('vertical') and alignment['vertical'] == 'top'): xl_format.set_align('top') # Map the cell borders to XlsxWriter border properties. if style_dict.get('borders'): xl_format.set_border() return xl_format register_writer(_XlsxWriter)
gpl-2.0
kobauman/education_tools
mastery_grids/experiment/splitAndCheck.py
1
3481
import sys import pandas as pd import numpy as np from scipy import stats def significant(array1,array2): try: arr1 = np.array(array1) arr2 = np.array(array2) print(stats.ttest_ind(arr1,arr2)[1]) return stats.ttest_ind(arr1,arr2)[1] < 0.1 except: print('PROBLEM!') return None def splitStudents(courseID, logins): df = pd.DataFrame.from_csv('../data/course2students/'+str(courseID)+'_students.csv',index_col=None) eqFlag = False iteration = 1 while eqFlag == False: print(iteration) iteration+=1 df['expGroup'] = np.random.choice([1,2],len(df)) print(list(df['expGroup'])) eqFlag = True #check significance of the difference allPrior1 = df[df['expGroup']==1]['allPrior'] allPrior1 = list(allPrior1[pd.notnull(allPrior1)]) allPrior2 = df[df['expGroup']==2]['allPrior'] allPrior2 = list(allPrior2[pd.notnull(allPrior2)]) if significant(allPrior1,allPrior2): eqFlag = False print(np.average(allPrior1),np.average(allPrior2),significant(allPrior1,allPrior2)) lastPrior1 = df[df['expGroup']==1]['lastPrior'] lastPrior1 = list(lastPrior1[pd.notnull(lastPrior1)]) lastPrior2 = df[df['expGroup']==2]['lastPrior'] lastPrior2 = list(lastPrior2[pd.notnull(lastPrior2)]) if significant(lastPrior1,lastPrior2): eqFlag = False print(np.average(lastPrior1),np.average(lastPrior2),significant(lastPrior1,lastPrior2)) CSPrior1 = df[df['expGroup']==1]['CSPrior'] CSPrior1 = list(CSPrior1[pd.notnull(CSPrior1)]) CSPrior2 = df[df['expGroup']==2]['CSPrior'] CSPrior2 = list(CSPrior2[pd.notnull(CSPrior2)]) if significant(CSPrior1,CSPrior2): eqFlag = False print(np.average(CSPrior1),np.average(CSPrior2),significant(CSPrior1,CSPrior2)) lastCSPrior1 = df[df['expGroup']==1]['lastCSPrior'] lastCSPrior1 = list(lastCSPrior1[pd.notnull(lastCSPrior1)]) lastCSPrior2 = df[df['expGroup']==2]['lastCSPrior'] lastCSPrior2 = list(lastCSPrior2[pd.notnull(lastCSPrior2)]) if significant(lastCSPrior1,lastCSPrior2): eqFlag = False print(np.average(lastCSPrior1),np.average(lastCSPrior2),significant(lastCSPrior1,lastCSPrior2)) print(df['expGroup'].value_counts()) #assign logins logins1 = pd.DataFrame.from_csv('../data/logins/'+logins+'_1.csv',index_col=None) logins2 = pd.DataFrame.from_csv('../data/logins/'+logins+'_2.csv',index_col=None) df.loc[df['expGroup']==1,'login'] = list(logins1['login'])[:len(df.loc[df['expGroup']==1])] df.loc[df['expGroup']==2,'login'] = list(logins2['login'])[:len(df.loc[df['expGroup']==2])] df.loc[df['expGroup']==1,'password'] = list(logins1['pswd'])[:len(df.loc[df['expGroup']==1])] df.loc[df['expGroup']==2,'password'] = list(logins2['pswd'])[:len(df.loc[df['expGroup']==2])] df.to_csv('../data/panel_data/'+str(courseID)+'_panel.csv',index=False) #run function if __name__ == "__main__": ''' Randomly split the students, checking the equivalence of the groups ''' if len(sys.argv) > 1: splitStudents(int(sys.argv[1]),sys.argv[2]) else: print("Appropriate format: python splitAndCheck.py 826 logins")
apache-2.0
quheng/scikit-learn
examples/linear_model/plot_sgd_loss_functions.py
249
1095
""" ========================== SGD: convex loss functions ========================== A plot that compares the various convex loss functions supported by :class:`sklearn.linear_model.SGDClassifier` . """ print(__doc__) import numpy as np import matplotlib.pyplot as plt def modified_huber_loss(y_true, y_pred): z = y_pred * y_true loss = -4 * z loss[z >= -1] = (1 - z[z >= -1]) ** 2 loss[z >= 1.] = 0 return loss xmin, xmax = -4, 4 xx = np.linspace(xmin, xmax, 100) plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], 'k-', label="Zero-one loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0), 'g-', label="Hinge loss") plt.plot(xx, -np.minimum(xx, 0), 'm-', label="Perceptron loss") plt.plot(xx, np.log2(1 + np.exp(-xx)), 'r-', label="Log loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, 'b-', label="Squared hinge loss") plt.plot(xx, modified_huber_loss(xx, 1), 'y--', label="Modified Huber loss") plt.ylim((0, 8)) plt.legend(loc="upper right") plt.xlabel(r"Decision function $f(x)$") plt.ylabel("$L(y, f(x))$") plt.show()
bsd-3-clause
andaag/scikit-learn
examples/linear_model/plot_ols_3d.py
350
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
jjtoharia/KaggleOutbrain
pySpark/temp_spark.py
1
32616
# -*- coding: utf-8 -*- """ Editor de Spyder Este es un archivo temporal """ # # Esto en [pyspark | GoogleCloud] NO hace falta (ya hay una seasión de spark lanzada y un sparkContext creado): # C:\Archivos de programa\Google\Cloud SDK>gcloud compute instances start cluster-jjtzapata-m cluster-jjtzapata-w-0 cluster-jjtzapata-w-1 --zone europe-west1-d # from pyspark.sql import SparkSession miSparkSession = SparkSession \ .builder \ .appName("Spark-Outbrain-JJTZ") \ .config("spark.some.config.option", "some-value") \ .getOrCreate() sc = miSparkSession.sparkContext #SparkSession.builder.master("local[*]").appName("Outbrain-JJTZ2").getOrCreate() # miSparkSession.stop() # sc.stop() #from pyspark import SparkConf, SparkContext #conf = SparkConf().setMaster("local").setAppName("Outbrain-JJTZ") #miSparkContext = SparkContext(conf = conf) #from pyspark.sql.types import StringType #from pyspark import SQLContext #sqlContext = SQLContext(miSparkContext) # # CARGAMOS DATOS: # s_input_path = "C:/Users/jtoharia/Downloads/Kaggle_Outbrain/" s_output_path = "C:/Users/jtoharia/Dropbox/AFI_JOSE/Kaggle/Outbrain/" #f = sc.textFile(s_input_path + "clicks_train_spark.csv") # 87.141.732 resgitros f = sc.textFile(s_input_path + "clicks_train_debug_spark.csv") # 54.348 registros f = sc.textFile(s_output_path + "clicks_train_debug_spark.csv") # 54.348 registros f = sc.textFile("gs://jjtzapata/clicks_train_debug_spark.csv") # 54.348 registros f = sc.textFile("/home/jjtzapata/clicks_train_debug_spark.csv") # 54.348 registros # # NOTA: Para copiar a la máquina de gcloud (cuidado que lo copia a otro usuarioque no es jjtoharia, seguramente /home/jjtzapata!): # gcloud compute copy-files "C:\Personal\Dropbox\AFI_JOSE\Kaggle\Outbrain\prueba.libsvm" cluster-jjtzapata-m: --zone europe-west1-d # # NOTA: Para copiar al Google Storage gs://jjtzapata # gsutil cp "C:\Personal\Dropbox\AFI_JOSE\Kaggle\Outbrain\prueba.libsvm" gs://jjtzapata # gsutil cp "C:\Personal\Dropbox\AFI_JOSE\Kaggle\Outbrain\clicks_train_debug_spark.csv" gs://jjtzapata # # Instancias (máquinas, clusters) Google Cloud Dataproc: # # Para ver la IP externa: gcloud compute instances list # gcloud compute instances start cluster-jjtzapata-m --zone europe-west1-d # f.cache() #f.count() # Tarda mucho! (6 min) 87.141.732 #Remove the first line (contains headers) cabecera = f.first() f = f.filter(lambda x: x != cabecera).map(lambda lin: lin.replace("\"","").replace("'","").split(",")) #f.count() # Tarda mucho! (6 min) 87.141.731 #f.take(1) campos_enteros = ['display_id', 'ad_document_id', 'document_id', 'ad_id', 'clicked', 'numAds', 'platform', 'hora', 'dia', 'ad_campaign_id', 'ad_advertiser_id', 'source_id', 'publisher_id', 'ad_source_id', 'ad_publisher_id', 'pais_US', 'pais_GB' ,'pais_CA' ,'pais_resto'] campos_string = ['uuid'] # Eliminados: 'geo_location', 'geo_loc.country', 'pais', 'publish_time', 'ad_publish_time' # NOTA: Eliminado 'uuid' también (de clicks_train_debug_spark.csv) from pyspark.sql.types import StringType, IntegerType, FloatType, StructField, StructType def mi_estructura(nombre_campo): if(nombre_campo in campos_enteros): return(StructField(nombre_campo, IntegerType(), True)) elif(nombre_campo in campos_string): return(StructField(nombre_campo, StringType(), True)) else: return(StructField(nombre_campo, FloatType(), True)) campos = [mi_estructura(fld_name) for fld_name in cabecera.split(",")] estructura = StructType(campos) # toDF() NO FUNCIONA PORQUE LOS TIPOS NO COINCIDEN (?) full_trainset = f.toDF(estructura) # ASÍ QUE LEEMOS DE NUEVO EL CSV, PERO AHORA CON LA ESTRUCTURA (SCHEMA): full_trainset = spark.read.csv("gs://jjtzapata/clicks_train_debug_spark.csv", schema = estructura, header = True, mode = "DROPMALFORMED") #full_trainset.createOrReplaceTempView("full_trainset") #full_trainset.take(2) #full_trainset.describe().show() # # FIND CORRELATION BETWEEN PREDICTORS AND TARGET: # for i in full_trainset.columns: if not( isinstance(full_trainset.select(i).take(1)[0][0], str) | isinstance(full_trainset.select(i).take(1)[0][0], unicode) ) : p = full_trainset.stat.corr("clicked",i) if(p > 0.5): print( "Correlation to OUTCOME (clicked) for ", i, p) # # SELECCIONAMOS VARIABLES: # from pyspark.ml.linalg import Vectors def transformToLabeledPoint(row) : lp = ( row["clicked"], \ Vectors.dense([ row["numAds"], \ row["timestamp"], \ row["topics_prob"], \ row["ad_topics_prob"], \ row["entities_prob"], \ row["ad_entities_prob"], \ row["categories_prob"], \ row["ad_categories_prob"] ])) return lp train_lp = full_trainset.rdd.map(transformToLabeledPoint) #train_lp.collect()[:5] train_df = spark.createDataFrame(train_lp, ["label", "features"])# miSparkSession.createDataFrame(train_lp, ["label", "features"]) #train_df.select("label","features").show(10) # # PCA (PRINCIPAL COMPONENTS): # from pyspark.ml.feature import PCA numComps = 3 bankPCA = PCA(k=numComps, inputCol="features", outputCol="pcaFeatures") # Nos quedamos con las 3 primeras componentes principales pcaModel = bankPCA.fit(train_df) pcaResult = pcaModel.transform(train_df).select("label","pcaFeatures") pcaResult.show(truncate=False) #### Hasta aquí todo bien (en Google Cloud Dataproc)! # Para conectarse al Linux de Google Cloud Dataproc: # - Instalar Google Cloud SDK o mejor usar la web (google cloud console) o usar Kitty (coñazo crear ssh keys, etc.) # - abrimos Spark-Python (pyspark) # - Ya está ("miSparkSession" es "spark" y "sc" es "sc") # Para usar XGBoost, hay que instalarlo: # 1.