repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
ALaDyn/tools-piccante
py-tools/time-analysis.py
1
10427
#!/usr/bin/python ### loading shell commands import os, os.path, glob, sys, shutil, time from scipy.fftpack import fftn #from PyQt4.QtGui import * import struct #from scipy import * import numpy as np import math # from matplotlib import * # from pylab import * # import matplotlib as plt # from matplotlib.ticker import MultipleLocator, FormatStrFormatter ### --- ### class field_analysis: def __init__(self,tmin, tmax,substeps, base, end): self.base = base self.end = end self.tmin = int(tmin) self.tmax = int(tmax) self.substeps = int(substeps) if 1000%substeps: print "ERROR: wrong number of timesteps!" sys.exit() self.Nt = substeps*(self.tmax-self.tmin) self.filenames = list() self.t = np.zeros((self.Nt)) self.chose_file() self.init_values() self.set_frequency() self.basename = ("%s%03d"% (self.base,self.tmin)) def analize_field(self, filename): f = open(filename ,'rb') #- endianness 0:small - 1:big -# endianness = struct.unpack('i', f.read(4))[0] #- global grid dim -# Nx = struct.unpack('i', f.read(4))[0] Ny = struct.unpack('i', f.read(4))[0] Nz = struct.unpack('i', f.read(4))[0] self.Nx = Nx self.Ny = Ny self.Nz = Nz Ntot = Nx*Ny*Nz #- processor grid -# Npx = struct.unpack('i', f.read(4))[0] Npy = struct.unpack('i', f.read(4))[0] Npz = struct.unpack('i', f.read(4))[0] Nproc = Npx*Npy*Npz #- field components -# Nc = struct.unpack('i', f.read(4))[0] self.Nx = Nx self.Ny = Ny self.Nz = Nz self.Nc = Nc #- grid -> X -# #x = np.zeros((Nx)) #for i in range(0,Nx): x = struct.unpack('f'*Nx, f.read(4*Nx)) #- grid -> Y -# y = struct.unpack('f'*Ny, f.read(4*Ny)) self.x = x #- grid -> Z -# z = struct.unpack('f'*Nz, f.read(4*Nz)) self.x = x self.y = y self.z = z #- loop on processors -# F = np.zeros((Nz,Ny,Nx,Nc)) counter = 0 prog = 0.0 for nprocessor in range(0,Nproc): #-processor dims -# i0 = struct.unpack('i', f.read(4))[0] j0 = struct.unpack('i', f.read(4))[0] k0 = struct.unpack('i', f.read(4))[0] li0 = struct.unpack('i', f.read(4))[0] lj0 = struct.unpack('i', f.read(4))[0] lk0 = struct.unpack('i', f.read(4))[0] #print '>>> ',i0,j0,k0,li0,lj0,lk0 NN=li0*lj0*lk0*Nc array=np.array(struct.unpack('f'*NN, f.read(4*NN))).reshape(lk0,lj0,li0,Nc) for k in range(0,lk0): for j in range(0,lj0): for i in range(0,li0): for c in range(0,Nc): F[k+k0,j+j0,i+i0,c] = array[k,j,i,c] counter += li0 prog = counter*(100.0/Ntot) #np.savetxt( nameOutFile ,F[0,:,:,component],fmt='%15.14e') f.close() #print "done" return F def collect_file(self): name = "E_FIELD_000.000.bin.000" for i in os.listdir(os.getcwd()): if i.endswith(".bin.000") and i.startswith("E_FIELD_"): #print i self.Nt +=1 continue else: continue def chose_file(self): base = self.base end = self.end tindex = 0 for i in range (self.tmin,self.tmax): for v in range (0,self.substeps): t = i + v*1.0/self.substeps self.t[tindex] = t name = base + ("%03d.%03d" % (i,v*1000/self.substeps) ) + end self.filenames.append(name) #print name tindex += 1 self.Nt = len(self.filenames) def collect_data(self): self.alldata = np.zeros((self.Nt,self.Nz,self.Ny,self.Nx,self.Nc)) for i in range(0,self.Nt): #print self.filenames[i] F = self.analize_field(self.filenames[i]) self.alldata[i,:,:,:,:] = F[:,:,:,:] def init_values(self): self.analize_field(self.filenames[0]) if(self.Nx>1): self.dx = self.x[1] - self.x[0] else: self.dx = 0 if(self.Ny>1): self.dy = self.y[1] - self.y[0] else: self.dy = 0 if(self.Nz>1): self.dz = self.z[1] - self.z[0] else: self.dz = 0 if(self.Nt>1): self.dt = self.t[1] - self.t[0] else: self.dt = 0 self.kx = np.empty_like(self.x) self.ky = np.empty_like(self.y) self.kz = np.empty_like(self.z) self.kt = np.empty_like(self.t) self.Lx = self.dx*self.Nx self.Ly = self.dy*self.Ny self.Lz = self.dz*self.Nz self.Lt = self.dt*self.Nt self.print_parameters() def print_parameters(self): print ("SIZE: [ Lx, Ly, Lz ] = [ %f, %f, %f ]" %(self.Lx,self.Ly,self.Lz)) print (" Np : [ Nx, Ny, Nz ] = [ %d, %d, %d ]" %(self.Nx,self.Ny,self.Nz)) print ("time span = [%f:%f] Nt = %d" %(self.tmin, self.tmax,self.Nt)) def set_frequency(self): if(self.Lx>0): self.dkx = 1/self.Lx else: self.dkx = 0 for i in range(0,self.Nx): self.kx[i] = i*self.dkx if(self.Ly>0): self.dky = 1/self.Ly else: self.dky = 0 for i in range(0,self.Ny): self.ky[i] = i*self.dky if(self.Lz>0): self.dkz = 1/self.Lz else: self.dkz = 0 for i in range(0,self.Nz): self.kz[i] = i*self.dkz if(self.Lt>0): self.dkt = 1/self.Lt else: self.dkt = 0 for i in range(0,self.Nt): self.kt[i] = i*self.dkt self.Lkx = self.dkx*(self.Nx/2) self.Lky = self.dky*(self.Ny/2) self.Lkz = self.dkz*(self.Nz/2) self.Lkt = self.dkt*(self.Nt/2) self.print_frequency() def print_frequency(self): print ("SIZE: [ Lkx, Lky, Lkz ] = [ %f, %f, %f ]" %(self.Lkx,self.Lky,self.Lkz)) print (" dk : [ dkx, dky, dkz ] = [ %f, %f, %f ]" %(self.dkx,self.dky,self.dkz)) print ("max_freq = %f domega = %f" %(self.Lkt,self.dkt)) def do_fft(self,zposition,comp): self.trasf = np.zeros((self.Nt,self.Ny,self.Nx)) self.trasf = np.fft.fftn(self.alldata[:,zposition,:,:,comp]) def select_omega(self,freq): ifreq = int(freq/self.dkt) selected=ifreq*self.dkt print ("selected ifreq = %d, freq=%4.3f" %(ifreq,selected)) name = ("%s-kx-ky-omega%4.3f.txt"% (self.basename,selected)) f1=open(name, 'w') for j in range(0,self.Ny/2): for i in range(0,self.Nx/2): f1.write("%e %e %e\n" % (self.kx[i], self.ky[j], np.real(self.trasf[ifreq,i,j]))) #np.savetxt( "kx-omega.txt" ,np.real(self.trasf[:,:,0]),fmt='%15.14e') f1.close() def kx_ky_oneTime(self,time,zposition,comp): itime = int((time-self.tmin)/self.dt) if itime>=self.Nt: itime = self.Nt-1 selected=itime*self.dt + self.tmin print ("selected itime = %d time = %4.3f" %(itime,selected)) name = ("%s-kx-ky-time%3.3f.txt"% (self.basename,selected)) onetimetrasf = np.zeros((self.Ny,self.Nx)) onetimetrasf = np.fft.fftn(self.alldata[itime,zposition,:,:,comp]) f1=open(name, 'w') for j in range(-self.Ny/2,self.Ny/2): ky = j*self.dky for i in range(-self.Nx/2,self.Nx/2): kx = i*self.dkx f1.write("%e %e %e\n" % (kx, ky, np.real(onetimetrasf[j,i]))) f1.close() def oneTime(self,time,zposition,comp): itime = int((time-self.tmin)/self.dt) if itime>=self.Nt: itime = self.Nt-1 selected=itime*self.dt + self.tmin print ("selected itime = %d time = %4.3f" %(itime,selected)) name = ("%s-time%3.3f.txt"% (self.basename,selected)) f1=open(name, 'w') for j in range(-self.Ny/2,self.Ny/2): y = j*self.dky for i in range(-self.Nx/2,self.Nx/2): kx = i*self.dkx f1.write("%e %e %e\n" % (x[i], y[j], self.alldata[itime,zposition,j,i,comp] )) f1.close() def avg_y(self): name = ("%s-kx-omega.txt"% (self.basename,)) f1=open(name, 'w') for j in range(-self.Nt/2,self.Nt/2): kt = j*self.dkt for i in range(-self.Nx/2,self.Nx/2): kx = i*self.dkx f1.write("%e %e %e\n" % (kx, kt, np.real(np.sum(self.trasf[j,i,:])))) #np.savetxt( "kx-omega.txt" ,np.real(self.trasf[:,:,0]),fmt='%15.14e') f1.close() def run(): print 'Number of arguments:', len(sys.argv), 'arguments.' print 'Argument List:', str(sys.argv) path = os.getcwd() #f = open(os.path.join(path,'E_FIELD_000.000.bin.000'),'rb') component = 0 basetime = 200 deltaT = 10 sub = 5 endtime = basetime + deltaT myname = "E_FIELD_" #myname = "DENS_eleBulk_" myanalysis = field_analysis(basetime, endtime,substeps=sub, base=myname, end=".bin.000") myanalysis.collect_data() myanalysis.do_fft(zposition=0,comp=component) myanalysis.select_omega(freq=1.01) myanalysis.select_omega(freq=2.01) myanalysis.oneTime(basetime,zposition=0,comp=component) myanalysis.avg_y() myanalysis.kx_ky_oneTime(basetime,zposition=0,comp=component) run() def old(): if len(sys.argv)<2: sys.exit('Usage: %s inputFile outputFile' % sys.argv[0]) elif len(sys.argv)<3: outFile = 'default.dat' else: outFile = str(sys.argv[2])
gpl-3.0
herilalaina/scikit-learn
sklearn/neighbors/tests/test_kde.py
31
5537
import numpy as np from sklearn.utils.testing import (assert_allclose, assert_raises, assert_equal) from sklearn.neighbors import KernelDensity, KDTree, NearestNeighbors from sklearn.neighbors.ball_tree import kernel_norm from sklearn.pipeline import make_pipeline from sklearn.datasets import make_blobs from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) / X.shape[0] if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def check_results(kernel, bandwidth, atol, rtol, X, Y, dens_true): kde = KernelDensity(kernel=kernel, bandwidth=bandwidth, atol=atol, rtol=rtol) log_dens = kde.fit(X).score_samples(Y) assert_allclose(np.exp(log_dens), dens_true, atol=atol, rtol=max(1E-7, rtol)) assert_allclose(np.exp(kde.score(Y)), np.prod(dens_true), atol=atol, rtol=max(1E-7, rtol)) def test_kernel_density(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_features) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for bandwidth in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, bandwidth) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, bandwidth, atol, rtol, X, Y, dens_true) def test_kernel_density_sampling(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) bandwidth = 0.2 for kernel in ['gaussian', 'tophat']: # draw a tophat sample kde = KernelDensity(bandwidth, kernel=kernel).fit(X) samp = kde.sample(100) assert_equal(X.shape, samp.shape) # check that samples are in the right range nbrs = NearestNeighbors(n_neighbors=1).fit(X) dist, ind = nbrs.kneighbors(X, return_distance=True) if kernel == 'tophat': assert np.all(dist < bandwidth) elif kernel == 'gaussian': # 5 standard deviations is safe for 100 samples, but there's a # very small chance this test could fail. assert np.all(dist < 5 * bandwidth) # check unsupported kernels for kernel in ['epanechnikov', 'exponential', 'linear', 'cosine']: kde = KernelDensity(bandwidth, kernel=kernel).fit(X) assert_raises(NotImplementedError, kde.sample, 100) # non-regression test: used to return a scalar X = rng.randn(4, 1) kde = KernelDensity(kernel="gaussian").fit(X) assert_equal(kde.sample().shape, (1, 1)) def test_kde_algorithm_metric_choice(): # Smoke test for various metrics and algorithms rng = np.random.RandomState(0) X = rng.randn(10, 2) # 2 features required for haversine dist. Y = rng.randn(10, 2) for algorithm in ['auto', 'ball_tree', 'kd_tree']: for metric in ['euclidean', 'minkowski', 'manhattan', 'chebyshev', 'haversine']: if algorithm == 'kd_tree' and metric not in KDTree.valid_metrics: assert_raises(ValueError, KernelDensity, algorithm=algorithm, metric=metric) else: kde = KernelDensity(algorithm=algorithm, metric=metric) kde.fit(X) y_dens = kde.score_samples(Y) assert_equal(y_dens.shape, Y.shape[:1]) def test_kde_score(n_samples=100, n_features=3): pass # FIXME # rng = np.random.RandomState(0) # X = rng.random_sample((n_samples, n_features)) # Y = rng.random_sample((n_samples, n_features)) def test_kde_badargs(): assert_raises(ValueError, KernelDensity, algorithm='blah') assert_raises(ValueError, KernelDensity, bandwidth=0) assert_raises(ValueError, KernelDensity, kernel='blah') assert_raises(ValueError, KernelDensity, metric='blah') assert_raises(ValueError, KernelDensity, algorithm='kd_tree', metric='blah') def test_kde_pipeline_gridsearch(): # test that kde plays nice in pipelines and grid-searches X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) pipe1 = make_pipeline(StandardScaler(with_mean=False, with_std=False), KernelDensity(kernel="gaussian")) params = dict(kerneldensity__bandwidth=[0.001, 0.01, 0.1, 1, 10]) search = GridSearchCV(pipe1, param_grid=params, cv=5) search.fit(X) assert_equal(search.best_params_['kerneldensity__bandwidth'], .1)
bsd-3-clause
zhengwsh/InplusTrader_Linux
InplusTrader/dataViewer/monitor_tick_main.py
1
3095
# encoding: UTF-8 import sys,os from PyQt4 import QtGui,QtCore from pymongo import MongoClient import matplotlib.dates as mpd sys.path.append('..') from vtConstantMid import * import datetime as dt import pytz from ui.uiCrosshair import Crosshair """mid 读取保存在mongodb中的tick数据并图形化,以方便观察某个阶段的tick细节 """ class TickMonitor(pg.PlotWidget): #---------------------------------------------------------------------- def __init__(self,host,port,dbName,symbolName,startDatetimeStr,endDatetimeStr): super(TickMonitor, self).__init__() self.crosshair = Crosshair(self) #mid 实现crosshair功能 tickMonitor = self.plot(clear=False,pen=(255, 255, 255), name="tickTimeLine") self.addItem(tickMonitor) #mid 加载数据 tickDatetimeNums,tickPrices = self.__loadTicksFromMongo(host,port,dbName,symbolName,startDatetimeStr,endDatetimeStr) #mid 显示数据 tickMonitor.setData(tickDatetimeNums,tickPrices,clear=True,) #---------------------------------------------------------------------- def __loadTicksFromMongo(self,host,port,dbName,symbolName,startDatetimeStr,endDatetimeStr): """mid 加载mongodb数据转换并返回数字格式的时间及价格 """ mongoConnection = MongoClient( host=host,port=port) collection = mongoConnection[dbName][symbolName] startDate = dt.datetime.strptime(startDatetimeStr, '%Y-%m-%d %H:%M:%S') endDate = dt.datetime.strptime(endDatetimeStr, '%Y-%m-%d %H:%M:%S') cx = collection.find({'datetime': {'$gte': startDate, '$lte': endDate}}) tickDatetimeNums = [] tickPrices = [] for d in cx: tickDatetimeNums.append(mpd.date2num(d['datetime'])) tickPrices.append(d['lastPrice']) return tickDatetimeNums,tickPrices #---------------------------------------------------------------------- def getTickDatetimeByXPosition(self,xAxis): """mid 根据传入的x轴坐标值,返回其所代表的时间 """ tickDatetimeRet = xAxis minYearDatetimeNum = mpd.date2num(dt.datetime(1900,1,1)) if(xAxis > minYearDatetimeNum): tickDatetime = mpd.num2date(xAxis).astimezone(pytz.timezone('utc')) if(tickDatetime.year >=1900): tickDatetimeRet = tickDatetime return tickDatetimeRet if __name__ == "__main__": app = QtGui.QApplication(sys.argv) #mid 历史tick加载参数 host = '192.168.0.212' port = 27017 dbName = 'VnTrader_Tick_Db' symbolName = "EUR.USD.IDEALPRO" if(True): startDatetimeStr='2016-11-07 17:40:00' endDatetimeStr = '2016-11-07 18:25:00' if(False): startDatetimeStr='2016-11-07 17:49:00' endDatetimeStr = '2016-11-07 17:55:00' main = TickMonitor(host,port,dbName,symbolName,startDatetimeStr,endDatetimeStr) main.show() sys.exit(app.exec_())
mit
clarkfitzg/dask
dask/dataframe/tests/test_multi.py
5
20818
import dask.dataframe as dd import numpy as np import pandas as pd from dask.dataframe.multi import (align_partitions, join_indexed_dataframes, hash_join, concat_indexed_dataframes) import pandas.util.testing as tm from dask.async import get_sync from test_dataframe import eq def test_align_partitions(): A = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6], 'y': list('abdabd')}, index=[10, 20, 30, 40, 50, 60]) a = dd.repartition(A, [10, 40, 60]) B = pd.DataFrame({'x': [1, 2, 3, 4], 'y': list('abda')}, index=[30, 70, 80, 100]) b = dd.repartition(B, [30, 80, 100]) s = dd.core.Scalar({('s', 0): 10}, 's') (aa, bb), divisions, L = align_partitions(a, b) def _check(a, b, aa, bb): assert isinstance(a, dd.DataFrame) assert isinstance(b, dd.DataFrame) assert isinstance(aa, dd.DataFrame) assert isinstance(bb, dd.DataFrame) assert eq(a, aa) assert eq(b, bb) assert divisions == (10, 30, 40, 60, 80, 100) assert isinstance(L, list) assert len(divisions) == 1 + len(L) _check(a, b, aa, bb) assert L == [[(aa._name, 0), (bb._name, 0)], [(aa._name, 1), (bb._name, 1)], [(aa._name, 2), (bb._name, 2)], [(aa._name, 3), (bb._name, 3)], [(aa._name, 4), (bb._name, 4)]] (aa, ss, bb), divisions, L = align_partitions(a, s, b) _check(a, b, aa, bb) assert L == [[(aa._name, 0), None, (bb._name, 0)], [(aa._name, 1), None, (bb._name, 1)], [(aa._name, 2), None, (bb._name, 2)], [(aa._name, 3), None, (bb._name, 3)], [(aa._name, 4), None, (bb._name, 4)]] assert eq(ss, 10) ldf = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6, 7], 'b': [7, 6, 5, 4, 3, 2, 1]}) rdf = pd.DataFrame({'c': [1, 2, 3, 4, 5, 6, 7], 'd': [7, 6, 5, 4, 3, 2, 1]}) for lhs, rhs in [(dd.from_pandas(ldf, 1), dd.from_pandas(rdf, 1)), (dd.from_pandas(ldf, 2), dd.from_pandas(rdf, 2)), (dd.from_pandas(ldf, 2), dd.from_pandas(rdf, 3)), (dd.from_pandas(ldf, 3), dd.from_pandas(rdf, 2))]: (lresult, rresult), div, parts = dd.multi.align_partitions(lhs, rhs) assert eq(lresult, ldf) assert eq(rresult, rdf) # different index ldf = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6, 7], 'b': [7, 6, 5, 4, 3, 2, 1]}, index=list('abcdefg')) rdf = pd.DataFrame({'c': [1, 2, 3, 4, 5, 6, 7], 'd': [7, 6, 5, 4, 3, 2, 1]}, index=list('fghijkl')) for lhs, rhs in [(dd.from_pandas(ldf, 1), dd.from_pandas(rdf, 1)), (dd.from_pandas(ldf, 2), dd.from_pandas(rdf, 2)), (dd.from_pandas(ldf, 2), dd.from_pandas(rdf, 3)), (dd.from_pandas(ldf, 3), dd.from_pandas(rdf, 2))]: (lresult, rresult), div, parts = dd.multi.align_partitions(lhs, rhs) assert eq(lresult, ldf) assert eq(rresult, rdf) def test_join_indexed_dataframe_to_indexed_dataframe(): A = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6]}, index=[1, 2, 3, 4, 6, 7]) a = dd.repartition(A, [1, 4, 7]) B = pd.DataFrame({'y': list('abcdef')}, index=[1, 2, 4, 5, 6, 8]) b = dd.repartition(B, [1, 2, 5, 8]) c = join_indexed_dataframes(a, b, how='left') assert c.divisions[0] == a.divisions[0] assert c.divisions[-1] == max(a.divisions + b.divisions) tm.assert_frame_equal(c.compute(), A.join(B)) c = join_indexed_dataframes(a, b, how='right') assert c.divisions[0] == b.divisions[0] assert c.divisions[-1] == b.divisions[-1] tm.assert_frame_equal(c.compute(), A.join(B, how='right')) c = join_indexed_dataframes(a, b, how='inner') assert c.divisions[0] == 1 assert c.divisions[-1] == max(a.divisions + b.divisions) tm.assert_frame_equal(c.compute(), A.join(B, how='inner')) c = join_indexed_dataframes(a, b, how='outer') assert c.divisions[0] == 1 assert c.divisions[-1] == 8 tm.assert_frame_equal(c.compute(), A.join(B, how='outer')) assert sorted(join_indexed_dataframes(a, b, how='inner').dask) == \ sorted(join_indexed_dataframes(a, b, how='inner').dask) assert sorted(join_indexed_dataframes(a, b, how='inner').dask) != \ sorted(join_indexed_dataframes(a, b, how='outer').dask) def list_eq(a, b): if isinstance(a, dd.DataFrame): a = a.compute(get=get_sync) if isinstance(b, dd.DataFrame): b = b.compute(get=get_sync) assert list(a.columns) == list(b.columns) # ToDo: As of pandas 0,17, tm.assert_numpy_array_equal can # compare arrays include NaN. This logic can be replaced for c in a.columns: if a[c].dtype in (int, float): a[c] = a[c].fillna(100) b[c] = b[c].fillna(100) else: a[c] = a[c].fillna('NAN') b[c] = b[c].fillna('NAN') av = sorted(a.values.tolist()) bv = sorted(b.values.tolist()) assert av == bv, (av, bv) def test_hash_join(): A = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6], 'y': [1, 1, 2, 2, 3, 4]}) a = dd.repartition(A, [0, 4, 5]) B = pd.DataFrame({'y': [1, 3, 4, 4, 5, 6], 'z': [6, 5, 4, 3, 2, 1]}) b = dd.repartition(B, [0, 2, 5]) for how in ['inner', 'left', 'right', 'outer']: c = hash_join(a, 'y', b, 'y', how) result = c.compute() expected = pd.merge(A, B, how, 'y') assert list(result.columns) == list(expected.columns) assert sorted(result.fillna(100).values.tolist()) == \ sorted(expected.fillna(100).values.tolist()) # Different columns and npartitions c = hash_join(a, 'x', b, 'z', 'outer', npartitions=3) assert c.npartitions == 3 result = c.compute() expected = pd.merge(A, B, 'outer', None, 'x', 'z') assert list(result.columns) == list(expected.columns) assert sorted(result.fillna(100).values.tolist()) == \ sorted(expected.fillna(100).values.tolist()) assert hash_join(a, 'y', b, 'y', 'inner')._name == \ hash_join(a, 'y', b, 'y', 'inner')._name assert hash_join(a, 'y', b, 'y', 'inner')._name != \ hash_join(a, 'y', b, 'y', 'outer')._name def test_indexed_concat(): A = pd.DataFrame({'x': [1, 2, 3, 4, 6, 7], 'y': list('abcdef')}, index=[1, 2, 3, 4, 6, 7]) a = dd.repartition(A, [1, 4, 7]) B = pd.DataFrame({'x': [10, 20, 40, 50, 60, 80]}, index=[1, 2, 4, 5, 6, 8]) b = dd.repartition(B, [1, 2, 5, 8]) for how in ['inner', 'outer']: c = concat_indexed_dataframes([a, b], join=how) result = c.compute() expected = pd.concat([A, B], 0, how) assert list(result.columns) == list(expected.columns) assert sorted(zip(result.values.tolist(), result.index.values.tolist())) == \ sorted(zip(expected.values.tolist(), expected.index.values.tolist())) assert sorted(concat_indexed_dataframes([a, b], join='inner').dask) == \ sorted(concat_indexed_dataframes([a, b], join='inner').dask) assert sorted(concat_indexed_dataframes([a, b], join='inner').dask) != \ sorted(concat_indexed_dataframes([a, b], join='outer').dask) def test_merge(): A = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6], 'y': [1, 1, 2, 2, 3, 4]}) a = dd.repartition(A, [0, 4, 5]) B = pd.DataFrame({'y': [1, 3, 4, 4, 5, 6], 'z': [6, 5, 4, 3, 2, 1]}) b = dd.repartition(B, [0, 2, 5]) eq(dd.merge(a, b, left_index=True, right_index=True), pd.merge(A, B, left_index=True, right_index=True)) for how in ['inner', 'outer', 'left', 'right']: result = dd.merge(a, b, on='y', how=how) list_eq(result, pd.merge(A, B, on='y', how=how)) assert all(d is None for d in result.divisions) list_eq(dd.merge(a, b, left_on='x', right_on='z', how=how), pd.merge(A, B, left_on='x', right_on='z', how=how)) list_eq(dd.merge(a, b, left_on='x', right_on='z', how=how, suffixes=('1', '2')), pd.merge(A, B, left_on='x', right_on='z', how=how, suffixes=('1', '2'))) list_eq(dd.merge(a, b, how=how), pd.merge(A, B, how=how)) list_eq(dd.merge(a, B, how=how), pd.merge(A, B, how=how)) list_eq(dd.merge(A, b, how=how), pd.merge(A, B, how=how)) list_eq(dd.merge(A, B, how=how), pd.merge(A, B, how=how)) list_eq(dd.merge(a, b, left_index=True, right_index=True, how=how), pd.merge(A, B, left_index=True, right_index=True, how=how)) list_eq(dd.merge(a, b, left_index=True, right_index=True, how=how, suffixes=('1', '2')), pd.merge(A, B, left_index=True, right_index=True, how=how, suffixes=('1', '2'))) list_eq(dd.merge(a, b, left_on='x', right_index=True, how=how), pd.merge(A, B, left_on='x', right_index=True, how=how)) list_eq(dd.merge(a, b, left_on='x', right_index=True, how=how, suffixes=('1', '2')), pd.merge(A, B, left_on='x', right_index=True, how=how, suffixes=('1', '2'))) # pandas result looks buggy # list_eq(dd.merge(a, B, left_index=True, right_on='y'), # pd.merge(A, B, left_index=True, right_on='y')) def test_merge_by_index_patterns(): pdf1l = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6, 7], 'b': [7, 6, 5, 4, 3, 2, 1]}) pdf1r = pd.DataFrame({'c': [1, 2, 3, 4, 5, 6, 7], 'd': [7, 6, 5, 4, 3, 2, 1]}) pdf2l = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6, 7], 'b': [7, 6, 5, 4, 3, 2, 1]}, index=list('abcdefg')) pdf2r = pd.DataFrame({'c': [7, 6, 5, 4, 3, 2, 1], 'd': [7, 6, 5, 4, 3, 2, 1]}, index=list('abcdefg')) pdf3l = pdf2l pdf3r = pd.DataFrame({'c': [6, 7, 8, 9], 'd': [5, 4, 3, 2]}, index=list('abdg')) pdf4l = pdf2l pdf4r = pd.DataFrame({'c': [9, 10, 11, 12], 'd': [5, 4, 3, 2]}, index=list('abdg')) # completely different index pdf5l = pd.DataFrame({'a': [1, 1, 2, 2, 3, 3, 4], 'b': [7, 6, 5, 4, 3, 2, 1]}, index=list('lmnopqr')) pdf5r = pd.DataFrame({'c': [1, 1, 1, 1], 'd': [5, 4, 3, 2]}, index=list('abcd')) pdf6l = pd.DataFrame({'a': [1, 1, 2, 2, 3, 3, 4], 'b': [7, 6, 5, 4, 3, 2, 1]}, index=list('cdefghi')) pdf6r = pd.DataFrame({'c': [1, 2, 1, 2], 'd': [5, 4, 3, 2]}, index=list('abcd')) pdf7l = pd.DataFrame({'a': [1, 1, 2, 2, 3, 3, 4], 'b': [7, 6, 5, 4, 3, 2, 1]}, index=list('abcdefg')) pdf7r = pd.DataFrame({'c': [5, 6, 7, 8], 'd': [5, 4, 3, 2]}, index=list('fghi')) for pdl, pdr in [(pdf1l, pdf1r), (pdf2l, pdf2r), (pdf3l, pdf3r), (pdf4l, pdf4r), (pdf5l, pdf5r), (pdf6l, pdf6r), (pdf7l, pdf7r)]: for lpart, rpart in [(2, 2), # same partition (3, 2), # left npartition > right npartition (2, 3)]: # left npartition < right npartition ddl = dd.from_pandas(pdl, lpart) ddr = dd.from_pandas(pdr, rpart) for how in ['inner', 'outer', 'left', 'right']: eq(dd.merge(ddl, ddr, how=how, left_index=True, right_index=True), pd.merge(pdl, pdr, how=how, left_index=True, right_index=True)) eq(dd.merge(ddr, ddl, how=how, left_index=True, right_index=True), pd.merge(pdr, pdl, how=how, left_index=True, right_index=True)) eq(ddr.merge(ddl, how=how, left_index=True, right_index=True), pdr.merge(pdl, how=how, left_index=True, right_index=True)) eq(ddl.merge(ddr, how=how, left_index=True, right_index=True), pdl.merge(pdr, how=how, left_index=True, right_index=True)) # hash join list_eq(dd.merge(ddl, ddr, how=how, left_on='a', right_on='c'), pd.merge(pdl, pdr, how=how, left_on='a', right_on='c')) list_eq(dd.merge(ddl, ddr, how=how, left_on='b', right_on='d'), pd.merge(pdl, pdr, how=how, left_on='b', right_on='d')) list_eq(dd.merge(ddr, ddl, how=how, left_on='c', right_on='a'), pd.merge(pdr, pdl, how=how, left_on='c', right_on='a')) list_eq(dd.merge(ddr, ddl, how=how, left_on='d', right_on='b'), pd.merge(pdr, pdl, how=how, left_on='d', right_on='b')) list_eq(ddl.merge(ddr, how=how, left_on='a', right_on='c'), pdl.merge(pdr, how=how, left_on='a', right_on='c')) list_eq(ddl.merge(ddr, how=how, left_on='b', right_on='d'), pdl.merge(pdr, how=how, left_on='b', right_on='d')) list_eq(ddr.merge(ddl, how=how, left_on='c', right_on='a'), pdr.merge(pdl, how=how, left_on='c', right_on='a')) list_eq(ddr.merge(ddl, how=how, left_on='d', right_on='b'), pdr.merge(pdl, how=how, left_on='d', right_on='b')) def test_join_by_index_patterns(): # Similar test cases as test_merge_by_index_patterns, # but columns / index for join have same dtype pdf1l = pd.DataFrame({'a': list('abcdefg'), 'b': [7, 6, 5, 4, 3, 2, 1]}, index=list('abcdefg')) pdf1r = pd.DataFrame({'c': list('abcdefg'), 'd': [7, 6, 5, 4, 3, 2, 1]}, index=list('abcdefg')) pdf2l = pdf1l pdf2r = pd.DataFrame({'c': list('gfedcba'), 'd': [7, 6, 5, 4, 3, 2, 1]}, index=list('abcdefg')) pdf3l = pdf1l pdf3r = pd.DataFrame({'c': list('abdg'), 'd': [5, 4, 3, 2]}, index=list('abdg')) pdf4l = pd.DataFrame({'a': list('abcabce'), 'b': [7, 6, 5, 4, 3, 2, 1]}, index=list('abcdefg')) pdf4r = pd.DataFrame({'c': list('abda'), 'd': [5, 4, 3, 2]}, index=list('abdg')) # completely different index pdf5l = pd.DataFrame({'a': list('lmnopqr'), 'b': [7, 6, 5, 4, 3, 2, 1]}, index=list('lmnopqr')) pdf5r = pd.DataFrame({'c': list('abcd'), 'd': [5, 4, 3, 2]}, index=list('abcd')) pdf6l = pd.DataFrame({'a': list('cdefghi'), 'b': [7, 6, 5, 4, 3, 2, 1]}, index=list('cdefghi')) pdf6r = pd.DataFrame({'c': list('abab'), 'd': [5, 4, 3, 2]}, index=list('abcd')) pdf7l = pd.DataFrame({'a': list('aabbccd'), 'b': [7, 6, 5, 4, 3, 2, 1]}, index=list('abcdefg')) pdf7r = pd.DataFrame({'c': list('aabb'), 'd': [5, 4, 3, 2]}, index=list('fghi')) for pdl, pdr in [(pdf1l, pdf1r), (pdf2l, pdf2r), (pdf3l, pdf3r), (pdf4l, pdf4r), (pdf5l, pdf5r), (pdf6l, pdf6r), (pdf7l, pdf7r)]: for lpart, rpart in [(2, 2), (3, 2), (2, 3)]: ddl = dd.from_pandas(pdl, lpart) ddr = dd.from_pandas(pdr, rpart) for how in ['inner', 'outer', 'left', 'right']: eq(ddl.join(ddr, how=how), pdl.join(pdr, how=how)) eq(ddr.join(ddl, how=how), pdr.join(pdl, how=how)) eq(ddl.join(ddr, how=how, lsuffix='l', rsuffix='r'), pdl.join(pdr, how=how, lsuffix='l', rsuffix='r')) eq(ddr.join(ddl, how=how, lsuffix='l', rsuffix='r'), pdr.join(pdl, how=how, lsuffix='l', rsuffix='r')) """ # temporary disabled bacause pandas may incorrectly raise # IndexError for empty DataFrame # https://github.com/pydata/pandas/pull/10826 list_eq(ddl.join(ddr, how=how, on='a', lsuffix='l', rsuffix='r'), pdl.join(pdr, how=how, on='a', lsuffix='l', rsuffix='r')) list_eq(ddr.join(ddl, how=how, on='c', lsuffix='l', rsuffix='r'), pdr.join(pdl, how=how, on='c', lsuffix='l', rsuffix='r')) # merge with index and columns list_eq(ddl.merge(ddr, how=how, left_on='a', right_index=True), pdl.merge(pdr, how=how, left_on='a', right_index=True)) list_eq(ddr.merge(ddl, how=how, left_on='c', right_index=True), pdr.merge(pdl, how=how, left_on='c', right_index=True)) list_eq(ddl.merge(ddr, how=how, left_index=True, right_on='c'), pdl.merge(pdr, how=how, left_index=True, right_on='c')) list_eq(ddr.merge(ddl, how=how, left_index=True, right_on='a'), pdr.merge(pdl, how=how, left_index=True, right_on='a')) """ def test_merge_by_multiple_columns(): pdf1l = pd.DataFrame({'a': list('abcdefghij'), 'b': list('abcdefghij'), 'c': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}, index=list('abcdefghij')) pdf1r = pd.DataFrame({'d': list('abcdefghij'), 'e': list('abcdefghij'), 'f': [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]}, index=list('abcdefghij')) pdf2l = pd.DataFrame({'a': list('abcdeabcde'), 'b': list('abcabcabca'), 'c': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}, index=list('abcdefghij')) pdf2r = pd.DataFrame({'d': list('edcbaedcba'), 'e': list('aaabbbcccd'), 'f': [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]}, index=list('fghijklmno')) pdf3l = pd.DataFrame({'a': list('aaaaaaaaaa'), 'b': list('aaaaaaaaaa'), 'c': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}, index=list('abcdefghij')) pdf3r = pd.DataFrame({'d': list('aaabbbccaa'), 'e': list('abbbbbbbbb'), 'f': [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]}, index=list('ABCDEFGHIJ')) for pdl, pdr in [(pdf1l, pdf1r), (pdf2l, pdf2r), (pdf3l, pdf3r)]: for lpart, rpart in [(2, 2), (3, 2), (2, 3)]: ddl = dd.from_pandas(pdl, lpart) ddr = dd.from_pandas(pdr, rpart) for how in ['inner', 'outer', 'left', 'right']: eq(ddl.join(ddr, how=how), pdl.join(pdr, how=how)) eq(ddr.join(ddl, how=how), pdr.join(pdl, how=how)) eq(dd.merge(ddl, ddr, how=how, left_index=True, right_index=True), pd.merge(pdl, pdr, how=how, left_index=True, right_index=True)) eq(dd.merge(ddr, ddl, how=how, left_index=True, right_index=True), pd.merge(pdr, pdl, how=how, left_index=True, right_index=True)) # hash join list_eq(dd.merge(ddl, ddr, how=how, left_on='a', right_on='d'), pd.merge(pdl, pdr, how=how, left_on='a', right_on='d')) list_eq(dd.merge(ddl, ddr, how=how, left_on='b', right_on='e'), pd.merge(pdl, pdr, how=how, left_on='b', right_on='e')) list_eq(dd.merge(ddr, ddl, how=how, left_on='d', right_on='a'), pd.merge(pdr, pdl, how=how, left_on='d', right_on='a')) list_eq(dd.merge(ddr, ddl, how=how, left_on='e', right_on='b'), pd.merge(pdr, pdl, how=how, left_on='e', right_on='b')) list_eq(dd.merge(ddl, ddr, how=how, left_on=['a', 'b'], right_on=['d', 'e']), pd.merge(pdl, pdr, how=how, left_on=['a', 'b'], right_on=['d', 'e']))
bsd-3-clause
jlegendary/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_macosx.py
69
15397
from __future__ import division import os import numpy from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase, NavigationToolbar2 from matplotlib.cbook import maxdict from matplotlib.figure import Figure from matplotlib.path import Path from matplotlib.mathtext import MathTextParser from matplotlib.colors import colorConverter from matplotlib.widgets import SubplotTool import matplotlib from matplotlib.backends import _macosx def show(): """Show all the figures and enter the Cocoa mainloop. This function will not return until all windows are closed or the interpreter exits.""" # Having a Python-level function "show" wrapping the built-in # function "show" in the _macosx extension module allows us to # to add attributes to "show". This is something ipython does. _macosx.show() class RendererMac(RendererBase): """ The renderer handles drawing/rendering operations. Most of the renderer's methods forwards the command to the renderer's graphics context. The renderer does not wrap a C object and is written in pure Python. """ texd = maxdict(50) # a cache of tex image rasters def __init__(self, dpi, width, height): RendererBase.__init__(self) self.dpi = dpi self.width = width self.height = height self.gc = GraphicsContextMac() self.mathtext_parser = MathTextParser('MacOSX') def set_width_height (self, width, height): self.width, self.height = width, height def draw_path(self, gc, path, transform, rgbFace=None): if rgbFace is not None: rgbFace = tuple(rgbFace) if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc gc.draw_path(path, transform, rgbFace) def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): if rgbFace is not None: rgbFace = tuple(rgbFace) if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc gc.draw_markers(marker_path, marker_trans, path, trans, rgbFace) def draw_path_collection(self, *args): gc = self.gc args = args[:13] gc.draw_path_collection(*args) def draw_quad_mesh(self, *args): gc = self.gc gc.draw_quad_mesh(*args) def new_gc(self): self.gc.reset() return self.gc def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): im.flipud_out() nrows, ncols, data = im.as_rgba_str() self.gc.draw_image(x, y, nrows, ncols, data, bbox, clippath, clippath_trans) im.flipud_out() def draw_tex(self, gc, x, y, s, prop, angle): if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc # todo, handle props, angle, origins size = prop.get_size_in_points() texmanager = self.get_texmanager() key = s, size, self.dpi, angle, texmanager.get_font_config() im = self.texd.get(key) # Not sure what this does; just copied from backend_agg.py if im is None: Z = texmanager.get_grey(s, size, self.dpi) Z = numpy.array(255.0 - Z * 255.0, numpy.uint8) gc.draw_mathtext(x, y, angle, Z) def _draw_mathtext(self, gc, x, y, s, prop, angle): if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc size = prop.get_size_in_points() ox, oy, width, height, descent, image, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) gc.draw_mathtext(x, y, angle, 255 - image.as_array()) def draw_text(self, gc, x, y, s, prop, angle, ismath=False): if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc if ismath: self._draw_mathtext(gc, x, y, s, prop, angle) else: family = prop.get_family() size = prop.get_size_in_points() weight = prop.get_weight() style = prop.get_style() gc.draw_text(x, y, unicode(s), family, size, weight, style, angle) def get_text_width_height_descent(self, s, prop, ismath): if ismath=='TeX': # TODO: handle props size = prop.get_size_in_points() texmanager = self.get_texmanager() Z = texmanager.get_grey(s, size, self.dpi) m,n = Z.shape # TODO: handle descent; This is based on backend_agg.py return n, m, 0 if ismath: ox, oy, width, height, descent, fonts, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) return width, height, descent family = prop.get_family() size = prop.get_size_in_points() weight = prop.get_weight() style = prop.get_style() return self.gc.get_text_width_height_descent(unicode(s), family, size, weight, style) def flipy(self): return False def points_to_pixels(self, points): return points/72.0 * self.dpi def option_image_nocomposite(self): return True class GraphicsContextMac(_macosx.GraphicsContext, GraphicsContextBase): """ The GraphicsContext wraps a Quartz graphics context. All methods are implemented at the C-level in macosx.GraphicsContext. These methods set drawing properties such as the line style, fill color, etc. The actual drawing is done by the Renderer, which draws into the GraphicsContext. """ def __init__(self): GraphicsContextBase.__init__(self) _macosx.GraphicsContext.__init__(self) def set_foreground(self, fg, isRGB=False): if not isRGB: fg = colorConverter.to_rgb(fg) _macosx.GraphicsContext.set_foreground(self, fg) def set_clip_rectangle(self, box): GraphicsContextBase.set_clip_rectangle(self, box) if not box: return _macosx.GraphicsContext.set_clip_rectangle(self, box.bounds) def set_clip_path(self, path): GraphicsContextBase.set_clip_path(self, path) if not path: return path = path.get_fully_transformed_path() _macosx.GraphicsContext.set_clip_path(self, path) ######################################################################## # # The following functions and classes are for pylab and implement # window/figure managers, etc... # ######################################################################## def draw_if_interactive(): """ For performance reasons, we don't want to redraw the figure after each draw command. Instead, we mark the figure as invalid, so that it will be redrawn as soon as the event loop resumes via PyOS_InputHook. This function should be called after each draw event, even if matplotlib is not running interactively. """ figManager = Gcf.get_active() if figManager is not None: figManager.canvas.invalidate() def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) figure = FigureClass(*args, **kwargs) canvas = FigureCanvasMac(figure) manager = FigureManagerMac(canvas, num) return manager class FigureCanvasMac(_macosx.FigureCanvas, FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance Events such as button presses, mouse movements, and key presses are handled in the C code and the base class methods button_press_event, button_release_event, motion_notify_event, key_press_event, and key_release_event are called from there. """ def __init__(self, figure): FigureCanvasBase.__init__(self, figure) width, height = self.get_width_height() self.renderer = RendererMac(figure.dpi, width, height) _macosx.FigureCanvas.__init__(self, width, height) def resize(self, width, height): self.renderer.set_width_height(width, height) dpi = self.figure.dpi width /= dpi height /= dpi self.figure.set_size_inches(width, height) def print_figure(self, filename, dpi=None, facecolor='w', edgecolor='w', orientation='portrait', **kwargs): if dpi is None: dpi = matplotlib.rcParams['savefig.dpi'] filename = unicode(filename) root, ext = os.path.splitext(filename) ext = ext[1:].lower() if not ext: ext = "png" filename = root + "." + ext if ext=="jpg": ext = "jpeg" # save the figure settings origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() # set the new parameters self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) if ext in ('jpeg', 'png', 'tiff', 'gif', 'bmp'): width, height = self.figure.get_size_inches() width, height = width*dpi, height*dpi self.write_bitmap(filename, width, height) elif ext == 'pdf': self.write_pdf(filename) elif ext in ('ps', 'eps'): from backend_ps import FigureCanvasPS # Postscript backend changes figure.dpi, but doesn't change it back origDPI = self.figure.dpi fc = self.switch_backends(FigureCanvasPS) fc.print_figure(filename, dpi, facecolor, edgecolor, orientation, **kwargs) self.figure.dpi = origDPI self.figure.set_canvas(self) elif ext=='svg': from backend_svg import FigureCanvasSVG fc = self.switch_backends(FigureCanvasSVG) fc.print_figure(filename, dpi, facecolor, edgecolor, orientation, **kwargs) self.figure.set_canvas(self) else: raise ValueError("Figure format not available (extension %s)" % ext) # restore original figure settings self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) class FigureManagerMac(_macosx.FigureManager, FigureManagerBase): """ Wrap everything up into a window for the pylab interface """ def __init__(self, canvas, num): FigureManagerBase.__init__(self, canvas, num) title = "Figure %d" % num _macosx.FigureManager.__init__(self, canvas, title) if matplotlib.rcParams['toolbar']=='classic': self.toolbar = NavigationToolbarMac(canvas) elif matplotlib.rcParams['toolbar']=='toolbar2': self.toolbar = NavigationToolbar2Mac(canvas) else: self.toolbar = None if self.toolbar is not None: self.toolbar.update() def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) # This is ugly, but this is what tkagg and gtk are doing. # It is needed to get ginput() working. self.canvas.figure.show = lambda *args: self.show() def show(self): self.canvas.draw() def close(self): Gcf.destroy(self.num) class NavigationToolbarMac(_macosx.NavigationToolbar): def __init__(self, canvas): self.canvas = canvas basedir = os.path.join(matplotlib.rcParams['datapath'], "images") images = {} for imagename in ("stock_left", "stock_right", "stock_up", "stock_down", "stock_zoom-in", "stock_zoom-out", "stock_save_as"): filename = os.path.join(basedir, imagename+".ppm") images[imagename] = self._read_ppm_image(filename) _macosx.NavigationToolbar.__init__(self, images) self.message = None def _read_ppm_image(self, filename): data = "" imagefile = open(filename) for line in imagefile: if "#" in line: i = line.index("#") line = line[:i] + "\n" data += line imagefile.close() magic, width, height, maxcolor, imagedata = data.split(None, 4) width, height = int(width), int(height) assert magic=="P6" assert len(imagedata)==width*height*3 # 3 colors in RGB return (width, height, imagedata) def panx(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].xaxis.pan(direction) self.canvas.invalidate() def pany(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].yaxis.pan(direction) self.canvas.invalidate() def zoomx(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].xaxis.zoom(direction) self.canvas.invalidate() def zoomy(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].yaxis.zoom(direction) self.canvas.invalidate() def save_figure(self): filename = _macosx.choose_save_file('Save the figure') if filename is None: # Cancel return self.canvas.print_figure(filename) class NavigationToolbar2Mac(_macosx.NavigationToolbar2, NavigationToolbar2): def __init__(self, canvas): NavigationToolbar2.__init__(self, canvas) def _init_toolbar(self): basedir = os.path.join(matplotlib.rcParams['datapath'], "images") _macosx.NavigationToolbar2.__init__(self, basedir) def draw_rubberband(self, event, x0, y0, x1, y1): self.canvas.set_rubberband(x0, y0, x1, y1) def release(self, event): self.canvas.remove_rubberband() def set_cursor(self, cursor): _macosx.set_cursor(cursor) def save_figure(self): filename = _macosx.choose_save_file('Save the figure') if filename is None: # Cancel return self.canvas.print_figure(filename) def prepare_configure_subplots(self): toolfig = Figure(figsize=(6,3)) canvas = FigureCanvasMac(toolfig) toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) return canvas def set_message(self, message): _macosx.NavigationToolbar2.set_message(self, message.encode('utf-8')) ######################################################################## # # Now just provide the standard names that backend.__init__ is expecting # ######################################################################## FigureManager = FigureManagerMac
gpl-3.0
Rossonero/bmlswp
ch08/norm.py
23
2242
import numpy as np class NormalizePositive(object): def __init__(self, axis=0): self.axis = axis def fit(self, features, y=None): # count features that are greater than zero in axis `self.axis`: if self.axis == 1: features = features.T binary = (features > 0) count = binary.sum(axis=0) # to avoid division by zero, set zero counts to one: count[count == 0] = 1. self.mean = features.sum(axis=0)/count # Compute variance by average squared difference to the mean, but only # consider differences where binary is True (i.e., where there was a # true rating): diff = (features - self.mean) * binary diff **= 2 # regularize the estimate of std by adding 0.1 self.std = np.sqrt(0.1 + diff.sum(axis=0)/count) return self def transform(self, features): if self.axis == 1: features = features.T binary = (features > 0) features = features - self.mean features /= self.std features *= binary if self.axis == 1: features = features.T return features def inverse_transform(self, features, copy=True): if copy: features = features.copy() if self.axis == 1: features = features.T features *= self.std features += self.mean if self.axis == 1: features = features.T return features def fit_transform(self, features): return self.fit(features).transform(features) def predict(train): norm = NormalizePositive() train = norm.fit_transform(train) return norm.inverse_transform(train * 0.) def main(transpose_inputs=False): from load_ml100k import get_train_test from sklearn import metrics train,test = get_train_test(random_state=12) if transpose_inputs: train = train.T test = test.T predicted = predict(train) r2 = metrics.r2_score(test[test > 0], predicted[test > 0]) print('R2 score ({} normalization): {:.1%}'.format( ('movie' if transpose_inputs else 'user'), r2)) if __name__ == '__main__': main() main(transpose_inputs=True)
mit
frank-tancf/scikit-learn
sklearn/base.py
18
17981
"""Base classes for all estimators.""" # Author: Gael Varoquaux <[email protected]> # License: BSD 3 clause import copy import warnings import numpy as np from scipy import sparse from .externals import six from .utils.fixes import signature from .utils.deprecation import deprecated from .exceptions import ChangedBehaviorWarning as _ChangedBehaviorWarning @deprecated("ChangedBehaviorWarning has been moved into the sklearn.exceptions" " module. It will not be available here from version 0.19") class ChangedBehaviorWarning(_ChangedBehaviorWarning): pass ############################################################################## def clone(estimator, safe=True): """Constructs a new estimator with the same parameters. Clone does a deep copy of the model in an estimator without actually copying attached data. It yields a new estimator with the same parameters that has not been fit on any data. Parameters ---------- estimator: estimator object, or list, tuple or set of objects The estimator or group of estimators to be cloned safe: boolean, optional If safe is false, clone will fall back to a deepcopy on objects that are not estimators. """ estimator_type = type(estimator) # XXX: not handling dictionaries if estimator_type in (list, tuple, set, frozenset): return estimator_type([clone(e, safe=safe) for e in estimator]) elif not hasattr(estimator, 'get_params'): if not safe: return copy.deepcopy(estimator) else: raise TypeError("Cannot clone object '%s' (type %s): " "it does not seem to be a scikit-learn estimator " "as it does not implement a 'get_params' methods." % (repr(estimator), type(estimator))) klass = estimator.__class__ new_object_params = estimator.get_params(deep=False) for name, param in six.iteritems(new_object_params): new_object_params[name] = clone(param, safe=False) new_object = klass(**new_object_params) params_set = new_object.get_params(deep=False) # quick sanity check of the parameters of the clone for name in new_object_params: param1 = new_object_params[name] param2 = params_set[name] if isinstance(param1, np.ndarray): # For most ndarrays, we do not test for complete equality if not isinstance(param2, type(param1)): equality_test = False elif (param1.ndim > 0 and param1.shape[0] > 0 and isinstance(param2, np.ndarray) and param2.ndim > 0 and param2.shape[0] > 0): equality_test = ( param1.shape == param2.shape and param1.dtype == param2.dtype # We have to use '.flat' for 2D arrays and param1.flat[0] == param2.flat[0] and param1.flat[-1] == param2.flat[-1] ) else: equality_test = np.all(param1 == param2) elif sparse.issparse(param1): # For sparse matrices equality doesn't work if not sparse.issparse(param2): equality_test = False elif param1.size == 0 or param2.size == 0: equality_test = ( param1.__class__ == param2.__class__ and param1.size == 0 and param2.size == 0 ) else: equality_test = ( param1.__class__ == param2.__class__ and param1.data[0] == param2.data[0] and param1.data[-1] == param2.data[-1] and param1.nnz == param2.nnz and param1.shape == param2.shape ) else: new_obj_val = new_object_params[name] params_set_val = params_set[name] # The following construct is required to check equality on special # singletons such as np.nan that are not equal to them-selves: equality_test = (new_obj_val == params_set_val or new_obj_val is params_set_val) if not equality_test: raise RuntimeError('Cannot clone object %s, as the constructor ' 'does not seem to set parameter %s' % (estimator, name)) return new_object ############################################################################### def _pprint(params, offset=0, printer=repr): """Pretty print the dictionary 'params' Parameters ---------- params: dict The dictionary to pretty print offset: int The offset in characters to add at the begin of each line. printer: The function to convert entries to strings, typically the builtin str or repr """ # Do a multi-line justified repr: options = np.get_printoptions() np.set_printoptions(precision=5, threshold=64, edgeitems=2) params_list = list() this_line_length = offset line_sep = ',\n' + (1 + offset // 2) * ' ' for i, (k, v) in enumerate(sorted(six.iteritems(params))): if type(v) is float: # use str for representing floating point numbers # this way we get consistent representation across # architectures and versions. this_repr = '%s=%s' % (k, str(v)) else: # use repr of the rest this_repr = '%s=%s' % (k, printer(v)) if len(this_repr) > 500: this_repr = this_repr[:300] + '...' + this_repr[-100:] if i > 0: if (this_line_length + len(this_repr) >= 75 or '\n' in this_repr): params_list.append(line_sep) this_line_length = len(line_sep) else: params_list.append(', ') this_line_length += 2 params_list.append(this_repr) this_line_length += len(this_repr) np.set_printoptions(**options) lines = ''.join(params_list) # Strip trailing space to avoid nightmare in doctests lines = '\n'.join(l.rstrip(' ') for l in lines.split('\n')) return lines ############################################################################### class BaseEstimator(object): """Base class for all estimators in scikit-learn Notes ----- All estimators should specify all the parameters that can be set at the class level in their ``__init__`` as explicit keyword arguments (no ``*args`` or ``**kwargs``). """ @classmethod def _get_param_names(cls): """Get parameter names for the estimator""" # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, 'deprecated_original', cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = signature(init) # Consider the constructor parameters excluding 'self' parameters = [p for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD] for p in parameters: if p.kind == p.VAR_POSITIONAL: raise RuntimeError("scikit-learn estimators should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s with constructor %s doesn't " " follow this convention." % (cls, init_signature)) # Extract and sort argument names excluding 'self' return sorted([p.name for p in parameters]) def get_params(self, deep=True): """Get parameters for this estimator. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ out = dict() for key in self._get_param_names(): # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) # XXX: should we rather test if instance of estimator? if deep and hasattr(value, 'get_params'): deep_items = value.get_params().items() out.update((key + '__' + k, val) for k, val in deep_items) out[key] = value return out def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Returns ------- self """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def __repr__(self): class_name = self.__class__.__name__ return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False), offset=len(class_name),),) ############################################################################### class ClassifierMixin(object): """Mixin class for all classifiers in scikit-learn.""" _estimator_type = "classifier" def score(self, X, y, sample_weight=None): """Returns the mean accuracy on the given test data and labels. In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. Parameters ---------- X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- score : float Mean accuracy of self.predict(X) wrt. y. """ from .metrics import accuracy_score return accuracy_score(y, self.predict(X), sample_weight=sample_weight) ############################################################################### class RegressorMixin(object): """Mixin class for all regression estimators in scikit-learn.""" _estimator_type = "regressor" def score(self, X, y, sample_weight=None): """Returns the coefficient of determination R^2 of the prediction. The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Parameters ---------- X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True values for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- score : float R^2 of self.predict(X) wrt. y. """ from .metrics import r2_score return r2_score(y, self.predict(X), sample_weight=sample_weight, multioutput='variance_weighted') ############################################################################### class ClusterMixin(object): """Mixin class for all cluster estimators in scikit-learn.""" _estimator_type = "clusterer" def fit_predict(self, X, y=None): """Performs clustering on X and returns cluster labels. Parameters ---------- X : ndarray, shape (n_samples, n_features) Input data. Returns ------- y : ndarray, shape (n_samples,) cluster labels """ # non-optimized default implementation; override when a better # method is possible for a given clustering algorithm self.fit(X) return self.labels_ class BiclusterMixin(object): """Mixin class for all bicluster estimators in scikit-learn""" @property def biclusters_(self): """Convenient way to get row and column indicators together. Returns the ``rows_`` and ``columns_`` members. """ return self.rows_, self.columns_ def get_indices(self, i): """Row and column indices of the i'th bicluster. Only works if ``rows_`` and ``columns_`` attributes exist. Returns ------- row_ind : np.array, dtype=np.intp Indices of rows in the dataset that belong to the bicluster. col_ind : np.array, dtype=np.intp Indices of columns in the dataset that belong to the bicluster. """ rows = self.rows_[i] columns = self.columns_[i] return np.nonzero(rows)[0], np.nonzero(columns)[0] def get_shape(self, i): """Shape of the i'th bicluster. Returns ------- shape : (int, int) Number of rows and columns (resp.) in the bicluster. """ indices = self.get_indices(i) return tuple(len(i) for i in indices) def get_submatrix(self, i, data): """Returns the submatrix corresponding to bicluster `i`. Works with sparse matrices. Only works if ``rows_`` and ``columns_`` attributes exist. """ from .utils.validation import check_array data = check_array(data, accept_sparse='csr') row_ind, col_ind = self.get_indices(i) return data[row_ind[:, np.newaxis], col_ind] ############################################################################### class TransformerMixin(object): """Mixin class for all transformers in scikit-learn.""" def fit_transform(self, X, y=None, **fit_params): """Fit to data, then transform it. Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. Parameters ---------- X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. Returns ------- X_new : numpy array of shape [n_samples, n_features_new] Transformed array. """ # non-optimized default implementation; override when a better # method is possible for a given clustering algorithm if y is None: # fit method of arity 1 (unsupervised transformation) return self.fit(X, **fit_params).transform(X) else: # fit method of arity 2 (supervised transformation) return self.fit(X, y, **fit_params).transform(X) ############################################################################### class MetaEstimatorMixin(object): """Mixin class for all meta estimators in scikit-learn.""" # this is just a tag for the moment ############################################################################### def is_classifier(estimator): """Returns True if the given estimator is (probably) a classifier.""" return getattr(estimator, "_estimator_type", None) == "classifier" def is_regressor(estimator): """Returns True if the given estimator is (probably) a regressor.""" return getattr(estimator, "_estimator_type", None) == "regressor"
bsd-3-clause
erp12/pyshgp
setup.py
1
1228
"""Pyshgp setup file.""" import os from setuptools import setup, find_packages exec(open("pyshgp/__init__.py").read()) def read(fname): """Read a file to a string.""" return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="pyshgp", version=__version__, description="Push Genetic Programming in Python", long_description=read('README.md'), long_description_content_type="text/markdown", keywords=["push gp", "genetic programming", "pushgp", "gp", "push"], author="Eddie Pantridge", author_email="[email protected]", license="MIT", url="https://github.com/erp12/pyshgp", packages=find_packages( exclude=('examples', 'examples.*', 'tests', 'tests.*', 'docs', 'docs_source') ), classifiers=[ "Development Status :: 4 - Beta", 'Programming Language :: Python :: 3', "Intended Audience :: Science/Research", "Intended Audience :: Developers", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], install_requires=[ "numpy>=1.12.0", "scipy>=0.18.0", "pandas>=0.23.4", "pyrsistent>=0.16.0", ], tests_require=[ "pytest" ], )
mit
dsquareindia/scikit-learn
sklearn/utils/tests/test_class_weight.py
55
9891
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) # Fix exception in error message formatting when missing label is a string # https://github.com/scikit-learn/scikit-learn/issues/8312 assert_raise_message(ValueError, 'Class label label_not_present not present', compute_class_weight, {'label_not_present': 1.}, classes, y) # Raise error when y has items not in classes classes = np.arange(2) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) assert_raises(ValueError, compute_class_weight, {0: 1., 1: 2.}, classes, y) def test_compute_class_weight_dict(): classes = np.arange(3) class_weights = {0: 1.0, 1: 2.0, 2: 3.0} y = np.asarray([0, 0, 1, 2]) cw = compute_class_weight(class_weights, classes, y) # When the user specifies class weights, compute_class_weights should just # return them. assert_array_almost_equal(np.asarray([1.0, 2.0, 3.0]), cw) # When a class weight is specified that isn't in classes, a ValueError # should get raised msg = 'Class label 4 not present.' class_weights = {0: 1.0, 1: 2.0, 2: 3.0, 4: 1.5} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) msg = 'Class label -1 not present.' class_weights = {-1: 5.0, 0: 1.0, 1: 2.0, 2: 3.0} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # duplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_balanced_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_balanced_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "balanced" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
bsd-3-clause
fidelram/deepTools
deeptools/plotEnrichment.py
1
25048
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import argparse import numpy as np import matplotlib matplotlib.use('Agg') matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['svg.fonttype'] = 'none' import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import plotly.offline as py import plotly.graph_objs as go from deeptools.mapReduce import mapReduce, getUserRegion, blSubtract from deeptools.getFragmentAndReadSize import get_read_and_fragment_length from deeptools.utilities import getCommonChrNames, mungeChromosome, getTLen, smartLabels from deeptools.bamHandler import openBam from deeptoolsintervals import Enrichment, GTF from deeptools.countReadsPerBin import CountReadsPerBin as cr from deeptools import parserCommon old_settings = np.seterr(all='ignore') def parse_arguments(args=None): basic_args = plot_enrichment_args() # --region, --blackListFileName, -p and -v parent_parser = parserCommon.getParentArgParse(binSize=False) # --extend reads and such read_options = parserCommon.read_options() parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=""" Tool for calculating and plotting the signal enrichment in either regions in BED format or feature types (column 3) in GTF format. The underlying datapoints can also be output. Metrics are plotted as a fraction of total reads. Regions in a BED file are assigned to the 'peak' feature. detailed help: plotEnrichment -h """, epilog='example usages:\n' 'plotEnrichment -b file1.bam file2.bam --BED peaks.bed -o enrichment.png\n\n' ' \n\n', parents=[basic_args, parent_parser, read_options]) return parser def plot_enrichment_args(): parser = argparse.ArgumentParser(add_help=False) required = parser.add_argument_group('Required arguments') # define the arguments required.add_argument('--bamfiles', '-b', metavar='file1.bam file2.bam', help='List of indexed bam files separated by spaces.', nargs='+', required=True) required.add_argument('--BED', help='Limits the enrichment analysis to ' 'the regions specified in these BED/GTF files. Enrichment ' 'is calculated as the number of reads overlapping each ' 'feature type. The feature type is column 3 in a GTF file ' 'and "peak" for BED files.', metavar='FILE1.bed FILE2.bed', nargs='+', required=True) optional = parser.add_argument_group('Optional arguments') optional.add_argument('--plotFile', '-o', help='File to save the plot to. The file extension determines the format, ' 'so heatmap.pdf will save the heatmap in PDF format. ' 'The available formats are: .png, ' '.eps, .pdf and .svg.', type=parserCommon.writableFile, metavar='FILE') optional.add_argument('--attributeKey', help='Instead of deriving labels from the feature column in a GTF file, ' 'use the given attribute key, such as gene_biotype. For BED files or ' 'entries without the attribute key, None is used as the label.') optional.add_argument('--labels', '-l', metavar='sample1 sample2', help='User defined labels instead of default labels from ' 'file names. ' 'Multiple labels have to be separated by spaces, e.g. ' '--labels sample1 sample2 sample3', nargs='+') optional.add_argument('--smartLabels', action='store_true', help='Instead of manually specifying labels for the input ' 'BAM/BED/GTF files, this causes deepTools to use the file name ' 'after removing the path and extension. For BED/GTF files, the ' 'eventual region name will be overriden if specified inside ' 'the file.') optional.add_argument('--regionLabels', metavar="region1 region2", help="For BED files, the label given to its region is " "the file name, but this can be overridden by providing " "a custom label. For GTF files this is ignored. Note " "that if you provide labels, you MUST provide one for each " "BED/GTF file, even though it will be ignored for GTF files.", nargs='+') optional.add_argument('--plotTitle', '-T', help='Title of the plot, to be printed on top of ' 'the generated image. Leave blank for no title. (Default: %(default)s)', default='') optional.add_argument('--plotFileFormat', metavar='FILETYPE', help='Image format type. If given, this option ' 'overrides the image format based on the plotFile ' 'ending. The available options are: png, ' 'eps, pdf, plotly and svg.', choices=['png', 'pdf', 'svg', 'eps', 'plotly']) optional.add_argument('--outRawCounts', help='Save the counts per region to a tab-delimited file.', type=parserCommon.writableFile, metavar='FILE') optional.add_argument('--perSample', help='Group the plots by sample, rather than by feature type (the default).', action='store_true') optional.add_argument('--variableScales', help='By default, the y-axes are always 0-100. This allows the axis range to be restricted.', action='store_true') optional.add_argument('--plotHeight', help='Plot height in cm. (Default: %(default)s)', type=float, default=20) optional.add_argument('--plotWidth', help='Plot width in cm. The minimum value is 1 cm. (Default: %(default)s)', type=float, default=20) optional.add_argument('--colors', help='List of colors to use ' 'for the plotted lines. Color names ' 'and html hex strings (e.g., #eeff22) ' 'are accepted. The color names should ' 'be space separated. For example, ' '--colors red blue green ', nargs='+') optional.add_argument('--numPlotsPerRow', help='Number of plots per row (Default: %(default)s)', type=int, default=4) optional.add_argument('--alpha', default=0.9, type=parserCommon.check_float_0_1, help='The alpha channel (transparency) to use for the bars. ' 'The default is 0.9 and values must be between 0 and 1.') optional.add_argument('--Offset', help='Uses this offset inside of each read as the signal. This is useful in ' 'cases like RiboSeq or GROseq, where the signal is 12, 15 or 0 bases past the ' 'start of the read. This can be paired with the --filterRNAstrand option. ' 'Note that negative values indicate offsets from the end of each read. A value ' 'of 1 indicates the first base of the alignment (taking alignment orientation ' 'into account). Likewise, a value of -1 is the last base of the alignment. An ' 'offset of 0 is not permitted. If two values are specified, then they will be ' 'used to specify a range of positions. Note that specifying something like ' '--Offset 5 -1 will result in the 5th through last position being used, which ' 'is equivalent to trimming 4 bases from the 5-prime end of alignments.', metavar='INT', type=int, nargs='+', required=False) bed12 = parser.add_argument_group('BED12 arguments') bed12.add_argument('--keepExons', help="For BED12 files, use each exon as a region, rather than columns 2/3", action="store_true") return parser def getBAMBlocks(read, defaultFragmentLength, centerRead, offset=None): """ This is basically get_fragment_from_read from countReadsPerBin """ blocks = None maxPairedFragmentLength = 0 if defaultFragmentLength != "read length": maxPairedFragmentLength = 4 * defaultFragmentLength if defaultFragmentLength == 'read length': blocks = read.get_blocks() else: if cr.is_proper_pair(read, maxPairedFragmentLength): if read.is_reverse: fragmentStart = read.next_reference_start fragmentEnd = read.reference_end else: fragmentStart = read.reference_start # the end of the fragment is defined as # the start of the forward read plus the insert length fragmentEnd = read.reference_start + abs(read.template_length) # Extend using the default fragment length else: if read.is_reverse: fragmentStart = read.reference_end - defaultFragmentLength fragmentEnd = read.reference_end else: fragmentStart = read.reference_start fragmentEnd = read.reference_start + defaultFragmentLength if centerRead: fragmentCenter = fragmentEnd - (fragmentEnd - fragmentStart) / 2 fragmentStart = fragmentCenter - read.infer_query_length(always=False) / 2 fragmentEnd = fragmentStart + read.infer_query_length(always=False) assert fragmentStart < fragmentEnd, "fragment start greater than fragment" \ "end for read {}".format(read.query_name) blocks = [(int(fragmentStart), int(fragmentEnd))] # Handle read offsets, if needed if offset is not None: rv = [(None, None)] if len(offset) > 1: if offset[0] > 0: offset[0] -= 1 if offset[1] < 0: offset[1] += 1 else: if offset[0] > 0: offset[0] -= 1 offset = [offset[0], offset[0] + 1] else: offset = [offset[0], None] if offset[1] == 0: # -1 gets switched to 0, which screws things up offset = (offset[0], None) stretch = [] # For the sake of simplicity, convert [(10, 20), (30, 40)] to [10, 11, 12, 13, ..., 40] # Then subset accordingly for block in blocks: stretch.extend(range(block[0], block[1])) if read.is_reverse: stretch = stretch[::-1] try: foo = stretch[offset[0]:offset[1]] except: return rv if len(foo) == 0: return rv if read.is_reverse: foo = foo[::-1] # Convert the stretch back to a list of tuples foo = np.array(foo) d = foo[1:] - foo[:-1] idx = np.argwhere(d > 1).flatten().tolist() # This now holds the interval bounds as a list idx.append(-1) last = 0 blocks = [] for i in idx: blocks.append((foo[last].astype("int"), foo[i].astype("int") + 1)) last = i + 1 return blocks def getEnrichment_worker(arglist): """ This is the worker function of plotEnrichment. In short, given a region, iterate over all reads **starting** in it. Filter/extend them as requested and check each for an overlap with findOverlaps. For each overlap, increment the counter for that feature. """ chrom, start, end, args, defaultFragmentLength = arglist if args.verbose: sys.stderr.write("Processing {}:{}-{}\n".format(chrom, start, end)) olist = [] total = [0] * len(args.bamfiles) for idx, f in enumerate(args.bamfiles): odict = dict() for x in gtf.features: odict[x] = 0 fh = openBam(f) chrom = mungeChromosome(chrom, fh.references) lpos = None prev_pos = set() for read in fh.fetch(chrom, start, end): # Filter if read.pos < start: # Ensure that a given alignment is processed only once continue if read.flag & 4: continue if args.minMappingQuality and read.mapq < args.minMappingQuality: continue if args.samFlagInclude and read.flag & args.samFlagInclude != args.samFlagInclude: continue if args.samFlagExclude and read.flag & args.samFlagExclude != 0: continue tLen = getTLen(read) if args.minFragmentLength > 0 and tLen < args.minFragmentLength: continue if args.maxFragmentLength > 0 and tLen > args.maxFragmentLength: continue if args.ignoreDuplicates: # Assuming more or less concordant reads, use the fragment bounds, otherwise the start positions if tLen >= 0: s = read.pos e = s + tLen else: s = read.pnext e = s - tLen if read.reference_id != read.next_reference_id: e = read.pnext if lpos is not None and lpos == read.reference_start \ and (s, e, read.next_reference_id, read.is_reverse) in prev_pos: continue if lpos != read.reference_start: prev_pos.clear() lpos = read.reference_start prev_pos.add((s, e, read.next_reference_id, read.is_reverse)) total[idx] += 1 # Get blocks, possibly extending features = gtf.findOverlaps(chrom, getBAMBlocks(read, defaultFragmentLength, args.centerReads, args.Offset)) if features is not None and len(features) > 0: for x in features: odict[x] += 1 olist.append(odict) return olist, gtf.features, total def plotEnrichment(args, featureCounts, totalCounts, features): # get the number of rows and columns if args.perSample: totalPlots = len(args.bamfiles) barsPerPlot = len(features) else: totalPlots = len(features) barsPerPlot = len(args.bamfiles) cols = min(args.numPlotsPerRow, totalPlots) rows = np.ceil(totalPlots / float(args.numPlotsPerRow)).astype(int) # Handle the colors if not args.colors: cmap_plot = plt.get_cmap('jet') args.colors = cmap_plot(np.arange(barsPerPlot, dtype=float) / float(barsPerPlot)) if args.plotFileFormat == 'plotly': args.colors = range(barsPerPlot) elif len(args.colors) < barsPerPlot: sys.exit("Error: {0} colors were requested, but {1} were needed!".format(len(args.colors), barsPerPlot)) data = [] if args.plotFileFormat == 'plotly': fig = go.Figure() fig['layout'].update(title=args.plotTitle) domainWidth = .9 / cols domainHeight = .9 / rows bufferHeight = 0.0 if rows > 1: bufferHeight = 0.1 / (rows - 1) bufferWidth = 0.0 if cols > 1: bufferWidth = 0.1 / (cols - 1) else: grids = gridspec.GridSpec(rows, cols) plt.rcParams['font.size'] = 10.0 # convert cm values to inches fig = plt.figure(figsize=(args.plotWidth / 2.54, args.plotHeight / 2.54)) fig.suptitle(args.plotTitle, y=(1 - (0.06 / args.plotHeight))) for i in range(totalPlots): col = i % cols row = np.floor(i / float(args.numPlotsPerRow)).astype(int) if args.perSample: xlabels = features ylabel = "% alignments in {0}".format(args.labels[i]) vals = [featureCounts[i][foo] for foo in features] vals = 100 * np.array(vals, dtype='float64') / totalCounts[i] else: xlabels = args.labels ylabel = "% {0}".format(features[i]) vals = [foo[features[i]] for foo in featureCounts] vals = 100 * np.array(vals, dtype='float64') / np.array(totalCounts, dtype='float64') if args.plotFileFormat == 'plotly': xanchor = 'x{}'.format(i + 1) yanchor = 'y{}'.format(i + 1) base = row * (domainHeight + bufferHeight) domain = [base, base + domainHeight] fig['layout']['xaxis{}'.format(i + 1)] = {'domain': domain, 'anchor': yanchor} base = col * (domainWidth + bufferWidth) domain = [base, base + domainWidth] fig['layout']['yaxis{}'.format(i + 1)] = {'domain': domain, 'anchor': xanchor, 'title': ylabel} if args.variableScales is False: fig['layout']['yaxis{}'.format(i + 1)].update(range=[0, 100]) trace = go.Bar(x=xlabels, y=vals, opacity=args.alpha, orientation='v', showlegend=False, xaxis=xanchor, yaxis=yanchor, name=ylabel, marker={'color': args.colors, 'line': {'color': args.colors}}) data.append(trace) else: ax = plt.subplot(grids[row, col]) ax.bar(np.arange(vals.shape[0]), vals, width=1.0, bottom=0.0, align='center', color=args.colors, edgecolor=args.colors, alpha=args.alpha) ax.set_ylabel(ylabel) ax.set_xticks(np.arange(vals.shape[0])) ax.set_xticklabels(xlabels, rotation='vertical') if args.variableScales is False: ax.set_ylim(0.0, 100.0) if args.plotFileFormat == 'plotly': fig['data'] = data py.plot(fig, filename=args.plotFile, auto_open=False) # colors else: plt.subplots_adjust(wspace=0.05, hspace=0.3, bottom=0.15, top=0.80) plt.tight_layout() plt.savefig(args.plotFile, dpi=200, format=args.plotFileFormat) plt.close() def getChunkLength(args, chromSize): """ There's no point in parsing the GTF time over and over again needlessly. Emprically, it seems that adding ~4x the number of workers is ideal, since coverage is non-uniform. This is a heuristic way of approximating that. Note that if there are MANY small contigs and a few large ones (e.g., the max and median lengths are >10x different, then it's best to take a different tack. """ if args.region: chromSize, region_start, region_end, genomeChunkLength = getUserRegion(chromSize, args.region) rv = np.ceil((region_start - region_end) / float(4 * args.numberOfProcessors)).astype(int) return max(1, rv) bl = None if args.blackListFileName: bl = GTF(args.blackListFileName) lengths = [] for k, v in chromSize: regs = blSubtract(bl, k, [0, v]) for reg in regs: lengths.append(reg[1] - reg[0]) if len(lengths) >= 4 * args.numberOfProcessors: rv = np.median(lengths).astype(int) # In cases like dm6 or GRCh38, there are a LOT of really small contigs, which will cause the median to be small and performance to tank if np.max(lengths) >= 10 * rv: rv = np.ceil(np.sum(lengths) / (4.0 * args.numberOfProcessors)).astype(int) else: rv = np.ceil(np.sum(lengths) / (4.0 * args.numberOfProcessors)).astype(int) return max(1, rv) def main(args=None): args = parse_arguments().parse_args(args) if not args.outRawCounts and not args.plotFile: sys.exit("Error: You need to specify at least one of --plotFile or --outRawCounts!\n") if args.labels is None: args.labels = args.bamfiles if args.smartLabels: args.labels = smartLabels(args.bamfiles) if len(args.labels) != len(args.bamfiles): sys.exit("Error: The number of labels ({0}) does not match the number of BAM files ({1})!".format(len(args.labels), len(args.bamfiles))) # Ensure that if we're given an attributeKey that it's not empty if args.attributeKey and args.attributeKey == "": args.attributeKey = None global gtf if not args.regionLabels and args.smartLabels: args.regionLabels = smartLabels(args.BED) gtf = Enrichment(args.BED, keepExons=args.keepExons, labels=args.regionLabels, attributeKey=args.attributeKey) # Get fragment size and chromosome dict fhs = [openBam(x) for x in args.bamfiles] chromSize, non_common_chr = getCommonChrNames(fhs, verbose=args.verbose) for fh in fhs: fh.close() frag_len_dict, read_len_dict = get_read_and_fragment_length(args.bamfiles[0], return_lengths=False, blackListFileName=args.blackListFileName, numberOfProcessors=args.numberOfProcessors, verbose=args.verbose) if args.extendReads: if args.extendReads is True: # try to guess fragment length if the bam file contains paired end reads if frag_len_dict: defaultFragmentLength = frag_len_dict['median'] else: sys.exit("*ERROR*: library is not paired-end. Please provide an extension length.") if args.verbose: print("Fragment length based on paired en data " "estimated to be {0}".format(frag_len_dict['median'])) elif args.extendReads < read_len_dict['median']: sys.stderr.write("*WARNING*: read extension is smaller than read length (read length = {}). " "Reads will not be extended.\n".format(int(read_len_dict['median']))) defaultFragmentLength = 'read length' elif args.extendReads > 2000: sys.exit("*ERROR*: read extension must be smaller that 2000. Value give: {} ".format(args.extendReads)) else: defaultFragmentLength = args.extendReads else: defaultFragmentLength = 'read length' # Get the chunkLength chunkLength = getChunkLength(args, chromSize) # Map reduce to get the counts/file/feature res = mapReduce([args, defaultFragmentLength], getEnrichment_worker, chromSize, genomeChunkLength=chunkLength, region=args.region, blackListFileName=args.blackListFileName, numberOfProcessors=args.numberOfProcessors, verbose=args.verbose) features = res[0][1] featureCounts = [] for i in list(range(len(args.bamfiles))): d = dict() for x in features: d[x] = 0 featureCounts.append(d) # res is a list, with each element a list (length len(args.bamfiles)) of dicts totalCounts = [0] * len(args.bamfiles) for x in res: for i, y in enumerate(x[2]): totalCounts[i] += y for i, y in enumerate(x[0]): for k, v in y.items(): featureCounts[i][k] += v # Make a plot if args.plotFile: plotEnrichment(args, featureCounts, totalCounts, features) # Raw counts if args.outRawCounts: of = open(args.outRawCounts, "w") of.write("file\tfeatureType\tpercent\tfeatureReadCount\ttotalReadCount\n") for i, x in enumerate(args.labels): for k, v in featureCounts[i].items(): of.write("{0}\t{1}\t{2:5.2f}\t{3}\t{4}\n".format(x, k, (100.0 * v) / totalCounts[i], v, totalCounts[i])) of.close()
gpl-3.0
niketanpansare/systemml
src/main/python/tests/test_mllearn_df.py
2
5767
#!/usr/bin/python #------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- # To run: # - Python 2: `PYSPARK_PYTHON=python2 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_df.py` # - Python 3: `PYSPARK_PYTHON=python3 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_df.py` # Make the `systemml` package importable import os import sys path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../") sys.path.insert(0, path) import unittest import numpy as np from pyspark.ml import Pipeline from pyspark.ml.feature import HashingTF, Tokenizer from pyspark.sql import SparkSession from sklearn import datasets, metrics, neighbors from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn import linear_model from sklearn.metrics import accuracy_score, r2_score from systemml.mllearn import LinearRegression, LogisticRegression, NaiveBayes, SVM sparkSession = SparkSession.builder.getOrCreate() def test_accuracy_score(sklearn_predicted, mllearn_predicted, y_test, threshold): if accuracy_score(sklearn_predicted, mllearn_predicted) > threshold: # Our results match that of scikit-learn. No need to measure with the ground truth return True elif accuracy_score(y_test, mllearn_predicted) > accuracy_score(y_test, sklearn_predicted): # We perform better than scikit-learn, ignore the threshold return True else: return False # Currently not integrated with JUnit test # ~/spark-1.6.1-scala-2.11/bin/spark-submit --master local[*] --driver-class-path SystemML.jar test.py class TestMLLearn(unittest.TestCase): def test_logistic_sk2(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] # Convert to DataFrame for i/o: current way to transfer data logistic = LogisticRegression(sparkSession, transferUsingDF=True) logistic.fit(X_train, y_train) mllearn_predicted = logistic.predict(X_test) sklearn_logistic = linear_model.LogisticRegression() sklearn_logistic.fit(X_train, y_train) self.failUnless(test_accuracy_score(sklearn_logistic.predict(X_test), mllearn_predicted, y_test, 0.95)) def test_linear_regression(self): diabetes = datasets.load_diabetes() diabetes_X = diabetes.data[:, np.newaxis, 2] diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] regr = LinearRegression(sparkSession, solver='direct-solve', transferUsingDF=True) regr.fit(diabetes_X_train, diabetes_y_train) mllearn_predicted = regr.predict(diabetes_X_test) sklearn_regr = linear_model.LinearRegression() sklearn_regr.fit(diabetes_X_train, diabetes_y_train) self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_linear_regression_cg(self): diabetes = datasets.load_diabetes() diabetes_X = diabetes.data[:, np.newaxis, 2] diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] regr = LinearRegression(sparkSession, solver='newton-cg', transferUsingDF=True) regr.fit(diabetes_X_train, diabetes_y_train) mllearn_predicted = regr.predict(diabetes_X_test) sklearn_regr = linear_model.LinearRegression() sklearn_regr.fit(diabetes_X_train, diabetes_y_train) self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_svm_sk2(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] svm = SVM(sparkSession, is_multi_class=True, transferUsingDF=True) mllearn_predicted = svm.fit(X_train, y_train).predict(X_test) from sklearn import linear_model, svm clf = svm.LinearSVC() sklearn_predicted = clf.fit(X_train, y_train).predict(X_test) self.failUnless(test_accuracy_score(sklearn_predicted, mllearn_predicted, y_test, 0.95)) if __name__ == '__main__': unittest.main()