- en la consola de Linux: [ssh cluster-jjtzapata-m.europe-west1-d.evident-galaxy-150614] # git clone --recursive https://github.com/dmlc/xgboost # cd xgboost/ # make -j4 # sudo apt-get install python-setuptools # [Instalar NumPy, SciPy, etc. (TARDA UN HUEVO):] sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose # cd python-package # sudo python setup.py install # # hadoop fs -copyFromLocal /home/jjtzapata/trainset.libsvm # import xgboost as xgb dtrain = xgb.DMatrix("/home/jjtzapata/trainset.libsvm#dtrain.cache") # NOTA "#dtrain.cache" es para la versión con caché de disco, para ficheros "GRANDES"... #dtrain = xgb.DMatrix("hdfs:///trainset.libsvm/#dtrain.cache") # ESTO NO FUCNIONA IS XGBOOST NO ESTÁ COMPILADO CON LA OPCIÓN "HDFS"... # dtrain = xgb.DMatrix(train_df.select("features"), label = train_df.select("label")) param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic', 'eval_metric':'map'} num_round = 20 cv_xr = xgb.cv(param, dtrain, num_boost_round=num_round) cv_xr # help(xgb.cv) # para ver todas las opciones! # make prediction dtest = xgb.DMatrix("/home/jjtzapata/testset.libsvm") preds = bst.predict(dtest) preds[1:10] dtrain[1:10,1:3] xr = xgb.XGBClassifier cv_xr = xgb.cv.fit(full_trainset, y = full_trainset['clicked']) xr.predict(X_test) # # H2O: # # git clone http://github.com/h2oai/sparkling-water # cd sparkling-water # sudo su # # export SPARK_HOME="/path/to/spark/installation" # export SPARK_HOME=/usr/lib/spark # export MASTER='local[*]' # mkdir -p $(pwd)/private/ # curl -s http://h2o-release.s3.amazonaws.com/h2o/rel-turing/10/Python/h2o-3.10.0.10-py2.py3-none-any.whl > $(pwd)/private/h2o.whl # export H2O_PYTHON_WHEEL=$(pwd)/private/h2o.whl # ./gradlew build -x check # export HADOOP_HOME=/usr/lib/spark cd sparkling-water bin/pysparkling #from operator import add #wc = f.flatMap(lambda x: x.split(" ")).map(lambda x: (x,1)).reduceByKey(add) #print(wc.collect()) #f.saveAsTextFile("clicks_train_prueba.csv") # ******************************************************************************************************************************************** # ******************************************************************************************************************************************** # virtualenv + pyspark + keras + tensorlfow: [http://henning.kropponline.de/2016/09/17/running-pyspark-with-virtualenv/] # NOTA: Lo que sigue hay que hacerlo en cada máquina del cluster SPARK (master y nodos): NOTA: Estamos en: jjtoharia@cluster-jjtzapata-m:~$ [pwd = /home/jjtoharia] (o en cluster-jjtzapata-w0 o en cluster-jjtzapata-w1...) sudo apt-get install python-pip sudo pip install virtualenv virtualenv kaggle virtualenv --relocatable kaggle source kaggle/bin/activate # No sé si hace falta numpy, pero lo hice antes de instalar keras: pip install numpy # Mostrar la versión de numpy: python -c "import numpy as np; print('Python numpy v. ' + np.version.version)" pip install keras pip install tensorflow # Para Windows (64 bits), si pip no funciona: [https://www.tensorflow.org/get_started/os_setup#pip_installation_on_windows] # conda install python=3.5 [para hacer un "downgrade" de Anaconda a Python 3.5, mientras tensorflow para Windows llega a la 3.6 o superior] # # pip install --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-0.12.1-cp35-cp35m-win_amd64.whl # Verificar keras en python: python -c "import keras" # cambiar "theano" por "tensorflow", si hace falta - [Ctrl-X] - [Y]: # nano .keras/keras.cnf pip install pandas pip install sklearn # Para leer/guardar pesos en formato .hdf5: pip install h5py # Para compartir ficheros binarios (dataframes) entre R-Python # https://www.google.es/amp/s/blog.rstudio.org/2016/03/29/feather/amp/ sudo apt-get install python-dev pip install cython pip install feather-format # # otra forma de instalarlo (Windows Anaconda3, p.ej.)] # conda install feather-format -c conda-forge # elephas (para usar keras en SPARK): # sudo apt-get install python-dev # tarda... pip install elephas # para elephas (?): pip install flask # Para que funcione con keras v1.xxx: pip install --upgrade --no-deps git+git://github.com/maxpumperla/elephas sudo nano /etc/spark/conf/spark-env.sh # Añadir al final del fichero spark-env.sh: if [ -z "${PYSPARK_PYTHON}" ]; then export PYSPARK_PYTHON=/home/jjtoharia/kaggle/bin/python2.7 fi NOTA: De esta forma no hace falta arrancar el virtualenv (con source xxx/bin/activate). Se usará lo instalado en ese lugar de cada máquina (master y nodos). # sudo reboot # ******************************************************************************************************************************************** # ******************************************************************************************************************************************** # [en cmd] source kaggle/bin/activate python # [en python/pyspark] [NOTA: cluster-1-m es el nombre del servidor master del cluster de Spark, que antes fue cluster-jjtzapata-m] import time def timefunc(f): def f_timer(*args, **kwargs): start = time.time() result = f(*args, **kwargs) end = time.time() print f.__name__, ': ', '{:,.4f}'.format(end - start), ' segs.' return result return f_timer s_input_path = 'kaggle/Outbrain/In/python/' @timefunc def from_feather_to_csv(fich = 'clicks_X_valid_4-1.feather', s_input_path = 'kaggle/Outbrain/In/python/'): from feather import read_dataframe as fthr_read_dataframe from numpy import savetxt as np_savetxt X = fthr_read_dataframe(s_input_path + fich) fich = fich.replace('.feather', '_para_spark.csv') # # Quitamos NAs (ponemos ceros): NO debería haber... (¡¡¡PERO HAY!!!) (uuid_pgvw_hora_min, p.ej.) # X[isnan(X)] = 0 np_savetxt(s_input_path + fich, X, delimiter=',') print(fich, X.values.shape, ' Ok.') return(fich) def from_feather_to_csv_all(): from os.path import isfile as os_path_isfile for seq_len in range(2,13): for nF in range(1, 9999): # 1,...,(n-1) fichtr = 'clicks_X_train_' + str(seq_len) + '-' + str(nF) + '.feather' if not os_path_isfile(s_input_path + fichtr): break # Ya no hay más fich = 'clicks_X_train_' + str(seq_len) + '-' + str(nF) + '.feather'; fich = from_feather_to_csv(fich) fich = 'clicks_X_valid_' + str(seq_len) + '-' + str(nF) + '.feather'; fich = from_feather_to_csv(fich) fich = 'clicks_X_test_' + str(seq_len) + '-' + str(nF) + '.feather'; fich = from_feather_to_csv(fich) fich = 'clicks_y_train_' + str(seq_len) + '-' + str(nF) + '.feather'; fich = from_feather_to_csv(fich) fich = 'clicks_y_valid_' + str(seq_len) + '-' + str(nF) + '.feather'; fich = from_feather_to_csv(fich) fich = 'clicks_y_test_' + str(seq_len) + '-' + str(nF) + '.feather'; fich = from_feather_to_csv(fich) from_feather_to_csv_all() [en cmd] # hadoop fs -copyFromLocal kaggle/Outbrain/In/python/clicks_*_*_*-*.csv hadoop fs -rm clicks_X_train_4.csv hadoop fs -appendToFile kaggle/Outbrain/In/python/clicks_X_train_4-*_para_spark.csv clicks_X_train_4.csv hadoop fs -appendToFile kaggle/Outbrain/In/python/clicks_y_train_4-*_para_spark.csv clicks_y_train_4.csv hadoop fs -appendToFile kaggle/Outbrain/In/python/clicks_X_valid_4-*_para_spark.csv clicks_X_valid_4.csv hadoop fs -appendToFile kaggle/Outbrain/In/python/clicks_y_valid_4-*_para_spark.csv clicks_y_valid_4.csv hadoop fs -appendToFile kaggle/Outbrain/In/python/clicks_X_test_4-*_para_spark.csv clicks_X_test_4.csv hadoop fs -appendToFile kaggle/Outbrain/In/python/clicks_y_test_4-*_para_spark.csv clicks_y_test_4.csv hadoop fs -ls ls -l kaggle/Outbrain/In/python/clicks_X_train_4-*.csv [en pyspark] [NOTA: cluster-1-m es el nombre del servidor master del cluster de Spark, que antes fue cluster-jjtzapata-m] # s_spark_inputpath = 'hdfs://cluster-1-m:8020/user/jjtoharia/' # from pyspark.sql.types import StructType, StructField # from pyspark.sql.types import DoubleType, IntegerType, StringType # schema = StructType([ # StructField("A", IntegerType()), # StructField("B", DoubleType()), # StructField("C", StringType()) # ]) # schema = StructType([StructField("A", DoubleType())]) # X = spark.read.csv(s_spark_inputpath + 'clicks_X_valid_4-1_para_spark.csv', header=False, mode="DROPMALFORMED", schema=schema) # y = spark.read.csv(s_spark_inputpath + 'clicks_y_valid_4-1_para_spark.csv', header=False, mode="DROPMALFORMED", schema=schema) # X.collect()[5] s_spark_inputpath = 'hdfs://cluster-1-m:8020/user/jjtoharia/' # Incluimos utilidad pyspark_csv al contexto de Spark: sc.addPyFile('kaggle/pyspark_csv.py') # E importamos lo que queremos de la misma: import pyspark_csv as pycsv txt_rdd = sc.textFile(s_spark_inputpath + 'clicks_X_valid_4.csv') txt_rdd.count() first_rec = txt_rdd.top(1) first_rec = first_rec[0].split(',') num_cols = len(first_rec) from pandas import read_csv from numpy import float64 as np_float64 X = read_csv(s_input_path + 'clicks_X_valid_4-1_para_spark.csv', dtype=np_float64, header = None) X2 = read_csv(s_input_path + 'clicks_X_valid_4-2_para_spark.csv', dtype=np_float64, header = None) y = read_csv(s_input_path + 'clicks_y_valid_4-1_para_spark.csv', dtype=np_float64, header = None) y2 = read_csv(s_input_path + 'clicks_y_valid_4-2_para_spark.csv', dtype=np_float64, header = None) from numpy import concatenate as np_concat # Para concatenar varios ficheros en uno (leer_y_reshape) X = np_concat((X, X2), axis=0) y = np_concat((y, y2), axis=0) X.shape, y.shape num_cols = X.shape[1] # NOTA: Cuidado que se ordena (por la primera columna...) dfX = pycsv.csvToDataFrame(sqlCtx, txt_rdd, columns=['Col_' + str(i) for i in range(0,num_cols)]) txt_rdd = sc.textFile(s_spark_inputpath + 'clicks_y_valid_4.csv') # NOTA: Cuidado que se ordena (por la primera columna...) dfy = pycsv.csvToDataFrame(sqlCtx, txt_rdd, columns=['Clicked']) dfX.select(['Col_' + str(i) for i in range(0,4)]).show(10) dfy.select('Clicked').show(10) # Ahora estos DataFrame tienen que convertirse en uno como hace [rdd = to_simple_rdd(sc, X_train, y_train)] PENDIENTE***** from elephas.utils.rdd_utils import to_simple_rdd rdd = to_simple_rdd(sc, X_train, Y_train) [?] sc.statusTracker().getActiveJobsIds() sc.statusTracker().getActiveStageIds() miSparkSession.stop() sc.stop() # -------------------------- # # from: https://github.com/maxpumperla/elephas # from keras.models import Sequential # from keras.layers.recurrent import LSTM # from keras.layers.core import Dense, Dropout, Activation # from keras.optimizers import SGD # seq_len = 4 # model = Sequential() # #model.add(Dense(128, input_dim=503)) # #model.add(Activation('relu')) # model.add(LSTM(input_length=seq_len, input_dim=num_cols, output_dim=lstm_neuronas_ini, dropout_W=dropout_in, dropout_U=dropout_U, return_sequences=(seq_len != 