apache-2.0
roxyboy/bokeh
examples/compat/mpl/listcollection.py
34
1602
from matplotlib.collections import LineCollection import matplotlib.pyplot as plt import numpy as np from bokeh import mpl from bokeh.plotting import output_file, show def make_segments(x, y): ''' Create list of line segments from x and y coordinates. ''' points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) return segments def colorline(x, y, colors=None, linewidth=3, alpha=1.0): ''' Plot a line with segments. Optionally, specify segments colors and segments widths. ''' # Make a list of colors cycling through the rgbcmyk series. # You have several ways to input the colors: # colors = ['r','g','b','c','y','m','k'] # colors = ['red','green','blue','cyan','yellow','magenta','black'] # colors = ['#ff0000', '#008000', '#0000ff', '#00bfbf', '#bfbf00', '#bf00bf', '#000000'] # colors = [(1.0, 0.0, 0.0, 1.0), (0.0, 0.5, 0.0, 1.0), (0.0, 0.0, 1.0, 1.0), (0.0, 0.75, 0.75, 1.0), # (0.75, 0.75, 0, 1.0), (0.75, 0, 0.75, 1.0), (0.0, 0.0, 0.0, 1.0)] colors = ['r', 'g', 'b', 'c', 'y', 'm', 'k'] widths = [5, 10, 20, 40, 20, 10, 5] segments = make_segments(x, y) lc = LineCollection(segments, colors=colors, linewidth=widths, alpha=alpha) ax = plt.gca() ax.add_collection(lc) return lc # Colored sine wave x = np.linspace(0, 4 * np.pi, 100) y = np.sin(x) colorline(x, y) plt.title("MPL support for ListCollection in Bokeh") plt.xlim(x.min(), x.max()) plt.ylim(-1.0, 1.0) output_file("listcollection.html") show(mpl.to_bokeh())
bsd-3-clause
cpcloud/dask
dask/dataframe/tests/test_dataframe.py
1
95806
import sys from copy import copy from operator import getitem, add from itertools import product import pandas as pd import pandas.util.testing as tm import numpy as np import pytest import dask from dask.async import get_sync from dask import delayed from dask.utils import ignoring, put_lines import dask.dataframe as dd from dask.dataframe.core import repartition_divisions, aca, _concat, Scalar from dask.dataframe.methods import boundary_slice from dask.dataframe.utils import assert_eq, make_meta, assert_max_deps dsk = {('x', 0): pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}, index=[0, 1, 3]), ('x', 1): pd.DataFrame({'a': [4, 5, 6], 'b': [3, 2, 1]}, index=[5, 6, 8]), ('x', 2): pd.DataFrame({'a': [7, 8, 9], 'b': [0, 0, 0]}, index=[9, 9, 9])} meta = make_meta({'a': 'i8', 'b': 'i8'}, index=pd.Index([], 'i8')) d = dd.DataFrame(dsk, 'x', meta, [0, 5, 9, 9]) full = d.compute() def test_Dataframe(): expected = pd.Series([2, 3, 4, 5, 6, 7, 8, 9, 10], index=[0, 1, 3, 5, 6, 8, 9, 9, 9], name='a') assert_eq(d['a'] + 1, expected) tm.assert_index_equal(d.columns, pd.Index(['a', 'b'])) assert_eq(d[d['b'] > 2], full[full['b'] > 2]) assert_eq(d[['a', 'b']], full[['a', 'b']]) assert_eq(d.a, full.a) assert d.b.mean().compute() == full.b.mean() assert np.allclose(d.b.var().compute(), full.b.var()) assert np.allclose(d.b.std().compute(), full.b.std()) assert d.index._name == d.index._name # this is deterministic assert repr(d) def test_head_tail(): assert_eq(d.head(2), full.head(2)) assert_eq(d.head(3), full.head(3)) assert_eq(d.head(2), dsk[('x', 0)].head(2)) assert_eq(d['a'].head(2), full['a'].head(2)) assert_eq(d['a'].head(3), full['a'].head(3)) assert_eq(d['a'].head(2), dsk[('x', 0)]['a'].head(2)) assert (sorted(d.head(2, compute=False).dask) == sorted(d.head(2, compute=False).dask)) assert (sorted(d.head(2, compute=False).dask) != sorted(d.head(3, compute=False).dask)) assert_eq(d.tail(2), full.tail(2)) assert_eq(d.tail(3), full.tail(3)) assert_eq(d.tail(2), dsk[('x', 2)].tail(2)) assert_eq(d['a'].tail(2), full['a'].tail(2)) assert_eq(d['a'].tail(3), full['a'].tail(3)) assert_eq(d['a'].tail(2), dsk[('x', 2)]['a'].tail(2)) assert (sorted(d.tail(2, compute=False).dask) == sorted(d.tail(2, compute=False).dask)) assert (sorted(d.tail(2, compute=False).dask) != sorted(d.tail(3, compute=False).dask)) def test_head_npartitions(): assert_eq(d.head(5, npartitions=2), full.head(5)) assert_eq(d.head(5, npartitions=2, compute=False), full.head(5)) assert_eq(d.head(5, npartitions=-1), full.head(5)) assert_eq(d.head(7, npartitions=-1), full.head(7)) assert_eq(d.head(2, npartitions=-1), full.head(2)) with pytest.raises(ValueError): d.head(2, npartitions=5) @pytest.mark.skipif(sys.version_info[:2] == (3, 3), reason="Python3.3 uses pytest2.7.2, w/o warns method") def test_head_npartitions_warn(): with pytest.warns(None): d.head(100) with pytest.warns(None): d.head(7) with pytest.warns(None): d.head(7, npartitions=2) def test_index_head(): assert_eq(d.index.head(2), full.index[:2]) assert_eq(d.index.head(3), full.index[:3]) def test_Series(): assert isinstance(d.a, dd.Series) assert isinstance(d.a + 1, dd.Series) assert_eq((d + 1), full + 1) def test_Index(): for case in [pd.DataFrame(np.random.randn(10, 5), index=list('abcdefghij')), pd.DataFrame(np.random.randn(10, 5), index=pd.date_range('2011-01-01', freq='D', periods=10))]: ddf = dd.from_pandas(case, 3) assert_eq(ddf.index, case.index) pytest.raises(AttributeError, lambda: ddf.index.index) def test_Scalar(): val = np.int64(1) s = Scalar({('a', 0): val}, 'a', 'i8') assert hasattr(s, 'dtype') assert 'dtype' in dir(s) assert_eq(s, val) assert repr(s) == "dd.Scalar<a, dtype=int64>" val = pd.Timestamp('2001-01-01') s = Scalar({('a', 0): val}, 'a', val) assert not hasattr(s, 'dtype') assert 'dtype' not in dir(s) assert_eq(s, val) assert repr(s) == "dd.Scalar<a, type=Timestamp>" def test_attributes(): assert 'a' in dir(d) assert 'foo' not in dir(d) pytest.raises(AttributeError, lambda: d.foo) df = dd.from_pandas(pd.DataFrame({'a b c': [1, 2, 3]}), npartitions=2) assert 'a b c' not in dir(df) df = dd.from_pandas(pd.DataFrame({'a': [1, 2], 5: [1, 2]}), npartitions=2) assert 'a' in dir(df) assert 5 not in dir(df) df = dd.from_pandas(tm.makeTimeDataFrame(), npartitions=3) pytest.raises(AttributeError, lambda: df.foo) def test_column_names(): tm.assert_index_equal(d.columns, pd.Index(['a', 'b'])) tm.assert_index_equal(d[['b', 'a']].columns, pd.Index(['b', 'a'])) assert d['a'].name == 'a' assert (d['a'] + 1).name == 'a' assert (d['a'] + d['b']).name is None def test_index_names(): assert d.index.name is None idx = pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name='x') df = pd.DataFrame(np.random.randn(10, 5), idx) ddf = dd.from_pandas(df, 3) assert ddf.index.name == 'x' assert ddf.index.compute().name == 'x' def test_set_index(): dsk = {('x', 0): pd.DataFrame({'a': [1, 2, 3], 'b': [4, 2, 6]}, index=[0, 1, 3]), ('x', 1): pd.DataFrame({'a': [4, 5, 6], 'b': [3, 5, 8]}, index=[5, 6, 8]), ('x', 2): pd.DataFrame({'a': [7, 8, 9], 'b': [9, 1, 8]}, index=[9, 9, 9])} d = dd.DataFrame(dsk, 'x', meta, [0, 4, 9, 9]) full = d.compute() d2 = d.set_index('b', npartitions=3) assert d2.npartitions == 3 assert d2.index.name == 'b' assert_eq(d2, full.set_index('b')) d3 = d.set_index(d.b, npartitions=3) assert d3.npartitions == 3 assert d3.index.name == 'b' assert_eq(d3, full.set_index(full.b)) d4 = d.set_index('b') assert d4.index.name == 'b' assert_eq(d4, full.set_index('b')) def test_set_index_interpolate(): df = pd.DataFrame({'x': [4, 1, 1, 3, 3], 'y': [1., 1, 1, 1, 2]}) d = dd.from_pandas(df, 2) d1 = d.set_index('x', npartitions=3) assert d1.npartitions == 3 assert set(d1.divisions) == set([1, 2, 3, 4]) d2 = d.set_index('y', npartitions=3) assert d2.divisions[0] == 1. assert 1. < d2.divisions[1] < d2.divisions[2] < 2. assert d2.divisions[3] == 2. def test_set_index_interpolate_int(): L = sorted(list(range(0, 200, 10)) * 2) df = pd.DataFrame({'x': 2 * L}) d = dd.from_pandas(df, 2) d1 = d.set_index('x', npartitions=10) assert all(np.issubdtype(type(x), np.integer) for x in d1.divisions) def test_set_index_timezone(): s_naive = pd.Series(pd.date_range('20130101', periods=3)) s_aware = pd.Series(pd.date_range('20130101', periods=3, tz='US/Eastern')) df = pd.DataFrame({'tz': s_aware, 'notz': s_naive}) d = dd.from_pandas(df, 2) d1 = d.set_index('notz', npartitions=2) s1 = pd.DatetimeIndex(s_naive.values, dtype=s_naive.dtype) assert d1.divisions[0] == s_naive[0] == s1[0] assert d1.divisions[-1] == s_naive[2] == s1[2] # We currently lose "freq". Converting data with pandas-defined dtypes # to numpy or pure Python can be lossy like this. d2 = d.set_index('tz', npartitions=2) s2 = pd.DatetimeIndex(s_aware, dtype=s_aware.dtype) assert d2.divisions[0] == s2[0] assert d2.divisions[-1] == s2[2] assert d2.divisions[0].tz == s2[0].tz assert d2.divisions[0].tz is not None s2badtype = pd.DatetimeIndex(s_aware.values, dtype=s_naive.dtype) with pytest.raises(TypeError): d2.divisions[0] == s2badtype[0] @pytest.mark.parametrize( 'npartitions', [1, pytest.mark.xfail(2, reason='pandas join removes freq')] ) def test_timezone_freq(npartitions): s_naive = pd.Series(pd.date_range('20130101', periods=10)) s_aware = pd.Series(pd.date_range('20130101', periods=10, tz='US/Eastern')) pdf = pd.DataFrame({'tz': s_aware, 'notz': s_naive}) ddf = dd.from_pandas(pdf, npartitions=npartitions) assert pdf.tz[0].freq == ddf.compute().tz[0].freq == ddf.tz.compute()[0].freq @pytest.mark.parametrize('drop', [True, False]) def test_set_index_drop(drop): pdf = pd.DataFrame({'A': list('ABAABBABAA'), 'B': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'C': [1, 2, 3, 2, 1, 3, 2, 4, 2, 3]}) ddf = dd.from_pandas(pdf, 3) assert_eq(ddf.set_index('A', drop=drop), pdf.set_index('A', drop=drop)) assert_eq(ddf.set_index('B', drop=drop), pdf.set_index('B', drop=drop)) assert_eq(ddf.set_index('C', drop=drop), pdf.set_index('C', drop=drop)) assert_eq(ddf.set_index(ddf.A, drop=drop), pdf.set_index(pdf.A, drop=drop)) assert_eq(ddf.set_index(ddf.B, drop=drop), pdf.set_index(pdf.B, drop=drop)) assert_eq(ddf.set_index(ddf.C, drop=drop), pdf.set_index(pdf.C, drop=drop)) # numeric columns pdf = pd.DataFrame({0: list('ABAABBABAA'), 1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 2: [1, 2, 3, 2, 1, 3, 2, 4, 2, 3]}) ddf = dd.from_pandas(pdf, 3) assert_eq(ddf.set_index(0, drop=drop), pdf.set_index(0, drop=drop)) assert_eq(ddf.set_index(2, drop=drop), pdf.set_index(2, drop=drop)) def test_set_index_raises_error_on_bad_input(): df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6, 7], 'b': [7, 6, 5, 4, 3, 2, 1]}) ddf = dd.from_pandas(df, 2) msg = r"Dask dataframe does not yet support multi-indexes" with tm.assertRaisesRegexp(NotImplementedError, msg): ddf.set_index(['a', 'b']) def test_rename_columns(): # GH 819 df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6, 7], 'b': [7, 6, 5, 4, 3, 2, 1]}) ddf = dd.from_pandas(df, 2) ddf.columns = ['x', 'y'] df.columns = ['x', 'y'] tm.assert_index_equal(ddf.columns, pd.Index(['x', 'y'])) tm.assert_index_equal(ddf._meta.columns, pd.Index(['x', 'y'])) assert_eq(ddf, df) msg = r"Length mismatch: Expected axis has 2 elements, new values have 4 elements" with tm.assertRaisesRegexp(ValueError, msg): ddf.columns = [1, 2, 3, 4] # Multi-index columns df = pd.DataFrame({('A', '0') : [1, 2, 2, 3], ('B', 1) : [1, 2, 3, 4]}) ddf = dd.from_pandas(df, npartitions=2) df.columns = ['x', 'y'] ddf.columns = ['x', 'y'] tm.assert_index_equal(ddf.columns, pd.Index(['x', 'y'])) tm.assert_index_equal(ddf._meta.columns, pd.Index(['x', 'y'])) assert_eq(ddf, df) def test_rename_series(): # GH 819 s = pd.Series([1, 2, 3, 4, 5, 6, 7], name='x') ds = dd.from_pandas(s, 2) s.name = 'renamed' ds.name = 'renamed' assert s.name == 'renamed' assert_eq(ds, s) ind = s.index dind = ds.index ind.name = 'renamed' dind.name = 'renamed' assert ind.name == 'renamed' assert_eq(dind, ind) def test_describe(): # prepare test case which approx quantiles will be the same as actuals s = pd.Series(list(range(20)) * 4) df = pd.DataFrame({'a': list(range(20)) * 4, 'b': list(range(4)) * 20}) ds = dd.from_pandas(s, 4) ddf = dd.from_pandas(df, 4) assert_eq(s.describe(), ds.describe()) assert_eq(df.describe(), ddf.describe()) assert_eq(s.describe(), ds.describe(split_every=2)) assert_eq(df.describe(), ddf.describe(split_every=2)) assert ds.describe(split_every=2)._name != ds.describe()._name assert ddf.describe(split_every=2)._name != ddf.describe()._name # remove string columns df = pd.DataFrame({'a': list(range(20)) * 4, 'b': list(range(4)) * 20, 'c': list('abcd') * 20}) ddf = dd.from_pandas(df, 4) assert_eq(df.describe(), ddf.describe()) assert_eq(df.describe(), ddf.describe(split_every=2)) def test_cumulative(): df = pd.DataFrame(np.random.randn(100, 5), columns=list('abcde')) ddf = dd.from_pandas(df, 5) assert_eq(ddf.cumsum(), df.cumsum()) assert_eq(ddf.cumprod(), df.cumprod()) assert_eq(ddf.cummin(), df.cummin()) assert_eq(ddf.cummax(), df.cummax()) assert_eq(ddf.cumsum(axis=1), df.cumsum(axis=1)) assert_eq(ddf.cumprod(axis=1), df.cumprod(axis=1)) assert_eq(ddf.cummin(axis=1), df.cummin(axis=1)) assert_eq(ddf.cummax(axis=1), df.cummax(axis=1)) assert_eq(ddf.a.cumsum(), df.a.cumsum()) assert_eq(ddf.a.cumprod(), df.a.cumprod()) assert_eq(ddf.a.cummin(), df.a.cummin()) assert_eq(ddf.a.cummax(), df.a.cummax()) # With NaNs df = pd.DataFrame({'a': [1, 2, np.nan, 4, 5, 6, 7, 8], 'b': [1, 2, np.nan, np.nan, np.nan, 5, np.nan, np.nan], 'c': [np.nan] * 8}) ddf = dd.from_pandas(df, 3) assert_eq(df.cumsum(), ddf.cumsum()) assert_eq(df.cummin(), ddf.cummin()) assert_eq(df.cummax(), ddf.cummax()) assert_eq(df.cumprod(), ddf.cumprod()) assert_eq(df.cumsum(skipna=False), ddf.cumsum(skipna=False)) assert_eq(df.cummin(skipna=False), ddf.cummin(skipna=False)) assert_eq(df.cummax(skipna=False), ddf.cummax(skipna=False)) assert_eq(df.cumprod(skipna=False), ddf.cumprod(skipna=False)) assert_eq(df.cumsum(axis=1), ddf.cumsum(axis=1)) assert_eq(df.cummin(axis=1), ddf.cummin(axis=1)) assert_eq(df.cummax(axis=1), ddf.cummax(axis=1)) assert_eq(df.cumprod(axis=1), ddf.cumprod(axis=1)) assert_eq(df.cumsum(axis=1, skipna=False), ddf.cumsum(axis=1, skipna=False)) assert_eq(df.cummin(axis=1, skipna=False), ddf.cummin(axis=1, skipna=False)) assert_eq(df.cummax(axis=1, skipna=False), ddf.cummax(axis=1, skipna=False)) assert_eq(df.cumprod(axis=1, skipna=False), ddf.cumprod(axis=1, skipna=False)) def test_dropna(): df = pd.DataFrame({'x': [np.nan, 2, 3, 4, np.nan, 6], 'y': [1, 2, np.nan, 4, np.nan, np.nan], 'z': [1, 2, 3, 4, np.nan, np.nan]}, index=[10, 20, 30, 40, 50, 60]) ddf = dd.from_pandas(df, 3) assert_eq(ddf.x.dropna(), df.x.dropna()) assert_eq(ddf.y.dropna(), df.y.dropna()) assert_eq(ddf.z.dropna(), df.z.dropna()) assert_eq(ddf.dropna(), df.dropna()) assert_eq(ddf.dropna(how='all'), df.dropna(how='all')) assert_eq(ddf.dropna(subset=['x']), df.dropna(subset=['x'])) assert_eq(ddf.dropna(subset=['y', 'z']), df.dropna(subset=['y', 'z'])) assert_eq(ddf.dropna(subset=['y', 'z'], how='all'), df.dropna(subset=['y', 'z'], how='all')) @pytest.mark.parametrize('lower, upper', [(2, 5), (2.5, 3.5)]) def test_clip(lower, upper): df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [3, 5, 2, 5, 7, 2, 4, 2, 4]}) ddf = dd.from_pandas(df, 3) s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9]) ds = dd.from_pandas(s, 3) assert_eq(ddf.clip(lower=lower, upper=upper), df.clip(lower=lower, upper=upper)) assert_eq(ddf.clip(lower=lower), df.clip(lower=lower)) assert_eq(ddf.clip(upper=upper), df.clip(upper=upper)) assert_eq(ds.clip(lower=lower, upper=upper), s.clip(lower=lower, upper=upper)) assert_eq(ds.clip(lower=lower), s.clip(lower=lower)) assert_eq(ds.clip(upper=upper), s.clip(upper=upper)) assert_eq(ddf.clip_lower(lower), df.clip_lower(lower)) assert_eq(ddf.clip_lower(upper), df.clip_lower(upper)) assert_eq(ddf.clip_upper(lower), df.clip_upper(lower)) assert_eq(ddf.clip_upper(upper), df.clip_upper(upper)) assert_eq(ds.clip_lower(lower), s.clip_lower(lower)) assert_eq(ds.clip_lower(upper), s.clip_lower(upper)) assert_eq(ds.clip_upper(lower), s.clip_upper(lower)) assert_eq(ds.clip_upper(upper), s.clip_upper(upper)) def test_where_mask(): pdf1 = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [3, 5, 2, 5, 7, 2, 4, 2, 4]}) ddf1 = dd.from_pandas(pdf1, 2) pdf2 = pd.DataFrame({'a': [True, False, True] * 3, 'b': [False, False, True] * 3}) ddf2 = dd.from_pandas(pdf2, 2) # different index pdf3 = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [3, 5, 2, 5, 7, 2, 4, 2, 4]}, index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) ddf3 = dd.from_pandas(pdf3, 2) pdf4 = pd.DataFrame({'a': [True, False, True] * 3, 'b': [False, False, True] * 3}, index=[5, 6, 7, 8, 9, 10, 11, 12, 13]) ddf4 = dd.from_pandas(pdf4, 2) # different columns pdf5 = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [9, 4, 2, 6, 2, 3, 1, 6, 2], 'c': [5, 6, 7, 8, 9, 10, 11, 12, 13]}, index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) ddf5 = dd.from_pandas(pdf5, 2) pdf6 = pd.DataFrame({'a': [True, False, True] * 3, 'b': [False, False, True] * 3, 'd': [False] * 9, 'e': [True] * 9}, index=[5, 6, 7, 8, 9, 10, 11, 12, 13]) ddf6 = dd.from_pandas(pdf6, 2) cases = [(ddf1, ddf2, pdf1, pdf2), (ddf1.repartition([0, 3, 6, 8]), ddf2, pdf1, pdf2), (ddf1, ddf4, pdf3, pdf4), (ddf3.repartition([0, 4, 6, 8]), ddf4.repartition([5, 9, 10, 13]), pdf3, pdf4), (ddf5, ddf6, pdf5, pdf6), (ddf5.repartition([0, 4, 7, 8]), ddf6, pdf5, pdf6), # use pd.DataFrame as cond (ddf1, pdf2, pdf1, pdf2), (ddf1, pdf4, pdf3, pdf4), (ddf5, pdf6, pdf5, pdf6)] for ddf, ddcond, pdf, pdcond in cases: assert isinstance(ddf, dd.DataFrame) assert isinstance(ddcond, (dd.DataFrame, pd.DataFrame)) assert isinstance(pdf, pd.DataFrame) assert isinstance(pdcond, pd.DataFrame) assert_eq(ddf.where(ddcond), pdf.where(pdcond)) assert_eq(ddf.mask(ddcond), pdf.mask(pdcond)) assert_eq(ddf.where(ddcond, -ddf), pdf.where(pdcond, -pdf)) assert_eq(ddf.mask(ddcond, -ddf), pdf.mask(pdcond, -pdf)) # ToDo: Should work on pandas 0.17 # https://github.com/pydata/pandas/pull/10283 # assert_eq(ddf.where(ddcond.a, -ddf), pdf.where(pdcond.a, -pdf)) # assert_eq(ddf.mask(ddcond.a, -ddf), pdf.mask(pdcond.a, -pdf)) assert_eq(ddf.a.where(ddcond.a), pdf.a.where(pdcond.a)) assert_eq(ddf.a.mask(ddcond.a), pdf.a.mask(pdcond.a)) assert_eq(ddf.a.where(ddcond.a, -ddf.a), pdf.a.where(pdcond.a, -pdf.a)) assert_eq(ddf.a.mask(ddcond.a, -ddf.a), pdf.a.mask(pdcond.a, -pdf.a)) def test_map_partitions_multi_argument(): assert_eq(dd.map_partitions(lambda a, b: a + b, d.a, d.b), full.a + full.b) assert_eq(dd.map_partitions(lambda a, b, c: a + b + c, d.a, d.b, 1), full.a + full.b + 1) def test_map_partitions(): assert_eq(d.map_partitions(lambda df: df, meta=d), full) assert_eq(d.map_partitions(lambda df: df), full) result = d.map_partitions(lambda df: df.sum(axis=1)) assert_eq(result, full.sum(axis=1)) assert_eq(d.map_partitions(lambda df: 1), pd.Series([1, 1, 1], dtype=np.int64), check_divisions=False) x = Scalar({('x', 0): 1}, 'x', int) result = dd.map_partitions(lambda x: 2, x) assert result.dtype in (np.int32, np.int64) and result.compute() == 2 result = dd.map_partitions(lambda x: 4.0, x) assert result.dtype == np.float64 and result.compute() == 4.0 def test_map_partitions_names(): func = lambda x: x assert (sorted(dd.map_partitions(func, d, meta=d).dask) == sorted(dd.map_partitions(func, d, meta=d).dask)) assert (sorted(dd.map_partitions(lambda x: x, d, meta=d, token=1).dask) == sorted(dd.map_partitions(lambda x: x, d, meta=d, token=1).dask)) func = lambda x, y: x assert (sorted(dd.map_partitions(func, d, d, meta=d).dask) == sorted(dd.map_partitions(func, d, d, meta=d).dask)) def test_map_partitions_column_info(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [5, 6, 7, 8]}) a = dd.from_pandas(df, npartitions=2) b = dd.map_partitions(lambda x: x, a, meta=a) tm.assert_index_equal(b.columns, a.columns) assert_eq(df, b) b = dd.map_partitions(lambda x: x, a.x, meta=a.x) assert b.name == a.x.name assert_eq(df.x, b) b = dd.map_partitions(lambda x: x, a.x, meta=a.x) assert b.name == a.x.name assert_eq(df.x, b) b = dd.map_partitions(lambda df: df.x + df.y, a) assert isinstance(b, dd.Series) assert b.dtype == 'i8' b = dd.map_partitions(lambda df: df.x + 1, a, meta=('x', 'i8')) assert isinstance(b, dd.Series) assert b.name == 'x' assert b.dtype == 'i8' def test_map_partitions_method_names(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [5, 6, 7, 8]}) a = dd.from_pandas(df, npartitions=2) b = a.map_partitions(lambda x: x) assert isinstance(b, dd.DataFrame) tm.assert_index_equal(b.columns, a.columns) b = a.map_partitions(lambda df: df.x + 1) assert isinstance(b, dd.Series) assert b.dtype == 'i8' b = a.map_partitions(lambda df: df.x + 1, meta=('x', 'i8')) assert isinstance(b, dd.Series) assert b.name == 'x' assert b.dtype == 'i8' def test_map_partitions_keeps_kwargs_in_dict(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [5, 6, 7, 8]}) a = dd.from_pandas(df, npartitions=2) def f(s, x=1): return s + x b = a.x.map_partitions(f, x=5) assert "'x': 5" in str(b.dask) assert_eq(df.x + 5, b) assert a.x.map_partitions(f, x=5)._name != a.x.map_partitions(f, x=6)._name def test_drop_duplicates(): res = d.drop_duplicates() res2 = d.drop_duplicates(split_every=2) sol = full.drop_duplicates() assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name res = d.a.drop_duplicates() res2 = d.a.drop_duplicates(split_every=2) sol = full.a.drop_duplicates() assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name res = d.index.drop_duplicates() res2 = d.index.drop_duplicates(split_every=2) sol = full.index.drop_duplicates() assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name with pytest.raises(NotImplementedError): d.drop_duplicates(keep=False) def test_drop_duplicates_subset(): df = pd.DataFrame({'x': [1, 2, 3, 1, 2, 3], 'y': ['a', 'a', 'b', 'b', 'c', 'c']}) ddf = dd.from_pandas(df, npartitions=2) for kwarg in [{'keep': 'first'}, {'keep': 'last'}]: assert_eq(df.x.drop_duplicates(**kwarg), ddf.x.drop_duplicates(**kwarg)) for ss in [['x'], 'y', ['x', 'y']]: assert_eq(df.drop_duplicates(subset=ss, **kwarg), ddf.drop_duplicates(subset=ss, **kwarg)) def test_set_partition(): d2 = d.set_index('b', divisions=[0, 2, 9]) assert d2.divisions == (0, 2, 9) expected = full.set_index('b') assert_eq(d2, expected) def test_set_partition_compute(): d2 = d.set_index('b', divisions=[0, 2, 9], compute=False) d3 = d.set_index('b', divisions=[0, 2, 9], compute=True) assert_eq(d2, d3) assert_eq(d2, full.set_index('b')) assert_eq(d3, full.set_index('b')) assert len(d2.dask) > len(d3.dask) d4 = d.set_index(d.b, divisions=[0, 2, 9], compute=False) d5 = d.set_index(d.b, divisions=[0, 2, 9], compute=True) exp = full.copy() exp.index = exp.b assert_eq(d4, d5) assert_eq(d4, exp) assert_eq(d5, exp) assert len(d4.dask) > len(d5.dask) def test_get_partition(): pdf = pd.DataFrame(np.random.randn(10, 5), columns=list('abcde')) ddf = dd.from_pandas(pdf, 3) assert ddf.divisions == (0, 4, 8, 9) # DataFrame div1 = ddf.get_partition(0) assert isinstance(div1, dd.DataFrame) assert_eq(div1, pdf.loc[0:3]) div2 = ddf.get_partition(1) assert_eq(div2, pdf.loc[4:7]) div3 = ddf.get_partition(2) assert_eq(div3, pdf.loc[8:9]) assert len(div1) + len(div2) + len(div3) == len(pdf) # Series div1 = ddf.a.get_partition(0) assert isinstance(div1, dd.Series) assert_eq(div1, pdf.a.loc[0:3]) div2 = ddf.a.get_partition(1) assert_eq(div2, pdf.a.loc[4:7]) div3 = ddf.a.get_partition(2) assert_eq(div3, pdf.a.loc[8:9]) assert len(div1) + len(div2) + len(div3) == len(pdf.a) with tm.assertRaises(ValueError): ddf.get_partition(-1) with tm.assertRaises(ValueError): ddf.get_partition(3) def test_ndim(): assert (d.ndim == 2) assert (d.a.ndim == 1) assert (d.index.ndim == 1) def test_dtype(): assert (d.dtypes == full.dtypes).all() def test_cache(): d2 = d.cache() assert all(task[0] == getitem for task in d2.dask.values()) assert_eq(d2.a, d.a) def test_value_counts(): df = pd.DataFrame({'x': [1, 2, 1, 3, 3, 1, 4]}) ddf = dd.from_pandas(df, npartitions=3) result = ddf.x.value_counts() expected = df.x.value_counts() assert_eq(result, expected) result2 = ddf.x.value_counts(split_every=2) assert_eq(result2, expected) assert result._name != result2._name def test_unique(): pdf = pd.DataFrame({'x': [1, 2, 1, 3, 3, 1, 4, 2, 3, 1], 'y': ['a', 'c', 'b', np.nan, 'c', 'b', 'a', 'd', np.nan, 'a']}) ddf = dd.from_pandas(pdf, npartitions=3) assert_eq(ddf.x.unique(), pd.Series(pdf.x.unique(), name='x')) assert_eq(ddf.y.unique(), pd.Series(pdf.y.unique(), name='y')) assert_eq(ddf.x.unique(split_every=2), pd.Series(pdf.x.unique(), name='x')) assert_eq(ddf.y.unique(split_every=2), pd.Series(pdf.y.unique(), name='y')) assert ddf.x.unique(split_every=2)._name != ddf.x.unique()._name def test_isin(): assert_eq(d.a.isin([0, 1, 2]), full.a.isin([0, 1, 2])) assert_eq(d.a.isin(pd.Series([0, 1, 2])), full.a.isin(pd.Series([0, 1, 2]))) def test_len(): assert len(d) == len(full) assert len(d.a) == len(full.a) def test_size(): assert_eq(d.size, full.size) assert_eq(d.a.size, full.a.size) assert_eq(d.index.size, full.index.size) def test_nbytes(): assert_eq(d.a.nbytes, full.a.nbytes) assert_eq(d.index.nbytes, full.index.nbytes) def test_quantile(): # series / multiple result = d.b.quantile([.3, .7]) exp = full.b.quantile([.3, .7]) # result may different assert len(result) == 2 assert result.divisions == (.3, .7) assert_eq(result.index, exp.index) assert isinstance(result, dd.Series) result = result.compute() assert isinstance(result, pd.Series) assert result.iloc[0] == 0 assert 5 < result.iloc[1] < 6 # index s = pd.Series(np.arange(10), index=np.arange(10)) ds = dd.from_pandas(s, 2) result = ds.index.quantile([.3, .7]) exp = s.quantile([.3, .7]) assert len(result) == 2 assert result.divisions == (.3, .7) assert_eq(result.index, exp.index) assert isinstance(result, dd.Series) result = result.compute() assert isinstance(result, pd.Series) assert 1 < result.iloc[0] < 2 assert 7 < result.iloc[1] < 8 # series / single result = d.b.quantile(.5) exp = full.b.quantile(.5) # result may different assert isinstance(result, dd.core.Scalar) result = result.compute() assert 4 < result < 6 def test_empty_quantile(): result = d.b.quantile([]) exp = full.b.quantile([]) assert result.divisions == (None, None) # because of a pandas bug, name is not preserved # https://github.com/pydata/pandas/pull/10881 assert result.name == 'b' assert result.compute().name == 'b' assert_eq(result, exp, check_names=False) def test_dataframe_quantile(): # column X is for test column order and result division df = pd.DataFrame({'A': np.arange(20), 'X': np.arange(20, 40), 'B': np.arange(10, 30), 'C': ['a', 'b', 'c', 'd'] * 5}, columns=['A', 'X', 'B', 'C']) ddf = dd.from_pandas(df, 3) result = ddf.quantile() assert result.npartitions == 1 assert result.divisions == ('A', 'X') result = result.compute() assert isinstance(result, pd.Series) tm.assert_index_equal(result.index, pd.Index(['A', 'X', 'B'])) assert (result > pd.Series([16, 36, 26], index=['A', 'X', 'B'])).all() assert (result < pd.Series([17, 37, 27], index=['A', 'X', 'B'])).all() result = ddf.quantile([0.25, 0.75]) assert result.npartitions == 1 assert result.divisions == (0.25, 0.75) result = result.compute() assert isinstance(result, pd.DataFrame) tm.assert_index_equal(result.index, pd.Index([0.25, 0.75])) tm.assert_index_equal(result.columns, pd.Index(['A', 'X', 'B'])) minexp = pd.DataFrame([[1, 21, 11], [17, 37, 27]], index=[0.25, 0.75], columns=['A', 'X', 'B']) assert (result > minexp).all().all() maxexp = pd.DataFrame([[2, 22, 12], [18, 38, 28]], index=[0.25, 0.75], columns=['A', 'X', 'B']) assert (result < maxexp).all().all() assert_eq(ddf.quantile(axis=1), df.quantile(axis=1)) pytest.raises(ValueError, lambda: ddf.quantile([0.25, 0.75], axis=1)) def test_index(): assert_eq(d.index, full.index) def test_assign(): d_unknown = dd.from_pandas(full, npartitions=3, sort=False) assert not d_unknown.known_divisions res = d.assign(c=1, d='string', e=d.a.sum(), f=d.a + d.b) res_unknown = d_unknown.assign(c=1, d='string', e=d_unknown.a.sum(), f=d_unknown.a + d_unknown.b) sol = full.assign(c=1, d='string', e=full.a.sum(), f=full.a + full.b) assert_eq(res, sol) assert_eq(res_unknown, sol) res = d.assign(c=full.a + 1) assert_eq(res, full.assign(c=full.a + 1)) # divisions unknown won't work with pandas with pytest.raises(ValueError): d_unknown.assign(c=full.a + 1) # unsupported type with pytest.raises(TypeError): d.assign(c=list(range(9))) # Fails when assigning known divisions to unknown divisions with pytest.raises(ValueError): d_unknown.assign(foo=d.a) # Fails when assigning unknown divisions to known divisions with pytest.raises(ValueError): d.assign(foo=d_unknown.a) def test_map(): assert_eq(d.a.map(lambda x: x + 1), full.a.map(lambda x: x + 1)) lk = dict((v, v + 1) for v in full.a.values) assert_eq(d.a.map(lk), full.a.map(lk)) assert_eq(d.b.map(lk), full.b.map(lk)) lk = pd.Series(lk) assert_eq(d.a.map(lk), full.a.map(lk)) assert_eq(d.b.map(lk), full.b.map(lk)) assert_eq(d.b.map(lk, meta=d.b), full.b.map(lk)) assert_eq(d.b.map(lk, meta=('b', 'i8')), full.b.map(lk)) pytest.raises(TypeError, lambda: d.a.map(d.b)) def test_concat(): x = _concat([pd.DataFrame(columns=['a', 'b']), pd.DataFrame(columns=['a', 'b'])]) assert list(x.columns) == ['a', 'b'] assert len(x) == 0 def test_args(): e = d.assign(c=d.a + 1) f = type(e)(*e._args) assert_eq(e, f) assert_eq(d.a, type(d.a)(*d.a._args)) assert_eq(d.a.sum(), type(d.a.sum())(*d.a.sum()._args)) def test_known_divisions(): assert d.known_divisions df = dd.DataFrame(dsk, 'x', meta, divisions=[None, None, None]) assert not df.known_divisions def test_unknown_divisions(): dsk = {('x', 0): pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}), ('x', 1): pd.DataFrame({'a': [4, 5, 6], 'b': [3, 2, 1]}), ('x', 2): pd.DataFrame({'a': [7, 8, 9], 'b': [0, 0, 0]})} meta = make_meta({'a': 'i8', 'b': 'i8'}) d = dd.DataFrame(dsk, 'x', meta, [None, None, None, None]) full = d.compute(get=dask.get) assert_eq(d.a.sum(), full.a.sum()) assert_eq(d.a + d.b + 1, full.a + full.b + 1) @pytest.mark.parametrize('join', ['inner', 'outer', 'left', 'right']) def test_align(join): df1a = pd.DataFrame({'A': np.random.randn(10), 'B': np.random.randn(10)}, index=[1, 12, 5, 6, 3, 9, 10, 4, 13, 11]) df1b = pd.DataFrame({'A': np.random.randn(10), 'B': np.random.randn(10)}, index=[0, 3, 2, 10, 5, 6, 7, 8, 12, 13]) ddf1a = dd.from_pandas(df1a, 3) ddf1b = dd.from_pandas(df1b, 3) # DataFrame res1, res2 = ddf1a.align(ddf1b, join=join) exp1, exp2 = df1a.align(df1b, join=join) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) # Series res1, res2 = ddf1a['A'].align(ddf1b['B'], join=join) exp1, exp2 = df1a['A'].align(df1b['B'], join=join) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) # DataFrame with fill_value res1, res2 = ddf1a.align(ddf1b, join=join, fill_value=1) exp1, exp2 = df1a.align(df1b, join=join, fill_value=1) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) # Series res1, res2 = ddf1a['A'].align(ddf1b['B'], join=join, fill_value=1) exp1, exp2 = df1a['A'].align(df1b['B'], join=join, fill_value=1) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) @pytest.mark.parametrize('join', ['inner', 'outer', 'left', 'right']) def test_align_axis(join): df1a = pd.DataFrame({'A': np.random.randn(10), 'B': np.random.randn(10), 'C': np.random.randn(10)}, index=[1, 12, 5, 6, 3, 9, 10, 4, 13, 11]) df1b = pd.DataFrame({'B': np.random.randn(10), 'C': np.random.randn(10), 'D': np.random.randn(10)}, index=[0, 3, 2, 10, 5, 6, 7, 8, 12, 13]) ddf1a = dd.from_pandas(df1a, 3) ddf1b = dd.from_pandas(df1b, 3) res1, res2 = ddf1a.align(ddf1b, join=join, axis=0) exp1, exp2 = df1a.align(df1b, join=join, axis=0) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) res1, res2 = ddf1a.align(ddf1b, join=join, axis=1) exp1, exp2 = df1a.align(df1b, join=join, axis=1) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) res1, res2 = ddf1a.align(ddf1b, join=join, axis='index') exp1, exp2 = df1a.align(df1b, join=join, axis='index') assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) res1, res2 = ddf1a.align(ddf1b, join=join, axis='columns') exp1, exp2 = df1a.align(df1b, join=join, axis='columns') assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) # invalid with tm.assertRaises(ValueError): ddf1a.align(ddf1b, join=join, axis='XXX') with tm.assertRaises(ValueError): ddf1a['A'].align(ddf1b['B'], join=join, axis=1) def test_combine(): df1 = pd.DataFrame({'A': np.random.choice([1, 2, np.nan], 100), 'B': np.random.choice(['a', 'b', np.nan], 100)}) df2 = pd.DataFrame({'A': np.random.choice([1, 2, 3], 100), 'B': np.random.choice(['a', 'b', 'c'], 100)}) ddf1 = dd.from_pandas(df1, 4) ddf2 = dd.from_pandas(df2, 5) first = lambda a, b: a # DataFrame for da, db, a, b in [(ddf1, ddf2, df1, df2), (ddf1.A, ddf2.A, df1.A, df2.A), (ddf1.B, ddf2.B, df1.B, df2.B)]: for func, fill_value in [(add, None), (add, 100), (first, None)]: sol = a.combine(b, func, fill_value=fill_value) assert_eq(da.combine(db, func, fill_value=fill_value), sol) assert_eq(da.combine(b, func, fill_value=fill_value), sol) assert_eq(ddf1.combine(ddf2, add, overwrite=False), df1.combine(df2, add, overwrite=False)) assert da.combine(db, add)._name == da.combine(db, add)._name def test_combine_first(): df1 = pd.DataFrame({'A': np.random.choice([1, 2, np.nan], 100), 'B': np.random.choice(['a', 'b', np.nan], 100)}) df2 = pd.DataFrame({'A': np.random.choice([1, 2, 3], 100), 'B': np.random.choice(['a', 'b', 'c'], 100)}) ddf1 = dd.from_pandas(df1, 4) ddf2 = dd.from_pandas(df2, 5) # DataFrame assert_eq(ddf1.combine_first(ddf2), df1.combine_first(df2)) assert_eq(ddf1.combine_first(df2), df1.combine_first(df2)) # Series assert_eq(ddf1.A.combine_first(ddf2.A), df1.A.combine_first(df2.A)) assert_eq(ddf1.A.combine_first(df2.A), df1.A.combine_first(df2.A)) assert_eq(ddf1.B.combine_first(ddf2.B), df1.B.combine_first(df2.B)) assert_eq(ddf1.B.combine_first(df2.B), df1.B.combine_first(df2.B)) def test_dataframe_picklable(): from pickle import loads, dumps cloudpickle = pytest.importorskip('cloudpickle') cp_dumps = cloudpickle.dumps d = tm.makeTimeDataFrame() df = dd.from_pandas(d, npartitions=3) df = df + 2 # dataframe df2 = loads(dumps(df)) assert_eq(df, df2) df2 = loads(cp_dumps(df)) assert_eq(df, df2) # series a2 = loads(dumps(df.A)) assert_eq(df.A, a2) a2 = loads(cp_dumps(df.A)) assert_eq(df.A, a2) # index i2 = loads(dumps(df.index)) assert_eq(df.index, i2) i2 = loads(cp_dumps(df.index)) assert_eq(df.index, i2) # scalar # lambdas are present, so only test cloudpickle s = df.A.sum() s2 = loads(cp_dumps(s)) assert_eq(s, s2) def test_random_partitions(): a, b = d.random_split([0.5, 0.5], 42) assert isinstance(a, dd.DataFrame) assert isinstance(b, dd.DataFrame) assert a._name != b._name assert len(a.compute()) + len(b.compute()) == len(full) a2, b2 = d.random_split([0.5, 0.5], 42) assert a2._name == a._name assert b2._name == b._name parts = d.random_split([0.4, 0.5, 0.1], 42) names = set([p._name for p in parts]) names.update([a._name, b._name]) assert len(names) == 5 with pytest.raises(ValueError): d.random_split([0.4, 0.5], 42) def test_series_round(): ps = pd.Series([1.123, 2.123, 3.123, 1.234, 2.234, 3.234], name='a') s = dd.from_pandas(ps, npartitions=3) assert_eq(s.round(), ps.round()) def test_set_partition_2(): df = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6], 'y': list('abdabd')}) ddf = dd.from_pandas(df, 2) result = ddf.set_index('y', divisions=['a', 'c', 'd']) assert result.divisions == ('a', 'c', 'd') assert list(result.compute(get=get_sync).index[-2:]) == ['d', 'd'] @pytest.mark.slow def test_repartition(): def _check_split_data(orig, d): """Check data is split properly""" keys = [k for k in d.dask if k[0].startswith('repartition-split')] keys = sorted(keys) sp = pd.concat([d._get(d.dask, k) for k in keys]) assert_eq(orig, sp) assert_eq(orig, d) df = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6], 'y': list('abdabd')}, index=[10, 20, 30, 40, 50, 60]) a = dd.from_pandas(df, 2) b = a.repartition(divisions=[10, 20, 50, 60]) assert b.divisions == (10, 20, 50, 60) assert_eq(a, b) assert_eq(a._get(b.dask, (b._name, 0)), df.iloc[:1]) for div in [[20, 60], [10, 50], [1], # first / last element mismatch [0, 60], [10, 70], # do not allow to expand divisions by default [10, 50, 20, 60], # not sorted [10, 10, 20, 60]]: # not unique (last element can be duplicated) pytest.raises(ValueError, lambda: a.repartition(divisions=div)) pdf = pd.DataFrame(np.random.randn(7, 5), columns=list('abxyz')) for p in range(1, 7): ddf = dd.from_pandas(pdf, p) assert_eq(ddf, pdf) for div in [[0, 6], [0, 6, 6], [0, 5, 6], [0, 4, 6, 6], [0, 2, 6], [0, 2, 6, 6], [0, 2, 3, 6, 6], [0, 1, 2, 3, 4, 5, 6, 6]]: rddf = ddf.repartition(divisions=div) _check_split_data(ddf, rddf) assert rddf.divisions == tuple(div) assert_eq(pdf, rddf) rds = ddf.x.repartition(divisions=div) _check_split_data(ddf.x, rds) assert rds.divisions == tuple(div) assert_eq(pdf.x, rds) # expand divisions for div in [[-5, 10], [-2, 3, 5, 6], [0, 4, 5, 9, 10]]: rddf = ddf.repartition(divisions=div, force=True) _check_split_data(ddf, rddf) assert rddf.divisions == tuple(div) assert_eq(pdf, rddf) rds = ddf.x.repartition(divisions=div, force=True) _check_split_data(ddf.x, rds) assert rds.divisions == tuple(div) assert_eq(pdf.x, rds) pdf = pd.DataFrame({'x': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'y': [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]}, index=list('abcdefghij')) for p in range(1, 7): ddf = dd.from_pandas(pdf, p) assert_eq(ddf, pdf) for div in [list('aj'), list('ajj'), list('adj'), list('abfj'), list('ahjj'), list('acdj'), list('adfij'), list('abdefgij'), list('abcdefghij')]: rddf = ddf.repartition(divisions=div) _check_split_data(ddf, rddf) assert rddf.divisions == tuple(div) assert_eq(pdf, rddf) rds = ddf.x.repartition(divisions=div) _check_split_data(ddf.x, rds) assert rds.divisions == tuple(div) assert_eq(pdf.x, rds) # expand divisions for div in [list('Yadijm'), list('acmrxz'), list('Yajz')]: rddf = ddf.repartition(divisions=div, force=True) _check_split_data(ddf, rddf) assert rddf.divisions == tuple(div) assert_eq(pdf, rddf) rds = ddf.x.repartition(divisions=div, force=True) _check_split_data(ddf.x, rds) assert rds.divisions == tuple(div) assert_eq(pdf.x, rds) def test_repartition_divisions(): result = repartition_divisions([0, 6], [0, 6, 6], 'a', 'b', 'c') assert result == {('b', 0): (boundary_slice, ('a', 0), 0, 6, False), ('b', 1): (boundary_slice, ('a', 0), 6, 6, True), ('c', 0): ('b', 0), ('c', 1): ('b', 1)} result = repartition_divisions([1, 3, 7], [1, 4, 6, 7], 'a', 'b', 'c') assert result == {('b', 0): (boundary_slice, ('a', 0), 1, 3, False), ('b', 1): (boundary_slice, ('a', 1), 3, 4, False), ('b', 2): (boundary_slice, ('a', 1), 4, 6, False), ('b', 3): (boundary_slice, ('a', 1), 6, 7, True), ('c', 0): (pd.concat, [('b', 0), ('b', 1)]), ('c', 1): ('b', 2), ('c', 2): ('b', 3)} def test_repartition_on_pandas_dataframe(): df = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6], 'y': list('abdabd')}, index=[10, 20, 30, 40, 50, 60]) ddf = dd.repartition(df, divisions=[10, 20, 50, 60]) assert isinstance(ddf, dd.DataFrame) assert ddf.divisions == (10, 20, 50, 60) assert_eq(ddf, df) ddf = dd.repartition(df.y, divisions=[10, 20, 50, 60]) assert isinstance(ddf, dd.Series) assert ddf.divisions == (10, 20, 50, 60) assert_eq(ddf, df.y) @pytest.mark.parametrize('use_index', [True, False]) @pytest.mark.parametrize('n', [1, 2, 4, 5]) @pytest.mark.parametrize('k', [1, 2, 4, 5]) @pytest.mark.parametrize('dtype', [int, float, 'M8[ns]']) @pytest.mark.parametrize('transform', [lambda df: df, lambda df: df.x]) def test_repartition_npartitions(use_index, n, k, dtype, transform): df = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6] * 10, 'y': list('abdabd') * 10}, index=pd.Series([10, 20, 30, 40, 50, 60] * 10, dtype=dtype)) df = transform(df) a = dd.from_pandas(df, npartitions=n, sort=use_index) b = a.repartition(npartitions=k) assert_eq(a, b) assert b.npartitions == k parts = dask.get(b.dask, b._keys()) assert all(map(len, parts)) def test_repartition_object_index(): df = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6] * 10}, index=list('abdabd') * 10) a = dd.from_pandas(df, npartitions=5) b = a.repartition(npartitions=2) assert b.npartitions == 2 assert_eq(b, df) b = a.repartition(npartitions=10) assert b.npartitions == 10 assert_eq(b, df) assert not b.known_divisions @pytest.mark.slow @pytest.mark.parametrize('npartitions', [1, 20, 243]) @pytest.mark.parametrize('freq', ['1D', '7D', '28h']) @pytest.mark.parametrize('end', ['2000-04-15', '2000-04-15 12:37:01']) @pytest.mark.parametrize('start', ['2000-01-01', '2000-01-01 12:30:00']) def test_repartition_freq(npartitions, freq, start, end): start = pd.Timestamp(start) end = pd.Timestamp(end) ind = pd.DatetimeIndex(start=start, end=end, freq='60s') df = pd.DataFrame({'x': np.arange(len(ind))}, index=ind) ddf = dd.from_pandas(df, npartitions=npartitions, name='x') ddf2 = ddf.repartition(freq=freq) assert_eq(ddf2, df) def test_repartition_freq_divisions(): df = pd.DataFrame({'x': np.random.random(10)}, index=pd.DatetimeIndex(np.random.random(10) * 100e9)) ddf = dd.from_pandas(df, npartitions=3) ddf2 = ddf.repartition(freq='15s') for div in ddf2.divisions[1:-1]: assert div == div.round('15s') assert ddf2.divisions[0] == df.index.min() assert ddf2.divisions[-1] == df.index.max() assert_eq(ddf2, ddf2) def test_repartition_freq_errors(): df = pd.DataFrame({'x': [1, 2, 3]}) ddf = dd.from_pandas(df, npartitions=1) with pytest.raises(TypeError) as info: ddf.repartition(freq='1s') assert 'only' in str(info.value) assert 'timeseries' in str(info.value) def test_embarrassingly_parallel_operations(): df = pd.DataFrame({'x': [1, 2, 3, 4, None, 6], 'y': list('abdabd')}, index=[10, 20, 30, 40, 50, 60]) a = dd.from_pandas(df, 2) assert_eq(a.x.astype('float32'), df.x.astype('float32')) assert a.x.astype('float32').compute().dtype == 'float32' assert_eq(a.x.dropna(), df.x.dropna()) assert_eq(a.x.between(2, 4), df.x.between(2, 4)) assert_eq(a.x.clip(2, 4), df.x.clip(2, 4)) assert_eq(a.x.notnull(), df.x.notnull()) assert_eq(a.x.isnull(), df.x.isnull()) assert_eq(a.notnull(), df.notnull()) assert_eq(a.isnull(), df.isnull()) assert len(a.sample(0.5).compute()) < len(df) def test_fillna(): df = tm.makeMissingDataframe(0.8, 42) ddf = dd.from_pandas(df, npartitions=5, sort=False) assert_eq(ddf.fillna(100), df.fillna(100)) assert_eq(ddf.A.fillna(100), df.A.fillna(100)) assert_eq(ddf.fillna(method='pad'), df.fillna(method='pad')) assert_eq(ddf.A.fillna(method='pad'), df.A.fillna(method='pad')) assert_eq(ddf.fillna(method='bfill'), df.fillna(method='bfill')) assert_eq(ddf.A.fillna(method='bfill'), df.A.fillna(method='bfill')) assert_eq(ddf.fillna(method='pad', limit=2), df.fillna(method='pad', limit=2)) assert_eq(ddf.A.fillna(method='pad', limit=2), df.A.fillna(method='pad', limit=2)) assert_eq(ddf.fillna(method='bfill', limit=2), df.fillna(method='bfill', limit=2)) assert_eq(ddf.A.fillna(method='bfill', limit=2), df.A.fillna(method='bfill', limit=2)) assert_eq(ddf.fillna(100, axis=1), df.fillna(100, axis=1)) assert_eq(ddf.fillna(method='pad', axis=1), df.fillna(method='pad', axis=1)) assert_eq(ddf.fillna(method='pad', limit=2, axis=1), df.fillna(method='pad', limit=2, axis=1)) pytest.raises(ValueError, lambda: ddf.A.fillna(0, axis=1)) pytest.raises(NotImplementedError, lambda: ddf.fillna(0, limit=10)) pytest.raises(NotImplementedError, lambda: ddf.fillna(0, limit=10, axis=1)) df = tm.makeMissingDataframe(0.2, 42) ddf = dd.from_pandas(df, npartitions=5, sort=False) pytest.raises(ValueError, lambda: ddf.fillna(method='pad').compute()) assert_eq(df.fillna(method='pad', limit=3), ddf.fillna(method='pad', limit=3)) def test_fillna_multi_dataframe(): df = tm.makeMissingDataframe(0.8, 42) ddf = dd.from_pandas(df, npartitions=5, sort=False) assert_eq(ddf.A.fillna(ddf.B), df.A.fillna(df.B)) assert_eq(ddf.B.fillna(ddf.A), df.B.fillna(df.A)) def test_ffill_bfill(): df = tm.makeMissingDataframe(0.8, 42) ddf = dd.from_pandas(df, npartitions=5, sort=False) assert_eq(ddf.ffill(), df.ffill()) assert_eq(ddf.bfill(), df.bfill()) assert_eq(ddf.ffill(axis=1), df.ffill(axis=1)) assert_eq(ddf.bfill(axis=1), df.bfill(axis=1)) def test_sample(): df = pd.DataFrame({'x': [1, 2, 3, 4, None, 6], 'y': list('abdabd')}, index=[10, 20, 30, 40, 50, 60]) a = dd.from_pandas(df, 2) b = a.sample(0.5) assert_eq(b, b) c = a.sample(0.5, random_state=1234) d = a.sample(0.5, random_state=1234) assert_eq(c, d) assert a.sample(0.5)._name != a.sample(0.5)._name def test_sample_without_replacement(): df = pd.DataFrame({'x': [1, 2, 3, 4, None, 6], 'y': list('abdabd')}, index=[10, 20, 30, 40, 50, 60]) a = dd.from_pandas(df, 2) b = a.sample(0.7, replace=False) bb = b.index.compute() assert len(bb) == len(set(bb)) def test_datetime_accessor(): df = pd.DataFrame({'x': [1, 2, 3, 4]}) df['x'] = df.x.astype('M8[us]') a = dd.from_pandas(df, 2) assert 'date' in dir(a.x.dt) # pandas loses Series.name via datetime accessor # see https://github.com/pydata/pandas/issues/10712 assert_eq(a.x.dt.date, df.x.dt.date, check_names=False) # to_pydatetime returns a numpy array in pandas, but a Series in dask assert_eq(a.x.dt.to_pydatetime(), pd.Series(df.x.dt.to_pydatetime(), index=df.index, dtype=object)) assert set(a.x.dt.date.dask) == set(a.x.dt.date.dask) assert set(a.x.dt.to_pydatetime().dask) == set(a.x.dt.to_pydatetime().dask) def test_str_accessor(): df = pd.DataFrame({'x': ['a', 'b', 'c', 'D'], 'y': [1, 2, 3, 4]}, index=['e', 'f', 'g', 'H']) a = dd.from_pandas(df, 2, sort=False) # Check that str not in dir/hasattr for non-object columns assert 'str' not in dir(a.y) assert not hasattr(a.y, 'str') assert 'upper' in dir(a.x.str) assert_eq(a.x.str.upper(), df.x.str.upper()) assert set(a.x.str.upper().dask) == set(a.x.str.upper().dask) assert 'upper' in dir(a.index.str) assert_eq(a.index.str.upper(), df.index.str.upper()) assert set(a.index.str.upper().dask) == set(a.index.str.upper().dask) # make sure to pass thru args & kwargs assert 'contains' in dir(a.x.str) assert_eq(a.x.str.contains('a'), df.x.str.contains('a')) assert set(a.x.str.contains('a').dask) == set(a.x.str.contains('a').dask) assert_eq(a.x.str.contains('d', case=False), df.x.str.contains('d', case=False)) assert set(a.x.str.contains('d', case=False).dask) == set(a.x.str.contains('d', case=False).dask) for na in [True, False]: assert_eq(a.x.str.contains('a', na=na), df.x.str.contains('a', na=na)) assert set(a.x.str.contains('a', na=na).dask) == set(a.x.str.contains('a', na=na).dask) for regex in [True, False]: assert_eq(a.x.str.contains('a', regex=regex), df.x.str.contains('a', regex=regex)) assert set(a.x.str.contains('a', regex=regex).dask) == set(a.x.str.contains('a', regex=regex).dask) def test_empty_max(): meta = make_meta({'x': 'i8'}) a = dd.DataFrame({('x', 0): pd.DataFrame({'x': [1]}), ('x', 1): pd.DataFrame({'x': []})}, 'x', meta, [None, None, None]) assert_eq(a.x.max(), 1) def test_query(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [5, 6, 7, 8]}) a = dd.from_pandas(df, npartitions=2) q = a.query('x**2 > y') with ignoring(ImportError): assert_eq(q, df.query('x**2 > y')) def test_eval(): p = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [5, 6, 7, 8]}) d = dd.from_pandas(p, npartitions=2) with ignoring(ImportError): assert_eq(p.eval('x + y'), d.eval('x + y')) assert_eq(p.eval('z = x + y', inplace=False), d.eval('z = x + y', inplace=False)) with pytest.raises(NotImplementedError): d.eval('z = x + y', inplace=True) if p.eval('z = x + y', inplace=None) is None: with pytest.raises(NotImplementedError): d.eval('z = x + y', inplace=None) @pytest.mark.parametrize('include, exclude', [ ([int], None), (None, [int]), ([np.number, object], [float]), (['datetime'], None) ]) def test_select_dtypes(include, exclude): n = 10 df = pd.DataFrame({'cint': [1] * n, 'cstr': ['a'] * n, 'clfoat': [1.] * n, 'cdt': pd.date_range('2016-01-01', periods=n)}) a = dd.from_pandas(df, npartitions=2) result = a.select_dtypes(include=include, exclude=exclude) expected = df.select_dtypes(include=include, exclude=exclude) assert_eq(result, expected) # count dtypes tm.assert_series_equal(a.get_dtype_counts(), df.get_dtype_counts()) tm.assert_series_equal(a.get_ftype_counts(), df.get_ftype_counts()) tm.assert_series_equal(result.get_dtype_counts(), expected.get_dtype_counts()) tm.assert_series_equal(result.get_ftype_counts(), expected.get_ftype_counts()) def test_deterministic_apply_concat_apply_names(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [5, 6, 7, 8]}) a = dd.from_pandas(df, npartitions=2) assert sorted(a.x.nlargest(2).dask) == sorted(a.x.nlargest(2).dask) assert sorted(a.x.nlargest(2).dask) != sorted(a.x.nlargest(3).dask) assert (sorted(a.x.drop_duplicates().dask) == sorted(a.x.drop_duplicates().dask)) assert (sorted(a.groupby('x').y.mean().dask) == sorted(a.groupby('x').y.mean().dask)) # Test aca without passing in token string f = lambda a: a.nlargest(5) f2 = lambda a: a.nlargest(3) assert (sorted(aca(a.x, f, f, a.x._meta).dask) != sorted(aca(a.x, f2, f2, a.x._meta).dask)) assert (sorted(aca(a.x, f, f, a.x._meta).dask) == sorted(aca(a.x, f, f, a.x._meta).dask)) # Test aca with keywords def chunk(x, c_key=0, both_key=0): return x.sum() + c_key + both_key def agg(x, a_key=0, both_key=0): return pd.Series(x).sum() + a_key + both_key c_key = 2 a_key = 3 both_key = 4 res = aca(a.x, chunk=chunk, aggregate=agg, chunk_kwargs={'c_key': c_key}, aggregate_kwargs={'a_key': a_key}, both_key=both_key) assert (sorted(res.dask) == sorted(aca(a.x, chunk=chunk, aggregate=agg, chunk_kwargs={'c_key': c_key}, aggregate_kwargs={'a_key': a_key}, both_key=both_key).dask)) assert (sorted(res.dask) != sorted(aca(a.x, chunk=chunk, aggregate=agg, chunk_kwargs={'c_key': c_key}, aggregate_kwargs={'a_key': a_key}, both_key=0).dask)) assert_eq(res, df.x.sum() + 2 * (c_key + both_key) + a_key + both_key) def test_aca_meta_infer(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [5, 6, 7, 8]}) ddf = dd.from_pandas(df, npartitions=2) def chunk(x, y, constant=1.0): return (x + y + constant).head() def agg(x): return x.head() res = aca([ddf, 2.0], chunk=chunk, aggregate=agg, chunk_kwargs=dict(constant=2.0)) sol = (df + 2.0 + 2.0).head() assert_eq(res, sol) # Should infer as a scalar res = aca([ddf.x], chunk=lambda x: pd.Series([x.sum()]), aggregate=lambda x: x.sum()) assert isinstance(res, Scalar) assert res.compute() == df.x.sum() def test_aca_split_every(): df = pd.DataFrame({'x': [1] * 60}) ddf = dd.from_pandas(df, npartitions=15) def chunk(x, y, constant=0): return x.sum() + y + constant def combine(x, constant=0): return x.sum() + constant + 1 def agg(x, constant=0): return x.sum() + constant + 2 f = lambda n: aca([ddf, 2.0], chunk=chunk, aggregate=agg, combine=combine, chunk_kwargs=dict(constant=1.0), combine_kwargs=dict(constant=2.0), aggregate_kwargs=dict(constant=3.0), split_every=n) assert_max_deps(f(3), 3) assert_max_deps(f(4), 4, False) assert_max_deps(f(5), 5) assert set(f(15).dask.keys()) == set(f(ddf.npartitions).dask.keys()) r3 = f(3) r4 = f(4) assert r3._name != r4._name # Only intersect on reading operations assert len(set(r3.dask.keys()) & set(r4.dask.keys())) == len(ddf.dask.keys()) # Keywords are different for each step assert f(3).compute() == 60 + 15 * (2 + 1) + 7 * (2 + 1) + (3 + 2) # Keywords are same for each step res = aca([ddf, 2.0], chunk=chunk, aggregate=agg, combine=combine, constant=3.0, split_every=3) assert res.compute() == 60 + 15 * (2 + 3) + 7 * (3 + 1) + (3 + 2) # No combine provided, combine is agg res = aca([ddf, 2.0], chunk=chunk, aggregate=agg, constant=3, split_every=3) assert res.compute() == 60 + 15 * (2 + 3) + 8 * (3 + 2) # split_every must be >= 2 with pytest.raises(ValueError): f(1) # combine_kwargs with no combine provided with pytest.raises(ValueError): aca([ddf, 2.0], chunk=chunk, aggregate=agg, split_every=3, chunk_kwargs=dict(constant=1.0), combine_kwargs=dict(constant=2.0), aggregate_kwargs=dict(constant=3.0)) def test_reduction_method(): df = pd.DataFrame({'x': range(50), 'y': range(50, 100)}) ddf = dd.from_pandas(df, npartitions=4) chunk = lambda x, val=0: (x >= val).sum() agg = lambda x: x.sum() # Output of chunk is a scalar res = ddf.x.reduction(chunk, aggregate=agg) assert_eq(res, df.x.count()) # Output of chunk is a series res = ddf.reduction(chunk, aggregate=agg) assert res._name == ddf.reduction(chunk, aggregate=agg)._name assert_eq(res, df.count()) # Test with keywords res2 = ddf.reduction(chunk, aggregate=agg, chunk_kwargs={'val': 25}) res2._name == ddf.reduction(chunk, aggregate=agg, chunk_kwargs={'val': 25})._name assert res2._name != res._name assert_eq(res2, (df >= 25).sum()) # Output of chunk is a dataframe def sum_and_count(x): return pd.DataFrame({'sum': x.sum(), 'count': x.count()}) res = ddf.reduction(sum_and_count, aggregate=lambda x: x.groupby(level=0).sum()) assert_eq(res, pd.DataFrame({'sum': df.sum(), 'count': df.count()})) def test_reduction_method_split_every(): df = pd.Series([1] * 60) ddf = dd.from_pandas(df, npartitions=15) def chunk(x, constant=0): return x.sum() + constant def combine(x, constant=0): return x.sum() + constant + 1 def agg(x, constant=0): return x.sum() + constant + 2 f = lambda n: ddf.reduction(chunk, aggregate=agg, combine=combine, chunk_kwargs=dict(constant=1.0), combine_kwargs=dict(constant=2.0), aggregate_kwargs=dict(constant=3.0), split_every=n) assert_max_deps(f(3), 3) assert_max_deps(f(4), 4, False) assert_max_deps(f(5), 5) assert set(f(15).dask.keys()) == set(f(ddf.npartitions).dask.keys()) r3 = f(3) r4 = f(4) assert r3._name != r4._name # Only intersect on reading operations assert len(set(r3.dask.keys()) & set(r4.dask.keys())) == len(ddf.dask.keys()) # Keywords are different for each step assert f(3).compute() == 60 + 15 + 7 * (2 + 1) + (3 + 2) # Keywords are same for each step res = ddf.reduction(chunk, aggregate=agg, combine=combine, constant=3.0, split_every=3) assert res.compute() == 60 + 15 * 3 + 7 * (3 + 1) + (3 + 2) # No combine provided, combine is agg res = ddf.reduction(chunk, aggregate=agg, constant=3.0, split_every=3) assert res.compute() == 60 + 15 * 3 + 8 * (3 + 2) # split_every must be >= 2 with pytest.raises(ValueError): f(1) # combine_kwargs with no combine provided with pytest.raises(ValueError): ddf.reduction(chunk, aggregate=agg, split_every=3, chunk_kwargs=dict(constant=1.0), combine_kwargs=dict(constant=2.0), aggregate_kwargs=dict(constant=3.0)) def test_pipe(): df = pd.DataFrame({'x': range(50), 'y': range(50, 100)}) ddf = dd.from_pandas(df, npartitions=4) def f(x, y, z=0): return x + y + z assert_eq(ddf.pipe(f, 1, z=2), f(ddf, 1, z=2)) assert_eq(ddf.x.pipe(f, 1, z=2), f(ddf.x, 1, z=2)) def test_gh_517(): arr = np.random.randn(100, 2) df = pd.DataFrame(arr, columns=['a', 'b']) ddf = dd.from_pandas(df, 2) assert ddf.index.nunique().compute() == 100 ddf2 = dd.from_pandas(pd.concat([df, df]), 5) assert ddf2.index.nunique().compute() == 100 def test_drop_axis_1(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [5, 6, 7, 8], 'z': [9, 10, 11, 12]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.drop('y', axis=1), df.drop('y', axis=1)) assert_eq(ddf.drop(['y', 'z'], axis=1), df.drop(['y', 'z'], axis=1)) with pytest.raises(ValueError): ddf.drop(['a', 'x'], axis=1) assert_eq(ddf.drop(['a', 'x'], axis=1, errors='ignore'), df.drop(['a', 'x'], axis=1, errors='ignore')) def test_gh580(): df = pd.DataFrame({'x': np.arange(10, dtype=float)}) ddf = dd.from_pandas(df, 2) assert_eq(np.cos(df['x']), np.cos(ddf['x'])) assert_eq(np.cos(df['x']), np.cos(ddf['x'])) def test_rename_dict(): renamer = {'a': 'A', 'b': 'B'} assert_eq(d.rename(columns=renamer), full.rename(columns=renamer)) def test_rename_function(): renamer = lambda x: x.upper() assert_eq(d.rename(columns=renamer), full.rename(columns=renamer)) def test_rename_index(): renamer = {0: 1} pytest.raises(ValueError, lambda: d.rename(index=renamer)) def test_to_timestamp(): index = pd.PeriodIndex(freq='A', start='1/1/2001', end='12/1/2004') df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [10, 20, 30, 40]}, index=index) ddf = dd.from_pandas(df, npartitions=3) assert_eq(ddf.to_timestamp(), df.to_timestamp()) assert_eq(ddf.to_timestamp(freq='M', how='s').compute(), df.to_timestamp(freq='M', how='s')) assert_eq(ddf.x.to_timestamp(), df.x.to_timestamp()) assert_eq(ddf.x.to_timestamp(freq='M', how='s').compute(), df.x.to_timestamp(freq='M', how='s')) def test_to_frame(): s = pd.Series([1, 2, 3], name='foo') a = dd.from_pandas(s, npartitions=2) assert_eq(s.to_frame(), a.to_frame()) assert_eq(s.to_frame('bar'), a.to_frame('bar')) def test_apply(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) func = lambda row: row['x'] + row['y'] assert_eq(ddf.x.apply(lambda x: x + 1), df.x.apply(lambda x: x + 1)) # specify columns assert_eq(ddf.apply(lambda xy: xy[0] + xy[1], axis=1, columns=None), df.apply(lambda xy: xy[0] + xy[1], axis=1)) assert_eq(ddf.apply(lambda xy: xy[0] + xy[1], axis='columns', columns=None), df.apply(lambda xy: xy[0] + xy[1], axis='columns')) # inference assert_eq(ddf.apply(lambda xy: xy[0] + xy[1], axis=1), df.apply(lambda xy: xy[0] + xy[1], axis=1)) assert_eq(ddf.apply(lambda xy: xy, axis=1), df.apply(lambda xy: xy, axis=1)) # result will be dataframe func = lambda x: pd.Series([x, x]) assert_eq(ddf.x.apply(func, name=[0, 1]), df.x.apply(func)) # inference assert_eq(ddf.x.apply(func), df.x.apply(func)) # axis=0 with tm.assertRaises(NotImplementedError): ddf.apply(lambda xy: xy, axis=0) with tm.assertRaises(NotImplementedError): ddf.apply(lambda xy: xy, axis='index') def test_applymap(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.applymap(lambda x: x + 1), df.applymap(lambda x: x + 1)) assert_eq(ddf.applymap(lambda x: (x, x)), df.applymap(lambda x: (x, x))) def test_abs(): df = pd.DataFrame({'A': [1, -2, 3, -4, 5], 'B': [-6., -7, -8, -9, 10], 'C': ['a', 'b', 'c', 'd', 'e']}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.A.abs(), df.A.abs()) assert_eq(ddf[['A', 'B']].abs(), df[['A', 'B']].abs()) pytest.raises(TypeError, lambda: ddf.C.abs()) pytest.raises(TypeError, lambda: ddf.abs()) def test_round(): df = pd.DataFrame({'col1': [1.123, 2.123, 3.123], 'col2': [1.234, 2.234, 3.234]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.round(), df.round()) assert_eq(ddf.round(2), df.round(2)) def test_cov(): # DataFrame df = pd.util.testing.makeMissingDataframe(0.3, 42) ddf = dd.from_pandas(df, npartitions=6) res = ddf.cov() res2 = ddf.cov(split_every=2) res3 = ddf.cov(10) res4 = ddf.cov(10, split_every=2) sol = df.cov() sol2 = df.cov(10) assert_eq(res, sol) assert_eq(res2, sol) assert_eq(res3, sol2) assert_eq(res4, sol2) assert res._name == ddf.cov()._name assert res._name != res2._name assert res3._name != res4._name assert res._name != res3._name # Series a = df.A b = df.B da = dd.from_pandas(a, npartitions=6) db = dd.from_pandas(b, npartitions=7) res = da.cov(db) res2 = da.cov(db, split_every=2) res3 = da.cov(db, 10) res4 = da.cov(db, 10, split_every=2) sol = a.cov(b) sol2 = a.cov(b, 10) assert_eq(res, sol) assert_eq(res2, sol) assert_eq(res3, sol2) assert_eq(res4, sol2) assert res._name == da.cov(db)._name assert res._name != res2._name assert res3._name != res4._name assert res._name != res3._name def test_corr(): # DataFrame df = pd.util.testing.makeMissingDataframe(0.3, 42) ddf = dd.from_pandas(df, npartitions=6) res = ddf.corr() res2 = ddf.corr(split_every=2) res3 = ddf.corr(min_periods=10) res4 = ddf.corr(min_periods=10, split_every=2) sol = df.corr() sol2 = df.corr(min_periods=10) assert_eq(res, sol) assert_eq(res2, sol) assert_eq(res3, sol2) assert_eq(res4, sol2) assert res._name == ddf.corr()._name assert res._name != res2._name assert res3._name != res4._name assert res._name != res3._name pytest.raises(NotImplementedError, lambda: ddf.corr(method='spearman')) # Series a = df.A b = df.B da = dd.from_pandas(a, npartitions=6) db = dd.from_pandas(b, npartitions=7) res = da.corr(db) res2 = da.corr(db, split_every=2) res3 = da.corr(db, min_periods=10) res4 = da.corr(db, min_periods=10, split_every=2) sol = da.corr(db) sol2 = da.corr(db, min_periods=10) assert_eq(res, sol) assert_eq(res2, sol) assert_eq(res3, sol2) assert_eq(res4, sol2) assert res._name == da.corr(db)._name assert res._name != res2._name assert res3._name != res4._name assert res._name != res3._name pytest.raises(NotImplementedError, lambda: da.corr(db, method='spearman')) pytest.raises(TypeError, lambda: da.corr(ddf)) def test_cov_corr_meta(): df = pd.DataFrame({'a': np.array([1, 2, 3]), 'b': np.array([1.0, 2.0, 3.0], dtype='f4'), 'c': np.array([1.0, 2.0, 3.0])}, index=pd.Index([1, 2, 3], name='myindex')) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.corr(), df.corr()) assert_eq(ddf.cov(), df.cov()) assert ddf.a.cov(ddf.b)._meta.dtype == 'f8' assert ddf.a.corr(ddf.b)._meta.dtype == 'f8' @pytest.mark.slow def test_cov_corr_stable(): df = pd.DataFrame(np.random.random((20000000, 2)) * 2 - 1, columns=['a', 'b']) ddf = dd.from_pandas(df, npartitions=50) assert_eq(ddf.cov(split_every=8), df.cov()) assert_eq(ddf.corr(split_every=8), df.corr()) def test_autocorr(): x = pd.Series(np.random.random(100)) dx = dd.from_pandas(x, npartitions=10) assert_eq(dx.autocorr(2), x.autocorr(2)) assert_eq(dx.autocorr(0), x.autocorr(0)) assert_eq(dx.autocorr(-2), x.autocorr(-2)) assert_eq(dx.autocorr(2, split_every=3), x.autocorr(2)) pytest.raises(TypeError, lambda: dx.autocorr(1.5)) def test_apply_infer_columns(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) def return_df(x): # will create new DataFrame which columns is ['sum', 'mean'] return pd.Series([x.sum(), x.mean()], index=['sum', 'mean']) # DataFrame to completely different DataFrame result = ddf.apply(return_df, axis=1) assert isinstance(result, dd.DataFrame) tm.assert_index_equal(result.columns, pd.Index(['sum', 'mean'])) assert_eq(result, df.apply(return_df, axis=1)) # DataFrame to Series result = ddf.apply(lambda x: 1, axis=1) assert isinstance(result, dd.Series) assert result.name is None assert_eq(result, df.apply(lambda x: 1, axis=1)) def return_df2(x): return pd.Series([x * 2, x * 3], index=['x2', 'x3']) # Series to completely different DataFrame result = ddf.x.apply(return_df2) assert isinstance(result, dd.DataFrame) tm.assert_index_equal(result.columns, pd.Index(['x2', 'x3'])) assert_eq(result, df.x.apply(return_df2)) # Series to Series result = ddf.x.apply(lambda x: 1) assert isinstance(result, dd.Series) assert result.name == 'x' assert_eq(result, df.x.apply(lambda x: 1)) def test_index_time_properties(): i = tm.makeTimeSeries() a = dd.from_pandas(i, npartitions=3) assert 'day' in dir(a.index) # returns a numpy array in pandas, but a Index in dask assert_eq(a.index.day, pd.Index(i.index.day)) assert_eq(a.index.month, pd.Index(i.index.month)) def test_nlargest_nsmallest(): from string import ascii_lowercase df = pd.DataFrame({'a': np.random.permutation(20), 'b': list(ascii_lowercase[:20]), 'c': np.random.permutation(20).astype('float64')}) ddf = dd.from_pandas(df, npartitions=3) for m in ['nlargest', 'nsmallest']: f = lambda df, *args, **kwargs: getattr(df, m)(*args, **kwargs) res = f(ddf, 5, 'a') res2 = f(ddf, 5, 'a', split_every=2) sol = f(df, 5, 'a') assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name res = f(ddf, 5, ['a', 'b']) res2 = f(ddf, 5, ['a', 'b'], split_every=2) sol = f(df, 5, ['a', 'b']) assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name res = f(ddf.a, 5) res2 = f(ddf.a, 5, split_every=2) sol = f(df.a, 5) assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name def test_reset_index(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) sol = df.reset_index() res = ddf.reset_index() assert all(d is None for d in res.divisions) assert_eq(res, sol, check_index=False) sol = df.reset_index(drop=True) res = ddf.reset_index(drop=True) assert all(d is None for d in res.divisions) assert_eq(res, sol, check_index=False) sol = df.x.reset_index() res = ddf.x.reset_index() assert all(d is None for d in res.divisions) assert_eq(res, sol, check_index=False) sol = df.x.reset_index(drop=True) res = ddf.x.reset_index(drop=True) assert all(d is None for d in res.divisions) assert_eq(res, sol, check_index=False) def test_dataframe_compute_forward_kwargs(): x = dd.from_pandas(pd.DataFrame({'a': range(10)}), npartitions=2).a.sum() x.compute(bogus_keyword=10) def test_series_iteritems(): df = pd.DataFrame({'x': [1, 2, 3, 4]}) ddf = dd.from_pandas(df, npartitions=2) for (a, b) in zip(df['x'].iteritems(), ddf['x'].iteritems()): assert a == b def test_dataframe_iterrows(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) for (a, b) in zip(df.iterrows(), ddf.iterrows()): tm.assert_series_equal(a[1], b[1]) def test_dataframe_itertuples(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) for (a, b) in zip(df.itertuples(), ddf.itertuples()): assert a == b def test_astype(): df = pd.DataFrame({'x': [1, 2, 3, None], 'y': [10, 20, 30, 40]}, index=[10, 20, 30, 40]) a = dd.from_pandas(df, 2) assert_eq(a.astype(float), df.astype(float)) assert_eq(a.x.astype(float), df.x.astype(float)) def test_astype_categoricals(): df = pd.DataFrame({'x': ['a', 'b', 'c', 'b', 'c'], 'y': [1, 2, 3, 4, 5]}) ddf = dd.from_pandas(df, 2) ddf2 = ddf.astype({'x': 'category'}) assert not ddf2.x.cat.known assert ddf2.x.dtype == 'category' assert ddf2.compute().x.dtype == 'category' dx = ddf.x.astype('category') assert not dx.cat.known assert dx.dtype == 'category' assert dx.compute().dtype == 'category' def test_groupby_callable(): a = pd.DataFrame({'x': [1, 2, 3, None], 'y': [10, 20, 30, 40]}, index=[1, 2, 3, 4]) b = dd.from_pandas(a, 2) def iseven(x): return x % 2 == 0 assert_eq(a.groupby(iseven).y.sum(), b.groupby(iseven).y.sum()) assert_eq(a.y.groupby(iseven).sum(), b.y.groupby(iseven).sum()) def test_set_index_sorted_true(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [10, 20, 30, 40], 'z': [4, 3, 2, 1]}) a = dd.from_pandas(df, 2, sort=False) assert not a.known_divisions b = a.set_index('x', sorted=True) assert b.known_divisions assert set(a.dask).issubset(set(b.dask)) for drop in [True, False]: assert_eq(a.set_index('x', drop=drop), df.set_index('x', drop=drop)) assert_eq(a.set_index(a.x, sorted=True, drop=drop), df.set_index(df.x, drop=drop)) assert_eq(a.set_index(a.x + 1, sorted=True, drop=drop), df.set_index(df.x + 1, drop=drop)) with pytest.raises(ValueError): a.set_index(a.z, sorted=True) def test_compute_divisions(): from dask.dataframe.shuffle import compute_divisions df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [10, 20, 30, 40], 'z': [4, 3, 2, 1]}, index=[1, 3, 10, 20]) a = dd.from_pandas(df, 2, sort=False) assert not a.known_divisions divisions = compute_divisions(a) b = copy(a) b.divisions = divisions assert_eq(a, b, check_divisions=False) assert b.known_divisions def test_methods_tokenize_differently(): df = pd.DataFrame({'x': [1, 2, 3, 4]}) df = dd.from_pandas(df, npartitions=1) assert (df.x.map_partitions(lambda x: pd.Series(x.min()))._name != df.x.map_partitions(lambda x: pd.Series(x.max()))._name) def test_sorted_index_single_partition(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [1, 0, 1, 0]}) ddf = dd.from_pandas(df, npartitions=1) assert_eq(ddf.set_index('x', sorted=True), df.set_index('x')) def _assert_info(df, ddf, memory_usage=True): from io import StringIO assert isinstance(df, pd.DataFrame) assert isinstance(ddf, dd.DataFrame) buf_pd, buf_da = StringIO(), StringIO() df.info(buf=buf_pd, memory_usage=memory_usage) ddf.info(buf=buf_da, verbose=True, memory_usage=memory_usage) stdout_pd = buf_pd.getvalue() stdout_da = buf_da.getvalue() stdout_da = stdout_da.replace(str(type(ddf)), str(type(df))) assert stdout_pd == stdout_da def test_info(): from io import StringIO from dask.compatibility import unicode from pandas.formats import format format._put_lines = put_lines test_frames = [ pd.DataFrame({'x': [1, 2, 3, 4], 'y': [1, 0, 1, 0]}, index=pd.Int64Index(range(4))), # No RangeIndex in dask pd.DataFrame() ] for df in test_frames: ddf = dd.from_pandas(df, npartitions=4) _assert_info(df, ddf) buf = StringIO() ddf = dd.from_pandas(pd.DataFrame({'x': [1, 2, 3, 4], 'y': [1, 0, 1, 0]}, index=range(4)), npartitions=4) # Verbose=False ddf.info(buf=buf, verbose=False) assert buf.getvalue() == unicode("<class 'dask.dataframe.core.DataFrame'>\n" "Columns: 2 entries, x to y\n" "dtypes: int64(2)") # buf=None assert ddf.info(buf=None) is None def test_groupby_multilevel_info(): # GH 1844 from io import StringIO from dask.compatibility import unicode from pandas.formats import format format._put_lines = put_lines df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, 2, 3, 4], 'C': [1, 2, 3, 4]}) ddf = dd.from_pandas(df, npartitions=2) g = ddf.groupby(['A', 'B']).sum() # slight difference between memory repr (single additional space) _assert_info(g.compute(), g, memory_usage=False) buf = StringIO() g.info(buf, verbose=False) assert buf.getvalue() == unicode("""<class 'dask.dataframe.core.DataFrame'> Columns: 1 entries, C to C dtypes: int64(1)""") # multilevel g = ddf.groupby(['A', 'B']).agg(['count', 'sum']) _assert_info(g.compute(), g, memory_usage=False) buf = StringIO() g.info(buf, verbose=False) assert buf.getvalue() == unicode("""<class 'dask.dataframe.core.DataFrame'> Columns: 2 entries, (C, count) to (C, sum) dtypes: int64(2)""") def test_categorize_info(): # assert that we can call info after categorize # workaround for: https://github.com/pydata/pandas/issues/14368 from io import StringIO from dask.compatibility import unicode from pandas.formats import format format._put_lines = put_lines df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': pd.Series(list('aabc')), 'z': pd.Series(list('aabc'))}, index=pd.Int64Index(range(4))) # No RangeIndex in dask ddf = dd.from_pandas(df, npartitions=4).categorize(['y']) # Verbose=False buf = StringIO() ddf.info(buf=buf, verbose=True) assert buf.getvalue() == unicode("<class 'dask.dataframe.core.DataFrame'>\n" "Int64Index: 4 entries, 0 to 3\n" "Data columns (total 3 columns):\n" "x 4 non-null int64\n" "y 4 non-null category\n" "z 4 non-null object\n" "dtypes: category(1), object(1), int64(1)") def test_gh_1301(): df = pd.DataFrame([['1', '2'], ['3', '4']]) ddf = dd.from_pandas(df, npartitions=2) ddf2 = ddf.assign(y=ddf[1].astype(int)) assert_eq(ddf2, df.assign(y=df[1].astype(int))) assert ddf2.dtypes['y'] == np.dtype(int) def test_timeseries_sorted(): df = tm.makeTimeDataFrame() ddf = dd.from_pandas(df.reset_index(), npartitions=2) df.index.name = 'index' assert_eq(ddf.set_index('index', sorted=True, drop=True), df) def test_column_assignment(): df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [1, 0, 1, 0]}) ddf = dd.from_pandas(df, npartitions=2) orig = ddf.copy() ddf['z'] = ddf.x + ddf.y df['z'] = df.x + df.y assert_eq(df, ddf) assert 'z' not in orig.columns def test_columns_assignment(): df = pd.DataFrame({'x': [1, 2, 3, 4]}) ddf = dd.from_pandas(df, npartitions=2) df2 = df.assign(y=df.x + 1, z=df.x - 1) df[['a', 'b']] = df2[['y', 'z']] ddf2 = ddf.assign(y=ddf.x + 1, z=ddf.x - 1) ddf[['a', 'b']] = ddf2[['y', 'z']] assert_eq(df, ddf) def test_attribute_assignment(): df = pd.DataFrame({'x': [1, 2, 3, 4, 5], 'y': [1., 2., 3., 4., 5.]}) ddf = dd.from_pandas(df, npartitions=2) ddf.y = ddf.x + ddf.y assert_eq(ddf, df.assign(y=df.x + df.y)) def test_inplace_operators(): df = pd.DataFrame({'x': [1, 2, 3, 4, 5], 'y': [1., 2., 3., 4., 5.]}) ddf = dd.from_pandas(df, npartitions=2) ddf.y **= 0.5 assert_eq(ddf.y, df.y ** 0.5) assert_eq(ddf, df.assign(y=df.y ** 0.5)) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("idx", [ np.arange(100), sorted(np.random.random(size=100)), pd.date_range('20150101', periods=100) ]) def test_idxmaxmin(idx, skipna): df = pd.DataFrame(np.random.randn(100, 5), columns=list('abcde'), index=idx) df.b.iloc[31] = np.nan df.d.iloc[78] = np.nan ddf = dd.from_pandas(df, npartitions=3) assert_eq(df.idxmax(axis=1, skipna=skipna), ddf.idxmax(axis=1, skipna=skipna)) assert_eq(df.idxmin(axis=1, skipna=skipna), ddf.idxmin(axis=1, skipna=skipna)) assert_eq(df.idxmax(skipna=skipna), ddf.idxmax(skipna=skipna)) assert_eq(df.idxmax(skipna=skipna), ddf.idxmax(skipna=skipna, split_every=2)) assert (ddf.idxmax(skipna=skipna)._name != ddf.idxmax(skipna=skipna, split_every=2)._name) assert_eq(df.idxmin(skipna=skipna), ddf.idxmin(skipna=skipna)) assert_eq(df.idxmin(skipna=skipna), ddf.idxmin(skipna=skipna, split_every=2)) assert (ddf.idxmin(skipna=skipna)._name != ddf.idxmin(skipna=skipna, split_every=2)._name) assert_eq(df.a.idxmax(skipna=skipna), ddf.a.idxmax(skipna=skipna)) assert_eq(df.a.idxmax(skipna=skipna), ddf.a.idxmax(skipna=skipna, split_every=2)) assert (ddf.a.idxmax(skipna=skipna)._name != ddf.a.idxmax(skipna=skipna, split_every=2)._name) assert_eq(df.a.idxmin(skipna=skipna), ddf.a.idxmin(skipna=skipna)) assert_eq(df.a.idxmin(skipna=skipna), ddf.a.idxmin(skipna=skipna, split_every=2)) assert (ddf.a.idxmin(skipna=skipna)._name != ddf.a.idxmin(skipna=skipna, split_every=2)._name) def test_getitem_meta(): data = {'col1': ['a', 'a', 'b'], 'col2': [0, 1, 0]} df = pd.DataFrame(data=data, columns=['col1', 'col2']) ddf = dd.from_pandas(df, npartitions=1) assert_eq(df.col2[df.col1 == 'a'], ddf.col2[ddf.col1 == 'a']) def test_getitem_multilevel(): pdf = pd.DataFrame({('A', '0') : [1,2,2], ('B', '1') : [1,2,3]}) ddf = dd.from_pandas(pdf, npartitions=3) assert_eq(pdf['A', '0'], ddf['A', '0']) assert_eq(pdf[[('A', '0'), ('B', '1')]], ddf[[('A', '0'), ('B', '1')]]) def test_set_index_sorted_min_max_same(): a = pd.DataFrame({'x': [1, 2, 3], 'y': [0, 0, 0]}) b = pd.DataFrame({'x': [1, 2, 3], 'y': [1, 1, 1]}) aa = delayed(a) bb = delayed(b) df = dd.from_delayed([aa, bb], meta=a) assert not df.known_divisions df2 = df.set_index('y', sorted=True) assert df2.divisions == (0, 1, 1) def test_diff(): df = pd.DataFrame(np.random.randn(100, 5), columns=list('abcde')) ddf = dd.from_pandas(df, 5) assert_eq(ddf.diff(), df.diff()) assert_eq(ddf.diff(0), df.diff(0)) assert_eq(ddf.diff(2), df.diff(2)) assert_eq(ddf.diff(-2), df.diff(-2)) assert_eq(ddf.diff(2, axis=1), df.diff(2, axis=1)) assert_eq(ddf.a.diff(), df.a.diff()) assert_eq(ddf.a.diff(0), df.a.diff(0)) assert_eq(ddf.a.diff(2), df.a.diff(2)) assert_eq(ddf.a.diff(-2), df.a.diff(-2)) assert ddf.diff(2)._name == ddf.diff(2)._name assert ddf.diff(2)._name != ddf.diff(3)._name pytest.raises(TypeError, lambda: ddf.diff(1.5)) def test_shift(): df = tm.makeTimeDataFrame() ddf = dd.from_pandas(df, npartitions=4) # DataFrame assert_eq(ddf.shift(), df.shift()) assert_eq(ddf.shift(0), df.shift(0)) assert_eq(ddf.shift(2), df.shift(2)) assert_eq(ddf.shift(-2), df.shift(-2)) assert_eq(ddf.shift(2, axis=1), df.shift(2, axis=1)) # Series assert_eq(ddf.A.shift(), df.A.shift()) assert_eq(ddf.A.shift(0), df.A.shift(0)) assert_eq(ddf.A.shift(2), df.A.shift(2)) assert_eq(ddf.A.shift(-2), df.A.shift(-2)) with pytest.raises(TypeError): ddf.shift(1.5) def test_shift_with_freq(): df = tm.makeTimeDataFrame(30) # DatetimeIndex for data_freq, divs1 in [('B', False), ('D', True), ('H', True)]: df = df.set_index(tm.makeDateIndex(30, freq=data_freq)) ddf = dd.from_pandas(df, npartitions=4) for freq, divs2 in [('S', True), ('W', False), (pd.Timedelta(10, unit='h'), True)]: for d, p in [(ddf, df), (ddf.A, df.A), (ddf.index, df.index)]: res = d.shift(2, freq=freq) assert_eq(res, p.shift(2, freq=freq)) assert res.known_divisions == divs2 # Index shifts also work with freq=None res = ddf.index.shift(2) assert_eq(res, df.index.shift(2)) assert res.known_divisions == divs1 # PeriodIndex for data_freq, divs in [('B', False), ('D', True), ('H', True)]: df = df.set_index(pd.period_range('2000-01-01', periods=30, freq=data_freq)) ddf = dd.from_pandas(df, npartitions=4) for d, p in [(ddf, df), (ddf.A, df.A)]: res = d.shift(2, freq=data_freq) assert_eq(res, p.shift(2, freq=data_freq)) assert res.known_divisions == divs # PeriodIndex.shift doesn't have `freq` parameter res = ddf.index.shift(2) assert_eq(res, df.index.shift(2)) assert res.known_divisions == divs with pytest.raises(ValueError): ddf.index.shift(2, freq='D') # freq keyword not supported # TimedeltaIndex for data_freq in ['T', 'D', 'H']: df = df.set_index(tm.makeTimedeltaIndex(30, freq=data_freq)) ddf = dd.from_pandas(df, npartitions=4) for freq in ['S', pd.Timedelta(10, unit='h')]: for d, p in [(ddf, df), (ddf.A, df.A), (ddf.index, df.index)]: res = d.shift(2, freq=freq) assert_eq(res, p.shift(2, freq=freq)) assert res.known_divisions # Index shifts also work with freq=None res = ddf.index.shift(2) assert_eq(res, df.index.shift(2)) assert res.known_divisions # Other index types error df = tm.makeDataFrame() ddf = dd.from_pandas(df, npartitions=4) pytest.raises(NotImplementedError, lambda: ddf.shift(2, freq='S')) pytest.raises(NotImplementedError, lambda: ddf.A.shift(2, freq='S')) pytest.raises(NotImplementedError, lambda: ddf.index.shift(2)) @pytest.mark.parametrize('method', ['first', 'last']) def test_first_and_last(method): f = lambda x, offset: getattr(x, method)(offset) freqs = ['12h', 'D'] offsets = ['0d', '100h', '20d', '20B', '3W', '3M', '400d', '13M'] for freq in freqs: index = pd.date_range('1/1/2000', '1/1/2001', freq=freq)[::4] df = pd.DataFrame(np.random.random((len(index), 4)), index=index, columns=['A', 'B', 'C', 'D']) ddf = dd.from_pandas(df, npartitions=10) for offset in offsets: assert_eq(f(ddf, offset), f(df, offset)) assert_eq(f(ddf.A, offset), f(df.A, offset)) @pytest.mark.parametrize('npartitions', [1, 4, 20]) @pytest.mark.parametrize('split_every', [2, 5]) @pytest.mark.parametrize('split_out', [None, 1, 5, 20]) def test_hash_split_unique(npartitions, split_every, split_out): from string import ascii_lowercase s = pd.Series(np.random.choice(list(ascii_lowercase), 1000, replace=True)) ds = dd.from_pandas(s, npartitions=npartitions) dropped = ds.unique(split_every=split_every, split_out=split_out) dsk = dropped._optimize(dropped.dask, dropped._keys()) from dask.core import get_deps dependencies, dependents = get_deps(dsk) assert len([k for k, v in dependencies.items() if not v]) == npartitions assert dropped.npartitions == (split_out or 1) assert sorted(dropped.compute(get=dask.get)) == sorted(s.unique()) @pytest.mark.parametrize('split_every', [None, 2]) def test_split_out_drop_duplicates(split_every): x = np.concatenate([np.arange(10)] * 100)[:, None] y = x.copy() z = np.concatenate([np.arange(20)] * 50)[:, None] rs = np.random.RandomState(1) rs.shuffle(x) rs.shuffle(y) rs.shuffle(z) df = pd.DataFrame(np.concatenate([x, y, z], axis=1), columns=['x', 'y', 'z']) ddf = dd.from_pandas(df, npartitions=20) for subset, keep in product([None, ['x', 'z']], ['first', 'last']): sol = df.drop_duplicates(subset=subset, keep=keep) res = ddf.drop_duplicates(subset=subset, keep=keep, split_every=split_every, split_out=10) assert res.npartitions == 10 assert_eq(sol, res) @pytest.mark.parametrize('split_every', [None, 2]) def test_split_out_value_counts(split_every): df = pd.DataFrame({'x': [1, 2, 3] * 100}) ddf = dd.from_pandas(df, npartitions=5) assert ddf.x.value_counts(split_out=10, split_every=split_every).npartitions == 10 assert_eq(ddf.x.value_counts(split_out=10, split_every=split_every), df.x.value_counts()) def test_values(): from dask.array.utils import assert_eq df = pd.DataFrame({'x': ['a', 'b', 'c', 'd'], 'y': [2, 3, 4, 5]}, index=pd.Index([1., 2., 3., 4.], name='ind')) ddf = dd.from_pandas(df, 2) assert_eq(df.values, ddf.values) assert_eq(df.x.values, ddf.x.values) assert_eq(df.y.values, ddf.y.values) assert_eq(df.index.values, ddf.index.values) def test_copy(): df = pd.DataFrame({'x': [1, 2, 3]}) a = dd.from_pandas(df, npartitions=2) b = a.copy() a['y'] = a.x * 2 assert_eq(b, df) df['y'] = df.x * 2 def test_del(): df = pd.DataFrame({'x': ['a', 'b', 'c', 'd'], 'y': [2, 3, 4, 5]}, index=pd.Index([1., 2., 3., 4.], name='ind')) a = dd.from_pandas(df, 2) b = a.copy() del a['x'] assert_eq(b, df) del df['x'] assert_eq(a, df) @pytest.mark.parametrize('index', [True, False]) @pytest.mark.parametrize('deep', [True, False]) def test_memory_usage(index, deep): df = pd.DataFrame({'x': [1, 2, 3], 'y': [1.0, 2.0, 3.0], 'z': ['a', 'b', 'c']}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(df.memory_usage(index=index, deep=deep), ddf.memory_usage(index=index, deep=deep)) assert (df.x.memory_usage(index=index, deep=deep) == ddf.x.memory_usage(index=index, deep=deep).compute()) @pytest.mark.parametrize('reduction', ['sum', 'mean', 'std', 'var', 'count', 'min', 'max', 'idxmin', 'idxmax', 'prod', 'all', 'sem']) def test_dataframe_reductions_arithmetic(reduction): df = pd.DataFrame({'x': [1, 2, 3, 4, 5], 'y': [1.1, 2.2, 3.3, 4.4, 5.5]}) ddf = dd.from_pandas(df, npartitions=3) assert_eq(ddf - (getattr(ddf, reduction)() + 1), df - (getattr(df, reduction)() + 1)) def test_datetime_loc_open_slicing(): dtRange = pd.date_range('01.01.2015','05.05.2015') df = pd.DataFrame(np.random.random((len(dtRange), 2)), index=dtRange) ddf = dd.from_pandas(df, npartitions=5) assert_eq(df.loc[:'02.02.2015'], ddf.loc[:'02.02.2015']) assert_eq(df.loc['02.02.2015':], ddf.loc['02.02.2015':]) assert_eq(df[0].loc[:'02.02.2015'], ddf[0].loc[:'02.02.2015']) assert_eq(df[0].loc['02.02.2015':], ddf[0].loc['02.02.2015':]) def test_to_datetime(): df = pd.DataFrame({'year': [2015, 2016], 'month': [2, 3], 'day': [4, 5]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(pd.to_datetime(df), dd.to_datetime(ddf)) s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000'] * 100) ds = dd.from_pandas(s, npartitions=10) assert_eq(pd.to_datetime(s, infer_datetime_format=True), dd.to_datetime(ds, infer_datetime_format=True)) @pytest.mark.parametrize('drop', [0, 9]) def test_slice_on_filtered_boundary(drop): # https://github.com/dask/dask/issues/2211 x = np.arange(10) x[[5, 6]] -= 2 df = pd.DataFrame({"A": x, "B": np.arange(len(x))}) pdf = df.set_index("A").query("B != {}".format(drop)) ddf = dd.from_pandas(df, 1).set_index("A").query("B != {}".format(drop)) result = dd.concat([ddf, ddf.rename(columns={"B": "C"})], axis=1) expected = pd.concat([pdf, pdf.rename(columns={"B": "C"})], axis=1) assert_eq(result, expected) assert not result.compute().index.is_monotonic # didn't accidentally sort def test_boundary_slice_nonmonotonic(): x = np.array([-1, -2, 2, 4, 3]) df = pd.DataFrame({"B": range(len(x))}, index=x) result = boundary_slice(df, 0, 4) expected = df.iloc[2:] tm.assert_frame_equal(result, expected) result = boundary_slice(df, -1, 4) expected = df.drop(-2) tm.assert_frame_equal(result, expected) result = boundary_slice(df, -2, 3) expected = df.drop(4) tm.assert_frame_equal(result, expected) result = boundary_slice(df, -2, 3.5) expected = df.drop(4) tm.assert_frame_equal(result, expected) result = boundary_slice(df, -2, 4) expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('index, left, right', [ (range(10), 0, 9), (range(10), -1, None), (range(10), None, 10), ([-1, 0, 2, 1], None, None), ([-1, 0, 2, 1], -1, None), ([-1, 0, 2, 1], None, 2), ([-1, 0, 2, 1], -2, 3), (pd.date_range("2017", periods=10), None, None), (pd.date_range("2017", periods=10), pd.Timestamp("2017"), None), (pd.date_range("2017", periods=10), None, pd.Timestamp("2017-01-10")), (pd.date_range("2017", periods=10), pd.Timestamp("2016"), None), (pd.date_range("2017", periods=10), None, pd.Timestamp("2018")), ]) def test_boundary_slice_same(index, left, right): df = pd.DataFrame({"A": range(len(index))}, index=index) result = boundary_slice(df, left, right) tm.assert_frame_equal(result, df)
bsd-3-clause
Alex-Ian-Hamilton/sunpy
sunpy/lightcurve/lightcurve.py
1
15090
""" LightCurve is a generic LightCurve class from which all other LightCurve classes inherit from. """ from __future__ import absolute_import import os.path import shutil import warnings from datetime import datetime from collections import OrderedDict import numpy as np import matplotlib.pyplot as plt import pandas from sunpy import config from sunpy.time import is_time, TimeRange, parse_time from sunpy.util.cond_dispatch import ConditionalDispatch, run_cls from sunpy.extern.six.moves import urllib from sunpy.extern import six # pylint: disable=E1101,E1121,W0404,W0612,W0613 __authors__ = ["Keith Hughitt"] __email__ = "[email protected]" __all__ = ['LightCurve'] class LightCurve(object): """ LightCurve(filepath) A generic light curve object. Attributes ---------- meta : `str` or `dict` The comment string or header associated with the data. data : `~pandas.DataFrame` An pandas DataFrame prepresenting one or more fields as a function of time. Examples -------- >>> from sunpy.lightcurve import LightCurve >>> import datetime >>> import numpy as np >>> base = datetime.datetime.today() >>> dates = [base - datetime.timedelta(minutes=x) for x in range(0, 24 * 60)] >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / 24 * 60)) >>> light_curve = LightCurve.create({"param1": intensity}, index=dates) >>> light_curve.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <http://pandas.pydata.org/pandas-docs/dev/dsintro.html>`_ """ _cond_dispatch = ConditionalDispatch() create = classmethod(_cond_dispatch.wrapper()) def __init__(self, data, meta=None): self.data = pandas.DataFrame(data) if meta == '' or meta is None: self.meta = OrderedDict() self.meta.update({'name':None}) else: self.meta = OrderedDict(meta) @property def header(self): """ Return the lightcurves metadata .. deprecated:: 0.4.0 Use .meta instead """ warnings.warn("""lightcurve.header has been renamed to lightcurve.meta for compatibility with map, please use meta instead""", Warning) return self.meta @classmethod def from_time(cls, time, **kwargs): """ Called by Conditional Dispatch object when valid time is passed as input to create method. """ date = parse_time(time) url = cls._get_url_for_date(date, **kwargs) filepath = cls._download( url, kwargs, err="Unable to download data for specified date" ) return cls.from_file(filepath) @classmethod def from_range(cls, start, end, **kwargs): """Called by Conditional Dispatch object when start and end time are passed as input to create method. :param start: :param end: :param kwargs: :return: """ url = cls._get_url_for_date_range(parse_time(start), parse_time(end), **kwargs) filepath = cls._download( url, kwargs, err="Unable to download data for specified date range" ) result = cls.from_file(filepath) result.data = result.data.truncate(start,end) return result @classmethod def from_timerange(cls, timerange, **kwargs): """ Called by Conditional Dispatch object when time range is passed as input to create method. """ url = cls._get_url_for_date_range(timerange, **kwargs) filepath = cls._download( url, kwargs, err = "Unable to download data for specified date range" ) result = cls.from_file(filepath) result.data = result.data.truncate(timerange.start, timerange.end) return result @classmethod def from_file(cls, filename): """Used to return Light Curve object by reading the given filename. Parameters ---------- filename: `str` Path of the file to be read. Returns ------- Lightcurve object. """ filename = os.path.expanduser(filename) meta, data = cls._parse_filepath(filename) if data.empty: raise ValueError("No data found!") else: return cls(data, meta) @classmethod def from_url(cls, url, **kwargs): """ Called by Conditional Dispatch object to create Light Curve object when given a url. Downloads a file from the given url, attemps to read it and returns a Light Curve object. Parameters ---------- url : str A url given as a string. """ try: filepath = cls._download(url, kwargs) except (urllib.error.HTTPError, urllib.error.URLError, ValueError): err = "Unable to read location {!s}.".format(url) raise ValueError(err) return cls.from_file(filepath) @classmethod def from_data(cls, data, index=None, meta=None): """ Called by Conditional Dispatch object to create Light Curve object when corresponding data is passed to create method. Parameters ---------- data : `~numpy.ndarray` The data array index : `~datetime.datetime` array The time values """ return cls( pandas.DataFrame(data, index=index), meta ) @classmethod def from_yesterday(cls): """ Called by Conditional Dispatch object if no input if given """ return cls.from_url(cls._get_default_uri()) @classmethod def from_dataframe(cls, dataframe, meta=None): """ Called by Conditional Dispatch object to create Light Curve object when Pandas DataFrame is passed to create method. Parameters ---------- dataframe : `~pandas.DataFrame` The data. meta : `str` or `dict` The metadata. """ return cls(dataframe, meta) def plot(self, axes=None, **plot_args): """Plot a plot of the light curve Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the light curve in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. Returns ------- fig : `~matplotlib.Figure` A plot figure. """ figure = plt.figure() self.plot(**kwargs) figure.show() return figure @staticmethod def _download(uri, kwargs, err='Unable to download data at specified URL'): """Attempts to download data at the specified URI. Parameters ---------- **kwargs : uri A url """ _filename = os.path.basename(uri).split("?")[0] # user specifies a download directory if "directory" in kwargs: download_dir = os.path.expanduser(kwargs["directory"]) else: download_dir = config.get("downloads", "download_dir") # overwrite the existing file if the keyword is present if "overwrite" in kwargs: overwrite = kwargs["overwrite"] else: overwrite = False # If the file is not already there, download it filepath = os.path.join(download_dir, _filename) if not(os.path.isfile(filepath)) or (overwrite and os.path.isfile(filepath)): try: response = urllib.request.urlopen(uri) except (urllib.error.HTTPError, urllib.error.URLError): raise urllib.error.URLError(err) with open(filepath, 'wb') as fp: shutil.copyfileobj(response, fp) else: warnings.warn("Using existing file rather than downloading, use " "overwrite=True to override.", RuntimeWarning) return filepath @classmethod def _get_default_uri(cls): """Default data to load when none is specified.""" msg = "No default action set for {}" raise NotImplementedError(msg.format(cls.__name__)) @classmethod def _get_url_for_date(cls, date, **kwargs): """Returns a URL to the data for the specified date.""" msg = "Date-based downloads not supported for for {}" raise NotImplementedError(msg.format(cls.__name__)) @classmethod def _get_url_for_date_range(cls, *args, **kwargs): """Returns a URL to the data for the specified date range.""" msg = "Date-range based downloads not supported for for {}" raise NotImplementedError(msg.format(cls.__name__)) @staticmethod def _parse_csv(filepath): """Place holder method to parse CSV files.""" msg = "Generic CSV parsing not yet implemented for LightCurve" raise NotImplementedError(msg) @staticmethod def _parse_fits(filepath): """Place holder method to parse FITS files.""" msg = "Generic FITS parsing not yet implemented for LightCurve" raise NotImplementedError(msg) @classmethod def _parse_filepath(cls, filepath): """Check the file extension to see how to parse the file.""" filename, extension = os.path.splitext(filepath) if extension.lower() in (".csv", ".txt"): return cls._parse_csv(filepath) else: return cls._parse_fits(filepath) def truncate(self, a, b=None): """Returns a truncated version of the lightcurve object. Parameters ---------- a : `sunpy.time.TimeRange` A time range to truncate to. Returns ------- newlc : `~sunpy.lightcurve.LightCurve` A new lightcurve with only the selected times. """ if isinstance(a, TimeRange): time_range = a else: time_range = TimeRange(a,b) truncated = self.data.truncate(time_range.start, time_range.end) return self.__class__.create(truncated, self.meta.copy()) def extract(self, column_name): """Returns a new lightcurve with the chosen column. Parameters ---------- column_name : `str` A valid column name Returns ------- newlc : `~sunpy.lightcurve.LightCurve` A new lightcurve with only the selected column. """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return LightCurve(self.data[column_name], self.meta.copy()) def time_range(self): """Returns the start and end times of the LightCurve as a `~sunpy.time.TimeRange` object""" return TimeRange(self.data.index[0], self.data.index[-1]) def concatenate(self, otherlightcurve): """Concatenate another light curve. This function will check and remove any duplicate times. It will keep the column values from the original lightcurve to which the new lightcurve is being added. Parameters ---------- otherlightcurve : `~sunpy.lightcurve.LightCurve` Another lightcurve of the same type. Returns ------- newlc : `~sunpy.lightcurve.LightCurve` A new lightcurve. """ if not isinstance(otherlightcurve, self.__class__): raise TypeError("Lightcurve classes must match.") meta = OrderedDict() meta.update({str(self.data.index[0]):self.meta.copy()}) meta.update({str(otherlightcurve.data.index[0]):otherlightcurve.meta.copy()}) data = self.data.copy().append(otherlightcurve.data) data['index'] = data.index # default behavior of drop_duplicates is keep the first column. data = data.drop_duplicates(subset='index') data.set_index = data['index'] data.drop('index', axis=1, inplace=True) return self.__class__.create(data, meta) # What's happening here is the following: The ConditionalDispatch is just an # unbound callable object, that is, it does not know which class it is attached # to. What we do against that is return a wrapper and make that a classmethod - # thus we get the class as whose member it is called as as the first argument, # this is why in the type signature we always have type as the first type. # We then use run_cls, which just returns a wrapper that interprets the first # argument as the class the function should be called of. So, # x = run_cls("foo") returns something that turns x(cls, 1) into cls.foo(1). # Because this has *args, **kwargs as its signature we need to disable the # check of ConditionalDispatch that makes sure the function and the # conditional need to have the same signature - but they still do have to. LightCurve._cond_dispatch.add( run_cls("from_time"), lambda cls, time, **kwargs: is_time(time), # type is here because the class parameter is a class, # i.e. an instance of type (which is the base meta-class). [type, (six.string_types, datetime, tuple)], False ) LightCurve._cond_dispatch.add( run_cls("from_range"), lambda cls, time1, time2, **kwargs: is_time(time1) and is_time(time2), [type, (six.string_types, datetime, tuple), (six.string_types, datetime, tuple)], False ) LightCurve._cond_dispatch.add( run_cls("from_timerange"), lambda cls, timerange, **kwargs: True, [type, TimeRange], False ) LightCurve._cond_dispatch.add( run_cls("from_file"), lambda cls, filename: os.path.exists(os.path.expanduser(filename)), [type, six.string_types], False ) LightCurve._cond_dispatch.add( run_cls("from_url"), lambda cls, url, **kwargs: True, [type, six.string_types], False ) LightCurve._cond_dispatch.add( run_cls("from_data"), lambda cls, data, index=None, meta=None: True, [type, (list, dict, np.ndarray, pandas.Series), object, object], False ) LightCurve._cond_dispatch.add( run_cls("from_dataframe"), lambda cls, dataframe, meta=None: True, [type, pandas.DataFrame, object], False ) LightCurve._cond_dispatch.add( run_cls("from_yesterday"), lambda cls: True, [type], False )
bsd-2-clause
Lawrence-Liu/scikit-learn
examples/covariance/plot_outlier_detection.py
235
3891
""" ========================================== Outlier detection with several methods. ========================================== When the amount of contamination is known, this example illustrates two different ways of performing :ref:`outlier_detection`: - based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs better than the One-Class SVM in that case. - using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the data is strongly non-Gaussian, i.e. with two well-separated clusters; The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which points are reported as inliers by each method. Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the 'predict' method of the objects, we set the threshold on the decision_function to separate out the corresponding fraction. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from scipy import stats from sklearn import svm from sklearn.covariance import EllipticEnvelope # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "robust covariance estimator": EllipticEnvelope(contamination=.1)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = 0 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model with the One-Class SVM plt.figure(figsize=(10, 5)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers clf.fit(X) y_pred = clf.decision_function(X).ravel() threshold = stats.scoreatpercentile(y_pred, 100 * outliers_fraction) y_pred = y_pred > threshold n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(1, 2, i + 1) subplot.set_title("Outlier detection") subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=11)) subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) plt.show()
bsd-3-clause
hrjn/scikit-learn
examples/cluster/plot_face_segmentation.py
71
2839
""" =================================================== Segmenting the picture of a raccoon face in regions =================================================== This example uses :ref:`spectral_clustering` on a graph created from voxel-to-voxel difference on an image to break this image into multiple partly-homogeneous regions. This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts. There are two options to assign labels: * with 'kmeans' spectral clustering will cluster samples in the embedding space using a kmeans algorithm * whereas 'discrete' will iteratively search for the closest partition space to the embedding space. """ print(__doc__) # Author: Gael Varoquaux <[email protected]>, Brian Cheung # License: BSD 3 clause import time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering from sklearn.utils.testing import SkipTest from sklearn.utils.fixes import sp_version if sp_version < (0, 12): raise SkipTest("Skipping because SciPy version earlier than 0.12.0 and " "thus does not include the scipy.misc.face() image.") # load the raccoon face as a numpy array try: face = sp.face(gray=True) except AttributeError: # Newer versions of scipy have face in misc from scipy import misc face = misc.face(gray=True) # Resize it to 10% of the original size to speed up the processing face = sp.misc.imresize(face, 0.10) / 255. # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(face) # Take a decreasing function of the gradient: an exponential # The smaller beta is, the more independent the segmentation is of the # actual image. For beta=1, the segmentation is close to a voronoi beta = 5 eps = 1e-6 graph.data = np.exp(-beta * graph.data / graph.data.std()) + eps # Apply spectral clustering (this step goes much faster if you have pyamg # installed) N_REGIONS = 25 ############################################################################# # Visualize the resulting regions for assign_labels in ('kmeans', 'discretize'): t0 = time.time() labels = spectral_clustering(graph, n_clusters=N_REGIONS, assign_labels=assign_labels, random_state=1) t1 = time.time() labels = labels.reshape(face.shape) plt.figure(figsize=(5, 5)) plt.imshow(face, cmap=plt.cm.gray) for l in range(N_REGIONS): plt.contour(labels == l, contours=1, colors=[plt.cm.spectral(l / float(N_REGIONS))]) plt.xticks(()) plt.yticks(()) title = 'Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0)) print(title) plt.title(title) plt.show()
bsd-3-clause
abhisg/scikit-learn
examples/covariance/plot_outlier_detection.py
235
3891
""" ========================================== Outlier detection with several methods. ========================================== When the amount of contamination is known, this example illustrates two different ways of performing :ref:`outlier_detection`: - based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs better than the One-Class SVM in that case. - using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the data is strongly non-Gaussian, i.e. with two well-separated clusters; The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which points are reported as inliers by each method. Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the 'predict' method of the objects, we set the threshold on the decision_function to separate out the corresponding fraction. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from scipy import stats from sklearn import svm from sklearn.covariance import EllipticEnvelope # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "robust covariance estimator": EllipticEnvelope(contamination=.1)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = 0 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model with the One-Class SVM plt.figure(figsize=(10, 5)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers clf.fit(X) y_pred = clf.decision_function(X).ravel() threshold = stats.scoreatpercentile(y_pred, 100 * outliers_fraction) y_pred = y_pred > threshold n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(1, 2, i + 1) subplot.set_title("Outlier detection") subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=11)) subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) plt.show()
bsd-3-clause
almarklein/scikit-image
doc/source/conf.py
3
9573
# -*- coding: utf-8 -*- # # skimage documentation build configuration file, created by # sphinx-quickstart on Sat Aug 22 13:00:30 2009. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.append(os.path.abspath('.')) curpath = os.path.dirname(__file__) sys.path.append(os.path.join(curpath, '..', 'ext')) # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.pngmath', 'numpydoc', 'sphinx.ext.autosummary', 'plot2rst', 'sphinx.ext.intersphinx'] # Determine if the matplotlib has a recent enough version of the # plot_directive, otherwise use the local fork. try: from matplotlib.sphinxext import plot_directive except ImportError: use_matplotlib_plot_directive = False else: try: use_matplotlib_plot_directive = (plot_directive.__version__ >= 2) except AttributeError: use_matplotlib_plot_directive = False if use_matplotlib_plot_directive: extensions.append('matplotlib.sphinxext.plot_directive') else: extensions.append('plot_directive') # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.txt' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'skimage' copyright = '2013, the scikit-image team' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. setup_lines = open('../../setup.py').readlines() version = 'vUndefined' for l in setup_lines: if l.startswith('VERSION'): version = l.split("'")[1] break # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-image' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = 'skimage v%s docs' % version # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': ['navigation.html', 'localtoc.html', 'versions.html'], } # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikitimagedoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('contents', 'scikit-image.tex', u'The scikit-image Documentation', u'scikit-image development team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r''' \usepackage{enumitem} \setlistdepth{100} \usepackage{amsmath} \DeclareUnicodeCharacter{00A0}{\nobreakspace} % In the parameters section, place a newline after the Parameters header \usepackage{expdlist} \let\latexdescription=\description \def\description{\latexdescription{}{} \breaklabel} % Make Examples/etc section headers smaller and more compact \makeatletter \titleformat{\paragraph}{\normalsize\py@HeaderFamily}% {\py@TitleColor}{0em}{\py@TitleColor}{\py@NormalColor} \titlespacing*{\paragraph}{0pt}{1ex}{0pt} \makeatother ''' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_use_modindex = False # ----------------------------------------------------------------------------- # Numpy extensions # ----------------------------------------------------------------------------- numpydoc_show_class_members = False # ----------------------------------------------------------------------------- # Plots # ----------------------------------------------------------------------------- plot_basedir = os.path.join(curpath, "plots") plot_pre_code = """ import numpy as np import matplotlib.pyplot as plt np.random.seed(0) import matplotlib matplotlib.rcParams.update({ 'font.size': 14, 'axes.titlesize': 12, 'axes.labelsize': 10, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'legend.fontsize': 10, 'figure.subplot.bottom': 0.2, 'figure.subplot.left': 0.2, 'figure.subplot.right': 0.9, 'figure.subplot.top': 0.85, 'figure.subplot.wspace': 0.4, 'text.usetex': False, }) """ plot_include_source = True plot_formats = [('png', 100), ('pdf', 100)] plot2rst_index_name = 'README' plot2rst_rcparams = {'image.cmap' : 'gray', 'image.interpolation' : 'none'} # ----------------------------------------------------------------------------- # intersphinx # ----------------------------------------------------------------------------- _python_doc_base = 'http://docs.python.org/2.7' intersphinx_mapping = { _python_doc_base: None, 'http://docs.scipy.org/doc/numpy': None, 'http://docs.scipy.org/doc/scipy/reference': None, 'http://scikit-learn.org/stable': None }
bsd-3-clause
ltiao/scikit-learn
examples/datasets/plot_iris_dataset.py
283
1928
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= The Iris Dataset ========================================================= This data sets consists of 3 different types of irises' (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width. The below plot uses the first two features. See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.decomposition import PCA # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 plt.figure(2, figsize=(8, 6)) plt.clf() # Plot the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) # To getter a better understanding of interaction of the dimensions # plot the first three PCA dimensions fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) X_reduced = PCA(n_components=3).fit_transform(iris.data) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=Y, cmap=plt.cm.Paired) ax.set_title("First three PCA directions") ax.set_xlabel("1st eigenvector") ax.w_xaxis.set_ticklabels([]) ax.set_ylabel("2nd eigenvector") ax.w_yaxis.set_ticklabels([]) ax.set_zlabel("3rd eigenvector") ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
bugobliterator/mavlink
pymavlink/tools/mavgpslag.py
43
3446
#!/usr/bin/env python ''' calculate GPS lag from DF log ''' import sys, time, os from argparse import ArgumentParser parser = ArgumentParser(description=__doc__) parser.add_argument("--plot", action='store_true', default=False, help="plot errors") parser.add_argument("--minspeed", type=float, default=6, help="minimum speed") parser.add_argument("logs", metavar="LOG", nargs="+") args = parser.parse_args() from pymavlink import mavutil from pymavlink.mavextra import * from pymavlink.rotmat import Vector3, Matrix3 ''' Support having a $HOME/.pymavlink/mavextra.py for extra graphing functions ''' home = os.getenv('HOME') if home is not None: extra = os.path.join(home, '.pymavlink', 'mavextra.py') if os.path.exists(extra): import imp mavuser = imp.load_source('pymavlink.mavuser', extra) from pymavlink.mavuser import * def velocity_error(timestamps, vel, gaccel, accel_indexes, imu_dt, shift=0): '''return summed velocity error''' sum = 0 count = 0 for i in range(0, len(vel)-1): dv = vel[i+1] - vel[i] da = Vector3() for idx in range(1+accel_indexes[i]-shift, 1+accel_indexes[i+1]-shift): da += gaccel[idx] dt1 = timestamps[i+1] - timestamps[i] dt2 = (accel_indexes[i+1] - accel_indexes[i]) * imu_dt da *= imu_dt da *= dt1/dt2 #print(accel_indexes[i+1] - accel_indexes[i]) ex = abs(dv.x - da.x) ey = abs(dv.y - da.y) sum += 0.5*(ex+ey) count += 1 if count == 0: return None return sum/count def gps_lag(logfile): '''work out gps velocity lag times for a log file''' print("Processing log %s" % filename) mlog = mavutil.mavlink_connection(filename) timestamps = [] vel = [] gaccel = [] accel_indexes = [] ATT = None IMU = None dtsum = 0 dtcount = 0 while True: m = mlog.recv_match(type=['GPS','IMU','ATT']) if m is None: break t = m.get_type() if t == 'GPS' and m.Status==3 and m.Spd>args.minspeed: v = Vector3(m.Spd*cos(radians(m.GCrs)), m.Spd*sin(radians(m.GCrs)), m.VZ) vel.append(v) timestamps.append(m._timestamp) accel_indexes.append(max(len(gaccel)-1,0)) elif t == 'ATT': ATT = m elif t == 'IMU': if ATT is not None: gaccel.append(earth_accel_df(m, ATT)) if IMU is not None: dt = m._timestamp - IMU._timestamp dtsum += dt dtcount += 1 IMU = m imu_dt = dtsum / dtcount print("Loaded %u samples imu_dt=%.3f" % (len(vel), imu_dt)) besti = -1 besterr = 0 delays = [] errors = [] for i in range(0,100): err = velocity_error(timestamps, vel, gaccel, accel_indexes, imu_dt, shift=i) if err is None: break errors.append(err) delays.append(i*imu_dt) if besti == -1 or err < besterr: besti = i besterr = err print("Best %u (%.3fs) %f" % (besti, besti*imu_dt, besterr)) if args.plot: import matplotlib.pyplot as plt plt.plot(delays, errors, 'bo-') x1,x2,y1,y2 = plt.axis() plt.axis((x1,x2,0,y2)) plt.ylabel('Error') plt.xlabel('Delay(s)') plt.show() for filename in args.logs: gps_lag(filename)
lgpl-3.0
legacysurvey/legacypipe
py/obiwan/decals_sim_mpiwrapper.py
2
5026
from __future__ import division, print_function if __name__ == '__main__': import matplotlib matplotlib.use('Agg') import os import numpy as np from glob import glob import datetime import sys from astrometry.util.ttime import Time from obiwan.decals_sim import get_parser,ptime from obiwan.decals_sim import main as decals_sim_main ######## # stdouterr_redirected() is from Ted Kisner # Every mpi task (zeropoint file) gets its own stdout file import time from contextlib import contextmanager @contextmanager def stdouterr_redirected(to=os.devnull, comm=None): ''' Based on http://stackoverflow.com/questions/5081657 import os with stdouterr_redirected(to=filename): print("from Python") os.system("echo non-Python applications are also supported") ''' sys.stdout.flush() sys.stderr.flush() fd = sys.stdout.fileno() fde = sys.stderr.fileno() ##### assert that Python and C stdio write using the same file descriptor ####assert libc.fileno(ctypes.c_void_p.in_dll(libc, "stdout")) == fd == 1 def _redirect_stdout(to): sys.stdout.close() # + implicit flush() os.dup2(to.fileno(), fd) # fd writes to 'to' file sys.stdout = os.fdopen(fd, 'w') # Python writes to fd sys.stderr.close() # + implicit flush() os.dup2(to.fileno(), fde) # fd writes to 'to' file sys.stderr = os.fdopen(fde, 'w') # Python writes to fd with os.fdopen(os.dup(fd), 'w') as old_stdout: if (comm is None) or (comm.rank == 0): print("Begin log redirection to {} at {}".format(to, time.asctime())) sys.stdout.flush() sys.stderr.flush() pto = to if comm is None: if not os.path.exists(os.path.dirname(pto)): os.makedirs(os.path.dirname(pto)) with open(pto, 'w') as file: _redirect_stdout(to=file) else: pto = "{}_{}".format(to, comm.rank) with open(pto, 'w') as file: _redirect_stdout(to=file) try: yield # allow code to be run with the redirected stdout finally: sys.stdout.flush() sys.stderr.flush() _redirect_stdout(to=old_stdout) # restore stdout. # buffering and flags such as # CLOEXEC may be different if comm is not None: # concatenate per-process files comm.barrier() if comm.rank == 0: with open(to, 'w') as outfile: for p in range(comm.size): outfile.write("================= Process {} =================\n".format(p)) fname = "{}_{}".format(to, p) with open(fname) as infile: outfile.write(infile.read()) os.remove(fname) comm.barrier() if (comm is None) or (comm.rank == 0): print("End log redirection to {} at {}".format(to, time.asctime())) sys.stdout.flush() sys.stderr.flush() if __name__ == "__main__": # Inputs from decals_sim t0= Time() parser= get_parser() args = parser.parse_args() bricks= np.loadtxt(os.path.join(os.getenv('LEGACY_SURVEY_DIR'),args.bricklist),dtype=str) if args.nproc > 1: from mpi4py.MPI import COMM_WORLD as comm t0=ptime('parse-args',t0) if args.nproc > 1: bricks_split= np.array_split(bricks, comm.size)[comm.rank] else: bricks_split= np.array_split(bricks, 1)[0] for brick in bricks_split: # Check if already ran #--> lrg/122/1222p257/rowstart0/ #args.update(dict(brick=brick)) d=vars(args) d['brick']= brick outdir= '%s/%s/%s/rowstart%d/' % \ (args.objtype,brick[:3],brick,args.rowstart) outdir= os.path.join(os.getenv('DECALS_SIM_DIR'),outdir) hdf5_fn= os.path.join(outdir,'%s_%s.hdf5' % (args.objtype,brick)) if not os.path.exists(hdf5_fn): if args.nproc > 1: # Log to unique file outfn=os.path.join(outdir,"log.%s" % \ datetime.datetime.now().strftime("%Y-%m-%d-hr%H-min%M")) with stdouterr_redirected(to=outfn, comm=None): t0=ptime('before-%s' % brick,t0) decals_sim_main(args=args) t0=ptime('after-%s' % brick,t0) else: decals_sim_main(args=args) if args.nproc > 1: # Wait for all mpi tasks to finish confirm_files = comm.gather( images_split[comm.rank], root=0 ) if comm.rank == 0: tnow= Time() print("Done, total time = %s" % (tnow-tbegin,)) else: tnow= Time() print("Done, total time = %s" % (tnow-tbegin,))
bsd-3-clause
boknilev/dsl-char-cnn
src/cnn_multifilter_large_task1.py
1
6355
'''Character CNN code for DSL 2016 task 2 Partly based on: https://github.com/fchollet/keras/blob/master/examples/imdb_cnn.py ''' from __future__ import print_function import numpy as np np.random.seed(1337) # for reproducibility import tensorflow as tf tf.set_random_seed(1337) # probably not needed from keras.preprocessing import sequence from keras.models import Model, load_model from keras.layers import Dense, Dropout, Activation, Flatten, Input from keras.layers import Embedding, merge from keras.layers import Convolution1D, MaxPooling1D #from keras import backend as K from keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard from keras.utils import np_utils #from keras.regularizers import l1, l2, l1l2, activity_l1, activity_l2, activity_l1l2 #from keras.layers.normalization import BatchNormalization from sklearn.metrics import confusion_matrix, accuracy_score, classification_report from data import load_data, load_labels, get_task1_alphabet, task1_train_file, task1_test_file, task1_labels_file alphabet = get_task1_alphabet() # limit tensorflow memory usage from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.4 set_session(tf.Session(config=config)) # set tensorflow random seed for reproducibility # model file model_file = "cnn_model_gpu_multifilter_large_morehidden_moredrop_task1.hdf5" # set parameters: print('Hyperparameters:') alphabet_size = len(alphabet) + 2 # add 2, one padding and unknown chars print('Alphabet size:', alphabet_size) maxlen = 400 print('Max text len:', maxlen) batch_size = 64 print('Batch size:', batch_size) embedding_dims = 50 print('Embedding dim:', embedding_dims) nb_filters = [50,100,150,200,200,200,200] print('Number of filters:', nb_filters) filter_lengths = [1,2,3,4,5,6,7] print('Filter lengths:', filter_lengths) hidden_dims = 500 print('Hidden dems:', hidden_dims) nb_epoch = 30 embedding_droupout = 0.2 print('Embedding dropout:', embedding_droupout) fc_dropout = 0.7 print('Fully-connected dropout:', fc_dropout) print('Loading data...') (X_train, y_train), (X_test, y_test), num_classes = load_data(task1_train_file, task1_test_file, alphabet) print(len(X_train), 'train sequences') print(len(X_test), 'test sequences') print('Pad sequences (samples x time)') X_train = sequence.pad_sequences(X_train, maxlen=maxlen) X_test = sequence.pad_sequences(X_test, maxlen=maxlen) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) y_train = np.array(y_train) y_test = np.array(y_test) # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, num_classes) Y_test = np_utils.to_categorical(y_test, num_classes) print('Build model...') main_input = Input(shape=(maxlen,)) # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions embedding_layer = Embedding(alphabet_size, embedding_dims, input_length=maxlen, dropout=embedding_droupout) embedded = embedding_layer(main_input) # we add a Convolution1D for each filter length, which will learn nb_filters[i] # word group filters of size filter_lengths[i]: convs = [] for i in xrange(len(nb_filters)): conv_layer = Convolution1D(nb_filter=nb_filters[i], filter_length=filter_lengths[i], border_mode='valid', activation='relu', subsample_length=1) conv_out = conv_layer(embedded) # we use max pooling: conv_out = MaxPooling1D(pool_length=conv_layer.output_shape[1])(conv_out) # We flatten the output of the conv layer, # so that we can concat all conv outpus and add a vanilla dense layer: conv_out = Flatten()(conv_out) convs.append(conv_out) # concat all conv outputs x = merge(convs, mode='concat') if len(convs) > 1 else convs[0] #concat = BatchNormalization()(concat) # We add a vanilla hidden layer: x = Dense(hidden_dims)(x) x = Dropout(fc_dropout)(x) x = Activation('relu')(x) # We project onto number of classes output layer, and squash it with a softmax: main_output = Dense(num_classes, activation='softmax')(x) # finally, define the model model = Model(input=main_input, output=main_output) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print('Train...') # define callbacks stopping = EarlyStopping(monitor='val_loss', patience='10') checkpointer = ModelCheckpoint(filepath=model_file, verbose=1, save_best_only=True) tensorboard = TensorBoard(log_dir="./logs-multifilter-large-morehidden-moredrop-task1", write_graph=False) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, validation_data=(X_test, Y_test), callbacks=[stopping, checkpointer, tensorboard]) probabilities = model.predict(X_test, batch_size=batch_size) predictions = probabilities.argmax(axis=-1) idx2label = load_labels(task1_labels_file) #with open('cnn_predictions.txt', 'w') as g: # for i in xrange(len(y_test)): # g.write(' '.join([str(v) for v in X_test[i]]) + '\t' + idx2label.get(y_test[i], 'ERROR') + '\t' + idx2label.get(predictions[i], 'ERROR') + '\n') print('Performance of final model (not necessarily best model):') print('========================================================') cm = confusion_matrix(y_test, predictions) print('Confusion matrix:') print(cm) acc = accuracy_score(y_test, predictions) print('Accuracy score:') print(acc) labels = [label for (idx, label) in sorted(idx2label.items())] score_report = classification_report(y_test, predictions, target_names=labels) print('Score report:') print(score_report) best_model = load_model(model_file) probabilities = best_model.predict(X_test, batch_size=batch_size) predictions = probabilities.argmax(axis=-1) print('Performance of best model:') print('==========================') cm = confusion_matrix(y_test, predictions) print('Confusion matrix:') print(cm) acc = accuracy_score(y_test, predictions) print('Accuracy score:') print(acc) labels = [label for (idx, label) in sorted(idx2label.items())] score_report = classification_report(y_test, predictions, target_names=labels) print('Score report:') print(score_report)
mit
uglyboxer/linear_neuron
net-p3/lib/python3.5/site-packages/matplotlib/testing/jpl_units/UnitDblFormatter.py
23
1485
#=========================================================================== # # UnitDblFormatter # #=========================================================================== """UnitDblFormatter module containing class UnitDblFormatter.""" #=========================================================================== # Place all imports after here. # from __future__ import (absolute_import, division, print_function, unicode_literals) import six import matplotlib.ticker as ticker # # Place all imports before here. #=========================================================================== __all__ = [ 'UnitDblFormatter' ] #=========================================================================== class UnitDblFormatter( ticker.ScalarFormatter ): """The formatter for UnitDbl data types. This allows for formatting with the unit string. """ def __init__( self, *args, **kwargs ): 'The arguments are identical to matplotlib.ticker.ScalarFormatter.' ticker.ScalarFormatter.__init__( self, *args, **kwargs ) def __call__( self, x, pos = None ): 'Return the format for tick val x at position pos' if len(self.locs) == 0: return '' else: return str(x) def format_data_short( self, value ): "Return the value formatted in 'short' format." return str(value) def format_data( self, value ): "Return the value formatted into a string." return str(value)
mit
oscarbranson/cbsyst
cbsyst/helpers.py
1
8655
import uncertainties.unumpy as unp import numpy as np import pandas as pd # Helpers useful to the user # -------------------------- def data_out(cbdat, path=None, include_constants=False): """ Save output from cbsyst. Parameters ---------- cbdat : dict / Bunch The output from Csys, Bsys, ABsys or CBsys. path : str The file name (and path) where you want to save the data. If not provided, data are not saved to a file. The extension of the file determines the output format. Can be 'csv', 'xls', 'html, 'tex', or 'pkl'. include_constants : bool If True, include pK and alpha constants in output. Returns ------- * pandas.DataFrame of output * Saves file (if specified) """ cols = [ "pH", "DIC", "fCO2", "pCO2", "CO2", "HCO3", "CO3", "TA", "BT", "BO3", "BO4", "dBT", "dBO3", "dBO4", "ABT", "ABO3", "ABO4", "T", "S", "P", "Ca", "Mg", ] consts = ["K0", "K1", "K2", "KB", "KW", "KSO4", "KspA", "KspC"] size = cbdat.pH.size out = pd.DataFrame(index=range(size)) for c in cols: if c in cbdat and cbdat[c] is not None: if (np.ndim(cbdat[c]) == 1) & (cbdat[c].size == 1): cbdat[c] = cbdat[c][0] if c in cbdat: out.loc[:, c] = cbdat[c] if include_constants: for c in consts: if c in cbdat.Ks and cbdat.Ks[c] is not None: if (np.ndim(cbdat.Ks[c]) == 1) & (cbdat.Ks[c].size == 1): cbdat.Ks[c] = cbdat.Ks[c][0] out.loc[:, "p" + c] = -np.log10(cbdat.Ks[c]) if "alphaB" in cbdat and cbdat.alphaB is not None: if (np.ndim(cbdat.alphaB) == 1) & (cbdat.alphaB.size == 1): cbdat.alphaB = cbdat.alphaB[0] out.loc[:, "alphaB"] = cbdat.alphaB if path is not None: fmt = path.split(".")[-1] fdict = { "csv": "to_csv", "html": "to_html", "xls": "to_excel", "pkl": "to_pickle", "tex": "to_latex", } if fmt not in fdict: raise ValueError( ( "File extension does not match available output\n" + "options. Should be one of 'csv', 'html', 'xls',\n" + "'pkl' (pickle) or 'tex' (LaTeX)." ) ) try: _ = getattr(out, fdict[fmt])(path, index=None) except TypeError: _ = getattr(out, fdict[fmt])(path) return out # Programmatic helpers for code elsewhere # --------------------------------------- # Bunch modifies dict to allow item access using dot (.) operator class Bunch(dict): def __init__(self, *args, **kwds): super(Bunch, self).__init__(*args, **kwds) self.__dict__ = self def noms(*it): """ Return nominal_values for provided objects. Parameters ---------- *it : n objects """ return [unp.nominal_values(i) for i in it] def maxL(*it): """ Calculate maximum length of provided items. Parameters ---------- *it : objects Items of various lengths. Only lengths of iterables are returned. Returns ------- Length of longest object (int). """ m = set() for i in it: try: m.add(len(i)) except TypeError: pass if len(m) > 0: return max(m) else: return 1 def cast_array(*it): """ Recasts inputs into array of shape (len(it), maxL(*it)) """ new = np.zeros((len(it), maxL(*it))) for i, t in enumerate(it): new[i, :] = t return new def NnotNone(*it): """ Returns the number of elements of it tha are not None. Parameters ---------- it : iterable iterable of elements that are either None, or not None Returns ------- int """ return sum([i is not None for i in it]) # pK <--> K converters def ch(pK): """ Convert pK to K """ return np.power(10.0, np.multiply(pK, -1.0)) def cp(K): """ Convert K to pK """ return -np.log10(K) # Helpers for aspects of seawater chemistry # ----------------------------------------- def prescorr(P, Tc, a0, a1, a2, b0, b1): """ Calculate pressore correction factor for thermodynamic Ks. From Millero et al (2007, doi:10.1021/cr0503557) Eqns 38-40 Usage: K_corr / K_orig = [output] Kcorr = [output] * K_orig """ dV = a0 + a1 * Tc + a2 * Tc ** 2 dk = (b0 + b1 * Tc) / 1000 # factor of 1000 not mentioned in Millero, # but present in Zeebe book, and used in CO2SYS RT = 83.1451 * (Tc + 273.15) return np.exp((-dV + 0.5 * dk * P) * P / RT) def swdens(TempC, Sal): """ Seawater Density (kg / L) from Temp (C) and Sal (PSU) Chapter 5, Section 4.2 of Dickson, Sabine and Christian (2007, http://cdiac.ornl.gov/oceans/Handbook_2007.html) Parameters ---------- TempC : array-like Temperature in celcius. Sal : array-like Salinity in PSU Returns ------- Density in kg / L """ # convert temperature to IPTS-68 T68 = (TempC + 0.0002) / 0.99975 pSMOW = ( 999.842594 + 6.793952e-2 * T68 + -9.095290e-3 * T68 ** 2 + 1.001685e-4 * T68 ** 3 + -1.120083e-6 * T68 ** 4 + 6.536332e-9 * T68 ** 5 ) A = ( 8.24493e-1 + -4.0899e-3 * T68 + 7.6438e-5 * T68 ** 2 + -8.2467e-7 * T68 ** 3 + 5.3875e-9 * T68 ** 4 ) B = -5.72466e-3 + 1.0227e-4 * T68 + -1.6546e-6 * T68 ** 2 C = 4.8314e-4 return (pSMOW + A * Sal + B * Sal ** 1.5 + C * Sal ** 2) / 1000 def calc_TS(Sal): """ Calculate total Sulphur Morris, A. W., and Riley, J. P., Deep-Sea Research 13:699-705, 1966: this is .02824.*Sali./35. = .0008067.*Sali """ a, b, c = (0.14, 96.062, 1.80655) return (a / b) * (Sal / c) # mol/kg-SW def calc_TF(Sal): """ Calculate total Fluorine Riley, J. P., Deep-Sea Research 12:219-220, 1965: this is .000068.*Sali./35. = .00000195.*Sali """ a, b, c = (0.000067, 18.998, 1.80655) return (a / b) * (Sal / c) # mol/kg-SW # def calc_TB(Sal): # """ # Calculate total Boron # Lee, Kim, Byrne, Millero, Feely, Yong-Ming Liu. 2010. # Geochimica Et Cosmochimica Acta 74 (6): 1801-1811 # """ # a, b = (0.0004326, 35.) # return a * Sal / b def calc_TB(Sal): """ Calculate total Boron Directly from CO2SYS: Uppstrom, L., Deep-Sea Research 21:161-162, 1974: this is 0.000416 * Sal/35. = 0.0000119 * Sal TB(FF) = (0.000232 / 10.811) * (Sal / 1.80655) in mol/kg-SW """ a, b = (0.0004157, 35.0) return a * Sal / b def calc_fH(TempK, Sal): # Same as CO2SYS # Takahashi et al, Chapter 3 in GEOSECS Pacific Expedition, # v. 3, 1982 (p. 80) a, b, c, d = (1.2948, -2.036e-3, 4.607e-4, -1.475e-6) return a + b * TempK + (c + d * TempK) * Sal ** 2 # Convert between pH scales def calc_pH_scales(pHtot, pHfree, pHsws, pHNBS, TS, TF, TempK, Sal, Ks): """ Calculate pH on all scales, given one. """ # check if any pH scale is given. npH = NnotNone(pHfree, pHsws, pHtot, pHNBS) if npH == 1: # pH scale conversions FREEtoTOT = -np.log10((1 + TS / Ks.KSO4)) SWStoTOT = -np.log10((1 + TS / Ks.KSO4) / (1 + TS / Ks.KSO4 + TF / Ks.KF)) fH = calc_fH(TempK, Sal) if pHtot is not None: return { "pHfree": pHtot - FREEtoTOT, "pHsws": pHtot - SWStoTOT, "pHNBS": pHtot - SWStoTOT - np.log10(fH), } elif pHsws is not None: return { "pHfree": pHsws + SWStoTOT - FREEtoTOT, "pHtot": pHsws + SWStoTOT, "pHNBS": pHsws - np.log10(fH), } elif pHfree is not None: return { "pHsws": pHfree + FREEtoTOT - SWStoTOT, "pHtot": pHfree + FREEtoTOT, "pHNBS": pHfree + FREEtoTOT - SWStoTOT - np.log10(fH), } elif pHNBS is not None: return { "pHsws": pHNBS + np.log10(fH), "pHtot": pHNBS + np.log10(fH) + SWStoTOT, "pHfree": pHNBS + np.log10(fH) + SWStoTOT - FREEtoTOT, } else: return {}
mit
mrshu/scikit-learn
benchmarks/bench_plot_neighbors.py
6
6409
""" Plot the scaling of the nearest neighbors algorithms with k, D, and N """ from time import time import numpy as np import pylab as pl from matplotlib import ticker from sklearn import neighbors, datasets def get_data(N, D, dataset='dense'): if dataset == 'dense': np.random.seed(0) return np.random.random((N, D)) elif dataset == 'digits': X = datasets.load_digits().data i = np.argsort(X[0])[::-1] X = X[:, i] return X[:N, :D] else: raise ValueError("invalid dataset: %s" % dataset) def barplot_neighbors(Nrange=2 ** np.arange(1, 11), Drange=2 ** np.arange(7), krange=2 ** np.arange(10), N=1000, D=64, k=5, leaf_size=30, dataset='digits'): algorithms = ('kd_tree', 'brute', 'ball_tree') fiducial_values = {'N': N, 'D': D, 'k': k} #------------------------------------------------------------ # varying N N_results_build = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) N_results_query = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) for i, NN in enumerate(Nrange): print "N = %i (%i out of %i)" % (NN, i + 1, len(Nrange)) X = get_data(NN, D, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=min(NN, k), algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() N_results_build[algorithm][i] = (t1 - t0) N_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying D D_results_build = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) D_results_query = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) for i, DD in enumerate(Drange): print "D = %i (%i out of %i)" % (DD, i + 1, len(Drange)) X = get_data(N, DD, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=k, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() D_results_build[algorithm][i] = (t1 - t0) D_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying k k_results_build = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) k_results_query = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) X = get_data(N, DD, dataset) for i, kk in enumerate(krange): print "k = %i (%i out of %i)" % (kk, i + 1, len(krange)) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=kk, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() k_results_build[algorithm][i] = (t1 - t0) k_results_query[algorithm][i] = (t2 - t1) pl.figure(figsize=(8, 11)) for (sbplt, vals, quantity, build_time, query_time) in [(311, Nrange, 'N', N_results_build, N_results_query), (312, Drange, 'D', D_results_build, D_results_query), (313, krange, 'k', k_results_build, k_results_query)]: ax = pl.subplot(sbplt, yscale='log') pl.grid(True) tick_vals = [] tick_labels = [] bottom = 10 ** np.min([min(np.floor(np.log10(build_time[alg]))) for alg in algorithms]) for i, alg in enumerate(algorithms): xvals = 0.1 + i * (1 + len(vals)) + np.arange(len(vals)) width = 0.8 pl.bar(xvals, build_time[alg] - bottom, width, bottom, color='r') pl.bar(xvals, query_time[alg], width, build_time[alg], color='b') tick_vals += list(xvals + 0.5 * width) tick_labels += ['%i' % val for val in vals] pl.text((i + 0.02) / len(algorithms), 0.98, alg, transform=ax.transAxes, ha='left', va='top', bbox=dict(facecolor='w', edgecolor='w', alpha=0.5)) pl.ylabel('time (seconds)') ax.xaxis.set_major_locator(ticker.FixedLocator(tick_vals)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(tick_labels)) for label in ax.get_xticklabels(): label.set_rotation(-90) label.set_fontsize(10) title_string = 'Varying %s' % quantity descr_string = '' for s in 'NDk': if s == quantity: pass else: descr_string += '%s = %i, ' % (s, fiducial_values[s]) descr_string = descr_string[:-2] pl.text(1.01, 0.5, title_string, transform=ax.transAxes, rotation=-90, ha='left', va='center', fontsize=20) pl.text(0.99, 0.5, descr_string, transform=ax.transAxes, rotation=-90, ha='right', va='center') pl.gcf().suptitle("%s data\nred = construction; blue = N-point query" % (dataset[0].upper() + dataset[1:]), fontsize=16) if __name__ == '__main__': barplot_neighbors(dataset='digits') barplot_neighbors(dataset='dense') pl.show()
bsd-3-clause
rishikksh20/scikit-learn
examples/neighbors/plot_kde_1d.py
60
5120
""" =================================== Simple 1D Kernel Density Estimation =================================== This example uses the :class:`sklearn.neighbors.KernelDensity` class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a histogram can be thought of as a scheme in which a unit "block" is stacked above each point on a regular grid. As the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the estimate shown in the bottom left panel. This is a kernel density estimation with a "top hat" kernel. This idea can be generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate over the same distribution. Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the :class:`sklearn.neighbors.KernelDensity` estimator. The available kernels are shown in the second figure of this example. The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as well. """ # Author: Jake Vanderplas <[email protected]> # import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm from sklearn.neighbors import KernelDensity #---------------------------------------------------------------------- # Plot the progression of histograms to kernels np.random.seed(1) N = 20 X = np.concatenate((np.random.normal(0, 1, int(0.3 * N)), np.random.normal(5, 1, int(0.7 * N))))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] bins = np.linspace(-5, 10, 10) fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) fig.subplots_adjust(hspace=0.05, wspace=0.05) # histogram 1 ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True) ax[0, 0].text(-3.5, 0.31, "Histogram") # histogram 2 ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True) ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted") # tophat KDE kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density") # Gaussian KDE kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density") for axi in ax.ravel(): axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, '+k') axi.set_xlim(-4, 9) axi.set_ylim(-0.02, 0.34) for axi in ax[:, 0]: axi.set_ylabel('Normalized Density') for axi in ax[1, :]: axi.set_xlabel('x') #---------------------------------------------------------------------- # Plot all available kernels X_plot = np.linspace(-6, 6, 1000)[:, None] X_src = np.zeros((1, 1)) fig, ax = plt.subplots(2, 3, sharex=True, sharey=True) fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05) def format_func(x, loc): if x == 0: return '0' elif x == 1: return 'h' elif x == -1: return '-h' else: return '%ih' % x for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']): axi = ax.ravel()[i] log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot) axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF') axi.text(-2.6, 0.95, kernel) axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) axi.xaxis.set_major_locator(plt.MultipleLocator(1)) axi.yaxis.set_major_locator(plt.NullLocator()) axi.set_ylim(0, 1.05) axi.set_xlim(-2.9, 2.9) ax[0, 1].set_title('Available Kernels') #---------------------------------------------------------------------- # Plot a 1D density example N = 100 np.random.seed(1) X = np.concatenate((np.random.normal(0, 1, int(0.3 * N)), np.random.normal(5, 1, int(0.7 * N))))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0]) + 0.7 * norm(5, 1).pdf(X_plot[:, 0])) fig, ax = plt.subplots() ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2, label='input distribution') for kernel in ['gaussian', 'tophat', 'epanechnikov']: kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X) log_dens = kde.score_samples(X_plot) ax.plot(X_plot[:, 0], np.exp(log_dens), '-', label="kernel = '{0}'".format(kernel)) ax.text(6, 0.38, "N={0} points".format(N)) ax.legend(loc='upper left') ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k') ax.set_xlim(-4, 9) ax.set_ylim(-0.02, 0.4) plt.show()
bsd-3-clause
socrata/arcs
arcs/launch_job.py
1
16169
""" Create a CrowdFlower job to collect relevance judments for domain, query pairs. This script will read a file of domain, query pairs from the command-line, and collect results from Cetera for each pair. You may optionally specify different experimental groups (eg. baseline vs. experiment1) via the `-g` option. These should be specified as JSON strings. Example: python arcs/launch_job.py \ -i ~/Data/arcs/20160126.experiment_1/queries.tsv \ -g '{"name": "adjusted boost clause", "description": "Moved field boosts to 'should' clause", "params": {}}' \ -r 10 \ -D 'postgresql://username:password@hostname/dbname' The group definition should have a name, description, and params field. The params field should be a nested object specifying any relevant parameters of the experiment. A full CSV is created, which contains all of the job data. Additionally, a CrowdFlower CSV is created which corresponds precisely with the data uploaded to create the job in CrowdFlower. All data is persisted in a Postgres database, the parameters of which are specified via the -D option. """ import argparse import pandas as pd import logging import psycopg2 from functools import partial from datetime import datetime from cetera import get_cetera_results from crowdflower import create_job_from_copy, add_data_to_job from crowdsourcing_utils import cleanup_description, make_dataset_sample from db import ( find_judged_qrps, insert_incomplete_job, add_raw_group_results, insert_unjudged_data_for_group, insert_empty_group ) from experiment import GroupDefinition CORE_COLUMNS = ['domain', 'query', 'result_fxf', 'result_position', 'group_id'] DISPLAY_DATA = ['name', 'link', 'description', 'sample'] CSV_COLUMNS = CORE_COLUMNS + DISPLAY_DATA RAW_COLUMNS = ['domain', 'query', 'results', 'group_id'] logging.basicConfig(format='%(message)s', level=logging.INFO) LOGGER = logging.getLogger(__name__) logging.getLogger("requests").setLevel(logging.WARNING) def _transform_cetera_result(result, result_position, num_rows, num_columns): """ Utility function for transforming Cetera result dictionary into something more suitable for the crowdsourcing task. Presently, we're grabbing name, link (ie. URL), and the first sentence of description. Args: result (dict): A single search result from Cetera result_position (int): The position of the result in the result set num_rows (int): The number of rows to show in the dataset sample num_columns (int): The number of columns to show in the dataset sample Returns: A dictionary of data for each result """ desc = cleanup_description(result["resource"].get("description")) domain = result["metadata"]["domain"] fxf = result["resource"].get("id") data_sample = make_dataset_sample(domain, fxf, num_rows, num_columns) return { "result_domain": domain, "result_position": result_position, "result_fxf": fxf, "name": result["resource"].get("name"), "link": result["link"], "description": desc, "sample": data_sample } def raw_results_to_dataframe(group_results, group_id, num_rows, num_columns): """ Add group ID to raw results tuple. Notes: 1. We keep raw results around for posterity. 2. When domain is specified as "www.opendatanetwork.com" in the input, we replace it with the source domain of the corresponding result Args: group_results (iterable): An iterable of results tuples as returned by get_cetera_results group_id (int): An identifier for the group of results num_rows (int): The number of rows to show in the dataset sample num_columns (int): The number of columns to show in the dataset sample Returns: An iterable of result dictionaries with the required and relevant metadata """ LOGGER.info("Transforming raw results") results = pd.DataFrame.from_records( [(results + (group_id,)) for results in group_results], columns=RAW_COLUMNS) transform = partial(_transform_cetera_result, num_rows=num_rows, num_columns=num_columns) results["results"] = results["results"].apply(lambda rs: [transform(r[1], r[0]) for r in rs]) results["query"] = results["query"].apply(str) return results def filter_previously_judged(db_conn, qrps_df): """ Filter a Pandas DataFrame of query-result pairs to only those that have not previously been judged. Args: db_conn (psycopg2.extensions.connection): Connection to a database qrps_df (pandas.DataFrame): A DataFrame of query, result data Returns: A copy of the input DataFrame filtered down to unjudged QRPs """ previously_judged = find_judged_qrps(db_conn) return qrps_df[qrps_df.apply( lambda row: (row["query"], row["result_fxf"]) not in previously_judged, axis=1)] def expanded_results_dataframe(raw_results): """ Stack raw results column and join with `raw_results` dataframe such that we have one query-result pair per row. Args: raw_results (pandas.DataFrame): A DataFrame with queries and results Returns: An expanded DataFrame with on query-result pair per row """ # create new series by stacking/expanding results list results_s = raw_results["results"].apply(lambda rs: pd.Series(rs)) # drop unnecessary index, reset index to jibe w/ raw_results_df, and create new dataframe expanded_results_df = pd.DataFrame( {"result": results_s.unstack().reset_index(level=0, drop=True)}) # join w/ original dataframe expanded_results_df = raw_results.join(expanded_results_df) # filter all rows for which there are zero results expanded_results_df = expanded_results_df[expanded_results_df["result"].notnull()]\ .reset_index() # add columns from fields in dict results_dict_df = pd.DataFrame.from_records(list(expanded_results_df["result"])) results_dict_df.set_index(expanded_results_df.index, inplace=True) expanded_results_df = expanded_results_df.join(results_dict_df) # drop original domain, and replace with result domain expanded_results_df = expanded_results_df.drop("domain", 1) expanded_results_df = expanded_results_df.rename(columns={"result_domain": "domain"}) return expanded_results_df def collect_search_results(groups, query_domain_file, num_results, num_rows, num_columns, output_file=None, cetera_host=None, cetera_port=None): """ Send queries included in `query_domain_file` to Cetera, collecting n=num_results results for each query. Bundle everything up into a Pandas DataFrame. Write out full expanded results to a CSV. Args: groups (Iterable[GroupDefinition]): An iterable of GroupDefinitions query_domain_file (str): A 2-column tab-delimited file containing query-domain pairs num_results (int): The number of search results to fetch for each query num_rows (int): The number of rows to show in the dataset sample num_columns (int): The number of columns to show in the dataset sample output_file (str): An optional file path to which the job CSV is to be written cetera_host (str): An optional Cetera hostname cetera_port (int): An optional Cetera port number Returns: A pair containing the raw results dataframe (one row per query-domain pair) and an expanded results dataframe where each row corresponds to a query-result pair. """ assert(num_results > 0) LOGGER.info("Reading query domain pairs from {}".format(query_domain_file)) with open(query_domain_file, "r") as f: next(f) # skip header domain_queries = [tuple(x.strip().split('\t')[:2]) for x in f if x.strip()] raw_results_df = pd.DataFrame(columns=RAW_COLUMNS) # get search results for queries in each group and combine for group in groups: results = get_cetera_results(domain_queries, cetera_host, cetera_port, num_results=num_results, cetera_params=group.params) raw_results_df = pd.concat( [raw_results_df, raw_results_to_dataframe(results, group.id, num_rows, num_columns)]) output_file = output_file or \ "{}-full.csv".format(datetime.now().strftime("%Y%m%d")) expanded_results_df = expanded_results_dataframe(raw_results_df)[CSV_COLUMNS] expanded_results_df.to_csv(output_file, encoding="utf-8") return raw_results_df, expanded_results_df def submit_job(db_conn, groups, data_df, job_to_copy, output_file=None): """ Create CrowdFlower job for catalog search result data in `data_df`. An external CrowdFlower ID is created by launching an initial empty job (using a previous job (including settings and test data) as the initial state. After creating a CrowdFlower job and getting an external ID, we persist the job itself to the DB Args: db_conn (psycopg2.extensions.connection): Connection to a database groups (iterable): An iterable of GroupDefinitions data_df (pandas.DataFrame): A DataFrame of query, result data job_to_copy (int): External identifier for existing job to copy for its test data output_file (str): Optional path to a CSV file to be created and submitted to CrowdFlower Returns: An Arcs Job with its external ID populated """ LOGGER.info("Creating CrowdFlower job") # create empty CrowdFlower job by copying test units from existing job job = create_job_from_copy(job_to_copy) # filter previously judged QRPs, so that we don't pay to have them rejudged num_rows_pre_filter = len(data_df) data_df = filter_previously_judged(db_conn, data_df) num_rows_post_filter = len(data_df) LOGGER.info("Eliminated {} rows that had been previously judged".format( num_rows_pre_filter - num_rows_post_filter)) # multiple groups may in fact produce the same results, for any given query, # so let's ensure we're having each (query, result) pair judged only once grouped = data_df.groupby(["query", "result_fxf"]) data_df = grouped.first().reset_index() LOGGER.info("Eliminated {} redundant query-result rows".format( num_rows_post_filter - len(data_df))) output_file = output_file or \ "{}-crowdflower.csv".format(datetime.now().strftime("%Y%m%d")) LOGGER.info("Writing out {} rows as CSV to {}".format(len(data_df), output_file)) data_df.to_csv(output_file, encoding="utf-8", index=False, escapechar="\\", na_rep=None) LOGGER.info("Adding data to job from CSV") try: add_data_to_job(job.external_id, output_file) except Exception as e: if hasattr(e, "message"): msg = "Unable to send CSV to CrowdFlower: {}".format(e.message) else: msg = "Unable to send CSV to CrowdFlower" LOGGER.warn(msg) LOGGER.warn("Try uploading the data manually using the web UI.") LOGGER.info("Job submitted.") LOGGER.info("Job consists of {} group(s): {}".format( len(groups), '\n'.join([str(g) for g in groups]))) LOGGER.info("https://make.crowdflower.com/jobs/{}".format(job.external_id)) return job def _df_data_to_records(df): return (dict(zip(df.columns, record)) for record in df.to_records(index=False)) def persist_job_data(db_conn, job, groups, raw_data_df): """ Write all job data to the DB. We write an initial incomplete job, using the external ID populated upon job submission. We store the job unit data in a JSON blob in the DB. And we write group-specific data to the DB without any judgments that will be updated upon job completion. The input data should be the full DataFrame, as opposed to the deduplicated data we send to CrowdFlower. Args: db_conn (psycopg2.extensions.connection): Connection to a database job (Job): An Arcs Job object with, at a minimum, its external_id set groups (iterable): An iterable of GroupDefinitions data_df (pandas.DataFrame): A DataFrame of query, result data raw_data_df (pandas.DataFrame): A DataFrame of raw results where each row corresponds to a query, and results are left in a collection Returns: None """ LOGGER.info("Writing incomplete job to DB") job = insert_incomplete_job(db_conn, job) # we store display data as JSON in the DB, so let's add a new column of just that raw_data_df["payload"] = pd.Series(_df_data_to_records(raw_data_df[RAW_COLUMNS])) # write all QRPs to DB LOGGER.info("Writing query-result pairs to DB") for group in groups: # filter to just this group raw_group_data = raw_data_df[raw_data_df["group_id"] == group.id].drop( "group_id", axis=1, inplace=False) # persist the raw group data for posterity add_raw_group_results(db_conn, group.id, list(raw_group_data["payload"])) # insert all query/result data insert_unjudged_data_for_group(db_conn, job.id, group.id, _df_data_to_records(raw_group_data)) # drop the payload column we added above raw_data_df.drop("payload", axis=1, inplace=True) def parse_args(): parser = argparse.ArgumentParser( description='Gather domains and queries from parsed nginx logs, ' 'gather the top n results from cetera') parser.add_argument('-i', '--input_file', required=True, help='Tab-delimited file of queries and domains to as the basis for \ the crowdsourcing task') parser.add_argument('-D', '--db_conn_str', required=True, help='Database connection string') parser.add_argument('-F', '--full_csv_file', help='Path for full CSV file with full set of search result data') parser.add_argument('-C', '--crowdflower_csv_file', help='Path for filtered CSV file restricted to set query-result pairs \ requiring judgment') parser.add_argument('-r', '--num_results', dest='num_results', type=int, default=40, help='Number of results per (domain, query) pair to fetch from cetera, \ default %(default)s') parser.add_argument('--num_rows', help='Number of rows to limit the sample to, default %(default)s', type=int, default=5) parser.add_argument('--num_columns', help='Number of columns to limit the sample to, default %(default)s', type=int, default=5) parser.add_argument('-c', '--cetera_host', help='Cetera hostname (eg. localhost) default %(default)s') parser.add_argument('-p', '--cetera_port', help='Cetera port, default %(default)s') parser.add_argument('-g', '--group', dest='groups', type=GroupDefinition.from_json, action="append") parser.add_argument('-j', '--job_to_copy', type=int, required=True, help='CrowdFlower job ID to copy for test data units') return parser.parse_args() def main(): args = parse_args() db_conn = psycopg2.connect(args.db_conn_str) groups = args.groups or [GroupDefinition(name="baseline", description="", params={})] groups = [insert_empty_group(db_conn, group) for group in groups] raw_results_df, expanded_results_df = collect_search_results( groups, args.input_file, args.num_results, args.num_rows, args.num_columns, args.full_csv_file, args.cetera_host, args.cetera_port) job = submit_job( db_conn, groups, expanded_results_df, args.job_to_copy, args.crowdflower_csv_file) persist_job_data(db_conn, job, groups, raw_results_df) db_conn.commit() if __name__ == "__main__": main()
mit
BorisJeremic/Real-ESSI-Examples
education_examples/_Chapter_Material_Behaviour_Examples/Interface_Models/Axial_Models/HardContact/ForceBasedHardContact/plot.py
1
1440
#!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; plt.rcParams.update({'font.size': 24}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=20 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=20 # Go over each feioutput and plot each one. thefile = "Monotonic_Contact_Behaviour_Adding_Normal_Load.h5.feioutput"; finput = h5py.File(thefile) plt.style.use('grayscale') # Read the time and displacement times = finput["time"][:] normal_displacement = finput["/Model/Elements/Element_Outputs"][6,:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; # Plot the figure. Add labels and titles. fig = plt.figure(figsize=(10,10)) # plt.xtitle('axes title', size = 50) plt.plot(normal_displacement*1e3,normal_stress/1000,Linewidth=4) plt.xlabel(r"Penetration $\Delta_n$ $[mm]$") plt.ylabel(r"Normal Stress $\sigma_n$ $[kPa]$") plt.hold(True) outfigname = "Axial_Response.pdf"; # Make space for and rotate the x-axis tick labels fig.autofmt_xdate() plt.grid(linestyle='--', linewidth='0.5', color='k') plt.savefig(outfigname, bbox_inches='tight') # plt.show()
cc0-1.0
sanpi0205/MNIST
svm.scikit/svm_poly.scikit_random_gridsearch.py
3
6760
# ====================================== # # script run on AWS c4.4xlarge # # ====================================== from __future__ import division import os, time, math, csv import cPickle as pickle import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.utils import shuffle from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.cross_validation import train_test_split from sklearn.grid_search import RandomizedSearchCV from sklearn.metrics import classification_report, confusion_matrix np.random.seed(seed=1009) file_path = '../data/' DESKEWED = True if DESKEWED: train_img_filename = 'train-images_deskewed.csv' test_img_filename = 't10k-images_deskewed.csv' else: train_img_filename = 'train-images.csv' test_img_filename = 't10k-images.csv' train_label_filename = 'train-labels.csv' test_label_filename = 't10k-labels.csv' # ##Read the training images and labels # In[113]: # read trainX with open(file_path + train_img_filename,'r') as f: data_iter = csv.reader(f, delimiter = ',') data = [data for data in data_iter] trainX = np.ascontiguousarray(data, dtype = np.float64) # scale trainX scaler = StandardScaler() scaler.fit(trainX) # find mean/std for trainX trainX = scaler.transform(trainX) # scale trainX with trainX mean/std # read trainY with open(file_path + train_label_filename,'r') as f: data_iter = csv.reader(f, delimiter = ',') data = [data for data in data_iter] trainY = np.ascontiguousarray(data, dtype = np.int8).ravel() # shuffle trainX & trainY trainX, trainY = shuffle(trainX, trainY, random_state=0) # ##Read the test images and labels # In[114]: # read testX with open(file_path + test_img_filename,'r') as f: data_iter = csv.reader(f, delimiter = ',') data = [data for data in data_iter] testX = np.ascontiguousarray(data, dtype = np.float64) # scale testX testX = scaler.transform(testX) # scale testX with trainX mean/std # read testY with open(file_path + test_label_filename,'r') as f: data_iter = csv.reader(f, delimiter = ',') data = [data for data in data_iter] testY = np.ascontiguousarray(data, dtype = np.int8).ravel() # shuffle testX, testY testX, testY = shuffle(testX, testY, random_state=0) # #SVC Default Parameter Settings # In[ ]: # default parameters for SVC # ========================== default_svc_params = {} default_svc_params['C'] = 1.0 # penalty default_svc_params['class_weight'] = None # Set the parameter C of class i to class_weight[i]*C # set to 'auto' for unbalanced classes default_svc_params['gamma'] = 0.0 # Kernel coefficient for 'rbf', 'poly' and 'sigmoid' default_svc_params['kernel'] = 'rbf' # 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable default_svc_params['shrinking'] = True # Whether to use the shrinking heuristic. default_svc_params['probability'] = False # Whether to enable probability estimates. default_svc_params['tol'] = 0.001 # Tolerance for stopping criterion. default_svc_params['cache_size'] = 200 # size of the kernel cache (in MB). default_svc_params['max_iter'] = -1 # limit on iterations within solver, or -1 for no limit. #default_svc_params['random_state'] = 1009 default_svc_params['verbose'] = False default_svc_params['degree'] = 3 # 'poly' only default_svc_params['coef0'] = 0.0 # 'poly' and 'sigmoid' only # set parameters for the classifier # ================================= svc_params = dict(default_svc_params) svc_params['cache_size'] = 2000 #svc_params['probability'] = True svc_params['kernel'] = 'poly' svc_params['C'] = 1.0 svc_params['gamma'] = 0.0 svc_params['degree'] = 3 svc_params['coef0'] = 1 # the classifier # ============== svc_clf = SVC(**svc_params) # ##RANDOMIZED grid search # In[ ]: t0 = time.time() # search grid # =========== search_grid = dict(C = np.logspace( 0, 5, 50), gamma = np.logspace(-5, -1, 50), degree = [2, 3, 4, 5, 6, 7, 8, 9]) # for coef0, see http://stackoverflow.com/questions/21390570/scikit-learn-svc-coef0-parameter-range # but also see http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html # stratified K-Fold indices # ========================= SKFolds = StratifiedKFold(y = trainY, n_folds = 3, indices = None) # default parameters for RandomizedSearchCV # ========================================= default_random_params = {} default_random_params['scoring'] = None default_random_params['fit_params'] = None # dict of parameters to pass to the fit method default_random_params['n_jobs'] = 1 # Number of jobs to run in parallel (-1 => all cores) default_random_params['pre_dispatch'] = '2*n_jobs' # memory is copied this many times # reduce if you're running into memory problems default_random_params['iid'] = True # assume the folds are iid default_random_params['refit'] = True # Refit the best estimator with the entire dataset default_random_params['cv'] = None default_random_params['verbose'] = 0 #default_random_params['random_state'] = None default_random_params['n_iter'] = 10 # set parameters for the randomized grid search # ============================================= random_params = dict(default_random_params) random_params['verbose'] = 1 #random_params['random_state'] = 1009 random_params['cv'] = SKFolds random_params['n_jobs'] = -1 # -1 => use all available cores # one core per fold # for each point in the grid random_params['n_iter'] = 200 # choose this many random combinations of parameters # from 'search_grid' # perform the randomized parameter grid search # ============================================ random_search = RandomizedSearchCV(estimator = svc_clf, param_distributions = search_grid, **random_params) random_search.fit(trainX, trainY) pickle.dump( random_search, open( 'SVC_POLY.pkl', 'wb' ) ) print("\ntime in minutes {0:.2f}".format((time.time()-t0)/60))
mit
mrcslws/htmresearch
projects/capybara/sandbox/sklearn/base_example.py
9
1327
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from sklearn.neural_network import MLPClassifier X = [[0., 0.], [1., 1.], [1.5, 1.5], [2., 2.]] y = [0, 0, 1, 1] clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1) clf.fit(X, y) predictions = clf.predict([[0.5, 0.5], [1.7, 1.7]]) print "Predictions: %s. Expected: [0, 1]" % predictions
agpl-3.0
florentchandelier/zipline
zipline/utils/calendars/exchange_calendar_tsx.py
5
2687