1))) # , activation='relu')) # #model.add(Dropout(0.2)) # model.add(Dense(128)) # model.add(Activation('relu')) # model.add(Dropout(0.2)) # model.add(Dense(2)) # Es 2 por culpa de to_categorical() # model.add(Activation('softmax')) # model.compile(loss='categorical_crossentropy', optimizer=SGD()) # model.get_weights() # from pandas import read_csv # from numpy import float64 as np_float64 # s_input_path = 'kaggle/Outbrain/In/python/' # X = read_csv(s_input_path + 'clicks_X_valid_4-1_para_spark.csv', dtype=np_float64, header = None) # X = X.values # y = read_csv(s_input_path + 'clicks_y_valid_4-1_para_spark.csv', dtype=int, header = None) # y = y.values # from keras.utils.np_utils import to_categorical # X2, y2 = mi_reshape(X, to_categorical(y), seq_len) # Ponemos dos clases (columnas) a y # X.shape, y.shape, X2.shape, y2.shape # from elephas.utils.rdd_utils import to_simple_rdd # rdd = to_simple_rdd(sc, X, y_bin) # y[:,0]) # from elephas.spark_model import SparkModel # from elephas import optimizers as elephas_optimizers # adagrad = elephas_optimizers.Adagrad() # mi_spark_model = SparkModel(sc,model, optimizer=adagrad, frequency='epoch', mode='asynchronous', num_workers=4) # mi_spark_model.train(rdd, nb_epoch=20, batch_size=batchsize, verbose=0, validation_split=0.1) # #scores = model.evaluate(X, y_bin, verbose=0, batch_size=batchsize) # #print('1 - Loss: %.4f%%' % (100-scores[0]*100)) # #probs = model.predict_proba(X_test, batch_size=batchsize)[:,1] # Nos quedamos con las probs del "1" # probs = mi_spark_model.predict(X_test)[:,1] # Nos quedamos con las probs del "1" # print('1 - Loss: %.4f%%' % (100*(1-log_loss(y_bin[:,1], probs)))) # # ------------------------------------------------------------ import time def timefunc(f): def f_timer(*args, **kwargs): start = time.time() result = f(*args, **kwargs) end = time.time() print f.__name__, ': ', '{:,.4f}'.format(end - start), ' segs.' return result return f_timer from keras.models import Sequential from keras.layers.core import Dense from keras.layers.recurrent import LSTM # -> import crear_modelo @timefunc def crear_modelo(seq_len, num_capas, num_cols, lstm_neuronas_ini, lstm_neuronas_mid, lstm_neuronas_fin, dropout_in, dropout_U, mi_loss, mi_optimizador, mis_metrics, b_Spark = False): print('Create the model:') model = Sequential() #model.add(Embedding(input_dim=top_words, output_dim=embedding_vector_length, input_length=seq_len)) if(num_capas == 1): model.add(LSTM(input_length=seq_len, input_dim=num_cols, output_dim=lstm_neuronas_ini, dropout_W=dropout_in, dropout_U=dropout_U, return_sequences=(seq_len != 1))) # , activation='relu')) else: model.add(LSTM(input_length=seq_len, input_dim=num_cols, output_dim=lstm_neuronas_ini, dropout_W=dropout_in, dropout_U=dropout_U, return_sequences=True)) # , activation='relu')) if(num_capas == 2): model.add(LSTM(output_dim=lstm_neuronas_fin, dropout_W=dropout_in, dropout_U=dropout_U, return_sequences=(seq_len != 1))) # , activation='relu')) else: model.add(LSTM(output_dim=lstm_neuronas_mid, dropout_W=dropout_in, dropout_U=dropout_U, return_sequences=True)) # , activation='relu')) model.add(LSTM(output_dim=lstm_neuronas_fin, dropout_W=dropout_in, dropout_U=dropout_U, return_sequences=(seq_len != 1))) # , activation='relu')) # Capa de salida: model.add(LSTM(output_dim=(2 if b_Spark else 1), dropout_W=dropout_in, dropout_U=dropout_U, activation='sigmoid', return_sequences=(seq_len != 1))) model.compile(loss=mi_loss, optimizer=mi_optimizador, metrics=mis_metrics) print(model.summary()) return(model) # ######################################################## # PREPARAMOS PRIMERO EL RDD Y LO GUARDAMOS EN HADOOP: # ######################################################## from keras.utils.np_utils import to_categorical from numpy import reshape as np_reshape from numpy import concatenate as np_concat # Para concatenar varios ficheros en uno (leer_y_reshape) from pandas import read_csv from numpy import float64 as np_float64 from os.path import isfile as os_path_isfile def mi_reshape(X, y, seq_len = 1): if len(X.shape) == 3: X = np_reshape(X, (int((X.shape[0] * X.shape[1])/seq_len), seq_len, X.shape[2])) else: X = np_reshape(X, (int(X.shape[0]/seq_len), seq_len, X.shape[1])) if not y is None: if len(y.shape) == 3: y = np_reshape(y, (int((y.shape[0] * y.shape[1])/seq_len), seq_len, y.shape[2])) else: if seq_len != 1: y = np_reshape(y, (int(y.shape[0]/seq_len), seq_len, y.shape[1])) print(X.shape, y.shape) else: print(X.shape) return [X, y] def mi_reshape_probs(probs, seq_len = 1): if len(probs.shape) == 3: if seq_len != probs.shape[1]: print('NOTA: La dimensión Seq_Len de probs NO coincide con el param. seq_len!') probs = np_reshape(probs, (probs.shape[0] * probs.shape[1], probs.shape[2])) print(probs.shape) return(probs) b_Spark = True s_input_path = 'kaggle/Outbrain/In/python/' s_output_path = 'kaggle/Outbrain/Out/python/' s_spark_inputpath = 'hdfs://cluster-1-m:8020/user/jjtoharia/' numSparkWorkers = 4 def preparar_RDD(seq_len = 0): from elephas.utils.rdd_utils import to_simple_rdd from os import rename as os_rename for nF in range(1, 99): # 1,...,(n-1) fichtr = 'clicks_X_train_' + str(seq_len) + '-' + str(nF) + '_para_spark.csv' if os_path_isfile(s_input_path + fichtr): print('Leyendo ficheros train+valid ' + str(nF) + ' - numAds ' + str(seq_len) + '...') X_train = read_csv(s_input_path + 'clicks_X_train_' + str(seq_len) + '-' + str(nF) + '_para_spark.csv', dtype=np_float64, header = None).values y_train = read_csv(s_input_path + 'clicks_y_train_' + str(seq_len) + '-' + str(nF) + '_para_spark.csv', dtype=int, header = None).values X_valid = read_csv(s_input_path + 'clicks_X_valid_' + str(seq_len) + '-' + str(nF) + '_para_spark.csv', dtype=np_float64, header = None).values y_valid = read_csv(s_input_path + 'clicks_y_valid_' + str(seq_len) + '-' + str(nF) + '_para_spark.csv', dtype=int, header = None).values print(X_train.shape, y_train.shape, X_valid.shape, y_valid.shape) X_train, y_train = mi_reshape(X_train, to_categorical(y_train), seq_len) X_valid, y_valid = mi_reshape(X_valid, to_categorical(y_valid), seq_len) X_train = np_concat((X_train, X_valid), axis=0) # Incluimos validset dentro del trainset en Spark y_train = np_concat((y_train, y_valid), axis=0) # Incluimos validset dentro del trainset en Spark print(X_train.shape, y_train.shape) print('Creando RDD (train+valid) ' + str(nF) + ' - numAds ' + str(seq_len) + '...') rdd_ini = to_simple_rdd(sc, X_train, y_train) # Convertimos ndarray [ i.e. array(...) ] en list [ i.e. [...] ]: rdd_lista = rdd_ini.map(lambda i: map(lambda s: s.tolist(), i)) # Y ahora guardamos como txt: rdd_lista.coalesce(numSparkWorkers, True).saveAsTextFile(s_spark_inputpath + 'clicks_train_seq' + str(seq_len) + '-' + str(nF) + '_rdd') # Forzamos a guardarlo en 4 trozos (al menos) print('Ok. Guardado en HDFS el RDD (train+valid) ' + str(nF) + ' - numAds ' + str(seq_len) + '.') os_rename(s_input_path + fichtr, s_input_path + 'ok_en_hdfs/' + 'clicks_X_train_' + str(seq_len) + '-' + str(nF) + '_para_spark.csv') for seq_len in range(2,13): preparar_RDD(seq_len) seq_len = 4 dropout_in = 0.3 dropout_U = 0.3 batchsize = 1000 num_capas = 1 # 1, 2 ó 3 lstm_neuronas_ini = 48 # 192 lstm_neuronas_mid = 24 # 48 lstm_neuronas_fin = 12 # 12 mi_early_stop = 10 # si no hay mejora (en val_loss) en N rounds seguidos, se detiene el fit (training) iteraciones = 2 mi_loss = 'binary_crossentropy' # mi_loss = 'mean_absolute_error' mi_optimizador = 'adam' mis_metrics = ['accuracy'] # mis_metrics = ['precision'] # ######################################################## # # LEEMOS DATOS (rdd) YA PREPARADOS DESDE HADOOP: # ######################################################## rdd_train_txt = sc.textFile(s_spark_inputpath + 'clicks_train_seq' + str(seq_len) + '-1_rdd') from numpy import array as np_array rdd_train_ok = rdd_train_txt.map(lambda s: eval(s)).map(lambda j: map(lambda s: np_array(s), j)) print(rdd_train_ok.getNumPartitions()) # Debería devolver numSparkWorkers == 4 (o más) # Obtenemos el número de columnas (num_cols) y el tamaño de la secuencia (seq_len) del RDD: primer_reg = rdd_train_ok.take(1) seq_len = len(primer_reg[0][0]) # 4 num_cols = len(primer_reg[0][0][0]) # = 503 num_reg_train = rdd_train_ok.count() print('seq_len = ', seq_len, 'num_cols = ', num_cols) # ######################################################## # LEEMOS DATOS DE TEST (ndarray), PARA EVALUAR: # ######################################################## X_test = read_csv(s_input_path + 'clicks_X_test_' + str(seq_len) + '-1_para_spark.csv', dtype=np_float64, header = None).values y_test = read_csv(s_input_path + 'clicks_y_test_' + str(seq_len) + '-1_para_spark.csv', dtype=int, header = None).values print(X_test.shape, y_test.shape) X3_test, y3_test = mi_reshape(X_test, to_categorical(y_test), seq_len) print(X3_test.shape, y3_test.shape) # ######################################################## model=crear_modelo(seq_len, num_capas, num_cols, lstm_neuronas_ini, lstm_neuronas_mid, lstm_neuronas_fin, dropout_in, dropout_U, mi_loss, mi_optimizador, mis_metrics, b_Spark) # ######################################################## from elephas.spark_model import SparkModel from elephas import optimizers as elephas_optimizers adagrad = elephas_optimizers.Adagrad() mi_spark_model = SparkModel(sc,model, optimizer=adagrad, frequency='epoch', mode='asynchronous', num_workers=numSparkWorkers) # ######################################################## print(' =============== ENTRENANDO... ================= ') # ######################################################## from sklearn.metrics import log_loss @timefunc def entrenar_spark(mi_spark_model, rdd_train_ok, iteraciones, batchsize, verbose=0, validation_split=0.1): mi_spark_model.train(rdd_train_ok, nb_epoch=iteraciones, batch_size=batchsize, verbose=verbose, validation_split=validation_split) @timefunc def evaluar_spark(mi_spark_model, X3_test, y_test): seq_len = X_test.shape[1] #scores = model.evaluate(X3_test, y3_test, verbose=0, batch_size=batchsize) #print('1 - Loss: %.2f%%' % (100-scores[0]*100)) #probs = model.predict_proba(X3_test, batch_size=batchsize)[:,1] # Nos quedamos con las probs del "1" probs = mi_spark_model.predict(X3_test) print(probs.shape) # probs = mi_reshape_probs(probs, seq_len)[:,1:] # Nos quedamos con las probs del "1" (por alguna razón aparecen a cero... ???) print('1 - Loss: %.4f%%' % (100*(1-log_loss(y_test, mi_reshape_probs(probs, seq_len)[:,1:])))) return(probs) # ######################################################## print(' =============== ENTRENANDO... ================= ') # ######################################################## iteraciones = 5 entrenar_spark(mi_spark_model, rdd_train_ok, iteraciones, batchsize, verbose = 1, validation_split = 0.2) # ######################################################## print(' =============== EVALUAMOS... ================= ') # ######################################################## probs = evaluar_spark(mi_spark_model, X3_test, y_test) probs[0:2] # ######################################################## print(' ======== GUARDAMOS PREDS Y MODELO... =========') # ######################################################## from numpy import savetxt as np_savetxt def descr_modelo(model, num_reg_train, batchsize, tipo_descr = 1): model_conf_capa_1 = model.get_config()[0]['config'] num_cols = model_conf_capa_1['input_dim'] dropout_in = model_conf_capa_1['dropout_W'] dropout_U = model_conf_capa_1['dropout_U'] num_capas = len(model.get_config()) - 1 seq_len = model_conf_capa_1['input_length'] lstm_neuronas_ini = model_conf_capa_1['output_dim'] lstm_neuronas_mid = 0 lstm_neuronas_fin = 0 if(num_capas > 1): lstm_neuronas_fin = model.get_config()[1]['config']['output_dim'] if(num_capas > 2): lstm_neuronas_mid = lstm_neuronas_fin lstm_neuronas_fin = model.get_config()[2]['config']['output_dim'] if tipo_descr == 1: descr = 'bch-' + str(batchsize) + '_dri-' + str(dropout_in) + '_dru-' + str(dropout_U) + '_reg-' + str(num_reg_train) + '_col-' + str(num_cols) descr = descr + '_ini-' + str(lstm_neuronas_ini) + '_mid-' + str(lstm_neuronas_mid) + '_fin-' + str(lstm_neuronas_fin) descr = descr + '_seq-' + str(seq_len) else: # if tipo_descr == 2: descr = '(BatchSize = ' + str(batchsize) + ')' + '. (Dropout_in = ' + str(dropout_in) + '. Dropout_U = ' + str(dropout_U) + ')' descr = descr + '. (SeqLen = ' + str(seq_len) + ')' descr = descr + ' - (Nodos = ' + str(lstm_neuronas_ini) descr = descr + ( ',' + str(lstm_neuronas_mid) if num_capas == 3 else '') descr = descr + ( ',' + str(lstm_neuronas_fin) if num_capas >= 2 else '') + ')' descr = descr + ' - ' + str(num_reg_train) + ' regs/' + str(num_cols) + ' cols' return(descr) def guardar_modelo_json(model, pre_post, batchsize): fichname = descr_modelo(model, num_reg_train, batchsize) fichname = 'modelo' + pre_post + '_' + fichname + '.json' print('Guardando modelo (json) [' + 'python/' + fichname + ']...') with open(s_output_path + fichname, 'w') as json_file: json_file.write(model.to_json()) @timefunc def guardar_preds(model, X_test, indice = 0, b_csv = True, numAds = 0, numAdsFich = 0, num_reg_train = 0, num_cols = 0, iteraciones = 0, batchsize = 0, dropout_in = 0, dropout_U = 0): mi_X_train_shape = [num_reg_train, num_cols] str_fich = '_debug' if numAds == 0 else '_{n}-{m}'.format(n=numAds,m=numAdsFich) str_fich = 'test_probs' + str_fich + ('' if indice == 0 else '_' + str(indice)) print('Guardando resultados (probs) en ' + 'python/' + str_fich + ('.csv' if b_csv else '.feather') + '...') #probs = model.predict_proba(X_test, batch_size=batchsize) probs = mi_spark_model.predict(X3_test) probs = mi_reshape_probs(probs, seq_len)[:,1:] # Volvemos a dos dimensiones # print(probs[1:10]) if b_csv: np_savetxt(s_input_path + str_fich + '.csv', probs, delimiter=',') else: fthr_write_dataframe(DataFrame(probs), s_input_path + str_fich + '.feather') print('\nOk. [' + 'In/python/' + str_fich + ('.csv' if b_csv else '.feather') + ']') np_savetxt(s_output_path + str_fich + '_' + str(iteraciones) + '_' + str(batchsize) + '-' + str(num_reg_train) + '.log', mi_X_train_shape, delimiter=',') print('Ok. [' + 'python/' + str_fich + '_' + str(iteraciones) + '_' + str(batchsize) + '-' + str(num_reg_train) + '.log]') guardar_modelo_json(model, 'post', batchsize) # Guardamos estructura también al final. print('\nOk. (Iter = ' + str(iteraciones) + '. BatchSize = ' + str(batchsize) + ')' + '. (Dropout_in = ' + str(dropout_in) + '. Dropout_U = ' + str(dropout_U) + ') - ' + str(num_reg_train) + ' regs/' + str(num_cols) + ' cols') guardar_preds(model, X3_test, 0, True, seq_len, 0, num_reg_train, num_cols, iteraciones, batchsize, dropout_in, dropout_U)
mit
larsmans/scikit-learn
examples/model_selection/plot_train_error_vs_test_error.py
349
2577
""" ========================= Train error vs Test error ========================= Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on training data. As the regularization increases the performance on train decreases while the performance on test is optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model and the performance is measured using the explained variance a.k.a. R^2. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from sklearn import linear_model ############################################################################### # Generate sample data n_samples_train, n_samples_test, n_features = 75, 150, 500 np.random.seed(0) coef = np.random.randn(n_features) coef[50:] = 0.0 # only the top 10 features are impacting the model X = np.random.randn(n_samples_train + n_samples_test, n_features) y = np.dot(X, coef) # Split train and test data X_train, X_test = X[:n_samples_train], X[n_samples_train:] y_train, y_test = y[:n_samples_train], y[n_samples_train:] ############################################################################### # Compute train and test errors alphas = np.logspace(-5, 1, 60) enet = linear_model.ElasticNet(l1_ratio=0.7) train_errors = list() test_errors = list() for alpha in alphas: enet.set_params(alpha=alpha) enet.fit(X_train, y_train) train_errors.append(enet.score(X_train, y_train)) test_errors.append(enet.score(X_test, y_test)) i_alpha_optim = np.argmax(test_errors) alpha_optim = alphas[i_alpha_optim] print("Optimal regularization parameter : %s" % alpha_optim) # Estimate the coef_ on full data with optimal regularization parameter enet.set_params(alpha=alpha_optim) coef_ = enet.fit(X, y).coef_ ############################################################################### # Plot results functions import matplotlib.pyplot as plt plt.subplot(2, 1, 1) plt.semilogx(alphas, train_errors, label='Train') plt.semilogx(alphas, test_errors, label='Test') plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color='k', linewidth=3, label='Optimum on test') plt.legend(loc='lower left') plt.ylim([0, 1.2]) plt.xlabel('Regularization parameter') plt.ylabel('Performance') # Show estimated coef_ vs true coef plt.subplot(2, 1, 2) plt.plot(coef, label='True coef') plt.plot(coef_, label='Estimated coef') plt.legend() plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26) plt.show()
bsd-3-clause
pxsdirac/tushare
tushare/datayes/IV.py
10
3423
# -*- coding:utf-8 -*- """ 通联数据 Created on 2015/10/12 @author: Jimmy Liu @group : waditu @contact: [email protected] """ from pandas.compat import StringIO import pandas as pd from tushare.util import vars as vs from tushare.util.common import Client from tushare.util import upass as up class IV(): def __init__(self, client=None): if client is None: self.client = Client(up.get_token()) else: self.client = client def DerIv(self, beginDate='', endDate='', optID='', SecID='', field=''): """ 原始隐含波动率,包括期权价格、累计成交量、持仓量、隐含波动率等。 """ code, result = self.client.getData(vs.DERIV%(beginDate, endDate, optID, SecID, field)) return _ret_data(code, result) def DerIvHv(self, beginDate='', endDate='', SecID='', period='', field=''): """ 历史波动率,各个时间段的收盘-收盘历史波动率。 """ code, result = self.client.getData(vs.DERIVHV%(beginDate, endDate, SecID, period, field)) return _ret_data(code, result) def DerIvIndex(self, beginDate='', endDate='', SecID='', period='', field=''): """ 隐含波动率指数,衡量30天至1080天到期平价期权的平均波动性的主要方法。 """ code, result = self.client.getData(vs.DERIVINDEX%(beginDate, endDate, SecID, period, field)) return _ret_data(code, result) def DerIvIvpDelta(self, beginDate='', endDate='', SecID='', delta='', period='', field=''): """ 隐含波动率曲面(基于参数平滑曲线),基于delta(0.1至0.9,0.05升步)和到期日(1个月至3年)而标准化的曲面。 """ code, result = self.client.getData(vs.DERIVIVPDELTA%(beginDate, endDate, SecID, delta, period, field)) return _ret_data(code, result) def DerIvParam(self, beginDate='', endDate='', SecID='', expDate='', field=''): """ 隐含波动率参数化曲面,由二阶方程波动曲线在每个到期日平滑后的曲面(a,b,c曲线系数) """ code, result = self.client.getData(vs.DERIVPARAM%(beginDate, endDate, SecID, expDate, field)) return _ret_data(code, result) def DerIvRawDelta(self, beginDate='', endDate='', SecID='', delta='', period='', field=''): """ 隐含波动率曲面(基于原始隐含波动率),基于delta(0.1至0.9,0.05升步)和到期日(1个月至3年)而标准化的曲面。 """ code, result = self.client.getData(vs.DERIVRAWDELTA%(beginDate, endDate, SecID, delta, period, field)) return _ret_data(code, result) def DerIvSurface(self, beginDate='', endDate='', SecID='', contractType='', field=''): """ 隐含波动率曲面(在值程度),基于在值程度而标准化的曲面。执行价格区间在-60%到+60%,5%升步,到期区间为1个月至3年。 """ code, result = self.client.getData(vs.DERIVSURFACE%(beginDate, endDate, SecID, contractType, field)) return _ret_data(code, result) def _ret_data(code, result): if code==200: result = result.decode('utf-8') if vs.PY3 else result df = pd.read_csv(StringIO(result)) return df else: print(result) return None
bsd-3-clause
Adai0808/scikit-learn
sklearn/covariance/tests/test_graph_lasso.py
272
5245