from datetime import time from pandas.tseries.holiday import ( Holiday, DateOffset, MO, weekend_to_monday, GoodFriday ) from pytz import timezone from zipline.utils.calendars.trading_calendar import TradingCalendar, \ HolidayCalendar from zipline.utils.calendars.us_holidays import Christmas from zipline.utils.calendars.exchange_calendar_lse import ( WeekendChristmas, BoxingDay, WeekendBoxingDay ) # New Year's Day TSXNewYearsDay = Holiday( "New Year's Day", month=1, day=1, observance=weekend_to_monday, ) # Ontario Family Day FamilyDay = Holiday( "Family Day", month=2, day=1, offset=DateOffset(weekday=MO(3)), start_date='2008-01-01', ) # Victoria Day VictoriaDay = Holiday( 'Victoria Day', month=5, day=25, offset=DateOffset(weekday=MO(-1)), ) # Canada Day CanadaDay = Holiday( 'Canada Day', month=7, day=1, observance=weekend_to_monday, ) # Civic Holiday CivicHoliday = Holiday( 'Civic Holiday', month=8, day=1, offset=DateOffset(weekday=MO(1)), ) # Labor Day LaborDay = Holiday( 'Labor Day', month=9, day=1, offset=DateOffset(weekday=MO(1)), ) # Thanksgiving Thanksgiving = Holiday( 'Thanksgiving', month=10, day=1, offset=DateOffset(weekday=MO(2)), ) class TSXExchangeCalendar(TradingCalendar): """ Exchange calendar for the Toronto Stock Exchange Open Time: 9:30 AM, EST Close Time: 4:00 PM, EST Regularly-Observed Holidays: - New Years Day (observed on first business day on/after) - Family Day (Third Monday in February after 2008) - Good Friday - Victoria Day (Monday before May 25th) - Canada Day (July 1st, observed first business day after) - Civic Holiday (First Monday in August) - Labor Day (First Monday in September) - Thanksgiving (Second Monday in October) - Christmas Day - Dec. 27th (if Christmas is on a weekend) - Boxing Day - Dec. 28th (if Boxing Day is on a weekend) """ @property def name(self): return "TSX" @property def tz(self): return timezone('Canada/Atlantic') @property def open_time(self): return time(9, 31) @property def close_time(self): return time(16) @property def regular_holidays(self): return HolidayCalendar([ TSXNewYearsDay, FamilyDay, GoodFriday, VictoriaDay, CanadaDay, CivicHoliday, LaborDay, Thanksgiving, Christmas, WeekendChristmas, BoxingDay, WeekendBoxingDay ])
apache-2.0
silky/sms-tools
lectures/04-STFT/plots-code/sine-spectrum.py
24
1563
import matplotlib.pyplot as plt import numpy as np from scipy.fftpack import fft, ifft N = 256 M = 63 f0 = 1000 fs = 10000 A0 = .8 hN = N/2 hM = (M+1)/2 fftbuffer = np.zeros(N) X1 = np.zeros(N, dtype='complex') X2 = np.zeros(N, dtype='complex') x = A0 * np.cos(2*np.pi*f0/fs*np.arange(-hM+1,hM)) plt.figure(1, figsize=(9.5, 7)) w = np.hanning(M) plt.subplot(2,3,1) plt.title('w (hanning window)') plt.plot(np.arange(-hM+1, hM), w, 'b', lw=1.5) plt.axis([-hM+1, hM, 0, 1]) fftbuffer[:hM] = w[hM-1:] fftbuffer[N-hM+1:] = w[:hM-1] X = fft(fftbuffer) X1[:hN] = X[hN:] X1[N-hN:] = X[:hN] mX = 20*np.log10(abs(X1)) plt.subplot(2,3,2) plt.title('mW') plt.plot(np.arange(-hN, hN), mX, 'r', lw=1.5) plt.axis([-hN,hN,-40,max(mX)]) pX = np.angle(X1) plt.subplot(2,3,3) plt.title('pW') plt.plot(np.arange(-hN, hN), np.unwrap(pX), 'c', lw=1.5) plt.axis([-hN,hN,min(np.unwrap(pX)),max(np.unwrap(pX))]) plt.subplot(2,3,4) plt.title('xw (windowed sinewave)') xw = x*w plt.plot(np.arange(-hM+1, hM), xw, 'b', lw=1.5) plt.axis([-hM+1, hM, -1, 1]) fftbuffer = np.zeros(N) fftbuffer[0:hM] = xw[hM-1:] fftbuffer[N-hM+1:] = xw[:hM-1] X = fft(fftbuffer) X2[:hN] = X[hN:] X2[N-hN:] = X[:hN] mX2 = 20*np.log10(abs(X2)) plt.subplot(2,3,5) plt.title('mXW') plt.plot(np.arange(-hN, hN), mX2, 'r', lw=1.5) plt.axis([-hN,hN,-40,max(mX)]) pX = np.angle(X2) plt.subplot(2,3,6) plt.title('pXW') plt.plot(np.arange(-hN, hN), np.unwrap(pX), 'c', lw=1.5) plt.axis([-hN,hN,min(np.unwrap(pX)),max(np.unwrap(pX))]) plt.tight_layout() plt.savefig('sine-spectrum.png') plt.show()
agpl-3.0
austin-taylor/flare
flare/tools/tld.py
1
1607
import os import pandas as pd import warnings import sys if (sys.version_info > (3, 0)): import pickle as pickle else: import cPickle as pickle import tldextract warnings.filterwarnings("ignore", 'This pattern has match groups') LOCAL_DIR = os.path.dirname(os.path.realpath(__file__)) class TLDCheck(object): """ Parses out TLD from domains and checks it against IANA. """ TLD_SOURCE = 'http://data.iana.org/TLD/tlds-alpha-by-domain.txt' def __init__(self, update=False): """ tld = TLDCheck() tld.tld_lookup('google.com') tld.tld_lookup('google.asdf') :param update: True will update the file with the most recent source """ self.tld_list = os.path.join(LOCAL_DIR, '..', 'data', 'tld', 'tld_list.pkl') self.update = update self.tld_set = self.create_list() def parse_tld_suffix(self, domain): return tldextract.extract(domain).suffix def tld_lookup(self, tld): return self.parse_tld_suffix(tld).upper() in self.tld_set def create_list(self): if self.update: tld_file = pd.read_table(self.TLD_SOURCE, names=['tld_domain'], skiprows=1) tld_set = frozenset(tld_file.tld_domain.dropna().tolist()) with open(self.tld_list, 'wb') as handle: pickle.dump(tld_set, handle, protocol=pickle.HIGHEST_PROTOCOL) return tld_set else: with open(self.tld_list, 'rb') as handle: tld_set = pickle.load(handle) return tld_set
mit
Dwii/Master-Thesis
implementation/Cuda/lbm_simple_lbmcuda/plot_benchmark.py
1
1780
# Display a list of *.dat files in a bar chart. # Based on an example from https://chrisalbon.com/python/matplotlib_grouped_bar_plot.html import sys import os import matplotlib.pyplot as plt import numpy as np if len(sys.argv) > 3 and (len(sys.argv)-3) % 2 : print("usage: python3 {0} <benchmark> <image path> (<dat1> <legend1> [<dat2> <legend2>] .. [<datN> <legendN>] ) ".format(os.path.basename(sys.argv[0]))) exit(1) benchmark = sys.argv[1] image_path = sys.argv[2] groups = (len(sys.argv)-3)/2 # Load benchark domains = () nb_setups = 0 for line in open(benchmark,'r'): n, snx, sny, snz = line.split() domains += ( "{0}x{1}x{2}".format(snx, sny, snz), ) nb_setups += 1 # Setting the positions and width for the bars pos = list(range(nb_setups)) width = 1 / (groups+2) # Plotting the bars fig, ax = plt.subplots(figsize=(10,5)) prop_iter = iter(plt.rcParams['axes.prop_cycle']) legends = () maxLups = 0 for i, argi in enumerate(range(3, len(sys.argv), 2)): mlups = np.array(list(map(float, open(sys.argv[argi])))) / 1E6 legends += ( sys.argv[argi+1], ) maxLups = max(maxLups, max(mlups)) plt.bar([p + width*i for p in pos], mlups, width, alpha=0.5, color=next(prop_iter)['color']) # Set the y axis label ax.set_ylabel('MLUPS') # Set the chart's title #ax.set_title(title) # Set the position of the x ticks ax.set_xticks([p + 1.5 * width for p in pos]) # Set the labels for the x ticks ax.set_xticklabels(domains) # Setting the x-axis and y-axis limits plt.xlim(min(pos)-width, max(pos)+width*4) #plt.ylim([0, maxLups] ) # Adding the legend and showing the plot plt.legend(legends, loc='upper left') ax.yaxis.grid() plt.savefig(image_path) plt.tight_layout() plt.show()
mit
surenkum/feature_selection
learn_forest.py
1
8232
import utils as ut import pdb from sklearn.ensemble import ExtraTreesRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.cross_validation import cross_val_score from sklearn.metrics import mean_squared_error import numpy as np import matplotlib.pyplot as plt import matplotlib from sklearn.tree import export_graphviz ''' Main function that learns a random forest based on toxicity data Inputs: filepath: path to .xls file toxicity: Type of toxicity we are analyzing, defaults to CNT ''' def learn_forest(filepath,toxicity="CNT"): # Learning a forest for predicting PMN # Please choose PMN, MAC, LDH, TP, TCC (Total Cell Count -- only for AgNP) features = ['PMN','MAC','LDH','TP','TCC'] for feature in features: print "Processing the data to estimate ",feature # For cross-validation, we can exclude certain studies from training. For # example to exclude Pauluhun,2010 use # To use the entire training data, pass author_exclude as None author_exclude = None#[['Seiffert J',2015],['Silva R',2015]]#None particle_exclude = None#[{'Particle Type (1=basic, 2 = citratecapped, 3 = PVPcapped)':1}] # Getting training input and output (train_inp,train_out,test_inp,test_out,feature_names) = ut.prepare_data_rf(filepath,\ feature,author_exclude,toxicity = toxicity, other_excludes = particle_exclude) # Get median values for plotting dose response curves (median_vals, min_vals, max_vals) = get_median_min_max(train_inp) # Training # Imputing all the NaN values estimator = Pipeline([("imputer",Imputer(strategy="mean")), ("forest",ExtraTreesRegressor(random_state=0))]) estimator.fit(train_inp,train_out) # Plotting risk-contour curves print feature_names feature_indexes = [1,7] plot_risk_contour(estimator,median_vals,min_vals,max_vals,\ feature_indexes,feature_names,feature) # Plotting dose-response curves # Testing for nano-particle size feature_index = 0 feature_vals = [1,3] plot_dose_response(estimator,median_vals,min_vals, max_vals, \ feature_index,feature_vals,feature_names,feature) # Testing the model against validation if it exists or else calculating # error on the training input itself # See if have some test samples if test_out.shape[0]>0: predict_test = estimator.predict(test_inp) # Estimating MSE score score = mean_squared_error(test_out,predict_test) print "MSE error for ",feature," after excluding ",author_exclude, "is : ",score else: predict_test = estimator.predict(train_inp) # Estimating MSE score score = mean_squared_error(train_out,predict_test) print "MSE error for ",feature," with all points in the model is : ",score # Exporting the learned graph feature_string = np.array(['Particle Type','Mean Diameter, nm','Exposure Mode', 'Rat Species','Mean Animal Mass, g','Sex','Surface Area (m^2/g)', 'Mass Conc. (ug/m^3)','Exp. Hours','Total Dose (ug/kg)', 'Post Exp. (days)']) print "original feature names ",feature_names print "replaced feature names ",feature_string # Increase font size for plots matplotlib.rcParams.update({'font.size': 12}) # Print all the estimators for ind,em in enumerate(estimator._final_estimator.estimators_): export_graphviz(em,out_file="tree"+str(ind)+".dot",feature_names = feature_string) # Plotting feature importance feature_importance = estimator._final_estimator.feature_importances_ # make importances relative to max importance feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, feature_string[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance for feature '+feature) plt.show() # Get the median, minimum and maximum values of all the input dimensions def get_median_min_max(train_inp): # Getting the median values of the entire data median_vals = np.zeros((train_inp.shape[1],)) min_vals = np.zeros((train_inp.shape[1],)) max_vals = np.zeros((train_inp.shape[1],)) for i in range(train_inp.shape[1]): median_vals[i] = np.median(train_inp[~np.isnan(train_inp[:,i]),i]) min_vals[i] = np.nanmin(train_inp[:,i]) max_vals[i] = np.nanmax(train_inp[:,i]) return (median_vals,min_vals,max_vals) ''' Requires the estimator, median values, two different feature indexes to plot risk contours curves ''' def plot_risk_contour(estimator,median_vals,min_vals,max_vals,\ feature_indexes,feature_names,target_feature): assert (len(feature_indexes)==2), "Need 2 feature indexes to plot risk contour" # Plotting all the output values from the curve # Divide the minimum and maximum values in 20 points range origin = 'lower' cmap = plt.cm.get_cmap("rainbow") cmap.set_under("magenta") cmap.set_over("yellow") num_points = 20 x = np.arange(min_vals[feature_indexes[0]],max_vals[feature_indexes[0]],\ (max_vals[feature_indexes[0]]-min_vals[feature_indexes[0]])/(num_points*1.0)) y = np.arange(min_vals[feature_indexes[1]],max_vals[feature_indexes[1]],\ (max_vals[feature_indexes[1]]-min_vals[feature_indexes[1]])/(num_points*1.0)) X,Y = np.meshgrid(x,y) Z = np.zeros((X.shape)) for i in range(X.shape[0]): for j in range(X.shape[1]): # Get current input values inp_feature = median_vals inp_feature[feature_indexes[0]] = X[i,j] # fill-in first feature inp_feature[feature_indexes[1]] = Y[i,j] # fill-in second feature Z[i,j] = estimator.predict(inp_feature.reshape(1,-1))[0] # Plotting the contour plt.figure() CS = plt.contourf(X, Y, Z, 10, #[-1, -0.1, 0, 0.1], #alpha=0.5, cmap=cmap, origin=origin) plt.xlabel(feature_names[feature_indexes[0]]) plt.ylabel(feature_names[feature_indexes[1]]) cbar = plt.colorbar(CS) cbar.ax.set_ylabel(target_feature) plt.show() ''' Requires the estimator, median values, two different feature indexes to plot dose response curves ''' def plot_dose_response(estimator,median_vals,min_vals, max_vals, \ feature_index,feature_vals,feature_names,target_feature): # Plotting all the output values from the curve # Divide the minimum and maximum values in 20 points range # Total dose is 9th index num_points = 20 if (abs(min_vals[9]-max_vals[9])<2): x = np.arange(100,1000,900.0/20) else: x = np.arange(min_vals[9],max_vals[9],\ (max_vals[9]-min_vals[9])/(num_points*1.0)) plot_response = np.zeros((x.shape[0],len(feature_vals))) for i in range(x.shape[0]): for j in range(len(feature_vals)): # Get current input values inp_feature = median_vals inp_feature[9] = x[i] # 9th index is total dose inp_feature[feature_index] = feature_vals[j] # fill-in second feature plot_response[i,j] = estimator.predict(inp_feature.reshape(1,-1))[0] # Plotting the contour plt.figure() colors = ['r','g','b','y','k'] for j in range(len(feature_vals)): plt.plot(x,plot_response[:,j],linewidth=3.0,color=colors[j]) plt.xlabel('Total Dose') plt.ylabel(target_feature) plt.show() if __name__=="__main__": # filepath = './data/Carbon_Nanotube_Pulmonary_Toxicity_Data_Set_20120313.xls' filepath = './data/Toxicity Measurements -- Meta Analysis.xlsx' toxicity = "AgNP" # Use "CNT" for analyzing Carbon Nano toxicity data = learn_forest(filepath,toxicity)
gpl-3.0
yavalvas/yav_com
build/matplotlib/doc/mpl_examples/statistics/bxp_demo.py
3
2753
""" Demo of the new boxplot drawer function """ import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # fake data np.random.seed(937) data = np.random.lognormal(size=(37, 4), mean=1.5, sigma=1.75) labels = list('ABCD') # compute the boxplot stats stats = cbook.boxplot_stats(data, labels=labels, bootstrap=10000) # After we've computed the stats, we can go through and change anything. # Just to prove it, I'll set the median of each set to the median of all # the data, and double the means for n in range(len(stats)): stats[n]['med'] = np.median(data) stats[n]['mean'] *= 2 print(stats[0].keys()) fs = 10 # fontsize # demonstrate how to toggle the display of different elements: fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6,6)) axes[0, 0].bxp(stats) axes[0, 0].set_title('Default', fontsize=fs) axes[0, 1].bxp(stats, showmeans=True) axes[0, 1].set_title('showmeans=True', fontsize=fs) axes[0, 2].bxp(stats, showmeans=True, meanline=True) axes[0, 2].set_title('showmeans=True,\nmeanline=True', fontsize=fs) axes[1, 0].bxp(stats, showbox=False, showcaps=False) axes[1, 0].set_title('Tufte Style\n(showbox=False,\nshowcaps=False)', fontsize=fs) axes[1, 1].bxp(stats, shownotches=True) axes[1, 1].set_title('notch=True', fontsize=fs) axes[1, 2].bxp(stats, showfliers=False) axes[1, 2].set_title('showfliers=False', fontsize=fs) for ax in axes.flatten(): ax.set_yscale('log') ax.set_yticklabels([]) fig.subplots_adjust(hspace=0.4) plt.show() # demonstrate how to customize the display different elements: boxprops = dict(linestyle='--', linewidth=3, color='darkgoldenrod') flierprops = dict(marker='o', markerfacecolor='green', markersize=12, linestyle='none') medianprops = dict(linestyle='-.', linewidth=2.5, color='firebrick') meanpointprops = dict(marker='D', markeredgecolor='black', markerfacecolor='firebrick') meanlineprops = dict(linestyle='--', linewidth=2.5, color='purple') fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6,6)) axes[0, 0].bxp(stats, boxprops=boxprops) axes[0, 0].set_title('Custom boxprops', fontsize=fs) axes[0, 1].bxp(stats, flierprops=flierprops, medianprops=medianprops) axes[0, 1].set_title('Custom medianprops\nand flierprops', fontsize=fs) axes[1, 0].bxp(stats, meanprops=meanpointprops, meanline=False, showmeans=True) axes[1, 0].set_title('Custom mean\nas point', fontsize=fs) axes[1, 1].bxp(stats, meanprops=meanlineprops, meanline=True, showmeans=True) axes[1, 1].set_title('Custom mean\nas line', fontsize=fs) for ax in axes.flatten(): ax.set_yscale('log') ax.set_yticklabels([]) fig.suptitle("I never said they'd be pretty") fig.subplots_adjust(hspace=0.4) plt.show()
mit
massmutual/scikit-learn
sklearn/cluster/bicluster.py
211
19443
"""Spectral biclustering algorithms. Authors : Kemal Eren License: BSD 3 clause """ from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import dia_matrix from scipy.sparse import issparse from . import KMeans, MiniBatchKMeans from ..base import BaseEstimator, BiclusterMixin from ..externals import six from ..utils.arpack import eigsh, svds from ..utils.extmath import (make_nonnegative, norm, randomized_svd, safe_sparse_dot) from ..utils.validation import assert_all_finite, check_array __all__ = ['SpectralCoclustering', 'SpectralBiclustering'] def _scale_normalize(X): """Normalize ``X`` by scaling rows and columns independently. Returns the normalized matrix and the row and column scaling factors. """ X = make_nonnegative(X) row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() row_diag = np.where(np.isnan(row_diag), 0, row_diag) col_diag = np.where(np.isnan(col_diag), 0, col_diag) if issparse(X): n_rows, n_cols = X.shape r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) an = r * X * c else: an = row_diag[:, np.newaxis] * X * col_diag return an, row_diag, col_diag def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): """Normalize rows and columns of ``X`` simultaneously so that all rows sum to one constant and all columns sum to a different constant. """ # According to paper, this can also be done more efficiently with # deviation reduction and balancing algorithms. X = make_nonnegative(X) X_scaled = X dist = None for _ in range(max_iter): X_new, _, _ = _scale_normalize(X_scaled) if issparse(X): dist = norm(X_scaled.data - X.data) else: dist = norm(X_scaled - X_new) X_scaled = X_new if dist is not None and dist < tol: break return X_scaled def _log_normalize(X): """Normalize ``X`` according to Kluger's log-interactions scheme.""" X = make_nonnegative(X, min_value=1) if issparse(X): raise ValueError("Cannot compute log of a sparse matrix," " because log(x) diverges to -infinity as x" " goes to 0.") L = np.log(X) row_avg = L.mean(axis=1)[:, np.newaxis] col_avg = L.mean(axis=0) avg = L.mean() return L - row_avg - col_avg + avg class BaseSpectral(six.with_metaclass(ABCMeta, BaseEstimator, BiclusterMixin)): """Base class for spectral biclustering.""" @abstractmethod def __init__(self, n_clusters=3, svd_method="randomized", n_svd_vecs=None, mini_batch=False, init="k-means++", n_init=10, n_jobs=1, random_state=None): self.n_clusters = n_clusters self.svd_method = svd_method self.n_svd_vecs = n_svd_vecs self.mini_batch = mini_batch self.init = init self.n_init = n_init self.n_jobs = n_jobs self.random_state = random_state def _check_parameters(self): legal_svd_methods = ('randomized', 'arpack') if self.svd_method not in legal_svd_methods: raise ValueError("Unknown SVD method: '{0}'. svd_method must be" " one of {1}.".format(self.svd_method, legal_svd_methods)) def fit(self, X): """Creates a biclustering for X. Parameters ---------- X : array-like, shape (n_samples, n_features) """ X = check_array(X, accept_sparse='csr', dtype=np.float64) self._check_parameters() self._fit(X) def _svd(self, array, n_components, n_discard): """Returns first `n_components` left and right singular vectors u and v, discarding the first `n_discard`. """ if self.svd_method == 'randomized': kwargs = {} if self.n_svd_vecs is not None: kwargs['n_oversamples'] = self.n_svd_vecs u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs) elif self.svd_method == 'arpack': u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) if np.any(np.isnan(vt)): # some eigenvalues of A * A.T are negative, causing # sqrt() to be np.nan. This causes some vectors in vt # to be np.nan. _, v = eigsh(safe_sparse_dot(array.T, array), ncv=self.n_svd_vecs) vt = v.T if np.any(np.isnan(u)): _, u = eigsh(safe_sparse_dot(array, array.T), ncv=self.n_svd_vecs) assert_all_finite(u) assert_all_finite(vt) u = u[:, n_discard:] vt = vt[n_discard:] return u, vt.T def _k_means(self, data, n_clusters): if self.mini_batch: model = MiniBatchKMeans(n_clusters, init=self.init, n_init=self.n_init, random_state=self.random_state) else: model = KMeans(n_clusters, init=self.init, n_init=self.n_init, n_jobs=self.n_jobs, random_state=self.random_state) model.fit(data) centroid = model.cluster_centers_ labels = model.labels_ return centroid, labels class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array `X` to solve the relaxed normalized cut of the bipartite graph created from `X` as follows: the edge between row vertex `i` and column vertex `j` has weight `X[i, j]`. The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Read more in the :ref:`User Guide <spectral_coclustering>`. Parameters ---------- n_clusters : integer, optional, default: 3 The number of biclusters to find. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', use :func:`sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', use :func:`sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) The bicluster label of each row. column_labels_ : array-like, shape (n_cols,) The bicluster label of each column. References ---------- * Dhillon, Inderjit S, 2001. `Co-clustering documents and words using bipartite spectral graph partitioning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__. """ def __init__(self, n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralCoclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) def _fit(self, X): normalized_data, row_diag, col_diag = _scale_normalize(X) n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) u, v = self._svd(normalized_data, n_sv, n_discard=1) z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) _, labels = self._k_means(z, self.n_clusters) n_rows = X.shape[0] self.row_labels_ = labels[:n_rows] self.column_labels_ = labels[n_rows:] self.rows_ = np.vstack(self.row_labels_ == c for c in range(self.n_clusters)) self.columns_ = np.vstack(self.column_labels_ == c for c in range(self.n_clusters)) class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For instance, if there are two row partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two biclusters. The outer product of the corresponding row and column label vectors gives this checkerboard structure. Read more in the :ref:`User Guide <spectral_biclustering>`. Parameters ---------- n_clusters : integer or tuple (n_row_clusters, n_column_clusters) The number of row and column clusters in the checkerboard structure. method : string, optional, default: 'bistochastic' Method of normalizing and converting singular vectors into biclusters. May be one of 'scale', 'bistochastic', or 'log'. The authors recommend using 'log'. If the data is sparse, however, log normalization will not work, which is why the default is 'bistochastic'. CAUTION: if `method='log'`, the data must not be sparse. n_components : integer, optional, default: 6 Number of singular vectors to check. n_best : integer, optional, default: 3 Number of best singular vectors to which to project the data for clustering. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', uses `sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', uses `sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) Row partition labels. column_labels_ : array-like, shape (n_cols,) Column partition labels. References ---------- * Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray data: coclustering genes and conditions <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__. """ def __init__(self, n_clusters=3, method='bistochastic', n_components=6, n_best=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralBiclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) self.method = method self.n_components = n_components self.n_best = n_best def _check_parameters(self): super(SpectralBiclustering, self)._check_parameters() legal_methods = ('bistochastic', 'scale', 'log') if self.method not in legal_methods: raise ValueError("Unknown method: '{0}'. method must be" " one of {1}.".format(self.method, legal_methods)) try: int(self.n_clusters) except TypeError: try: r, c = self.n_clusters int(r) int(c) except (ValueError, TypeError): raise ValueError("Incorrect parameter n_clusters has value:" " {}. It should either be a single integer" " or an iterable with two integers:" " (n_row_clusters, n_column_clusters)") if self.n_components < 1: raise ValueError("Parameter n_components must be greater than 0," " but its value is {}".format(self.n_components)) if self.n_best < 1: raise ValueError("Parameter n_best must be greater than 0," " but its value is {}".format(self.n_best)) if self.n_best > self.n_components: raise ValueError("n_best cannot be larger than" " n_components, but {} > {}" "".format(self.n_best, self.n_components)) def _fit(self, X): n_sv = self.n_components if self.method == 'bistochastic': normalized_data = _bistochastic_normalize(X) n_sv += 1 elif self.method == 'scale': normalized_data, _, _ = _scale_normalize(X) n_sv += 1 elif self.method == 'log': normalized_data = _log_normalize(X) n_discard = 0 if self.method == 'log' else 1 u, v = self._svd(normalized_data, n_sv, n_discard) ut = u.T vt = v.T try: n_row_clusters, n_col_clusters = self.n_clusters except TypeError: n_row_clusters = n_col_clusters = self.n_clusters best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) self.rows_ = np.vstack(self.row_labels_ == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) self.columns_ = np.vstack(self.column_labels_ == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) def _fit_best_piecewise(self, vectors, n_best, n_clusters): """Find the ``n_best`` vectors that are best approximated by piecewise constant vectors. The piecewise vectors are found by k-means; the best is chosen according to Euclidean distance. """ def make_piecewise(v): centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) return centroid[labels].ravel() piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) result = vectors[np.argsort(dists)[:n_best]] return result def _project_and_cluster(self, data, vectors, n_clusters): """Project ``data`` to ``vectors`` and cluster the result.""" projected = safe_sparse_dot(data, vectors) _, labels = self._k_means(projected, n_clusters) return labels
bsd-3-clause
wmunters/py4sp
auxiliary/gust.py
1
1999
import matplotlib.pyplot as plt import numpy as np from scipy.special import erf, erfinv plt.close('all') z0 = 10**(-4) zhub = 0.1 D = 0.1 H = 1 Hh = 1 Nz = 144 # Generate the base profile uhub = 8.5 kappa = 0.4 utau = uhub*kappa/(np.log(10**3)) z = np.linspace(0, 1, num=Nz*2+1) zcc = z[1::2] ubase = utau/kappa*np.log(zcc/z0) # Generate the gust profile eps = 2*erfinv(.99) alpha = zhub - D/2 beta = zhub + D/2 deltag = 2*D Ug = 5 # Model spatial behavior fz = (zcc/zhub*np.exp(1-zcc/zhub))**2 #fz = Ug*erf(eps*zcc/2/alpha) # Model temporal behavior with a cosine Tend = 1 time = np.linspace(0, Tend,num=100) Tstart = 0.1 Tstop = 0.5 gt = np.zeros(time.size) for i, ti in enumerate(time): if ti>=Tstart and ti<=Tstop: gt[i] = 1/2*(1 - np.cos(2*np.pi*(ti-Tstart)/(Tstop-Tstart))) # Put space and time together ugust = np.zeros((zcc.size, time.size)) for i, gi in enumerate(gt): ugust[:,i] = Ug*fz*gt[i] ucorr = np.zeros(ugust.shape) hz = np.exp(-zcc/Hh)-1 for i, ti in enumerate(time): sumh = np.sum(hz) sumgust = np.sum(ugust[:,i]) Uc = sumgust/sumh ucorr[:,i] = -Uc*hz plt.figure() for i in range(time.size): plt.clf() plt.subplot(131) u = ubase + ugust[:,i] + ucorr[:,i] plt.plot(u, zcc,'b') plt.plot(ubase, zcc,'k') plt.xlim((4, 16)) plt.xlabel('U [m/s]') plt.ylabel('z/H') plt.axhline(y=0.05, linestyle=':', color='k') plt.axhline(y=0.15, linestyle=':', color='k') plt.subplot(132) plt.plot(ugust[:,i],zcc,'r') plt.xlim((-Ug,Ug)) plt.xlabel('U_gust [m/s]') plt.ylabel('z/H') plt.axhline(y=0.05, linestyle=':', color='k') plt.axhline(y=0.15, linestyle=':', color='k') plt.subplot(133) plt.plot(ucorr[:,i],zcc,'g') plt.xlim((-Ug,Ug)) plt.xlabel('U_corr [m/s]') plt.ylabel('z/H') plt.suptitle('T = '+ str(time[i])) plt.axhline(y=0.05, linestyle=':', color='k') plt.axhline(y=0.15, linestyle=':', color='k') plt.pause(0.05) print(np.sum(u))
gpl-2.0
ikki407/stacking
test/test_binary_class/scripts/binary.py
1
7498
# -*- coding: utf-8 -*- # ----- for creating dataset ----- from sklearn.datasets import load_digits from sklearn.cross_validation import train_test_split # ----- general import ----- import pandas as pd import numpy as np # ----- stacking library ----- from stacking.base import FOLDER_NAME, PATH, INPUT_PATH, TEMP_PATH,\ FEATURES_PATH, OUTPUT_PATH, SUBMIT_FORMAT # ----- utils ----- from stacking.base import load_data, save_pred_as_submit_format, create_cv_id, \ eval_pred # ----- classifiers ----- from stacking.base import BaseModel, XGBClassifier, KerasClassifier # ----- keras ----- from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD from keras.utils import np_utils from keras.layers.advanced_activations import LeakyReLU, PReLU from keras.layers.normalization import BatchNormalization from keras.regularizers import l1, l2, l1l2, activity_l2 # ----- Set problem type!! ----- problem_type = 'classification' classification_type = 'binary' eval_type = 'auc' BaseModel.set_prob_type(problem_type, classification_type, eval_type) # ----- create dataset ----- # load data for binary digits = load_digits(2) # split data for train and test data_train, data_test, label_train, label_test = train_test_split(digits.data, digits.target) # concat data as pandas' dataframe format data_train = pd.DataFrame(data_train) label_train = pd.DataFrame(label_train, columns=['target']) train = pd.concat([data_train, label_train], axis=1) data_test = pd.DataFrame(data_test) label_test = pd.DataFrame(label_test, columns=['target']) test = data_test # not include target # save data under /data/input. train.to_csv(INPUT_PATH + 'train.csv', index=False) test.to_csv(INPUT_PATH + 'test.csv', index=False) label_test.to_csv(INPUT_PATH + 'label_test.csv', index=False) # ----- END create dataset ----- # -----create features ----- train_log = train.iloc[:, :64].applymap(lambda x: np.log(x+1)) test_log = test.iloc[:, :64].applymap(lambda x: np.log(x+1)) train_log.columns = map(str, train_log.columns) test_log.columns = map(str, test_log.columns) train_log.columns += '_log' test_log.columns += '_log' # save data under /data/output/features/. train_log.to_csv(FEATURES_PATH + 'train_log.csv', index=False) test_log.to_csv(FEATURES_PATH + 'test_log.csv', index=False) # ----- END create features ----- # ----- First stage stacking model----- # FEATURE LISTS in Stage 1. FEATURE_LIST_stage1 = { 'train':(INPUT_PATH + 'train.csv', FEATURES_PATH + 'train_log.csv', ),#target is in 'train' 'test':(INPUT_PATH + 'test.csv', FEATURES_PATH + 'test_log.csv', ), } # need to get input shape for NN now X,y,test = load_data(flist=FEATURE_LIST_stage1, drop_duplicates=True) assert((False in X.columns == test.columns) == False) nn_input_dim_NN = X.shape[1:] del X, y, test # Models in Stage 1 PARAMS_V1 = { 'colsample_bytree':0.80, 'learning_rate':0.1,"eval_metric":"auc", 'max_depth':5, 'min_child_weight':1, 'nthread':4, 'objective':'binary:logistic','seed':407, 'silent':1, 'subsample':0.60, } class ModelV1(BaseModel): def build_model(self): return XGBClassifier(params=self.params, num_round=10) PARAMS_V2 = { 'batch_size':8, 'nb_epoch':5, 'verbose':1, 'callbacks':[], 'validation_split':0., 'validation_data':None, 'shuffle':True, #'show_accuracy':True, 'class_weight':None, 'sample_weight':None, 'normalize':True, 'categorize_y':True } class ModelV2(BaseModel): def build_model(self): model = Sequential() model.add(Dense(64, input_shape=nn_input_dim_NN, init='he_normal')) model.add(LeakyReLU(alpha=.00001)) model.add(Dropout(0.5)) model.add(Dense(2, init='he_normal')) model.add(Activation('softmax')) sgd = SGD(lr=0.1, decay=1e-5, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=["accuracy"]) return KerasClassifier(nn=model,**self.params) # ----- END first stage stacking model ----- # ----- Second stage stacking model ----- PARAMS_V1_stage2 = { 'colsample_bytree':0.6,'colsample_bylevel':0.80, 'learning_rate':0.05,"eval_metric":"auc", 'max_depth':6, 'seed':1234, 'nthread':8,'reg_lambda':3,'reg_alpha':0.01, 'objective':'binary:logistic', 'silent':1, 'subsample':0.60, } class ModelV1_stage2(BaseModel): def build_model(self): return XGBClassifier(params=self.params, num_round=5) # ----- END first stage stacking model ----- if __name__ == "__main__": # Create cv-fold index train = pd.read_csv(INPUT_PATH + 'train.csv') create_cv_id(train, n_folds_ = 5, cv_id_name='cv_id', seed=407) ######## stage1 Models ######### print 'Start stage 1 training' m = ModelV1(name="v1_stage1", flist=FEATURE_LIST_stage1, params = PARAMS_V1, kind = 'st' ) m.run() m = ModelV2(name="v2_stage1", flist=FEATURE_LIST_stage1, params = PARAMS_V2, kind = 'st' ) m.run() print 'Done stage 1' print ######## stage2 Models ######### print 'Start stage 2 training' # FEATURE LISTS in Stage 2. # Need to define here because the outputs for NN dim. haven't been created yet. FEATURE_LIST_stage2 = { 'train':(INPUT_PATH + 'train.csv', FEATURES_PATH + 'train_log.csv', TEMP_PATH + 'v1_stage1_all_fold.csv', TEMP_PATH + 'v2_stage1_all_fold.csv', ),#targetはここに含まれる 'test':(INPUT_PATH + 'test.csv', FEATURES_PATH + 'test_log.csv', TEMP_PATH + 'v1_stage1_test.csv', TEMP_PATH + 'v2_stage1_test.csv', ), } X,y,test = load_data(flist=FEATURE_LIST_stage2, drop_duplicates=True) assert((False in X.columns == test.columns) == False) nn_input_dim_NN2 = X.shape[1] del X, y, test # Models m = ModelV1_stage2(name="v1_stage2", flist=FEATURE_LIST_stage2, params = PARAMS_V1_stage2, kind = 'st', ) m.run() print 'Done stage 2' print # averaging print 'Saving as submission format' #sample_sub = pd.read_csv('data/input/sample_submission.csv') label = pd.read_csv(INPUT_PATH + 'label_test.csv') testID = range(len(label)) testID = pd.DataFrame(testID, columns=['ID']) pred = pd.read_csv(TEMP_PATH + 'v1_stage2_TestInAllTrainingData.csv') print 'Evaluation' auc = eval_pred(label.target, pred.iloc[:,0], eval_type=eval_type) pred = pd.concat([testID, pred], axis=1) pred.to_csv(TEMP_PATH + 'final_submission.csv', index=False)
mit
yodebu/currentcostgui
tracer.py
9
3501
# # CurrentCost GUI # # Copyright (C) 2008 Dale Lane # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # The author of this code can be contacted at [email protected] # Any contact about this application is warmly welcomed. # import logging import numpy import scipy import matplotlib import platform import wx from pysqlite2 import dbapi2 as sqlite from time import strftime # # A class to collect debug and trace information. # # # Dale Lane (http://dalelane.co.uk/blog) # enableTrace = False # used for indenting trace stackDepth = 0 indentStr = "" class CurrentCostTracer(): def EnableTrace(self, val): global enableTrace enableTrace = val def IsTraceEnabled(self): global enableTrace return enableTrace def InitialiseTraceFile(self): global enableTrace, stackDepth, indentStr logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(message)s', filename='currentcostdiagnostics.log', filemode='w+') if enableTrace == True: stackDepth = 0 indentStr = "" logging.info("CurrentCost software - v 0.9.30") logging.info("-------------------------------") logging.info("python : version " + repr(platform.python_version())) logging.info("numpy : version " + repr(numpy.version.version)) logging.info("scipy : version " + repr(scipy.version.version)) logging.info("matplotlib : version " + repr(matplotlib.__version__)) logging.info("wxpython : version " + repr(wx.version())) logging.info("sqlite : version " + repr(sqlite.version)) def Trace(self, debuginfo): global enableTrace, indentStr if enableTrace == True: logging.debug("DEBUG " + indentStr + " " + debuginfo) def Error(self, errorinfo): global enableTrace, indentStr logging.error("ERROR " + indentStr + " " + errorinfo) def FunctionEntry(self, functionname): global enableTrace, indentStr, stackDepth if enableTrace == True: stackDepth += 1 logging.info("ENTRY " + indentStr + " " + functionname) self.prepareIndentString() def FunctionExit(self, functionname): global enableTrace, indentStr, stackDepth if enableTrace == True: stackDepth -= 1 self.prepareIndentString() logging.info("EXIT " + indentStr + " " + functionname) def prepareIndentString(self): global indentStr, stackDepth indentStr = "" for i in range(0, stackDepth): indentStr += " "
gpl-3.0
hunse/kitti
kitti/tests/test_data.py
1
1903
import os import numpy as np import matplotlib.pyplot as plt from kitti.data import get_drives, image_shape, data_dir, Calib from kitti.raw import load_stereo_frame from kitti.velodyne import load_velodyne_points def test_get_drives(): drives = get_drives() print drives def test_disp2rect(): drive = 11 frame = 0 color = True img0, img1 = load_stereo_frame(drive, frame, color=color) calib = Calib(color=color) # get calibration # get points vpts = load_velodyne_points(drive, frame) # remove invalid points # m = (vpts[:, 0] >= 5) # m = (vpts[:, 0] >= 5) & (np.abs(vpts[:, 1]) < 5) m = (vpts[:, 0] >= 5) & (vpts[:, 2] >= -3) vpts = vpts[m, :] rpts = calib.velo2rect(vpts) # get disparities xyd = calib.rect2disp(rpts) xyd, valid_rpts = calib.filter_disps(xyd, return_mask=True) if 1: # plot disparities disp = np.zeros(image_shape, dtype=np.uint8) for x, y, d in np.round(xyd): disp[y, x] = d plt.figure(101) plt.clf() plt.subplot(211) plt.imshow(img0, cmap='gray') plt.subplot(212) plt.imshow(disp) plt.show() # assert False # convert back to rect rpts2 = calib.disp2rect(xyd) assert np.allclose(rpts[valid_rpts], rpts2) # plotting if 0: plt.figure(101) plt.clf() img0, img1 = load_stereo_frame(drive, frame, color=color) plt.imshow(img0, cmap='gray') from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(1) fig.clf() ax = fig.add_subplot(111, projection='3d') ax.plot3D(rpts[:, 0], rpts[:, 1], rpts[:, 2], '.') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.show() if __name__ == '__main__': # print data_dir test_get_drives() # test_disp2rect()
mit
Chandramani/kaggle-competitions
african-soil-property-prediction/python_soild.py
1
1618
import pandas as pd import numpy as np from sklearn import svm, cross_validation from sklearn.metrics import mean_squared_error from math import sqrt from sklearn import preprocessing train = pd.read_csv('training.csv') test = pd.read_csv('sorted_test.csv') labels = train[['Ca','P','pH','SOC','Sand']].values train_labels = train[['Ca','P','pH','SOC','Sand']] train.drop(['Ca', 'P', 'pH', 'SOC', 'Sand', 'PIDN'], axis=1, inplace=True) test.drop('PIDN', axis=1, inplace=True) xtrain, xtest = np.array(train)[:,:2655], np.array(test)[:,:2655] xtrain1, xtest1 = np.array(train)[:,:3578], np.array(test)[:,:3578] sup_vec = svm.SVR(C=10000.0, verbose = 0) preds = np.zeros((xtest.shape[0], 5)) train_pred = np.zeros((xtrain.shape[0], 5)) for i in range(5): sup_vec.fit(xtrain, labels[:,i]) preds[:,i] = sup_vec.predict(xtest).astype(float) train_pred[:,i] = sup_vec.predict(xtrain).astype(float) sample = pd.read_csv('sample_submission.csv') sample['Ca'] = preds[:,0] sample['P'] = preds[:,1] sample['pH'] = preds[:,2] sample['SOC'] = preds[:,3] sample['Sand'] = preds[:,4] sample.to_csv('beating_benchmark.csv', index = False) rms_ca = sqrt(mean_squared_error(train_labels['Ca'], train_pred[:,0])) rms_p = sqrt(mean_squared_error(train_labels['P'], train_pred[:,1])) rms_ph = sqrt(mean_squared_error(train_labels['pH'], train_pred[:,2])) rms_soc = sqrt(mean_squared_error(train_labels['SOC'], train_pred[:,3])) rms_sand = sqrt(mean_squared_error(train_labels['Sand'], train_pred[:,4])) rmse_avg=(rms_ca+rms_p+rms_sand+rms_soc+rms_ph)/5 print rms_ca,rms_p,rms_ph,rms_soc,rms_sand print rmse_avg
apache-2.0
Achuth17/scikit-learn
sklearn/datasets/tests/test_svmlight_format.py
12
10796
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): Xs, y = load_svmlight_file(datafile) Xd = Xs.toarray() # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly Xsliced = Xs[np.arange(Xs.shape[0])] for X in (Xs, Xd, Xsliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) if dtype == np.float32: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 4) else: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 15) assert_array_equal(y, y2) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1)
bsd-3-clause
rlowrance/re-avm
chart06_make_chart_a.py
1
3743
from __future__ import division import matplotlib.pyplot as plt import pdb from columns_contain import columns_contain from Month import Month cc = columns_contain def make_chart_a(reduction, median_prices, control): 'graph range of errors by month by method' print 'make_chart_a' def make_subplot(validation_month, reduction, relevant_median_prices): 'mutate the default axes' # draw one line for each model family for model in ('en', 'gb', 'rf'): y = [v.mae for k, v in reduction[validation_month].iteritems() if k.model == model ] plt.plot(y, label=model) # the reduction is sorted by increasing mae plt.yticks(size='xx-small') if Month(validation_month) not in relevant_median_prices: print validation_month print relevant_median_prices print 'should not happen' pdb.set_trace() plt.title('yr mnth %s med price %6.0f' % ( validation_month, relevant_median_prices[Month(validation_month)]), loc='right', fontdict={'fontsize': 'xx-small', 'style': 'italic', }, ) plt.xticks([]) # no ticks on x axis return def make_figure(reduction, path_out, city, relevant_median_prices): # make and save figure # debug: sometimes relevant_median_prices is empty if len(relevant_median_prices) == 0: print 'no median prices', city pdb.set_trace() plt.figure() # new figure # plt.suptitle('Loss by Test Period, Tree Max Depth, N Trees') # overlays the subplots axes_number = 0 validation_months = ('200612', '200701', '200702', '200703', '200704', '200705', '200706', '200707', '200708', '200709', '200710', '200711', ) row_seq = (1, 2, 3, 4) col_seq = (1, 2, 3) cities = city is not None for row in row_seq: for col in col_seq: validation_month = validation_months[axes_number] if cities: print 'city %s validation_month %s num transactions %d' % ( city, validation_month, len(reduction[validation_month])) axes_number += 1 # count across rows plt.subplot(len(row_seq), len(col_seq), axes_number) # could be empty, if no transactions in month make_subplot(validation_month, reduction, relevant_median_prices) # annotate the bottom row only if row == 4: if col == 1: plt.xlabel('hp set') plt.ylabel('mae x $1000') if col == 3: plt.legend(loc='best', fontsize=5) plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) plt.savefig(path_out) plt.close() if control.arg.locality == 'global': make_figure(reduction, control.path_out_a, None, median_prices) elif control.arg.locality == 'city': def make_city(city): print 'make_city', city assert len(reduction[city]) > 0, city # detect bug found in earlier version return make_figure(reduction[city], control.path_out_a % city, city, median_prices[city]) for city in reduction.keys(): make_city(city) else: print 'bad control.arg.locality', control.arg pdb.set_trace() return
bsd-3-clause
larsmans/scipy
doc/source/tutorial/examples/normdiscr_plot2.py
84
1642
import numpy as np import matplotlib.pyplot as plt from scipy import stats npoints = 20 # number of integer support points of the distribution minus 1 npointsh = npoints / 2 npointsf = float(npoints) nbound = 4 #bounds for the truncated normal normbound = (1 + 1 / npointsf) * nbound #actual bounds of truncated normal grid = np.arange(-npointsh, npointsh+2,1) #integer grid gridlimitsnorm = (grid - 0.5) / npointsh * nbound #bin limits for the truncnorm gridlimits = grid - 0.5 grid = grid[:-1] probs = np.diff(stats.truncnorm.cdf(gridlimitsnorm, -normbound, normbound)) gridint = grid normdiscrete = stats.rv_discrete( values=(gridint, np.round(probs, decimals=7)), name='normdiscrete') n_sample = 500 np.random.seed(87655678) #fix the seed for replicability rvs = normdiscrete.rvs(size=n_sample) rvsnd = rvs f,l = np.histogram(rvs,bins=gridlimits) sfreq = np.vstack([gridint,f,probs*n_sample]).T fs = sfreq[:,1] / float(n_sample) ft = sfreq[:,2] / float(n_sample) fs = sfreq[:,1].cumsum() / float(n_sample) ft = sfreq[:,2].cumsum() / float(n_sample) nd_std = np.sqrt(normdiscrete.stats(moments='v')) ind = gridint # the x locations for the groups width = 0.35 # the width of the bars plt.figure() plt.subplot(111) rects1 = plt.bar(ind, ft, width, color='b') rects2 = plt.bar(ind+width, fs, width, color='r') normline = plt.plot(ind+width/2.0, stats.norm.cdf(ind+0.5,scale=nd_std), color='b') plt.ylabel('cdf') plt.title('Cumulative Frequency and CDF of normdiscrete') plt.xticks(ind+width, ind) plt.legend((rects1[0], rects2[0]), ('true', 'sample')) plt.show()
bsd-3-clause
harisbal/pandas
pandas/tests/generic/test_panel.py
4
1949
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from warnings import catch_warnings, simplefilter from pandas import Panel from pandas.util.testing import (assert_panel_equal, assert_almost_equal) import pandas.util.testing as tm import pandas.util._test_decorators as td from .test_generic import Generic class TestPanel(Generic): _typ = Panel _comparator = lambda self, x, y: assert_panel_equal(x, y, by_blocks=True) @td.skip_if_no('xarray', min_version='0.7.0') def test_to_xarray(self): from xarray import DataArray with catch_warnings(record=True): simplefilter("ignore", FutureWarning) p = tm.makePanel() result = p.to_xarray() assert isinstance(result, DataArray) assert len(result.coords) == 3 assert_almost_equal(list(result.coords.keys()), ['items', 'major_axis', 'minor_axis']) assert len(result.dims) == 3 # idempotency assert_panel_equal(result.to_pandas(), p) # run all the tests, but wrap each in a warning catcher for t in ['test_rename', 'test_get_numeric_data', 'test_get_default', 'test_nonzero', 'test_downcast', 'test_constructor_compound_dtypes', 'test_head_tail', 'test_size_compat', 'test_split_compat', 'test_unexpected_keyword', 'test_stat_unexpected_keyword', 'test_api_compat', 'test_stat_non_defaults_args', 'test_truncate_out_of_bounds', 'test_metadata_propagation', 'test_copy_and_deepcopy', 'test_pct_change', 'test_sample']: def f(): def tester(self): f = getattr(super(TestPanel, self), t) with catch_warnings(record=True): simplefilter("ignore", FutureWarning) f() return tester setattr(TestPanel, t, f())
bsd-3-clause
anirudhnair/KernelBasedCharcterization
TAUTraceAnalysis/EBSTraceStat/EBSTraceStat.py
1
35614
''' Created on Feb 11, 2014 @author: anirudhj ''' import os,shutil from sax import saxpy as SaX import fileinput, shlex from Settings import Common import pandas as pd import matplotlib.pyplot as plt import numpy as np class EBSTraceStat(object): ''' get stats from EBS trace ''' def __init__(self, filePath): self.m_filePath = "" self.traceTable = None self.m_Metrics = None self.m_pid = '0' self.m_sax = None self.m_ObjDumpReader = None if os.path.isfile(filePath + ".bak"): os.remove(filePath + ".bak") shutil.copyfile(filePath, filePath + ".bak") self.m_filePath = filePath + ".bak" self.m_pid = os.path.basename(self.m_filePath).split(".")[2] self.m_sax = SaX.SAX(Common.SIGLEN, Common.SAX_ALPHABETS, 1e-6) def RegisterObjDumpReader(self,reader): self.m_ObjDumpReader = reader def CleanTrace(self): ''' remove lines with % remove $ from line begining note PAPI events and remove all lines before this line split | as delimiter, extract 4th token and retian in file ''' for line in fileinput.FileInput(self.m_filePath,inplace=1): if "Metrics" in line: self.ExtractMetrics(line) continue elif ( line[0] == '#'): continue if ('$' in line or '%' in line) : line = line.replace('$','\n') line = line.replace('%','\n%') print line, fileinput.close() for line in fileinput.FileInput(self.m_filePath,inplace=1): if( line[0] == "%"): continue; cleanedLine = line.strip() if (cleanedLine): metricLine = (line.split("|")[4]).strip() instPointer = (line.split("|")[6]).strip() metricVals = ','.join(['"{0}"'.format(fragment) if ' ' in fragment else fragment \ for fragment in shlex.split(metricLine)]) metricVals = metricVals + ',' + instPointer print metricVals #print ','.join(shlex.split(cleanedLine)) fileinput.close() def ExtractMetrics(self, line): listMetrics = line.split(' ') del listMetrics[0] del listMetrics[0] self.m_Metrics = listMetrics def GetMetricsList(self): return self.m_Metrics def LoadTrace(self): ''' The first metric is always TIME. Second the EBS_SOURCE ''' listHeader = [] listHeader.extend(self.m_Metrics) listHeader.append(Common.IP) self.traceTable = pd.read_table(self.m_filePath,sep=',',header=None,names= listHeader) self.traceTable = self.traceTable.sort_index(by=self.m_Metrics[0], ascending=[True]) sizeList = len(self.m_Metrics) for index_ in range(2,sizeList): self.traceTable[self.m_Metrics[index_]] = self.traceTable[self.m_Metrics[index_]]. \ sub(self.traceTable[self.m_Metrics[index_]].shift(), fill_value = 0) def AnalyzeIPFDBetweenTimeStamps(self,startTimes, endTimes): iterIPFDMap = {} iter_ = 0 for index_ in range(len(startTimes)): startTime_ = startTimes[index_] endTime_ = endTimes[index_] reducedTrace_ = self.traceTable[(self.traceTable['TIME'] >= startTime_) & (self.traceTable['TIME'] <= endTime_)] listIPs = reducedTrace_[Common.IP].values #print listIPs listInsts = [] for ip in listIPs: instType = self.m_ObjDumpReader.GetInstructionType(ip[2:]) if( instType == 0): continue listInsts.append(instType) if( len(listInsts) == 0): print "---------------------------------------------------" print "WARNING: Empty instruction list" print "---------------------------------------------------" instCtr = Common.GetFrequencyList(listInsts) iterIPFDMap[iter_] = instCtr #ploting x = [] y = [] for key in instCtr: x.append(key) x.sort() for key in x: y.append(instCtr[key]) plt.bar(np.arange(len(x)) ,y,align='center') plt.xticks(np.arange(len(x)), x,rotation=30, size='small') plt.savefig(os.path.dirname(self.m_filePath) + "/IPFD_" + str(iter_),format="pdf",dpi=500) plt.clf() iter_+=1 return iterIPFDMap def AnalyzeBetweenTimeStamps(self,x_index,y_index,startTimes,endTimes): startTime = startTimes[0] endTime = endTimes[len(endTimes) - 1] reducedTrace = self.traceTable[(self.traceTable['TIME'] >= startTime) & (self.traceTable['TIME'] <= endTime)] y_vals = reducedTrace[self.m_Metrics[y_index]] x_vals = reducedTrace[self.m_Metrics[x_index]].values plt.plot(x_vals, y_vals , 'g-') #first value is useless as it is not sub'ed # sax string rep for each iter saxStr = '' iterSAXMap = {} iter_ = 0 for index_ in range(len(startTimes)): startTime_ = startTimes[index_] endTime_ = endTimes[index_] reducedTrace_ = self.traceTable[(self.traceTable['TIME'] >= startTime_) & (self.traceTable['TIME'] <= endTime_)] y_vals_ = reducedTrace_[self.m_Metrics[y_index]] saxStr_,indices = self.m_sax.to_letter_rep(y_vals_) saxStr+=saxStr_ iterSAXMap[iter_] = saxStr_ iter_+=1 saxNum = Common.GetNumArrayFromString(saxStr) #ploting vlinePoints = endTimes plt.vlines(vlinePoints, [y_vals.min()],[y_vals.max()],'r','dashed') plt.xlabel(self.m_Metrics[x_index]) plt.ylabel(self.m_Metrics[y_index]) plt.xlim(x_vals.min(), x_vals.max()) fileDumpPath = (self.m_Metrics[x_index] + "_" + self.m_Metrics[y_index] + "_"+ self.m_pid +".pdf").strip() fileDumpPath = os.path.dirname(self.m_filePath) + "/" + fileDumpPath figure = plt.gcf() figure.set_size_inches(24, 16) plt.savefig(fileDumpPath,format="pdf",dpi=500) plt.clf() plt.plot(saxNum, 'g-') plt.xlabel('SAX string Length') plt.ylabel('SAX alphabets') plt.title(self.m_Metrics[y_index]) xticks = range(0,Common.SIGLEN*len(startTimes),Common.SIGLEN) plt.xticks(xticks) plt.yticks(range(Common.SAX_ALPHABETS)) fileDumpPath = (self.m_Metrics[x_index] + "_" + self.m_Metrics[y_index] + "_"+ self.m_pid +"_SAX.pdf").strip() fileDumpPath = os.path.dirname(self.m_filePath) + "/" + fileDumpPath figure = plt.gcf() figure.set_size_inches(18, 12) plt.savefig(fileDumpPath,format="pdf",dpi=500) plt.clf() return iterSAXMap def Analyze(self,x_index,y_index): y_vals = self.traceTable[self.m_Metrics[y_index]].sub(self.traceTable[self.m_Metrics[y_index]].shift(), fill_value = 0).values y_vals = y_vals[1:] plt.plot(self.traceTable[self.m_Metrics[x_index]].values[1:], y_vals, 'g-') plt.xlabel(self.m_Metrics[x_index]) plt.ylabel(self.m_Metrics[y_index]) fileDumpPath = (self.m_Metrics[x_index] + "_" + self.m_Metrics[y_index] + "_" + self.m_pid + ".pdf").strip() fileDumpPath = os.path.dirname(self.m_filePath) + "/" + fileDumpPath figure = plt.gcf() figure.set_size_inches(24, 16) plt.savefig(fileDumpPath,format="pdf",dpi=500) plt.clf() def SAXString(self,index,startTime,endTime): reducedTrace = self.traceTable[(self.traceTable['TIME'] >= startTime) & (self.traceTable['TIME'] <= endTime)] vals = reducedTrace[self.m_Metrics[index]].sub(reducedTrace[self.m_Metrics[index]].shift(), fill_value = 0).values vals = vals[1:] return self.m_sax.to_letter_rep(vals) def IPCAnalyzeBetweenTimeStamps(self,startTimes,endTimes): startTime = startTimes[0] endTime = endTimes[len(endTimes) - 1] tmptrace = self.traceTable tmptrace[self.m_Metrics[Common.INS_INDEX]] = tmptrace[self.m_Metrics[Common.INS_INDEX]].sub(tmptrace[self.m_Metrics[Common.INS_INDEX]].shift(), fill_value = 0) reducedTrace = tmptrace[(tmptrace['TIME'] >= startTime) & (tmptrace['TIME'] <= endTime)] insDiff = reducedTrace[self.m_Metrics[Common.INS_INDEX]].values cycDiff = reducedTrace[self.m_Metrics[Common.CYC_INDEX]].values IPC = np.divide(insDiff.astype(float),cycDiff.astype(float)) x_vals = reducedTrace[self.m_Metrics[Common.TIME_INDEX]].values plt.plot(x_vals, IPC , 'g-') #first value is useless as it is not sub'ed # sax string rep for each iter saxStr = '' iterSAXMap = {} iter_ = 0 for index_ in range(len(startTimes)): startTime_ = startTimes[index_] endTime_ = endTime[index_] reducedTrace_ = tmptrace[(tmptrace['TIME'] >= startTime_) & (tmptrace['TIME'] <= endTime_)] insDiff_ = reducedTrace_[self.m_Metrics[Common.INS_INDEX]].values cycDiff_ = reducedTrace_[self.m_Metrics[Common.CYC_INDEX]].values IPC_ = np.divide(insDiff_.astype(float),cycDiff_.astype(float)) saxStr_,indices = self.m_sax.to_letter_rep(IPC_) saxStr=+saxStr_ iterSAXMap[iter_] = saxStr_ iter+=1 saxNum = Common.GetNumArrayFromString(saxStr) #ploting vlinePoints = endTimes plt.vlines(vlinePoints, [IPC.min()],[IPC.max()],'r','dashed') plt.xlabel(self.m_Metrics[Common.TIME_INDEX]) plt.ylabel('IPC') plt.xlim(x_vals.min(), x_vals.max()) fileDumpPath = (self.m_Metrics[Common.TIME_INDEX] + "_" + 'IPC' + "_"+ self.m_pid +".pdf").strip() fileDumpPath = os.path.dirname(self.m_filePath) + "/" + fileDumpPath figure = plt.gcf() figure.set_size_inches(24, 16) plt.savefig(fileDumpPath,format="pdf",dpi=500) plt.clf() plt.plot(saxNum, 'g-') plt.xlabel('SAX string Length') plt.ylabel('SAX alphabets') plt.title('IPC') xticks = range(0,Common.SIGLEN*len(startTimes),Common.SIGLEN) plt.xticks(xticks) plt.yticks(range(Common.SAX_ALPHABETS)) fileDumpPath = (self.m_Metrics[Common.TIME_INDEX] + "_" + 'IPC' + "_"+ self.m_pid +"_SAX.pdf").strip() fileDumpPath = os.path.dirname(self.m_filePath) + "/" + fileDumpPath figure = plt.gcf() figure.set_size_inches(18, 12) plt.savefig(fileDumpPath,format="pdf",dpi=500) plt.clf() return iterSAXMap def GetPID(self): return int(self.m_pid)
apache-2.0
plotly/plotly.py
packages/python/plotly/plotly/graph_objs/parcoords/line/_colorbar.py
1
73457
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class ColorBar(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "parcoords.line" _path_str = "parcoords.line.colorbar" _valid_props = { "bgcolor", "bordercolor", "borderwidth", "dtick", "exponentformat", "len", "lenmode", "minexponent", "nticks", "outlinecolor", "outlinewidth", "separatethousands", "showexponent", "showticklabels", "showtickprefix", "showticksuffix", "thickness", "thicknessmode", "tick0", "tickangle", "tickcolor", "tickfont", "tickformat", "tickformatstopdefaults", "tickformatstops", "ticklabeloverflow", "ticklabelposition", "ticklen", "tickmode", "tickprefix", "ticks", "ticksuffix", "ticktext", "ticktextsrc", "tickvals", "tickvalssrc", "tickwidth", "title", "titlefont", "titleside", "x", "xanchor", "xpad", "y", "yanchor", "ypad", } # bgcolor # ------- @property def bgcolor(self): """ Sets the color of padded area. The 'bgcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["bgcolor"] @bgcolor.setter def bgcolor(self, val): self["bgcolor"] = val # bordercolor # ----------- @property def bordercolor(self): """ Sets the axis line color. The 'bordercolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["bordercolor"] @bordercolor.setter def bordercolor(self, val): self["bordercolor"] = val # borderwidth # ----------- @property def borderwidth(self): """ Sets the width (in px) or the border enclosing this color bar. The 'borderwidth' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["borderwidth"] @borderwidth.setter def borderwidth(self, val): self["borderwidth"] = val # dtick # ----- @property def dtick(self): """ Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" The 'dtick' property accepts values of any type Returns ------- Any """ return self["dtick"] @dtick.setter def dtick(self, val): self["dtick"] = val # exponentformat # -------------- @property def exponentformat(self): """ Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. The 'exponentformat' property is an enumeration that may be specified as: - One of the following enumeration values: ['none', 'e', 'E', 'power', 'SI', 'B'] Returns ------- Any """ return self["exponentformat"] @exponentformat.setter def exponentformat(self, val): self["exponentformat"] = val # len # --- @property def len(self): """ Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. The 'len' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["len"] @len.setter def len(self, val): self["len"] = val # lenmode # ------- @property def lenmode(self): """ Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. The 'lenmode' property is an enumeration that may be specified as: - One of the following enumeration values: ['fraction', 'pixels'] Returns ------- Any """ return self["lenmode"] @lenmode.setter def lenmode(self, val): self["lenmode"] = val # minexponent # ----------- @property def minexponent(self): """ Hide SI prefix for 10^n if |n| is below this number. This only has an effect when `tickformat` is "SI" or "B". The 'minexponent' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["minexponent"] @minexponent.setter def minexponent(self, val): self["minexponent"] = val # nticks # ------ @property def nticks(self): """ Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". The 'nticks' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int """ return self["nticks"] @nticks.setter def nticks(self, val): self["nticks"] = val # outlinecolor # ------------ @property def outlinecolor(self): """ Sets the axis line color. The 'outlinecolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["outlinecolor"] @outlinecolor.setter def outlinecolor(self, val): self["outlinecolor"] = val # outlinewidth # ------------ @property def outlinewidth(self): """ Sets the width (in px) of the axis line. The 'outlinewidth' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["outlinewidth"] @outlinewidth.setter def outlinewidth(self, val): self["outlinewidth"] = val # separatethousands # ----------------- @property def separatethousands(self): """ If "true", even 4-digit integers are separated The 'separatethousands' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["separatethousands"] @separatethousands.setter def separatethousands(self, val): self["separatethousands"] = val # showexponent # ------------ @property def showexponent(self): """ If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. The 'showexponent' property is an enumeration that may be specified as: - One of the following enumeration values: ['all', 'first', 'last', 'none'] Returns ------- Any """ return self["showexponent"] @showexponent.setter def showexponent(self, val): self["showexponent"] = val # showticklabels # -------------- @property def showticklabels(self): """ Determines whether or not the tick labels are drawn. The 'showticklabels' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["showticklabels"] @showticklabels.setter def showticklabels(self, val): self["showticklabels"] = val # showtickprefix # -------------- @property def showtickprefix(self): """ If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. The 'showtickprefix' property is an enumeration that may be specified as: - One of the following enumeration values: ['all', 'first', 'last', 'none'] Returns ------- Any """ return self["showtickprefix"] @showtickprefix.setter def showtickprefix(self, val): self["showtickprefix"] = val # showticksuffix # -------------- @property def showticksuffix(self): """ Same as `showtickprefix` but for tick suffixes. The 'showticksuffix' property is an enumeration that may be specified as: - One of the following enumeration values: ['all', 'first', 'last', 'none'] Returns ------- Any """ return self["showticksuffix"] @showticksuffix.setter def showticksuffix(self, val): self["showticksuffix"] = val # thickness # --------- @property def thickness(self): """ Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. The 'thickness' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["thickness"] @thickness.setter def thickness(self, val): self["thickness"] = val # thicknessmode # ------------- @property def thicknessmode(self): """ Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. The 'thicknessmode' property is an enumeration that may be specified as: - One of the following enumeration values: ['fraction', 'pixels'] Returns ------- Any """ return self["thicknessmode"] @thicknessmode.setter def thicknessmode(self, val): self["thicknessmode"] = val # tick0 # ----- @property def tick0(self): """ Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. The 'tick0' property accepts values of any type Returns ------- Any """ return self["tick0"] @tick0.setter def tick0(self, val): self["tick0"] = val # tickangle # --------- @property def tickangle(self): """ Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. The 'tickangle' property is a angle (in degrees) that may be specified as a number between -180 and 180. Numeric values outside this range are converted to the equivalent value (e.g. 270 is converted to -90). Returns ------- int|float """ return self["tickangle"] @tickangle.setter def tickangle(self, val): self["tickangle"] = val # tickcolor # --------- @property def tickcolor(self): """ Sets the tick color. The 'tickcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["tickcolor"] @tickcolor.setter def tickcolor(self, val): self["tickcolor"] = val # tickfont # -------- @property def tickfont(self): """ Sets the color bar's tick label font The 'tickfont' property is an instance of Tickfont that may be specified as: - An instance of :class:`plotly.graph_objs.parcoords.line.colorbar.Tickfont` - A dict of string/value properties that will be passed to the Tickfont constructor Supported dict properties: color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- plotly.graph_objs.parcoords.line.colorbar.Tickfont """ return self["tickfont"] @tickfont.setter def tickfont(self, val): self["tickfont"] = val # tickformat # ---------- @property def tickformat(self): """ Sets the tick label formatting rule using d3 formatting mini- languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format. And for dates see: https://github.com/d3/d3-time-format#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" The 'tickformat' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["tickformat"] @tickformat.setter def tickformat(self, val): self["tickformat"] = val # tickformatstops # --------------- @property def tickformatstops(self): """ The 'tickformatstops' property is a tuple of instances of Tickformatstop that may be specified as: - A list or tuple of instances of plotly.graph_objs.parcoords.line.colorbar.Tickformatstop - A list or tuple of dicts of string/value properties that will be passed to the Tickformatstop constructor Supported dict properties: dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" Returns ------- tuple[plotly.graph_objs.parcoords.line.colorbar.Tickformatstop] """ return self["tickformatstops"] @tickformatstops.setter def tickformatstops(self, val): self["tickformatstops"] = val # tickformatstopdefaults # ---------------------- @property def tickformatstopdefaults(self): """ When used in a template (as layout.template.data.parcoords.line .colorbar.tickformatstopdefaults), sets the default property values to use for elements of parcoords.line.colorbar.tickformatstops The 'tickformatstopdefaults' property is an instance of Tickformatstop that may be specified as: - An instance of :class:`plotly.graph_objs.parcoords.line.colorbar.Tickformatstop` - A dict of string/value properties that will be passed to the Tickformatstop constructor Supported dict properties: Returns ------- plotly.graph_objs.parcoords.line.colorbar.Tickformatstop """ return self["tickformatstopdefaults"] @tickformatstopdefaults.setter def tickformatstopdefaults(self, val): self["tickformatstopdefaults"] = val # ticklabeloverflow # ----------------- @property def ticklabeloverflow(self): """ Determines how we handle tick labels that would overflow either the graph div or the domain of the axis. The default value for inside tick labels is *hide past domain*. In other cases the default is *hide past div*. The 'ticklabeloverflow' property is an enumeration that may be specified as: - One of the following enumeration values: ['allow', 'hide past div', 'hide past domain'] Returns ------- Any """ return self["ticklabeloverflow"] @ticklabeloverflow.setter def ticklabeloverflow(self, val): self["ticklabeloverflow"] = val # ticklabelposition # ----------------- @property def ticklabelposition(self): """ Determines where tick labels are drawn. The 'ticklabelposition' property is an enumeration that may be specified as: - One of the following enumeration values: ['outside', 'inside', 'outside top', 'inside top', 'outside bottom', 'inside bottom'] Returns ------- Any """ return self["ticklabelposition"] @ticklabelposition.setter def ticklabelposition(self, val): self["ticklabelposition"] = val # ticklen # ------- @property def ticklen(self): """ Sets the tick length (in px). The 'ticklen' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["ticklen"] @ticklen.setter def ticklen(self, val): self["ticklen"] = val # tickmode # -------- @property def tickmode(self): """ Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). The 'tickmode' property is an enumeration that may be specified as: - One of the following enumeration values: ['auto', 'linear', 'array'] Returns ------- Any """ return self["tickmode"] @tickmode.setter def tickmode(self, val): self["tickmode"] = val # tickprefix # ---------- @property def tickprefix(self): """ Sets a tick label prefix. The 'tickprefix' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["tickprefix"] @tickprefix.setter def tickprefix(self, val): self["tickprefix"] = val # ticks # ----- @property def ticks(self): """ Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. The 'ticks' property is an enumeration that may be specified as: - One of the following enumeration values: ['outside', 'inside', ''] Returns ------- Any """ return self["ticks"] @ticks.setter def ticks(self, val): self["ticks"] = val # ticksuffix # ---------- @property def ticksuffix(self): """ Sets a tick label suffix. The 'ticksuffix' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["ticksuffix"] @ticksuffix.setter def ticksuffix(self, val): self["ticksuffix"] = val # ticktext # -------- @property def ticktext(self): """ Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. The 'ticktext' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["ticktext"] @ticktext.setter def ticktext(self, val): self["ticktext"] = val # ticktextsrc # ----------- @property def ticktextsrc(self): """ Sets the source reference on Chart Studio Cloud for ticktext . The 'ticktextsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["ticktextsrc"] @ticktextsrc.setter def ticktextsrc(self, val): self["ticktextsrc"] = val # tickvals # -------- @property def tickvals(self): """ Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. The 'tickvals' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["tickvals"] @tickvals.setter def tickvals(self, val): self["tickvals"] = val # tickvalssrc # ----------- @property def tickvalssrc(self): """ Sets the source reference on Chart Studio Cloud for tickvals . The 'tickvalssrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["tickvalssrc"] @tickvalssrc.setter def tickvalssrc(self, val): self["tickvalssrc"] = val # tickwidth # --------- @property def tickwidth(self): """ Sets the tick width (in px). The 'tickwidth' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["tickwidth"] @tickwidth.setter def tickwidth(self, val): self["tickwidth"] = val # title # ----- @property def title(self): """ The 'title' property is an instance of Title that may be specified as: - An instance of :class:`plotly.graph_objs.parcoords.line.colorbar.Title` - A dict of string/value properties that will be passed to the Title constructor Supported dict properties: font Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. side Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. text Sets the title of the color bar. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. Returns ------- plotly.graph_objs.parcoords.line.colorbar.Title """ return self["title"] @title.setter def title(self, val): self["title"] = val # titlefont # --------- @property def titlefont(self): """ Deprecated: Please use parcoords.line.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. The 'font' property is an instance of Font that may be specified as: - An instance of :class:`plotly.graph_objs.parcoords.line.colorbar.title.Font` - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- """ return self["titlefont"] @titlefont.setter def titlefont(self, val): self["titlefont"] = val # titleside # --------- @property def titleside(self): """ Deprecated: Please use parcoords.line.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. The 'side' property is an enumeration that may be specified as: - One of the following enumeration values: ['right', 'top', 'bottom'] Returns ------- """ return self["titleside"] @titleside.setter def titleside(self, val): self["titleside"] = val # x # - @property def x(self): """ Sets the x position of the color bar (in plot fraction). The 'x' property is a number and may be specified as: - An int or float in the interval [-2, 3] Returns ------- int|float """ return self["x"] @x.setter def x(self, val): self["x"] = val # xanchor # ------- @property def xanchor(self): """ Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. The 'xanchor' property is an enumeration that may be specified as: - One of the following enumeration values: ['left', 'center', 'right'] Returns ------- Any """ return self["xanchor"] @xanchor.setter def xanchor(self, val): self["xanchor"] = val # xpad # ---- @property def xpad(self): """ Sets the amount of padding (in px) along the x direction. The 'xpad' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["xpad"] @xpad.setter def xpad(self, val): self["xpad"] = val # y # - @property def y(self): """ Sets the y position of the color bar (in plot fraction). The 'y' property is a number and may be specified as: - An int or float in the interval [-2, 3] Returns ------- int|float """ return self["y"] @y.setter def y(self, val): self["y"] = val # yanchor # ------- @property def yanchor(self): """ Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. The 'yanchor' property is an enumeration that may be specified as: - One of the following enumeration values: ['top', 'middle', 'bottom'] Returns ------- Any """ return self["yanchor"] @yanchor.setter def yanchor(self, val): self["yanchor"] = val # ypad # ---- @property def ypad(self): """ Sets the amount of padding (in px) along the y direction. The 'ypad' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["ypad"] @ypad.setter def ypad(self, val): self["ypad"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. minexponent Hide SI prefix for 10^n if |n| is below this number. This only has an effect when `tickformat` is "SI" or "B". nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format. And for dates see: https://github.com/d3/d3-time- format#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops A tuple of :class:`plotly.graph_objects.parcoords.line. colorbar.Tickformatstop` instances or dicts with compatible properties tickformatstopdefaults When used in a template (as layout.template.data.parcoo rds.line.colorbar.tickformatstopdefaults), sets the default property values to use for elements of parcoords.line.colorbar.tickformatstops ticklabeloverflow Determines how we handle tick labels that would overflow either the graph div or the domain of the axis. The default value for inside tick labels is *hide past domain*. In other cases the default is *hide past div*. ticklabelposition Determines where tick labels are drawn. ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on Chart Studio Cloud for ticktext . tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on Chart Studio Cloud for tickvals . tickwidth Sets the tick width (in px). title :class:`plotly.graph_objects.parcoords.line.colorbar.Ti tle` instance or dict with compatible properties titlefont Deprecated: Please use parcoords.line.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use parcoords.line.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. ypad Sets the amount of padding (in px) along the y direction. """ _mapped_properties = { "titlefont": ("title", "font"), "titleside": ("title", "side"), } def __init__( self, arg=None, bgcolor=None, bordercolor=None, borderwidth=None, dtick=None, exponentformat=None, len=None, lenmode=None, minexponent=None, nticks=None, outlinecolor=None, outlinewidth=None, separatethousands=None, showexponent=None, showticklabels=None, showtickprefix=None, showticksuffix=None, thickness=None, thicknessmode=None, tick0=None, tickangle=None, tickcolor=None, tickfont=None, tickformat=None, tickformatstops=None, tickformatstopdefaults=None, ticklabeloverflow=None, ticklabelposition=None, ticklen=None, tickmode=None, tickprefix=None, ticks=None, ticksuffix=None, ticktext=None, ticktextsrc=None, tickvals=None, tickvalssrc=None, tickwidth=None, title=None, titlefont=None, titleside=None, x=None, xanchor=None, xpad=None, y=None, yanchor=None, ypad=None, **kwargs ): """ Construct a new ColorBar object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.parcoords.line.ColorBar` bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. minexponent Hide SI prefix for 10^n if |n| is below this number. This only has an effect when `tickformat` is "SI" or "B". nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format. And for dates see: https://github.com/d3/d3-time- format#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops A tuple of :class:`plotly.graph_objects.parcoords.line. colorbar.Tickformatstop` instances or dicts with compatible properties tickformatstopdefaults When used in a template (as layout.template.data.parcoo rds.line.colorbar.tickformatstopdefaults), sets the default property values to use for elements of parcoords.line.colorbar.tickformatstops ticklabeloverflow Determines how we handle tick labels that would overflow either the graph div or the domain of the axis. The default value for inside tick labels is *hide past domain*. In other cases the default is *hide past div*. ticklabelposition Determines where tick labels are drawn. ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on Chart Studio Cloud for ticktext . tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on Chart Studio Cloud for tickvals . tickwidth Sets the tick width (in px). title :class:`plotly.graph_objects.parcoords.line.colorbar.Ti tle` instance or dict with compatible properties titlefont Deprecated: Please use parcoords.line.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use parcoords.line.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. ypad Sets the amount of padding (in px) along the y direction. Returns ------- ColorBar """ super(ColorBar, self).__init__("colorbar") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.parcoords.line.ColorBar constructor must be a dict or an instance of :class:`plotly.graph_objs.parcoords.line.ColorBar`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("bgcolor", None) _v = bgcolor if bgcolor is not None else _v if _v is not None: self["bgcolor"] = _v _v = arg.pop("bordercolor", None) _v = bordercolor if bordercolor is not None else _v if _v is not None: self["bordercolor"] = _v _v = arg.pop("borderwidth", None) _v = borderwidth if borderwidth is not None else _v if _v is not None: self["borderwidth"] = _v _v = arg.pop("dtick", None) _v = dtick if dtick is not None else _v if _v is not None: self["dtick"] = _v _v = arg.pop("exponentformat", None) _v = exponentformat if exponentformat is not None else _v if _v is not None: self["exponentformat"] = _v _v = arg.pop("len", None) _v = len if len is not None else _v if _v is not None: self["len"] = _v _v = arg.pop("lenmode", None) _v = lenmode if lenmode is not None else _v if _v is not None: self["lenmode"] = _v _v = arg.pop("minexponent", None) _v = minexponent if minexponent is not None else _v if _v is not None: self["minexponent"] = _v _v = arg.pop("nticks", None) _v = nticks if nticks is not None else _v if _v is not None: self["nticks"] = _v _v = arg.pop("outlinecolor", None) _v = outlinecolor if outlinecolor is not None else _v if _v is not None: self["outlinecolor"] = _v _v = arg.pop("outlinewidth", None) _v = outlinewidth if outlinewidth is not None else _v if _v is not None: self["outlinewidth"] = _v _v = arg.pop("separatethousands", None) _v = separatethousands if separatethousands is not None else _v if _v is not None: self["separatethousands"] = _v _v = arg.pop("showexponent", None) _v = showexponent if showexponent is not None else _v if _v is not None: self["showexponent"] = _v _v = arg.pop("showticklabels", None) _v = showticklabels if showticklabels is not None else _v if _v is not None: self["showticklabels"] = _v _v = arg.pop("showtickprefix", None) _v = showtickprefix if showtickprefix is not None else _v if _v is not None: self["showtickprefix"] = _v _v = arg.pop("showticksuffix", None) _v = showticksuffix if showticksuffix is not None else _v if _v is not None: self["showticksuffix"] = _v _v = arg.pop("thickness", None) _v = thickness if thickness is not None else _v if _v is not None: self["thickness"] = _v _v = arg.pop("thicknessmode", None) _v = thicknessmode if thicknessmode is not None else _v if _v is not None: self["thicknessmode"] = _v _v = arg.pop("tick0", None) _v = tick0 if tick0 is not None else _v if _v is not None: self["tick0"] = _v _v = arg.pop("tickangle", None) _v = tickangle if tickangle is not None else _v if _v is not None: self["tickangle"] = _v _v = arg.pop("tickcolor", None) _v = tickcolor if tickcolor is not None else _v if _v is not None: self["tickcolor"] = _v _v = arg.pop("tickfont", None) _v = tickfont if tickfont is not None else _v if _v is not None: self["tickfont"] = _v _v = arg.pop("tickformat", None) _v = tickformat if tickformat is not None else _v if _v is not None: self["tickformat"] = _v _v = arg.pop("tickformatstops", None) _v = tickformatstops if tickformatstops is not None else _v if _v is not None: self["tickformatstops"] = _v _v = arg.pop("tickformatstopdefaults", None) _v = tickformatstopdefaults if tickformatstopdefaults is not None else _v if _v is not None: self["tickformatstopdefaults"] = _v _v = arg.pop("ticklabeloverflow", None) _v = ticklabeloverflow if ticklabeloverflow is not None else _v if _v is not None: self["ticklabeloverflow"] = _v _v = arg.pop("ticklabelposition", None) _v = ticklabelposition if ticklabelposition is not None else _v if _v is not None: self["ticklabelposition"] = _v _v = arg.pop("ticklen", None) _v = ticklen if ticklen is not None else _v if _v is not None: self["ticklen"] = _v _v = arg.pop("tickmode", None) _v = tickmode if tickmode is not None else _v if _v is not None: self["tickmode"] = _v _v = arg.pop("tickprefix", None) _v = tickprefix if tickprefix is not None else _v if _v is not None: self["tickprefix"] = _v _v = arg.pop("ticks", None) _v = ticks if ticks is not None else _v if _v is not None: self["ticks"] = _v _v = arg.pop("ticksuffix", None) _v = ticksuffix if ticksuffix is not None else _v if _v is not None: self["ticksuffix"] = _v _v = arg.pop("ticktext", None) _v = ticktext if ticktext is not None else _v if _v is not None: self["ticktext"] = _v _v = arg.pop("ticktextsrc", None) _v = ticktextsrc if ticktextsrc is not None else _v if _v is not None: self["ticktextsrc"] = _v _v = arg.pop("tickvals", None) _v = tickvals if tickvals is not None else _v if _v is not None: self["tickvals"] = _v _v = arg.pop("tickvalssrc", None) _v = tickvalssrc if tickvalssrc is not None else _v if _v is not None: self["tickvalssrc"] = _v _v = arg.pop("tickwidth", None) _v = tickwidth if tickwidth is not None else _v if _v is not None: self["tickwidth"] = _v _v = arg.pop("title", None) _v = title if title is not None else _v if _v is not None: self["title"] = _v _v = arg.pop("titlefont", None) _v = titlefont if titlefont is not None else _v if _v is not None: self["titlefont"] = _v _v = arg.pop("titleside", None) _v = titleside if titleside is not None else _v if _v is not None: self["titleside"] = _v _v = arg.pop("x", None) _v = x if x is not None else _v if _v is not None: self["x"] = _v _v = arg.pop("xanchor", None) _v = xanchor if xanchor is not None else _v if _v is not None: self["xanchor"] = _v _v = arg.pop("xpad", None) _v = xpad if xpad is not None else _v if _v is not None: self["xpad"] = _v _v = arg.pop("y", None) _v = y if y is not None else _v if _v is not None: self["y"] = _v _v = arg.pop("yanchor", None) _v = yanchor if yanchor is not None else _v if _v is not None: self["yanchor"] = _v _v = arg.pop("ypad", None) _v = ypad if ypad is not None else _v if _v is not None: self["ypad"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