""" Test the graph_lasso module. """ import sys import numpy as np from scipy import linalg from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_less from sklearn.covariance import (graph_lasso, GraphLasso, GraphLassoCV, empirical_covariance) from sklearn.datasets.samples_generator import make_sparse_spd_matrix from sklearn.externals.six.moves import StringIO from sklearn.utils import check_random_state from sklearn import datasets def test_graph_lasso(random_state=0): # Sample data from a sparse multivariate normal dim = 20 n_samples = 100 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.95, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) emp_cov = empirical_covariance(X) for alpha in (0., .1, .25): covs = dict() icovs = dict() for method in ('cd', 'lars'): cov_, icov_, costs = graph_lasso(emp_cov, alpha=alpha, mode=method, return_costs=True) covs[method] = cov_ icovs[method] = icov_ costs, dual_gap = np.array(costs).T # Check that the costs always decrease (doesn't hold if alpha == 0) if not alpha == 0: assert_array_less(np.diff(costs), 0) # Check that the 2 approaches give similar results assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4) assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4) # Smoke test the estimator model = GraphLasso(alpha=.25).fit(X) model.score(X) assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4) assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4) # For a centered matrix, assume_centered could be chosen True or False # Check that this returns indeed the same result for centered data Z = X - X.mean(0) precs = list() for assume_centered in (False, True): prec_ = GraphLasso(assume_centered=assume_centered).fit(Z).precision_ precs.append(prec_) assert_array_almost_equal(precs[0], precs[1]) def test_graph_lasso_iris(): # Hard-coded solution from R glasso package for alpha=1.0 # The iris datasets in R and sklearn do not match in a few places, these # values are for the sklearn version cov_R = np.array([ [0.68112222, 0.0, 0.2651911, 0.02467558], [0.00, 0.1867507, 0.0, 0.00], [0.26519111, 0.0, 3.0924249, 0.28774489], [0.02467558, 0.0, 0.2877449, 0.57853156] ]) icov_R = np.array([ [1.5188780, 0.0, -0.1302515, 0.0], [0.0, 5.354733, 0.0, 0.0], [-0.1302515, 0.0, 0.3502322, -0.1686399], [0.0, 0.0, -0.1686399, 1.8123908] ]) X = datasets.load_iris().data emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R) assert_array_almost_equal(icov, icov_R) def test_graph_lasso_iris_singular(): # Small subset of rows to test the rank-deficient case # Need to choose samples such that none of the variances are zero indices = np.arange(10, 13) # Hard-coded solution from R glasso package for alpha=0.01 cov_R = np.array([ [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149], [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222], [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009], [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222] ]) icov_R = np.array([ [24.42244057, -16.831679593, 0.0, 0.0], [-16.83168201, 24.351841681, -6.206896552, -12.5], [0.0, -6.206896171, 153.103448276, 0.0], [0.0, -12.499999143, 0.0, 462.5] ]) X = datasets.load_iris().data[indices, :] emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=0.01, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R, decimal=5) assert_array_almost_equal(icov, icov_R, decimal=5) def test_graph_lasso_cv(random_state=1): # Sample data from a sparse multivariate normal dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) # Capture stdout, to smoke test the verbose mode orig_stdout = sys.stdout try: sys.stdout = StringIO() # We need verbose very high so that Parallel prints on stdout GraphLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X) finally: sys.stdout = orig_stdout # Smoke test with specified alphas GraphLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X)
bsd-3-clause
architecture-building-systems/CEAforArcGIS
cea/technologies/solar/photovoltaic_thermal.py
2
42510
""" Photovoltaic thermal panels """ import os import time from itertools import repeat from math import * import geopandas as gpd import numpy as np import pandas as pd from geopandas import GeoDataFrame as gdf from numba import jit import cea.inputlocator import cea.utilities.parallel import cea.utilities.workerstream from cea.constants import HOURS_IN_YEAR from cea.technologies.solar import constants from cea.technologies.solar.photovoltaic import (calc_properties_PV_db, calc_PV_power, calc_diffuseground_comp, calc_absorbed_radiation_PV, calc_cell_temperature) from cea.technologies.solar.solar_collector import (calc_properties_SC_db, calc_IAM_beam_SC, calc_q_rad, calc_q_gain, vectorize_calc_Eaux_SC, calc_optimal_mass_flow, calc_optimal_mass_flow_2, calc_qloss_network) from cea.utilities import epwreader from cea.utilities import solar_equations from cea.utilities.standardize_coordinates import get_lat_lon_projected_shapefile from cea.analysis.costs.equations import calc_capex_annualized, calc_opex_annualized __author__ = "Jimeno A. Fonseca" __copyright__ = "Copyright 2015, Architecture and Building Systems - ETH Zurich" __credits__ = ["Jimeno A. Fonseca, Shanshan Hsieh"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "Daren Thomas" __email__ = "[email protected]" __status__ = "Production" def calc_PVT(locator, config, latitude, longitude, weather_data, date_local, building_name): """ This function first determines the surface area with sufficient solar radiation, and then calculates the optimal tilt angles of panels at each surface location. The panels are categorized into groups by their surface azimuths, tilt angles, and global irradiation. In the last, electricity and heat generation from PVT panels of each group are calculated. :param locator: An InputLocator to locate input files :type locator: cea.inputlocator.InputLocator :param radiation_json_path: path to solar insulation data on all surfaces of each building :type radiation_json_path: string :param metadata_csv_path: path to data of sensor points measuring solar insulation of each building :type metadata_csv_path: string :param latitude: latitude of the case study location :type latitude: float :param longitude: longitude of the case study location :type longitude: float :param weather_path: path to the weather data file of the case study location :type weather_path: .epw :param building_name: list of building names in the case study :type building_name: Series :param T_in: inlet temperature to the solar collectors [C] :return: Building_PVT.csv with solar collectors heat generation potential of each building, Building_PVT_sensors.csv with sensor data of each PVT panel. """ t0 = time.perf_counter() radiation_json_path = locator.get_radiation_building_sensors(building_name) metadata_csv_path = locator.get_radiation_metadata(building_name) # solar properties solar_properties = solar_equations.calc_sun_properties(latitude, longitude, weather_data, date_local, config) print('calculating solar properties done for building %s' % building_name) # get properties of the panel to evaluate # TODO: find a PVT module reference panel_properties_PV = calc_properties_PV_db(locator.get_database_conversion_systems(), config) panel_properties_SC = calc_properties_SC_db(locator.get_database_conversion_systems(), config) print('gathering properties of PVT collector panel for building %s' % building_name) # select sensor point with sufficient solar radiation max_annual_radiation, annual_radiation_threshold, sensors_rad_clean, sensors_metadata_clean = \ solar_equations.filter_low_potential(radiation_json_path, metadata_csv_path, config) print('filtering low potential sensor points done for building %s' % building_name) # Calculate the heights of all buildings for length of vertical pipes tot_bui_height_m = gpd.read_file(locator.get_zone_geometry())['height_ag'].sum() # set the maximum roof coverage if config.solar.custom_roof_coverage: max_roof_coverage = config.solar.max_roof_coverage else: max_roof_coverage = 1.0 if not sensors_metadata_clean.empty: if not config.solar.custom_tilt_angle: # calculate optimal angle and tilt for panels according to PV module size sensors_metadata_cat = solar_equations.optimal_angle_and_tilt(sensors_metadata_clean, latitude, solar_properties, max_annual_radiation, panel_properties_PV, max_roof_coverage) print('calculating optimal tile angle and separation done for building %s' % building_name) else: # calculate spacing required by user-supplied tilt angle for panels sensors_metadata_cat = solar_equations.calc_spacing_custom_angle(sensors_metadata_clean, solar_properties, max_annual_radiation, panel_properties_PV, config.solar.panel_tilt_angle, max_roof_coverage) print('calculating separation for custom tilt angle done') # group the sensors with the same tilt, surface azimuth, and total radiation sensor_groups = solar_equations.calc_groups(sensors_rad_clean, sensors_metadata_cat) print('generating groups of sensor points done for building %s' % building_name) Final = calc_PVT_generation(sensor_groups, weather_data, date_local, solar_properties, latitude, tot_bui_height_m, panel_properties_SC, panel_properties_PV, config) Final.to_csv(locator.PVT_results(building=building_name), index=True, float_format='%.2f', na_rep='nan') sensors_metadata_cat.to_csv(locator.PVT_metadata_results(building=building_name), index=True, index_label='SURFACE', float_format='%.2f', na_rep='nan') # print selected metadata of the selected sensors print('Building', building_name, 'done - time elapsed:', (time.perf_counter() - t0), ' seconds') else: # This block is activated when a building has not sufficient solar potential Final = pd.DataFrame( {'Date': date_local, 'PVT_walls_north_E_kWh': 0.0, 'PVT_walls_north_m2': 0.0, 'PVT_walls_north_Q_kWh': 0.0, 'PVT_walls_north_Tout_C': 0.0, 'PVT_walls_south_E_kWh': 0.0, 'PVT_walls_south_m2': 0, 'PVT_walls_south_Q_kWh': 0.0, 'PVT_walls_south_Tout_C': 0.0, 'PVT_walls_east_E_kWh': 0.0, 'PVT_walls_east_m2': 0.0, 'PVT_walls_east_Q_kWh': 0.0, 'PVT_walls_east_Tout_C': 0.0, 'PVT_walls_west_E_kWh': 0.0, 'PVT_walls_west_m2': 0.0, 'PVT_walls_west_Q_kWh': 0.0, 'PVT_walls_west_Tout_C': 0.0, 'PVT_roofs_top_E_kWh': 0.0, 'PVT_roofs_top_m2': 0.0, 'PVT_roofs_top_Q_kWh': 0.0, 'PVT_roofs_top_Tout_C': 0.0, 'Q_PVT_gen_kWh': 0.0, 'T_PVT_sup_C': 0.0, 'T_PVT_re_C': 0.0, 'mcp_PVT_kWperC': 0.0, 'Eaux_PVT_kWh': 0.0, 'Q_PVT_l_kWh': 0.0, 'E_PVT_gen_kWh': 0.0, 'Area_PVT_m2': 0.0, 'radiation_kWh': 0.0}, index=range(HOURS_IN_YEAR)) Final.to_csv(locator.PVT_results(building=building_name), index=False, float_format='%.2f', na_rep='nan') sensors_metadata_cat = pd.DataFrame( {'SURFACE': 0, 'AREA_m2': 0, 'BUILDING': 0, 'TYPE': 0, 'Xcoor': 0, 'Xdir': 0, 'Ycoor': 0, 'Ydir': 0, 'Zcoor': 0, 'Zdir': 0, 'orientation': 0, 'total_rad_Whm2': 0, 'tilt_deg': 0, 'B_deg': 0, 'array_spacing_m': 0, 'surface_azimuth_deg': 0, 'area_installed_module_m2': 0, 'CATteta_z': 0, 'CATB': 0, 'CATGB': 0, 'type_orientation': 0}, index=range(2)) sensors_metadata_cat.to_csv(locator.PVT_metadata_results(building=building_name), index=False, float_format='%.2f', na_rep='nan') return def calc_PVT_generation(sensor_groups, weather_data, date_local, solar_properties, latitude, tot_bui_height_m, panel_properties_SC, panel_properties_PV, config): """ To calculate the heat and electricity generated from PVT panels. :param