mit
jni/networkx
examples/multigraph/chess_masters.py
54
5146
#!/usr/bin/env python """ An example of the MultiDiGraph clas The function chess_pgn_graph reads a collection of chess matches stored in the specified PGN file (PGN ="Portable Game Notation") Here the (compressed) default file --- chess_masters_WCC.pgn.bz2 --- contains all 685 World Chess Championship matches from 1886 - 1985. (data from http://chessproblem.my-free-games.com/chess/games/Download-PGN.php) The chess_pgn_graph() function returns a MultiDiGraph with multiple edges. Each node is the last name of a chess master. Each edge is directed from white to black and contains selected game info. The key statement in chess_pgn_graph below is G.add_edge(white, black, game_info) where game_info is a dict describing each game. """ # Copyright (C) 2006-2010 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import networkx as nx # tag names specifying what game info should be # stored in the dict on each digraph edge game_details=["Event", "Date", "Result", "ECO", "Site"] def chess_pgn_graph(pgn_file="chess_masters_WCC.pgn.bz2"): """Read chess games in pgn format in pgn_file. Filenames ending in .gz or .bz2 will be uncompressed. Return the MultiDiGraph of players connected by a chess game. Edges contain game data in a dict. """ import bz2 G=nx.MultiDiGraph() game={} datafile = bz2.BZ2File(pgn_file) lines = (line.decode().rstrip('\r\n') for line in datafile) for line in lines: if line.startswith('['): tag,value=line[1:-1].split(' ',1) game[str(tag)]=value.strip('"') else: # empty line after tag set indicates # we finished reading game info if game: white=game.pop('White') black=game.pop('Black') G.add_edge(white, black, **game) game={} return G if __name__ == '__main__': import networkx as nx G=chess_pgn_graph() ngames=G.number_of_edges() nplayers=G.number_of_nodes() print("Loaded %d chess games between %d players\n"\ % (ngames,nplayers)) # identify connected components # of the undirected version Gcc=list(nx.connected_component_subgraphs(G.to_undirected())) if len(Gcc)>1: print("Note the disconnected component consisting of:") print(Gcc[1].nodes()) # find all games with B97 opening (as described in ECO) openings=set([game_info['ECO'] for (white,black,game_info) in G.edges(data=True)]) print("\nFrom a total of %d different openings,"%len(openings)) print('the following games used the Sicilian opening') print('with the Najdorff 7...Qb6 "Poisoned Pawn" variation.\n') for (white,black,game_info) in G.edges(data=True): if game_info['ECO']=='B97': print(white,"vs",black) for k,v in game_info.items(): print(" ",k,": ",v) print("\n") try: import matplotlib.pyplot as plt except ImportError: import sys print("Matplotlib needed for drawing. Skipping") sys.exit(0) # make new undirected graph H without multi-edges H=nx.Graph(G) # edge width is proportional number of games played edgewidth=[] for (u,v,d) in H.edges(data=True): edgewidth.append(len(G.get_edge_data(u,v))) # node size is proportional to number of games won wins=dict.fromkeys(G.nodes(),0.0) for (u,v,d) in G.edges(data=True): r=d['Result'].split('-') if r[0]=='1': wins[u]+=1.0 elif r[0]=='1/2': wins[u]+=0.5 wins[v]+=0.5 else: wins[v]+=1.0 try: pos=nx.graphviz_layout(H) except: pos=nx.spring_layout(H,iterations=20) plt.rcParams['text.usetex'] = False plt.figure(figsize=(8,8)) nx.draw_networkx_edges(H,pos,alpha=0.3,width=edgewidth, edge_color='m') nodesize=[wins[v]*50 for v in H] nx.draw_networkx_nodes(H,pos,node_size=nodesize,node_color='w',alpha=0.4) nx.draw_networkx_edges(H,pos,alpha=0.4,node_size=0,width=1,edge_color='k') nx.draw_networkx_labels(H,pos,fontsize=14) font = {'fontname' : 'Helvetica', 'color' : 'k', 'fontweight' : 'bold', 'fontsize' : 14} plt.title("World Chess Championship Games: 1886 - 1985", font) # change font and write text (using data coordinates) font = {'fontname' : 'Helvetica', 'color' : 'r', 'fontweight' : 'bold', 'fontsize' : 14} plt.text(0.5, 0.97, "edge width = # games played", horizontalalignment='center', transform=plt.gca().transAxes) plt.text(0.5, 0.94, "node size = # games won", horizontalalignment='center', transform=plt.gca().transAxes) plt.axis('off') plt.savefig("chess_masters.png",dpi=75) print("Wrote chess_masters.png") plt.show() # display
bsd-3-clause
shyamalschandra/scikit-learn
examples/datasets/plot_random_dataset.py
348
2254
""" ============================================== Plot randomly generated classification dataset ============================================== Plot several randomly generated 2D classification datasets. This example illustrates the :func:`datasets.make_classification` :func:`datasets.make_blobs` and :func:`datasets.make_gaussian_quantiles` functions. For ``make_classification``, three binary and two multi-class classification datasets are generated, with different numbers of informative features and clusters per class. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_gaussian_quantiles plt.figure(figsize=(8, 8)) plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95) plt.subplot(321) plt.title("One informative feature, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(322) plt.title("Two informative features, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(323) plt.title("Two informative features, two clusters per class", fontsize='small') X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2) plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2) plt.subplot(324) plt.title("Multi-class, two informative features, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(325) plt.title("Three blobs", fontsize='small') X1, Y1 = make_blobs(n_features=2, centers=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(326) plt.title("Gaussian divided into three quantiles", fontsize='small') X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.show()
bsd-3-clause
aminert/scikit-learn
examples/svm/plot_separating_hyperplane.py
294
1273
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
jungla/ICOM-fluidity-toolbox
2D/U/plot_KE_mli.py
1
1420
import os, sys import vtktools import fluidity_tools import numpy as np import matplotlib as mpl mpl.use('ps') import matplotlib.pyplot as plt label0 = 'm_25_3b' label1 = 'm_25_3b' basename1 = 'mli_checkpoint' basename0 = 'mli' path0 = '/tamay2/mensa/fluidity/'+label0+'/' path1 = '/tamay2/mensa/fluidity/'+label1+'/' try: os.stat('./plot/'+label1) except OSError: os.mkdir('./plot/'+label1) # file0 = basename0+'.stat' filepath0 = path0+file0 stat0 = fluidity_tools.stat_parser(filepath0) file1 = basename1+'.stat' filepath1 = path1+file1 stat1 = fluidity_tools.stat_parser(filepath1) time0 = stat0["ElapsedTime"]["value"]/86400.0 time1 = stat1["ElapsedTime"]["value"]/86400.0 KE0 = (stat0["BoussinesqFluid"]["Velocity%magnitude"]["l2norm"])/np.sqrt((10000*10000*50)) KE1 = (stat1["BoussinesqFluid"]["Velocity%magnitude"]["l2norm"])/np.sqrt((10000*10000*50)) #time1[time1 > 1] = np.nan #KE1[time1 > 1] = np.nan # plot KE fig = plt.figure() #plt.plot(time0[:], KE0[:], '--k',linewidth=3) plt.plot(time1[:], KE1[:], '-k',linewidth=3) plt.xlabel("Time $[days]$", fontsize=22) plt.ylabel("rms Magnitude Velocity $[m/s]$", fontsize=22) plt.xticks(fontsize=18) plt.yticks(fontsize=18) #plt.xlim([-0.000017, 0.00004]) #plt.xticks([-0.00001, 0.00002]) plt.tight_layout() plt.savefig('./plot/'+label1+'/KE_t_'+label1+'.eps',bbox_inches='tight') plt.close() print 'saved '+'./plot/'+label1+'/KE_t_'+label1+'.eps\n' #
gpl-2.0
WangWenjun559/Weiss
summary/sumy/sklearn/utils/tests/test_class_weight.py
140
11909
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # cuplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
apache-2.0
halflings/receval
test_receval.py
1
3895
import pandas as pd import receval def test_data_loading(): df = receval.download.load_movielens() df = receval.preprocessing.aggregate_ratings(df, method='min') receval.preprocessing.validate_dataframe(df) def test_random_splitter(): df = receval.download.load_movielens() df = receval.preprocessing.aggregate_ratings(df, method='max') for test_size in [0.1, 0.4, 0.9]: splitter = receval.splitter.RandomSplitter( test_size=test_size, per_user=True) train, test = splitter.split(df) test_count = test.groupby('user').count()['rating'] train_count = train.groupby('user').count()['rating'] assert (test_count / (test_count + train_count)).apply(lambda v: abs(v - test_size) < 0.05).all(), "test/train ratio is off" def test_temporal_splitter(): df = receval.download.load_movielens() for test_size in [0.1, 0.9]: splitter = receval.splitter.TemporalSplitter( test_size=test_size, per_user=True) train, test = splitter.split(df) test_count = test.groupby('user').count()['rating'] train_count = train.groupby('user').count()['rating'] assert (test_count / (test_count + train_count)).apply(lambda v: abs(v - test_size) < 0.05).all(), "test/train ratio is off" # TODO : do a more specific test (that tests the split is in fact on time, # not just random) def test_recommender(): df = receval.download.load_movielens() dummy_cmd = receval.recommender.DummyCommandRecommender() dummy_obj = receval.recommender.DummyRecommender() splitter = receval.splitter.RandomSplitter(0.5, per_user=True) print("* Splitting...") train, test = splitter.split(df) test_users = test.user.unique() print(dummy_cmd.recommend(train, test_users)) print("* Dummy object...") print(dummy_obj.recommend(train, test_users)) rec = receval.recommender.BaselineRecommender() recommendations = rec.recommend(train, test_users) print(recommendations) def test_simple_preprocessing_recommender(): df = pd.DataFrame(dict(user=[0, 0, 0, 1, 1, 2, 2, 2], item=[0, 1, 3, 0, 0, 0, 1, 1], rating=[1, 0.01, 0.9, 0.05, 0.85, 0.95, 1., 0.9])) df = df[['user', 'item', 'rating']] def threshold_and_dedup_func(ratings): ratings = ratings.copy() ratings['rating'] = ratings['rating'].apply( lambda v: 1 if v > 0.8 else 0) ratings = ratings.drop_duplicates(subset=['user', 'item']) return ratings splitter = receval.splitter.RandomSplitter(0.5) train, test = splitter.split(df) class ModifiedTestRecommender(receval.recommender.BaselineRecommender): def _recommend(self, train_ratings, test_users): assert train_ratings.rating.isin( [0, 1]).all(), "The ratings weren't thresholded like expected" return super(ModifiedTestRecommender, self)._recommend(train_ratings, test_users) recommender = ModifiedTestRecommender( preprocessing_func=threshold_and_dedup_func) recommender.recommend(train, test.user.unique()) def test_evaluation_instance(): ratings = receval.download.load_movielens() splitter = receval.splitter.TemporalSplitter(test_size=0.3, per_user=True) train, test = splitter.split(ratings) rec = receval.recommender.BaselineRecommender( num_recommendations=20) recommendations = rec.recommend(train, test.user.unique()) receval.evaluation.Evaluation(recommendations, test) def test_word2vec_class(): ratings = receval.download.load_movielens() splitter = receval.splitter.TemporalSplitter(test_size=0.3, per_user=True) train, test = splitter.split(ratings) rec = receval.recommender.Word2VecRecommender(num_recommendations=50) rec.recommend(train, test.user.unique())
apache-2.0
rahul-c1/scikit-learn
sklearn/covariance/robust_covariance.py
17
28933
""" Robust location and covariance estimators. Here are implemented estimators that are resistant to outliers. """ # Author: Virgile Fritsch <[email protected]> # # License: BSD 3 clause import warnings import numbers import numpy as np from scipy import linalg from scipy.stats import chi2 from . import empirical_covariance, EmpiricalCovariance from ..utils.extmath import fast_logdet, pinvh from ..utils import check_random_state # Minimum Covariance Determinant # Implementing of an algorithm by Rousseeuw & Van Driessen described in # (A Fast Algorithm for the Minimum Covariance Determinant Estimator, # 1999, American Statistical Association and the American Society # for Quality, TECHNOMETRICS) # XXX Is this really a public function? It's not listed in the docs or # exported by sklearn.covariance. Deprecate? def c_step(X, n_support, remaining_iterations=30, initial_estimates=None, verbose=False, cov_computation_method=empirical_covariance, random_state=None): """C_step procedure described in [Rouseeuw1984]_ aiming at computing MCD. Parameters ---------- X : array-like, shape (n_samples, n_features) Data set in which we look for the n_support observations whose scatter matrix has minimum determinant. n_support : int, > n_samples / 2 Number of observations to compute the robust estimates of location and covariance from. remaining_iterations : int, optional Number of iterations to perform. According to [Rouseeuw1999]_, two iterations are sufficient to get close to the minimum, and we never need more than 30 to reach convergence. initial_estimates : 2-tuple, optional Initial estimates of location and shape from which to run the c_step procedure: - initial_estimates[0]: an initial location estimate - initial_estimates[1]: an initial covariance estimate verbose : boolean, optional Verbose mode. random_state : integer or numpy.RandomState, optional The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Returns ------- location : array-like, shape (n_features,) Robust location estimates. covariance : array-like, shape (n_features, n_features) Robust covariance estimates. support : array-like, shape (n_samples,) A mask for the `n_support` observations whose scatter matrix has minimum determinant. References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS """ X = np.asarray(X) random_state = check_random_state(random_state) return _c_step(X, n_support, remaining_iterations=remaining_iterations, initial_estimates=initial_estimates, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state) def _c_step(X, n_support, random_state, remaining_iterations=30, initial_estimates=None, verbose=False, cov_computation_method=empirical_covariance): n_samples, n_features = X.shape # Initialisation support = np.zeros(n_samples, dtype=bool) if initial_estimates is None: # compute initial robust estimates from a random subset support[random_state.permutation(n_samples)[:n_support]] = True else: # get initial robust estimates from the function parameters location = initial_estimates[0] covariance = initial_estimates[1] # run a special iteration for that case (to get an initial support) precision = pinvh(covariance) X_centered = X - location dist = (np.dot(X_centered, precision) * X_centered).sum(1) # compute new estimates support[np.argsort(dist)[:n_support]] = True X_support = X[support] location = X_support.mean(0) covariance = cov_computation_method(X_support) # Iterative procedure for Minimum Covariance Determinant computation det = fast_logdet(covariance) previous_det = np.inf while (det < previous_det) and (remaining_iterations > 0): # save old estimates values previous_location = location previous_covariance = covariance previous_det = det previous_support = support # compute a new support from the full data set mahalanobis distances precision = pinvh(covariance) X_centered = X - location dist = (np.dot(X_centered, precision) * X_centered).sum(axis=1) # compute new estimates support = np.zeros(n_samples, dtype=bool) support[np.argsort(dist)[:n_support]] = True X_support = X[support] location = X_support.mean(axis=0) covariance = cov_computation_method(X_support) det = fast_logdet(covariance) # update remaining iterations for early stopping remaining_iterations -= 1 previous_dist = dist dist = (np.dot(X - location, precision) * (X - location)).sum(axis=1) # Catch computation errors if np.isinf(det): raise ValueError( "Singular covariance matrix. " "Please check that the covariance matrix corresponding " "to the dataset is full rank and that MinCovDet is used with " "Gaussian-distributed data (or at least data drawn from a " "unimodal, symmetric distribution.") # Check convergence if np.allclose(det, previous_det): # c_step procedure converged if verbose: print("Optimal couple (location, covariance) found before" " ending iterations (%d left)" % (remaining_iterations)) results = location, covariance, det, support, dist elif det > previous_det: # determinant has increased (should not happen) warnings.warn("Warning! det > previous_det (%.15f > %.15f)" % (det, previous_det), RuntimeWarning) results = previous_location, previous_covariance, \ previous_det, previous_support, previous_dist # Check early stopping if remaining_iterations == 0: if verbose: print('Maximum number of iterations reached') results = location, covariance, det, support, dist return results def select_candidates(X, n_support, n_trials, select=1, n_iter=30, verbose=False, cov_computation_method=empirical_covariance, random_state=None): """Finds the best pure subset of observations to compute MCD from it. The purpose of this function is to find the best sets of n_support observations with respect to a minimization of their covariance matrix determinant. Equivalently, it removes n_samples-n_support observations to construct what we call a pure data set (i.e. not containing outliers). The list of the observations of the pure data set is referred to as the `support`. Starting from a random support, the pure data set is found by the c_step procedure introduced by Rousseeuw and Van Driessen in [Rouseeuw1999]_. Parameters ---------- X : array-like, shape (n_samples, n_features) Data (sub)set in which we look for the n_support purest observations. n_support : int, [(n + p + 1)/2] < n_support < n The number of samples the pure data set must contain. select : int, int > 0 Number of best candidates results to return. n_trials : int, nb_trials > 0 or 2-tuple Number of different initial sets of observations from which to run the algorithm. Instead of giving a number of trials to perform, one can provide a list of initial estimates that will be used to iteratively run c_step procedures. In this case: - n_trials[0]: array-like, shape (n_trials, n_features) is the list of `n_trials` initial location estimates - n_trials[1]: array-like, shape (n_trials, n_features, n_features) is the list of `n_trials` initial covariances estimates n_iter : int, nb_iter > 0 Maximum number of iterations for the c_step procedure. (2 is enough to be close to the final solution. "Never" exceeds 20). random_state : integer or numpy.RandomState, optional The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. See Also --------- c_step Returns ------- best_locations : array-like, shape (select, n_features) The `select` location estimates computed from the `select` best supports found in the data set (`X`). best_covariances : array-like, shape (select, n_features, n_features) The `select` covariance estimates computed from the `select` best supports found in the data set (`X`). best_supports : array-like, shape (select, n_samples) The `select` best supports found in the data set (`X`). References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS """ random_state = check_random_state(random_state) n_samples, n_features = X.shape if isinstance(n_trials, numbers.Integral): run_from_estimates = False elif isinstance(n_trials, tuple): run_from_estimates = True estimates_list = n_trials n_trials = estimates_list[0].shape[0] else: raise TypeError("Invalid 'n_trials' parameter, expected tuple or " " integer, got %s (%s)" % (n_trials, type(n_trials))) # compute `n_trials` location and shape estimates candidates in the subset all_estimates = [] if not run_from_estimates: # perform `n_trials` computations from random initial supports for j in range(n_trials): all_estimates.append( _c_step( X, n_support, remaining_iterations=n_iter, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state)) else: # perform computations from every given initial estimates for j in range(n_trials): initial_estimates = (estimates_list[0][j], estimates_list[1][j]) all_estimates.append(_c_step( X, n_support, remaining_iterations=n_iter, initial_estimates=initial_estimates, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state)) all_locs_sub, all_covs_sub, all_dets_sub, all_supports_sub, all_ds_sub = \ zip(*all_estimates) # find the `n_best` best results among the `n_trials` ones index_best = np.argsort(all_dets_sub)[:select] best_locations = np.asarray(all_locs_sub)[index_best] best_covariances = np.asarray(all_covs_sub)[index_best] best_supports = np.asarray(all_supports_sub)[index_best] best_ds = np.asarray(all_ds_sub)[index_best] return best_locations, best_covariances, best_supports, best_ds def fast_mcd(X, support_fraction=None, cov_computation_method=empirical_covariance, random_state=None): """Estimates the Minimum Covariance Determinant matrix. Parameters ---------- X : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. support_fraction : float, 0 < support_fraction < 1 The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: `[n_sample + n_features + 1] / 2`. random_state : integer or numpy.RandomState, optional The generator used to randomly subsample. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Notes ----- The FastMCD algorithm has been introduced by Rousseuw and Van Driessen in "A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS". The principle is to compute robust estimates and random subsets before pooling them into a larger subsets, and finally into the full data set. Depending on the size of the initial sample, we have one, two or three such computation levels. Note that only raw estimates are returned. If one is interested in the correction and reweighting steps described in [Rouseeuw1999]_, see the MinCovDet object. References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS .. [Butler1993] R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400 Returns ------- location : array-like, shape (n_features,) Robust location of the data. covariance : array-like, shape (n_features, n_features) Robust covariance of the features. support : array-like, type boolean, shape (n_samples,) A mask of the observations that have been used to compute the robust location and covariance estimates of the data set. """ random_state = check_random_state(random_state) X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (1, -1)) warnings.warn("Only one sample available. " "You may want to reshape your data array") n_samples, n_features = X.shape # minimum breakdown value if support_fraction is None: n_support = int(np.ceil(0.5 * (n_samples + n_features + 1))) else: n_support = int(support_fraction * n_samples) # 1-dimensional case quick computation # (Rousseeuw, P. J. and Leroy, A. M. (2005) References, in Robust # Regression and Outlier Detection, John Wiley & Sons, chapter 4) if n_features == 1: if n_support < n_samples: # find the sample shortest halves X_sorted = np.sort(np.ravel(X)) diff = X_sorted[n_support:] - X_sorted[:(n_samples - n_support)] halves_start = np.where(diff == np.min(diff))[0] # take the middle points' mean to get the robust location estimate location = 0.5 * (X_sorted[n_support + halves_start] + X_sorted[halves_start]).mean() support = np.zeros(n_samples, dtype=bool) X_centered = X - location support[np.argsort(np.abs(X_centered), 0)[:n_support]] = True covariance = np.asarray([[np.var(X[support])]]) location = np.array([location]) # get precision matrix in an optimized way precision = pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) else: support = np.ones(n_samples, dtype=bool) covariance = np.asarray([[np.var(X)]]) location = np.asarray([np.mean(X)]) X_centered = X - location # get precision matrix in an optimized way precision = pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) # Starting FastMCD algorithm for p-dimensional case if (n_samples > 500) and (n_features > 1): # 1. Find candidate supports on subsets # a. split the set in subsets of size ~ 300 n_subsets = n_samples // 300 n_samples_subsets = n_samples // n_subsets samples_shuffle = random_state.permutation(n_samples) h_subset = int(np.ceil(n_samples_subsets * (n_support / float(n_samples)))) # b. perform a total of 500 trials n_trials_tot = 500 # c. select 10 best (location, covariance) for each subset n_best_sub = 10 n_trials = max(10, n_trials_tot // n_subsets) n_best_tot = n_subsets * n_best_sub all_best_locations = np.zeros((n_best_tot, n_features)) try: all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) except MemoryError: # The above is too big. Let's try with something much small # (and less optimal) all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) n_best_tot = 10 n_best_sub = 2 for i in range(n_subsets): low_bound = i * n_samples_subsets high_bound = low_bound + n_samples_subsets current_subset = X[samples_shuffle[low_bound:high_bound]] best_locations_sub, best_covariances_sub, _, _ = select_candidates( current_subset, h_subset, n_trials, select=n_best_sub, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state) subset_slice = np.arange(i * n_best_sub, (i + 1) * n_best_sub) all_best_locations[subset_slice] = best_locations_sub all_best_covariances[subset_slice] = best_covariances_sub # 2. Pool the candidate supports into a merged set # (possibly the full dataset) n_samples_merged = min(1500, n_samples) h_merged = int(np.ceil(n_samples_merged * (n_support / float(n_samples)))) if n_samples > 1500: n_best_merged = 10 else: n_best_merged = 1 # find the best couples (location, covariance) on the merged set selection = random_state.permutation(n_samples)[:n_samples_merged] locations_merged, covariances_merged, supports_merged, d = \ select_candidates( X[selection], h_merged, n_trials=(all_best_locations, all_best_covariances), select=n_best_merged, cov_computation_method=cov_computation_method, random_state=random_state) # 3. Finally get the overall best (locations, covariance) couple if n_samples < 1500: # directly get the best couple (location, covariance) location = locations_merged[0] covariance = covariances_merged[0] support = np.zeros(n_samples, dtype=bool) dist = np.zeros(n_samples) support[selection] = supports_merged[0] dist[selection] = d[0] else: # select the best couple on the full dataset locations_full, covariances_full, supports_full, d = \ select_candidates( X, n_support, n_trials=(locations_merged, covariances_merged), select=1, cov_computation_method=cov_computation_method, random_state=random_state) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] elif n_features > 1: # 1. Find the 10 best couples (location, covariance) # considering two iterations n_trials = 30 n_best = 10 locations_best, covariances_best, _, _ = select_candidates( X, n_support, n_trials=n_trials, select=n_best, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state) # 2. Select the best couple on the full dataset amongst the 10 locations_full, covariances_full, supports_full, d = select_candidates( X, n_support, n_trials=(locations_best, covariances_best), select=1, cov_computation_method=cov_computation_method, random_state=random_state) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] return location, covariance, support, dist class MinCovDet(EmpiricalCovariance): """Minimum Covariance Determinant (MCD): robust estimator of covariance. The Minimum Covariance Determinant covariance estimator is to be applied on Gaussian-distributed data, but could still be relevant on data drawn from a unimodal, symmetric distribution. It is not meant to be used with multi-modal data (the algorithm used to fit a MinCovDet object is likely to fail in such a case). One should consider projection pursuit methods to deal with multi-modal datasets. Parameters ---------- store_precision : bool Specify if the estimated precision is stored. assume_centered : Boolean If True, the support of the robust location and the covariance estimates is computed, and a covariance estimate is recomputed from it, without centering the data. Useful to work with data whose mean is significantly equal to zero but is not exactly zero. If False, the robust location and covariance are directly computed with the FastMCD algorithm without additional treatment. support_fraction : float, 0 < support_fraction < 1 The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: [n_sample + n_features + 1] / 2 random_state : integer or numpy.RandomState, optional The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- raw_location_ : array-like, shape (n_features,) The raw robust estimated location before correction and re-weighting. raw_covariance_ : array-like, shape (n_features, n_features) The raw robust estimated covariance before correction and re-weighting. raw_support_ : array-like, shape (n_samples,) A mask of the observations that have been used to compute the raw robust estimates of location and shape, before correction and re-weighting. location_ : array-like, shape (n_features,) Estimated robust location covariance_ : array-like, shape (n_features, n_features) Estimated robust covariance matrix precision_ : array-like, shape (n_features, n_features) Estimated pseudo inverse matrix. (stored only if store_precision is True) support_ : array-like, shape (n_samples,) A mask of the observations that have been used to compute the robust estimates of location and shape. dist_ : array-like, shape (n_samples,) Mahalanobis distances of the training set (on which `fit` is called) observations. References ---------- .. [Rouseeuw1984] `P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.` .. [Rouseeuw1999] `A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS` .. [Butler1993] `R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400` """ _nonrobust_covariance = staticmethod(empirical_covariance) def __init__(self, store_precision=True, assume_centered=False, support_fraction=None, random_state=None): self.store_precision = store_precision self.assume_centered = assume_centered self.support_fraction = support_fraction self.random_state = random_state def fit(self, X, y=None): """Fits a Minimum Covariance Determinant with the FastMCD algorithm. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : not used, present for API consistence purpose. Returns ------- self : object Returns self. """ random_state = check_random_state(self.random_state) n_samples, n_features = X.shape # check that the empirical covariance is full rank if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features: warnings.warn("The covariance matrix associated to your dataset " "is not full rank") # compute and store raw estimates raw_location, raw_covariance, raw_support, raw_dist = fast_mcd( X, support_fraction=self.support_fraction, cov_computation_method=self._nonrobust_covariance, random_state=random_state) if self.assume_centered: raw_location = np.zeros(n_features) raw_covariance = self._nonrobust_covariance(X[raw_support], assume_centered=True) # get precision matrix in an optimized way precision = pinvh(raw_covariance) raw_dist = np.sum(np.dot(X, precision) * X, 1) self.raw_location_ = raw_location self.raw_covariance_ = raw_covariance self.raw_support_ = raw_support self.location_ = raw_location self.support_ = raw_support self.dist_ = raw_dist # obtain consistency at normal models self.correct_covariance(X) # re-weight estimator self.reweight_covariance(X) return self def correct_covariance(self, data): """Apply a correction to raw Minimum Covariance Determinant estimates. Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in [Rouseeuw1984]_. Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. Returns ------- covariance_corrected : array-like, shape (n_features, n_features) Corrected robust covariance estimate. """ correction = np.median(self.dist_) / chi2(data.shape[1]).isf(0.5) covariance_corrected = self.raw_covariance_ * correction self.dist_ /= correction return covariance_corrected def reweight_covariance(self, data): """Re-weight raw Minimum Covariance Determinant estimates. Re-weight observations using Rousseeuw's method (equivalent to deleting outlying observations from the data set before computing location and covariance estimates). [Rouseeuw1984]_ Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. Returns ------- location_reweighted : array-like, shape (n_features, ) Re-weighted robust location estimate. covariance_reweighted : array-like, shape (n_features, n_features) Re-weighted robust covariance estimate. support_reweighted : array-like, type boolean, shape (n_samples,) A mask of the observations that have been used to compute the re-weighted robust location and covariance estimates. """ n_samples, n_features = data.shape mask = self.dist_ < chi2(n_features).isf(0.025) if self.assume_centered: location_reweighted = np.zeros(n_features) else: location_reweighted = data[mask].mean(0) covariance_reweighted = self._nonrobust_covariance( data[mask], assume_centered=self.assume_centered) support_reweighted = np.zeros(n_samples, dtype=bool) support_reweighted[mask] = True self._set_covariance(covariance_reweighted) self.location_ = location_reweighted self.support_ = support_reweighted X_centered = data - self.location_ self.dist_ = np.sum( np.dot(X_centered, self.get_precision()) * X_centered, 1) return location_reweighted, covariance_reweighted, support_reweighted
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/lib/matplotlib/textpath.py
3
15516
# -*- coding: utf-8 -*- import urllib from matplotlib.path import Path import matplotlib.font_manager as font_manager from matplotlib.ft2font import FT2Font, KERNING_DEFAULT, LOAD_NO_HINTING, LOAD_TARGET_LIGHT from matplotlib.mathtext import MathTextParser import matplotlib.dviread as dviread import numpy as np import warnings class TextToPath(object): """ A class that convert a given text to a path using ttf fonts. """ FONT_SCALE = 100. DPI = 72 def __init__(self): """ Initialization """ self.mathtext_parser = MathTextParser('path') self.tex_font_map = None from matplotlib.cbook import maxdict self._ps_fontd = maxdict(50) self._texmanager = None self._adobe_standard_encoding = None def _get_adobe_standard_encoding(self): enc_name = dviread.find_tex_file('8a.enc') enc = dviread.Encoding(enc_name) return dict([(c, i) for i, c in enumerate(enc.encoding)]) def _get_font(self, prop): """ find a ttf font. """ fname = font_manager.findfont(prop) font = FT2Font(str(fname)) font.set_size(self.FONT_SCALE, self.DPI) return font def _get_hinting_flag(self): return LOAD_NO_HINTING def _get_char_id(self, font, ccode): """ Return a unique id for the given font and character-code set. """ ps_name = font.get_sfnt()[(1,0,0,6)] char_id = urllib.quote('%s-%x' % (ps_name, ccode)) return char_id def _get_char_id_ps(self, font, ccode): """ Return a unique id for the given font and character-code set (for tex). """ ps_name = font.get_ps_font_info()[2] char_id = urllib.quote('%s-%d' % (ps_name, ccode)) return char_id def glyph_to_path(self, font, currx=0.): """ convert the ft2font glyph to vertices and codes. """ verts, codes = font.get_path() if currx != 0.0: verts[:,0] += currx return verts, codes def get_text_width_height_descent(self, s, prop, ismath): if rcParams['text.usetex']: texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() w, h, d = texmanager.get_text_width_height_descent(s, fontsize, renderer=None) return w, h, d fontsize = prop.get_size_in_points() scale = float(fontsize) / self.FONT_SCALE if ismath: prop = prop.copy() prop.set_size(self.FONT_SCALE) width, height, descent, trash, used_characters = \ self.mathtext_parser.parse(s, 72, prop) return width * scale, height * scale, descent * scale font = self._get_font(prop) font.set_text(s, 0.0, flags=LOAD_NO_HINTING) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 d = font.get_descent() d /= 64.0 return w * scale, h * scale, d * scale def get_text_path(self, prop, s, ismath=False, usetex=False): """ convert text *s* to path (a tuple of vertices and codes for matplotlib.math.Path). *prop* font property *s* text to be converted *usetex* If True, use matplotlib usetex mode. *ismath* If True, use mathtext parser. Effective only if usetex == False. """ if usetex==False: if ismath == False: font = self._get_font(prop) glyph_info, glyph_map, rects = self.get_glyphs_with_font(font, s) else: glyph_info, glyph_map, rects = self.get_glyphs_mathtext(prop, s) else: glyph_info, glyph_map, rects = self.get_glyphs_tex(prop, s) verts, codes = [], [] for glyph_id, xposition, yposition, scale in glyph_info: verts1, codes1 = glyph_map[glyph_id] if len(verts1): verts1 = np.array(verts1)*scale + [xposition, yposition] verts.extend(verts1) codes.extend(codes1) for verts1, codes1 in rects: verts.extend(verts1) codes.extend(codes1) return verts, codes def get_glyphs_with_font(self, font, s, glyph_map=None, return_new_glyphs_only=False): """ convert the string *s* to vertices and codes using the provided ttf font. """ # Mostly copied from backend_svg.py. cmap = font.get_charmap() lastgind = None currx = 0 xpositions = [] glyph_ids = [] if glyph_map is None: glyph_map = dict() if return_new_glyphs_only: glyph_map_new = dict() else: glyph_map_new = glyph_map # I'm not sure if I get kernings right. Needs to be verified. -JJL for c in s: ccode = ord(c) gind = cmap.get(ccode) if gind is None: ccode = ord('?') gind = 0 if lastgind is not None: kern = font.get_kerning(lastgind, gind, KERNING_DEFAULT) else: kern = 0 glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) horiz_advance = (glyph.linearHoriAdvance / 65536.0) char_id = self._get_char_id(font, ccode) if not char_id in glyph_map: glyph_map_new[char_id] = self.glyph_to_path(font) currx += (kern / 64.0) xpositions.append(currx) glyph_ids.append(char_id) currx += horiz_advance lastgind = gind ypositions = [0] * len(xpositions) sizes = [1.] * len(xpositions) rects = [] return zip(glyph_ids, xpositions, ypositions, sizes), glyph_map_new, rects def get_glyphs_mathtext(self, prop, s, glyph_map=None, return_new_glyphs_only=False): """ convert the string *s* to vertices and codes by parsing it with mathtext. """ prop = prop.copy() prop.set_size(self.FONT_SCALE) width, height, descent, glyphs, rects = self.mathtext_parser.parse( s, self.DPI, prop) if glyph_map is None: glyph_map = dict() if return_new_glyphs_only: glyph_map_new = dict() else: glyph_map_new = glyph_map xpositions = [] ypositions = [] glyph_ids = [] sizes = [] currx, curry = 0, 0 for font, fontsize, ccode, ox, oy in glyphs: char_id = self._get_char_id(font, ccode) if not char_id in glyph_map: font.clear() font.set_size(self.FONT_SCALE, self.DPI) glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) glyph_map_new[char_id] = self.glyph_to_path(font) xpositions.append(ox) ypositions.append(oy) glyph_ids.append(char_id) size = fontsize / self.FONT_SCALE sizes.append(size) myrects = [] for ox, oy, w, h in rects: vert1=[(ox, oy), (ox, oy+h), (ox+w, oy+h), (ox+w, oy), (ox, oy), (0,0)] code1 = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] myrects.append((vert1, code1)) return zip(glyph_ids, xpositions, ypositions, sizes), glyph_map_new, myrects def get_texmanager(self): """ return the :class:`matplotlib.texmanager.TexManager` instance """ if self._texmanager is None: from matplotlib.texmanager import TexManager self._texmanager = TexManager() return self._texmanager def get_glyphs_tex(self, prop, s, glyph_map=None, return_new_glyphs_only=False): """ convert the string *s* to vertices and codes using matplotlib's usetex mode. """ # codes are modstly borrowed from pdf backend. texmanager = self.get_texmanager() if self.tex_font_map is None: self.tex_font_map = dviread.PsfontsMap(dviread.find_tex_file('pdftex.map')) if self._adobe_standard_encoding is None: self._adobe_standard_encoding = self._get_adobe_standard_encoding() fontsize = prop.get_size_in_points() if hasattr(texmanager, "get_dvi"): # dvifilelike = texmanager.get_dvi(s, self.FONT_SCALE) dvi = dviread.DviFromFileLike(dvifilelike, self.DPI) else: dvifile = texmanager.make_dvi(s, self.FONT_SCALE) dvi = dviread.Dvi(dvifile, self.DPI) page = iter(dvi).next() dvi.close() if glyph_map is None: glyph_map = dict() if return_new_glyphs_only: glyph_map_new = dict() else: glyph_map_new = glyph_map glyph_ids, xpositions, ypositions, sizes = [], [], [], [] # Gather font information and do some setup for combining # characters into strings. #oldfont, seq = None, [] for x1, y1, dvifont, glyph, width in page.text: font_and_encoding = self._ps_fontd.get(dvifont.texname) font_bunch = self.tex_font_map[dvifont.texname] if font_and_encoding is None: font = FT2Font(str(font_bunch.filename)) for charmap_name, charmap_code in [("ADOBE_CUSTOM", 1094992451), ("ADOBE_STANDARD", 1094995778)]: try: font.select_charmap(charmap_code) except ValueError: pass else: break else: charmap_name = "" warnings.warn("No supported encoding in font (%s)." % font_bunch.filename) if charmap_name == "ADOBE_STANDARD" and font_bunch.encoding: enc0 = dviread.Encoding(font_bunch.encoding) enc = dict([(i, self._adobe_standard_encoding.get(c, None)) \ for i, c in enumerate(enc0.encoding)]) else: enc = dict() self._ps_fontd[dvifont.texname] = font, enc else: font, enc = font_and_encoding ft2font_flag = LOAD_TARGET_LIGHT char_id = self._get_char_id_ps(font, glyph) if not char_id in glyph_map: font.clear() font.set_size(self.FONT_SCALE, self.DPI) if enc: charcode = enc.get(glyph, None) else: charcode = glyph if charcode: glyph0 = font.load_char(charcode, flags=ft2font_flag) else: warnings.warn("The glyph (%d) of font (%s) cannot be converted with the encoding. Glyph may be wrong" % (glyph, font_bunch.filename)) glyph0 = font.load_char(glyph, flags=ft2font_flag) glyph_map_new[char_id] = self.glyph_to_path(font) glyph_ids.append(char_id) xpositions.append(x1) ypositions.append(y1) sizes.append(dvifont.size/self.FONT_SCALE) myrects = [] for ox, oy, h, w in page.boxes: vert1=[(ox, oy), (ox+w, oy), (ox+w, oy+h), (ox, oy+h), (ox, oy), (0,0)] code1 = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] myrects.append((vert1, code1)) return zip(glyph_ids, xpositions, ypositions, sizes), \ glyph_map_new, myrects from matplotlib.font_manager import FontProperties from matplotlib import rcParams from matplotlib.transforms import Affine2D text_to_path = TextToPath() class TextPath(Path): """ Create a path from the text. """ def __init__(self, xy, s, size=None, prop=None, _interpolation_steps=1, usetex=False, *kl, **kwargs): """ Create a path from the text. No support for TeX yet. Note that it simply is a path, not an artist. You need to use the PathPatch (or other artists) to draw this path onto the canvas. xy : position of the text. s : text size : font size prop : font property """ if prop is None: prop = FontProperties() if size is None: size = prop.get_size_in_points() self._xy = xy self.set_size(size) self._cached_vertices = None self._vertices, self._codes = self.text_get_vertices_codes(prop, s, usetex=usetex) self.should_simplify = False self.simplify_threshold = rcParams['path.simplify_threshold'] self.has_nonfinite = False self._interpolation_steps = _interpolation_steps def set_size(self, size): """ set the size of the text """ self._size = size self._invalid = True def get_size(self): """ get the size of the text """ return self._size def _get_vertices(self): """ Return the cached path after updating it if necessary. """ self._revalidate_path() return self._cached_vertices def _get_codes(self): """ Return the codes """ return self._codes vertices = property(_get_vertices) codes = property(_get_codes) def _revalidate_path(self): """ update the path if necessary. The path for the text is initially create with the font size of FONT_SCALE, and this path is rescaled to other size when necessary. """ if self._invalid or \ (self._cached_vertices is None): tr = Affine2D().scale(self._size/text_to_path.FONT_SCALE, self._size/text_to_path.FONT_SCALE).translate(*self._xy) self._cached_vertices = tr.transform(self._vertices) self._invalid = False def is_math_text(self, s): """ Returns True if the given string *s* contains any mathtext. """ # copied from Text.is_math_text -JJL # Did we find an even number of non-escaped dollar signs? # If so, treat is as math text. dollar_count = s.count(r'$') - s.count(r'\$') even_dollars = (dollar_count > 0 and dollar_count % 2 == 0) if rcParams['text.usetex']: return s, 'TeX' if even_dollars: return s, True else: return s.replace(r'\$', '$'), False def text_get_vertices_codes(self, prop, s, usetex): """ convert the string *s* to vertices and codes using the provided font property *prop*. Mostly copied from backend_svg.py. """ if usetex: verts, codes = text_to_path.get_text_path(prop, s, usetex=True) else: clean_line, ismath = self.is_math_text(s) verts, codes = text_to_path.get_text_path(prop, clean_line, ismath=ismath) return verts, codes
gpl-2.0
michaelgat/Udacity_DL
image-classification/helper.py
155
5631
import pickle import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import LabelBinarizer def _load_label_names(): """ Load the label names from file """ return ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def load_cfar10_batch(cifar10_dataset_folder_path, batch_id): """ Load a batch of the dataset """ with open(cifar10_dataset_folder_path + '/data_batch_' + str(batch_id), mode='rb') as file: batch = pickle.load(file, encoding='latin1') features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1) labels = batch['labels'] return features, labels def display_stats(cifar10_dataset_folder_path, batch_id, sample_id): """ Display Stats of the the dataset """ batch_ids = list(range(1, 6)) if batch_id not in batch_ids: print('Batch Id out of Range. Possible Batch Ids: {}'.format(batch_ids)) return None features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_id) if not (0 <= sample_id < len(features)): print('{} samples in batch {}. {} is out of range.'.format(len(features), batch_id, sample_id)) return None print('\nStats of batch {}:'.format(batch_id)) print('Samples: {}'.format(len(features))) print('Label Counts: {}'.format(dict(zip(*np.unique(labels, return_counts=True))))) print('First 20 Labels: {}'.format(labels[:20])) sample_image = features[sample_id] sample_label = labels[sample_id] label_names = _load_label_names() print('\nExample of Image {}:'.format(sample_id)) print('Image - Min Value: {} Max Value: {}'.format(sample_image.min(), sample_image.max())) print('Image - Shape: {}'.format(sample_image.shape)) print('Label - Label Id: {} Name: {}'.format(sample_label, label_names[sample_label])) plt.axis('off') plt.imshow(sample_image) def _preprocess_and_save(normalize, one_hot_encode, features, labels, filename): """ Preprocess data and save it to file """ features = normalize(features) labels = one_hot_encode(labels) pickle.dump((features, labels), open(filename, 'wb')) def preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode): """ Preprocess Training and Validation Data """ n_batches = 5 valid_features = [] valid_labels = [] for batch_i in range(1, n_batches + 1): features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_i) validation_count = int(len(features) * 0.1) # Prprocess and save a batch of training data _preprocess_and_save( normalize, one_hot_encode, features[:-validation_count], labels[:-validation_count], 'preprocess_batch_' + str(batch_i) + '.p') # Use a portion of training batch for validation valid_features.extend(features[-validation_count:]) valid_labels.extend(labels[-validation_count:]) # Preprocess and Save all validation data _preprocess_and_save( normalize, one_hot_encode, np.array(valid_features), np.array(valid_labels), 'preprocess_validation.p') with open(cifar10_dataset_folder_path + '/test_batch', mode='rb') as file: batch = pickle.load(file, encoding='latin1') # load the test data test_features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1) test_labels = batch['labels'] # Preprocess and Save all test data _preprocess_and_save( normalize, one_hot_encode, np.array(test_features), np.array(test_labels), 'preprocess_test.p') def batch_features_labels(features, labels, batch_size): """ Split features and labels into batches """ for start in range(0, len(features), batch_size): end = min(start + batch_size, len(features)) yield features[start:end], labels[start:end] def load_preprocess_training_batch(batch_id, batch_size): """ Load the Preprocessed Training data and return them in batches of <batch_size> or less """ filename = 'preprocess_batch_' + str(batch_id) + '.p' features, labels = pickle.load(open(filename, mode='rb')) # Return the training data in batches of size <batch_size> or less return batch_features_labels(features, labels, batch_size) def display_image_predictions(features, labels, predictions): n_classes = 10 label_names = _load_label_names() label_binarizer = LabelBinarizer() label_binarizer.fit(range(n_classes)) label_ids = label_binarizer.inverse_transform(np.array(labels)) fig, axies = plt.subplots(nrows=4, ncols=2) fig.tight_layout() fig.suptitle('Softmax Predictions', fontsize=20, y=1.1) n_predictions = 3 margin = 0.05 ind = np.arange(n_predictions) width = (1. - 2. * margin) / n_predictions for image_i, (feature, label_id, pred_indicies, pred_values) in enumerate(zip(features, label_ids, predictions.indices, predictions.values)): pred_names = [label_names[pred_i] for pred_i in pred_indicies] correct_name = label_names[label_id] axies[image_i][0].imshow(feature) axies[image_i][0].set_title(correct_name) axies[image_i][0].set_axis_off() axies[image_i][1].barh(ind + margin, pred_values[::-1], width) axies[image_i][1].set_yticks(ind + margin) axies[image_i][1].set_yticklabels(pred_names[::-1]) axies[image_i][1].set_xticks([0, 0.5, 1.0])
mit
jensv/fluxtubestability
lambda_k_plotting.py
1
24541
# -*- coding: utf-8 -*- """ Created on Mon Feb 16 00:30:53 2015 @author: jensv Module for examining stability spaces. """ from __future__ import print_function, unicode_literals, division from __future__ import absolute_import from future import standard_library, utils from future.builtins import (ascii, bytes, chr, dict, filter, hex, input, int, map, next, oct, open, pow, range, round, str, super, zip) import numpy as np from scipy.special import kv, kvp import analytic_condition as ac from scipy.interpolate import griddata import matplotlib.pyplot as plt from matplotlib.colors import SymLogNorm, BoundaryNorm from matplotlib.ticker import FormatStrFormatter, FixedFormatter import matplotlib.patches as patches import matplotlib.ticker as ticker import seaborn as sns sns.set_style('white') sns.set_context('poster') def plot_lambda_k_space_dw(filename, epsilon, name, mode_to_plot='m_neg_1', show_points=False, lim=None, levels=None, log=True, linthresh=1E-7, bounds=(1.5, 3.0), norm=True, analytic_compare=False, label_pos=((0.5, 0.4), (2.1, 0.4), (2.8, 0.2)), delta_values=[-1,0,1], interpolate=False, cmap=None, hatch=False, figsize=None, save_as=None, return_ax=False, axes=None): r""" Plot the delta_w of external instabilities in the lambda-k space. """ if figsize: fig = plt.figure(figsize=figsize) epsilon_case = np.load(filename) lambda_a_mesh = epsilon_case['lambda_a_mesh'] k_a_mesh = epsilon_case['k_a_mesh'] external_m_neg_1 = epsilon_case['d_w_m_neg_1'] external_sausage = epsilon_case['d_w_m_0'] epsilon_case.close() instability_map = {'m_0': external_sausage, 'm_neg_1': external_m_neg_1} kink_pal = sns.blend_palette([sns.xkcd_rgb["dandelion"], sns.xkcd_rgb["white"]], 7, as_cmap=True) kink_pal = sns.diverging_palette(73, 182, s=72, l=85, sep=1, n=9, as_cmap=True) sausage_pal = sns.blend_palette(['orange', 'white'], 7, as_cmap=True) sausage_pal = sns.diverging_palette(49, 181, s=99, l=78, sep=1, n=9, as_cmap=True) if cmap: instability_palette = {'m_0': cmap, 'm_neg_1': cmap} else: instability_palette = {'m_0': sausage_pal, 'm_neg_1': kink_pal} if interpolate: instability_map['m_neg_1'] = interpolate_nans(lambda_a_mesh, k_a_mesh, instability_map['m_neg_1'] ) values = instability_map[mode_to_plot] if norm: values = values / np.nanmax(np.abs(values)) else: values = values if levels: if log: plot = plt.contourf(lambda_a_mesh, k_a_mesh, values, cmap=instability_palette[mode_to_plot], levels=levels, norm=SymLogNorm(linthresh)) cbar = plt.colorbar(label=r'$\delta W$') cbar.set_label(label=r'$\delta W$', size=45, rotation=0, labelpad=30) contourlines = plt.contour(lambda_a_mesh, k_a_mesh, values, levels=levels, colors='grey', norm=SymLogNorm(linthresh)) else: norm = BoundaryNorm(levels, 256) plot = plt.contourf(lambda_a_mesh, k_a_mesh, values, cmap=instability_palette[mode_to_plot], levels=levels, norm=norm) cbar = plt.colorbar(label=r'$\delta W$') cbar.set_label(label=r'$\delta W$', size=45, rotation=0, labelpad=30) contourlines = plt.contour(lambda_a_mesh, k_a_mesh, values, levels=levels, colors='grey') else: if log: plot = plt.contourf(lambda_a_mesh, k_a_mesh, values, cmap=instability_palette[mode_to_plot], norm=SymLogNorm(linthresh)) cbar = plt.colorbar(label=r'$\delta W$') cbar.set_label(label=r'$\delta W$', size=45, rotation=0, labelpad=30) contourlines = plt.contour(lambda_a_mesh, k_a_mesh, values, colors='grey', norm=SymLogNorm(linthresh)) else: plot = plt.contourf(lambda_a_mesh, k_a_mesh, values, cmap=instability_palette[mode_to_plot]) cbar = plt.colorbar(label=r'$\delta W$') cbar.set_label(label=r'$\delta W$', size=45, rotation=0, labelpad=30) contourlines = plt.contour(lambda_a_mesh, k_a_mesh, values, colors='grey') if lim: plot.set_clim(lim) cbar.add_lines(contourlines) plt.plot([0.01, 0.1, 1.0, 2.0, 3.0], [0.005, 0.05, 0.5, 1.0, 1.5], color='black') axes = plt.gca() axes.set_axis_bgcolor(sns.xkcd_rgb['white']) lambda_bar_analytic = np.linspace(0.01, 3., 750) k_bar_analytic = np.linspace(0.01, 1.5, 750) (lambda_bar_mesh_analytic, k_bar_mesh_analytic) = np.meshgrid(lambda_bar_analytic, k_bar_analytic) if analytic_compare: analytic_comparison(mode_to_plot, k_bar_mesh_analytic, lambda_bar_mesh_analytic, epsilon, label_pos) if show_points: plt.scatter(lambda_a_mesh, k_a_mesh, marker='o', c='b', s=5) plt.ylim(0.01, bounds[0]) plt.xlim(0.01, bounds[1]) axes = plt.gca() axes.set_xticks(np.arange(0., 4.5, 1.)) axes.set_yticks(np.arange(0., 2.0, 0.5)) plt.setp(axes.get_xticklabels(), fontsize=30) plt.setp(axes.get_yticklabels(), fontsize=30) plt.ylabel(r'$\bar{k}$', fontsize=40, rotation='horizontal', labelpad=30) plt.xlabel(r'$\bar{\lambda}$', fontsize=40) cbar.ax.tick_params(labelsize=30) def my_formatter_fun(x): if x == 0: return r'$0$' if np.sign(x) > 0: return r'$10^{%i}$' % np.int(np.log10(x)) else: return r'$-10^{%i}$' % np.int(np.log10(np.abs(x))) labels = [my_formatter_fun(level) for level in levels] cbar.ax.set_yticklabels(labels) sns.despine(ax=axes) if hatch: xmin, xmax = axes.get_xlim() ymin, ymax = axes.get_ylim() xy = (xmin,ymin) width = xmax - xmin height = ymax - ymin p = patches.Rectangle(xy, width, height, hatch='+', fill=None, zorder=-10) axes.add_patch(p) plt.tight_layout() if return_ax: return axes, cbar else: plt.savefig('../../output/plots/' + name + '.png') if save_as: plt.savefig(save_as) plt.show() def interpolate_nans(lambda_a, k_a, quantity): r""" Return mesh with nans interpolated from neighboring values. """ index_to_keep = np.isnan(quantity.ravel()) interp_values = quantity.ravel()[~index_to_keep] interp_k = k_a.ravel()[~index_to_keep] interp_lambda = lambda_a.ravel()[~index_to_keep] return griddata((interp_lambda, interp_k), interp_values, (lambda_a, k_a), method='linear') def plot_dW_given_delta(filename, epsilon, name, mode_to_plot='m_neg_1', show_points=False, lim=None, levels=None, log=False, linthresh=1E-7, bounds=(1.5, 3.0), floor_norm=False, analytic_compare=False, label_pos=((0.5, 0.4), (2.1, 0.4), (2.8, 0.2)), delta_values=[-1,0,1], interpolate=False, with_interface=False): r""" Plot the delta_w of external instabilities in the lambda-k space. """ epsilon_case = np.load(filename) lambda_a_mesh = epsilon_case['lambda_a_mesh'] k_a_mesh = epsilon_case['k_a_mesh'] delta_mesh_sausage = epsilon_case['delta_m_0'] delta_mesh_kink = epsilon_case['delta_m_neg_1'] epsilon_case.close() if with_interface: external_sausage_norm = ac.conditions(k_a_mesh, lambda_a_mesh, epsilon, 0, delta_mesh_sausage) external_m_neg_1_norm = ac.conditions(k_a_mesh, lambda_a_mesh, epsilon, 1, delta_mesh_kink) else: external_sausage_norm = ac.conditions_without_interface(k_a_mesh, lambda_a_mesh, epsilon, 0, delta_mesh_sausage) external_m_neg_1_norm = ac.conditions_without_interface(k_a_mesh, lambda_a_mesh, epsilon, 1, delta_mesh_kink) instability_map = {'m_0': external_sausage_norm, 'm_neg_1': external_m_neg_1_norm} kink_pal = sns.blend_palette([sns.xkcd_rgb["dandelion"], sns.xkcd_rgb["white"]], 7, as_cmap=True) kink_pal = sns.diverging_palette(73, 182, s=72, l=85, sep=1, n=9, as_cmap=True) sausage_pal = sns.blend_palette(['orange', 'white'], 7, as_cmap=True) sausage_pal = sns.diverging_palette(49, 181, s=99, l=78, sep=1, n=9, as_cmap=True) instability_palette = {'m_0': sausage_pal, 'm_neg_1': kink_pal} if interpolate: instability_map['m_neg_1'] = interpolate_nans(lambda_a_mesh, k_a_mesh, instability_map['m_neg_1'] ) values = instability_map[mode_to_plot] if floor_norm: values = np.clip(values, -100., 100.) values = values / -np.nanmin(values) values = np.clip(values, -1., 1.) else: values = values / -np.nanmin(values) if levels: if log: plot = plt.contourf(lambda_a_mesh, k_a_mesh, values, cmap=instability_palette[mode_to_plot], levels=levels, norm=SymLogNorm(linthresh)) else: norm = BoundaryNorm(levels, 256) plot = plt.contourf(lambda_a_mesh, k_a_mesh, values, cmap=instability_palette[mode_to_plot], levels=levels, norm=norm) cbar = plt.colorbar(label=r'$\delta W$', format=FormatStrFormatter('%.0e')) cbar.set_label(label=r'$\delta W$', size=45, rotation=0, labelpad=30) contourlines = plt.contour(lambda_a_mesh, k_a_mesh, values, levels=levels[:-1], colors='grey') cbar.add_lines(contourlines) else: if log: plot = plt.contourf(lambda_a_mesh, k_a_mesh, values, cmap=instability_palette[mode_to_plot], norm=SymLogNorm(linthresh)) else: plot = plt.contourf(lambda_a_mesh, k_a_mesh, values, cmap=instability_palette[mode_to_plot]) if lim: plot.set_clim(lim) plt.plot([0.01, 0.1, 1.0, 2.0, 3.0], [0.005, 0.05, 0.5, 1.0, 1.5], color='black') axes = plt.gca() axes.set_axis_bgcolor(sns.xkcd_rgb['grey']) lambda_bar = np.linspace(0.01, 3., 750) k_bar = np.linspace(0.01, 1.5, 750) lambda_bar_mesh, k_bar_mesh = np.meshgrid(lambda_bar, k_bar) if analytic_compare: analytic_comparison(mode_to_plot, k_bar_mesh, lambda_bar_mesh, epsilon, label_pos) if show_points: plt.scatter(lambda_a_mesh, k_a_mesh, marker='o', c='b', s=5) plt.ylim(0.01, bounds[0]) plt.xlim(0.01, bounds[1]) axes = plt.gca() plt.setp(axes.get_xticklabels(), fontsize=40) plt.setp(axes.get_yticklabels(), fontsize=40) plt.ylabel(r'$\bar{k}$', fontsize=45, rotation='horizontal', labelpad=30) plt.xlabel(r'$\bar{\lambda}$', fontsize=45) cbar.ax.tick_params(labelsize=40) sns.despine(ax=axes) plt.tight_layout() plt.savefig('../../output/plots/' + name + '.png') plt.show() def analytic_comparison_flex(mode_to_plot, k_bar_mesh, lambda_bar_mesh, epsilon, delta_values, label_pos): r""" Add red lines indicating stability boundaries from analytical model. """ line_labels = FixedFormatter(delta_values) assert (mode_to_plot == 'm_neg_1' or mode_to_plot == 'm_0'), ("Please specify mode_to_plot as either" + "m_neg_1 or m_0") if mode_to_plot == 'm_neg_1': m = 1 color = 'red' if mode_to_plot == 'm_0': m = 0 color = 'red' stability_kink_given_delta = [] for delta in delta_values: stability_kink_given_delta.append(ac.conditions(k_bar_mesh, lambda_bar_mesh, epsilon, m, delta)) stability_kink = stability_kink_given_delta[0] < 0 stability_kink = stability_kink.astype(float) stability_kink[stability_kink_given_delta[0] >= 0] = -1.5 stability_kink[stability_kink_given_delta[0] < 0] = -0.5 value = 0.5 for i in range(len(delta_values[1:])): stability_kink[stability_kink_given_delta[i] < 0] = value value += 1. levels = np.array(range(len(delta_values))) - 1 cs = plt.contour(lambda_bar_mesh, k_bar_mesh, stability_kink, levels=levels, colors=color, linewidths=5, linestyles='dotted') line_labels = {} for i, level in enumerate(levels): line_labels.update({level: r'$\delta = $ %2.1f' % (delta_values[i])}) print(levels, value, line_labels) plt.clabel(cs, fmt=line_labels, fontsize=40, manual=label_pos) return cs def single_analytic_comparison(mode_to_plot, k_bar_mesh, lambda_bar_mesh, epsilon, delta_value, label_pos): """ Add contour of analytic stability condition. """ line_labels = FixedFormatter(delta_value) assert (mode_to_plot == 'm_neg_1' or mode_to_plot == 'm_0'), ("Please specify mode_to_plot as either" + "m_neg_1 or m_0") if mode_to_plot == 'm_neg_1': m = 1 color = 'red' if mode_to_plot == 'm_0': m = 0 color = 'red' stability_kink_given_delta = [] stability_kink_given_delta.append(ac.conditions(k_bar_mesh, lambda_bar_mesh, epsilon, m, delta_value)) stability_kink = stability_kink_given_delta[0] < 0 stability_kink = stability_kink.astype(float) stability_kink[stability_kink_given_delta[0] >= 0] = -1.5 stability_kink[stability_kink_given_delta[0] < 0] = -0.5 levels = [-1] cs = plt.contour(lambda_bar_mesh, k_bar_mesh, stability_kink, levels=levels, colors=color, linewidths=5, linestyles='dotted') line_labels = {} #plt.clabel(cs, fmt={-1: '%2.1f' % delta_value}, fontsize=40, manual=label_pos) return cs def analytic_comparison(mode_to_plot, k_bar_mesh, lambda_bar_mesh, epsilon, label_pos, lines=None, colors=None): r""" Add red lines indicating stability boundaries from analytical model. """ if not lines: line_labels = FixedFormatter(['-1', '0', '1']) else: line_labels = FixedFormatter([str(line) for line in lines]) assert (mode_to_plot == 'm_neg_1' or mode_to_plot == 'm_0'), ("Please specify mode_to_plot as either" + "m_neg_1 or m_0") if mode_to_plot == 'm_neg_1': m = 1 if not colors: color = 'red' else: color = colors if mode_to_plot == 'm_0': m = 0 if not colors: color = 'red' else: color = colors if not lines: stability_kink_m_neg_1 = ac.conditions(k_bar_mesh, lambda_bar_mesh, epsilon, m, -1.) stability_kink_m_0 = ac.conditions(k_bar_mesh, lambda_bar_mesh, epsilon, m, 0.) stability_kink_m_1 = ac.conditions(k_bar_mesh, lambda_bar_mesh, epsilon, m, 1) else: stability_kink_m_neg_1 = ac.conditions(k_bar_mesh, lambda_bar_mesh, epsilon, m, lines[0]) stability_kink_m_0 = ac.conditions(k_bar_mesh, lambda_bar_mesh, epsilon, m, lines[1]) stability_kink_m_1 = ac.conditions(k_bar_mesh, lambda_bar_mesh, epsilon, m, lines[2]) stability_kink = stability_kink_m_neg_1 < 0 stability_kink = stability_kink.astype(float) stability_kink[stability_kink_m_neg_1 >= 0] = -1.5 stability_kink[stability_kink_m_neg_1 < 0] = -0.5 stability_kink[stability_kink_m_0 < 0] = 0.5 stability_kink[stability_kink_m_1 < 0] = 1.5 cs = plt.contour(lambda_bar_mesh, k_bar_mesh, stability_kink, levels=[-1, 0, 1], colors=color, linewidths=10, linestyles='dotted') if not lines: plt.clabel(cs, fmt={-1: r'$\delta = -1$', 0: r'$\delta = 0$', 1: r'$\delta = 1$'}, fontsize=40, manual=label_pos) else: plt.clabel(cs, fmt={-1: r'$\delta =$ %' % lines[0], 0: r'$\delta =$ %' % lines[1], 1: r'$\delta =$ %' % lines[2]}, fontsize=40, manual=label_pos) return cs def plot_lambda_k_space_delta(filename, mode_to_plot, clip=False, delta_min=-1.5, delta_max=1., levels=None, interpolate=True, compare_analytic=False, epsilon=None, analytic_label_pos=None, lines=None, plot_numeric_boundary=False, cmap=None, analytic_color=None): r""" Plot values of delta in lambda k space. """ data_meshes = np.load(filename) lambda_mesh = data_meshes['lambda_a_mesh'] k_mesh = data_meshes['k_a_mesh'] if mode_to_plot == 0: color = 'green' delta_mesh = data_meshes['delta_m_0'] external_sausage = data_meshes['d_w_m_0'] else: #color = sns.xkcd_rgb["dandelion"] color = 'green' delta_mesh = data_meshes['delta_m_neg_1'] external_kink = data_meshes['d_w_m_neg_1'] if interpolate: delta_mesh = interpolate_nans(lambda_mesh, k_mesh, delta_mesh) if clip: delta_mesh = np.clip(delta_mesh, delta_min, delta_max) if cmap: colors = cmap else: colors = sns.light_palette(color, n_colors=6, reverse=True, as_cmap=True) if levels: plt.contourf(lambda_mesh, k_mesh, delta_mesh, cmap=colors, levels=levels) else: plt.contourf(lambda_mesh, k_mesh, delta_mesh, cmap=colors) cbar = plt.colorbar(label=r'$\delta$') cbar.set_label(label=r'$\delta(\bar{\lambda},\bar{k})$', size=45, rotation=0, labelpad=30) if levels: contourlines = plt.contour(lambda_mesh, k_mesh, delta_mesh, colors='grey', levels=levels) else: contourlines = plt.contour(lambda_mesh, k_mesh, delta_mesh, colors='grey') cbar.add_lines(contourlines) if mode_to_plot == 0: mode_to_plot = 'm_0' else: mode_to_plot = 'm_neg_1' if compare_analytic: if analytic_color: analytic_comparison(mode_to_plot, k_mesh, lambda_mesh, epsilon, analytic_label_pos, lines=lines, colors=analytic_color) else: analytic_comparison(mode_to_plot, k_mesh, lambda_mesh, epsilon, analytic_label_pos, lines=lines) if plot_numeric_boundary: contour = plt.contour(lambda_mesh, k_mesh, external_sausage, levels=[0], colors='grey', linestyles='-.') axes = plt.gca() axes.set_axis_bgcolor(sns.xkcd_rgb['grey']) plt.setp(axes.get_xticklabels(), fontsize=40) plt.setp(axes.get_yticklabels(), fontsize=40) plt.ylabel(r'$\bar{k}$', fontsize=45, rotation='horizontal', labelpad=30) plt.xlabel(r'$\bar{\lambda}$', fontsize=45) cbar.ax.tick_params(labelsize=40) axes.set_xticks(np.arange(0., 5, 1.)) axes.set_yticks(np.arange(0., 2.0, 0.5)) plt.ylim(0.01, 1.5) plt.xlim(0.01, 3.0) sns.despine(ax=axes) plt.tight_layout() def sausage_kink_ratio(filename, xy_limits=None, cmap=None, save_as=None, levels=None, return_ax=False): r""" Plot ratio of sausage and kink potential energies. """ meshes = np.load(filename) lambda_bar_mesh = meshes['lambda_a_mesh'] k_bar_mesh = meshes['k_a_mesh'] external_m_neg_1 = meshes['d_w_m_neg_1'] external_sausage = meshes['d_w_m_0'] meshes.close() sausage_stable_region = np.invert((external_sausage < 0)) ratio = np.abs(external_sausage / external_m_neg_1) ratio[sausage_stable_region] = np.nan ratio_log = np.log10(ratio) if not cmap: cmap = sns.light_palette(sns.xkcd_rgb['red orange'], as_cmap=True) if levels: contours = plt.contourf(lambda_bar_mesh, k_bar_mesh, ratio_log, cmap=cmap, levels=levels) else: contours = plt.contourf(lambda_bar_mesh, k_bar_mesh, ratio_log, cmap=cmap) colorbar = plt.colorbar(format=FormatStrFormatter(r'$10^{%i}$')) colorbar.set_label(r'$\frac{\delta W_{m=0}}{\delta W_{m=-1}}$', size=35, rotation=0, labelpad=50) if levels: lines = plt.contour(lambda_bar_mesh, k_bar_mesh, ratio_log, colors='grey', levels=levels) else: lines = plt.contour(lambda_bar_mesh, k_bar_mesh, ratio_log, colors='grey') colorbar.add_lines(lines) axes = plt.gca() axes.plot([0, 3.], [0., 1.5], '--', c='black', lw=5) axes.set_xlabel(r'$\bar{\lambda}$', fontsize=40) plt.setp(axes.get_xticklabels(), fontsize=30) axes.set_xticks(np.arange(0., 4.5, 0.5)) axes.set_ylabel(r'$\bar{k}$', fontsize=40) plt.setp(axes.get_yticklabels(), fontsize=30) axes.set_yticks(np.arange(0., 2.0, 0.5)) if xy_limits: axes.set_ylim((xy_limits[0], xy_limits[1])) axes.set_xlim((xy_limits[2], xy_limits[3])) sns.despine() colorbar.ax.yaxis.set_ticks_position('right') colorbar.ax.tick_params(labelsize=30) plt.tight_layout() if return_ax: return axes, colobar else: if save_as: plt.savefig(save_as) plt.show()
mit
jonasjberg/autonameow
autonameow/vendor/dateutil/parser/_parser.py
8
57607
# -*- coding: utf-8 -*- """ This module offers a generic date/time string parser which is able to parse most known formats to represent a date and/or time. This module attempts to be forgiving with regards to unlikely input formats, returning a datetime object even for dates which are ambiguous. If an element of a date/time stamp is omitted, the following rules are applied: - If AM or PM is left unspecified, a 24-hour clock is assumed, however, an hour on a 12-hour clock (``0 <= hour <= 12``) *must* be specified if AM or PM is specified. - If a time zone is omitted, a timezone-naive datetime is returned. If any other elements are missing, they are taken from the :class:`datetime.datetime` object passed to the parameter ``default``. If this results in a day number exceeding the valid number of days per month, the value falls back to the end of the month. Additional resources about date/time string formats can be found below: - `A summary of the international standard date and time notation <http://www.cl.cam.ac.uk/~mgk25/iso-time.html>`_ - `W3C Date and Time Formats <http://www.w3.org/TR/NOTE-datetime>`_ - `Time Formats (Planetary Rings Node) <https://pds-rings.seti.org:443/tools/time_formats.html>`_ - `CPAN ParseDate module <http://search.cpan.org/~muir/Time-modules-2013.0912/lib/Time/ParseDate.pm>`_ - `Java SimpleDateFormat Class <https://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html>`_ """ from __future__ import unicode_literals import datetime import re import string import time import warnings from calendar import monthrange from io import StringIO import six from six import binary_type, integer_types, text_type from decimal import Decimal from warnings import warn from .. import relativedelta from .. import tz __all__ = ["parse", "parserinfo"] # TODO: pandas.core.tools.datetimes imports this explicitly. Might be worth # making public and/or figuring out if there is something we can # take off their plate. class _timelex(object): # Fractional seconds are sometimes split by a comma _split_decimal = re.compile("([.,])") def __init__(self, instream): if six.PY2: # In Python 2, we can't duck type properly because unicode has # a 'decode' function, and we'd be double-decoding if isinstance(instream, (binary_type, bytearray)): instream = instream.decode() else: if getattr(instream, 'decode', None) is not None: instream = instream.decode() if isinstance(instream, text_type): instream = StringIO(instream) elif getattr(instream, 'read', None) is None: raise TypeError('Parser must be a string or character stream, not ' '{itype}'.format(itype=instream.__class__.__name__)) self.instream = instream self.charstack = [] self.tokenstack = [] self.eof = False def get_token(self): """ This function breaks the time string into lexical units (tokens), which can be parsed by the parser. Lexical units are demarcated by changes in the character set, so any continuous string of letters is considered one unit, any continuous string of numbers is considered one unit. The main complication arises from the fact that dots ('.') can be used both as separators (e.g. "Sep.20.2009") or decimal points (e.g. "4:30:21.447"). As such, it is necessary to read the full context of any dot-separated strings before breaking it into tokens; as such, this function maintains a "token stack", for when the ambiguous context demands that multiple tokens be parsed at once. """ if self.tokenstack: return self.tokenstack.pop(0) seenletters = False token = None state = None while not self.eof: # We only realize that we've reached the end of a token when we # find a character that's not part of the current token - since # that character may be part of the next token, it's stored in the # charstack. if self.charstack: nextchar = self.charstack.pop(0) else: nextchar = self.instream.read(1) while nextchar == '\x00': nextchar = self.instream.read(1) if not nextchar: self.eof = True break elif not state: # First character of the token - determines if we're starting # to parse a word, a number or something else. token = nextchar if self.isword(nextchar): state = 'a' elif self.isnum(nextchar): state = '0' elif self.isspace(nextchar): token = ' ' break # emit token else: break # emit token elif state == 'a': # If we've already started reading a word, we keep reading # letters until we find something that's not part of a word. seenletters = True if self.isword(nextchar): token += nextchar elif nextchar == '.': token += nextchar state = 'a.' else: self.charstack.append(nextchar) break # emit token elif state == '0': # If we've already started reading a number, we keep reading # numbers until we find something that doesn't fit. if self.isnum(nextchar): token += nextchar elif nextchar == '.' or (nextchar == ',' and len(token) >= 2): token += nextchar state = '0.' else: self.charstack.append(nextchar) break # emit token elif state == 'a.': # If we've seen some letters and a dot separator, continue # parsing, and the tokens will be broken up later. seenletters = True if nextchar == '.' or self.isword(nextchar): token += nextchar elif self.isnum(nextchar) and token[-1] == '.': token += nextchar state = '0.' else: self.charstack.append(nextchar) break # emit token elif state == '0.': # If we've seen at least one dot separator, keep going, we'll # break up the tokens later. if nextchar == '.' or self.isnum(nextchar): token += nextchar elif self.isword(nextchar) and token[-1] == '.': token += nextchar state = 'a.' else: self.charstack.append(nextchar) break # emit token if (state in ('a.', '0.') and (seenletters or token.count('.') > 1 or token[-1] in '.,')): l = self._split_decimal.split(token) token = l[0] for tok in l[1:]: if tok: self.tokenstack.append(tok) if state == '0.' and token.count('.') == 0: token = token.replace(',', '.') return token def __iter__(self): return self def __next__(self): token = self.get_token() if token is None: raise StopIteration return token def next(self): return self.__next__() # Python 2.x support @classmethod def split(cls, s): return list(cls(s)) @classmethod def isword(cls, nextchar): """ Whether or not the next character is part of a word """ return nextchar.isalpha() @classmethod def isnum(cls, nextchar): """ Whether the next character is part of a number """ return nextchar.isdigit() @classmethod def isspace(cls, nextchar): """ Whether the next character is whitespace """ return nextchar.isspace() class _resultbase(object): def __init__(self): for attr in self.__slots__: setattr(self, attr, None) def _repr(self, classname): l = [] for attr in self.__slots__: value = getattr(self, attr) if value is not None: l.append("%s=%s" % (attr, repr(value))) return "%s(%s)" % (classname, ", ".join(l)) def __len__(self): return (sum(getattr(self, attr) is not None for attr in self.__slots__)) def __repr__(self): return self._repr(self.__class__.__name__) class parserinfo(object): """ Class which handles what inputs are accepted. Subclass this to customize the language and acceptable values for each parameter. :param dayfirst: Whether to interpret the first value in an ambiguous 3-integer date (e.g. 01/05/09) as the day (``True``) or month (``False``). If ``yearfirst`` is set to ``True``, this distinguishes between YDM and YMD. Default is ``False``. :param yearfirst: Whether to interpret the first value in an ambiguous 3-integer date (e.g. 01/05/09) as the year. If ``True``, the first number is taken to be the year, otherwise the last number is taken to be the year. Default is ``False``. """ # m from a.m/p.m, t from ISO T separator JUMP = [" ", ".", ",", ";", "-", "/", "'", "at", "on", "and", "ad", "m", "t", "of", "st", "nd", "rd", "th"] WEEKDAYS = [("Mon", "Monday"), ("Tue", "Tuesday"), # TODO: "Tues" ("Wed", "Wednesday"), ("Thu", "Thursday"), # TODO: "Thurs" ("Fri", "Friday"), ("Sat", "Saturday"), ("Sun", "Sunday")] MONTHS = [("Jan", "January"), ("Feb", "February"), # TODO: "Febr" ("Mar", "March"), ("Apr", "April"), ("May", "May"), ("Jun", "June"), ("Jul", "July"), ("Aug", "August"), ("Sep", "Sept", "September"), ("Oct", "October"), ("Nov", "November"), ("Dec", "December")] HMS = [("h", "hour", "hours"), ("m", "minute", "minutes"), ("s", "second", "seconds")] AMPM = [("am", "a"), ("pm", "p")] UTCZONE = ["UTC", "GMT", "Z"] PERTAIN = ["of"] TZOFFSET = {} # TODO: ERA = ["AD", "BC", "CE", "BCE", "Stardate", # "Anno Domini", "Year of Our Lord"] def __init__(self, dayfirst=False, yearfirst=False): self._jump = self._convert(self.JUMP) self._weekdays = self._convert(self.WEEKDAYS) self._months = self._convert(self.MONTHS) self._hms = self._convert(self.HMS) self._ampm = self._convert(self.AMPM) self._utczone = self._convert(self.UTCZONE) self._pertain = self._convert(self.PERTAIN) self.dayfirst = dayfirst self.yearfirst = yearfirst self._year = time.localtime().tm_year self._century = self._year // 100 * 100 def _convert(self, lst): dct = {} for i, v in enumerate(lst): if isinstance(v, tuple): for v in v: dct[v.lower()] = i else: dct[v.lower()] = i return dct def jump(self, name): return name.lower() in self._jump def weekday(self, name): try: return self._weekdays[name.lower()] except KeyError: pass return None def month(self, name): try: return self._months[name.lower()] + 1 except KeyError: pass return None def hms(self, name): try: return self._hms[name.lower()] except KeyError: return None def ampm(self, name): try: return self._ampm[name.lower()] except KeyError: return None def pertain(self, name): return name.lower() in self._pertain def utczone(self, name): return name.lower() in self._utczone def tzoffset(self, name): if name in self._utczone: return 0 return self.TZOFFSET.get(name) def convertyear(self, year, century_specified=False): """ Converts two-digit years to year within [-50, 49] range of self._year (current local time) """ # Function contract is that the year is always positive assert year >= 0 if year < 100 and not century_specified: # assume current century to start year += self._century if year >= self._year + 50: # if too far in future year -= 100 elif year < self._year - 50: # if too far in past year += 100 return year def validate(self, res): # move to info if res.year is not None: res.year = self.convertyear(res.year, res.century_specified) if res.tzoffset == 0 and not res.tzname or res.tzname == 'Z': res.tzname = "UTC" res.tzoffset = 0 elif res.tzoffset != 0 and res.tzname and self.utczone(res.tzname): res.tzoffset = 0 return True class _ymd(list): def __init__(self, *args, **kwargs): super(self.__class__, self).__init__(*args, **kwargs) self.century_specified = False self.dstridx = None self.mstridx = None self.ystridx = None @property def has_year(self): return self.ystridx is not None @property def has_month(self): return self.mstridx is not None @property def has_day(self): return self.dstridx is not None def could_be_day(self, value): if self.has_day: return False elif not self.has_month: return 1 <= value <= 31 elif not self.has_year: # Be permissive, assume leapyear month = self[self.mstridx] return 1 <= value <= monthrange(2000, month)[1] else: month = self[self.mstridx] year = self[self.ystridx] return 1 <= value <= monthrange(year, month)[1] def append(self, val, label=None): if hasattr(val, '__len__'): if val.isdigit() and len(val) > 2: self.century_specified = True if label not in [None, 'Y']: # pragma: no cover raise ValueError(label) label = 'Y' elif val > 100: self.century_specified = True if label not in [None, 'Y']: # pragma: no cover raise ValueError(label) label = 'Y' super(self.__class__, self).append(int(val)) if label == 'M': if self.has_month: raise ValueError('Month is already set') self.mstridx = len(self) - 1 elif label == 'D': if self.has_day: raise ValueError('Day is already set') self.dstridx = len(self) - 1 elif label == 'Y': if self.has_year: raise ValueError('Year is already set') self.ystridx = len(self) - 1 def _resolve_from_stridxs(self, strids): """ Try to resolve the identities of year/month/day elements using ystridx, mstridx, and dstridx, if enough of these are specified. """ if len(self) == 3 and len(strids) == 2: # we can back out the remaining stridx value missing = [x for x in range(3) if x not in strids.values()] key = [x for x in ['y', 'm', 'd'] if x not in strids] assert len(missing) == len(key) == 1 key = key[0] val = missing[0] strids[key] = val assert len(self) == len(strids) # otherwise this should not be called out = {key: self[strids[key]] for key in strids} return (out.get('y'), out.get('m'), out.get('d')) def resolve_ymd(self, yearfirst, dayfirst): len_ymd = len(self) year, month, day = (None, None, None) strids = (('y', self.ystridx), ('m', self.mstridx), ('d', self.dstridx)) strids = {key: val for key, val in strids if val is not None} if (len(self) == len(strids) > 0 or (len(self) == 3 and len(strids) == 2)): return self._resolve_from_stridxs(strids) mstridx = self.mstridx if len_ymd > 3: raise ValueError("More than three YMD values") elif len_ymd == 1 or (mstridx is not None and len_ymd == 2): # One member, or two members with a month string if mstridx is not None: month = self[mstridx] # since mstridx is 0 or 1, self[mstridx-1] always # looks up the other element other = self[mstridx - 1] else: other = self[0] if len_ymd > 1 or mstridx is None: if other > 31: year = other else: day = other elif len_ymd == 2: # Two members with numbers if self[0] > 31: # 99-01 year, month = self elif self[1] > 31: # 01-99 month, year = self elif dayfirst and self[1] <= 12: # 13-01 day, month = self else: # 01-13 month, day = self elif len_ymd == 3: # Three members if mstridx == 0: if self[1] > 31: # Apr-2003-25 month, year, day = self else: month, day, year = self elif mstridx == 1: if self[0] > 31 or (yearfirst and self[2] <= 31): # 99-Jan-01 year, month, day = self else: # 01-Jan-01 # Give precendence to day-first, since # two-digit years is usually hand-written. day, month, year = self elif mstridx == 2: # WTF!? if self[1] > 31: # 01-99-Jan day, year, month = self else: # 99-01-Jan year, day, month = self else: if (self[0] > 31 or self.ystridx == 0 or (yearfirst and self[1] <= 12 and self[2] <= 31)): # 99-01-01 if dayfirst and self[2] <= 12: year, day, month = self else: year, month, day = self elif self[0] > 12 or (dayfirst and self[1] <= 12): # 13-01-01 day, month, year = self else: # 01-13-01 month, day, year = self return year, month, day class parser(object): def __init__(self, info=None): self.info = info or parserinfo() def parse(self, timestr, default=None, ignoretz=False, tzinfos=None, **kwargs): """ Parse the date/time string into a :class:`datetime.datetime` object. :param timestr: Any date/time string using the supported formats. :param default: The default datetime object, if this is a datetime object and not ``None``, elements specified in ``timestr`` replace elements in the default object. :param ignoretz: If set ``True``, time zones in parsed strings are ignored and a naive :class:`datetime.datetime` object is returned. :param tzinfos: Additional time zone names / aliases which may be present in the string. This argument maps time zone names (and optionally offsets from those time zones) to time zones. This parameter can be a dictionary with timezone aliases mapping time zone names to time zones or a function taking two parameters (``tzname`` and ``tzoffset``) and returning a time zone. The timezones to which the names are mapped can be an integer offset from UTC in seconds or a :class:`tzinfo` object. .. doctest:: :options: +NORMALIZE_WHITESPACE >>> from dateutil.parser import parse >>> from dateutil.tz import gettz >>> tzinfos = {"BRST": -7200, "CST": gettz("America/Chicago")} >>> parse("2012-01-19 17:21:00 BRST", tzinfos=tzinfos) datetime.datetime(2012, 1, 19, 17, 21, tzinfo=tzoffset(u'BRST', -7200)) >>> parse("2012-01-19 17:21:00 CST", tzinfos=tzinfos) datetime.datetime(2012, 1, 19, 17, 21, tzinfo=tzfile('/usr/share/zoneinfo/America/Chicago')) This parameter is ignored if ``ignoretz`` is set. :param \\*\\*kwargs: Keyword arguments as passed to ``_parse()``. :return: Returns a :class:`datetime.datetime` object or, if the ``fuzzy_with_tokens`` option is ``True``, returns a tuple, the first element being a :class:`datetime.datetime` object, the second a tuple containing the fuzzy tokens. :raises ValueError: Raised for invalid or unknown string format, if the provided :class:`tzinfo` is not in a valid format, or if an invalid date would be created. :raises TypeError: Raised for non-string or character stream input. :raises OverflowError: Raised if the parsed date exceeds the largest valid C integer on your system. """ if default is None: default = datetime.datetime.now().replace(hour=0, minute=0, second=0, microsecond=0) res, skipped_tokens = self._parse(timestr, **kwargs) if res is None: raise ValueError("Unknown string format:", timestr) if len(res) == 0: raise ValueError("String does not contain a date:", timestr) ret = self._build_naive(res, default) if not ignoretz: ret = self._build_tzaware(ret, res, tzinfos) if kwargs.get('fuzzy_with_tokens', False): return ret, skipped_tokens else: return ret class _result(_resultbase): __slots__ = ["year", "month", "day", "weekday", "hour", "minute", "second", "microsecond", "tzname", "tzoffset", "ampm","any_unused_tokens"] def _parse(self, timestr, dayfirst=None, yearfirst=None, fuzzy=False, fuzzy_with_tokens=False): """ Private method which performs the heavy lifting of parsing, called from ``parse()``, which passes on its ``kwargs`` to this function. :param timestr: The string to parse. :param dayfirst: Whether to interpret the first value in an ambiguous 3-integer date (e.g. 01/05/09) as the day (``True``) or month (``False``). If ``yearfirst`` is set to ``True``, this distinguishes between YDM and YMD. If set to ``None``, this value is retrieved from the current :class:`parserinfo` object (which itself defaults to ``False``). :param yearfirst: Whether to interpret the first value in an ambiguous 3-integer date (e.g. 01/05/09) as the year. If ``True``, the first number is taken to be the year, otherwise the last number is taken to be the year. If this is set to ``None``, the value is retrieved from the current :class:`parserinfo` object (which itself defaults to ``False``). :param fuzzy: Whether to allow fuzzy parsing, allowing for string like "Today is January 1, 2047 at 8:21:00AM". :param fuzzy_with_tokens: If ``True``, ``fuzzy`` is automatically set to True, and the parser will return a tuple where the first element is the parsed :class:`datetime.datetime` datetimestamp and the second element is a tuple containing the portions of the string which were ignored: .. doctest:: >>> from dateutil.parser import parse >>> parse("Today is January 1, 2047 at 8:21:00AM", fuzzy_with_tokens=True) (datetime.datetime(2047, 1, 1, 8, 21), (u'Today is ', u' ', u'at ')) """ if fuzzy_with_tokens: fuzzy = True info = self.info if dayfirst is None: dayfirst = info.dayfirst if yearfirst is None: yearfirst = info.yearfirst res = self._result() l = _timelex.split(timestr) # Splits the timestr into tokens skipped_idxs = [] # year/month/day list ymd = _ymd() len_l = len(l) i = 0 try: while i < len_l: # Check if it's a number value_repr = l[i] try: value = float(value_repr) except ValueError: value = None if value is not None: # Numeric token i = self._parse_numeric_token(l, i, info, ymd, res, fuzzy) # Check weekday elif info.weekday(l[i]) is not None: value = info.weekday(l[i]) res.weekday = value # Check month name elif info.month(l[i]) is not None: value = info.month(l[i]) ymd.append(value, 'M') if i + 1 < len_l: if l[i + 1] in ('-', '/'): # Jan-01[-99] sep = l[i + 1] ymd.append(l[i + 2]) if i + 3 < len_l and l[i + 3] == sep: # Jan-01-99 ymd.append(l[i + 4]) i += 2 i += 2 elif (i + 4 < len_l and l[i + 1] == l[i + 3] == ' ' and info.pertain(l[i + 2])): # Jan of 01 # In this case, 01 is clearly year if l[i + 4].isdigit(): # Convert it here to become unambiguous value = int(l[i + 4]) year = str(info.convertyear(value)) ymd.append(year, 'Y') else: # Wrong guess pass # TODO: not hit in tests i += 4 # Check am/pm elif info.ampm(l[i]) is not None: value = info.ampm(l[i]) val_is_ampm = self._ampm_valid(res.hour, res.ampm, fuzzy) if val_is_ampm: res.hour = self._adjust_ampm(res.hour, value) res.ampm = value elif fuzzy: skipped_idxs.append(i) # Check for a timezone name elif self._could_be_tzname(res.hour, res.tzname, res.tzoffset, l[i]): res.tzname = l[i] res.tzoffset = info.tzoffset(res.tzname) # Check for something like GMT+3, or BRST+3. Notice # that it doesn't mean "I am 3 hours after GMT", but # "my time +3 is GMT". If found, we reverse the # logic so that timezone parsing code will get it # right. if i + 1 < len_l and l[i + 1] in ('+', '-'): l[i + 1] = ('+', '-')[l[i + 1] == '+'] res.tzoffset = None if info.utczone(res.tzname): # With something like GMT+3, the timezone # is *not* GMT. res.tzname = None # Check for a numbered timezone elif res.hour is not None and l[i] in ('+', '-'): signal = (-1, 1)[l[i] == '+'] len_li = len(l[i + 1]) # TODO: check that l[i + 1] is integer? if len_li == 4: # -0300 hour_offset = int(l[i + 1][:2]) min_offset = int(l[i + 1][2:]) elif i + 2 < len_l and l[i + 2] == ':': # -03:00 hour_offset = int(l[i + 1]) min_offset = int(l[i + 3]) # TODO: Check that l[i+3] is minute-like? i += 2 elif len_li <= 2: # -[0]3 hour_offset = int(l[i + 1][:2]) min_offset = 0 else: raise ValueError(timestr) res.tzoffset = signal * (hour_offset * 3600 + min_offset * 60) # Look for a timezone name between parenthesis if (i + 5 < len_l and info.jump(l[i + 2]) and l[i + 3] == '(' and l[i + 5] == ')' and 3 <= len(l[i + 4]) and self._could_be_tzname(res.hour, res.tzname, None, l[i + 4])): # -0300 (BRST) res.tzname = l[i + 4] i += 4 i += 1 # Check jumps elif not (info.jump(l[i]) or fuzzy): raise ValueError(timestr) else: skipped_idxs.append(i) i += 1 # Process year/month/day year, month, day = ymd.resolve_ymd(yearfirst, dayfirst) res.century_specified = ymd.century_specified res.year = year res.month = month res.day = day except (IndexError, ValueError): return None, None if not info.validate(res): return None, None if fuzzy_with_tokens: skipped_tokens = self._recombine_skipped(l, skipped_idxs) return res, tuple(skipped_tokens) else: return res, None def _parse_numeric_token(self, tokens, idx, info, ymd, res, fuzzy): # Token is a number value_repr = tokens[idx] try: value = self._to_decimal(value_repr) except Exception as e: six.raise_from(ValueError('Unknown numeric token'), e) len_li = len(value_repr) len_l = len(tokens) if (len(ymd) == 3 and len_li in (2, 4) and res.hour is None and (idx + 1 >= len_l or (tokens[idx + 1] != ':' and info.hms(tokens[idx + 1]) is None))): # 19990101T23[59] s = tokens[idx] res.hour = int(s[:2]) if len_li == 4: res.minute = int(s[2:]) elif len_li == 6 or (len_li > 6 and tokens[idx].find('.') == 6): # YYMMDD or HHMMSS[.ss] s = tokens[idx] if not ymd and '.' not in tokens[idx]: ymd.append(s[:2]) ymd.append(s[2:4]) ymd.append(s[4:]) else: # 19990101T235959[.59] # TODO: Check if res attributes already set. res.hour = int(s[:2]) res.minute = int(s[2:4]) res.second, res.microsecond = self._parsems(s[4:]) elif len_li in (8, 12, 14): # YYYYMMDD s = tokens[idx] ymd.append(s[:4], 'Y') ymd.append(s[4:6]) ymd.append(s[6:8]) if len_li > 8: res.hour = int(s[8:10]) res.minute = int(s[10:12]) if len_li > 12: res.second = int(s[12:]) elif self._find_hms_idx(idx, tokens, info, allow_jump=True) is not None: # HH[ ]h or MM[ ]m or SS[.ss][ ]s hms_idx = self._find_hms_idx(idx, tokens, info, allow_jump=True) (idx, hms) = self._parse_hms(idx, tokens, info, hms_idx) if hms is not None: # TODO: checking that hour/minute/second are not # already set? self._assign_hms(res, value_repr, hms) elif idx + 2 < len_l and tokens[idx + 1] == ':': # HH:MM[:SS[.ss]] res.hour = int(value) value = self._to_decimal(tokens[idx + 2]) # TODO: try/except for this? (res.minute, res.second) = self._parse_min_sec(value) if idx + 4 < len_l and tokens[idx + 3] == ':': res.second, res.microsecond = self._parsems(tokens[idx + 4]) idx += 2 idx += 2 elif idx + 1 < len_l and tokens[idx + 1] in ('-', '/', '.'): sep = tokens[idx + 1] ymd.append(value_repr) if idx + 2 < len_l and not info.jump(tokens[idx + 2]): if tokens[idx + 2].isdigit(): # 01-01[-01] ymd.append(tokens[idx + 2]) else: # 01-Jan[-01] value = info.month(tokens[idx + 2]) if value is not None: ymd.append(value, 'M') else: raise ValueError() if idx + 3 < len_l and tokens[idx + 3] == sep: # We have three members value = info.month(tokens[idx + 4]) if value is not None: ymd.append(value, 'M') else: ymd.append(tokens[idx + 4]) idx += 2 idx += 1 idx += 1 elif idx + 1 >= len_l or info.jump(tokens[idx + 1]): if idx + 2 < len_l and info.ampm(tokens[idx + 2]) is not None: # 12 am hour = int(value) res.hour = self._adjust_ampm(hour, info.ampm(tokens[idx + 2])) idx += 1 else: # Year, month or day ymd.append(value) idx += 1 elif info.ampm(tokens[idx + 1]) is not None and (0 <= value < 24): # 12am hour = int(value) res.hour = self._adjust_ampm(hour, info.ampm(tokens[idx + 1])) idx += 1 elif ymd.could_be_day(value): ymd.append(value) elif not fuzzy: raise ValueError() return idx def _find_hms_idx(self, idx, tokens, info, allow_jump): len_l = len(tokens) if idx+1 < len_l and info.hms(tokens[idx+1]) is not None: # There is an "h", "m", or "s" label following this token. We take # assign the upcoming label to the current token. # e.g. the "12" in 12h" hms_idx = idx + 1 elif (allow_jump and idx+2 < len_l and tokens[idx+1] == ' ' and info.hms(tokens[idx+2]) is not None): # There is a space and then an "h", "m", or "s" label. # e.g. the "12" in "12 h" hms_idx = idx + 2 elif idx > 0 and info.hms(tokens[idx-1]) is not None: # There is a "h", "m", or "s" preceeding this token. Since neither # of the previous cases was hit, there is no label following this # token, so we use the previous label. # e.g. the "04" in "12h04" hms_idx = idx-1 elif (1 < idx == len_l-1 and tokens[idx-1] == ' ' and info.hms(tokens[idx-2]) is not None): # If we are looking at the final token, we allow for a # backward-looking check to skip over a space. # TODO: Are we sure this is the right condition here? hms_idx = idx - 2 else: hms_idx = None return hms_idx def _assign_hms(self, res, value_repr, hms): # See GH issue #427, fixing float rounding value = self._to_decimal(value_repr) if hms == 0: # Hour res.hour = int(value) if value % 1: res.minute = int(60*(value % 1)) elif hms == 1: (res.minute, res.second) = self._parse_min_sec(value) elif hms == 2: (res.second, res.microsecond) = self._parsems(value_repr) def _could_be_tzname(self, hour, tzname, tzoffset, token): return (hour is not None and tzname is None and tzoffset is None and len(token) <= 5 and all(x in string.ascii_uppercase for x in token)) def _ampm_valid(self, hour, ampm, fuzzy): """ For fuzzy parsing, 'a' or 'am' (both valid English words) may erroneously trigger the AM/PM flag. Deal with that here. """ val_is_ampm = True # If there's already an AM/PM flag, this one isn't one. if fuzzy and ampm is not None: val_is_ampm = False # If AM/PM is found and hour is not, raise a ValueError if hour is None: if fuzzy: val_is_ampm = False else: raise ValueError('No hour specified with AM or PM flag.') elif not 0 <= hour <= 12: # If AM/PM is found, it's a 12 hour clock, so raise # an error for invalid range if fuzzy: val_is_ampm = False else: raise ValueError('Invalid hour specified for 12-hour clock.') return val_is_ampm def _adjust_ampm(self, hour, ampm): if hour < 12 and ampm == 1: hour += 12 elif hour == 12 and ampm == 0: hour = 0 return hour def _parse_min_sec(self, value): # TODO: Every usage of this function sets res.second to the return # value. Are there any cases where second will be returned as None and # we *dont* want to set res.second = None? minute = int(value) second = None sec_remainder = value % 1 if sec_remainder: second = int(60 * sec_remainder) return (minute, second) def _parsems(self, value): """Parse a I[.F] seconds value into (seconds, microseconds).""" if "." not in value: return int(value), 0 else: i, f = value.split(".") return int(i), int(f.ljust(6, "0")[:6]) def _parse_hms(self, idx, tokens, info, hms_idx): # TODO: Is this going to admit a lot of false-positives for when we # just happen to have digits and "h", "m" or "s" characters in non-date # text? I guess hex hashes won't have that problem, but there's plenty # of random junk out there. if hms_idx is None: hms = None new_idx = idx elif hms_idx > idx: hms = info.hms(tokens[hms_idx]) new_idx = hms_idx else: # Looking backwards, increment one. hms = info.hms(tokens[hms_idx]) + 1 new_idx = idx return (new_idx, hms) def _recombine_skipped(self, tokens, skipped_idxs): """ >>> tokens = ["foo", " ", "bar", " ", "19June2000", "baz"] >>> skipped_idxs = [0, 1, 2, 5] >>> _recombine_skipped(tokens, skipped_idxs) ["foo bar", "baz"] """ skipped_tokens = [] for i, idx in enumerate(sorted(skipped_idxs)): if i > 0 and idx - 1 == skipped_idxs[i - 1]: skipped_tokens[-1] = skipped_tokens[-1] + tokens[idx] else: skipped_tokens.append(tokens[idx]) return skipped_tokens def _build_tzinfo(self, tzinfos, tzname, tzoffset): if callable(tzinfos): tzdata = tzinfos(tzname, tzoffset) else: tzdata = tzinfos.get(tzname) # handle case where tzinfo is paased an options that returns None # eg tzinfos = {'BRST' : None} if isinstance(tzdata, datetime.tzinfo) or tzdata is None: tzinfo = tzdata elif isinstance(tzdata, text_type): tzinfo = tz.tzstr(tzdata) elif isinstance(tzdata, integer_types): tzinfo = tz.tzoffset(tzname, tzdata) return tzinfo def _build_tzaware(self, naive, res, tzinfos): if (callable(tzinfos) or (tzinfos and res.tzname in tzinfos)): tzinfo = self._build_tzinfo(tzinfos, res.tzname, res.tzoffset) aware = naive.replace(tzinfo=tzinfo) aware = self._assign_tzname(aware, res.tzname) elif res.tzname and res.tzname in time.tzname: aware = naive.replace(tzinfo=tz.tzlocal()) # Handle ambiguous local datetime aware = self._assign_tzname(aware, res.tzname) # This is mostly relevant for winter GMT zones parsed in the UK if (aware.tzname() != res.tzname and res.tzname in self.info.UTCZONE): aware = aware.replace(tzinfo=tz.tzutc()) elif res.tzoffset == 0: aware = naive.replace(tzinfo=tz.tzutc()) elif res.tzoffset: aware = naive.replace(tzinfo=tz.tzoffset(res.tzname, res.tzoffset)) elif not res.tzname and not res.tzoffset: # i.e. no timezone information was found. aware = naive elif res.tzname: # tz-like string was parsed but we don't know what to do # with it warnings.warn("tzname {tzname} identified but not understood. " "Pass `tzinfos` argument in order to correctly " "return a timezone-aware datetime. In a future " "version, this will raise an " "exception.".format(tzname=res.tzname), category=UnknownTimezoneWarning) aware = naive return aware def _build_naive(self, res, default): repl = {} for attr in ("year", "month", "day", "hour", "minute", "second", "microsecond"): value = getattr(res, attr) if value is not None: repl[attr] = value if 'day' not in repl: # If the default day exceeds the last day of the month, fall back # to the end of the month. cyear = default.year if res.year is None else res.year cmonth = default.month if res.month is None else res.month cday = default.day if res.day is None else res.day if cday > monthrange(cyear, cmonth)[1]: repl['day'] = monthrange(cyear, cmonth)[1] naive = default.replace(**repl) if res.weekday is not None and not res.day: naive = naive + relativedelta.relativedelta(weekday=res.weekday) return naive def _assign_tzname(self, dt, tzname): if dt.tzname() != tzname: new_dt = tz.enfold(dt, fold=1) if new_dt.tzname() == tzname: return new_dt return dt def _to_decimal(self, val): try: decimal_value = Decimal(val) # See GH 662, edge case, infinite value should not be converted via `_to_decimal` if not decimal_value.is_finite(): raise ValueError("Converted decimal value is infinite or NaN") except Exception as e: msg = "Could not convert %s to decimal" % val six.raise_from(ValueError(msg), e) else: return decimal_value DEFAULTPARSER = parser() def parse(timestr, parserinfo=None, **kwargs): """ Parse a string in one of the supported formats, using the ``parserinfo`` parameters. :param timestr: A string containing a date/time stamp. :param parserinfo: A :class:`parserinfo` object containing parameters for the parser. If ``None``, the default arguments to the :class:`parserinfo` constructor are used. The ``**kwargs`` parameter takes the following keyword arguments: :param default: The default datetime object, if this is a datetime object and not ``None``, elements specified in ``timestr`` replace elements in the default object. :param ignoretz: If set ``True``, time zones in parsed strings are ignored and a naive :class:`datetime` object is returned. :param tzinfos: Additional time zone names / aliases which may be present in the string. This argument maps time zone names (and optionally offsets from those time zones) to time zones. This parameter can be a dictionary with timezone aliases mapping time zone names to time zones or a function taking two parameters (``tzname`` and ``tzoffset``) and returning a time zone. The timezones to which the names are mapped can be an integer offset from UTC in seconds or a :class:`tzinfo` object. .. doctest:: :options: +NORMALIZE_WHITESPACE >>> from dateutil.parser import parse >>> from dateutil.tz import gettz >>> tzinfos = {"BRST": -7200, "CST": gettz("America/Chicago")} >>> parse("2012-01-19 17:21:00 BRST", tzinfos=tzinfos) datetime.datetime(2012, 1, 19, 17, 21, tzinfo=tzoffset(u'BRST', -7200)) >>> parse("2012-01-19 17:21:00 CST", tzinfos=tzinfos) datetime.datetime(2012, 1, 19, 17, 21, tzinfo=tzfile('/usr/share/zoneinfo/America/Chicago')) This parameter is ignored if ``ignoretz`` is set. :param dayfirst: Whether to interpret the first value in an ambiguous 3-integer date (e.g. 01/05/09) as the day (``True``) or month (``False``). If ``yearfirst`` is set to ``True``, this distinguishes between YDM and YMD. If set to ``None``, this value is retrieved from the current :class:`parserinfo` object (which itself defaults to ``False``). :param yearfirst: Whether to interpret the first value in an ambiguous 3-integer date (e.g. 01/05/09) as the year. If ``True``, the first number is taken to be the year, otherwise the last number is taken to be the year. If this is set to ``None``, the value is retrieved from the current :class:`parserinfo` object (which itself defaults to ``False``). :param fuzzy: Whether to allow fuzzy parsing, allowing for string like "Today is January 1, 2047 at 8:21:00AM". :param fuzzy_with_tokens: If ``True``, ``fuzzy`` is automatically set to True, and the parser will return a tuple where the first element is the parsed :class:`datetime.datetime` datetimestamp and the second element is a tuple containing the portions of the string which were ignored: .. doctest:: >>> from dateutil.parser import parse >>> parse("Today is January 1, 2047 at 8:21:00AM", fuzzy_with_tokens=True) (datetime.datetime(2047, 1, 1, 8, 21), (u'Today is ', u' ', u'at ')) :return: Returns a :class:`datetime.datetime` object or, if the ``fuzzy_with_tokens`` option is ``True``, returns a tuple, the first element being a :class:`datetime.datetime` object, the second a tuple containing the fuzzy tokens. :raises ValueError: Raised for invalid or unknown string format, if the provided :class:`tzinfo` is not in a valid format, or if an invalid date would be created. :raises OverflowError: Raised if the parsed date exceeds the largest valid C integer on your system. """ if parserinfo: return parser(parserinfo).parse(timestr, **kwargs) else: return DEFAULTPARSER.parse(timestr, **kwargs) class _tzparser(object): class _result(_resultbase): __slots__ = ["stdabbr", "stdoffset", "dstabbr", "dstoffset", "start", "end"] class _attr(_resultbase): __slots__ = ["month", "week", "weekday", "yday", "jyday", "day", "time"] def __repr__(self): return self._repr("") def __init__(self): _resultbase.__init__(self) self.start = self._attr() self.end = self._attr() def parse(self, tzstr): res = self._result() l = [x for x in re.split(r'([,:.]|[a-zA-Z]+|[0-9]+)',tzstr) if x] used_idxs = list() try: len_l = len(l) i = 0 while i < len_l: # BRST+3[BRDT[+2]] j = i while j < len_l and not [x for x in l[j] if x in "0123456789:,-+"]: j += 1 if j != i: if not res.stdabbr: offattr = "stdoffset" res.stdabbr = "".join(l[i:j]) else: offattr = "dstoffset" res.dstabbr = "".join(l[i:j]) for ii in range(j): used_idxs.append(ii) i = j if (i < len_l and (l[i] in ('+', '-') or l[i][0] in "0123456789")): if l[i] in ('+', '-'): # Yes, that's right. See the TZ variable # documentation. signal = (1, -1)[l[i] == '+'] used_idxs.append(i) i += 1 else: signal = -1 len_li = len(l[i]) if len_li == 4: # -0300 setattr(res, offattr, (int(l[i][:2]) * 3600 + int(l[i][2:]) * 60) * signal) elif i + 1 < len_l and l[i + 1] == ':': # -03:00 setattr(res, offattr, (int(l[i]) * 3600 + int(l[i + 2]) * 60) * signal) used_idxs.append(i) i += 2 elif len_li <= 2: # -[0]3 setattr(res, offattr, int(l[i][:2]) * 3600 * signal) else: return None used_idxs.append(i) i += 1 if res.dstabbr: break else: break if i < len_l: for j in range(i, len_l): if l[j] == ';': l[j] = ',' assert l[i] == ',' i += 1 if i >= len_l: pass elif (8 <= l.count(',') <= 9 and not [y for x in l[i:] if x != ',' for y in x if y not in "0123456789+-"]): # GMT0BST,3,0,30,3600,10,0,26,7200[,3600] for x in (res.start, res.end): x.month = int(l[i]) used_idxs.append(i) i += 2 if l[i] == '-': value = int(l[i + 1]) * -1 used_idxs.append(i) i += 1 else: value = int(l[i]) used_idxs.append(i) i += 2 if value: x.week = value x.weekday = (int(l[i]) - 1) % 7 else: x.day = int(l[i]) used_idxs.append(i) i += 2 x.time = int(l[i]) used_idxs.append(i) i += 2 if i < len_l: if l[i] in ('-', '+'): signal = (-1, 1)[l[i] == "+"] used_idxs.append(i) i += 1 else: signal = 1 used_idxs.append(i) res.dstoffset = (res.stdoffset + int(l[i]) * signal) # This was a made-up format that is not in normal use warn(('Parsed time zone "%s"' % tzstr) + 'is in a non-standard dateutil-specific format, which ' + 'is now deprecated; support for parsing this format ' + 'will be removed in future versions. It is recommended ' + 'that you switch to a standard format like the GNU ' + 'TZ variable format.', tz.DeprecatedTzFormatWarning) elif (l.count(',') == 2 and l[i:].count('/') <= 2 and not [y for x in l[i:] if x not in (',', '/', 'J', 'M', '.', '-', ':') for y in x if y not in "0123456789"]): for x in (res.start, res.end): if l[i] == 'J': # non-leap year day (1 based) used_idxs.append(i) i += 1 x.jyday = int(l[i]) elif l[i] == 'M': # month[-.]week[-.]weekday used_idxs.append(i) i += 1 x.month = int(l[i]) used_idxs.append(i) i += 1 assert l[i] in ('-', '.') used_idxs.append(i) i += 1 x.week = int(l[i]) if x.week == 5: x.week = -1 used_idxs.append(i) i += 1 assert l[i] in ('-', '.') used_idxs.append(i) i += 1 x.weekday = (int(l[i]) - 1) % 7 else: # year day (zero based) x.yday = int(l[i]) + 1 used_idxs.append(i) i += 1 if i < len_l and l[i] == '/': used_idxs.append(i) i += 1 # start time len_li = len(l[i]) if len_li == 4: # -0300 x.time = (int(l[i][:2]) * 3600 + int(l[i][2:]) * 60) elif i + 1 < len_l and l[i + 1] == ':': # -03:00 x.time = int(l[i]) * 3600 + int(l[i + 2]) * 60 used_idxs.append(i) i += 2 if i + 1 < len_l and l[i + 1] == ':': used_idxs.append(i) i += 2 x.time += int(l[i]) elif len_li <= 2: # -[0]3 x.time = (int(l[i][:2]) * 3600) else: return None used_idxs.append(i) i += 1 assert i == len_l or l[i] == ',' i += 1 assert i >= len_l except (IndexError, ValueError, AssertionError): return None unused_idxs = set(range(len_l)).difference(used_idxs) res.any_unused_tokens = not {l[n] for n in unused_idxs}.issubset({",",":"}) return res DEFAULTTZPARSER = _tzparser() def _parsetz(tzstr): return DEFAULTTZPARSER.parse(tzstr) class UnknownTimezoneWarning(RuntimeWarning): """Raised when the parser finds a timezone it cannot parse into a tzinfo""" # vim:ts=4:sw=4:et
gpl-2.0
NicovincX2/Python-3.5
Statistiques/Estimation (statistique)/Régression/Arbre de décision/feature_importance_forests_of_trees.py
1
1381
# -*- coding: utf-8 -*- import os import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(X.shape[1]): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(X.shape[1]), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(X.shape[1]), indices) plt.xlim([-1, X.shape[1]]) plt.show() os.system("pause")
gpl-3.0
zedoul/AnomalyDetection
test_discretization/gmm_on_data.py
1
1160
import numpy as np import matplotlib.pyplot as plt from sklearn import mixture import matplotlib.pyplot import matplotlib.mlab samples = 100000 data = np.zeros(samples) mu, sigma = 0.05, 0.015 data[0:samples/2] = np.random.normal(mu, sigma, (samples/2)) mu, sigma = 0.18, 0.01 data[(samples/2):samples] = np.random.normal(mu, sigma, (samples/2)) clf = mixture.GMM(n_components=2, covariance_type='full', min_covar=0.00001) clf.fit(data) m1, m2 = clf.means_ w1, w2 = clf.weights_ c1, c2 = clf.covars_ # show lables plt.ylabel("Frequency") plt.xlabel("x") # show hist histdist = plt.hist(data, 100, normed=True, alpha=0.2) # show gausses plotgauss1 = lambda x: plt.plot(x,w1*matplotlib.mlab.normpdf(x,m1,np.sqrt(c1))[0], linewidth=2, color='k') plotgauss2 = lambda x: plt.plot(x,w2*matplotlib.mlab.normpdf(x,m2,np.sqrt(c2))[0], linewidth=2, color='r') plotgauss1(histdist[1]) plotgauss2(histdist[1]) # predict print str(clf.predict([0.05])) + " with " + str(clf.predict_proba([0.05])) print str(clf.predict([0.20])) + " with " + str(clf.predict_proba([0.20])) print str(clf.predict([0.13])) + " with " + str(clf.predict_proba([0.13])) plt.show()
mit
xiaoxiamii/scikit-learn
examples/covariance/plot_mahalanobis_distances.py
348
6232
r""" ================================================================ Robust covariance estimation and Mahalanobis distances relevance ================================================================ An example to show covariance estimation with the Mahalanobis distances on Gaussian distributed data. For Gaussian distributed data, the distance of an observation :math:`x_i` to the mode of the distribution can be computed using its Mahalanobis distance: :math:`d_{(\mu,\Sigma)}(x_i)^2 = (x_i - \mu)'\Sigma^{-1}(x_i - \mu)` where :math:`\mu` and :math:`\Sigma` are the location and the covariance of the underlying Gaussian distribution. In practice, :math:`\mu` and :math:`\Sigma` are replaced by some estimates. The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set and therefor, the corresponding Mahalanobis distances are. One would better have to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set and that the associated Mahalanobis distances accurately reflect the true organisation of the observations. The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples}-n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples}+n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]. This example illustrates how the Mahalanobis distances are affected by outlying data: observations drawn from a contaminating distribution are not distinguishable from the observations coming from the real, Gaussian distribution that one may want to work with. Using MCD-based Mahalanobis distances, the two populations become distinguishable. Associated applications are outliers detection, observations ranking, clustering, ... For visualization purpose, the cubic root of the Mahalanobis distances are represented in the boxplot, as Wilson and Hilferty suggest [2] [1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984. [2] Wilson, E. B., & Hilferty, M. M. (1931). The distribution of chi-square. Proceedings of the National Academy of Sciences of the United States of America, 17, 684-688. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.covariance import EmpiricalCovariance, MinCovDet n_samples = 125 n_outliers = 25 n_features = 2 # generate data gen_cov = np.eye(n_features) gen_cov[0, 0] = 2. X = np.dot(np.random.randn(n_samples, n_features), gen_cov) # add some outliers outliers_cov = np.eye(n_features) outliers_cov[np.arange(1, n_features), np.arange(1, n_features)] = 7. X[-n_outliers:] = np.dot(np.random.randn(n_outliers, n_features), outliers_cov) # fit a Minimum Covariance Determinant (MCD) robust estimator to data robust_cov = MinCovDet().fit(X) # compare estimators learnt from the full data set with true parameters emp_cov = EmpiricalCovariance().fit(X) ############################################################################### # Display results fig = plt.figure() plt.subplots_adjust(hspace=-.1, wspace=.4, top=.95, bottom=.05) # Show data set subfig1 = plt.subplot(3, 1, 1) inlier_plot = subfig1.scatter(X[:, 0], X[:, 1], color='black', label='inliers') outlier_plot = subfig1.scatter(X[:, 0][-n_outliers:], X[:, 1][-n_outliers:], color='red', label='outliers') subfig1.set_xlim(subfig1.get_xlim()[0], 11.) subfig1.set_title("Mahalanobis distances of a contaminated data set:") # Show contours of the distance functions xx, yy = np.meshgrid(np.linspace(plt.xlim()[0], plt.xlim()[1], 100), np.linspace(plt.ylim()[0], plt.ylim()[1], 100)) zz = np.c_[xx.ravel(), yy.ravel()] mahal_emp_cov = emp_cov.mahalanobis(zz) mahal_emp_cov = mahal_emp_cov.reshape(xx.shape) emp_cov_contour = subfig1.contour(xx, yy, np.sqrt(mahal_emp_cov), cmap=plt.cm.PuBu_r, linestyles='dashed') mahal_robust_cov = robust_cov.mahalanobis(zz) mahal_robust_cov = mahal_robust_cov.reshape(xx.shape) robust_contour = subfig1.contour(xx, yy, np.sqrt(mahal_robust_cov), cmap=plt.cm.YlOrBr_r, linestyles='dotted') subfig1.legend([emp_cov_contour.collections[1], robust_contour.collections[1], inlier_plot, outlier_plot], ['MLE dist', 'robust dist', 'inliers', 'outliers'], loc="upper right", borderaxespad=0) plt.xticks(()) plt.yticks(()) # Plot the scores for each point emp_mahal = emp_cov.mahalanobis(X - np.mean(X, 0)) ** (0.33) subfig2 = plt.subplot(2, 2, 3) subfig2.boxplot([emp_mahal[:-n_outliers], emp_mahal[-n_outliers:]], widths=.25) subfig2.plot(1.26 * np.ones(n_samples - n_outliers), emp_mahal[:-n_outliers], '+k', markeredgewidth=1) subfig2.plot(2.26 * np.ones(n_outliers), emp_mahal[-n_outliers:], '+k', markeredgewidth=1) subfig2.axes.set_xticklabels(('inliers', 'outliers'), size=15) subfig2.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16) subfig2.set_title("1. from non-robust estimates\n(Maximum Likelihood)") plt.yticks(()) robust_mahal = robust_cov.mahalanobis(X - robust_cov.location_) ** (0.33) subfig3 = plt.subplot(2, 2, 4) subfig3.boxplot([robust_mahal[:-n_outliers], robust_mahal[-n_outliers:]], widths=.25) subfig3.plot(1.26 * np.ones(n_samples - n_outliers), robust_mahal[:-n_outliers], '+k', markeredgewidth=1) subfig3.plot(2.26 * np.ones(n_outliers), robust_mahal[-n_outliers:], '+k', markeredgewidth=1) subfig3.axes.set_xticklabels(('inliers', 'outliers'), size=15) subfig3.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16) subfig3.set_title("2. from robust estimates\n(Minimum Covariance Determinant)") plt.yticks(()) plt.show()
bsd-3-clause
Lawrence-Liu/scikit-learn
sklearn/cluster/spectral.py
233
18153
# -*- coding: utf-8 -*- """Algorithms for spectral clustering""" # Author: Gael Varoquaux [email protected] # Brian Cheung # Wei LI <[email protected]> # License: BSD 3 clause import warnings import numpy as np from ..base import BaseEstimator, ClusterMixin from ..utils import check_random_state, as_float_array from ..utils.validation import check_array from ..utils.extmath import norm from ..metrics.pairwise import pairwise_kernels from ..neighbors import kneighbors_graph from ..manifold import spectral_embedding from .k_means_ import k_means def discretize(vectors, copy=True, max_svd_restarts=30, n_iter_max=20, random_state=None): """Search for a partition matrix (clustering) which is closest to the eigenvector embedding. Parameters ---------- vectors : array-like, shape: (n_samples, n_clusters) The embedding space of the samples. copy : boolean, optional, default: True Whether to copy vectors, or perform in-place normalization. max_svd_restarts : int, optional, default: 30 Maximum number of attempts to restart SVD if convergence fails n_iter_max : int, optional, default: 30 Maximum number of iterations to attempt in rotation and partition matrix search if machine precision convergence is not reached random_state: int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the of the rotation matrix Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ----- The eigenvector embedding is used to iteratively search for the closest discrete partition. First, the eigenvector embedding is normalized to the space of partition matrices. An optimal discrete partition matrix closest to this normalized embedding multiplied by an initial rotation is calculated. Fixing this discrete partition matrix, an optimal rotation matrix is calculated. These two calculations are performed until convergence. The discrete partition matrix is returned as the clustering solution. Used in spectral clustering, this method tends to be faster and more robust to random initialization than k-means. """ from scipy.sparse import csc_matrix from scipy.linalg import LinAlgError random_state = check_random_state(random_state) vectors = as_float_array(vectors, copy=copy) eps = np.finfo(float).eps n_samples, n_components = vectors.shape # Normalize the eigenvectors to an equal length of a vector of ones. # Reorient the eigenvectors to point in the negative direction with respect # to the first element. This may have to do with constraining the # eigenvectors to lie in a specific quadrant to make the discretization # search easier. norm_ones = np.sqrt(n_samples) for i in range(vectors.shape[1]): vectors[:, i] = (vectors[:, i] / norm(vectors[:, i])) \ * norm_ones if vectors[0, i] != 0: vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i]) # Normalize the rows of the eigenvectors. Samples should lie on the unit # hypersphere centered at the origin. This transforms the samples in the # embedding space to the space of partition matrices. vectors = vectors / np.sqrt((vectors ** 2).sum(axis=1))[:, np.newaxis] svd_restarts = 0 has_converged = False # If there is an exception we try to randomize and rerun SVD again # do this max_svd_restarts times. while (svd_restarts < max_svd_restarts) and not has_converged: # Initialize first column of rotation matrix with a row of the # eigenvectors rotation = np.zeros((n_components, n_components)) rotation[:, 0] = vectors[random_state.randint(n_samples), :].T # To initialize the rest of the rotation matrix, find the rows # of the eigenvectors that are as orthogonal to each other as # possible c = np.zeros(n_samples) for j in range(1, n_components): # Accumulate c to ensure row is as orthogonal as possible to # previous picks as well as current one c += np.abs(np.dot(vectors, rotation[:, j - 1])) rotation[:, j] = vectors[c.argmin(), :].T last_objective_value = 0.0 n_iter = 0 while not has_converged: n_iter += 1 t_discrete = np.dot(vectors, rotation) labels = t_discrete.argmax(axis=1) vectors_discrete = csc_matrix( (np.ones(len(labels)), (np.arange(0, n_samples), labels)), shape=(n_samples, n_components)) t_svd = vectors_discrete.T * vectors try: U, S, Vh = np.linalg.svd(t_svd) svd_restarts += 1 except LinAlgError: print("SVD did not converge, randomizing and trying again") break ncut_value = 2.0 * (n_samples - S.sum()) if ((abs(ncut_value - last_objective_value) < eps) or (n_iter > n_iter_max)): has_converged = True else: # otherwise calculate rotation and continue last_objective_value = ncut_value rotation = np.dot(Vh.T, U.T) if not has_converged: raise LinAlgError('SVD did not converge') return labels def spectral_clustering(affinity, n_clusters=8, n_components=None, eigen_solver=None, random_state=None, n_init=10, eigen_tol=0.0, assign_labels='kmeans'): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- affinity : array-like or sparse matrix, shape: (n_samples, n_samples) The affinity matrix describing the relationship of the samples to embed. **Must be symmetric**. Possible examples: - adjacency matrix of a graph, - heat kernel of the pairwise distance matrix of the samples, - symmetric k-nearest neighbours connectivity matrix of the samples. n_clusters : integer, optional Number of clusters to extract. n_components : integer, optional, default is n_clusters Number of eigen vectors to use for the spectral embedding eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. See the 'Multiclass spectral clustering' paper referenced below for more details on the discretization approach. Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ------ The graph should contain only one connect component, elsewhere the results make little sense. This algorithm solves the normalized cut for k=2: it is a normalized spectral clustering. """ if assign_labels not in ('kmeans', 'discretize'): raise ValueError("The 'assign_labels' parameter should be " "'kmeans' or 'discretize', but '%s' was given" % assign_labels) random_state = check_random_state(random_state) n_components = n_clusters if n_components is None else n_components maps = spectral_embedding(affinity, n_components=n_components, eigen_solver=eigen_solver, random_state=random_state, eigen_tol=eigen_tol, drop_first=False) if assign_labels == 'kmeans': _, labels, _ = k_means(maps, n_clusters, random_state=random_state, n_init=n_init) else: labels = discretize(maps, random_state=random_state) return labels class SpectralClustering(BaseEstimator, ClusterMixin): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. When calling ``fit``, an affinity matrix is constructed using either kernel function such the Gaussian (aka RBF) kernel of the euclidean distanced ``d(X, X)``:: np.exp(-gamma * d(X,X) ** 2) or a k-nearest neighbors connectivity matrix. Alternatively, using ``precomputed``, a user-provided affinity matrix can be used. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- n_clusters : integer, optional The dimension of the projection subspace. affinity : string, array-like or callable, default 'rbf' If a string, this may be one of 'nearest_neighbors', 'precomputed', 'rbf' or one of the kernels supported by `sklearn.metrics.pairwise_kernels`. Only kernels that produce similarity scores (non-negative values that increase with similarity) should be used. This property is not checked by the clustering algorithm. gamma : float Scaling factor of RBF, polynomial, exponential chi^2 and sigmoid affinity kernel. Ignored for ``affinity='nearest_neighbors'``. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. n_neighbors : integer Number of neighbors to use when constructing the affinity matrix using the nearest neighbors method. Ignored for ``affinity='rbf'``. eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. kernel_params : dictionary of string to any, optional Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels. Attributes ---------- affinity_matrix_ : array-like, shape (n_samples, n_samples) Affinity matrix used for clustering. Available only if after calling ``fit``. labels_ : Labels of each point Notes ----- If you have an affinity matrix, such as a distance matrix, for which 0 means identical elements, and high values means very dissimilar elements, it can be transformed in a similarity matrix that is well suited for the algorithm by applying the Gaussian (RBF, heat) kernel:: np.exp(- X ** 2 / (2. * delta ** 2)) Another alternative is to take a symmetric version of the k nearest neighbors connectivity matrix of the points. If the pyamg package is installed, it is used: this greatly speeds up computation. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf """ def __init__(self, n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1., affinity='rbf', n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans', degree=3, coef0=1, kernel_params=None): self.n_clusters = n_clusters self.eigen_solver = eigen_solver self.random_state = random_state self.n_init = n_init self.gamma = gamma self.affinity = affinity self.n_neighbors = n_neighbors self.eigen_tol = eigen_tol self.assign_labels = assign_labels self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def fit(self, X, y=None): """Creates an affinity matrix for X using the selected affinity, then applies spectral clustering to this affinity matrix. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) OR, if affinity==`precomputed`, a precomputed affinity matrix of shape (n_samples, n_samples) """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) if X.shape[0] == X.shape[1] and self.affinity != "precomputed": warnings.warn("The spectral clustering API has changed. ``fit``" "now constructs an affinity matrix from data. To use" " a custom affinity matrix, " "set ``affinity=precomputed``.") if self.affinity == 'nearest_neighbors': connectivity = kneighbors_graph(X, n_neighbors=self.n_neighbors, include_self=True) self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T) elif self.affinity == 'precomputed': self.affinity_matrix_ = X else: params = self.kernel_params if params is None: params = {} if not callable(self.affinity): params['gamma'] = self.gamma params['degree'] = self.degree params['coef0'] = self.coef0 self.affinity_matrix_ = pairwise_kernels(X, metric=self.affinity, filter_params=True, **params) random_state = check_random_state(self.random_state) self.labels_ = spectral_clustering(self.affinity_matrix_, n_clusters=self.n_clusters, eigen_solver=self.eigen_solver, random_state=random_state, n_init=self.n_init, eigen_tol=self.eigen_tol, assign_labels=self.assign_labels) return self @property def _pairwise(self): return self.affinity == "precomputed"
bsd-3-clause
adamgreenhall/scikit-learn
sklearn/tree/export.py
78
15814
""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Trevor Stephens <[email protected]> # Licence: BSD 3 clause import numpy as np from ..externals import six from . import _criterion from . import _tree def _color_brew(n): """Generate n colors with equally spaced hues. Parameters ---------- n : int The number of colors required. Returns ------- color_list : list, length n List of n tuples of form (R, G, B) being the components of each color. """ color_list = [] # Initialize saturation & value; calculate chroma & value shift s, v = 0.75, 0.9 c = s * v m = v - c for h in np.arange(25, 385, 360. / n).astype(int): # Calculate some intermediate values h_bar = h / 60. x = c * (1 - abs((h_bar % 2) - 1)) # Initialize RGB with same hue & chroma as our color rgb = [(c, x, 0), (x, c, 0), (0, c, x), (0, x, c), (x, 0, c), (c, 0, x), (c, x, 0)] r, g, b = rgb[int(h_bar)] # Shift the initial RGB values to match value and store rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))] color_list.append(rgb) return color_list def export_graphviz(decision_tree, out_file="tree.dot", max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Read more in the :ref:`User Guide <tree>`. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. out_file : file object or string, optional (default="tree.dot") Handle or name of the output file. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. feature_names : list of strings, optional (default=None) Names of each of the features. class_names : list of strings, bool or None, optional (default=None) Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, optional (default='all') Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, optional (default=False) When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. leaves_parallel : bool, optional (default=False) When set to ``True``, draw all leaf nodes at the bottom of the tree. impurity : bool, optional (default=True) When set to ``True``, show the impurity at each node. node_ids : bool, optional (default=False) When set to ``True``, show the ID number on each node. proportion : bool, optional (default=False) When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, optional (default=False) When set to ``True``, orient tree left to right rather than top-down. rounded : bool, optional (default=False) When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. special_characters : bool, optional (default=False) When set to ``False``, ignore special characters for PostScript compatibility. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf, ... out_file='tree.dot') # doctest: +SKIP """ def get_color(value): # Find the appropriate color & intensity for a node if colors['bounds'] is None: # Classification tree color = list(colors['rgb'][np.argmax(value)]) sorted_values = sorted(value, reverse=True) alpha = int(255 * (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1])) else: # Regression tree or multi-output color = list(colors['rgb'][0]) alpha = int(255 * ((value - colors['bounds'][0]) / (colors['bounds'][1] - colors['bounds'][0]))) # Return html color code in #RRGGBBAA format color.append(alpha) hex_codes = [str(i) for i in range(10)] hex_codes.extend(['a', 'b', 'c', 'd', 'e', 'f']) color = [hex_codes[c // 16] + hex_codes[c % 16] for c in color] return '#' + ''.join(color) def node_to_str(tree, node_id, criterion): # Generate the node content string if tree.n_outputs == 1: value = tree.value[node_id][0, :] else: value = tree.value[node_id] # Should labels be shown? labels = (label == 'root' and node_id == 0) or label == 'all' # PostScript compatibility for special characters if special_characters: characters = ['&#35;', '<SUB>', '</SUB>', '&le;', '<br/>', '>'] node_string = '<' else: characters = ['#', '[', ']', '<=', '\\n', '"'] node_string = '"' # Write node ID if node_ids: if labels: node_string += 'node ' node_string += characters[0] + str(node_id) + characters[4] # Write decision criteria if tree.children_left[node_id] != _tree.TREE_LEAF: # Always write node decision criteria, except for leaves if feature_names is not None: feature = feature_names[tree.feature[node_id]] else: feature = "X%s%s%s" % (characters[1], tree.feature[node_id], characters[2]) node_string += '%s %s %s%s' % (feature, characters[3], round(tree.threshold[node_id], 4), characters[4]) # Write impurity if impurity: if isinstance(criterion, _criterion.FriedmanMSE): criterion = "friedman_mse" elif not isinstance(criterion, six.string_types): criterion = "impurity" if labels: node_string += '%s = ' % criterion node_string += (str(round(tree.impurity[node_id], 4)) + characters[4]) # Write node sample count if labels: node_string += 'samples = ' if proportion: percent = (100. * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])) node_string += (str(round(percent, 1)) + '%' + characters[4]) else: node_string += (str(tree.n_node_samples[node_id]) + characters[4]) # Write node class distribution / regression value if proportion and tree.n_classes[0] != 1: # For classification this will show the proportion of samples value = value / tree.weighted_n_node_samples[node_id] if labels: node_string += 'value = ' if tree.n_classes[0] == 1: # Regression value_text = np.around(value, 4) elif proportion: # Classification value_text = np.around(value, 2) elif np.all(np.equal(np.mod(value, 1), 0)): # Classification without floating-point weights value_text = value.astype(int) else: # Classification with floating-point weights value_text = np.around(value, 4) # Strip whitespace value_text = str(value_text.astype('S32')).replace("b'", "'") value_text = value_text.replace("' '", ", ").replace("'", "") if tree.n_classes[0] == 1 and tree.n_outputs == 1: value_text = value_text.replace("[", "").replace("]", "") value_text = value_text.replace("\n ", characters[4]) node_string += value_text + characters[4] # Write node majority class if (class_names is not None and tree.n_classes[0] != 1 and tree.n_outputs == 1): # Only done for single-output classification trees if labels: node_string += 'class = ' if class_names is not True: class_name = class_names[np.argmax(value)] else: class_name = "y%s%s%s" % (characters[1], np.argmax(value), characters[2]) node_string += class_name # Clean up any trailing newlines if node_string[-2:] == '\\n': node_string = node_string[:-2] if node_string[-5:] == '<br/>': node_string = node_string[:-5] return node_string + characters[5] def recurse(tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if max_depth is None or depth <= max_depth: # Collect ranks for 'leaf' option in plot_options if left_child == _tree.TREE_LEAF: ranks['leaves'].append(str(node_id)) elif str(depth) not in ranks: ranks[str(depth)] = [str(node_id)] else: ranks[str(depth)].append(str(node_id)) out_file.write('%d [label=%s' % (node_id, node_to_str(tree, node_id, criterion))) if filled: # Fetch appropriate color for node if 'rgb' not in colors: # Initialize colors and bounds if required colors['rgb'] = _color_brew(tree.n_classes[0]) if tree.n_outputs != 1: # Find max and min impurities for multi-output colors['bounds'] = (np.min(-tree.impurity), np.max(-tree.impurity)) elif tree.n_classes[0] == 1: # Find max and min values in leaf nodes for regression colors['bounds'] = (np.min(tree.value), np.max(tree.value)) if tree.n_outputs == 1: node_val = (tree.value[node_id][0, :] / tree.weighted_n_node_samples[node_id]) if tree.n_classes[0] == 1: # Regression node_val = tree.value[node_id][0, :] else: # If multi-output color node by impurity node_val = -tree.impurity[node_id] out_file.write(', fillcolor="%s"' % get_color(node_val)) out_file.write('] ;\n') if parent is not None: # Add edge to parent out_file.write('%d -> %d' % (parent, node_id)) if parent == 0: # Draw True/False labels if parent is root node angles = np.array([45, -45]) * ((rotate - .5) * -2) out_file.write(' [labeldistance=2.5, labelangle=') if node_id == 1: out_file.write('%d, headlabel="True"]' % angles[0]) else: out_file.write('%d, headlabel="False"]' % angles[1]) out_file.write(' ;\n') if left_child != _tree.TREE_LEAF: recurse(tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1) recurse(tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1) else: ranks['leaves'].append(str(node_id)) out_file.write('%d [label="(...)"' % node_id) if filled: # color cropped nodes grey out_file.write(', fillcolor="#C0C0C0"') out_file.write('] ;\n' % node_id) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) own_file = False try: if isinstance(out_file, six.string_types): if six.PY3: out_file = open(out_file, "w", encoding="utf-8") else: out_file = open(out_file, "wb") own_file = True # The depth of each node for plotting with 'leaf' option ranks = {'leaves': []} # The colors to render each node with colors = {'bounds': None} out_file.write('digraph Tree {\n') # Specify node aesthetics out_file.write('node [shape=box') rounded_filled = [] if filled: rounded_filled.append('filled') if rounded: rounded_filled.append('rounded') if len(rounded_filled) > 0: out_file.write(', style="%s", color="black"' % ", ".join(rounded_filled)) if rounded: out_file.write(', fontname=helvetica') out_file.write('] ;\n') # Specify graph & edge aesthetics if leaves_parallel: out_file.write('graph [ranksep=equally, splines=polyline] ;\n') if rounded: out_file.write('edge [fontname=helvetica] ;\n') if rotate: out_file.write('rankdir=LR ;\n') # Now recurse the tree and add node & edge attributes if isinstance(decision_tree, _tree.Tree): recurse(decision_tree, 0, criterion="impurity") else: recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) # If required, draw leaf nodes at same depth as each other if leaves_parallel: for rank in sorted(ranks): out_file.write("{rank=same ; " + "; ".join(r for r in ranks[rank]) + "} ;\n") out_file.write("}") finally: if own_file: out_file.close()
bsd-3-clause
lmjohns3/speech-experiment
models/train-rica.py
1
2008
import climate import lmj.plot as plt import numpy as np import seaborn as sns import theanets logging = climate.get_logger('rica') import models climate.add_arg('--codebook', metavar='FILE', help='save codebook to FILE') climate.add_arg('--frames', type=int, metavar='T', help='train on sequences of T frames') climate.add_arg('--overcomplete', type=float, default=2, metavar='K', help='learn a Kx overcomplete codebook') def main(args): data = np.load(args.dataset, mmap_mode='r') N = data.shape[1] T = args.frames K = int(N * T * args.overcomplete) def batches(): batch = np.zeros((args.batch_size, N * T), 'f') for b in range(args.batch_size): o = np.random.randint(len(data) - T - 1) batch[b] = data[o:o+T].ravel() return [batch] net = theanets.Autoencoder([N * T, (K, 'linear'), (N * T, 'tied')]) net.train(batches, monitors={'hid1:out': (-0.1, -0.01, 0.01, 0.1)}, **models.kwargs_from_args(args)) D = net.find('hid1', 'w').get_value().T R = 6 C = 18 dimg = np.zeros((R * (N + 1) - 1, C * (T + 1) - 1), float) bimg = np.zeros((R * (N + 1) - 1, C * (T + 1) - 1), float) idx = abs(D).max(axis=1).argsort()[::-1] for r in range(R): for c in range(C): o = np.random.randint(len(data) - T - 1) dimg[r*(N+1):r*(N+1)+N, c*(T+1):c*(T+1)+T] = data[o:o+T].T bimg[r*(N+1):r*(N+1)+N, c*(T+1):c*(T+1)+T] = D[idx[r * C + c]].reshape((T, N)).T _, (dax, bax) = plt.subplots(1, 2) dax.imshow(dimg, cmap='coolwarm') sns.despine(ax=dax, left=True, bottom=True) dax.set_xticks([]) dax.set_yticks([]) bax.imshow(bimg, cmap='coolwarm') sns.despine(ax=bax, left=True, bottom=True) bax.set_xticks([]) bax.set_yticks([]) plt.show() logging.info('%s: saving %s %s', args.codebook, D.shape, D.dtype) np.save(args.codebook, D) if __name__ == '__main__': climate.call(main)
mit
tongwang01/tensorflow
tensorflow/contrib/learn/python/learn/estimators/_sklearn.py
153
6723
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """sklearn cross-support.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import numpy as np import six def _pprint(d): return ', '.join(['%s=%s' % (key, str(value)) for key, value in d.items()]) class _BaseEstimator(object): """This is a cross-import when sklearn is not available. Adopted from sklearn.BaseEstimator implementation. https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py """ def get_params(self, deep=True): """Get parameters for this estimator. Args: deep: boolean, optional If `True`, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params : mapping of string to any Parameter names mapped to their values. """ out = dict() param_names = [name for name in self.__dict__ if not name.startswith('_')] for key in param_names: value = getattr(self, key, None) if isinstance(value, collections.Callable): continue # XXX: should we rather test if instance of estimator? if deep and hasattr(value, 'get_params'): deep_items = value.get_params().items() out.update((key + '__' + k, val) for k, val in deep_items) out[key] = value return out def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Args: **params: Parameters. Returns: self Raises: ValueError: If params contain invalid names. """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def __repr__(self): class_name = self.__class__.__name__ return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False)),) # pylint: disable=old-style-class class _ClassifierMixin(): """Mixin class for all classifiers.""" pass class _RegressorMixin(): """Mixin class for all regression estimators.""" pass class _TransformerMixin(): """Mixin class for all transformer estimators.""" class NotFittedError(ValueError, AttributeError): """Exception class to raise if estimator is used before fitting. This class inherits from both ValueError and AttributeError to help with exception handling and backward compatibility. Examples: >>> from sklearn.svm import LinearSVC >>> from sklearn.exceptions import NotFittedError >>> try: ... LinearSVC().predict([[1, 2], [2, 3], [3, 4]]) ... except NotFittedError as e: ... print(repr(e)) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS NotFittedError('This LinearSVC instance is not fitted yet',) Copied from https://github.com/scikit-learn/scikit-learn/master/sklearn/exceptions.py """ # pylint: enable=old-style-class def _accuracy_score(y_true, y_pred): score = y_true == y_pred return np.average(score) def _mean_squared_error(y_true, y_pred): if len(y_true.shape) > 1: y_true = np.squeeze(y_true) if len(y_pred.shape) > 1: y_pred = np.squeeze(y_pred) return np.average((y_true - y_pred)**2) def _train_test_split(*args, **options): # pylint: disable=missing-docstring test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) if test_size is None and train_size is None: train_size = 0.75 elif train_size is None: train_size = 1 - test_size train_size = int(train_size * args[0].shape[0]) np.random.seed(random_state) indices = np.random.permutation(args[0].shape[0]) train_idx, test_idx = indices[:train_size], indices[train_size:] result = [] for x in args: result += [x.take(train_idx, axis=0), x.take(test_idx, axis=0)] return tuple(result) # If "TENSORFLOW_SKLEARN" flag is defined then try to import from sklearn. TRY_IMPORT_SKLEARN = os.environ.get('TENSORFLOW_SKLEARN', False) if TRY_IMPORT_SKLEARN: # pylint: disable=g-import-not-at-top,g-multiple-import,unused-import from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin, TransformerMixin from sklearn.metrics import accuracy_score, log_loss, mean_squared_error from sklearn.cross_validation import train_test_split try: from sklearn.exceptions import NotFittedError except ImportError: try: from sklearn.utils.validation import NotFittedError except ImportError: pass else: # Naive implementations of sklearn classes and functions. BaseEstimator = _BaseEstimator ClassifierMixin = _ClassifierMixin RegressorMixin = _RegressorMixin TransformerMixin = _TransformerMixin accuracy_score = _accuracy_score log_loss = None mean_squared_error = _mean_squared_error train_test_split = _train_test_split
apache-2.0
hitszxp/scikit-learn
benchmarks/bench_lasso.py
297
3305
""" Benchmarks of Lasso vs LassoLars First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import gc from time import time import numpy as np from sklearn.datasets.samples_generator import make_regression def compute_bench(alpha, n_samples, n_features, precompute): lasso_results = [] lars_lasso_results = [] it = 0 for ns in n_samples: for nf in n_features: it += 1 print('==================') print('Iteration %s of %s' % (it, max(len(n_samples), len(n_features)))) print('==================') n_informative = nf // 10 X, Y, coef_ = make_regression(n_samples=ns, n_features=nf, n_informative=n_informative, noise=0.1, coef=True) X /= np.sqrt(np.sum(X ** 2, axis=0)) # Normalize data gc.collect() print("- benchmarking Lasso") clf = Lasso(alpha=alpha, fit_intercept=False, precompute=precompute) tstart = time() clf.fit(X, Y) lasso_results.append(time() - tstart) gc.collect() print("- benchmarking LassoLars") clf = LassoLars(alpha=alpha, fit_intercept=False, normalize=False, precompute=precompute) tstart = time() clf.fit(X, Y) lars_lasso_results.append(time() - tstart) return lasso_results, lars_lasso_results if __name__ == '__main__': from sklearn.linear_model import Lasso, LassoLars import pylab as pl alpha = 0.01 # regularization parameter n_features = 10 list_n_samples = np.linspace(100, 1000000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, list_n_samples, [n_features], precompute=True) pl.figure('scikit-learn LASSO benchmark results') pl.subplot(211) pl.plot(list_n_samples, lasso_results, 'b-', label='Lasso') pl.plot(list_n_samples, lars_lasso_results, 'r-', label='LassoLars') pl.title('precomputed Gram matrix, %d features, alpha=%s' % (n_features, alpha)) pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') pl.axis('tight') n_samples = 2000 list_n_features = np.linspace(500, 3000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, [n_samples], list_n_features, precompute=False) pl.subplot(212) pl.plot(list_n_features, lasso_results, 'b-', label='Lasso') pl.plot(list_n_features, lars_lasso_results, 'r-', label='LassoLars') pl.title('%d samples, alpha=%s' % (n_samples, alpha)) pl.legend(loc='upper left') pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
hjanime/VisTrails
vistrails/packages/matplotlib/mixins.py
1
3926
############################################################################### ## ## Copyright (C) 2014-2015, New York University. ## Copyright (C) 2011-2014, NYU-Poly. ## Copyright (C) 2006-2011, University of Utah. ## All rights reserved. ## Contact: [email protected] ## ## This file is part of VisTrails. ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are met: ## ## - Redistributions of source code must retain the above copyright notice, ## this list of conditions and the following disclaimer. ## - Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## - Neither the name of the New York University nor the names of its ## contributors may be used to endorse or promote products derived from ## this software without specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ## THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ## EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ## PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ## OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ## WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR ## OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ## ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## ############################################################################### from __future__ import division class MplCorrBaseMixin(object): def compute_after(): if 'usevlines' in kwargs and kwargs['usevlines']: output = output + (output[2],) else: output = output + (None, None) class MplAcorrMixin(MplCorrBaseMixin): pass class MplXcorrMixin(MplCorrBaseMixin): pass class MplBoxplotMixin(object): def compute_after(): if 'patch_artist' in kwargs and kwargs['patch_artist']: output['boxPatches'] = output['boxes'] output['boxes'] = [] else: output['boxPatches'] = [] class MplContourBaseMixin(object): def compute_before(): if self.has_input("N") and self.has_input("V"): del args[-1] class MplContourMixin(MplContourBaseMixin): def compute_inner(): contour_set = matplotlib.pyplot.contour(*args, **kwargs) output = (contour_set, contour_set.collections) class MplContourfMixin(MplContourBaseMixin): def compute_inner(): contour_set = matplotlib.pyplot.contourf(*args, **kwargs) output = (contour_set, contour_set.collections) class MplPieMixin(object): def compute_after(): if len(output) < 3: output = output + ([],) class MplAnnotateMixin(object): def compute_before(): if self.has_input("fancyArrowProperties"): kwargs['arrowprops'] = \ self.get_input("fancyArrowProperties").props elif self.has_input("arrowProperties"): kwargs['arrowprops'] = \ self.get_input("arrowProperties").props class MplSpyMixin(object): def compute_after(): if "marker" not in kwargs and "markersize" not in kwargs and \ not hasattr(kwargs["Z"], 'tocoo'): output = (output, None) else: output = (None, output) class MplBarMixin(object): def compute_before(self): if not kwargs.has_key('left'): kwargs['left'] = range(len(kwargs['height']))
bsd-3-clause
wangtuanjie/airflow
airflow/hooks/dbapi_hook.py
2
5136
from builtins import str from past.builtins import basestring from datetime import datetime import numpy import logging from airflow.hooks.base_hook import BaseHook from airflow.utils import AirflowException class DbApiHook(BaseHook): """ Abstract base class for sql hooks. """ # Override to provide the connection name. conn_name_attr = None # Override to have a default connection id for a particular dbHook default_conn_name = 'default_conn_id' # Override if this db supports autocommit. supports_autocommit = False # Override with the object that exposes the connect method connector = None # Whether the db supports a special type of autocmmit supports_autocommit = False def __init__(self, *args, **kwargs): if not self.conn_name_attr: raise AirflowException("conn_name_attr is not defined") elif len(args) == 1: setattr(self, self.conn_name_attr, args[0]) elif self.conn_name_attr not in kwargs: setattr(self, self.conn_name_attr, self.default_conn_name) else: setattr(self, self.conn_name_attr, kwargs[self.conn_name_attr]) def get_conn(self): """Returns a connection object""" db = self.get_connection(getattr(self, self.conn_name_attr)) return self.connector.connect( host=db.host, port=db.port, username=db.login, schema=db.schema) def get_pandas_df(self, sql, parameters=None): ''' Executes the sql and returns a pandas dataframe ''' import pandas.io.sql as psql conn = self.get_conn() df = psql.read_sql(sql, con=conn, params=parameters) conn.close() return df def get_records(self, sql, parameters=None): ''' Executes the sql and returns a set of records. ''' conn = self.get_conn() cur = self.get_cursor() cur.execute(sql, parameters) rows = cur.fetchall() cur.close() conn.close() return rows def get_first(self, sql, parameters=None): ''' Executes the sql and returns a set of records. ''' conn = self.get_conn() cur = conn.cursor() cur.execute(sql, parameters) rows = cur.fetchone() cur.close() conn.close() return rows def run(self, sql, autocommit=False, parameters=None): """ Runs a command or a list of commands. Pass a list of sql statements to the sql parameter to get them to execute sequentially :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list """ conn = self.get_conn() if isinstance(sql, basestring): sql = [sql] if self.supports_autocommit: self.set_autocommit(conn, autocommit) cur = conn.cursor() for s in sql: cur.execute(s, parameters) conn.commit() cur.close() conn.close() def set_autocommit(self, conn, autocommit): conn.autocommit = autocommit def get_cursor(self): """Returns a cursor""" return self.get_conn().cursor() def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ A generic way to insert a set of tuples into a table, the whole set of inserts is treated as one transaction """ if target_fields: target_fields = ", ".join(target_fields) target_fields = "({})".format(target_fields) else: target_fields = '' conn = self.get_conn() cur = conn.cursor() if self.supports_autocommit: cur.execute('SET autocommit = 0') conn.commit() i = 0 for row in rows: i += 1 l = [] for cell in row: if isinstance(cell, basestring): l.append("'" + str(cell).replace("'", "''") + "'") elif cell is None: l.append('NULL') elif isinstance(cell, numpy.datetime64): l.append("'" + str(cell) + "'") elif isinstance(cell, datetime): l.append("'" + cell.isoformat() + "'") else: l.append(str(cell)) values = tuple(l) sql = "INSERT INTO {0} {1} VALUES ({2});".format( table, target_fields, ",".join(values)) cur.execute(sql) if i % commit_every == 0: conn.commit() logging.info( "Loaded {i} into {table} rows so far".format(**locals())) conn.commit() cur.close() conn.close() logging.info( "Done loading. Loaded a total of {i} rows".format(**locals())) def get_conn(self): """ Retuns a sql connection that can be used to retrieve a cursor. """ raise NotImplemented()
apache-2.0
kcmartin/ThinkStats2
code/chap12soln.py
68
4459
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import pandas import numpy as np import statsmodels.formula.api as smf import thinkplot import thinkstats2 import regression import timeseries def RunQuadraticModel(daily): """Runs a linear model of prices versus years. daily: DataFrame of daily prices returns: model, results """ daily['years2'] = daily.years**2 model = smf.ols('ppg ~ years + years2', data=daily) results = model.fit() return model, results def PlotQuadraticModel(daily, name): """ """ model, results = RunQuadraticModel(daily) regression.SummarizeResults(results) timeseries.PlotFittedValues(model, results, label=name) thinkplot.Save(root='timeseries11', title='fitted values', xlabel='years', xlim=[-0.1, 3.8], ylabel='price per gram ($)') timeseries.PlotResidualPercentiles(model, results) thinkplot.Save(root='timeseries12', title='residuals', xlabel='years', ylabel='price per gram ($)') years = np.linspace(0, 5, 101) thinkplot.Scatter(daily.years, daily.ppg, alpha=0.1, label=name) timeseries.PlotPredictions(daily, years, func=RunQuadraticModel) thinkplot.Save(root='timeseries13', title='predictions', xlabel='years', xlim=[years[0]-0.1, years[-1]+0.1], ylabel='price per gram ($)') def PlotEwmaPredictions(daily, name): """ """ # use EWMA to estimate slopes filled = timeseries.FillMissing(daily) filled['slope'] = pandas.ewma(filled.ppg.diff(), span=180) filled[-1:] # extract the last inter and slope start = filled.index[-1] inter = filled.ewma[-1] slope = filled.slope[-1] # reindex the DataFrame, adding a year to the end dates = pandas.date_range(filled.index.min(), filled.index.max() + np.timedelta64(365, 'D')) predicted = filled.reindex(dates) # generate predicted values and add them to the end predicted['date'] = predicted.index one_day = np.timedelta64(1, 'D') predicted['days'] = (predicted.date - start) / one_day predict = inter + slope * predicted.days predicted.ewma.fillna(predict, inplace=True) # plot the actual values and predictions thinkplot.Scatter(daily.ppg, alpha=0.1, label=name) thinkplot.Plot(predicted.ewma) thinkplot.Save() class SerialCorrelationTest(thinkstats2.HypothesisTest): """Tests serial correlations by permutation.""" def TestStatistic(self, data): """Computes the test statistic. data: tuple of xs and ys """ series, lag = data test_stat = abs(thinkstats2.SerialCorr(series, lag)) return test_stat def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ series, lag = self.data permutation = series.reindex(np.random.permutation(series.index)) return permutation, lag def TestSerialCorr(daily): """Tests serial correlations in daily prices and their residuals. daily: DataFrame of daily prices """ # test the correlation between consecutive prices series = daily.ppg test = SerialCorrelationTest((series, 1)) pvalue = test.PValue() print(test.actual, pvalue) # test for serial correlation in residuals of the linear model _, results = timeseries.RunLinearModel(daily) series = results.resid test = SerialCorrelationTest((series, 1)) pvalue = test.PValue() print(test.actual, pvalue) # test for serial correlation in residuals of the quadratic model _, results = RunQuadraticModel(daily) series = results.resid test = SerialCorrelationTest((series, 1)) pvalue = test.PValue() print(test.actual, pvalue) def main(name): transactions = timeseries.ReadData() dailies = timeseries.GroupByQualityAndDay(transactions) name = 'high' daily = dailies[name] PlotQuadraticModel(daily, name) TestSerialCorr(daily) PlotEwmaPredictions(daily, name) if __name__ == '__main__': import sys main(*sys.argv)
gpl-3.0
bioShaun/OMrnaseq
setup.py
1
1031
#!/usr/bin/env python from setuptools import setup, find_packages version = '0.1dev' print '''------------------------------ Installing RNAseq version {} ------------------------------ '''.format(version) setup( name='rnaseq', version=version, author='lx Gui', author_email='[email protected]', keywords=['bioinformatics', 'NGS', 'RNAseq'], license='GPLv3', packages=find_packages(), include_package_data=True, scripts=['scripts/mrna', 'scripts/simple_qc', 'scripts/_qc_wrapper', 'scripts/get_fq_cfg', 'scripts/merge_files', 'scripts/fake_qc'], install_requires=[ 'luigi', 'pyyaml', 'envoy', 'xlsxwriter', 'pandas', 'rpy2<=2.8.6', 'packaging', 'docopt', 'HTSeq', 'click', 'Pillow', 'biopython', 'pathlib'], ) print '''------------------------------ RNAseq installation complete! ------------------------------ '''
gpl-3.0
maartenbreddels/vaex
packages/vaex-ml/vaex/ml/spec.py
1
1299
import json import os import sys import traitlets from . import sklearn from . import generate from . import catboost from . import lightgbm from . import xgboost def lmap(f, values): return list(map(f, values)) def lmapstar(f, values): return [f(*k) for k in values] def to_trait(name, trait): return dict( name=name, has_default=trait.default_value is traitlets.Undefined, default=None if trait.default_value is traitlets.Undefined else trait.default_value, type=str(type(trait).__name__), help=trait.help, ) def to_cls(cls): return dict( classname=cls.__name__, snake_name=cls.__dict__.get( "snake_name", generate.camel_to_underscore(cls.__name__) ), version=cls.__dict__.get("_version", "1.0.0"), module=cls.__module__, traits=lmapstar(to_trait, cls.class_traits().items()), doc=cls.__doc__ ) def main(args=sys.argv): spec = lmap(to_cls, generate.registry) json_data = json.dumps(spec, indent=4, sort_keys=True) path = os.path.join(os.path.dirname(__file__), "spec.json") if len(sys.argv) > 1: path = sys.argv[1] with open(path, "w") as f: f.write(json_data) if __name__ == "__main__": main()
mit
neuroelectro/elephant
elephant/test/make_spike_extraction_test_data.py
6
1572