sensor_groups: properties of sensors in each group :type sensor_groups: dict :param weather_data: weather data read from .epw :type weather_data: dataframe :param solar_properties: :param latitude: latitude of the case study location :param tot_bui_height_m: total height of all buildings [m] :param panel_properties_SC: properties of solar thermal collectors :param panel_properties_PV: properties of photovoltaic panels :param config: user settings from cea.config :return: """ # read variables number_groups = sensor_groups['number_groups'] # number of groups of sensor points prop_observers = sensor_groups['prop_observers'] # mean values of sensor properties of each group of sensors hourly_radiation_Wperm2 = sensor_groups[ 'hourlydata_groups'] # mean hourly radiation of sensors in each group [Wh/m2] T_in_C = get_t_in_pvt(config) # convert degree to radians lat_rad = radians(latitude) g_rad = np.radians(solar_properties.g) ha_rad = np.radians(solar_properties.ha) Sz_rad = np.radians(solar_properties.Sz) # calculate equivalent length of pipes total_area_module_m2 = prop_observers['area_installed_module_m2'].sum() # total area for panel installation total_pipe_lengths = calc_pipe_equivalent_length(panel_properties_PV, panel_properties_SC, tot_bui_height_m, total_area_module_m2) # empty lists to store results list_groups_area = [0 for i in range(number_groups)] total_el_output_PV_kWh = [0 for i in range(number_groups)] total_radiation_kWh = [0 for i in range(number_groups)] total_mcp_kWperC = [0 for i in range(number_groups)] total_qloss_kWh = [0 for i in range(number_groups)] total_aux_el_kWh = [0 for i in range(number_groups)] total_Qh_output_kWh = [0 for i in range(number_groups)] list_results_from_PVT = list(range(number_groups)) potential = pd.DataFrame(index=range(HOURS_IN_YEAR)) panel_orientations = ['walls_south', 'walls_north', 'roofs_top', 'walls_east', 'walls_west'] for panel_orientation in panel_orientations: potential['PVT_' + panel_orientation + '_Q_kWh'] = 0.0 potential['PVT_' + panel_orientation + '_E_kWh'] = 0.0 potential['PVT_' + panel_orientation + '_m2'] = 0.0 # assign default number of subsdivisions for the calculation if panel_properties_SC['type'] == 'ET': # ET: evacuated tubes panel_properties_SC['Nseg'] = 100 # default number of subsdivisions for the calculation else: panel_properties_SC['Nseg'] = 10 for group in range(number_groups): # read panel properties of each group teta_z_deg = prop_observers.loc[group, 'surface_azimuth_deg'] module_area_per_group_m2 = prop_observers.loc[group, 'area_installed_module_m2'] tilt_angle_deg = prop_observers.loc[group, 'B_deg'] # tilt angle of panels # degree to radians tilt_rad = radians(tilt_angle_deg) # tilt angle teta_z_rad = radians(teta_z_deg) # surface azimuth # calculate radiation types (direct/diffuse) in group radiation_Wperm2 = solar_equations.cal_radiation_type(group, hourly_radiation_Wperm2, weather_data) ## calculate absorbed solar irradiation on tilt surfaces # calculate effective indicent angles necessary teta_rad = np.vectorize(solar_equations.calc_angle_of_incidence)(g_rad, lat_rad, ha_rad, tilt_rad, teta_z_rad) teta_ed_rad, teta_eg_rad = calc_diffuseground_comp(tilt_rad) # absorbed radiation and Tcell absorbed_radiation_PV_Wperm2 = np.vectorize(calc_absorbed_radiation_PV)(radiation_Wperm2.I_sol, radiation_Wperm2.I_direct, radiation_Wperm2.I_diffuse, tilt_rad, Sz_rad, teta_rad, teta_ed_rad, teta_eg_rad, panel_properties_PV) T_cell_C = np.vectorize(calc_cell_temperature)(absorbed_radiation_PV_Wperm2, weather_data.drybulb_C, panel_properties_PV) ## SC heat generation # calculate incidence angle modifier for beam radiation IAM_b = calc_IAM_beam_SC(solar_properties, teta_z_deg, tilt_angle_deg, panel_properties_SC['type'], latitude) list_results_from_PVT[group] = calc_PVT_module(config, radiation_Wperm2, panel_properties_SC, panel_properties_PV, weather_data.drybulb_C, IAM_b, tilt_angle_deg, total_pipe_lengths, absorbed_radiation_PV_Wperm2, T_cell_C, module_area_per_group_m2) # calculate results from each group panel_orientation = prop_observers.loc[group, 'type_orientation'] number_modules_per_group = module_area_per_group_m2 / (panel_properties_PV['module_length_m'] ** 2) PVT_Q_kWh = list_results_from_PVT[group][1] * number_modules_per_group PVT_E_kWh = list_results_from_PVT[group][6] # write results potential['PVT_' + panel_orientation + '_Q_kWh'] = potential['PVT_' + panel_orientation + '_Q_kWh'] + PVT_Q_kWh potential['PVT_' + panel_orientation + '_E_kWh'] = potential['PVT_' + panel_orientation + '_E_kWh'] + PVT_E_kWh potential['PVT_' + panel_orientation + '_m2'] = potential[ 'PVT_' + panel_orientation + '_m2'] + module_area_per_group_m2 # aggregate results from all modules list_groups_area[group] = module_area_per_group_m2 total_mcp_kWperC[group] = list_results_from_PVT[group][5] * number_modules_per_group total_qloss_kWh[group] = list_results_from_PVT[group][0] * number_modules_per_group total_aux_el_kWh[group] = list_results_from_PVT[group][2] * number_modules_per_group total_Qh_output_kWh[group] = list_results_from_PVT[group][1] * number_modules_per_group total_el_output_PV_kWh[group] = list_results_from_PVT[group][6] total_radiation_kWh[group] = hourly_radiation_Wperm2[group] * module_area_per_group_m2 / 1000 potential['Area_PVT_m2'] = sum(list_groups_area) potential['radiation_kWh'] = sum(total_radiation_kWh).values potential['E_PVT_gen_kWh'] = sum(total_el_output_PV_kWh) potential['Q_PVT_gen_kWh'] = sum(total_Qh_output_kWh) potential['mcp_PVT_kWperC'] = sum(total_mcp_kWperC) potential['Eaux_PVT_kWh'] = sum(total_aux_el_kWh) potential['Q_PVT_l_kWh'] = sum(total_qloss_kWh) potential['T_PVT_sup_C'] = np.zeros(HOURS_IN_YEAR) + T_in_C T_out_C = (potential['Q_PVT_gen_kWh'] / potential['mcp_PVT_kWperC']) + T_in_C potential['T_PVT_re_C'] = T_out_C if T_out_C is not np.nan else np.nan # assume parallel connections for all panels potential['Date'] = date_local potential = potential.set_index('Date') return potential def calc_pipe_equivalent_length(panel_properties_PV, panel_properties_SC, tot_bui_height_m, total_area_module_m2): # local variables lv = panel_properties_PV['module_length_m'] # module length total_area_aperture = total_area_module_m2 * panel_properties_SC[ 'aperture_area_ratio'] number_modules = round( total_area_module_m2 / (panel_properties_PV['module_length_m'] ** 2)) # this is an estimation # main calculation l_ext_mperm2 = (2 * lv * number_modules / total_area_aperture) # pipe length within the collectors l_int_mperm2 = 2 * tot_bui_height_m / total_area_aperture # pipe length from building substation to roof top collectors Leq_mperm2 = l_int_mperm2 + l_ext_mperm2 # in m/m2 aperture pipe_equivalent_lengths_mperm2 = {'Leq_mperm2': Leq_mperm2, 'l_ext_mperm2': l_ext_mperm2, 'l_int_mperm2': l_int_mperm2} return pipe_equivalent_lengths_mperm2 def get_t_in_pvt(config): if config.solar.t_in_pvt is not None: Tin_C = config.solar.T_in_PVT else: Tin_C = constants.T_IN_PVT return Tin_C def calc_PVT_module(config, radiation_Wperm2, panel_properties_SC, panel_properties_PV, Tamb_vector_C, IAM_b, tilt_angle_deg, pipe_lengths, absorbed_radiation_PV_Wperm2, Tcell_PV_C, module_area_per_group_m2): """ This function calculates the heat & electricity production from PVT collectors. The heat production calculation is adapted from calc_SC_module and then the updated cell temperature is used to calculate PV electricity production. :param tilt_angle_deg: solar panel tilt angle [rad] :param IAM_b_vector: incident angle modifier for beam radiation [-] :param I_direct_vector: direct radiation [W/m2] :param I_diffuse_vector: diffuse radiation [W/m2] :param Tamb_vector_C: dry bulb temperature [C] :param IAM_d_vector: incident angle modifier for diffuse radiation [-] :param Leq: equivalent length of pipes per aperture area [m/m2 aperture) :param Le: equivalent length of collector pipes per aperture area [m/m2 aperture] :param absorbed_radiation_PV_Wperm2: absorbed solar radiation of PV module [Wh/m2] :param Tcell_PV_C: PV cell temperature [C] :param module_area_per_group_m2: PV module area [m2] :return: ..[J. Allan et al., 2015] J. Allan, Z. Dehouche, S. Stankovic, L. Mauricette. "Performance testing of thermal and photovoltaic thermal solar collectors." Energy Science & Engineering 2015; 3(4): 310-326 """ # read variables Tin_C = get_t_in_pvt(config) n0 = panel_properties_SC['n0'] # zero loss efficiency at normal incidence [-] c1 = panel_properties_SC[ 'c1'] # collector heat loss coefficient at zero temperature difference and wind speed [W/m2K] c2 = panel_properties_SC['c2'] # temperature difference dependency of the heat loss coefficient [W/m2K2] mB0_r = panel_properties_SC['mB0_r'] # nominal flow rate per aperture area [kg/h/m2 aperture] mB_max_r = panel_properties_SC['mB_max_r'] # maximum flow rate per aperture area mB_min_r = panel_properties_SC['mB_min_r'] # minimum flow rate per aperture area C_eff_Jperm2K = panel_properties_SC['C_eff'] # thermal capacitance of module [J/m2K] IAM_d = panel_properties_SC['IAM_d'] # incident angle modifier for diffuse radiation [-] dP1 = panel_properties_SC['dP1'] # pressure drop [Pa/m2] at zero flow rate dP2 = panel_properties_SC['dP2'] # pressure drop [Pa/m2] at nominal flow rate (mB0) dP3 = panel_properties_SC['dP3'] # pressure drop [Pa/m2] at maximum flow rate (mB_max) dP4 = panel_properties_SC['dP4'] # pressure drop [Pa/m2] at minimum flow rate (mB_min) Cp_fluid_JperkgK = panel_properties_SC['Cp_fluid'] # J/kgK aperature_area_ratio = panel_properties_SC['aperture_area_ratio'] # aperature area ratio [-] area_pv_module = panel_properties_PV['module_length_m'] ** 2 Nseg = panel_properties_SC['Nseg'] T_max_C = panel_properties_SC['t_max'] eff_nom = panel_properties_PV['PV_n'] Bref = panel_properties_PV['PV_Bref'] misc_losses = panel_properties_PV['misc_losses'] aperture_area_m2 = aperature_area_ratio * area_pv_module # aperture area of each module [m2] msc_max_kgpers = mB_max_r * aperture_area_m2 / 3600 # maximum mass flow [kg/s] # Do the calculation of every time step for every possible flow condition # get states where highly performing values are obtained. specific_flows_kgpers = [np.zeros(HOURS_IN_YEAR), (np.zeros(HOURS_IN_YEAR) + mB0_r) * aperture_area_m2 / 3600, (np.zeros(HOURS_IN_YEAR) + mB_max_r) * aperture_area_m2 / 