def main(): from brian2 import start_scope,mvolt,ms,NeuronGroup,StateMonitor,run import matplotlib.pyplot as plt import neo import quantities as pq start_scope() # Izhikevich neuron parameters. a = 0.02/ms b = 0.2/ms c = -65*mvolt d = 6*mvolt/ms I = 4*mvolt/ms # Standard Izhikevich neuron equations. eqs = ''' dv/dt = 0.04*v**2/(ms*mvolt) + (5/ms)*v + 140*mvolt/ms - u + I : volt du/dt = a*((b*v) - u) : volt/second ''' reset = ''' v = c u += d ''' # Setup and run simulation. G = NeuronGroup(1, eqs, threshold='v>30*mvolt', reset='v = -70*mvolt') G.v = -65*mvolt G.u = b*G.v M = StateMonitor(G, 'v', record=True) run(300*ms) # Store results in neo format. vm = neo.core.AnalogSignal(M.v[0],units=pq.V,sampling_period=0.1*pq.ms) # Plot results. plt.figure() plt.plot(vm.times*1000,vm*1000) # Plot mV and ms instead of V and s. plt.xlabel('Time (ms)') plt.ylabel('mv') # Save results. iom = neo.io.PyNNNumpyIO('spike_extraction_test_data') block = neo.core.Block() segment = neo.core.Segment() segment.analogsignals.append(vm) block.segments.append(segment) iom.write(block) # Load results. iom2 = neo.io.PyNNNumpyIO('spike_extraction_test_data.npz') data = iom2.read() vm = data[0].segments[0].analogsignals[0] # Plot results. # The two figures should match. plt.figure() plt.plot(vm.times*1000,vm*1000) # Plot mV and ms instead of V and s. plt.xlabel('Time (ms)') plt.ylabel('mv') if __name__ == '__main__': main()
bsd-3-clause
lscheinkman/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/cm.py
70
5385
""" This module contains the instantiations of color mapping classes """ import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.colors as colors import matplotlib.cbook as cbook from matplotlib._cm import * def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None """ if name is None: name = mpl.rcParams['image.cmap'] if lut is None: lut = mpl.rcParams['image.lut'] assert(name in datad.keys()) return colors.LinearSegmentedColormap(name, datad[name], lut) class ScalarMappable: """ This is a mixin class to support scalar -> RGBA mapping. Handles normalization and colormapping """ def __init__(self, norm=None, cmap=None): """ *norm* is an instance of :class:`colors.Normalize` or one of its subclasses, used to map luminance to 0-1. *cmap* is a :mod:`cm` colormap instance, for example :data:`cm.jet` """ self.callbacksSM = cbook.CallbackRegistry(( 'changed',)) if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None self.norm = norm self.cmap = cmap self.colorbar = None self.update_dict = {'array':False} def set_colorbar(self, im, ax): 'set the colorbar image and axes associated with mappable' self.colorbar = im, ax def to_rgba(self, x, alpha=1.0, bytes=False): '''Return a normalized rgba array corresponding to *x*. If *x* is already an rgb array, insert *alpha*; if it is already rgba, return it unchanged. If *bytes* is True, return rgba as 4 uint8s instead of 4 floats. ''' try: if x.ndim == 3: if x.shape[2] == 3: if x.dtype == np.uint8: alpha = np.array(alpha*255, np.uint8) m, n = x.shape[:2] xx = np.empty(shape=(m,n,4), dtype = x.dtype) xx[:,:,:3] = x xx[:,:,3] = alpha elif x.shape[2] == 4: xx = x else: raise ValueError("third dimension must be 3 or 4") if bytes and xx.dtype != np.uint8: xx = (xx * 255).astype(np.uint8) return xx except AttributeError: pass x = ma.asarray(x) x = self.norm(x) x = self.cmap(x, alpha=alpha, bytes=bytes) return x def set_array(self, A): 'Set the image array from numpy array *A*' self._A = A self.update_dict['array'] = True def get_array(self): 'Return the array' return self._A def get_cmap(self): 'return the colormap' return self.cmap def get_clim(self): 'return the min, max of the color limits for image scaling' return self.norm.vmin, self.norm.vmax def set_clim(self, vmin=None, vmax=None): """ set the norm limits for image scaling; if *vmin* is a length2 sequence, interpret it as ``(vmin, vmax)`` which is used to support setp ACCEPTS: a length 2 sequence of floats """ if (vmin is not None and vmax is None and cbook.iterable(vmin) and len(vmin)==2): vmin, vmax = vmin if vmin is not None: self.norm.vmin = vmin if vmax is not None: self.norm.vmax = vmax self.changed() def set_cmap(self, cmap): """ set the colormap for luminance data ACCEPTS: a colormap """ if cmap is None: cmap = get_cmap() self.cmap = cmap self.changed() def set_norm(self, norm): 'set the normalization instance' if norm is None: norm = colors.Normalize() self.norm = norm self.changed() def autoscale(self): """ Autoscale the scalar limits on the norm instance using the current array """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale(self._A) self.changed() def autoscale_None(self): """ Autoscale the scalar limits on the norm instance using the current array, changing only limits that are None """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale_None(self._A) self.changed() def add_checker(self, checker): """ Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed. """ self.update_dict[checker] = False def check_update(self, checker): """ If mappable has changed since the last check, return True; else return False """ if self.update_dict[checker]: self.update_dict[checker] = False return True return False def changed(self): """ Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed' signal """ self.callbacksSM.process('changed', self) for key in self.update_dict: self.update_dict[key] = True
agpl-3.0
costypetrisor/scikit-learn
examples/decomposition/plot_ica_blind_source_separation.py
349
2228
""" ===================================== Blind source separation using FastICA ===================================== An example of estimating sources from noisy data. :ref:`ICA` is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 microphones recording the mixed signals. ICA is used to recover the sources ie. what is played by each instrument. Importantly, PCA fails at recovering our `instruments` since the related signals reflect non-Gaussian processes. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import signal from sklearn.decomposition import FastICA, PCA ############################################################################### # Generate sample data np.random.seed(0) n_samples = 2000 time = np.linspace(0, 8, n_samples) s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal S = np.c_[s1, s2, s3] S += 0.2 * np.random.normal(size=S.shape) # Add noise S /= S.std(axis=0) # Standardize data # Mix data A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations # Compute ICA ica = FastICA(n_components=3) S_ = ica.fit_transform(X) # Reconstruct signals A_ = ica.mixing_ # Get estimated mixing matrix # We can `prove` that the ICA model applies by reverting the unmixing. assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_) # For comparison, compute PCA pca = PCA(n_components=3) H = pca.fit_transform(X) # Reconstruct signals based on orthogonal components ############################################################################### # Plot results plt.figure() models = [X, S, S_, H] names = ['Observations (mixed signal)', 'True Sources', 'ICA recovered signals', 'PCA recovered signals'] colors = ['red', 'steelblue', 'orange'] for ii, (model, name) in enumerate(zip(models, names), 1): plt.subplot(4, 1, ii) plt.title(name) for sig, color in zip(model.T, colors): plt.plot(sig, color=color) plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46) plt.show()
bsd-3-clause
linebp/pandas
pandas/plotting/_tools.py
7
12779
# being a bit too dynamic # pylint: disable=E1101 from __future__ import division import warnings from math import ceil import numpy as np from pandas.core.dtypes.common import is_list_like from pandas.core.index import Index from pandas.core.series import Series from pandas.compat import range def format_date_labels(ax, rot): # mini version of autofmt_xdate try: for label in ax.get_xticklabels(): label.set_ha('right') label.set_rotation(rot) fig = ax.get_figure() fig.subplots_adjust(bottom=0.2) except Exception: # pragma: no cover pass def table(ax, data, rowLabels=None, colLabels=None, **kwargs): """ Helper function to convert DataFrame and Series to matplotlib.table Parameters ---------- `ax`: Matplotlib axes object `data`: DataFrame or Series data for table contents `kwargs`: keywords, optional keyword arguments which passed to matplotlib.table.table. If `rowLabels` or `colLabels` is not specified, data index or column name will be used. Returns ------- matplotlib table object """ from pandas import DataFrame if isinstance(data, Series): data = DataFrame(data, columns=[data.name]) elif isinstance(data, DataFrame): pass else: raise ValueError('Input data must be DataFrame or Series') if rowLabels is None: rowLabels = data.index if colLabels is None: colLabels = data.columns cellText = data.values import matplotlib.table table = matplotlib.table.table(ax, cellText=cellText, rowLabels=rowLabels, colLabels=colLabels, **kwargs) return table def _get_layout(nplots, layout=None, layout_type='box'): if layout is not None: if not isinstance(layout, (tuple, list)) or len(layout) != 2: raise ValueError('Layout must be a tuple of (rows, columns)') nrows, ncols = layout # Python 2 compat ceil_ = lambda x: int(ceil(x)) if nrows == -1 and ncols > 0: layout = nrows, ncols = (ceil_(float(nplots) / ncols), ncols) elif ncols == -1 and nrows > 0: layout = nrows, ncols = (nrows, ceil_(float(nplots) / nrows)) elif ncols <= 0 and nrows <= 0: msg = "At least one dimension of layout must be positive" raise ValueError(msg) if nrows * ncols < nplots: raise ValueError('Layout of %sx%s must be larger than ' 'required size %s' % (nrows, ncols, nplots)) return layout if layout_type == 'single': return (1, 1) elif layout_type == 'horizontal': return (1, nplots) elif layout_type == 'vertical': return (nplots, 1) layouts = {1: (1, 1), 2: (1, 2), 3: (2, 2), 4: (2, 2)} try: return layouts[nplots] except KeyError: k = 1 while k ** 2 < nplots: k += 1 if (k - 1) * k >= nplots: return k, (k - 1) else: return k, k # copied from matplotlib/pyplot.py and modified for pandas.plotting def _subplots(naxes=None, sharex=False, sharey=False, squeeze=True, subplot_kw=None, ax=None, layout=None, layout_type='box', **fig_kw): """Create a figure with a set of subplots already made. This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call. Keyword arguments: naxes : int Number of required axes. Exceeded axes are set invisible. Default is nrows * ncols. sharex : bool If True, the X axis will be shared amongst all subplots. sharey : bool If True, the Y axis will be shared amongst all subplots. squeeze : bool If True, extra dimensions are squeezed out from the returned axis object: - if only one subplot is constructed (nrows=ncols=1), the resulting single Axis object is returned as a scalar. - for Nx1 or 1xN subplots, the returned object is a 1-d numpy object array of Axis objects are returned as numpy 1-d arrays. - for NxM subplots with N>1 and M>1 are returned as a 2d array. If False, no squeezing at all is done: the returned axis object is always a 2-d array containing Axis instances, even if it ends up being 1x1. subplot_kw : dict Dict with keywords passed to the add_subplot() call used to create each subplots. ax : Matplotlib axis object, optional layout : tuple Number of rows and columns of the subplot grid. If not specified, calculated from naxes and layout_type layout_type : {'box', 'horziontal', 'vertical'}, default 'box' Specify how to layout the subplot grid. fig_kw : Other keyword arguments to be passed to the figure() call. Note that all keywords not recognized above will be automatically included here. Returns: fig, ax : tuple - fig is the Matplotlib Figure object - ax can be either a single axis object or an array of axis objects if more than one subplot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above. **Examples:** x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2) # Just a figure and one subplot f, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Two subplots, unpack the output array immediately f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Four polar axes plt.subplots(2, 2, subplot_kw=dict(polar=True)) """ import matplotlib.pyplot as plt if subplot_kw is None: subplot_kw = {} if ax is None: fig = plt.figure(**fig_kw) else: if is_list_like(ax): ax = _flatten(ax) if layout is not None: warnings.warn("When passing multiple axes, layout keyword is " "ignored", UserWarning) if sharex or sharey: warnings.warn("When passing multiple axes, sharex and sharey " "are ignored. These settings must be specified " "when creating axes", UserWarning, stacklevel=4) if len(ax) == naxes: fig = ax[0].get_figure() return fig, ax else: raise ValueError("The number of passed axes must be {0}, the " "same as the output plot".format(naxes)) fig = ax.get_figure() # if ax is passed and a number of subplots is 1, return ax as it is if naxes == 1: if squeeze: return fig, ax else: return fig, _flatten(ax) else: warnings.warn("To output multiple subplots, the figure containing " "the passed axes is being cleared", UserWarning, stacklevel=4) fig.clear() nrows, ncols = _get_layout(naxes, layout=layout, layout_type=layout_type) nplots = nrows * ncols # Create empty object array to hold all axes. It's easiest to make it 1-d # so we can just append subplots upon creation, and then axarr = np.empty(nplots, dtype=object) # Create first subplot separately, so we can share it if requested ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw) if sharex: subplot_kw['sharex'] = ax0 if sharey: subplot_kw['sharey'] = ax0 axarr[0] = ax0 # Note off-by-one counting because add_subplot uses the MATLAB 1-based # convention. for i in range(1, nplots): kwds = subplot_kw.copy() # Set sharex and sharey to None for blank/dummy axes, these can # interfere with proper axis limits on the visible axes if # they share axes e.g. issue #7528 if i >= naxes: kwds['sharex'] = None kwds['sharey'] = None ax = fig.add_subplot(nrows, ncols, i + 1, **kwds) axarr[i] = ax if naxes != nplots: for ax in axarr[naxes:]: ax.set_visible(False) _handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey) if squeeze: # Reshape the array to have the final desired dimension (nrow,ncol), # though discarding unneeded dimensions that equal 1. If we only have # one subplot, just return it instead of a 1-element array. if nplots == 1: axes = axarr[0] else: axes = axarr.reshape(nrows, ncols).squeeze() else: # returned axis array will be always 2-d, even if nrows=ncols=1 axes = axarr.reshape(nrows, ncols) return fig, axes def _remove_labels_from_axis(axis): for t in axis.get_majorticklabels(): t.set_visible(False) try: # set_visible will not be effective if # minor axis has NullLocator and NullFormattor (default) import matplotlib.ticker as ticker if isinstance(axis.get_minor_locator(), ticker.NullLocator): axis.set_minor_locator(ticker.AutoLocator()) if isinstance(axis.get_minor_formatter(), ticker.NullFormatter): axis.set_minor_formatter(ticker.FormatStrFormatter('')) for t in axis.get_minorticklabels(): t.set_visible(False) except Exception: # pragma no cover raise axis.get_label().set_visible(False) def _handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey): if nplots > 1: if nrows > 1: try: # first find out the ax layout, # so that we can correctly handle 'gaps" layout = np.zeros((nrows + 1, ncols + 1), dtype=np.bool) for ax in axarr: layout[ax.rowNum, ax.colNum] = ax.get_visible() for ax in axarr: # only the last row of subplots should get x labels -> all # other off layout handles the case that the subplot is # the last in the column, because below is no subplot/gap. if not layout[ax.rowNum + 1, ax.colNum]: continue if sharex or len(ax.get_shared_x_axes() .get_siblings(ax)) > 1: _remove_labels_from_axis(ax.xaxis) except IndexError: # if gridspec is used, ax.rowNum and ax.colNum may different # from layout shape. in this case, use last_row logic for ax in axarr: if ax.is_last_row(): continue if sharex or len(ax.get_shared_x_axes() .get_siblings(ax)) > 1: _remove_labels_from_axis(ax.xaxis) if ncols > 1: for ax in axarr: # only the first column should get y labels -> set all other to # off as we only have labels in teh first column and we always # have a subplot there, we can skip the layout test if ax.is_first_col(): continue if sharey or len(ax.get_shared_y_axes().get_siblings(ax)) > 1: _remove_labels_from_axis(ax.yaxis) def _flatten(axes): if not is_list_like(axes): return np.array([axes]) elif isinstance(axes, (np.ndarray, Index)): return axes.ravel() return np.array(axes) def _get_all_lines(ax): lines = ax.get_lines() if hasattr(ax, 'right_ax'): lines += ax.right_ax.get_lines() if hasattr(ax, 'left_ax'): lines += ax.left_ax.get_lines() return lines def _get_xlim(lines): left, right = np.inf, -np.inf for l in lines: x = l.get_xdata(orig=False) left = min(x[0], left) right = max(x[-1], right) return left, right def _set_ticks_props(axes, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None): import matplotlib.pyplot as plt for ax in _flatten(axes): if xlabelsize is not None: plt.setp(ax.get_xticklabels(), fontsize=xlabelsize) if xrot is not None: plt.setp(ax.get_xticklabels(), rotation=xrot) if ylabelsize is not None: plt.setp(ax.get_yticklabels(), fontsize=ylabelsize) if yrot is not None: plt.setp(ax.get_yticklabels(), rotation=yrot) return axes
bsd-3-clause
brclark-usgs/flopy
autotest/t020_test.py
2
4667
# Test modflow write adn run import numpy as np try: import matplotlib.pyplot as plt if os.getenv('TRAVIS'): # are we running https://travis-ci.org/ automated tests ? matplotlib.use('Agg') # Force matplotlib not to use any Xwindows backend except: plt = None def analyticalWaterTableSolution(h1, h2, z, R, K, L, x): h = np.zeros((x.shape[0]), np.float) b1 = h1 - z b2 = h2 - z h = np.sqrt(b1 ** 2 - (x / L) * (b1 ** 2 - b2 ** 2) + (R * x / K) * (L - x)) + z return h def test_mfnwt_run(): import os import platform import flopy exe_name = 'mfnwt' if platform.system() == 'Windows': exe_name = '{}.exe'.format(exe_name) exe = flopy.which(exe_name) if exe is None: print('Specified executable {} does not exist in path'.format(exe_name)) return modelname = 'watertable' model_ws = os.path.join('temp', 't020') if not os.path.exists(model_ws): os.makedirs(model_ws) # model dimensions nlay, nrow, ncol = 1, 1, 100 # cell spacing delr = 50. delc = 1. # domain length L = 5000. # boundary heads h1 = 20. h2 = 11. # ibound ibound = np.ones((nlay, nrow, ncol), dtype=np.int) # starting heads strt = np.zeros((nlay, nrow, ncol), dtype=np.float) strt[0, 0, 0] = h1 strt[0, 0, -1] = h2 # top of the aquifer top = 25. # bottom of the aquifer botm = 0. # hydraulic conductivity hk = 50. # location of cell centroids x = np.arange(0.0, L, delr) + (delr / 2.) # location of cell edges xa = np.arange(0, L + delr, delr) # recharge rate rchrate = 0.001 # calculate the head at the cell centroids using the analytical solution function hac = analyticalWaterTableSolution(h1, h2, botm, rchrate, hk, L, x) # calculate the head at the cell edges using the analytical solution function ha = analyticalWaterTableSolution(h1, h2, botm, rchrate, hk, L, xa) # ghbs # ghb conductance b1, b2 = 0.5 * (h1 + hac[0]), 0.5 * (h2 + hac[-1]) c1, c2 = hk * b1 * delc / (0.5 * delr), hk * b2 * delc / (0.5 * delr) # dtype ghb_dtype = flopy.modflow.ModflowGhb.get_default_dtype() # build ghb recarray stress_period_data = np.zeros((2), dtype=ghb_dtype) stress_period_data = stress_period_data.view(np.recarray) # fill ghb recarray stress_period_data[0] = (0, 0, 0, h1, c1) stress_period_data[1] = (0, 0, ncol - 1, h2, c2) mf = flopy.modflow.Modflow(modelname=modelname, exe_name=exe, model_ws=model_ws, version='mfnwt') dis = flopy.modflow.ModflowDis(mf, nlay, nrow, ncol, delr=delr, delc=delc, top=top, botm=botm, perlen=1, nstp=1, steady=True) bas = flopy.modflow.ModflowBas(mf, ibound=ibound, strt=strt) lpf = flopy.modflow.ModflowUpw(mf, hk=hk, laytyp=1) ghb = flopy.modflow.ModflowGhb(mf, stress_period_data=stress_period_data) rch = flopy.modflow.ModflowRch(mf, rech=rchrate, nrchop=1) oc = flopy.modflow.ModflowOc(mf) nwt = flopy.modflow.ModflowNwt(mf) mf.write_input() # remove existing heads results, if necessary try: os.remove(os.path.join(model_ws, '{0}.hds'.format(modelname))) except: pass # run existing model mf.run_model() # Read the simulated MODFLOW-2005 model results # Create the headfile object headfile = os.path.join(model_ws, '{0}.hds'.format(modelname)) headobj = flopy.utils.HeadFile(headfile, precision='single') times = headobj.get_times() head = headobj.get_data(totim=times[-1]) # Plot the results if plt is not None: fig = plt.figure(figsize=(16, 6)) ax = fig.add_subplot(1, 3, 1) ax.plot(xa, ha, linewidth=8, color='0.5', label='analytical solution') ax.plot(x, head[0, 0, :], color='red', label='MODFLOW-NWT') leg = ax.legend(loc='lower left') leg.draw_frame(False) ax.set_xlabel('Horizontal distance, in m') ax.set_ylabel('Head, in m') ax = fig.add_subplot(1, 3, 2) ax.plot(x, head[0, 0, :] - hac, linewidth=1, color='blue') ax.set_xlabel('Horizontal distance, in m') ax.set_ylabel('Error, in m') ax = fig.add_subplot(1, 3, 3) ax.plot(x, 100. * (head[0, 0, :] - hac) / hac, linewidth=1, color='blue') ax.set_xlabel('Horizontal distance, in m') ax.set_ylabel('Percent Error') fig.savefig(os.path.join(model_ws, '{}.png'.format(modelname))) return if __name__ == '__main__': test_mfnwt_run()
bsd-3-clause
jorik041/scikit-learn
sklearn/metrics/cluster/bicluster.py
359
2797
from __future__ import division import numpy as np from sklearn.utils.linear_assignment_ import linear_assignment from sklearn.utils.validation import check_consistent_length, check_array __all__ = ["consensus_score"] def _check_rows_and_columns(a, b): """Unpacks the row and column arrays and checks their shape.""" check_consistent_length(*a) check_consistent_length(*b) checks = lambda x: check_array(x, ensure_2d=False) a_rows, a_cols = map(checks, a) b_rows, b_cols = map(checks, b) return a_rows, a_cols, b_rows, b_cols def _jaccard(a_rows, a_cols, b_rows, b_cols): """Jaccard coefficient on the elements of the two biclusters.""" intersection = ((a_rows * b_rows).sum() * (a_cols * b_cols).sum()) a_size = a_rows.sum() * a_cols.sum() b_size = b_rows.sum() * b_cols.sum() return intersection / (a_size + b_size - intersection) def _pairwise_similarity(a, b, similarity): """Computes pairwise similarity matrix. result[i, j] is the Jaccard coefficient of a's bicluster i and b's bicluster j. """ a_rows, a_cols, b_rows, b_cols = _check_rows_and_columns(a, b) n_a = a_rows.shape[0] n_b = b_rows.shape[0] result = np.array(list(list(similarity(a_rows[i], a_cols[i], b_rows[j], b_cols[j]) for j in range(n_b)) for i in range(n_a))) return result def consensus_score(a, b, similarity="jaccard"): """The similarity of two sets of biclusters. Similarity between individual biclusters is computed. Then the best matching between sets is found using the Hungarian algorithm. The final score is the sum of similarities divided by the size of the larger set. Read more in the :ref:`User Guide <biclustering>`. Parameters ---------- a : (rows, columns) Tuple of row and column indicators for a set of biclusters. b : (rows, columns) Another set of biclusters like ``a``. similarity : string or function, optional, default: "jaccard" May be the string "jaccard" to use the Jaccard coefficient, or any function that takes four arguments, each of which is a 1d indicator vector: (a_rows, a_columns, b_rows, b_columns). References ---------- * Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis for bicluster acquisition <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/>`__. """ if similarity == "jaccard": similarity = _jaccard matrix = _pairwise_similarity(a, b, similarity) indices = linear_assignment(1. - matrix) n_a = len(a[0]) n_b = len(b[0]) return matrix[indices[:, 0], indices[:, 1]].sum() / max(n_a, n_b)
bsd-3-clause
schets/scikit-learn
sklearn/tests/test_kernel_approximation.py
244
7588
import numpy as np from scipy.sparse import csr_matrix from sklearn.utils.testing import assert_array_equal, assert_equal, assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal, assert_raises from sklearn.utils.testing import assert_less_equal from sklearn.metrics.pairwise import kernel_metrics from sklearn.kernel_approximation import RBFSampler from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.kernel_approximation import SkewedChi2Sampler from sklearn.kernel_approximation import Nystroem from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel # generate data rng = np.random.RandomState(0) X = rng.random_sample(size=(300, 50)) Y = rng.random_sample(size=(300, 50)) X /= X.sum(axis=1)[:, np.newaxis] Y /= Y.sum(axis=1)[:, np.newaxis] def test_additive_chi2_sampler(): # test that AdditiveChi2Sampler approximates kernel on random data # compute exact kernel # appreviations for easier formular X_ = X[:, np.newaxis, :] Y_ = Y[np.newaxis, :, :] large_kernel = 2 * X_ * Y_ / (X_ + Y_) # reduce to n_samples_x x n_samples_y by summing over features kernel = (large_kernel.sum(axis=2)) # approximate kernel mapping transform = AdditiveChi2Sampler(sample_steps=3) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) X_sp_trans = transform.fit_transform(csr_matrix(X)) Y_sp_trans = transform.transform(csr_matrix(Y)) assert_array_equal(X_trans, X_sp_trans.A) assert_array_equal(Y_trans, Y_sp_trans.A) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) # test error on invalid sample_steps transform = AdditiveChi2Sampler(sample_steps=4) assert_raises(ValueError, transform.fit, X) # test that the sample interval is set correctly sample_steps_available = [1, 2, 3] for sample_steps in sample_steps_available: # test that the sample_interval is initialized correctly transform = AdditiveChi2Sampler(sample_steps=sample_steps) assert_equal(transform.sample_interval, None) # test that the sample_interval is changed in the fit method transform.fit(X) assert_not_equal(transform.sample_interval_, None) # test that the sample_interval is set correctly sample_interval = 0.3 transform = AdditiveChi2Sampler(sample_steps=4, sample_interval=sample_interval) assert_equal(transform.sample_interval, sample_interval) transform.fit(X) assert_equal(transform.sample_interval_, sample_interval) def test_skewed_chi2_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel c = 0.03 # appreviations for easier formular X_c = (X + c)[:, np.newaxis, :] Y_c = (Y + c)[np.newaxis, :, :] # we do it in log-space in the hope that it's more stable # this array is n_samples_x x n_samples_y big x n_features log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) - np.log(X_c + Y_c)) # reduce to n_samples_x x n_samples_y by summing over features in log-space kernel = np.exp(log_kernel.sum(axis=2)) # approximate kernel mapping transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) def test_rbf_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel gamma = 10. kernel = rbf_kernel(X, Y, gamma=gamma) # approximate kernel mapping rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) X_trans = rbf_transform.fit_transform(X) Y_trans = rbf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased np.abs(error, out=error) assert_less_equal(np.max(error), 0.1) # nothing too far off assert_less_equal(np.mean(error), 0.05) # mean is fairly close def test_input_validation(): # Regression test: kernel approx. transformers should work on lists # No assertions; the old versions would simply crash X = [[1, 2], [3, 4], [5, 6]] AdditiveChi2Sampler().fit(X).transform(X) SkewedChi2Sampler().fit(X).transform(X) RBFSampler().fit(X).transform(X) X = csr_matrix(X) RBFSampler().fit(X).transform(X) def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel linear_kernel = lambda X, Y: np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert_true(np.all(np.isfinite(Y))) def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
bsd-3-clause
SimeonFritz/aima-python
submissions/Conklin/myNN.py
13
3059
from sklearn import datasets from sklearn.neural_network import MLPClassifier import traceback from submissions.Conklin import music class DataFrame: data = [] feature_names = [] target = [] target_names = [] musicECHP = DataFrame() musicECHP.data = [] targetInfo = [] list_of_songs = music.get_songs() for song in list_of_songs: try: tempo = float(song['song']["tempo"]) targetInfo.append(tempo) loudness = float(song['song']["loudness"]) fadeOut = float(song['song']["start_of_fade_out"]) fadeIn = float(song['song']["end_of_fade_in"]) duration = float(song['song']["duration"]) releaseYear = float(song['song']["year"]) musicECHP.data.append([tempo, fadeOut, fadeIn, duration, releaseYear]) except: traceback.print_exc() musicECHP.feature_names = [ 'Loudness', 'Fade Out', 'Fade In', 'Duration', 'Release Year' ] musicECHP.target = [] def musicTarget(speed): if speed > 100: return 1 return 0 for pre in targetInfo: # choose the target tt = musicTarget(pre) musicECHP.target.append(tt) musicECHP.target_names = [ 'Tempo <= 100 bpm', 'Tempo > 100 bpm', ] Examples = { 'Music': musicECHP, } ''' Make a custom classifier, ''' mlpc = MLPClassifier( hidden_layer_sizes = (1000,), activation = 'relu', solver='sgd',#'adam', # alpha = 0.0001, # batch_size='auto', learning_rate = 'adaptive', # 'constant', # power_t = 0.5, max_iter = 1000, # 200, shuffle = False, # random_state = None, # tol = 1e-4, # verbose = False, # warm_start = False, momentum = 0.5, # nesterovs_momentum = True, # early_stopping = False, # validation_fraction = 0.1, beta_1 = 0.9, beta_2 = 0.999, # epsilon = 1e-8, ) ''' Try scaling the data. ''' musicScaled = DataFrame() def setupScales(grid): global min, max min = list(grid[0]) max = list(grid[0]) for row in range(1, len(grid)): for col in range(len(grid[row])): cell = grid[row][col] if cell < min[col]: min[col] = cell if cell > max[col]: max[col] = cell def scaleGrid(grid): newGrid = [] for row in range(len(grid)): newRow = [] for col in range(len(grid[row])): try: cell = grid[row][col] scaled = (cell - min[col]) \ / (max[col] - min[col]) newRow.append(scaled) except: pass newGrid.append(newRow) return newGrid setupScales(musicECHP.data) musicScaled.data = scaleGrid(musicECHP.data) musicScaled.feature_names = musicECHP.feature_names musicScaled.target = musicECHP.target musicScaled.target_names = musicECHP.target_names Examples = { 'MusicDefault': { 'frame': musicECHP, }, 'MusicSGD': { 'frame': musicECHP, 'mlpc': mlpc }, 'MusicScaled': { 'frame': musicScaled, }, }
mit
Sentient07/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
46
9267
import numpy as np from sklearn.exceptions import ConvergenceWarning from sklearn.utils import check_array from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import TempMemmap from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_lassocd_readonly_data(): n_components = 12 with TempMemmap(X) as X_read_only: dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd', transform_alpha=0.001, random_state=0, n_jobs=-1) with ignore_warnings(category=ConvergenceWarning): code = dico.fit(X_read_only).transform(X_read_only) assert_array_almost_equal(np.dot(code, dico.components_), X_read_only, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[np.newaxis, 1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[np.newaxis, 1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample[np.newaxis, :]) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_input(): n_components = 100 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] Xf = check_array(X, order='F') for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): a = sparse_encode(X, V, algorithm=algo) b = sparse_encode(Xf, V, algorithm=algo) assert_array_almost_equal(a, b) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
yyjiang/scikit-learn
sklearn/__check_build/__init__.py
345
1671
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/__check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError("""%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
sohaibiftikhar/zeppelin
spark/src/main/resources/python/zeppelin_pyspark.py
16
12106
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os, sys, getopt, traceback, json, re from py4j.java_gateway import java_import, JavaGateway, GatewayClient from py4j.protocol import Py4JJavaError from pyspark.conf import SparkConf from pyspark.context import SparkContext import ast import warnings # for back compatibility from pyspark.sql import SQLContext, HiveContext, Row class Logger(object): def __init__(self): pass def write(self, message): intp.appendOutput(message) def reset(self): pass def flush(self): pass class PyZeppelinContext(dict): def __init__(self, zc): self.z = zc self._displayhook = lambda *args: None def show(self, obj): from pyspark.sql import DataFrame if isinstance(obj, DataFrame): print(self.z.showData(obj._jdf)) else: print(str(obj)) # By implementing special methods it makes operating on it more Pythonic def __setitem__(self, key, item): self.z.put(key, item) def __getitem__(self, key): return self.z.get(key) def __delitem__(self, key): self.z.remove(key) def __contains__(self, item): return self.z.containsKey(item) def add(self, key, value): self.__setitem__(key, value) def put(self, key, value): self.__setitem__(key, value) def get(self, key): return self.__getitem__(key) def getInterpreterContext(self): return self.z.getInterpreterContext() def input(self, name, defaultValue=""): return self.z.input(name, defaultValue) def select(self, name, options, defaultValue=""): # auto_convert to ArrayList doesn't match the method signature on JVM side tuples = list(map(lambda items: self.__tupleToScalaTuple2(items), options)) iterables = gateway.jvm.scala.collection.JavaConversions.collectionAsScalaIterable(tuples) return self.z.select(name, defaultValue, iterables) def checkbox(self, name, options, defaultChecked=None): if defaultChecked is None: defaultChecked = [] optionTuples = list(map(lambda items: self.__tupleToScalaTuple2(items), options)) optionIterables = gateway.jvm.scala.collection.JavaConversions.collectionAsScalaIterable(optionTuples) defaultCheckedIterables = gateway.jvm.scala.collection.JavaConversions.collectionAsScalaIterable(defaultChecked) checkedItems = gateway.jvm.scala.collection.JavaConversions.seqAsJavaList(self.z.checkbox(name, defaultCheckedIterables, optionIterables)) result = [] for checkedItem in checkedItems: result.append(checkedItem) return result; def registerHook(self, event, cmd, replName=None): if replName is None: self.z.registerHook(event, cmd) else: self.z.registerHook(event, cmd, replName) def unregisterHook(self, event, replName=None): if replName is None: self.z.unregisterHook(event) else: self.z.unregisterHook(event, replName) def getHook(self, event, replName=None): if replName is None: return self.z.getHook(event) return self.z.getHook(event, replName) def _setup_matplotlib(self): # If we don't have matplotlib installed don't bother continuing try: import matplotlib except ImportError: return # Make sure custom backends are available in the PYTHONPATH rootdir = os.environ.get('ZEPPELIN_HOME', os.getcwd()) mpl_path = os.path.join(rootdir, 'interpreter', 'lib', 'python') if mpl_path not in sys.path: sys.path.append(mpl_path) # Finally check if backend exists, and if so configure as appropriate try: matplotlib.use('module://backend_zinline') import backend_zinline # Everything looks good so make config assuming that we are using # an inline backend self._displayhook = backend_zinline.displayhook self.configure_mpl(width=600, height=400, dpi=72, fontsize=10, interactive=True, format='png', context=self.z) except ImportError: # Fall back to Agg if no custom backend installed matplotlib.use('Agg') warnings.warn("Unable to load inline matplotlib backend, " "falling back to Agg") def configure_mpl(self, **kwargs): import mpl_config mpl_config.configure(**kwargs) def __tupleToScalaTuple2(self, tuple): if (len(tuple) == 2): return gateway.jvm.scala.Tuple2(tuple[0], tuple[1]) else: raise IndexError("options must be a list of tuple of 2") class SparkVersion(object): SPARK_1_4_0 = 10400 SPARK_1_3_0 = 10300 SPARK_2_0_0 = 20000 def __init__(self, versionNumber): self.version = versionNumber def isAutoConvertEnabled(self): return self.version >= self.SPARK_1_4_0 def isImportAllPackageUnderSparkSql(self): return self.version >= self.SPARK_1_3_0 def isSpark2(self): return self.version >= self.SPARK_2_0_0 class PySparkCompletion: def __init__(self, interpreterObject): self.interpreterObject = interpreterObject def getGlobalCompletion(self): objectDefList = [] try: for completionItem in list(globals().keys()): objectDefList.append(completionItem) except: return None else: return objectDefList def getMethodCompletion(self, text_value): execResult = locals() if text_value == None: return None completion_target = text_value try: if len(completion_target) <= 0: return None if text_value[-1] == ".": completion_target = text_value[:-1] exec("{} = dir({})".format("objectDefList", completion_target), globals(), execResult) except: return None else: return list(execResult['objectDefList']) def getCompletion(self, text_value): completionList = set() globalCompletionList = self.getGlobalCompletion() if globalCompletionList != None: for completionItem in list(globalCompletionList): completionList.add(completionItem) if text_value != None: objectCompletionList = self.getMethodCompletion(text_value) if objectCompletionList != None: for completionItem in list(objectCompletionList): completionList.add(completionItem) if len(completionList) <= 0: self.interpreterObject.setStatementsFinished("", False) else: result = json.dumps(list(filter(lambda x : not re.match("^__.*", x), list(completionList)))) self.interpreterObject.setStatementsFinished(result, False) client = GatewayClient(port=int(sys.argv[1])) sparkVersion = SparkVersion(int(sys.argv[2])) if sparkVersion.isSpark2(): from pyspark.sql import SparkSession else: from pyspark.sql import SchemaRDD if sparkVersion.isAutoConvertEnabled(): gateway = JavaGateway(client, auto_convert = True) else: gateway = JavaGateway(client) java_import(gateway.jvm, "org.apache.spark.SparkEnv") java_import(gateway.jvm, "org.apache.spark.SparkConf") java_import(gateway.jvm, "org.apache.spark.api.java.*") java_import(gateway.jvm, "org.apache.spark.api.python.*") java_import(gateway.jvm, "org.apache.spark.mllib.api.python.*") intp = gateway.entry_point output = Logger() sys.stdout = output sys.stderr = output intp.onPythonScriptInitialized(os.getpid()) jsc = intp.getJavaSparkContext() if sparkVersion.isImportAllPackageUnderSparkSql(): java_import(gateway.jvm, "org.apache.spark.sql.*") java_import(gateway.jvm, "org.apache.spark.sql.hive.*") else: java_import(gateway.jvm, "org.apache.spark.sql.SQLContext") java_import(gateway.jvm, "org.apache.spark.sql.hive.HiveContext") java_import(gateway.jvm, "org.apache.spark.sql.hive.LocalHiveContext") java_import(gateway.jvm, "org.apache.spark.sql.hive.TestHiveContext") java_import(gateway.jvm, "scala.Tuple2") _zcUserQueryNameSpace = {} jconf = intp.getSparkConf() conf = SparkConf(_jvm = gateway.jvm, _jconf = jconf) sc = _zsc_ = SparkContext(jsc=jsc, gateway=gateway, conf=conf) _zcUserQueryNameSpace["_zsc_"] = _zsc_ _zcUserQueryNameSpace["sc"] = sc if sparkVersion.isSpark2(): spark = __zSpark__ = SparkSession(sc, intp.getSparkSession()) sqlc = __zSqlc__ = __zSpark__._wrapped _zcUserQueryNameSpace["sqlc"] = sqlc _zcUserQueryNameSpace["__zSqlc__"] = __zSqlc__ _zcUserQueryNameSpace["spark"] = spark _zcUserQueryNameSpace["__zSpark__"] = __zSpark__ else: sqlc = __zSqlc__ = SQLContext(sparkContext=sc, sqlContext=intp.getSQLContext()) _zcUserQueryNameSpace["sqlc"] = sqlc _zcUserQueryNameSpace["__zSqlc__"] = sqlc sqlContext = __zSqlc__ _zcUserQueryNameSpace["sqlContext"] = sqlContext completion = __zeppelin_completion__ = PySparkCompletion(intp) _zcUserQueryNameSpace["completion"] = completion _zcUserQueryNameSpace["__zeppelin_completion__"] = __zeppelin_completion__ z = __zeppelin__ = PyZeppelinContext(intp.getZeppelinContext()) __zeppelin__._setup_matplotlib() _zcUserQueryNameSpace["z"] = z _zcUserQueryNameSpace["__zeppelin__"] = __zeppelin__ while True : req = intp.getStatements() try: stmts = req.statements().split("\n") jobGroup = req.jobGroup() jobDesc = req.jobDescription() # Get post-execute hooks try: global_hook = intp.getHook('post_exec_dev') except: global_hook = None try: user_hook = __zeppelin__.getHook('post_exec') except: user_hook = None nhooks = 0 for hook in (global_hook, user_hook): if hook: nhooks += 1 if stmts: # use exec mode to compile the statements except the last statement, # so that the last statement's evaluation will be printed to stdout sc.setJobGroup(jobGroup, jobDesc) code = compile('\n'.join(stmts), '<stdin>', 'exec', ast.PyCF_ONLY_AST, 1) to_run_hooks = [] if (nhooks > 0): to_run_hooks = code.body[-nhooks:] to_run_exec, to_run_single = (code.body[:-(nhooks + 1)], [code.body[-(nhooks + 1)]]) try: for node in to_run_exec: mod = ast.Module([node]) code = compile(mod, '<stdin>', 'exec') exec(code, _zcUserQueryNameSpace) for node in to_run_single: mod = ast.Interactive([node]) code = compile(mod, '<stdin>', 'single') exec(code, _zcUserQueryNameSpace) for node in to_run_hooks: mod = ast.Module([node]) code = compile(mod, '<stdin>', 'exec') exec(code, _zcUserQueryNameSpace) intp.setStatementsFinished("", False) except Py4JJavaError: # raise it to outside try except raise except: exception = traceback.format_exc() m = re.search("File \"<stdin>\", line (\d+).*", exception) if m: line_no = int(m.group(1)) intp.setStatementsFinished( "Fail to execute line {}: {}\n".format(line_no, stmts[line_no - 1]) + exception, True) else: intp.setStatementsFinished(exception, True) else: intp.setStatementsFinished("", False) except Py4JJavaError: excInnerError = traceback.format_exc() # format_tb() does not return the inner exception innerErrorStart = excInnerError.find("Py4JJavaError:") if innerErrorStart > -1: excInnerError = excInnerError[innerErrorStart:] intp.setStatementsFinished(excInnerError + str(sys.exc_info()), True) except: intp.setStatementsFinished(traceback.format_exc(), True) output.reset()
apache-2.0
tengerye/orthogonal-denoising-autoencoder
tensorflow/demo.py
2
2335
import matplotlib import numpy as np import scipy as sp import matplotlib.pyplot as plt import scipy.io from sklearn.cross_decomposition import CCA from orthAE import OrthdAE # generate toy data for multi-view learning from paper "Factorized Latent Spaces with Structured Sparsity" t = np.arange(-1, 1, 0.02) x = np.sin(2*np.pi*t) # share latent space x_noise = 0.02*np.sin(3.6*np.pi*t) # correlated noise # private latent spaces z1 = np.cos(np.pi*np.pi*t) z2 = np.cos(5*np.pi*t) ########################################################## # Fig.2.(a) f, axarr = plt.subplots(2, sharex=True) axarr[0].plot(t, x, color='blue') axarr[0].plot(t, z1, color='green') axarr[0].plot(t, x_noise, color='red') axarr[0].set_title('Fig.2.(a)') axarr[1].plot(t, x, color='blue') axarr[1].plot(t, z2, color='green') axarr[1].plot(t, x_noise, color='red') plt.show() ########################################################## # shared private spaces m1 = np.vstack((x, z1)); m2 = np.vstack((x, z2)); m1 = np.random.rand(20, 2).dot(m1) m2 = np.random.rand(20, 2).dot(m2) # m1 = np.matmul(np.random.rand(20, 2), m1) # m2 = np.matmul(np.random.rand(20, 2), m2) # m1 = np.dot(np.random.rand(20, 2), m1) # m2 = np.dot(np.random.rand(20, 2), m2) # add gaussian noise with mean=0, standard deviation=0.01 m1 = m1 + np.random.randn(*m1.shape)*0.01; m2 = m2 + np.random.randn(*m2.shape)*0.01; # add correlated noise m1 = np.vstack((m1, x_noise)) m2 = np.vstack((m2, x_noise)) ########################################################## # Fig.2.(b) f, axarr = plt.subplots(2, sharex=True) axarr[0].plot(t, m1.transpose()) axarr[0].set_title('Fig.2.(b)') axarr[1].plot(t, m2.transpose()) plt.show() ########################################################## # Fig.3 CCA cca = CCA(n_components=3) cca.fit(m1.T, m2.T) X_c = cca.transform(m1.T) fig, ax = plt.subplots() ax.set_title('Fig.2.(c)') # ax.set_color_cycle(['blue', 'green', 'red']) ax.set_prop_cycle('color', ['blue', 'red', 'green']) ax.plot(X_c) # ax.plot(Y_c) plt.show() ########################################################## # Use TensorFlow. x2 = np.concatenate((m1, m2,)) # y2 = trivial_denoising(x2) # print('shape of y2=', np.shape(y2)) odae = OrthdAE([21, 21], [1, 1, 1]) odae.train(x2.T, max_iter=1000000) result = odae.transform(x2.T) plt.plot(result) plt.show()
apache-2.0
kevin-intel/scikit-learn
sklearn/_min_dependencies.py
1
2235
"""All minimum dependencies for scikit-learn.""" import platform import argparse # numpy scipy and cython should by in sync with pyproject.toml if platform.python_implementation() == 'PyPy': NUMPY_MIN_VERSION = '1.19.0' else: NUMPY_MIN_VERSION = '1.14.6' SCIPY_MIN_VERSION = '1.1.0' JOBLIB_MIN_VERSION = '0.11' THREADPOOLCTL_MIN_VERSION = '2.0.0' PYTEST_MIN_VERSION = '5.0.1' CYTHON_MIN_VERSION = '0.28.5' # 'build' and 'install' is included to have structured metadata for CI. # It will NOT be included in setup's extras_require # The values are (version_spec, comma seperated tags) dependent_packages = { 'numpy': (NUMPY_MIN_VERSION, 'build, install'), 'scipy': (SCIPY_MIN_VERSION, 'build, install'), 'joblib': (JOBLIB_MIN_VERSION, 'install'), 'threadpoolctl': (THREADPOOLCTL_MIN_VERSION, 'install'), 'cython': (CYTHON_MIN_VERSION, 'build'), 'matplotlib': ('2.2.2', 'benchmark, docs, examples, tests'), 'scikit-image': ('0.14.5', 'docs, examples, tests'), 'pandas': ('0.25.0', 'benchmark, docs, examples, tests'), 'seaborn': ('0.9.0', 'docs, examples'), 'memory_profiler': ('0.57.0', 'benchmark, docs'), 'pytest': (PYTEST_MIN_VERSION, 'tests'), 'pytest-cov': ('2.9.0', 'tests'), 'flake8': ('3.8.2', 'tests'), 'mypy': ('0.770', 'tests'), 'pyamg': ('4.0.0', 'tests'), 'sphinx': ('3.2.0', 'docs'), 'sphinx-gallery': ('0.7.0', 'docs'), 'numpydoc': ('1.0.0', 'docs'), 'Pillow': ('7.1.2', 'docs'), 'sphinx-prompt': ('1.3.0', 'docs'), } # create inverse mapping for setuptools tag_to_packages: dict = { extra: [] for extra in ['build', 'install', 'docs', 'examples', 'tests', 'benchmark'] } for package, (min_version, extras) in dependent_packages.items(): for extra in extras.split(', '): tag_to_packages[extra].append("{}>={}".format(package, min_version)) # Used by CI to get the min dependencies if __name__ == '__main__': parser = argparse.ArgumentParser( description='Get min dependencies for a package') parser.add_argument('package', choices=dependent_packages) args = parser.parse_args() min_version = dependent_packages[args.package][0] print(min_version)
bsd-3-clause
lorenzo-desantis/mne-python
mne/decoding/tests/test_csp.py
5
3859
# Author: Alexandre Gramfort <[email protected]> # Romain Trachel <[email protected]> # # License: BSD (3-clause) import os.path as op from nose.tools import assert_true, assert_raises import numpy as np from numpy.testing import assert_array_almost_equal from mne import io, Epochs, read_events, pick_types from mne.decoding.csp import CSP from mne.utils import requires_sklearn, slow_test data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(data_dir, 'test_raw.fif') event_name = op.join(data_dir, 'test-eve.fif') tmin, tmax = -0.2, 0.5 event_id = dict(aud_l=1, vis_l=3) # if stop is too small pca may fail in some cases, but we're okay on this file start, stop = 0, 8 @slow_test def test_csp(): """Test Common Spatial Patterns algorithm on epochs """ raw = io.Raw(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[2:9:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() n_channels = epochs_data.shape[1] n_components = 3 csp = CSP(n_components=n_components) csp.fit(epochs_data, epochs.events[:, -1]) y = epochs.events[:, -1] X = csp.fit_transform(epochs_data, y) assert_true(csp.filters_.shape == (n_channels, n_channels)) assert_true(csp.patterns_.shape == (n_channels, n_channels)) assert_array_almost_equal(csp.fit(epochs_data, y).transform(epochs_data), X) # test init exception assert_raises(ValueError, csp.fit, epochs_data, np.zeros_like(epochs.events)) assert_raises(ValueError, csp.fit, epochs, y) assert_raises(ValueError, csp.transform, epochs, y) csp.n_components = n_components sources = csp.transform(epochs_data) assert_true(sources.shape[1] == n_components) epochs.pick_types(meg='mag', copy=False) # test plot patterns components = np.arange(n_components) csp.plot_patterns(epochs.info, components=components, res=12, show=False) # test plot filters csp.plot_filters(epochs.info, components=components, res=12, show=False) @requires_sklearn def test_regularized_csp(): """Test Common Spatial Patterns algorithm using regularized covariance """ raw = io.Raw(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() n_channels = epochs_data.shape[1] n_components = 3 reg_cov = [None, 0.05, 'ledoit_wolf', 'oas'] for reg in reg_cov: csp = CSP(n_components=n_components, reg=reg) csp.fit(epochs_data, epochs.events[:, -1]) y = epochs.events[:, -1] X = csp.fit_transform(epochs_data, y) assert_true(csp.filters_.shape == (n_channels, n_channels)) assert_true(csp.patterns_.shape == (n_channels, n_channels)) assert_array_almost_equal(csp.fit(epochs_data, y). transform(epochs_data), X) # test init exception assert_raises(ValueError, csp.fit, epochs_data, np.zeros_like(epochs.events)) assert_raises(ValueError, csp.fit, epochs, y) assert_raises(ValueError, csp.transform, epochs, y) csp.n_components = n_components sources = csp.transform(epochs_data) assert_true(sources.shape[1] == n_components)
bsd-3-clause
hawwestin/MSR.APO
gui/tabpicture.py
1
3864
import tkinter as tk import matplotlib import matplotlib.pyplot as plt from gui.histogram import Histogram from gui.operations.computer_vision import Vision from gui.image_frame import ImageFrame import app_config matplotlib.use("TkAgg") class TabPicture: """ Kompozycja obiektów Vision przechowujących obrazy do operacji. In feature main control of tkinter tab displaying images and other data. """ gallery = {} def __init__(self, tab_frame: tk.Frame, main_window: tk.Tk, name: tk.StringVar): self.tab_frame = tab_frame self.main_window = main_window """ Master Key must match menu_command _current tab politics """ ############### # vars ############### self.id = tab_frame._w TabPicture.gallery[self.id] = self self.name = name self.tkImage = None res = int(app_config.main_window_resolution[:int(app_config.main_window_resolution.index('x'))])/2 ############### # Panels ############### self.pann = tk.PanedWindow(self.tab_frame, handlesize=10, showhandle=True, handlepad=12, sashwidth=3) self.pann.pack(side=tk.TOP, fill=tk.BOTH, expand=True) self.image_frame = tk.Frame(self.pann) self.image_frame.pack(expand=True, fill=tk.BOTH) self.pann.add(self.image_frame, width=res, minsize=100) self.panel_hist = tk.Frame(self.pann) self.panel_hist.pack(expand=True, fill=tk.BOTH) self.pann.add(self.panel_hist, width=res, minsize=100) ############### # Class ############### self.vision = Vision() self.histogram = Histogram(self.panel_hist) self.image_canvas = ImageFrame(self.image_frame) def __len__(self): return TabPicture.gallery.__len__() def __del__(self): TabPicture.gallery.pop(self.id, None) def persist_tmp(self): self.vision.cvImage.image = self.vision.cvImage_tmp.image self.refresh() def match(self, what): ''' Determine if this note matches the filter text. Return true if it matches, False otherwise. Search is case sensitive and matches both name and id. :param what: :return: ''' return what == self.id or what in self.name.get() @staticmethod def search(finder): ''' Find vison object in visions list :param finder: :return: ''' return [TabPicture.gallery[tab] for tab in TabPicture.gallery.keys() if TabPicture.gallery[tab].match(finder)] def __contains__(self, item): """ Implement Container abstract method to check if object is in our list. :param item: :return: """ return len(self.search(item)) > 0 def open_image(self, path): ''' Save copy of opened image for further usage. :param path: image path :return: ''' if len(path) > 0: self.vision.open_image(path) else: self.main_window.status_message.set("nie podano pliku") def show_hist(self): """ Wyswietlenie histogramu dla danego okna. zachowanie Mathplota zostawic . wyswietlanie dodatkowych ekranow z wykozystaniem tego :return: """ # wyczyszczenie grafu przed zaladowaniem kolejnego , jak zaladowac kilka instancji do kilku obrazkow ? plt.hist(self.vision.cvImage.image.ravel(), 256, [0, 255]) plt.show() def refresh(self): self.histogram(image=self.vision.cvImage.image) self.set_panel_img() def set_panel_img(self): self.image_canvas(self.vision.cvImage) def popup_image(self): plt.imshow(self.tkImage, cmap='Greys', interpolation='bicubic') plt.show()
apache-2.0
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/user_interfaces/gtk_spreadsheet_sgskip.py
1
2493
""" =============== GTK Spreadsheet =============== Example of embedding matplotlib in an application and interacting with a treeview to store data. Double click on an entry to update plot data """ import pygtk pygtk.require('2.0') import gtk from gtk import gdk import matplotlib matplotlib.use('GTKAgg') # or 'GTK' from matplotlib.backends.backend_gtk import FigureCanvasGTK as FigureCanvas from numpy.random import random from matplotlib.figure import Figure class DataManager(gtk.Window): numRows, numCols = 20, 10 data = random((numRows, numCols)) def __init__(self): gtk.Window.__init__(self) self.set_default_size(600, 600) self.connect('destroy', lambda win: gtk.main_quit()) self.set_title('GtkListStore demo') self.set_border_width(8) vbox = gtk.VBox(False, 8) self.add(vbox) label = gtk.Label('Double click a row to plot the data') vbox.pack_start(label, False, False) sw = gtk.ScrolledWindow() sw.set_shadow_type(gtk.SHADOW_ETCHED_IN) sw.set_policy(gtk.POLICY_NEVER, gtk.POLICY_AUTOMATIC) vbox.pack_start(sw, True, True) model = self.create_model() self.treeview = gtk.TreeView(model) self.treeview.set_rules_hint(True) # matplotlib stuff fig = Figure(figsize=(6, 4)) self.canvas = FigureCanvas(fig) # a gtk.DrawingArea vbox.pack_start(self.canvas, True, True) ax = fig.add_subplot(111) self.line, = ax.plot(self.data[0, :], 'go') # plot the first row self.treeview.connect('row-activated', self.plot_row) sw.add(self.treeview) self.add_columns() self.add_events(gdk.BUTTON_PRESS_MASK | gdk.KEY_PRESS_MASK | gdk.KEY_RELEASE_MASK) def plot_row(self, treeview, path, view_column): ind, = path # get the index into data points = self.data[ind, :] self.line.set_ydata(points) self.canvas.draw() def add_columns(self): for i in range(self.numCols): column = gtk.TreeViewColumn('%d' % i, gtk.CellRendererText(), text=i) self.treeview.append_column(column) def create_model(self): types = [float]*self.numCols store = gtk.ListStore(*types) for row in self.data: store.append(row) return store manager = DataManager() manager.show_all() gtk.main()
mit
karthikvadla16/spark-tk
regression-tests/sparktkregtests/testcases/dicom/dicom_filter_keyword_test.py
13
9391
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """tests dicom.filter functionality""" import unittest from sparktkregtests.lib import sparktk_test import os import dicom import numpy import random from lxml import etree class DicomFilterKeywordsTest(sparktk_test.SparkTKTestCase): def setUp(self): """import dicom data for testing""" super(DicomFilterKeywordsTest, self).setUp() self.dataset = self.get_file("dicom_uncompressed") self.dicom = self.context.dicom.import_dcm(self.dataset) self.xml_directory = "../../../datasets/dicom/dicom_uncompressed/xml/" self.image_directory = "../../../datasets/dicom/dicom_uncompressed/imagedata/" self.query = ".//DicomAttribute[@keyword='KEYWORD']/Value/text()" def test_filter_one_column_one_result_basic(self): """test filter with one unique key""" # get the pandas frame for ease of access metadata = self.dicom.metadata.to_pandas() # grab a random row and extract the SOPInstanceUID from that record random_row_index = random.randint(0, self.dicom.metadata.count() - 1) random_row = metadata["metadata"][random_row_index] xml_data = etree.fromstring(random_row.encode("ascii", "ignore")) random_row_sopi_id = xml_data.xpath(self.query.replace("KEYWORD", "SOPInstanceUID"))[0] # get all of the records with our randomly selected sopinstanceuid # since sopinstanceuid is supposed to be unique for each record # we should only get back the record which we randomly selected above self.dicom.filter_by_keywords({"SOPInstanceUID" : random_row_sopi_id }) # check that our result is correct # we should have gotten back from filter the row # which we randomly selected self.assertEqual(self.dicom.metadata.count(), 1) pandas = self.dicom.metadata.to_pandas()["metadata"] record = pandas[0] self.assertEqual(str(random_row), str(record)) def test_filter_one_col_multi_result_basic(self): """test filter by keyword with one keyword mult record result""" # get pandas frame for ease of access metadata = self.dicom.metadata.to_pandas() # grab a random row and extract the patient id first_row = metadata["metadata"][0] xml_data = etree.fromstring(first_row.encode("ascii", "ignore")) first_row_patient_id = xml_data.xpath(self.query.replace("KEYWORD", "PatientID"))[0] # filter the records ourselves to get the expected result expected_result = self._filter({"PatientID" : first_row_patient_id }) # get all of the records with that patient id self.dicom.filter_by_keywords({"PatientID" : first_row_patient_id }) # get the pandas frame for ease of access pandas_result = self.dicom.metadata.to_pandas()["metadata"] # ensure that our expected result matches what dicom returned self.assertEqual(len(expected_result), self.dicom.metadata.count()) for record, filtered_record in zip(expected_result, pandas_result): self.assertEqual(record, filtered_record.encode("ascii", "ignore")) def test_filter_multiple_columns_basic(self): """test filter with multiple key vals""" # first we will generate a filter randomly by # randomly selecting a row and extracting values that we want to use keyword_filter = {} metadata = self.dicom.metadata.to_pandas()["metadata"] first_row = metadata[0] xml_data = etree.fromstring(first_row.encode("ascii", "ignore")) first_row_patient_id = xml_data.xpath(self.query.replace("KEYWORD", "PatientID"))[0] first_row_body_part = xml_data.xpath(self.query.replace("KEYWORD", "BodyPartExamined"))[0] keyword_filter["PatientID"] = first_row_patient_id keyword_filter["BodyPartExamined"] = first_row_body_part # now we generate our expected result by filtering ourselves matching_records = self._filter(keyword_filter) # get the records which match our filter self.dicom.filter_by_keywords(keyword_filter) pandas_result = self.dicom.metadata.to_pandas()["metadata"] # finally we check to ensure that dicom's result matches our expected result self.assertEqual(len(matching_records), self.dicom.metadata.count()) for expected_record, actual_record in zip(matching_records, pandas_result): ascii_actual_result = actual_record.encode("ascii", "ignore") self.assertEqual(ascii_actual_result, expected_record) def test_filter_invalid_column(self): """test filter invalid key""" self.dicom.filter_by_keywords({ "invalid keyword" : "value" }) self.assertEqual(0, self.dicom.metadata.count()) def test_filter_multiple_invalid_columns(self): """test filter mult invalid keys""" self.dicom.filter_by_keywords({ "invalid" : "bla", "another_invalid_col" : "bla" }) self.assertEqual(0, self.dicom.metadata.count()) def test_valid_keyword_zero_results(self): """test filter with key-value pair, key exists but no matches""" self.dicom.filter_by_keywords({ "SOPInstanceUID" : "2" }) self.assertEqual(0, self.dicom.metadata.count()) def test_invalid_value_type(self): """test filter with key-value pair, key exists but value is not type of str""" with self.assertRaisesRegexp(TypeError, "both keyword and value should be of <type 'str'>"): self.dicom.filter_by_keywords({"SOPInstanceUID" : 2}) def test_filter_invalid_valid_col_mix(self): """test filter with mix of valid and invalid keys""" # first we get a valid patient id by selecting the first row # and extracting its patient id first_row = self.dicom.metadata.to_pandas()["metadata"][0] xml_data = etree.fromstring(first_row.encode("ascii", "ignore")) patient_id = xml_data.xpath(self.query.replace("KEYWORD", "PatientID"))[0] # now we ask dicom to filter using a filter which is a mix of a valid key-value # pair and an invalid key-value pair self.dicom.filter_by_keywords({ "PatientID" : patient_id, "Invalid" : "bla" }) # since there are no records which meet BOTH key value criterias # we assert that 0 records were returned self.assertEqual(0, self.dicom.metadata.count()) def test_filter_invalid_type(self): """test filter invalid param type""" with self.assertRaisesRegexp(Exception, "incomplete format"): self.dicom.filter_by_keywords(1) self.dicom.metadata.count() def test_filter_unicode_columns(self): """test filter by keyword with unicode keys""" # the logic is the same as test_filter_one_column above # the only difference is here we are giving the keys as unicode # strings instead of standard python strings metadata = self.dicom.metadata.to_pandas() first_row = metadata["metadata"][0] xml_data = etree.fromstring(first_row.encode("ascii", "ignore")) first_row_patient_id = xml_data.xpath(self.query.replace("KEYWORD", "PatientID"))[0] expected_result = self._filter({ "PatientID" : first_row_patient_id }) self.dicom.filter_by_keywords({ u'PatientID' : first_row_patient_id }) pandas_result = self.dicom.metadata.to_pandas()["metadata"] self.assertEqual(len(expected_result), self.dicom.metadata.count()) for record, filtered_record in zip(expected_result, pandas_result): self.assertEqual(record, filtered_record.encode("ascii", "ignore")) def _filter(self, keywords): """generate our expected result by filtering the records""" # here we are generating the expected result from the key-value # filter so that we can compare it to what dicom returns # we will iterate through the dicom metadata to get all of the # records which match our key-value criteria matching_records = [] pandas_metadata = self.dicom.metadata.to_pandas()["metadata"] for row in pandas_metadata: ascii_xml = row.encode("ascii", "ignore") xml = etree.fromstring(row.encode("ascii", "ignore")) for keyword in keywords: this_row_keyword_value = xml.xpath(self.query.replace("KEYWORD", keyword))[0] if this_row_keyword_value == keywords[keyword]: if ascii_xml not in matching_records: matching_records.append(ascii_xml) return matching_records if __name__ == "__main__": unittest.main()
apache-2.0
YihaoLu/statsmodels
statsmodels/examples/ex_kernel_test_functional.py
34
2246
# -*- coding: utf-8 -*- """ Created on Tue Jan 08 19:03:20 2013 Author: Josef Perktold """ from __future__ import print_function if __name__ == '__main__': import numpy as np from statsmodels.regression.linear_model import OLS #from statsmodels.nonparametric.api import KernelReg import statsmodels.sandbox.nonparametric.kernel_extras as smke seed = np.random.randint(999999) #seed = 661176 print(seed) np.random.seed(seed) sig_e = 0.5 #0.1 nobs, k_vars = 200, 1 x = np.random.uniform(-2, 2, size=(nobs, k_vars)) x.sort() order = 3 exog = x**np.arange(order + 1) beta = np.array([1, 1, 0.1, 0.0])[:order+1] # 1. / np.arange(1, order + 2) y_true = np.dot(exog, beta) y = y_true + sig_e * np.random.normal(size=nobs) endog = y print('DGP') print('nobs=%d, beta=%r, sig_e=%3.1f' % (nobs, beta, sig_e)) mod_ols = OLS(endog, exog[:,:2]) res_ols = mod_ols.fit() #'cv_ls'[1000, 0.5][0.01, 0.45] tst = smke.TestFForm(endog, exog[:,:2], bw=[0.01, 0.45], var_type='cc', fform=lambda x,p: mod_ols.predict(p,x), estimator=lambda y,x: OLS(y,x).fit().params, nboot=1000) print('bw', tst.bw) print('tst.test_stat', tst.test_stat) print(tst.sig) print('tst.boots_results mean, min, max', (tst.boots_results.mean(), tst.boots_results.min(), tst.boots_results.max())) print('lower tail bootstrap p-value', (tst.boots_results < tst.test_stat).mean()) print('upper tail bootstrap p-value', (tst.boots_results >= tst.test_stat).mean()) from scipy import stats print('aymp.normal p-value (2-sided)', stats.norm.sf(np.abs(tst.test_stat))*2) print('aymp.normal p-value (upper)', stats.norm.sf(tst.test_stat)) do_plot=True if do_plot: import matplotlib.pyplot as plt plt.figure() plt.plot(x, y, '.') plt.plot(x, res_ols.fittedvalues) plt.title('OLS fit') plt.figure() plt.hist(tst.boots_results.ravel(), bins=20) plt.title('bootstrap histogram or test statistic') plt.show()
bsd-3-clause
pcournut/deep-learning-for-combinatorial-optimization
Solvers/TSP/Concorde/dataset.py
1
3425
import numpy as np import matplotlib.pyplot as plt import math from scipy.spatial.distance import pdist, squareform from concorde import Solver # Data Generator class DataGenerator(object): def __init__(self,solver): """Construct a DataGenerator.""" self.solver=solver def solve_batch(self, coord_batch): trip_batch = [] for sequence in coord_batch: # Calculate optimal_tour_length trip=[self.solver.run(sequence)] trip_batch.append(trip) return trip_batch def next_batch(self, batch_size, max_length, dimension, seed=0): """Return the next batch of the data""" if seed!=0: np.random.seed(seed) coord_batch = [] for _ in range(batch_size): # Randomly generate data sequence = np.random.rand(max_length, dimension).astype(np.float32) # (max_length) random numbers with (dimension) coordinates in [0,1] # Store batch coord_batch.append(sequence) return coord_batch def single_shuffled_batch(self, batch_size, max_length, dimension, seed=42): if seed!=0: np.random.seed(seed) # Single sequence of coordinates seq = np.random.rand(max_length, dimension).astype(np.float32) # (max_length) random numbers with (dimension) coordinates in [0,1] coord_batch = [] # Randomly shuffle seq for _ in range(batch_size): # Shuffle sequence sequence = np.copy(seq) ########################## np.random.shuffle(sequence) ########################## # Store batch coord_batch.append(sequence ) return coord_batch def shuffle_batch(self, coord_batch): coord_batch_ = [] # Randomly shuffle seq for seq in coord_batch: # Shuffle sequence sequence = np.copy(seq) ########################## np.random.shuffle(sequence) ########################## # Store batch coord_batch_.append(sequence) return coord_batch_ def visualize_2D_trip(self,trip): # plot 2D graph plt.scatter(trip[:,0], trip[:,1]) labels=np.array(list(range(len(trip))) + [0]) X = trip[labels, 0] Y = trip[labels, 1] plt.plot(X, Y) for i, (x, y) in zip(labels,(zip(X,Y))): plt.annotate(i,xy=(x, y)) plt.xlim(0,1) plt.ylim(0,1) plt.show() def indexes_to_coordinates(self,coord_batch,trip_indexes): trip = [coord_batch[i] for (i,j,k) in trip_indexes] return np.asarray(trip) if __name__ == "__main__": # Config batch_size=16 max_length=10 dimension=2 # Create Solver and Data Generator solver = Solver(max_length) dataset = DataGenerator(solver) # Next batch #coord_batch = dataset.next_batch(batch_size, max_length, dimension,seed=0) coord_batch = dataset.single_shuffled_batch(batch_size, max_length, dimension,seed=75) # Some nice print print 'Coordinates: \n',coord_batch[0] # Solve to optimality trip_batch = dataset.solve_batch(coord_batch) trip_coord = np.asarray(trip_batch[0][0]) print 'Optimal tour : \n',trip_coord # 2D plot for coord batch dataset.visualize_2D_trip(coord_batch[0]) dataset.visualize_2D_trip(trip_coord)
mit
stevetjoa/musicsearch
mirgui.py
1
40317
import os import pprint import random import wx import numpy # The recommended way to use wx with mpl is with the WXAgg # backend. # import matplotlib matplotlib.use('WXAgg') from matplotlib.figure import Figure from matplotlib.backends.backend_wxagg import \ FigureCanvasWxAgg as FigCanvas, \ NavigationToolbar2WxAgg as NavigationToolbar import mir2 import mir from matplotlib.colors import LogNorm import main class mirgui(wx.Frame): """ The main frame of the application """ title = 'Music Search Application' def __init__(self): wx.Frame.__init__(self, None, -1, self.title) self.data = [5, 6, 9, 14] self.create_menu() self.create_status_bar() self.create_main_panel() #self.textbox.SetValue(' '.join(map(str, self.data))) self.draw_figure() print 'Training.' self.musicsearch = main.Search(8, 32) for f in os.listdir('train'): print f x, fs, enc = mir.wavread('train/'+f) self.musicsearch.add(x, fs, f) print 'Done training.' def create_menu(self): self.menubar = wx.MenuBar() menu_file = wx.Menu() m_browse = menu_file.Append(-1, "&Import *.wav file...", "Shows a File Dialog") self.Bind(wx.EVT_MENU, self.openfile, m_browse) m_key = menu_file.Append(-1, "&Estimate Key...", "Estimates Key of the Entire wav file") self.Bind(wx.EVT_MENU, self.est_key, m_key) m_expt = menu_file.Append(-1, "&Save plot\tCtrl-S", "Save plot to file") self.Bind(wx.EVT_MENU, self.on_save_plot, m_expt) menu_file.AppendSeparator() m_exit = menu_file.Append(-1, "E&xit\tCtrl-X", "Exit") self.Bind(wx.EVT_MENU, self.on_exit, m_exit) menu_edit = wx.Menu() m_reset = menu_edit.Append(-1, "&Reset Parameters...", "Resets plot parameters to Default Values") self.Bind(wx.EVT_MENU, self.on_reset, m_reset) m_lognorm = menu_edit.AppendCheckItem(-1, "Log-Norm", "Plot gram values using Log Normalized spectrum") self.Bind(wx.EVT_MENU, self.on_log_norm, m_lognorm) m_WC1 = menu_edit.Append(-1, 'Adjust Input Plot', kind=wx.ITEM_RADIO) self.Bind(wx.EVT_MENU,self.which_canvas1, m_WC1) m_WC2 = menu_edit.Append(-1, 'Adjust Output Plot', kind=wx.ITEM_RADIO) self.Bind(wx.EVT_MENU,self.which_canvas2, m_WC2) menu_help = wx.Menu() m_about = menu_help.Append(-1, "&About\tF1", "About the demo") self.Bind(wx.EVT_MENU, self.on_about, m_about) self.menubar.Append(menu_file, "&File") self.menubar.Append(menu_edit, "&Edit") self.menubar.Append(menu_help, "&Help") self.SetMenuBar(self.menubar) def create_main_panel(self): """ Creates the main panel with all the controls on it: * mpl canvas * mpl navigation toolbar * Control panel for interaction """ self.panel = wx.Panel(self) # Create the mpl Figure and FigCanvas objects. # 5x4 inches, 100 dots-per-inch # self.dpi = 100 self.fig = Figure((3.0, 3.0), dpi=self.dpi) self.canvas = FigCanvas(self.panel, -1, self.fig) self.canvas2= FigCanvas(self.panel, -1, self.fig) # Since we have only one plot, we can use add_axes # instead of add_subplot, but then the subplot # configuration tool in the navigation toolbar wouldn't # work. # self.axes = self.fig.add_subplot(111) # Bind the 'pick' event for clicking on one of the bars # self.canvas.mpl_connect('pick_event', self.on_pick) self.drawbutton = wx.Button(self.panel, -1, "Plot Gram") self.Bind(wx.EVT_BUTTON, self.on_draw_button, self.drawbutton) self.plot_select = ['Time Domain Signal', 'Spectrogram','Constant Q Spectrogram', 'Chromagram'] self.combo = wx.ComboBox(self.panel, -1, pos = (0,400), choices = self.plot_select, style=wx.ALIGN_LEFT | wx.CB_READONLY) self.combo.SetSelection(2) self.setbutton = wx.Button(self.panel, -1, "Set Parameters") self.Bind(wx.EVT_BUTTON, self.on_set_button, self.setbutton) self.record = wx.BitmapButton(self.panel, -1, wx.Bitmap('record.png')) self.Bind(wx.EVT_BUTTON, self.on_rec, self.record) self.play = wx.BitmapButton(self.panel, -1, wx.Bitmap('play.png')) self.Bind(wx.EVT_BUTTON, self.on_play, self.play) self.stop = wx.BitmapButton(self.panel, -1, wx.Bitmap('stop.png')) self.searchbutton = wx.Button(self.panel, -1, "Search Database") self.Bind(wx.EVT_BUTTON, self.search, self.searchbutton) self.searchbutton1 = wx.Button(self.panel, -1, style=wx.BU_LEFT, name="1) Sonata in A Maj., Beethoven") self.searchbutton2 = wx.Button(self.panel, -1, style=wx.BU_LEFT, name= "2) Polonaise in G Min., Chopin") self.searchbutton3 = wx.Button(self.panel, -1, style=wx.BU_LEFT, name= "3) Rondo No. 5 in C# Min., Bartok") self.searchbutton4 = wx.Button(self.panel, -1, style=wx.BU_LEFT, name= "1) Sonata in A Maj., Beethoven") self.searchbutton5 = wx.Button(self.panel, -1, style=wx.BU_LEFT, name= "2) Polonaise in G Min., Chopin") self.searchbutton6 = wx.Button(self.panel, -1, style=wx.BU_LEFT, name= "3) Rondo No. 5 in C# Min., Bartok") self.searchbutton7 = wx.Button(self.panel, -1, style=wx.BU_LEFT, name= "1) Sonata in A Maj., Beethoven") self.searchbutton8 = wx.Button(self.panel, -1, style=wx.BU_LEFT, name= "2) Polonaise in G Min., Chopin") self.searchbutton9 = wx.Button(self.panel, -1, style=wx.BU_LEFT, name= "3) Rondo No. 5 in C# Min., Bartok") self.searchbutton10 = wx.Button(self.panel, -1, style=wx.BU_LEFT, name= "1) Sonata in A Maj., Beethoven") self.Sbuttonlist = [self.searchbutton1,self.searchbutton2, self.searchbutton3,self.searchbutton4, self.searchbutton5,self.searchbutton6, self.searchbutton7,self.searchbutton8, self.searchbutton9,self.searchbutton10] self.Bind(wx.EVT_BUTTON, self.getmeta1, self.searchbutton1) self.Bind(wx.EVT_BUTTON, self.getmeta2, self.searchbutton2) self.Bind(wx.EVT_BUTTON, self.getmeta3, self.searchbutton3) self.Bind(wx.EVT_BUTTON, self.getmeta4, self.searchbutton4) self.Bind(wx.EVT_BUTTON, self.getmeta5, self.searchbutton5) self.Bind(wx.EVT_BUTTON, self.getmeta6, self.searchbutton6) self.Bind(wx.EVT_BUTTON, self.getmeta7, self.searchbutton7) self.Bind(wx.EVT_BUTTON, self.getmeta8, self.searchbutton8) self.Bind(wx.EVT_BUTTON, self.getmeta9, self.searchbutton9) self.Bind(wx.EVT_BUTTON, self.getmeta10, self.searchbutton10) #self.plt_titlestr = '' #self.plot_title = wx.StaticText(self.panel, -1, 'text1',(30,15), style=wx.ALIGN_CENTRE) # Create the navigation toolbar, tied to the canvas # self.toolbar = NavigationToolbar(self.canvas) # # Layout with box sizers # flags = wx.ALIGN_LEFT | wx.ALL | wx.GROW self.vbox = wx.BoxSizer(wx.VERTICAL) self.hbox2 = wx.BoxSizer(wx.HORIZONTAL) self.vbox2 = wx.BoxSizer(wx.VERTICAL) self.vbox3 = wx.BoxSizer(wx.VERTICAL) self.vbox2.AddStretchSpacer(1) self.vbox2.Add(self.searchbutton1, 0, border=3, flag=flags) self.vbox2.Add(self.searchbutton2, 0, border=3, flag=flags) self.vbox2.Add(self.searchbutton3, 0, border=3, flag=flags) self.vbox2.Add(self.searchbutton4, 0, border=3, flag=flags) self.vbox2.Add(self.searchbutton5, 0, border=3, flag=flags) self.vbox2.Add(self.searchbutton6, 0, border=3, flag=flags) self.vbox2.Add(self.searchbutton7, 0, border=3, flag=flags) self.vbox2.Add(self.searchbutton8, 0, border=3, flag=flags) self.vbox2.Add(self.searchbutton9, 0, border=3, flag=flags) self.vbox2.Add(self.searchbutton10, 0, border=3, flag=flags) self.vbox2.AddStretchSpacer(1) self.vbox3.Add(self.canvas, 10, wx.RIGHT | wx.TOP | wx.ALIGN_RIGHT | wx.GROW) self.vbox3.Add(self.canvas2, 10, wx.RIGHT | wx.TOP | wx.ALIGN_RIGHT | wx.GROW) self.hbox2.Add(self.vbox2, 0, wx.LEFT | wx.TOP | wx.ALIGN_LEFT| wx.GROW) #self.panel.SetSizer(self.vbox) #self.vbox.Fit(self) self.hbox2.Add(self.vbox3, 10, wx.RIGHT | wx.TOP | wx.ALIGN_RIGHT | wx.GROW) self.vbox.Add(self.hbox2, 0, wx.LEFT | wx.TOP | wx.GROW) self.vbox.Add(self.toolbar, 0, wx.EXPAND) self.vbox.AddSpacer(7) self.hbox = wx.BoxSizer(wx.HORIZONTAL) self.hbox.AddSpacer(15) self.hbox.Add(self.combo, 0, border=3, flag=flags) self.hbox.AddSpacer(30) self.hbox.Add(self.setbutton, 0, border = 3, flag=flags) self.hbox.AddSpacer(30) self.hbox.Add(self.drawbutton, 0, border=3, flag=flags) self.hbox.AddSpacer(30) self.hbox.Add(self.play, 0, flag = flags) self.hbox.Add(self.stop, 0, flag = flags) self.hbox.Add(self.record, 0, flag = flags) self.hbox.AddSpacer(30) self.hbox.Add(self.searchbutton, 0, border=3, flag=flags) self.hbox.AddSpacer(30) self.vbox.Add(self.hbox, 0, flag = wx.ALIGN_LEFT | wx.BOTTOM | wx.EXPAND |wx.GROW) self.panel.SetSizer(self.vbox) self.vbox.Fit(self) self.mypath = None self.fsz = 0.040 self.hop = 0.020 self.fmax = 44100 self.x, self.fs, self.nbits = mir2.wavread('default.wav') #self.tmax = round(float(len(self.x))/self.fs,2) self.rectime = 20 self.tmax = self.rectime self.tmin = 0 self.LG_flag = 0 self.LG_str = None self.LG_vmin = 25 self.LG_vmax = 50 self.tmin_samp = None self.tmax_samp = None self.WC = 1 #self.rec_input = mir2.wavread('default.wav')#None self.rec_input = None self.rankresults = [('Beethoven_vln_sonata5_Francescatti_01.wav',1),('adksfjghl',3)] self.dict = {'Beethoven_vln_sonata5_Zukerman_01.wav': ('Sonata No. 5, Mvt. 1', 'L. V. Beethoven','F Major','Violin and Piano', 'Pinchas Zukerman'), 'Beethoven_vln_sonata5_Zukerman_02.wav': ('Sonata No. 5, Mvt. 2', 'L. V. Beethoven','F Major','Violin and Piano', 'Pinchas Zukerman'), 'Beethoven_vln_sonata5_Zukerman_03.wav': ('Sonata No. 5, Mvt. 3', 'L. V. Beethoven','F Major','Violin and Piano', 'Pinchas Zukerman'), 'Beethoven_vln_sonata5_Zukerman_04.wav': ('Sonata No. 5, Mvt. 4', 'L. V. Beethoven','F Major','Violin and Piano', 'Pinchas Zukerman'), 'Beethoven_vln_sonata5_Zukerman_05.wav': ('Sonata No. 5, Mvt. 5', 'L. V. Beethoven','F Major','Violin and Piano', 'Pinchas Zukerman'), 'Beethoven_vln_sonata5_Oistrakh_01.wav': ('Sonata No. 5, Mvt. 1', 'L. V. Beethoven','F Major','Violin and Piano', 'David Oistrakh'), 'Beethoven_vln_sonata5_Oistrakh_02.wav': ('Sonata No. 5, Mvt. 2', 'L. V. Beethoven','F Major','Violin and Piano', 'David Oistrakh'), 'Beethoven_vln_sonata5_Oistrakh_03.wav': ('Sonata No. 5, Mvt. 3', 'L. V. Beethoven','F Major','Violin and Piano', 'David Oistrakh'), 'Beethoven_vln_sonata5_Oistrakh_04.wav': ('Sonata No. 5, Mvt. 4', 'L. V. Beethoven','F Major','Violin and Piano', 'David Oistrakh'), 'Beethoven_vln_sonata5_Oistrakh_05.wav': ('Sonata No. 5, Mvt. 5', 'L. V. Beethoven','F Major','Violin and Piano', 'David Oistrakh'), 'Beethoven_vln_sonata5_Francescatti_01.wav': ('Sonata No. 5, Mvt. 1', 'L. V. Beethoven','F Major','Violin and Piano', 'Zino Francescatti'), 'Beethoven_vln_sonata5_Francescatti_02.wav': ('Sonata No. 5, Mvt. 2', 'L. V. Beethoven','F Major','Violin and Piano', 'Zino Francescatti'), 'Beethoven_vln_sonata5_Francescatti_03.wav': ('Sonata No. 5, Mvt. 3', 'L. V. Beethoven','F Major','Violin and Piano', 'Zino Francescatti'), 'Beethoven_vln_sonata5_Francescatti_04.wav': ('Sonata No. 5, Mvt. 4', 'L. V. Beethoven','F Major','Violin and Piano', 'Zino Francescatti'), 'Beethoven_vln_sonata5_Francescatti_05.wav': ('Sonata No. 5, Mvt. 5', 'L. V. Beethoven','F Major','Violin and Piano', 'Zino Francescatti'), 'Bach Vln Partita3 - Fischbach 2004 - 01.wav': ('Partita No. 3 - Preludio', 'J. S. Bach', 'E Major', 'Violin', 'Garrett Fischbach'), 'Bach Vln Partita3 - Fischbach 2004 - 03.wav': ('Partita No. 3 - Gavotte en Rondeau', 'J. S. Bach', 'E Major', 'Violin', 'Garrett Fischbach'), 'Bach Vln Sonata1 - Fischbach 2004 - 02.wav': ('Sonata No. 1 - Fuga', 'J. S. Bach', 'G minor', 'Violin', 'Garrett Fischbach'), 'Bach Vln Partita3 - Milstein 1955 - 01.wav': ('Partita No. 3 - Preludio', 'J. S. Bach', 'E Major', 'Violin', 'Nathan Milstein'), 'Bach Vln Partita3 - Milstein 1955 - 03.wav': ('Partita No. 3 - Gavotte en Rondeau', 'J. S. Bach', 'E Major', 'Violin', 'Nathan Milstein'), 'Bach Vln Sonata1 - Milstein 1954 - 02.wav': ('Sonata No. 1 - Fuga', 'J. S. Bach', 'G minor', 'Violin', 'Nathan Milstein'), 'brahms_rhapsody_01.wav': ('Brahms Rhapsody Op.79, No.2', 'J. Brahms','G minor','Piano','Lili Kraus'), 'brahms_rhapsody_02.wav': ('Brahms Rhapsody Op.79, No.2', 'J. Brahms','G minor','Piano','Martha Argerich'), 'debussy_toccata.wav': ('Debussy Toccata from Pour le Piano', 'C. Debussy','N/A','Piano','Boris Feiner'), 'dont_stop_believin.wav': ('Don\'t Stop Believin\'', 'Journey','E major','Vocal, Guitar, Bass, Piano, Drums','Journey'), 'lady_madonna.wav': ('Lady Madonna', 'The Beatles','E major','Vocal, Guitar, Bass, Piano, Saxophone, Drums','The Beatles'), 'let_it_be.wav': ('Let it Be', 'The Beatles','C major','Vocal, Guitar, Bass, Piano, Drums','The Beatles'), 'moonlight.wav': ('Beethoven Piano Sonata No.14', 'L. Beethoven','C# minor','Piano','Unknown'), 'office_theme.wav': ('Theme from \'The Office\'', 'Unknown','G Major','Piano','Unknown'), 'konstantine.wav': ('Konstantine', 'Andrew McMahon','D minor','Vocal, Piano','Something Corporate'), } def create_status_bar(self): self.statusbar = self.CreateStatusBar() def draw_figure(self, i=0): """ Redraws the figure """ if self.rec_input is None: return if self.mypath is None: self.mypath = 'default.wav' #self.x, self.fs, self.nbits = mir2.wavread(self.mypath) if self.WC == 2: path = 'train/' filename = self.rankresults[i][0] fullpath = path + filename self.x, self.fs, self.nbits = mir2.wavread(fullpath) if self.WC == 1: self.x = self.rec_input #self.x, self.fs, self.nbits = mir2.wavread(self.mypath) print 'storing rec_input' self.get_plot_type() G = 0 self.tmax = float(len(self.x))/self.fs self.tmin_samp = int(self.tmin*self.fs) self.tmax_samp = int(self.tmax*self.fs) if self.tmax_samp > len(self.x): self.tmax_samp = len(self.x) - 1 print self.x.shape, self.fs, self.fsz, self.hop if self.plot_type == 0: P = self.x[self.tmin_samp:self.tmax_samp] elif self.plot_type == 1: G = mir2.spectrogram(self.x,self.fs, framesz = self.fsz, hop=self.hop, tmin=self.tmin, tmax=self.tmax) elif self.plot_type == 2: G = mir2.qspectrogram(self.x,self.fs, framesz = self.fsz, hop=self.hop, tmin=self.tmin, tmax=self.tmax) elif self.plot_type == 3: G = mir2.chromagram(self.x,self.fs, framesz = self.fsz, hop=self.hop, tmin=self.tmin, tmax=self.tmax) #self.plot_titlestr = self.mypath + gramtype self.axes.clear() if self.plot_type == 0: self.axes.plot(P) elif self.plot_type == 1 or 2 or 3: if self.LG_flag == 0: self.LG_str = None self.axes.imshow(G.X, aspect='auto', interpolation ='nearest',origin='lower') elif self.LG_flag == 1: self.LG_str = 'LogNorm(vmin = 25, vmax = 50)' self.axes.imshow(G.X, aspect='auto', interpolation ='nearest',origin='lower', norm = LogNorm()) #vmin = self.LG_vmin, vmax = self.LG_vmax)) #self.WC = 1 if self.WC == 1: self.canvas.draw() if self.WC == 2: self.canvas2.draw() def which_canvas1(self, event): self.WC = 1 def which_canvas2(self, event): self.WC = 2 def on_draw_button(self, event): self.get_plot_type self.draw_figure() def search(self, event): self.ranklist = ['1) ','2) ','3) ','4) ','5) ','6) ','7) ','8) ','9) ','10) '] self.titlelist = ['Sonata', 'Polonaise in G Min., Chopin', 'Rondo No. 5 in C# Min., Bartok', 'Sonata in A Maj., Beethoven', 'Polonaise in G Min., Chopin', 'Rondo No. 5 in C# Min., Bartok', 'Sonata in A Maj., Beethoven', 'Polonaise in G Min., Chopin', 'Rondo No. 5 in C# Min., Bartok','Rondo No. 5 in C# Min., Bartok'] self.rankresults = [('Beethoven_vln_sonata5_Francescatti_01.wav',1),('adksfjghl',3)] print self.rec_input.shape, self.fs for i in range(10): self.Sbuttonlist[i].SetLabel('') self.rankresults = self.musicsearch.query(self.rec_input, self.fs) print self.rankresults self.metalist = range(len(self.rankresults)) for i in range(len(self.rankresults)): self.metalist[i] = self.dict[self.rankresults[i][0]] for i in range(min(10, len(self.metalist))): self.Sbuttonlist[i].SetLabel(self.ranklist[i] + self.metalist[i][0]) #self.create_main_panel() self.WC = 2 #self.getmeta1(None) def on_set_button(self, event): self.get_plot_type() params_box = ParamsDialog(self, -1, '', self.fsz, self.hop, self.tmin, self.tmax, self.plot_type) val = params_box.ShowModal() self.fsz, self.hop, self.tmin, self.tmax = params_box.return_params() self.draw_figure() params_box.Destroy() def on_pick(self, event): # The event received here is of the type # matplotlib.backend_bases.PickEvent # # It carries lots of information, of which we're using # only a small amount here. # box_points = event.artist.get_bbox().get_points() msg = "You've clicked on a bar with coords:\n %s" % box_points dlg = wx.MessageDialog( self, msg, "Click!", wx.OK | wx.ICON_INFORMATION) dlg.ShowModal() dlg.Destroy() def on_text_enter(self, event): self.draw_figure() def openfile(self, event): dlg = wx.FileDialog(self, "Choose a file", os.getcwd(), "", "*.wav", wx.OPEN) if dlg.ShowModal() == wx.ID_OK: path = dlg.GetPath() basename = os.path.basename(path) self.SetStatusText("You selected: %s" % basename) self.mypath = path self.x, self.fs, self.nbits = mir2.wavread(self.mypath) self.rec_input = self.x self.WC = 1 self.on_reset(self) self.draw_figure() dlg.Destroy() def on_save_plot(self, event): file_choices = "PNG (*.png)|*.png" dlg = wx.FileDialog( self, message="Save plot as...", defaultDir=os.getcwd(), defaultFile="plot.png", wildcard=file_choices, style=wx.SAVE) if dlg.ShowModal() == wx.ID_OK: path = dlg.GetPath() self.canvas.print_figure(path, dpi=self.dpi) self.flash_status_message("Saved to %s" % path) def on_play(self,event): if self.WC == 2: mir2.play(self.x, self.fs) elif self.WC == 1: mir2.play(self.rec_input, self.fs) def on_rec(self,event): print 'Recording.' self.rec_input = mir.micread(self.rectime) self.WC = 1 self.draw_figure() mir.play(self.rec_input, 44100) def est_key(self, event): self.statusbar.SetStatusText('Estimating Key...') keynum = mir2.Key(self.x, self.fs) keylist = ['C', 'C#','D','D#','E','F','F#','G','G#','A','A#','B'] self.keystr = keylist[keynum] self.statusbar.SetStatusText('The Key is: ' + self.keystr) def on_exit(self, event): self.Destroy() def on_reset(self, event): self.fsz = 0.040 self.hop = 0.020 self.fmax = self.fs self.tmax = round(float(len(self.x))/self.fs,2) self.tmin = 0 self.draw_figure() def on_log_norm(self, event): if self.LG_flag == 0: self.LG_flag = 1 elif self.LG_flag == 1: self.LG_flag = 0 self.draw_figure() def on_about(self, event): msg = """ Content-based musical search.\n Brennan Keegan, Steve Tjoa\n Signals and Information Group\n University of Maryland\n April 30, 2011 """ dlg = wx.MessageDialog(self, msg, "About", wx.OK) dlg.ShowModal() dlg.Destroy() def flash_status_message(self, msg, flash_len_ms=1500): self.statusbar.SetStatusText(msg) self.timeroff = wx.Timer(self) self.Bind( wx.EVT_TIMER, self.on_flash_status_off, self.timeroff) self.timeroff.Start(flash_len_ms, oneShot=True) def on_flash_status_off(self, event): self.statusbar.SetStatusText('') def get_plot_type(self): plotstr = self.combo.GetStringSelection() for x in range(len(self.plot_select)): if plotstr == self.plot_select[x]: self.plot_type = x def getmeta1(self, event): if self.searchbutton1.GetLabel() == '': return self.draw_figure(0) meta = self.metalist[0] print meta metastr = 'Title: '+meta[0]+'\n\nComposer: '+meta[1]+'\n\nKey: '+meta[2]+'\n\nInstruments: '+meta[3]+'\n\nArtist: '+meta[4] dial = wx.MessageDialog(None, metastr, 'Piece Information', wx.OK | wx.ICON_INFORMATION) dial.ShowModal() def getmeta2(self, event): if self.searchbutton2.GetLabel() == '': return self.draw_figure(1) meta = self.metalist[1] print meta metastr = 'Title: '+meta[0]+'\n\nComposer: '+meta[1]+'\n\nKey: '+meta[2]+'\n\nInstruments: '+meta[3]+'\n\nArtist: '+meta[4] dial = wx.MessageDialog(None, metastr, 'Piece Information', wx.OK | wx.ICON_INFORMATION) dial.ShowModal() def getmeta3(self, event): if self.searchbutton3.GetLabel() == '': return self.draw_figure(2) meta = self.metalist[2] print meta metastr = 'Title: '+meta[0]+'\n\nComposer: '+meta[1]+'\n\nKey: '+meta[2]+'\n\nInstruments: '+meta[3]+'\n\nArtist: '+meta[4] dial = wx.MessageDialog(None, metastr, 'Piece Information', wx.OK | wx.ICON_INFORMATION) dial.ShowModal() def getmeta4(self, event): if self.searchbutton4.GetLabel() == '': return self.draw_figure(3) meta = self.metalist[3] print meta metastr = 'Title: '+meta[0]+'\n\nComposer: '+meta[1]+'\n\nKey: '+meta[2]+'\n\nInstruments: '+meta[3]+'\n\nArtist: '+meta[4] dial = wx.MessageDialog(None, metastr, 'Piece Information', wx.OK | wx.ICON_INFORMATION) dial.ShowModal() def getmeta5(self, event): if self.searchbutton5.GetLabel() == '': return self.draw_figure(4) meta = self.metalist[4] print meta metastr = 'Title: '+meta[0]+'\n\nComposer: '+meta[1]+'\n\nKey: '+meta[2]+'\n\nInstruments: '+meta[3]+'\n\nArtist: '+meta[4] dial = wx.MessageDialog(None, metastr, 'Piece Information', wx.OK | wx.ICON_INFORMATION) dial.ShowModal() def getmeta6(self, event): if self.searchbutton6.GetLabel() == '': return self.draw_figure(5) meta = self.metalist[5] print meta metastr = 'Title: '+meta[0]+'\n\nComposer: '+meta[1]+'\n\nKey: '+meta[2]+'\n\nInstruments: '+meta[3]+'\n\nArtist: '+meta[4] dial = wx.MessageDialog(None, metastr, 'Piece Information', wx.OK | wx.ICON_INFORMATION) dial.ShowModal() def getmeta7(self, event): if self.searchbutton7.GetLabel() == '': return self.draw_figure(6) meta = self.metalist[6] print meta metastr = 'Title: '+meta[0]+'\n\nComposer: '+meta[1]+'\n\nKey: '+meta[2]+'\n\nInstruments: '+meta[3]+'\n\nArtist: '+meta[4] dial = wx.MessageDialog(None, metastr, 'Piece Information', wx.OK | wx.ICON_INFORMATION) dial.ShowModal() def getmeta8(self, event): if self.searchbutton8.GetLabel() == '': return self.draw_figure(7) meta = self.metalist[7] print meta metastr = 'Title: '+meta[0]+'\n\nComposer: '+meta[1]+'\n\nKey: '+meta[2]+'\n\nInstruments: '+meta[3]+'\n\nArtist: '+meta[4] dial = wx.MessageDialog(None, metastr, 'Piece Information', wx.OK | wx.ICON_INFORMATION) dial.ShowModal() def getmeta9(self, event): if self.searchbutton9.GetLabel() == '': return self.draw_figure(8) meta = self.metalist[8] print meta metastr = 'Title: '+meta[0]+'\n\nComposer: '+meta[1]+'\n\nKey: '+meta[2]+'\n\nInstruments: '+meta[3]+'\n\nArtist: '+meta[4] dial = wx.MessageDialog(None, metastr, 'Piece Information', wx.OK | wx.ICON_INFORMATION) dial.ShowModal() def getmeta10(self, event): if self.searchbutton10.GetLabel() == '': return self.draw_figure(9) meta = self.metalist[9] print meta metastr = 'Title: '+meta[0]+'\n\nComposer: '+meta[1]+'\n\nKey: '+meta[2]+'\n\nInstruments: '+meta[3]+'\n\nArtist: '+meta[4] dial = wx.MessageDialog(None, metastr, 'Piece Information', wx.OK | wx.ICON_INFORMATION) dial.ShowModal() class ParamsDialog(wx.Dialog): def __init__(self, parent, id, title, fsz, hop, tmin, tmax, plot_type): wx.Dialog.__init__(self, parent, id, title)#, size = (400,500)) self.fsz, self.hop, self.tmin, self.tmax, self.plot_type = str(fsz), str(hop), str(tmin), str(tmax), plot_type if self.plot_type == 0: vbox = wx.BoxSizer(wx.VERTICAL) hbox1 = wx.BoxSizer(wx.HORIZONTAL) hbox2 = wx.BoxSizer(wx.HORIZONTAL) self.tmin_label = wx.StaticText(self, -1, "Start Time (sec): ") self.tmin_box = wx.TextCtrl(self,-1, self.tmin, style=wx.TE_PROCESS_ENTER) self.tmax_label = wx.StaticText(self, -1, "End Time (sec): ") self.tmax_box = wx.TextCtrl(self,-1, self.tmax, style=wx.TE_PROCESS_ENTER) #self.Bind(wx.EVT_TEXT_ENTER, self.on_text_enter, self.fsz) hbox1.AddSpacer(80) hbox1.Add(self.tmin_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox1.AddSpacer(3) hbox1.Add(self.tmin_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox2.AddSpacer(80) hbox2.Add(self.tmax_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox2.AddSpacer(9) hbox2.Add(self.tmax_box, 1, wx.ALIGN_CENTER|wx.TOP) sizer = self.CreateButtonSizer(wx.CANCEL|wx.OK) vbox.AddSpacer(10) vbox.Add(hbox1, 1) vbox.Add(hbox2, 1) vbox.AddSpacer(15) vbox.Add(sizer, 0, wx.ALIGN_CENTER) vbox.AddSpacer(20) self.SetSizer(vbox) self.Bind(wx.EVT_BUTTON, self.OnOK, id=wx.ID_OK) elif self.plot_type == 1: self.fmin, self.fmax = '0.00', '44100' vbox = wx.BoxSizer(wx.VERTICAL) hbox1 = wx.BoxSizer(wx.HORIZONTAL) hbox2 = wx.BoxSizer(wx.HORIZONTAL) hbox3 = wx.BoxSizer(wx.HORIZONTAL) hbox4 = wx.BoxSizer(wx.HORIZONTAL) hbox5 = wx.BoxSizer(wx.HORIZONTAL) hbox6 = wx.BoxSizer(wx.HORIZONTAL) self.fsz_label = wx.StaticText(self, -1, "Frame Size (sec): ") self.fsz_box = wx.TextCtrl(self,-1, self.fsz, style=wx.TE_PROCESS_ENTER) self.hop_label = wx.StaticText(self, -1, "Hop Size (sec): ") self.hop_box = wx.TextCtrl(self,-1, self.hop, style=wx.TE_PROCESS_ENTER) self.tmin_label = wx.StaticText(self, -1, "Start Time (sec): ") self.tmin_box = wx.TextCtrl(self,-1, self.tmin, style=wx.TE_PROCESS_ENTER) self.tmax_label = wx.StaticText(self, -1, "End Time (sec): ") self.tmax_box = wx.TextCtrl(self,-1, self.tmax, style=wx.TE_PROCESS_ENTER) self.fmin_label = wx.StaticText(self, -1, "Min Freq. (Hz): ") self.fmin_box = wx.TextCtrl(self,-1, self.fmin, style=wx.TE_PROCESS_ENTER) self.fmax_label = wx.StaticText(self, -1, "Max Freq. (Hz): ") self.fmax_box = wx.TextCtrl(self,-1, self.fmax, style=wx.TE_PROCESS_ENTER) #self.Bind(wx.EVT_TEXT_ENTER, self.on_text_enter, self.fsz) hbox1.AddSpacer(80) hbox1.Add(self.fsz_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox1.Add(self.fsz_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox2.AddSpacer(80) hbox2.Add(self.hop_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox2.AddSpacer(13) hbox2.Add(self.hop_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox3.AddSpacer(80) hbox3.Add(self.tmin_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox3.AddSpacer(3) hbox3.Add(self.tmin_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox4.AddSpacer(80) hbox4.Add(self.tmax_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox4.AddSpacer(9) hbox4.Add(self.tmax_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox5.AddSpacer(80) hbox5.Add(self.fmin_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox5.AddSpacer(13) hbox5.Add(self.fmin_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox6.AddSpacer(80) hbox6.Add(self.fmax_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox6.AddSpacer(9) hbox6.Add(self.fmax_box, 1, wx.ALIGN_CENTER|wx.TOP) sizer = self.CreateButtonSizer(wx.CANCEL|wx.OK) space = 10 vbox.AddSpacer(10) vbox.Add(hbox1, 1) vbox.AddSpacer(space) vbox.Add(hbox2, 1) vbox.AddSpacer(space) vbox.Add(hbox3, 1) vbox.AddSpacer(space) vbox.Add(hbox4, 1) vbox.AddSpacer(space) vbox.Add(hbox5, 1) vbox.AddSpacer(space) vbox.Add(hbox6, 1) vbox.AddSpacer(15) vbox.Add(sizer, 0, wx.ALIGN_CENTER) vbox.AddSpacer(20) self.SetSizer(vbox) self.Bind(wx.EVT_BUTTON, self.OnOK, id=wx.ID_OK) elif self.plot_type == 2: self.fmin, self.fmax = '0', '136' vbox = wx.BoxSizer(wx.VERTICAL) hbox1 = wx.BoxSizer(wx.HORIZONTAL) hbox2 = wx.BoxSizer(wx.HORIZONTAL) hbox3 = wx.BoxSizer(wx.HORIZONTAL) hbox4 = wx.BoxSizer(wx.HORIZONTAL) hbox5 = wx.BoxSizer(wx.HORIZONTAL) hbox6 = wx.BoxSizer(wx.HORIZONTAL) self.fsz_label = wx.StaticText(self, -1, "Frame Size (sec): ") self.fsz_box = wx.TextCtrl(self,-1, self.fsz, style=wx.TE_PROCESS_ENTER) self.hop_label = wx.StaticText(self, -1, "Hop Size (sec): ") self.hop_box = wx.TextCtrl(self,-1, self.hop, style=wx.TE_PROCESS_ENTER) self.tmin_label = wx.StaticText(self, -1, "Start Time (sec): ") self.tmin_box = wx.TextCtrl(self,-1, self.tmin, style=wx.TE_PROCESS_ENTER) self.tmax_label = wx.StaticText(self, -1, "End Time (sec): ") self.tmax_box = wx.TextCtrl(self,-1, self.tmax, style=wx.TE_PROCESS_ENTER) self.fmin_label = wx.StaticText(self, -1, "Min Pitch (MIDI): ") self.fmin_box = wx.TextCtrl(self,-1, self.fmin, style=wx.TE_PROCESS_ENTER) self.fmax_label = wx.StaticText(self, -1, "Max Pitch (MIDI): ") self.fmax_box = wx.TextCtrl(self,-1, self.fmax, style=wx.TE_PROCESS_ENTER) #self.Bind(wx.EVT_TEXT_ENTER, self.on_text_enter, self.fsz) hbox1.AddSpacer(80) hbox1.Add(self.fsz_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox1.Add(self.fsz_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox2.AddSpacer(80) hbox2.Add(self.hop_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox2.AddSpacer(13) hbox2.Add(self.hop_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox3.AddSpacer(80) hbox3.Add(self.tmin_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox3.AddSpacer(3) hbox3.Add(self.tmin_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox4.AddSpacer(80) hbox4.Add(self.tmax_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox4.AddSpacer(9) hbox4.Add(self.tmax_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox5.AddSpacer(80) hbox5.Add(self.fmin_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox5.AddSpacer(13) hbox5.Add(self.fmin_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox6.AddSpacer(80) hbox6.Add(self.fmax_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox6.AddSpacer(9) hbox6.Add(self.fmax_box, 1, wx.ALIGN_CENTER|wx.TOP) sizer = self.CreateButtonSizer(wx.CANCEL|wx.OK) space = 10 vbox.AddSpacer(10) vbox.Add(hbox1, 1) vbox.AddSpacer(space) vbox.Add(hbox2, 1) vbox.AddSpacer(space) vbox.Add(hbox3, 1) vbox.AddSpacer(space) vbox.Add(hbox4, 1) vbox.AddSpacer(space) vbox.Add(hbox5, 1) vbox.AddSpacer(space) vbox.Add(hbox6, 1) vbox.AddSpacer(15) vbox.Add(sizer, 0, wx.ALIGN_CENTER) vbox.AddSpacer(20) self.SetSizer(vbox) self.Bind(wx.EVT_BUTTON, self.OnOK, id=wx.ID_OK) elif self.plot_type == 3: self.fmin, self.fmax = 'C', 'B' vbox = wx.BoxSizer(wx.VERTICAL) hbox1 = wx.BoxSizer(wx.HORIZONTAL) hbox2 = wx.BoxSizer(wx.HORIZONTAL) hbox3 = wx.BoxSizer(wx.HORIZONTAL) hbox4 = wx.BoxSizer(wx.HORIZONTAL) hbox5 = wx.BoxSizer(wx.HORIZONTAL) hbox6 = wx.BoxSizer(wx.HORIZONTAL) self.fsz_label = wx.StaticText(self, -1, "Frame Size (sec): ") self.fsz_box = wx.TextCtrl(self,-1, self.fsz, style=wx.TE_PROCESS_ENTER) self.hop_label = wx.StaticText(self, -1, "Hop Size (sec): ") self.hop_box = wx.TextCtrl(self,-1, self.hop, style=wx.TE_PROCESS_ENTER) self.tmin_label = wx.StaticText(self, -1, "Start Time (sec): ") self.tmin_box = wx.TextCtrl(self,-1, self.tmin, style=wx.TE_PROCESS_ENTER) self.tmax_label = wx.StaticText(self, -1, "End Time (sec): ") self.tmax_box = wx.TextCtrl(self,-1, self.tmax, style=wx.TE_PROCESS_ENTER) self.fmin_label = wx.StaticText(self, -1, "Min Pitch (Note): ") self.fmin_box = wx.TextCtrl(self,-1, self.fmin, style=wx.TE_PROCESS_ENTER) self.fmax_label = wx.StaticText(self, -1, "Max Pitch (Note): ") self.fmax_box = wx.TextCtrl(self,-1, self.fmax, style=wx.TE_PROCESS_ENTER) #self.Bind(wx.EVT_TEXT_ENTER, self.on_text_enter, self.fsz) hbox1.AddSpacer(80) hbox1.Add(self.fsz_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox1.Add(self.fsz_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox2.AddSpacer(80) hbox2.Add(self.hop_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox2.AddSpacer(13) hbox2.Add(self.hop_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox3.AddSpacer(80) hbox3.Add(self.tmin_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox3.AddSpacer(3) hbox3.Add(self.tmin_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox4.AddSpacer(80) hbox4.Add(self.tmax_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox4.AddSpacer(9) hbox4.Add(self.tmax_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox5.AddSpacer(80) hbox5.Add(self.fmin_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox5.AddSpacer(13) hbox5.Add(self.fmin_box, 1, wx.ALIGN_CENTER|wx.TOP) hbox6.AddSpacer(80) hbox6.Add(self.fmax_label, 1, wx.ALIGN_CENTER | wx.TOP) hbox6.AddSpacer(9) hbox6.Add(self.fmax_box, 1, wx.ALIGN_CENTER|wx.TOP) sizer = self.CreateButtonSizer(wx.CANCEL|wx.OK) space = 10 vbox.AddSpacer(10) vbox.Add(hbox1, 1) vbox.AddSpacer(space) vbox.Add(hbox2, 1) vbox.AddSpacer(space) vbox.Add(hbox3, 1) vbox.AddSpacer(space) vbox.Add(hbox4, 1) vbox.AddSpacer(space) vbox.Add(hbox5, 1) vbox.AddSpacer(space) vbox.Add(hbox6, 1) vbox.AddSpacer(15) vbox.Add(sizer, 0, wx.ALIGN_CENTER) vbox.AddSpacer(20) self.SetSizer(vbox) self.Bind(wx.EVT_BUTTON, self.OnOK, id=wx.ID_OK) def OnOK(self, event): if self.plot_type != 0: self.fsz = float(self.fsz_box.GetValue()) self.hop = float(self.hop_box.GetValue()) self.tmin =float(self.tmin_box.GetValue()) self.tmax =float(self.tmax_box.GetValue()) self.Close() def return_params(self): return self.fsz, self.hop, self.tmin, self.tmax if __name__ == '__main__': app = wx.PySimpleApp() app.frame = mirgui() app.frame.Show() app.frame.Maximize() app.MainLoop()
mit
lanselin/pysal
pysal/esda/tests/test_getisord.py
6
2987
import unittest import numpy as np from .. import getisord from ...weights.Distance import DistanceBand from ...common import pandas POINTS = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)] W = DistanceBand(POINTS, threshold=15) Y = np.array([2, 3, 3.2, 5, 8, 7]) PANDAS_EXTINCT = pandas is None class G_Tester(unittest.TestCase): def setUp(self): self.w = W self.y = Y np.random.seed(10) def test_G(self): g = getisord.G(self.y, self.w) self.assertAlmostEquals(g.G, 0.55709779, places=8) self.assertAlmostEquals(g.p_norm, 0.1729, places=4) @unittest.skipIf(PANDAS_EXTINCT, 'missing pandas') def test_by_col(self): import pandas as pd df = pd.DataFrame(self.y, columns=['y']) np.random.seed(12345) r1 = getisord.G.by_col(df, ['y'], w=self.w) this_getisord = np.unique(r1.y_g.values) this_pval = np.unique(r1.y_p_sim.values) np.random.seed(12345) stat = getisord.G(self.y, self.w) self.assertAlmostEquals(this_getisord, stat._statistic) self.assertAlmostEquals(this_pval, stat.p_sim) class G_Local_Tester(unittest.TestCase): def setUp(self): self.w = W self.y = Y np.random.seed(10) def test_G_Local_Binary(self): lg = getisord.G_Local(self.y, self.w, transform='B') self.assertAlmostEquals(lg.Zs[0], -1.0136729, places=7) self.assertAlmostEquals(lg.p_sim[0], 0.10100000000000001, places=7) def test_G_Local_Row_Standardized(self): lg = getisord.G_Local(self.y, self.w, transform='R') self.assertAlmostEquals(lg.Zs[0], -0.62074534, places=7) self.assertAlmostEquals(lg.p_sim[0], 0.10100000000000001, places=7) def test_G_star_Local_Binary(self): lg = getisord.G_Local(self.y, self.w, transform='B', star=True) self.assertAlmostEquals(lg.Zs[0], -1.39727626, places=8) self.assertAlmostEquals(lg.p_sim[0], 0.10100000000000001, places=7) def test_G_star_Row_Standardized(self): lg = getisord.G_Local(self.y, self.w, transform='R', star=True) self.assertAlmostEquals(lg.Zs[0], -0.62488094, places=8) self.assertAlmostEquals(lg.p_sim[0], 0.10100000000000001, places=7) @unittest.skipIf(PANDAS_EXTINCT, 'missing pandas') def test_by_col(self): import pandas as pd df = pd.DataFrame(self.y, columns=['y']) np.random.seed(12345) r1 = getisord.G_Local.by_col(df, ['y'], w=self.w) np.random.seed(12345) stat = getisord.G_Local(self.y, self.w) np.testing.assert_allclose(r1.y_g_local.values, stat.Gs) np.testing.assert_allclose(r1.y_p_sim, stat.p_sim) suite = unittest.TestSuite() test_classes = [G_Tester, G_Local_Tester] for i in test_classes: a = unittest.TestLoader().loadTestsFromTestCase(i) suite.addTest(a) if __name__ == '__main__': runner = unittest.TextTestRunner() runner.run(suite)
bsd-3-clause
moreati/pandashells
pandashells/test/p_facet_grid_test.py
10
1623
#! /usr/bin/env python from mock import patch from unittest import TestCase import pandas as pd from pandashells.bin.p_facet_grid import main class MainTests(TestCase): @patch( 'pandashells.bin.p_facet_grid.sys.argv', 'p.facet_grid --row c --map pl.plot --args a b'.split()) @patch('pandashells.bin.p_facet_grid.io_lib.df_from_input') @patch('pandashells.bin.p_facet_grid.plot_lib.show') def test_no_kwargs(self, show_mock, input_mock): import pylab as pl df_in = pd.DataFrame([ {'a': 1, 'b': 10, 'c': 'alpha'}, {'a': 2, 'b': 20, 'c': 'alpha'}, {'a': 3, 'b': 30, 'c': 'beta'}, {'a': 4, 'b': 40, 'c': 'beta'}, ]) input_mock.return_value = df_in main() self.assertEqual(len(pl.gcf().axes), 2) self.assertTrue(show_mock.called) @patch( 'pandashells.bin.p_facet_grid.sys.argv', ( 'p.facet_grid --row c --map pl.scatter ' '--args a b --kwargs s=100'.split() ) ) @patch('pandashells.bin.p_facet_grid.io_lib.df_from_input') @patch('pandashells.bin.p_facet_grid.plot_lib.show') def test_with_kwargs(self, show_mock, input_mock): import pylab as pl df_in = pd.DataFrame([ {'a': 1, 'b': 10, 'c': 'alpha'}, {'a': 2, 'b': 20, 'c': 'alpha'}, {'a': 3, 'b': 30, 'c': 'beta'}, {'a': 4, 'b': 40, 'c': 'beta'}, ]) input_mock.return_value = df_in main() self.assertEqual(len(pl.gcf().axes), 2) self.assertTrue(show_mock.called)
bsd-2-clause
foreversand/QSTK
Examples/Validation.py
1
5524
''' (c) 2011, 2012 Georgia Tech Research Corporation This source code is released under the New BSD license. Please see http://wiki.quantsoftware.org/index.php?title=QSTK_License for license details. Created on February, 9, 2013 @author: Sourabh Bajaj @contact: [email protected] @summary: Python Validation Script ''' # Printing what Python Version is installed : QSTK uses 2.7 import sys import platform print "Python Details : " print sys.version print "Your Python Version is : ", platform.python_version() print "QSTK uses Python 2.7.X (2.7.3 recommended and supported)" print "Please make sure you're using the correct python version." print # Printing the directory you are in import os print "Current Directory : ", os.path.abspath('.') print # Printing files in the current directory. print "Files in the current directory" ls_files = os.listdir('.') for s_file in ls_files: print s_file print # Testing the dependencies # Testing numpy try: import numpy print "Numpy is installed and the version used is : ", numpy.__version__ print "Please make sure you're using version >= 1.6.1" except: sys.exit("Error : Numpy can not be imported or not installed.") print # Testing matplotlib try: import matplotlib print "Matplotlib is installed and version is : ", matplotlib.__version__ print "Please make sure you're using version >= 1.1.0" except: sys.exit("Error : Matplotlib can not be imported or not installed.") print # Testing Pandas try: import pandas print "Pandas is installed and the version used is : ", pandas.__version__ print "Please make sure you're using version == 0.7.3" print "IMPORTANT: No other pandas version is supported except 0.7.3" s_pd_version = pandas.__version__ if s_pd_version[:5] != '0.7.3': sys.exit("Error : Pandas version should be 0.7.3") except: print "Error : Please install Pandas 0.7.3" sys.exit("Error : Pandas can not be imported or not installed.") print # Testing Scipy try: import scipy print "Scipy is installed and the version used is : ", scipy.__version__ print "Please make sure you're using version >= 0.9.0" except: sys.exit("Error : Scipy can not be imported or not installed.") print # Testing Dateutil try: import dateutil print "Dateutil is installed and the version used is : ", dateutil.__version__ print "Please make sure you're using version == 1.5" except: sys.exit("Error : Dateutil can not be imported or not installed.") print # Testing Setuptools try: import setuptools print "Setuptools is installed and the version used is : ", setuptools.__version__ print "Please make sure you're using version >= 0.6" except: sys.exit("Error : Setuptools can not be imported or not installed.") print # # Testing CVXOPT # try: # import cvxopt # print "CVXOPT is installed and can be imported" # except: # sys.exit("Error : CVXOPT can not be imported or not installed.") # print # Testing datetime try: import datetime as dt print "datetime is installed and can be imported" except: sys.exit("Error : datetime can not be imported or not installed.") print # All dependencies are installed and working print "All dependencies are installed and working\n" # Testing import of QSTK # Testing QSTK try: import QSTK print "QSTK is installed and can be imported" except: sys.exit("Error : QSTK can not be imported or not installed.") print # Testing QSTK.qstkutil try: import QSTK.qstkutil.tsutil as tsu import QSTK.qstkutil.qsdateutil as du import QSTK.qstkutil.DataAccess as da print "QSTK.qstkutil is installed and can be imported" except: exit("Error : QSTK.qstkutil can not be imported.") print # Testing QSTK.qstkstudy try: import QSTK.qstkstudy.EventProfiler print "QSTK.qstkstudy is installed and can be imported" except: exit("Error : QSTK.qstkstudy can not be imported.") print # Checking that the data installed is correct. # Start and End date of the charts dt_start = dt.datetime(2012, 2, 10) dt_end = dt.datetime(2012, 2, 24) dt_timeofday = dt.timedelta(hours=16) # Get a list of trading days between the start and the end. ldt_timestamps = du.getNYSEdays(dt_start, dt_end, dt_timeofday) ls_symbols = ['MSFT', 'GOOG'] # Creating an object of the dataaccess class with Yahoo as the source. c_dataobj = da.DataAccess('Yahoo') # Reading adjusted_close prices df_close = c_dataobj.get_data(ldt_timestamps, ls_symbols, "close") print df_close print print "\nCorrect Output using the Default Data should be : " print "Assignments use this data for grading" print " MSFT GOOG" print "2012-02-10 16:00:00 29.90 605.91" print "2012-02-13 16:00:00 29.98 612.20" print "2012-02-14 16:00:00 29.86 609.76" print "2012-02-15 16:00:00 29.66 605.56" print "2012-02-16 16:00:00 30.88 606.52" print "2012-02-17 16:00:00 30.84 604.64" print "2012-02-21 16:00:00 31.03 614.00" print "2012-02-22 16:00:00 30.86 607.94" print "2012-02-23 16:00:00 30.96 606.11" print dt_test = dt.datetime(2012, 2, 15, 16) print "Close price of MSFT on 2012/2/15 is : ", df_close['MSFT'].ix[dt_test] if df_close['MSFT'].ix[dt_test] == 29.66: print "Data looks correct as the close price in default data is 29.66" else: print "Default data used in the assisgnments has close price as 29.66" sys.exit("Error : Data has changed so does not match data used in Assignments") print print "Everything works fine: You're all set."
bsd-3-clause
hvillanua/deep-learning
weight-initialization/helper.py
153
3649
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf def hist_dist(title, distribution_tensor, hist_range=(-4, 4)): """ Display histogram of a TF distribution """ with tf.Session() as sess: values = sess.run(distribution_tensor) plt.title(title) plt.hist(values, np.linspace(*hist_range, num=len(values)/2)) plt.show() def _get_loss_acc(dataset, weights): """ Get losses and validation accuracy of example neural network """ batch_size = 128 epochs = 2 learning_rate = 0.001 features = tf.placeholder(tf.float32) labels = tf.placeholder(tf.float32) learn_rate = tf.placeholder(tf.float32) biases = [ tf.Variable(tf.zeros([256])), tf.Variable(tf.zeros([128])), tf.Variable(tf.zeros([dataset.train.labels.shape[1]])) ] # Layers layer_1 = tf.nn.relu(tf.matmul(features, weights[0]) + biases[0]) layer_2 = tf.nn.relu(tf.matmul(layer_1, weights[1]) + biases[1]) logits = tf.matmul(layer_2, weights[2]) + biases[2] # Training loss loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)) # Optimizer optimizer = tf.train.AdamOptimizer(learn_rate).minimize(loss) # Accuracy correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Measurements use for graphing loss loss_batch = [] with tf.Session() as session: session.run(tf.global_variables_initializer()) batch_count = int((dataset.train.num_examples / batch_size)) # The training cycle for epoch_i in range(epochs): for batch_i in range(batch_count): batch_features, batch_labels = dataset.train.next_batch(batch_size) # Run optimizer and get loss session.run( optimizer, feed_dict={features: batch_features, labels: batch_labels, learn_rate: learning_rate}) l = session.run( loss, feed_dict={features: batch_features, labels: batch_labels, learn_rate: learning_rate}) loss_batch.append(l) valid_acc = session.run( accuracy, feed_dict={features: dataset.validation.images, labels: dataset.validation.labels, learn_rate: 1.0}) # Hack to Reset batches dataset.train._index_in_epoch = 0 dataset.train._epochs_completed = 0 return loss_batch, valid_acc def compare_init_weights( dataset, title, weight_init_list, plot_n_batches=100): """ Plot loss and print stats of weights using an example neural network """ colors = ['r', 'b', 'g', 'c', 'y', 'k'] label_accs = [] label_loss = [] assert len(weight_init_list) <= len(colors), 'Too many inital weights to plot' for i, (weights, label) in enumerate(weight_init_list): loss, val_acc = _get_loss_acc(dataset, weights) plt.plot(loss[:plot_n_batches], colors[i], label=label) label_accs.append((label, val_acc)) label_loss.append((label, loss[-1])) plt.title(title) plt.xlabel('Batches') plt.ylabel('Loss') plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() print('After 858 Batches (2 Epochs):') print('Validation Accuracy') for label, val_acc in label_accs: print(' {:7.3f}% -- {}'.format(val_acc*100, label)) print('Loss') for label, loss in label_loss: print(' {:7.3f} -- {}'.format(loss, label))
mit
acshu/transit-gui
lib/Layout.py
1
51186
# -*- coding: utf-8 -*- from ConfigParser import ConfigParser from ast import literal_eval from copy import copy from genericpath import exists from math import atan, degrees, sin, sqrt, log10 import operator import os import sys import csv from PyQt4.QtCore import Qt, pyqtSignal, QString, QAbstractTableModel, QVariant, QEvent from PyQt4.QtGui import QWidget, QHBoxLayout, QVBoxLayout, QPushButton, QProgressBar, QGridLayout, QLabel, QCheckBox, QFileDialog, QMessageBox, QTabWidget, QLineEdit, QPalette, QSizePolicy, QColor, QTableWidget, QAbstractItemView, QMenu, QTableWidgetItem, QTableView, QAction import math import gc from matplotlib import rcParams from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from lib.Structures import Global, TaskRange from lib.Utils import Constants, TaskImporter, flip_phase_list, uc_variable_name from lib.FormParams import * class Layout(QWidget): def __init__(self): super(Layout, self).__init__() self.setLayout(QHBoxLayout()) self.form = InputForm() self.result = ResultView() self.setObjectName('Layout') self.layout().addWidget(self.form) self.layout().addWidget(self.result) class InputForm(QWidget): __instance = None @staticmethod def instance(): return InputForm.__instance def __init__(self): if not InputForm.__instance: InputForm.__instance = self super(InputForm, self).__init__() Global.event.task_started.connect(self._on_task_started) Global.event.task_completed.connect(self._on_task_completed) Global.event.task_progressed.connect(self._on_task_progressed) Global.event.task_range_progressed.connect(self._on_task_range_progressed) Global.event.interface_load_task_params.connect(self._on_interface_load_task_params) self.vl = QVBoxLayout() self.vl.setContentsMargins(0,0,0,0) self.setLayout(self.vl) self.setFixedWidth(290) self.tab = QTabWidget() self.vl.addWidget(self.tab) self.input_parameters = InputParameters() self.input_parameters.ranges_state_changed.connect(self._on_ranges_state_changed) self.tab.addTab(self.input_parameters, 'Parameters') self.import_parameters = ImportParameters() self.tab.addTab(self.import_parameters, 'Observation') control_buttons = QWidget() control_buttons.setLayout(QVBoxLayout()) control_buttons.layout().setContentsMargins(0, 0, 0, 0) control_buttons.layout().setAlignment(Qt.AlignBottom) self._progress = QProgressBar() self._progress.setValue(0) self._progress.setTextVisible(True) self._progress.setAlignment(Qt.AlignCenter) self._progress.hide() control_buttons.layout().addWidget(self._progress) self._range_progress = QProgressBar() self._range_progress.setValue(0) self._range_progress.setTextVisible(True) self._range_progress.setAlignment(Qt.AlignCenter) self._range_progress.hide() control_buttons.layout().addWidget(self._range_progress) self._calculate = QPushButton('Calculate') self._calculate.clicked.connect(self._on_calculate) control_buttons.layout().addWidget(self._calculate) self._cancel = QPushButton('Cancel') self._cancel.hide() self._cancel.clicked.connect(self._on_cancel) control_buttons.layout().addWidget(self._cancel) self.vl.addWidget(control_buttons) if exists("./config/last-session.ini") : self.load_params("./config/last-session.ini") def _on_ranges_state_changed(self, parameters): Global.task_range().reset() if len(parameters): keys = parameters.keys() for key in parameters: Global.task_range().set_range(key, copy(parameters[key].range.values)) self._calculate.setText('Calculate ' + str(Global.task_range()._total_count) + ' variations') else: self._calculate.setText('Calculate') def _on_calculate(self): self.import_parameters.import_observation() combination = Global.task_range().get_next_combination() Global.task().input.semi_major_axis = self.input_parameters.semi_major_axis.getValue() Global.task().input.star_radius = self.input_parameters.star_radius.getValue() Global.task().input.planet_radius = self.input_parameters.planet_radius.getValue() Global.task().input.star_temperature = self.input_parameters.star_temperature.getValue() Global.task().input.planet_temperature = self.input_parameters.planet_temperature.getValue() Global.task().input.darkening_law = self.input_parameters.darkening_law.value.itemData(self.input_parameters.darkening_law.value.currentIndex()).toString() Global.task().input.darkening_coefficient_1 = self.input_parameters.darkening_coefficient_1.getValue() Global.task().input.darkening_coefficient_2 = self.input_parameters.darkening_coefficient_2.getValue() Global.task().input.inclination = self.input_parameters.inclination.getValue() Global.task().input.phase_start = 0 Global.task().input.phase_end = self.input_parameters.phase_end.getValue() Global.task().input.phase_step = self.input_parameters.phase_step.getValue() Global.task().input.precision = 10**self.input_parameters.integration_precision.getValue() if combination: for param in combination: setattr(Global.task().input, param[0], param[1]) Global.task().start() def _on_task_range_progressed(self, progress): self._range_progress.setFormat( str(Global.task_range().completed_count()) + ' of ' + str(Global.task_range().total_count())) self._range_progress.setValue(math.ceil(((float(Global.task_range().completed_count()))/Global.task_range().total_count())*100)) self._on_calculate() def _on_task_started(self, task): self._calculate.hide() self._progress.show() self._progress.setValue(0) self._cancel.show() self.tab.setDisabled(True) if Global.task_range().total_count(): self._range_progress.show() if Global.task_range().completed_count() == 0: self._range_progress.setFormat('0 of ' + str(Global.task_range().total_count())) self._range_progress.setValue(0) def _on_task_progressed(self, task, progress): self._progress.setValue(progress) def _on_task_completed(self, task): if Global.task_range().total_count() and Global.task_range().completed_count(): return self._calculate.show() self._progress.hide() self._progress.setValue(0) self._cancel.hide() self.tab.setDisabled(False) self._range_progress.hide() self._range_progress.setValue(0) def _on_cancel(self): Global.task().stop() self._calculate.show() self._progress.hide() self._progress.setValue(0) self._range_progress.hide() self._range_progress.setValue(0) self._cancel.hide() self.tab.setDisabled(False) def _on_interface_load_task_params(self, task): self.input_parameters.semi_major_axis.value.setValue(task.input.semi_major_axis) self.input_parameters.star_radius.value.setValue(task.input.star_radius) self.input_parameters.planet_radius.value.setValue(task.input.planet_radius) self.input_parameters.star_temperature.value.setValue(task.input.star_temperature) self.input_parameters.planet_temperature.value.setValue(task.input.planet_temperature) self.input_parameters.inclination.value.setValue(task.input.inclination) darkening_law_index = 0 for item in DarkeningLaw.items: if item[1] == task.input.darkening_law: break darkening_law_index += 1 self.input_parameters.darkening_law.value.setCurrentIndex(darkening_law_index) self.input_parameters.darkening_coefficient_1.value.setValue(task.input.darkening_coefficient_1) self.input_parameters.darkening_coefficient_2.value.setValue(task.input.darkening_coefficient_2) self.input_parameters.phase_end.value.setValue(task.input.phase_end) self.input_parameters.phase_step.value.setValue(task.input.phase_step) self.input_parameters.integration_precision.value.setValue(log10(task.input.precision)) for parameter_name in copy(self.input_parameters.range_parameters): parameter = getattr(self.input_parameters, parameter_name) if parameter.range: parameter.range.set_active(False) self.repaint() def load_params(self, filename): config = ConfigParser() config.read(filename) self._normalize_config(config) # Input Parameters self._load_config_param(config, 'input', 'semi_major_axis') self._load_config_param(config, 'input', 'star_radius') self._load_config_param(config, 'input', 'planet_radius') self._load_config_param(config, 'input', 'star_temperature') self._load_config_param(config, 'input', 'planet_temperature') self._load_config_param(config, 'input', 'inclination') self._load_config_param(config, 'input', 'darkening_law') self._load_config_param(config, 'input', 'darkening_coefficient_1') self._load_config_param(config, 'input', 'darkening_coefficient_2') self._load_config_param(config, 'input', 'phase_end') self._load_config_param(config, 'input', 'phase_step') self._load_config_param(config, 'input', 'integration_precision') # Import Parameters if config.has_option('import', 'filename') and config.get('import', 'filename'): if '/data/' in config.get('import', 'filename') and config.get('import', 'filename').index('/data/') == 0: self.import_parameters.filename = os.getcwd().replace('\\', '/') + config.get('import', 'filename') else: self.import_parameters.filename = config.get('import', 'filename') self.import_parameters.update_file_label() if config.has_option('import', 'jd2phase') and config.getboolean('import', 'jd2phase') == True : self.import_parameters.hjd_to_phases.setCheckState(Qt.Checked) if config.has_option('import', 'jd2phase_tzero') : self.import_parameters.time_zero.setValue(config.getfloat('import', 'jd2phase_tzero')) if config.has_option('import', 'jd2phase_period') : self.import_parameters.period.setValue(config.getfloat('import', 'jd2phase_period')) if config.has_option('import', 'mag2flux') and config.getboolean('import', 'mag2flux') == True : self.import_parameters.magnitude_to_flux.setCheckState(Qt.Checked) if config.has_option('import', 'mag2flux_mag') : self.import_parameters.magnitude_max.setValue(config.getfloat('import', 'mag2flux_mag')) # Fixes painting bug with range buttons when loading new file # the active ranges stayed active even if they are inactive self.repaint() def _normalize_config(self, config): if config.has_option('input', 'darkening_1'): config.set('input', 'darkening_coefficient_1', config.get('input', 'darkening_1')) config.remove_option('input', 'darkening_1') if config.has_option('input', 'darkening_2'): config.set('input', 'darkening_coefficient_2', config.get('input', 'darkening_2')) config.remove_option('input', 'darkening_2') if config.has_option('input', 'precision'): config.set('input', 'integration_precision', config.get('input', 'precision')) config.remove_option('input', 'precision') def _load_config_param(self, config, section, name): param = getattr(self.input_parameters, name) if config.has_option(section, name): if type(param.value) is QComboBox: param.value.setCurrentIndex(config.getint(section, name)) else: param.value.setValue(literal_eval(config.get(section, name))) if param.range: _from = _to = _step = _values = None _active = False if config.has_option(section, name + '_range_from'): _from = literal_eval(config.get(section, name + '_range_from')) if config.has_option(section, name + '_range_to'): _to = literal_eval(config.get(section, name + '_range_to')) if config.has_option(section, name + '_range_step'): _step = literal_eval(config.get(section, name + '_range_step')) if config.has_option(section, name + '_range_values'): _values = literal_eval(config.get(section, name + '_range_values')) if config.has_option(section, name + '_range_active'): _active = config.getboolean(section, name + '_range_active') if _values: param.range.set_range(_values) elif _from and _to and _step: param.range.set_range(_from, _to, _step) param.range.set_active(_active) def _save_config_param(self, config, section, name): param = getattr(self.input_parameters, name) if type(param.value) is QComboBox: config.set(section, name, param.value.currentIndex()) else: config.set(section, name, param.getValue()) if param.range: if param.range.range_type == RangeButton.TYPE_STEP and \ param.range.range_from and param.range.range_to and param.range.range_step: config.set(section, name + '_range_from', param.range.range_from) config.set(section, name + '_range_to', param.range.range_to) config.set(section, name + '_range_step', param.range.range_step) elif param.range.range_type == RangeButton.TYPE_VALUES and param.range.values: config.set(section, name + '_range_values', param.range.values) if param.range.is_active(): config.set(section, name + '_range_active', param.range.is_active()) def save_params(self, filename): config = ConfigParser() config.add_section('input') # Input Parameters self._save_config_param(config, 'input', 'semi_major_axis') self._save_config_param(config, 'input', 'star_radius') self._save_config_param(config, 'input', 'planet_radius') self._save_config_param(config, 'input', 'star_temperature') self._save_config_param(config, 'input', 'planet_temperature') self._save_config_param(config, 'input', 'inclination') self._save_config_param(config, 'input', 'darkening_law') self._save_config_param(config, 'input', 'darkening_coefficient_1') self._save_config_param(config, 'input', 'darkening_coefficient_2') self._save_config_param(config, 'input', 'phase_end') self._save_config_param(config, 'input', 'phase_step') self._save_config_param(config, 'input', 'integration_precision') config.add_section('import') if os.getcwd().replace('\\', '/') in str(self.import_parameters.filename) and str(self.import_parameters.filename).index(os.getcwd().replace('\\', '/')) == 0 : save_file_path = str(self.import_parameters.filename).replace(os.getcwd().replace('\\', '/'), '') else: save_file_path = str(self.import_parameters.filename) config.set('import', 'filename', save_file_path) config.set('import', 'jd2phase', self.import_parameters.hjd_to_phases.checkState() == Qt.Checked) config.set('import', 'jd2phase_tzero', self.import_parameters.time_zero.value()) config.set('import', 'jd2phase_period', self.import_parameters.period.value()) config.set('import', 'mag2flux', self.import_parameters.magnitude_to_flux.checkState() == Qt.Checked) config.set('import', 'mag2flux_mag', self.import_parameters.magnitude_max.value()) with open(filename, 'wb') as configfile: config.write(configfile) pass class InputParameters(QWidget): ranges_state_changed = pyqtSignal(dict) def __init__(self): QWidget.__init__(self) self.range_parameters = dict() self.grid = QGridLayout() self.grid.setAlignment(Qt.AlignTop) self.grid.setColumnStretch(2, 2) self.setLayout(self.grid) # Semi-major axis self.semi_major_axis = self.add_triplet(SemiMajorAxis(), 1) self.semi_major_axis.range.clicked.connect(lambda: self._on_range_clicked('semi_major_axis')) self.semi_major_axis.range.state_changed.connect(self.semi_major_axis.value.setDisabled) self.semi_major_axis.range.state_changed.connect(lambda: self._on_range_changed('semi_major_axis')) # Star radius self.star_radius = self.add_triplet(StarRadiusAU(), 2) self.star_radius_rs = self.add_triplet(StarRadiusRS(), 3) self.star_radius.range.clicked.connect(lambda: self._on_range_clicked('star_radius')) self.star_radius.range.state_changed.connect(self.star_radius.value.setDisabled) self.star_radius.range.state_changed.connect(self.star_radius_rs.value.setDisabled) self.star_radius.range.state_changed.connect(lambda: self._on_range_changed('star_radius')) self.star_radius.value.valueChanged.connect(self._on_star_radius_change) self.star_radius_rs.value.valueChanged.connect(self._on_star_radius_rs_change) # Planet radius self.planet_radius = self.add_triplet(PlanetRadiusAU(), 4) self.planet_radius_rj = self.add_triplet(PlanetRadiusRJ(), 5) self.planet_radius.range.clicked.connect(lambda: self._on_range_clicked('planet_radius')) self.planet_radius.range.state_changed.connect(self.planet_radius.value.setDisabled) self.planet_radius.range.state_changed.connect(self.planet_radius_rj.value.setDisabled) self.planet_radius.range.state_changed.connect(lambda: self._on_range_changed('planet_radius')) self.planet_radius.value.valueChanged.connect(self._on_planet_radius_change) self.planet_radius_rj.value.valueChanged.connect(self._on_planet_radius_rj_change) # Star temperature self.star_temperature = self.add_triplet(StarTemperature(), 6) self.star_temperature.range.clicked.connect(lambda: self._on_range_clicked('star_temperature')) self.star_temperature.range.state_changed.connect(self.star_temperature.value.setDisabled) self.star_temperature.range.state_changed.connect(lambda: self._on_range_changed('star_temperature')) # Planet temperature self.planet_temperature = self.add_triplet(PlanetTemperature(), 7) self.planet_temperature.range.clicked.connect(lambda: self._on_range_clicked('planet_temperature')) self.planet_temperature.range.state_changed.connect(self.planet_temperature.value.setDisabled) self.planet_temperature.range.state_changed.connect(lambda: self._on_range_changed('planet_temperature')) # Inclination self.inclination = self.add_triplet(Inclination(), 8) self.inclination.range.clicked.connect(lambda: self._on_range_clicked('inclination')) self.inclination.range.state_changed.connect(self.inclination.value.setDisabled) self.inclination.range.state_changed.connect(lambda: self._on_range_changed('inclination')) # Darkening law self.darkening_law = self.add_triplet(DarkeningLaw(), 9) self.darkening_law.range.clicked.connect(lambda: self._on_range_clicked('darkening_law')) self.darkening_law.range.state_changed.connect(self.darkening_law.value.setDisabled) self.darkening_law.range.state_changed.connect(lambda: self._on_range_changed('darkening_law')) # Darkening coefficients self.darkening_coefficient_1 = self.add_triplet(DarkeningCoefficient('Dark. coefficient 1:', ''), 10) self.darkening_coefficient_1.range.clicked.connect(lambda: self._on_range_clicked('darkening_coefficient_1')) self.darkening_coefficient_1.range.state_changed.connect(self.darkening_coefficient_1.value.setDisabled) self.darkening_coefficient_1.range.state_changed.connect(lambda: self._on_range_changed('darkening_coefficient_1')) self.darkening_coefficient_2 = self.add_triplet(DarkeningCoefficient('Dark. coefficient 2:', ''), 11) self.darkening_coefficient_2.range.clicked.connect(lambda: self._on_range_clicked('darkening_coefficient_2')) self.darkening_coefficient_2.range.state_changed.connect(self.darkening_coefficient_2.value.setDisabled) self.darkening_coefficient_2.range.state_changed.connect(lambda: self._on_range_changed('darkening_coefficient_2')) # Phase end self.phase_end = self.add_triplet(PhaseEnd(), 12) # Phase step self.phase_step = self.add_triplet(PhaseStep(), 13) # integration precision self.integration_precision = self.add_triplet(IntegrationPrecision(), 14) def _on_star_radius_change(self, value): self.star_radius_rs.value.blockSignals(True) self.star_radius_rs.value.setValue(Constants.au_to_rs(value)) self.star_radius_rs.value.blockSignals(False) def _on_star_radius_rs_change(self, value): self.star_radius.value.blockSignals(True) self.star_radius.value.setValue(Constants.rs_to_au(value)) self.star_radius.value.blockSignals(False) def _on_planet_radius_change(self, value): self.planet_radius_rj.value.blockSignals(True) self.planet_radius_rj.value.setValue(Constants.au_to_rj(value)) self.planet_radius_rj.value.blockSignals(False) def _on_planet_radius_rj_change(self, value): self.planet_radius.value.blockSignals(True) self.planet_radius.value.setValue(Constants.rj_to_au(value)) self.planet_radius.value.blockSignals(False) def _on_range_clicked(self, name): if not getattr(self, name).range.is_active(): if getattr(self, name) == self.darkening_law: dialog = getattr(sys.modules[__name__], uc_variable_name(name) + 'RangeDialog')(getattr(self, name).range.values) else: dialog = getattr(sys.modules[__name__], uc_variable_name(name) + 'RangeDialog')(getattr(self, name).range.range_from, getattr(self, name).range.range_to, getattr(self, name).range.range_step) dialog.accepted.connect(lambda: self._on_range_accepted(name)) dialog.rejected.connect(lambda: self._on_range_rejected(name)) dialog.display() else: self._on_range_rejected(name) pass def _on_range_accepted(self, name): if getattr(self, name) == self.darkening_law: getattr(self, name).range.set_range(self.sender().values()) else: getattr(self, name).range.set_range(getattr(self.sender(), name + '_from').getValue(), getattr(self.sender(), name + '_to').getValue(), getattr(self.sender(), name + '_step').getValue()) getattr(self, name).range.set_active(True) def _on_range_rejected(self, name): getattr(self, name).range.set_active(False) if name == 'planet_radius': self.planet_radius_rj.value.setDisabled(False) def _on_range_changed(self, name): if getattr(self, name).range.is_active(): self.range_parameters[name] = getattr(self, name) elif self.range_parameters.has_key(name): del self.range_parameters[name] self.ranges_state_changed.emit(self.range_parameters) def add_triplet(self, triplet, position): self.grid.addWidget(triplet.label, position, 0) self.grid.addWidget(triplet.range, position, 1) self.grid.addWidget(triplet.value, position, 2) self.grid.addWidget(triplet.unit, position, 3) return triplet class ImportParameters(QWidget): def __init__(self): QWidget.__init__(self) self.filename = '' self.import_phases = [] self.import_values = [] grid = QGridLayout() grid.setAlignment(Qt.AlignTop) grid.setColumnStretch(1,1) self.setLayout(grid) self.filename_label = QLabel('No file selected') self.file_browse = QPushButton('Browse...') self.file_browse.setFixedWidth(85) self.file_browse.clicked.connect(self._on_file_browse) self.file_clear = QPushButton('Clear') self.file_clear.setFixedWidth(85) self.file_clear.clicked.connect(self._on_file_clear) self.file_clear.setHidden(True) grid.addWidget(self.filename_label, 1, 0, 1, 0) grid.addWidget(self.file_browse, 1, 3) grid.addWidget(self.file_clear, 1, 3) self.hjd_to_phases = QCheckBox('Convert HJD to phases') self.hjd_to_phases.stateChanged.connect(self._on_hjd_state_changed) grid.addWidget(self.hjd_to_phases, 2, 0, 1, 0) self.time_zero_label = QLabel('T<sub>0</sub>') self.time_zero_label.setFixedWidth(20) self.time_zero = CustomDoubleSpinBox() self.time_zero.setSingleStep(0.01) self.time_zero.setDecimals(10) self.time_zero.setAccelerated(True) self.time_zero.setDisabled(True) self.time_zero.setMinimum(0) self.time_zero.setFixedWidth(200) self.time_zero.setRange(0, sys.float_info.max) grid.addWidget(self.time_zero_label, 3, 0) grid.addWidget(self.time_zero, 3, 1) self.period_label = QLabel('P') self.period_label.setFixedWidth(20) self.period = CustomDoubleSpinBox() self.period.setFixedWidth(200) self.period.setDisabled(True) self.period.setRange(0, sys.float_info.max) self.period.setDecimals(10) grid.addWidget(self.period_label, 4, 0) grid.addWidget(self.period, 4, 1) self.magnitude_to_flux = QCheckBox('Convert magnitude to flux') self.magnitude_to_flux.stateChanged.connect(self._on_magnitude_state_changed) grid.addWidget(self.magnitude_to_flux, 5, 0, 1, 0) self.magnitude_max_label = QLabel('Mag') self.magnitude_max = CustomDoubleSpinBox() self.magnitude_max.setSingleStep(0.01) self.magnitude_max.setDecimals(10) self.magnitude_max.setAccelerated(True) self.magnitude_max.setDisabled(True) self.magnitude_max.setMinimum(0) self.magnitude_max.setFixedWidth(105) grid.addWidget(self.magnitude_max_label, 6, 0) grid.addWidget(self.magnitude_max, 6, 1) self.redraw = QPushButton("Redraw") self.redraw.clicked.connect(self._on_redraw) grid.addWidget(self.redraw, 6,3) def _on_file_browse(self): directory = "" if self.filename is None else QString(str("/").join(str(self.filename).split("/")[:-1])) types = TaskImporter.get_formats() filters = [] for value in types : filters.append(value.upper() + " (*." + value + ")") filters.append("All files (*.*)") self.filename = QFileDialog.getOpenFileName(self, 'Open file', directory=directory, filter=";;".join(filters)) self.update_file_label() def _on_file_clear(self): self.filename = '' self.update_file_label() def update_file_label(self): if self.filename : self.filename_label.setText(self.filename.split("/")[-1]) self.file_clear.setHidden(False) self.redraw.setDisabled(False) else: self.filename_label.setText('No file selected') self.file_clear.setHidden(True) self.redraw.setDisabled(True) pass def import_observation(self): if not self.filename : return try: phases, values = TaskImporter.load_file(self.filename) # convert JD time to phases if self.hjd_to_phases.checkState() == Qt.Checked: if self.time_zero.value() <= 0 : QMessageBox.warning(self, "Error", 'Invalid parameter "T<sub>0</sub>"!') return if self.period.value() <= 0 : QMessageBox.warning(self, "Error", 'Invalid parameter "P"!') return for (index, phase) in enumerate(phases): phases[index] = (phase - self.time_zero.value()) / self.period.value() % 1 # convert magnitude to flux if self.magnitude_to_flux.checkState() == Qt.Checked: for (index, value) in enumerate(values): values[index] = 10**(-(value - self.magnitude_max.value())/2.5) phases = flip_phase_list(phases) # TODO Detrending #slope = (values[8] - values[-8])/(phases[8] - phases[-8]) #angle = atan(slope) # #for index, value in enumerate(values): # hyp = sqrt(abs((phases[-8] - phases[index])**2 - (values[-8] - values[index])**2)) # print hyp # values[index] += hyp * sin(angle) self.import_phases = phases self.import_values = values Global.event.data_imported.emit(self.import_phases, self.import_values) except: QMessageBox.critical(self, "Import error", "Error importing data!\nError: " + str(sys.exc_info()[1])) raise def _on_redraw(self): if not self.filename : QMessageBox.warning(self, "Import file", "Please import file first") return self.import_observation() Global.event.interface_redraw_clicked.emit() pass def _on_hjd_state_changed(self, state): if state == Qt.Checked: self.time_zero.setDisabled(False) self.period.setDisabled(False) else: self.time_zero.setDisabled(True) self.period.setDisabled(True) pass def _on_magnitude_state_changed(self, state): if state == Qt.Checked: self.magnitude_max.setDisabled(False) else: self.magnitude_max.setDisabled(True) pass class ResultView(QTabWidget): def __init__(self): super(ResultView, self).__init__() self.results = ResultsTab() self.addTab(self.results, 'Results') self.plot = ResultPlot() self.addTab(self.plot, 'Plot') self.data = ResultTab() self.addTab(self.data, 'Data') self.setCurrentIndex(1) Global.event.task_selected.connect(self._on_task_selected) def _on_task_selected(self, task): self.setCurrentIndex(1) class ResultPlot(QWidget): def __init__(self): super(ResultPlot, self).__init__() vl = QVBoxLayout() self.plot = Plot() vl.setAlignment(Qt.AlignTop) vl.addWidget(self.plot) self.residual_plot = ResidualPlot() self.residual_plot.setFixedHeight(150) vl.addWidget(self.residual_plot) hl = QHBoxLayout() #hl.setAlignment(Qt.AlignHCenter) self.chi2_label = QLabel('chi^2') self.chi2_label.setFixedWidth(30) self.chi2_label.hide(); self.chi2_value = QLineEdit() self.chi2_value.setAlignment(Qt.AlignRight) self.chi2_value.setFixedWidth(120) self.chi2_value.hide() auto_plot = QCheckBox('Auto plot finished result') auto_plot.stateChanged.connect(self._on_auto_plot_state_changed) hl.addWidget(auto_plot, Qt.AlignLeft) hl.addWidget(self.chi2_label) hl.addWidget(self.chi2_value) hl.setStretch(1, 0) vl.addLayout(hl) self.setLayout(vl) def _on_auto_plot_state_changed(self, checked_state): checked_state = True if checked_state else False Global.event.interface_auto_plot_state_changed.emit(checked_state) class Plot(FigureCanvas): __instance = None def __init__(self): Global.event.task_selected.connect(self._on_task_selected) Global.event.task_deleted.connect(self._on_task_deleted) Global.event.tasks_list_updated.connect(self._on_tasks_list_updated) self.task = None self.last_x_limit = [] self.axes = None bg_color = str(QPalette().color(QPalette.Active, QPalette.Window).name()) rcParams.update({'font.size': 10}) self.figure = Figure(facecolor=bg_color, edgecolor=bg_color) self.figure.hold(False) super(Plot, self).__init__(self.figure) self.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.updateGeometry() def _on_task_selected(self, task): self.set_task(task) self.redraw() def _on_task_deleted(self, task): if self.task == task: self.set_task(None) self.clear() ResultTab.instance().set_data([], [], [], []) def _on_tasks_list_updated(self): if not len(Global.tasks()): self.set_task(None) self.clear() ResultTab.instance().set_data([], [], [], []) @staticmethod def instance(): return Plot.__instance def set_task(self, task): self.task = task def clear(self): self.figure.clf() self.figure.clear() gc.collect() def redraw(self): self.clear() self.axes = self.figure.add_subplot(1, 1, 1) self.axes.grid(True) self.axes.set_xlabel('Phase') self.axes.set_ylabel('Flux') result_phases = [] result_values = [] import_phases = [] import_values = [] keys = sorted(self.task.result.data().keys()) for key in keys: if self.task.result.data()[key]['result_value'] is not None: result_phases.append(key) result_values.append(self.task.result.data()[key]['result_value']) if self.task.result.data()[key]['import_value'] is not None: import_phases.append(key) import_values.append(self.task.result.data()[key]['import_value']) ResultTab.instance().set_data(result_phases, result_values, import_phases, import_values) if not result_phases and not import_phases : return y_r_min = 1 y_r_max = 0 x_r_max = 0 y_i_min = 1 y_i_max = 0 x_i_max = 0 if result_values : y_r_min = min(result_values) y_r_max = max(result_values) x_r_max = max(abs(min(result_phases)), abs(max(result_phases))) if import_values : y_i_min = min(import_values) y_i_max = max(import_values) x_i_max = max(abs(min(import_phases)), abs(max(import_phases))) y_max = max(y_r_max, y_i_max) y_min = min(y_r_min, y_i_min) x_max = max(x_r_max, x_i_max) y_pad = ((y_max - y_min) / 100) * 10 x_pad = (x_max / 100) * 10 if y_min == y_max: y_min += 1 y_max -= 1 self.axes.set_autoscaley_on(False) self.axes.set_ylim([y_min - y_pad, y_max + y_pad]) self.last_x_limit = [-(x_max + x_pad), x_max + x_pad] Global.event.plot_x_limit_changed.emit(self.last_x_limit) self.axes.set_autoscalex_on(False) self.axes.set_xlim(self.last_x_limit) if len(result_phases): self.axes.plot(result_phases, result_values, color='b', label="Prediction") if len(import_phases): self.axes.scatter(import_phases, import_values, s=1, color='r', label='Observation') self.draw() class ResidualPlot(FigureCanvas): __instance = None def __init__(self): Global.event.task_selected.connect(self._on_task_selected) Global.event.plot_x_limit_changed.connect(self._on_x_limit_changed) Global.event.task_deleted.connect(self._on_task_deleted) Global.event.tasks_list_updated.connect(self._on_tasks_list_updated) self.task = None self.axes = None self.last_x_limit = [] self.chi2s = [] bg_color = str(QPalette().color(QPalette.Active, QPalette.Window).name()) rcParams.update({'font.size': 10}) self.figure = Figure(facecolor=bg_color, edgecolor=bg_color) self.figure.hold(False) super(ResidualPlot, self).__init__(self.figure) self.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.updateGeometry() self.hide() def _on_task_selected(self, task): self.set_task(task) self.redraw() def _on_task_deleted(self, task): if self.task == task: self.set_task(None) self.clear() def _on_tasks_list_updated(self): if not len(Global.tasks()): self.set_task(None) self.clear() def set_task(self, task): self.task = task def clear(self): self.figure.clf() self.figure.clear() self.draw() self.parent().chi2_label.hide() self.parent().chi2_value.hide() self.hide() gc.collect() def redraw(self): self.clear() if self.task.result.chi2 is None: self.parent().chi2_label.hide() self.parent().chi2_value.hide() self.hide() return self.chi2s.append(self.task.result.chi2) self.show() self.parent().chi2_label.show() self.parent().chi2_value.show() self.axes = self.figure.add_subplot(1, 1, 1) self.axes.grid(False) self.figure.set_alpha(0) self.axes.set_xlabel('Phase') self.axes.set_ylabel('Residual') phases = [] delta_values = [] keys = sorted(self.task.result.data().keys()) for key in keys: if self.task.result.data()[key]['delta_value'] is not None: phases.append(key) delta_values.append(self.task.result.data()[key]['delta_value']) y_max = max(abs(min(delta_values)), abs(max(delta_values))) y_pad = (y_max / 100) * 10 self.axes.set_autoscaley_on(False) self.axes.set_ylim([-(y_max + y_pad), y_max + y_pad]) self.axes.set_autoscalex_on(False) self.axes.set_xlim(self.last_x_limit) color = QColor(0,0,0) min_chi2 = min(self.chi2s) if len(self.chi2s) == 1 : color = QColor(0,0,0) elif self.task.result.chi2 <= min_chi2 : color = QColor(0,139,0) else: color = QColor(255,0,0) self.axes.axhline(y=0, ls='--', linewidth=0.5, color='black') self.axes.scatter(phases, delta_values, s=0.5, color='r') palette = self.parent().chi2_value.palette() palette.setColor(QPalette.Active, QPalette.Text, color) self.parent().chi2_value.setPalette(palette) self.parent().chi2_value.setText(str(self.task.result.chi2)) self.draw() def _on_x_limit_changed(self, limit): self.last_x_limit = limit class ResultTab(QWidget): __instance = None def __init__(self): super(QWidget, self).__init__() if ResultTab.__instance is None : ResultTab.__instance = self self.phases = [] self.values = [] self.import_phases = [] self.import_values = [] self.export = None self.vl = QVBoxLayout() header = ['Phase', 'Synthetic', 'Observation', 'Delta'] self.table = QTableWidget() self.table.verticalHeader().setVisible(False) self.table.setEditTriggers(QAbstractItemView.NoEditTriggers) self.table.setColumnCount(len(header)) self.table.setHorizontalHeaderLabels(header) self.vl.addWidget(self.table) hl = QHBoxLayout() hl.setAlignment(Qt.AlignRight) export_button = QPushButton('Export...') export_menu = QMenu() export_menu.addAction('\\t separated').triggered.connect(lambda : self._on_export('\t')) export_menu.addAction(', separated').triggered.connect(lambda : self._on_export(',')) export_menu.addAction('; separated').triggered.connect(lambda : self._on_export(';')) export_button.setMenu(export_menu) hl.addWidget(export_button) self.vl.addLayout(hl) self.setLayout(self.vl) def set_data(self, phases, values, import_phases, import_values): self.phases = phases self.values = values self.import_phases = import_phases self.import_values = import_values self.table.setRowCount(len(self.phases)) for (index, phase) in enumerate(self.phases): phase_item = QTableWidgetItem('%.12f' % phase) phase_item.setTextAlignment(Qt.AlignRight) value_item = QTableWidgetItem('%.12f' % self.values[index]) value_item.setTextAlignment(Qt.AlignRight) self.table.setItem(index, 0, phase_item) self.table.setItem(index, 1, value_item) if phase in import_phases : import_index = import_phases.index(phase) value_item = QTableWidgetItem('%.12f' % import_values[import_index]) value_item.setTextAlignment(Qt.AlignRight) delta_flux_item = QTableWidgetItem('%.12f' % (import_values[import_index] - self.values[index])) delta_flux_item.setTextAlignment(Qt.AlignRight) self.table.setItem(index, 2, value_item) self.table.setItem(index, 3, delta_flux_item) def _on_export(self, separator): self.export = ExportDatDialog(self.phases, self.values, self.import_phases, self.import_values, separator) pass @staticmethod def instance(): return ResultTab.__instance class ExportDatDialog(QFileDialog): def __init__(self, phases, values, import_phases, import_values, separator): super(ExportDatDialog, self).__init__() self.setWindowTitle('Export DAT') #self.setWindowIcon(QIcon('assets/export.png')) self.resize(500, 400) self.setFileMode(QFileDialog.AnyFile) filename = self.getSaveFileName(directory='result.dat', filter='DAT (*.dat);;') try: with open(filename, 'wb') as csv_file: csv_writer = csv.writer(csv_file, delimiter=separator) for index, phase in enumerate(phases): row = [] row.append('%.12f' % phase) row.append('%.12f' % values[index]) if phase in import_phases : import_index = import_phases.index(phase) row.append('%.12f' % import_values[import_index]) row.append('%.12f' % (import_values[import_index] - values[index])) csv_writer.writerow(row) except: QMessageBox.warning(self, "Error", "Error exporting!\nError: " + str(sys.exc_info()[1])) raise class ResultsTab(QWidget): def __init__(self): QWidget.__init__(self) vl = QVBoxLayout() self.setLayout(vl) table = ResultsTable() vl.addWidget(table) hl = QHBoxLayout() hl.setAlignment(Qt.AlignRight) vl.addLayout(hl) delete_all_button = QPushButton('Delete all') delete_all_button.clicked.connect(self._on_delete_all_clicked) hl.addWidget(delete_all_button) def _on_delete_all_clicked(self): Global.event.interface_delete_all_results_clicked.emit() class ResultsTable(QTableView): def __init__(self): QTableView.__init__(self) self.last_sort_column = 0 self.last_sort_order = Qt.AscendingOrder self.last_selected_row = 0 self.last_scroll_position = 0 self.setSelectionBehavior(QAbstractItemView.SelectRows) self.setSelectionMode(QAbstractItemView.SingleSelection) self.setSortingEnabled(True) self.verticalHeader().setVisible(False) self.horizontalHeader().setHighlightSections(False) self.horizontalHeader().setMovable(True) self.horizontalHeader().setContextMenuPolicy(Qt.CustomContextMenu) self.horizontalHeader().customContextMenuRequested.connect(self._on_header_menu) self.doubleClicked.connect(self._on_row_double_clicked) self.setContextMenuPolicy(Qt.CustomContextMenu) self.customContextMenuRequested.connect(self._on_row_menu) Global.event.tasks_list_updated.connect(self._on_tasks_list_updated) def keyPressEvent(self, event): if event.type() == QEvent.KeyPress and event.key() == Qt.Key_Delete: row = self.currentIndex().row() task = self.get_task_by_row(row) if task: self.delete_task_by_id(task.id) elif event.type() == QEvent.KeyPress and (event.key() == Qt.Key_Enter or event.key() == Qt.Key_Return): Global.event.task_selected.emit(self.get_task_by_row(self.currentIndex().row())) else: return QTableView.keyPressEvent(self, event) def _on_header_menu(self, point): menu = QMenu() for index, title in enumerate(self.model().header): action = QAction(self) action.setData(index) action.setText(title) action.setCheckable(True) action.setChecked(False if self.isColumnHidden(index) else True) action.triggered.connect(self._on_header_menu_action) menu.addAction(action) menu.popup(self.mapToGlobal(point)) menu.exec_() def _on_header_menu_action(self, checked): index = self.sender().data().toInt()[0] if checked: self.showColumn(index) else: self.hideColumn(index) def _on_row_menu(self, point): row = self.rowAt(point.y()) task = self.get_task_by_row(row) if row < 0 or task is None: return menu = QMenu() load_action = QAction(self) load_action.setData(task.id) load_action.setText("Load parameters") load_action.triggered.connect(self._on_load_params_action) menu.addAction(load_action) delete_action = QAction(self) delete_action.setData(task.id) delete_action.setText('Delete') delete_action.triggered.connect(self._on_row_delete_action) menu.addAction(delete_action) menu.popup(self.mapToGlobal(point)) menu.exec_() def _on_load_params_action(self): id = self.sender().data().toInt()[0] Global.event.interface_load_task_params.emit(self.get_task_by_id(id)) def _on_row_delete_action(self): id = self.sender().data().toInt()[0] self.delete_task_by_id(id) def delete_task_by_id(self, id): task = self.get_task_by_id(id) if task: Global.delete_task(task) def get_task_by_id(self, id): for task in self.model().tasks: if task.id == id: return task return None def get_task_by_row(self, row): if self.model() and -1 < row < len(self.model().tasks_data): return self.get_task_by_id(self.model().tasks_data[row][0]) return None def _on_tasks_list_updated(self): if self.model(): self.last_sort_column = self.model().last_sort_column self.last_sort_order = self.model().last_sort_order self.last_selected_row = self.currentIndex().row() self.last_scroll_position = self.verticalScrollBar().sliderPosition() self.setModel(ResultsTableModel(Global.tasks())) self.sortByColumn(self.last_sort_column, self.last_sort_order) self.resizeColumnsToContents() self.horizontalHeader().setStretchLastSection(True) self.selectRow(self.last_selected_row) self.verticalScrollBar().setSliderPosition(self.last_scroll_position) def _on_row_double_clicked(self, index): target_id = self.model().tasks_data[index.row()][0] for task in self.model().tasks: if task.id == target_id: Global.event.task_selected.emit(task) break class ResultsTableModel(QAbstractTableModel): def __init__(self, tasks): QAbstractTableModel.__init__(self) self.tasks = tasks self.tasks_data = [] self.last_sort_column = 0 self.last_sort_order = Qt.AscendingOrder self.header = ['#', 'Sma', 'Rs', 'Rp', 'Ts', 'Tp', 'Inc.', 'Darkening law', 'chi^2'] for task in tasks: self.tasks_data.append([task.id, task.input.semi_major_axis, task.input.star_radius, task.input.planet_radius, task.input.star_temperature, task.input.planet_temperature, task.input.inclination, task.input.darkening_law + '(' + str(task.input.darkening_coefficient_1) + ', ' + str(task.input.darkening_coefficient_2) + ')', task.result.chi2]) def rowCount(self, parent): return len(self.tasks_data) def columnCount(self, parent): return len(self.tasks_data[0]) if len(self.tasks_data) else 0 def data(self, index, role): if not index.isValid(): return QVariant() elif role == Qt.TextAlignmentRole: return QVariant(Qt.AlignRight | Qt.AlignVCenter) elif role != Qt.DisplayRole: return QVariant() return QVariant(self.tasks_data[index.row()][index.column()]) def headerData(self, col, orientation, role): if orientation == Qt.Horizontal and role == Qt.DisplayRole: return QVariant(self.header[col]) return QVariant() def sort(self, col, order): self.last_sort_column = col self.last_sort_order = order self.layoutAboutToBeChanged.emit() self.tasks_data = sorted(self.tasks_data, key=operator.itemgetter(col)) if order == Qt.DescendingOrder: self.tasks_data.reverse() self.layoutChanged.emit()
mit
amozie/amozie
quantzie/template.py
1
1412
import six import timeit from quantdigger import * from quantdigger.digger import finance, plotting from quantdigger.digger.analyze import AnalyzeFrame from quantzie.strategy.common import * import matplotlib.pyplot as plt class Stg1(Strategy): def on_init(self, ctx): ctx.test = TEST(ctx.close, 'test') def on_bar(self, ctx): # ctx.switch_to_pcontract('600056.SH-1.DAY') pass def on_exit(self, ctx): pass if __name__ == '__main__': start = timeit.default_timer() # ConfigUtil.set(source='tushare') ConfigUtil.set(source='cached-tushare', cache_path='E:/_cache_tushare') set_symbols(['600056.SH-1.Day'], '2016-09-01') profile = add_strategy([Stg1('Stg1')], {'capital': 100000.0}) run() stop = timeit.default_timer() six.print_('using time: %d seconds' % (stop - start)) curve0 = finance.create_equity_curve(profile.all_holdings(0)) curve = finance.create_equity_curve(profile.all_holdings()) # AnalyzeFrame(profile) plotting.plot_strategy(profile.data(0), { 1: [profile.technicals(0)] }, profile.deals(0), curve.equity.values, profile.marks(0)) # plotting.plot_curves([curve.networth]) six.print_(finance.summary_stats(curve, 252)) plt.show()
apache-2.0
eickenberg/scikit-learn
examples/svm/plot_separating_hyperplane.py
62
1274
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machines classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
dmargala/qusp
qusp/wavelength.py
1
4707
""" Provides support for working with BOSS wavelengths Examples -------- Add sky lines to quasar spectrum plot: >>> qusp.wavelength.draw_lines(qusp.wavelength.load_wavelengths('sky')) Get a combined spectrum's fiducial pixel offset: >>> offset = qusp.wavelength.get_fiducial_pixel_index_offset(np.log10(combined.wave[0])) Construct a fiducial pixel wavelength array: >>> wave = qusp.wavelength.get_fiducial_wavelength(np.arange(4800)) -------------- """ import math import os import numpy as np class Wavelength(float): """ A Wavelength is a float. Args: value (float): wavelength value """ def __init__(self, value): float.__init__(value) def __new__(cls, value, *args, **kwargs): return float.__new__(cls, value) def observed(self, redshift): """ Args: redshift (float): source redshift Returns: the shifted observed wavelength. """ return self*(1+redshift) def rest(self, redshift): """ Args: redshift (float): source redshift Returns: the shifted rest wavelength. """ return self/(1+redshift) class LabeledWavelength(Wavelength): """ A LabeledWavelength is a Wavelength with a label attribute """ def __init__(self, value, label): Wavelength.__init__(self, value) self.label = label def __str__(self): return str((self, self.label)) def load_wavelengths(filename, ignore_labels=False): """ Loads a list of wavelengths from the specified file Args: filename (str): wavelength data filename Returns: wavelengths (list) """ # Get the path that this module was loaded from. my_path = os.path.dirname(os.path.abspath(__file__)) # Build the path where the filter curves should be. wavelegths_path = os.path.join( os.path.dirname(my_path), 'data', 'wavelengths') full_path = os.path.join(wavelegths_path, '%s.dat' % filename) if ignore_labels: wavelengths = np.genfromtxt(full_path, usecols=0) return [Wavelength(wave) for wave in wavelengths] else: wavelengths = np.genfromtxt( full_path, dtype={'names':('wavelengths', 'labels'), 'formats':(float, 'S100')}, usecols=(0, 1)) return [LabeledWavelength(*wave) for wave in wavelengths] def get_fiducial_wavelength(pixel_index, coeff1=1e-4, log10lam0=np.log10(3500.26)): """ Returns the wavelength at the center of the specified index of the BOSS co-add fiducial wavelength grid. Args: pixel_index (int): index of the BOSS co-add fiducial wavelength grid. Returns: wavelength (float): central wavelength of the specified index on the fiducial wavelength grid """ return np.power(10.0, log10lam0 + coeff1*pixel_index) def get_fiducial_pixel_index_offset(loglam, coeff1=1e-4, log10lam0=np.log10(3500.26)): """ Returns the pixel index offset from the start of the BOSS co-add fiducial wavelength grid. Args: coeff0 (float): central wavelength (log10) of first pixel coeff1 (float, optional): log10 dispersion per pixel Returns: pixel index offset from the start of the fiducial wavelength grid. """ return np.round((loglam-log10lam0)/coeff1).astype(int) def draw_lines(waves, offset=0, delta=.1, **kwargs): """ Draws vertical lines on the current plot. """ import matplotlib.pyplot as plt import matplotlib.transforms as transforms wavemin, wavemax = plt.gca().get_xlim() transform = transforms.blended_transform_factory( plt.gca().transData, plt.gca().transAxes) for index, wave in enumerate(waves): if wave < wavemin or wave > wavemax: continue plt.axvline(wave, **kwargs) try: plt.text(wave, offset+(index%2)*delta, wave.label, transform=transform, horizontalalignment='left') except AttributeError: pass if __name__ == '__main__': # Tests for wavelengths module wave1216 = Wavelength(1216) assert wave1216.observed(2.5) == 4256, 'observed wavelength error' wave5472 = Wavelength(5472) assert wave5472.rest(3.5) == 1216, 'rest wavelength error' lambda0 = get_fiducial_wavelength(0) assert lambda0 == 3500.26, 'fiducial wavelength origin error' lambda101 = get_fiducial_wavelength(101) offset101 = get_fiducial_pixel_index_offset(math.log10(lambda101)) assert offset101 == 101, 'fiducial pixel index offset error' waves = load_wavelengths('balmer') for wave in waves: print waves.label
mit