3600, (np.zeros(HOURS_IN_YEAR) + mB_min_r) * aperture_area_m2 / 3600, np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] # in kg/s specific_pressure_losses_Pa = [np.zeros(HOURS_IN_YEAR), (np.zeros(HOURS_IN_YEAR) + dP2) * aperture_area_m2, (np.zeros(HOURS_IN_YEAR) + dP3) * aperture_area_m2, (np.zeros(HOURS_IN_YEAR) + dP4) * aperture_area_m2, np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] # in Pa # generate empty lists to store results temperature_out = [np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] temperature_in = [np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] supply_out_kW = [np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] supply_losses_kW = [np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] auxiliary_electricity_kW = [np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] temperature_mean = [np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] mcp_kWperK = np.zeros(HOURS_IN_YEAR) T_module_C = np.zeros(HOURS_IN_YEAR) # calculate absorbed radiation tilt_rad = radians(tilt_angle_deg) q_rad_vector = np.vectorize(calc_q_rad)(n0, IAM_b, IAM_d, radiation_Wperm2.I_direct, radiation_Wperm2.I_diffuse, tilt_rad) # absorbed solar radiation in W/m2 is a mean of the group counter = 0 Flag = False Flag2 = False for flow in range(6): Mo_seg = 1 # mode of segmented heat loss calculation. only one mode is implemented. TIME0 = 0 DELT = 1 # timestep 1 hour delts = DELT * 3600 # convert time step in seconds Tfl = np.zeros(3) # create vector to store value at previous [1] and present [2] time-steps DT = np.zeros(3) Tabs = np.zeros(3) STORED = np.zeros(600) TflA = np.zeros(600) TflB = np.zeros(600) TabsB = np.zeros(600) TabsA = np.zeros(600) q_gain_Seg = np.zeros(101) # maximum Iseg = maximum Nseg + 1 = 101 for time in range(HOURS_IN_YEAR): # c1_pvt = c1 - eff_nom * Bref * absorbed_radiation_PV_Wperm2[time] #todo: to delete c1_pvt = calc_cl_pvt(Bref, absorbed_radiation_PV_Wperm2, c1, eff_nom, time) Mfl_kgpers = calc_Mfl_kgpers(DELT, Nseg, STORED, TIME0, Tin_C, specific_flows_kgpers[flow], time, Cp_fluid_JperkgK, C_eff_Jperm2K, aperture_area_m2) # calculate average fluid temperature and average absorber temperature at the beginning of the time-step Tamb_C = Tamb_vector_C[time] q_rad_Wperm2 = q_rad_vector[time] Tout_C = calc_Tout_C(Cp_fluid_JperkgK, DT, Mfl_kgpers, Nseg, STORED, Tabs, Tamb_C, Tfl, Tin_C, aperture_area_m2, c1_pvt, q_rad_Wperm2) # calculate q_gain with the guess for DT[1] q_gain_Wperm2 = calc_q_gain(Tfl, q_rad_Wperm2, DT, Tin_C, aperture_area_m2, c1_pvt, c2, Mfl_kgpers, delts, Cp_fluid_JperkgK, C_eff_Jperm2K, Tamb_C) Aseg_m2 = aperture_area_m2 / Nseg # aperture area per segment # multi-segment calculation to avoid temperature jump at times of flow rate changes Tout_Seg_C = do_multi_segment_calculation(Aseg_m2, C_eff_Jperm2K, Cp_fluid_JperkgK, DT, Mfl_kgpers, Mo_seg, Nseg, STORED, Tabs, TabsA, Tamb_C, Tfl, TflA, TflB, Tin_C, Tout_C, c1_pvt, c2, delts, q_gain_Seg, q_gain_Wperm2, q_rad_Wperm2) # resulting energy output q_out_kW = Mfl_kgpers * Cp_fluid_JperkgK * (Tout_Seg_C - Tin_C) / 1000 # [kW] Tabs[2] = 0 # storage of the mean temperature for Iseg in range(1, Nseg + 1): STORED[200 + Iseg] = TflB[Iseg] STORED[400 + Iseg] = TabsB[Iseg] Tabs[2] = Tabs[2] + TabsB[Iseg] / Nseg # outputs temperature_out[flow][time] = Tout_Seg_C temperature_in[flow][time] = Tin_C supply_out_kW[flow][time] = q_out_kW temperature_mean[flow][time] = (Tin_C + Tout_Seg_C) / 2 # Mean absorber temperature at present q_gain_Wperm2 = 0 TavgB = 0 TavgA = 0 for Iseg in range(1, Nseg + 1): q_gain_Wperm2 = q_gain_Wperm2 + q_gain_Seg * Aseg_m2 # W TavgA = TavgA + TflA[Iseg] / Nseg TavgB = TavgB + TflB[Iseg] / Nseg # # OUT[9] = qgain/Area_a # in W/m2 # q_mtherm_Wperm2 = (TavgB - TavgA) * C_eff_Jperm2K * aperture_area_m2 / delts # q_balance_error = q_gain_Wperm2 - q_mtherm_Wperm2 - q_out_kW # OUT[11] = q_mtherm # OUT[12] = q_balance_error if flow < 4: auxiliary_electricity_kW[flow] = vectorize_calc_Eaux_SC(specific_flows_kgpers[flow], specific_pressure_losses_Pa[flow], pipe_lengths, aperture_area_m2) # in kW if flow == 3: q1 = supply_out_kW[0] q2 = supply_out_kW[1] q3 = supply_out_kW[2] q4 = supply_out_kW[3] E1 = auxiliary_electricity_kW[0] E2 = auxiliary_electricity_kW[1] E3 = auxiliary_electricity_kW[2] E4 = auxiliary_electricity_kW[3] specific_flows_kgpers[4], specific_pressure_losses_Pa[4] = calc_optimal_mass_flow(q1, q2, q3, q4, E1, E2, E3, E4, 0, mB0_r, mB_max_r, mB_min_r, 0, dP2, dP3, dP4, aperture_area_m2) if flow == 4: auxiliary_electricity_kW[flow] = vectorize_calc_Eaux_SC(specific_flows_kgpers[flow], specific_pressure_losses_Pa[flow], pipe_lengths, aperture_area_m2) # in kW dp5 = specific_pressure_losses_Pa[flow] q5 = supply_out_kW[flow] m5 = specific_flows_kgpers[flow] # set points to zero when load is negative specific_flows_kgpers[5], specific_pressure_losses_Pa[5] = calc_optimal_mass_flow_2(m5, q5, dp5) if flow == 5: # optimal mass flow supply_losses_kW[flow] = np.vectorize(calc_qloss_network)(specific_flows_kgpers[flow], pipe_lengths['l_ext_mperm2'], aperture_area_m2, temperature_mean[flow], Tamb_vector_C, msc_max_kgpers) supply_out_pre = supply_out_kW[flow].copy() + supply_losses_kW[flow].copy() auxiliary_electricity_kW[flow] = vectorize_calc_Eaux_SC(specific_flows_kgpers[flow], specific_pressure_losses_Pa[flow], pipe_lengths, aperture_area_m2) # in kW supply_out_total_kW = supply_out_kW + 0.5 * auxiliary_electricity_kW[flow] - supply_losses_kW[flow] mcp_kWperK = specific_flows_kgpers[flow] * (Cp_fluid_JperkgK / 1000) # mcp in kW/c turn_off_the_water_circuit_if_total_energy_supply_is_zero(T_module_C, Tcell_PV_C, auxiliary_electricity_kW[flow], mcp_kWperK, supply_out_total_kW[5], temperature_in[5], temperature_out[5]) el_output_PV_kW = np.vectorize(calc_PV_power)(absorbed_radiation_PV_Wperm2, T_module_C, eff_nom, module_area_per_group_m2, Bref, misc_losses) # write results into a list result = [supply_losses_kW[5], supply_out_total_kW[5], auxiliary_electricity_kW[5], temperature_out[5], temperature_in[5], mcp_kWperK, el_output_PV_kW] return result @jit(nopython=True) def calc_cl_pvt(Bref, absorbed_radiation_PV_Wperm2, c1, eff_nom, time): c1_pvt = max(0, c1 - eff_nom * Bref * absorbed_radiation_PV_Wperm2[time]) # _[J. Allan et al., 2015] eq.(18) return c1_pvt @jit(nopython=True) def turn_off_the_water_circuit_if_total_energy_supply_is_zero(T_module_C, Tcell_PV_C, auxiliary_electricity_kW, mcp_kWperK, supply_out_total_kW, temperature_in, temperature_out): for x in range(HOURS_IN_YEAR): # turn off the water circuit if total energy supply is zero if supply_out_total_kW[x] <= 0: supply_out_total_kW[x] = 0 mcp_kWperK[x] = 0 auxiliary_electricity_kW[x] = 0 temperature_out[x] = 0 temperature_in[x] = 0 # update pv cell temperature with temperatures of the water circuit T_module_mean_C = (temperature_out[x] + temperature_in[x]) / 2 T_module_C[x] = T_module_mean_C if T_module_mean_C > 0 else Tcell_PV_C[x] @jit(nopython=True) def do_multi_segment_calculation(Aseg_m2, C_eff_Jperm2K, Cp_fluid_JperkgK, DT, Mfl_kgpers, Mo_seg, Nseg, STORED, Tabs, TabsA, Tamb_C, Tfl, TflA, TflB, Tin_C, Tout_C, c1_pvt, c2, delts, q_gain_Seg, q_gain_Wperm2, q_rad_Wperm2): Tout_Seg_C = 0.0 # this value will be overwritten after first iteration for Iseg in range(1, Nseg + 1): # get temperatures of the previous time-step TflA[Iseg] = STORED[100 + Iseg] TabsA[Iseg] = STORED[300 + Iseg] if Iseg > 1: Tin_Seg = Tout_Seg_C else: Tin_Seg = Tin_C if Mfl_kgpers > 0 and Mo_seg == 1: # same heat gain/ losses for all segments Tout_Seg_C = ((Mfl_kgpers * Cp_fluid_JperkgK * (Tin_Seg + 273.15)) / Aseg_m2 - ( C_eff_Jperm2K * (Tin_Seg + 273.15)) / (2 * delts) + q_gain_Wperm2 + (C_eff_Jperm2K * (TflA[Iseg] + 273.15) / delts)) / ( Mfl_kgpers * Cp_fluid_JperkgK / Aseg_m2 + C_eff_Jperm2K / (2 * delts)) Tout_Seg_C = Tout_Seg_C - 273.15 # in [C] TflB[Iseg] = (Tin_Seg + Tout_Seg_C) / 2 else: # heat losses based on each segment's inlet and outlet temperatures. Tfl[1] = TflA[Iseg] Tabs[1] = TabsA[Iseg] q_gain_Wperm2 = calc_q_gain(Tfl, q_rad_Wperm2, DT, Tin_Seg, Aseg_m2, c1_pvt, c2, Mfl_kgpers, delts, Cp_fluid_JperkgK, C_eff_Jperm2K, Tamb_C) Tout_Seg_C = Tout_C if Mfl_kgpers > 0: TflB[Iseg] = (Tin_Seg + Tout_Seg_C) / 2 Tout_Seg_C = TflA[Iseg] + (q_gain_Wperm2 * delts) / C_eff_Jperm2K else: TflB[Iseg] = Tout_Seg_C # the following lines do not perform meaningful operation, the iterations on DT are performed in calc_q_gain # these lines are kept here as a reference to the original model in FORTRAN # q_fluid_Wperm2 = (Tout_Seg_C - Tin_Seg) * Mfl_kgpers * Cp_fluid_JperkgK / Aseg_m2 # q_mtherm_Wperm2 = (TflB[Iseg] - TflA[Iseg]) * C_eff_Jperm2K / delts # q_balance_error = q_gain_Wperm2 - q_fluid_Wperm2 - q_mtherm_Wperm2 # # assert abs(q_balance_error) > 1, "q_balance_error in photovoltaic-thermal calculation" q_gain_Seg[Iseg] = q_gain_Wperm2 # in W/m2 return Tout_Seg_C @jit(nopython=True) def calc_Tout_C(Cp_fluid_JperkgK, DT, Mfl_kgpers, Nseg, STORED, Tabs, Tamb_C, Tfl, Tin_C, aperture_area_m2, c1_pvt, q_rad_Wperm2): Tfl[1] = 0 # mean fluid temperature Tabs[1] = 0 # mean absorber temperature for Iseg in range(1, Nseg + 1): Tfl[1] = Tfl[1] + STORED[100 + Iseg] / Nseg # mean fluid temperature Tabs[1] = Tabs[1] + STORED[300 + Iseg] / Nseg # mean absorber temperature # first guess for Delta T if Mfl_kgpers > 0: Tout_C = Tin_C + (q_rad_Wperm2 - ((c1_pvt) + 0.5) * (Tin_C - Tamb_C)) / ( Mfl_kgpers * Cp_fluid_JperkgK / aperture_area_m2) Tfl[2] = (Tin_C + Tout_C) / 2 # mean fluid temperature at present time-step else: # if c1_pvt < 0: # print('c1_pvt: ', c1_pvt) Tout_C = Tamb_C + q_rad_Wperm2 / (c1_pvt + 0.5) Tfl[2] = Tout_C # fluid temperature same as output # if Tout_C > T_max_C: # print('Tout_C: ',Tout_C, 'c1_pvt: ', c1_pvt, 'q_rad', q_rad_Wperm2) DT[1] = Tfl[2] - Tamb_C # difference between mean absorber temperature and the ambient temperature return Tout_C @jit(nopython=True) def calc_Mfl_kgpers(DELT, Nseg, STORED, TIME0, Tin_C, specific_flows_kgpers, time, Cp_fluid_JperkgK, C_eff_Jperm2K, aperture_area_m2): Mfl_kgpers = specific_flows_kgpers[time] if time < TIME0 + DELT / 2: for Iseg in range(101, 501): # 400 points with the data STORED[Iseg] = Tin_C else: for Iseg in range(1, Nseg): # 400 points with the data STORED[100 + Iseg] = STORED[200 + Iseg] STORED[300 + Iseg] = STORED[400 + Iseg] # calculate stability criteria if Mfl_kgpers > 0: stability_criteria = Mfl_kgpers * Cp_fluid_JperkgK * Nseg * (DELT * 3600) / ( C_eff_Jperm2K * aperture_area_m2) if stability_criteria <= 0.5: print('ERROR: stability criteria', stability_criteria, 'is not reached.', 'aperture_area:', aperture_area_m2, 'mass flow:', Mfl_kgpers) return Mfl_kgpers # investment and maintenance costs def calc_Cinv_PVT(PVT_peak_W, locator, technology=0): """ P_peak in kW result in CHF technology = 0 represents the first technology when there are multiple technologies. FIXME: handle multiple technologies when cost calculations are done """ if PVT_peak_W > 0.0: PVT_cost_data = pd.read_excel(locator.get_database_conversion_systems(), sheet_name="PV") technology_code = list(set(PVT_cost_data['code'])) PVT_cost_data = PVT_cost_data[PVT_cost_data['code'] == technology_code[technology]] # if the Q_design is below the lowest capacity available for the technology, then it is replaced by the least # capacity for the corresponding technology from the database if PVT_peak_W < PVT_cost_data['cap_min'].values[0]: PVT_peak_W = PVT_cost_data['cap_min'].values[0] PVT_cost_data = PVT_cost_data[ (PVT_cost_data['cap_min'] <= PVT_peak_W) & (PVT_cost_data['cap_max'] > PVT_peak_W)] Inv_a = PVT_cost_data.iloc[0]['a'] Inv_b = PVT_cost_data.iloc[0]['b'] Inv_c = PVT_cost_data.iloc[0]['c'] Inv_d = PVT_cost_data.iloc[0]['d'] Inv_e = PVT_cost_data.iloc[0]['e'] Inv_IR = PVT_cost_data.iloc[0]['IR_%'] Inv_LT = PVT_cost_data.iloc[0]['LT_yr'] Inv_OM = PVT_cost_data.iloc[0]['O&M_%'] / 100 InvC = Inv_a + Inv_b * (PVT_peak_W) ** Inv_c + (Inv_d + Inv_e * PVT_peak_W) * log(PVT_peak_W) Capex_a = calc_capex_annualized(InvC, Inv_IR, Inv_LT) Opex_fixed = InvC * Inv_OM Capex = InvC else: Capex_a = Opex_fixed = Capex = 0.0 return Capex_a, Opex_fixed, Capex def main(config): assert os.path.exists(config.scenario), 'Scenario not found: %s' % config.scenario locator = cea.inputlocator.InputLocator(scenario=config.scenario) print('Running photovoltaic-thermal with scenario = %s' % config.scenario) print( 'Running photovoltaic-thermal with annual-radiation-threshold-kWh/m2 = %s' % config.solar.annual_radiation_threshold) print('Running photovoltaic-thermal with panel-on-roof = %s' % config.solar.panel_on_roof) print('Running photovoltaic-thermal with panel-on-wall = %s' % config.solar.panel_on_wall) print('Running photovoltaic-thermal with solar-window-solstice = %s' % config.solar.solar_window_solstice) print('Running photovoltaic-thermal with t-in-pvt = %s' % config.solar.t_in_pvt) print('Running photovoltaic-thermal with type-pvpanel = %s' % config.solar.type_pvpanel) if config.solar.custom_tilt_angle: print('Running photovoltaic with custom-tilt-angle = %s and panel-tilt-angle = %s' % (config.solar.custom_tilt_angle, config.solar.panel_tilt_angle)) else: print('Running photovoltaic with custom-tilt-angle = %s' % config.solar.custom_tilt_angle) if config.solar.custom_roof_coverage: print('Running photovoltaic with custom-roof-coverage = %s and max-roof-coverage = %s' % (config.solar.custom_roof_coverage, config.solar.max_roof_coverage)) else: print('Running photovoltaic with custom-roof-coverage = %s' % config.solar.custom_roof_coverage) building_names = config.solar.buildings hourly_results_per_building = gdf.from_file(locator.get_zone_geometry()) latitude, longitude = get_lat_lon_projected_shapefile(hourly_results_per_building) # weather hourly_results_per_building weather_data = epwreader.epw_reader(locator.get_weather_file()) date_local = solar_equations.calc_datetime_local_from_weather_file(weather_data, latitude, longitude) print('reading weather hourly_results_per_building done.') n = len(building_names) cea.utilities.parallel.vectorize(calc_PVT, config.get_number_of_processes())(repeat(locator, n), repeat(config, n), repeat(latitude, n), repeat(longitude, n), repeat(weather_data, n), repeat(date_local, n), building_names) # aggregate results from all buildings aggregated_annual_results = {} for i, building in enumerate(building_names): hourly_results_per_building = pd.read_csv(locator.PVT_results(building)) if i == 0: aggregated_hourly_results_df = hourly_results_per_building temperature_sup = [] temperature_re = [] temperature_sup.append(hourly_results_per_building['T_PVT_sup_C']) temperature_re.append(hourly_results_per_building['T_PVT_re_C']) else: aggregated_hourly_results_df = aggregated_hourly_results_df + hourly_results_per_building temperature_sup.append(hourly_results_per_building['T_PVT_sup_C']) temperature_re.append(hourly_results_per_building['T_PVT_re_C']) annual_energy_production = hourly_results_per_building.filter(like='_kWh').sum() panel_area_per_building = hourly_results_per_building.filter(like='_m2').iloc[0] building_annual_results = annual_energy_production.append(panel_area_per_building) aggregated_annual_results[building] = building_annual_results # save hourly results aggregated_hourly_results_df['T_PVT_sup_C'] = pd.DataFrame(temperature_sup).mean(axis=0) aggregated_hourly_results_df['T_PVT_re_C'] = pd.DataFrame(temperature_re).mean(axis=0) aggregated_hourly_results_df = aggregated_hourly_results_df[aggregated_hourly_results_df.columns.drop( aggregated_hourly_results_df.filter(like='Tout', axis=1).columns)] # drop columns with Tout aggregated_hourly_results_df = aggregated_hourly_results_df.set_index('Date') aggregated_hourly_results_df.to_csv(locator.PVT_totals(), index=True, float_format='%.2f', na_rep='nan') # save annual results aggregated_annual_results_df = pd.DataFrame(aggregated_annual_results).T aggregated_annual_results_df.to_csv(locator.PVT_total_buildings(), index=True, index_label="Name", float_format='%.2f', na_rep='nan') if __name__ == '__main__': main(cea.config.Configuration())
mit
cactusbin/nyt
matplotlib/doc/users/plotting/examples/simple_annotate01.py
5
3309
import matplotlib.pyplot as plt import matplotlib.patches as mpatches x1, y1 = 0.3, 0.3 x2, y2 = 0.7, 0.7 fig = plt.figure(1) fig.clf() from mpl_toolkits.axes_grid.axes_grid import Grid from mpl_toolkits.axes_grid.anchored_artists import AnchoredText from matplotlib.font_manager import FontProperties def add_at(ax, t, loc=2): fp = dict(size=10) _at = AnchoredText(t, loc=loc, prop=fp) ax.add_artist(_at) return _at grid = Grid(fig, 111, (4, 4), label_mode="1", share_all=True) grid[0].set_autoscale_on(False) ax = grid[0] ax.plot([x1, x2], [y1, y2], "o") ax.annotate("", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', arrowprops=dict(arrowstyle="->")) add_at(ax, "A $->$ B", loc=2) ax = grid[1] ax.plot([x1, x2], [y1, y2], "o") ax.annotate("", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.3")) add_at(ax, "connectionstyle=arc3", loc=2) ax = grid[2] ax.plot([x1, x2], [y1, y2], "o") ax.annotate("", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.3", shrinkB=5, ) ) add_at(ax, "shrinkB=5", loc=2) ax = grid[3] ax.plot([x1, x2], [y1, y2], "o") el = mpatches.Ellipse((x1, y1), 0.3, 0.4, angle=30, alpha=0.5) ax.add_artist(el) ax.annotate("", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.2", ) ) ax = grid[4] ax.plot([x1, x2], [y1, y2], "o") el = mpatches.Ellipse((x1, y1), 0.3, 0.4, angle=30, alpha=0.5) ax.add_artist(el) ax.annotate("", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.2", patchB=el, ) ) add_at(ax, "patchB", loc=2) ax = grid[5] ax.plot([x1], [y1], "o") ax.annotate("Test", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', ha="center", va="center", bbox=dict(boxstyle="round", fc="w", ), arrowprops=dict(arrowstyle="->", #connectionstyle="arc3,rad=0.2", ) ) add_at(ax, "annotate", loc=2) ax = grid[6] ax.plot([x1], [y1], "o") ax.annotate("Test", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', ha="center", va="center", bbox=dict(boxstyle="round", fc="w", ), arrowprops=dict(arrowstyle="->", #connectionstyle="arc3,rad=0.2", relpos=(0., 0.) ) ) add_at(ax, "relpos=(0,0)", loc=2) #ax.set_xlim(0, 1) #ax.set_ylim(0, 1) plt.draw()
unlicense
aminert/scikit-learn
sklearn/utils/metaestimators.py
283
2353
"""Utilities for meta-estimators""" # Author: Joel Nothman # Andreas Mueller # Licence: BSD from operator import attrgetter from functools import update_wrapper __all__ = ['if_delegate_has_method'] class _IffHasAttrDescriptor(object): """Implements a conditional property using the descriptor protocol. Using this class to create a decorator will raise an ``AttributeError`` if the ``attribute_name`` is not present on the base object. This allows ducktyping of the decorated method based on ``attribute_name``. See https://docs.python.org/3/howto/descriptor.html for an explanation of descriptors. """ def __init__(self, fn, attribute_name): self.fn = fn self.get_attribute = attrgetter(attribute_name) # update the docstring of the descriptor update_wrapper(self, fn) def __get__(self, obj, type=None): # raise an AttributeError if the attribute is not present on the object if obj is not None: # delegate only on instances, not the classes. # this is to allow access to the docstrings. self.get_attribute(obj) # lambda, but not partial, allows help() to work with update_wrapper out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs) # update the docstring of the returned function update_wrapper(out, self.fn) return out def if_delegate_has_method(delegate): """Create a decorator for methods that are delegated to a sub-estimator This enables ducktyping by hasattr returning True according to the sub-estimator. >>> from sklearn.utils.metaestimators import if_delegate_has_method >>> >>> >>> class MetaEst(object): ... def __init__(self, sub_est): ... self.sub_est = sub_est ... ... @if_delegate_has_method(delegate='sub_est') ... def predict(self, X): ... return self.sub_est.predict(X) ... >>> class HasPredict(object): ... def predict(self, X): ... return X.sum(axis=1) ... >>> class HasNoPredict(object): ... pass ... >>> hasattr(MetaEst(HasPredict()), 'predict') True >>> hasattr(MetaEst(HasNoPredict()), 'predict') False """ return lambda fn: _IffHasAttrDescriptor(fn, '%s.%s' % (delegate, fn.__name__))
bsd-3-clause
hsuantien/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_01_language_train_model.py
254
2005
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf # TASK: Fit the pipeline on the training set # TASK: Predict the outcome on the testing set in a variable named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause